1 /*
   2  * Copyright (c) 2001, 2017, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "code/codeCache.hpp"
  27 #include "gc/parallel/adjoiningGenerations.hpp"
  28 #include "gc/parallel/adjoiningVirtualSpaces.hpp"
  29 #include "gc/parallel/cardTableExtension.hpp"
  30 #include "gc/parallel/gcTaskManager.hpp"
  31 #include "gc/parallel/generationSizer.hpp"
  32 #include "gc/parallel/objectStartArray.inline.hpp"
  33 #include "gc/parallel/parallelScavengeHeap.inline.hpp"
  34 #include "gc/parallel/psAdaptiveSizePolicy.hpp"
  35 #include "gc/parallel/psMarkSweep.hpp"
  36 #include "gc/parallel/psMemoryPool.hpp"
  37 #include "gc/parallel/psParallelCompact.inline.hpp"
  38 #include "gc/parallel/psPromotionManager.hpp"
  39 #include "gc/parallel/psScavenge.hpp"
  40 #include "gc/parallel/vmPSOperations.hpp"
  41 #include "gc/shared/gcHeapSummary.hpp"
  42 #include "gc/shared/gcLocker.inline.hpp"
  43 #include "gc/shared/gcWhen.hpp"
  44 #include "logging/log.hpp"
  45 #include "oops/oop.inline.hpp"
  46 #include "runtime/handles.inline.hpp"
  47 #include "runtime/java.hpp"
  48 #include "runtime/vmThread.hpp"
  49 #include "services/memoryManager.hpp"
  50 #include "services/memTracker.hpp"
  51 #include "utilities/vmError.hpp"
  52 
  53 PSYoungGen*  ParallelScavengeHeap::_young_gen = NULL;
  54 PSOldGen*    ParallelScavengeHeap::_old_gen = NULL;
  55 PSAdaptiveSizePolicy* ParallelScavengeHeap::_size_policy = NULL;
  56 PSGCAdaptivePolicyCounters* ParallelScavengeHeap::_gc_policy_counters = NULL;
  57 GCTaskManager* ParallelScavengeHeap::_gc_task_manager = NULL;
  58 
  59 jint ParallelScavengeHeap::initialize() {
  60   CollectedHeap::pre_initialize();
  61 
  62   const size_t heap_size = _collector_policy->max_heap_byte_size();
  63 
  64   ReservedSpace heap_rs = Universe::reserve_heap(heap_size, _collector_policy->heap_alignment());
  65 
  66   os::trace_page_sizes("Heap",
  67                        _collector_policy->min_heap_byte_size(),
  68                        heap_size,
  69                        generation_alignment(),
  70                        heap_rs.base(),
  71                        heap_rs.size());
  72 
  73   initialize_reserved_region((HeapWord*)heap_rs.base(), (HeapWord*)(heap_rs.base() + heap_rs.size()));
  74 
  75   CardTableExtension* const barrier_set = new CardTableExtension(reserved_region());
  76   barrier_set->initialize();
  77   set_barrier_set(barrier_set);
  78 
  79   // Make up the generations
  80   // Calculate the maximum size that a generation can grow.  This
  81   // includes growth into the other generation.  Note that the
  82   // parameter _max_gen_size is kept as the maximum
  83   // size of the generation as the boundaries currently stand.
  84   // _max_gen_size is still used as that value.
  85   double max_gc_pause_sec = ((double) MaxGCPauseMillis)/1000.0;
  86   double max_gc_minor_pause_sec = ((double) MaxGCMinorPauseMillis)/1000.0;
  87 
  88   _gens = new AdjoiningGenerations(heap_rs, _collector_policy, generation_alignment());
  89 
  90   _old_gen = _gens->old_gen();
  91   _young_gen = _gens->young_gen();
  92 
  93   const size_t eden_capacity = _young_gen->eden_space()->capacity_in_bytes();
  94   const size_t old_capacity = _old_gen->capacity_in_bytes();
  95   const size_t initial_promo_size = MIN2(eden_capacity, old_capacity);
  96   _size_policy =
  97     new PSAdaptiveSizePolicy(eden_capacity,
  98                              initial_promo_size,
  99                              young_gen()->to_space()->capacity_in_bytes(),
 100                              _collector_policy->gen_alignment(),
 101                              max_gc_pause_sec,
 102                              max_gc_minor_pause_sec,
 103                              GCTimeRatio
 104                              );
 105 
 106   assert(!UseAdaptiveGCBoundary ||
 107     (old_gen()->virtual_space()->high_boundary() ==
 108      young_gen()->virtual_space()->low_boundary()),
 109     "Boundaries must meet");
 110   // initialize the policy counters - 2 collectors, 3 generations
 111   _gc_policy_counters =
 112     new PSGCAdaptivePolicyCounters("ParScav:MSC", 2, 3, _size_policy);
 113 
 114   // Set up the GCTaskManager
 115   _gc_task_manager = GCTaskManager::create(ParallelGCThreads);
 116 
 117   if (UseParallelOldGC && !PSParallelCompact::initialize()) {
 118     return JNI_ENOMEM;
 119   }
 120 
 121   return JNI_OK;
 122 }
 123 
 124 void ParallelScavengeHeap::post_initialize() {
 125   // Need to init the tenuring threshold
 126   PSScavenge::initialize();
 127   if (UseParallelOldGC) {
 128     PSParallelCompact::post_initialize();
 129   } else {
 130     PSMarkSweep::initialize();
 131   }
 132   PSPromotionManager::initialize();
 133 }
 134 
 135 void ParallelScavengeHeap::update_counters() {
 136   young_gen()->update_counters();
 137   old_gen()->update_counters();
 138   MetaspaceCounters::update_performance_counters();
 139   CompressedClassSpaceCounters::update_performance_counters();
 140 }
 141 
 142 size_t ParallelScavengeHeap::capacity() const {
 143   size_t value = young_gen()->capacity_in_bytes() + old_gen()->capacity_in_bytes();
 144   return value;
 145 }
 146 
 147 size_t ParallelScavengeHeap::used() const {
 148   size_t value = young_gen()->used_in_bytes() + old_gen()->used_in_bytes();
 149   return value;
 150 }
 151 
 152 bool ParallelScavengeHeap::is_maximal_no_gc() const {
 153   return old_gen()->is_maximal_no_gc() && young_gen()->is_maximal_no_gc();
 154 }
 155 
 156 
 157 size_t ParallelScavengeHeap::max_capacity() const {
 158   size_t estimated = reserved_region().byte_size();
 159   if (UseAdaptiveSizePolicy) {
 160     estimated -= _size_policy->max_survivor_size(young_gen()->max_size());
 161   } else {
 162     estimated -= young_gen()->to_space()->capacity_in_bytes();
 163   }
 164   return MAX2(estimated, capacity());
 165 }
 166 
 167 bool ParallelScavengeHeap::is_in(const void* p) const {
 168   return young_gen()->is_in(p) || old_gen()->is_in(p);
 169 }
 170 
 171 bool ParallelScavengeHeap::is_in_reserved(const void* p) const {
 172   return young_gen()->is_in_reserved(p) || old_gen()->is_in_reserved(p);
 173 }
 174 
 175 // There are two levels of allocation policy here.
 176 //
 177 // When an allocation request fails, the requesting thread must invoke a VM
 178 // operation, transfer control to the VM thread, and await the results of a
 179 // garbage collection. That is quite expensive, and we should avoid doing it
 180 // multiple times if possible.
 181 //
 182 // To accomplish this, we have a basic allocation policy, and also a
 183 // failed allocation policy.
 184 //
 185 // The basic allocation policy controls how you allocate memory without
 186 // attempting garbage collection. It is okay to grab locks and
 187 // expand the heap, if that can be done without coming to a safepoint.
 188 // It is likely that the basic allocation policy will not be very
 189 // aggressive.
 190 //
 191 // The failed allocation policy is invoked from the VM thread after
 192 // the basic allocation policy is unable to satisfy a mem_allocate
 193 // request. This policy needs to cover the entire range of collection,
 194 // heap expansion, and out-of-memory conditions. It should make every
 195 // attempt to allocate the requested memory.
 196 
 197 // Basic allocation policy. Should never be called at a safepoint, or
 198 // from the VM thread.
 199 //
 200 // This method must handle cases where many mem_allocate requests fail
 201 // simultaneously. When that happens, only one VM operation will succeed,
 202 // and the rest will not be executed. For that reason, this method loops
 203 // during failed allocation attempts. If the java heap becomes exhausted,
 204 // we rely on the size_policy object to force a bail out.
 205 HeapWord* ParallelScavengeHeap::mem_allocate(
 206                                      size_t size,
 207                                      bool* gc_overhead_limit_was_exceeded) {
 208   assert(!SafepointSynchronize::is_at_safepoint(), "should not be at safepoint");
 209   assert(Thread::current() != (Thread*)VMThread::vm_thread(), "should not be in vm thread");
 210   assert(!Heap_lock->owned_by_self(), "this thread should not own the Heap_lock");
 211 
 212   // In general gc_overhead_limit_was_exceeded should be false so
 213   // set it so here and reset it to true only if the gc time
 214   // limit is being exceeded as checked below.
 215   *gc_overhead_limit_was_exceeded = false;
 216 
 217   HeapWord* result = young_gen()->allocate(size);
 218 
 219   uint loop_count = 0;
 220   uint gc_count = 0;
 221   uint gclocker_stalled_count = 0;
 222 
 223   while (result == NULL) {
 224     // We don't want to have multiple collections for a single filled generation.
 225     // To prevent this, each thread tracks the total_collections() value, and if
 226     // the count has changed, does not do a new collection.
 227     //
 228     // The collection count must be read only while holding the heap lock. VM
 229     // operations also hold the heap lock during collections. There is a lock
 230     // contention case where thread A blocks waiting on the Heap_lock, while
 231     // thread B is holding it doing a collection. When thread A gets the lock,
 232     // the collection count has already changed. To prevent duplicate collections,
 233     // The policy MUST attempt allocations during the same period it reads the
 234     // total_collections() value!
 235     {
 236       MutexLocker ml(Heap_lock);
 237       gc_count = total_collections();
 238 
 239       result = young_gen()->allocate(size);
 240       if (result != NULL) {
 241         return result;
 242       }
 243 
 244       // If certain conditions hold, try allocating from the old gen.
 245       result = mem_allocate_old_gen(size);
 246       if (result != NULL) {
 247         return result;
 248       }
 249 
 250       if (gclocker_stalled_count > GCLockerRetryAllocationCount) {
 251         return NULL;
 252       }
 253 
 254       // Failed to allocate without a gc.
 255       if (GCLocker::is_active_and_needs_gc()) {
 256         // If this thread is not in a jni critical section, we stall
 257         // the requestor until the critical section has cleared and
 258         // GC allowed. When the critical section clears, a GC is
 259         // initiated by the last thread exiting the critical section; so
 260         // we retry the allocation sequence from the beginning of the loop,
 261         // rather than causing more, now probably unnecessary, GC attempts.
 262         JavaThread* jthr = JavaThread::current();
 263         if (!jthr->in_critical()) {
 264           MutexUnlocker mul(Heap_lock);
 265           GCLocker::stall_until_clear();
 266           gclocker_stalled_count += 1;
 267           continue;
 268         } else {
 269           if (CheckJNICalls) {
 270             fatal("Possible deadlock due to allocating while"
 271                   " in jni critical section");
 272           }
 273           return NULL;
 274         }
 275       }
 276     }
 277 
 278     if (result == NULL) {
 279       // Generate a VM operation
 280       VM_ParallelGCFailedAllocation op(size, gc_count);
 281       VMThread::execute(&op);
 282 
 283       // Did the VM operation execute? If so, return the result directly.
 284       // This prevents us from looping until time out on requests that can
 285       // not be satisfied.
 286       if (op.prologue_succeeded()) {
 287         assert(is_in_or_null(op.result()), "result not in heap");
 288 
 289         // If GC was locked out during VM operation then retry allocation
 290         // and/or stall as necessary.
 291         if (op.gc_locked()) {
 292           assert(op.result() == NULL, "must be NULL if gc_locked() is true");
 293           continue;  // retry and/or stall as necessary
 294         }
 295 
 296         // Exit the loop if the gc time limit has been exceeded.
 297         // The allocation must have failed above ("result" guarding
 298         // this path is NULL) and the most recent collection has exceeded the
 299         // gc overhead limit (although enough may have been collected to
 300         // satisfy the allocation).  Exit the loop so that an out-of-memory
 301         // will be thrown (return a NULL ignoring the contents of
 302         // op.result()),
 303         // but clear gc_overhead_limit_exceeded so that the next collection
 304         // starts with a clean slate (i.e., forgets about previous overhead
 305         // excesses).  Fill op.result() with a filler object so that the
 306         // heap remains parsable.
 307         const bool limit_exceeded = size_policy()->gc_overhead_limit_exceeded();
 308         const bool softrefs_clear = collector_policy()->all_soft_refs_clear();
 309 
 310         if (limit_exceeded && softrefs_clear) {
 311           *gc_overhead_limit_was_exceeded = true;
 312           size_policy()->set_gc_overhead_limit_exceeded(false);
 313           log_trace(gc)("ParallelScavengeHeap::mem_allocate: return NULL because gc_overhead_limit_exceeded is set");
 314           if (op.result() != NULL) {
 315             CollectedHeap::fill_with_object(op.result(), size);
 316           }
 317           return NULL;
 318         }
 319 
 320         return op.result();
 321       }
 322     }
 323 
 324     // The policy object will prevent us from looping forever. If the
 325     // time spent in gc crosses a threshold, we will bail out.
 326     loop_count++;
 327     if ((result == NULL) && (QueuedAllocationWarningCount > 0) &&
 328         (loop_count % QueuedAllocationWarningCount == 0)) {
 329       log_warning(gc)("ParallelScavengeHeap::mem_allocate retries %d times", loop_count);
 330       log_warning(gc)("\tsize=" SIZE_FORMAT, size);
 331     }
 332   }
 333 
 334   return result;
 335 }
 336 
 337 // A "death march" is a series of ultra-slow allocations in which a full gc is
 338 // done before each allocation, and after the full gc the allocation still
 339 // cannot be satisfied from the young gen.  This routine detects that condition;
 340 // it should be called after a full gc has been done and the allocation
 341 // attempted from the young gen. The parameter 'addr' should be the result of
 342 // that young gen allocation attempt.
 343 void
 344 ParallelScavengeHeap::death_march_check(HeapWord* const addr, size_t size) {
 345   if (addr != NULL) {
 346     _death_march_count = 0;  // death march has ended
 347   } else if (_death_march_count == 0) {
 348     if (should_alloc_in_eden(size)) {
 349       _death_march_count = 1;    // death march has started
 350     }
 351   }
 352 }
 353 
 354 HeapWord* ParallelScavengeHeap::mem_allocate_old_gen(size_t size) {
 355   if (!should_alloc_in_eden(size) || GCLocker::is_active_and_needs_gc()) {
 356     // Size is too big for eden, or gc is locked out.
 357     return old_gen()->allocate(size);
 358   }
 359 
 360   // If a "death march" is in progress, allocate from the old gen a limited
 361   // number of times before doing a GC.
 362   if (_death_march_count > 0) {
 363     if (_death_march_count < 64) {
 364       ++_death_march_count;
 365       return old_gen()->allocate(size);
 366     } else {
 367       _death_march_count = 0;
 368     }
 369   }
 370   return NULL;
 371 }
 372 
 373 void ParallelScavengeHeap::do_full_collection(bool clear_all_soft_refs) {
 374   if (UseParallelOldGC) {
 375     // The do_full_collection() parameter clear_all_soft_refs
 376     // is interpreted here as maximum_compaction which will
 377     // cause SoftRefs to be cleared.
 378     bool maximum_compaction = clear_all_soft_refs;
 379     PSParallelCompact::invoke(maximum_compaction);
 380   } else {
 381     PSMarkSweep::invoke(clear_all_soft_refs);
 382   }
 383 }
 384 
 385 // Failed allocation policy. Must be called from the VM thread, and
 386 // only at a safepoint! Note that this method has policy for allocation
 387 // flow, and NOT collection policy. So we do not check for gc collection
 388 // time over limit here, that is the responsibility of the heap specific
 389 // collection methods. This method decides where to attempt allocations,
 390 // and when to attempt collections, but no collection specific policy.
 391 HeapWord* ParallelScavengeHeap::failed_mem_allocate(size_t size) {
 392   assert(SafepointSynchronize::is_at_safepoint(), "should be at safepoint");
 393   assert(Thread::current() == (Thread*)VMThread::vm_thread(), "should be in vm thread");
 394   assert(!is_gc_active(), "not reentrant");
 395   assert(!Heap_lock->owned_by_self(), "this thread should not own the Heap_lock");
 396 
 397   // We assume that allocation in eden will fail unless we collect.
 398 
 399   // First level allocation failure, scavenge and allocate in young gen.
 400   GCCauseSetter gccs(this, GCCause::_allocation_failure);
 401   const bool invoked_full_gc = PSScavenge::invoke();
 402   HeapWord* result = young_gen()->allocate(size);
 403 
 404   // Second level allocation failure.
 405   //   Mark sweep and allocate in young generation.
 406   if (result == NULL && !invoked_full_gc) {
 407     do_full_collection(false);
 408     result = young_gen()->allocate(size);
 409   }
 410 
 411   death_march_check(result, size);
 412 
 413   // Third level allocation failure.
 414   //   After mark sweep and young generation allocation failure,
 415   //   allocate in old generation.
 416   if (result == NULL) {
 417     result = old_gen()->allocate(size);
 418   }
 419 
 420   // Fourth level allocation failure. We're running out of memory.
 421   //   More complete mark sweep and allocate in young generation.
 422   if (result == NULL) {
 423     do_full_collection(true);
 424     result = young_gen()->allocate(size);
 425   }
 426 
 427   // Fifth level allocation failure.
 428   //   After more complete mark sweep, allocate in old generation.
 429   if (result == NULL) {
 430     result = old_gen()->allocate(size);
 431   }
 432 
 433   return result;
 434 }
 435 
 436 void ParallelScavengeHeap::ensure_parsability(bool retire_tlabs) {
 437   CollectedHeap::ensure_parsability(retire_tlabs);
 438   young_gen()->eden_space()->ensure_parsability();
 439 }
 440 
 441 size_t ParallelScavengeHeap::tlab_capacity(Thread* thr) const {
 442   return young_gen()->eden_space()->tlab_capacity(thr);
 443 }
 444 
 445 size_t ParallelScavengeHeap::tlab_used(Thread* thr) const {
 446   return young_gen()->eden_space()->tlab_used(thr);
 447 }
 448 
 449 size_t ParallelScavengeHeap::unsafe_max_tlab_alloc(Thread* thr) const {
 450   return young_gen()->eden_space()->unsafe_max_tlab_alloc(thr);
 451 }
 452 
 453 HeapWord* ParallelScavengeHeap::allocate_new_tlab(size_t size) {
 454   return young_gen()->allocate(size);
 455 }
 456 
 457 void ParallelScavengeHeap::accumulate_statistics_all_tlabs() {
 458   CollectedHeap::accumulate_statistics_all_tlabs();
 459 }
 460 
 461 void ParallelScavengeHeap::resize_all_tlabs() {
 462   CollectedHeap::resize_all_tlabs();
 463 }
 464 
 465 bool ParallelScavengeHeap::can_elide_initializing_store_barrier(oop new_obj) {
 466   // We don't need barriers for stores to objects in the
 467   // young gen and, a fortiori, for initializing stores to
 468   // objects therein.
 469   return is_in_young(new_obj);
 470 }
 471 
 472 // This method is used by System.gc() and JVMTI.
 473 void ParallelScavengeHeap::collect(GCCause::Cause cause) {
 474   assert(!Heap_lock->owned_by_self(),
 475     "this thread should not own the Heap_lock");
 476 
 477   uint gc_count      = 0;
 478   uint full_gc_count = 0;
 479   {
 480     MutexLocker ml(Heap_lock);
 481     // This value is guarded by the Heap_lock
 482     gc_count      = total_collections();
 483     full_gc_count = total_full_collections();
 484   }
 485 
 486   VM_ParallelGCSystemGC op(gc_count, full_gc_count, cause);
 487   VMThread::execute(&op);
 488 }
 489 
 490 void ParallelScavengeHeap::object_iterate(ObjectClosure* cl) {
 491   young_gen()->object_iterate(cl);
 492   old_gen()->object_iterate(cl);
 493 }
 494 
 495 
 496 HeapWord* ParallelScavengeHeap::block_start(const void* addr) const {
 497   if (young_gen()->is_in_reserved(addr)) {
 498     assert(young_gen()->is_in(addr),
 499            "addr should be in allocated part of young gen");
 500     // called from os::print_location by find or VMError
 501     if (Debugging || VMError::fatal_error_in_progress())  return NULL;
 502     Unimplemented();
 503   } else if (old_gen()->is_in_reserved(addr)) {
 504     assert(old_gen()->is_in(addr),
 505            "addr should be in allocated part of old gen");
 506     return old_gen()->start_array()->object_start((HeapWord*)addr);
 507   }
 508   return 0;
 509 }
 510 
 511 size_t ParallelScavengeHeap::block_size(const HeapWord* addr) const {
 512   return oop(addr)->size();
 513 }
 514 
 515 bool ParallelScavengeHeap::block_is_obj(const HeapWord* addr) const {
 516   return block_start(addr) == addr;
 517 }
 518 
 519 jlong ParallelScavengeHeap::millis_since_last_gc() {
 520   return UseParallelOldGC ?
 521     PSParallelCompact::millis_since_last_gc() :
 522     PSMarkSweep::millis_since_last_gc();
 523 }
 524 
 525 void ParallelScavengeHeap::prepare_for_verify() {
 526   ensure_parsability(false);  // no need to retire TLABs for verification
 527 }
 528 
 529 PSHeapSummary ParallelScavengeHeap::create_ps_heap_summary() {
 530   PSOldGen* old = old_gen();
 531   HeapWord* old_committed_end = (HeapWord*)old->virtual_space()->committed_high_addr();
 532   VirtualSpaceSummary old_summary(old->reserved().start(), old_committed_end, old->reserved().end());
 533   SpaceSummary old_space(old->reserved().start(), old_committed_end, old->used_in_bytes());
 534 
 535   PSYoungGen* young = young_gen();
 536   VirtualSpaceSummary young_summary(young->reserved().start(),
 537     (HeapWord*)young->virtual_space()->committed_high_addr(), young->reserved().end());
 538 
 539   MutableSpace* eden = young_gen()->eden_space();
 540   SpaceSummary eden_space(eden->bottom(), eden->end(), eden->used_in_bytes());
 541 
 542   MutableSpace* from = young_gen()->from_space();
 543   SpaceSummary from_space(from->bottom(), from->end(), from->used_in_bytes());
 544 
 545   MutableSpace* to = young_gen()->to_space();
 546   SpaceSummary to_space(to->bottom(), to->end(), to->used_in_bytes());
 547 
 548   VirtualSpaceSummary heap_summary = create_heap_space_summary();
 549   return PSHeapSummary(heap_summary, used(), old_summary, old_space, young_summary, eden_space, from_space, to_space);
 550 }
 551 
 552 void ParallelScavengeHeap::print_on(outputStream* st) const {
 553   young_gen()->print_on(st);
 554   old_gen()->print_on(st);
 555   MetaspaceAux::print_on(st);
 556 }
 557 
 558 void ParallelScavengeHeap::print_on_error(outputStream* st) const {
 559   this->CollectedHeap::print_on_error(st);
 560 
 561   if (UseParallelOldGC) {
 562     st->cr();
 563     PSParallelCompact::print_on_error(st);
 564   }
 565 }
 566 
 567 void ParallelScavengeHeap::gc_threads_do(ThreadClosure* tc) const {
 568   PSScavenge::gc_task_manager()->threads_do(tc);
 569 }
 570 
 571 void ParallelScavengeHeap::print_gc_threads_on(outputStream* st) const {
 572   PSScavenge::gc_task_manager()->print_threads_on(st);
 573 }
 574 
 575 void ParallelScavengeHeap::print_tracing_info() const {
 576   AdaptiveSizePolicyOutput::print();
 577   log_debug(gc, heap, exit)("Accumulated young generation GC time %3.7f secs", PSScavenge::accumulated_time()->seconds());
 578   log_debug(gc, heap, exit)("Accumulated old generation GC time %3.7f secs",
 579       UseParallelOldGC ? PSParallelCompact::accumulated_time()->seconds() : PSMarkSweep::accumulated_time()->seconds());
 580 }
 581 
 582 
 583 void ParallelScavengeHeap::verify(VerifyOption option /* ignored */) {
 584   // Why do we need the total_collections()-filter below?
 585   if (total_collections() > 0) {
 586     log_debug(gc, verify)("Tenured");
 587     old_gen()->verify();
 588 
 589     log_debug(gc, verify)("Eden");
 590     young_gen()->verify();
 591   }
 592 }
 593 
 594 void ParallelScavengeHeap::trace_heap(GCWhen::Type when, const GCTracer* gc_tracer) {
 595   const PSHeapSummary& heap_summary = create_ps_heap_summary();
 596   gc_tracer->report_gc_heap_summary(when, heap_summary);
 597 
 598   const MetaspaceSummary& metaspace_summary = create_metaspace_summary();
 599   gc_tracer->report_metaspace_summary(when, metaspace_summary);
 600 }
 601 
 602 ParallelScavengeHeap* ParallelScavengeHeap::heap() {
 603   CollectedHeap* heap = Universe::heap();
 604   assert(heap != NULL, "Uninitialized access to ParallelScavengeHeap::heap()");
 605   assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Not a ParallelScavengeHeap");
 606   return (ParallelScavengeHeap*)heap;
 607 }
 608 
 609 // Before delegating the resize to the young generation,
 610 // the reserved space for the young and old generations
 611 // may be changed to accommodate the desired resize.
 612 void ParallelScavengeHeap::resize_young_gen(size_t eden_size,
 613     size_t survivor_size) {
 614   if (UseAdaptiveGCBoundary) {
 615     if (size_policy()->bytes_absorbed_from_eden() != 0) {
 616       size_policy()->reset_bytes_absorbed_from_eden();
 617       return;  // The generation changed size already.
 618     }
 619     gens()->adjust_boundary_for_young_gen_needs(eden_size, survivor_size);
 620   }
 621 
 622   // Delegate the resize to the generation.
 623   _young_gen->resize(eden_size, survivor_size);
 624 }
 625 
 626 // Before delegating the resize to the old generation,
 627 // the reserved space for the young and old generations
 628 // may be changed to accommodate the desired resize.
 629 void ParallelScavengeHeap::resize_old_gen(size_t desired_free_space) {
 630   if (UseAdaptiveGCBoundary) {
 631     if (size_policy()->bytes_absorbed_from_eden() != 0) {
 632       size_policy()->reset_bytes_absorbed_from_eden();
 633       return;  // The generation changed size already.
 634     }
 635     gens()->adjust_boundary_for_old_gen_needs(desired_free_space);
 636   }
 637 
 638   // Delegate the resize to the generation.
 639   _old_gen->resize(desired_free_space);
 640 }
 641 
 642 ParallelScavengeHeap::ParStrongRootsScope::ParStrongRootsScope() {
 643   // nothing particular
 644 }
 645 
 646 ParallelScavengeHeap::ParStrongRootsScope::~ParStrongRootsScope() {
 647   // nothing particular
 648 }
 649 
 650 #ifndef PRODUCT
 651 void ParallelScavengeHeap::record_gen_tops_before_GC() {
 652   if (ZapUnusedHeapArea) {
 653     young_gen()->record_spaces_top();
 654     old_gen()->record_spaces_top();
 655   }
 656 }
 657 
 658 void ParallelScavengeHeap::gen_mangle_unused_area() {
 659   if (ZapUnusedHeapArea) {
 660     young_gen()->eden_space()->mangle_unused_area();
 661     young_gen()->to_space()->mangle_unused_area();
 662     young_gen()->from_space()->mangle_unused_area();
 663     old_gen()->object_space()->mangle_unused_area();
 664   }
 665 }
 666 #endif
 667 
 668 bool ParallelScavengeHeap::is_scavengable(oop obj) {
 669   return is_in_young(obj);
 670 }
 671 
 672 void ParallelScavengeHeap::register_nmethod(nmethod* nm) {
 673   CodeCache::register_scavenge_root_nmethod(nm);
 674 }
 675 
 676 void ParallelScavengeHeap::verify_nmethod(nmethod* nm) {
 677   CodeCache::verify_scavenge_root_nmethod(nm);
 678 }
 679 
 680 class PSScavengeMemoryManager : public GCMemoryManager {
 681 private:
 682 public:
 683   PSScavengeMemoryManager() : GCMemoryManager() {}
 684 
 685   const char* name() { return "PS Scavenge"; }
 686 };
 687 
 688 class PSMarkSweepMemoryManager : public GCMemoryManager {
 689 private:
 690 public:
 691   PSMarkSweepMemoryManager() : GCMemoryManager() {}
 692 
 693   const char* name() { return "PS MarkSweep"; }
 694 };
 695 
 696 GrowableArray<GCMemoryManager*> ParallelScavengeHeap::memory_managers() {
 697   _minor_mgr = new PSScavengeMemoryManager();
 698   _major_mgr = new PSMarkSweepMemoryManager();
 699   GrowableArray<GCMemoryManager*> mem_mgrs;
 700   mem_mgrs.append(_minor_mgr);
 701   mem_mgrs.append(_major_mgr);
 702   return mem_mgrs;
 703 }
 704 
 705 GrowableArray<MemoryPool*> ParallelScavengeHeap::memory_pools() {
 706   PSYoungGen* young = young_gen();
 707   EdenMutableSpacePool* eden = new EdenMutableSpacePool(young,
 708                                                         young->eden_space(),
 709                                                         "PS Eden Space",
 710                                                         MemoryPool::Heap,
 711                                                         false /* support_usage_threshold */);
 712 
 713   SurvivorMutableSpacePool* survivor = new SurvivorMutableSpacePool(young,
 714                                                                     "PS Survivor Space",
 715                                                                     MemoryPool::Heap,
 716                                                                     false /* support_usage_threshold */);
 717 
 718   PSGenerationPool* old_gen_pool = new PSGenerationPool(old_gen(),
 719                                                        "PS Old Gen",
 720                                                        MemoryPool::Heap,
 721                                                        true /* support_usage_threshold */);
 722 
 723   _major_mgr->add_pool(eden);
 724   _major_mgr->add_pool(survivor);
 725   _major_mgr->add_pool(old_gen_pool);
 726 
 727   _minor_mgr->add_pool(eden);
 728   _minor_mgr->add_pool(survivor);
 729 
 730   GrowableArray<MemoryPool*> mem_pools;
 731   mem_pools.append(eden);
 732   mem_pools.append(survivor);
 733   mem_pools.append(old_gen_pool);
 734   return mem_pools;
 735 }
 736