1 /*
   2  * Copyright (c) 2001, 2017, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_VM_GC_G1_G1COLLECTEDHEAP_HPP
  26 #define SHARE_VM_GC_G1_G1COLLECTEDHEAP_HPP
  27 
  28 #include "gc/g1/evacuationInfo.hpp"
  29 #include "gc/g1/g1AllocationContext.hpp"
  30 #include "gc/g1/g1BiasedArray.hpp"
  31 #include "gc/g1/g1CollectionSet.hpp"
  32 #include "gc/g1/g1CollectorState.hpp"
  33 #include "gc/g1/g1ConcurrentMark.hpp"
  34 #include "gc/g1/g1EdenRegions.hpp"
  35 #include "gc/g1/g1EvacFailure.hpp"
  36 #include "gc/g1/g1EvacStats.hpp"
  37 #include "gc/g1/g1HeapTransition.hpp"
  38 #include "gc/g1/g1HeapVerifier.hpp"
  39 #include "gc/g1/g1HRPrinter.hpp"
  40 #include "gc/g1/g1InCSetState.hpp"
  41 #include "gc/g1/g1MonitoringSupport.hpp"
  42 #include "gc/g1/g1SATBCardTableModRefBS.hpp"
  43 #include "gc/g1/g1SurvivorRegions.hpp"
  44 #include "gc/g1/g1YCTypes.hpp"
  45 #include "gc/g1/hSpaceCounters.hpp"
  46 #include "gc/g1/heapRegionManager.hpp"
  47 #include "gc/g1/heapRegionSet.hpp"
  48 #include "gc/shared/barrierSet.hpp"
  49 #include "gc/shared/collectedHeap.hpp"
  50 #include "gc/shared/plab.hpp"
  51 #include "gc/shared/preservedMarks.hpp"
  52 #include "memory/memRegion.hpp"
  53 #include "utilities/stack.hpp"
  54 
  55 // A "G1CollectedHeap" is an implementation of a java heap for HotSpot.
  56 // It uses the "Garbage First" heap organization and algorithm, which
  57 // may combine concurrent marking with parallel, incremental compaction of
  58 // heap subsets that will yield large amounts of garbage.
  59 
  60 // Forward declarations
  61 class HeapRegion;
  62 class HRRSCleanupTask;
  63 class GenerationSpec;
  64 class G1ParScanThreadState;
  65 class G1ParScanThreadStateSet;
  66 class G1ParScanThreadState;
  67 class ObjectClosure;
  68 class SpaceClosure;
  69 class CompactibleSpaceClosure;
  70 class Space;
  71 class G1CollectionSet;
  72 class G1CollectorPolicy;
  73 class G1Policy;
  74 class G1HotCardCache;
  75 class G1RemSet;
  76 class G1YoungRemSetSamplingThread;
  77 class HeapRegionRemSetIterator;
  78 class G1ConcurrentMark;
  79 class ConcurrentMarkThread;
  80 class G1ConcurrentRefine;
  81 class GenerationCounters;
  82 class STWGCTimer;
  83 class G1NewTracer;
  84 class EvacuationFailedInfo;
  85 class nmethod;
  86 class Ticks;
  87 class WorkGang;
  88 class G1Allocator;
  89 class G1ArchiveAllocator;
  90 class G1FullGCScope;
  91 class G1HeapVerifier;
  92 class G1HeapSizingPolicy;
  93 class G1HeapSummary;
  94 class G1EvacSummary;
  95 class MemoryManager;
  96 class MemoryPool;
  97 
  98 typedef OverflowTaskQueue<StarTask, mtGC>         RefToScanQueue;
  99 typedef GenericTaskQueueSet<RefToScanQueue, mtGC> RefToScanQueueSet;
 100 
 101 typedef int RegionIdx_t;   // needs to hold [ 0..max_regions() )
 102 typedef int CardIdx_t;     // needs to hold [ 0..CardsPerRegion )
 103 
 104 // The G1 STW is alive closure.
 105 // An instance is embedded into the G1CH and used as the
 106 // (optional) _is_alive_non_header closure in the STW
 107 // reference processor. It is also extensively used during
 108 // reference processing during STW evacuation pauses.
 109 class G1STWIsAliveClosure: public BoolObjectClosure {
 110   G1CollectedHeap* _g1;
 111 public:
 112   G1STWIsAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
 113   bool do_object_b(oop p);
 114 };
 115 
 116 class G1RegionMappingChangedListener : public G1MappingChangedListener {
 117  private:
 118   void reset_from_card_cache(uint start_idx, size_t num_regions);
 119  public:
 120   virtual void on_commit(uint start_idx, size_t num_regions, bool zero_filled);
 121 };
 122 
 123 class G1CollectedHeap : public CollectedHeap {
 124   friend class G1FreeCollectionSetTask;
 125   friend class VM_CollectForMetadataAllocation;
 126   friend class VM_G1CollectForAllocation;
 127   friend class VM_G1CollectFull;
 128   friend class VM_G1IncCollectionPause;
 129   friend class VMStructs;
 130   friend class MutatorAllocRegion;
 131   friend class G1GCAllocRegion;
 132   friend class G1HeapVerifier;
 133 
 134   // Closures used in implementation.
 135   friend class G1ParScanThreadState;
 136   friend class G1ParScanThreadStateSet;
 137   friend class G1ParTask;
 138   friend class G1PLABAllocator;
 139   friend class G1PrepareCompactClosure;
 140 
 141   // Other related classes.
 142   friend class HeapRegionClaimer;
 143 
 144   // Testing classes.
 145   friend class G1CheckCSetFastTableClosure;
 146 
 147 private:
 148   G1YoungRemSetSamplingThread* _young_gen_sampling_thread;
 149 
 150   WorkGang* _workers;
 151   G1CollectorPolicy* _collector_policy;
 152 
 153   GCMemoryManager* _minor_mgr;
 154   GCMemoryManager* _major_mgr;
 155 
 156   static size_t _humongous_object_threshold_in_words;
 157 
 158   // The secondary free list which contains regions that have been
 159   // freed up during the cleanup process. This will be appended to
 160   // the master free list when appropriate.
 161   FreeRegionList _secondary_free_list;
 162 
 163   // It keeps track of the old regions.
 164   HeapRegionSet _old_set;
 165 
 166   // It keeps track of the humongous regions.
 167   HeapRegionSet _humongous_set;
 168 
 169   void eagerly_reclaim_humongous_regions();
 170   // Start a new incremental collection set for the next pause.
 171   void start_new_collection_set();
 172 
 173   // The number of regions we could create by expansion.
 174   uint _expansion_regions;
 175 
 176   // The block offset table for the G1 heap.
 177   G1BlockOffsetTable* _bot;
 178 
 179   // Tears down the region sets / lists so that they are empty and the
 180   // regions on the heap do not belong to a region set / list. The
 181   // only exception is the humongous set which we leave unaltered. If
 182   // free_list_only is true, it will only tear down the master free
 183   // list. It is called before a Full GC (free_list_only == false) or
 184   // before heap shrinking (free_list_only == true).
 185   void tear_down_region_sets(bool free_list_only);
 186 
 187   // Rebuilds the region sets / lists so that they are repopulated to
 188   // reflect the contents of the heap. The only exception is the
 189   // humongous set which was not torn down in the first place. If
 190   // free_list_only is true, it will only rebuild the master free
 191   // list. It is called after a Full GC (free_list_only == false) or
 192   // after heap shrinking (free_list_only == true).
 193   void rebuild_region_sets(bool free_list_only);
 194 
 195   // Callback for region mapping changed events.
 196   G1RegionMappingChangedListener _listener;
 197 
 198   // The sequence of all heap regions in the heap.
 199   HeapRegionManager _hrm;
 200 
 201   // Manages all allocations with regions except humongous object allocations.
 202   G1Allocator* _allocator;
 203 
 204   // Manages all heap verification.
 205   G1HeapVerifier* _verifier;
 206 
 207   // Outside of GC pauses, the number of bytes used in all regions other
 208   // than the current allocation region(s).
 209   size_t _summary_bytes_used;
 210 
 211   void increase_used(size_t bytes);
 212   void decrease_used(size_t bytes);
 213 
 214   void set_used(size_t bytes);
 215 
 216   // Class that handles archive allocation ranges.
 217   G1ArchiveAllocator* _archive_allocator;
 218 
 219   // Statistics for each allocation context
 220   AllocationContextStats _allocation_context_stats;
 221 
 222   // GC allocation statistics policy for survivors.
 223   G1EvacStats _survivor_evac_stats;
 224 
 225   // GC allocation statistics policy for tenured objects.
 226   G1EvacStats _old_evac_stats;
 227 
 228   // It specifies whether we should attempt to expand the heap after a
 229   // region allocation failure. If heap expansion fails we set this to
 230   // false so that we don't re-attempt the heap expansion (it's likely
 231   // that subsequent expansion attempts will also fail if one fails).
 232   // Currently, it is only consulted during GC and it's reset at the
 233   // start of each GC.
 234   bool _expand_heap_after_alloc_failure;
 235 
 236   // Helper for monitoring and management support.
 237   G1MonitoringSupport* _g1mm;
 238 
 239   // Records whether the region at the given index is (still) a
 240   // candidate for eager reclaim.  Only valid for humongous start
 241   // regions; other regions have unspecified values.  Humongous start
 242   // regions are initialized at start of collection pause, with
 243   // candidates removed from the set as they are found reachable from
 244   // roots or the young generation.
 245   class HumongousReclaimCandidates : public G1BiasedMappedArray<bool> {
 246    protected:
 247     bool default_value() const { return false; }
 248    public:
 249     void clear() { G1BiasedMappedArray<bool>::clear(); }
 250     void set_candidate(uint region, bool value) {
 251       set_by_index(region, value);
 252     }
 253     bool is_candidate(uint region) {
 254       return get_by_index(region);
 255     }
 256   };
 257 
 258   HumongousReclaimCandidates _humongous_reclaim_candidates;
 259   // Stores whether during humongous object registration we found candidate regions.
 260   // If not, we can skip a few steps.
 261   bool _has_humongous_reclaim_candidates;
 262 
 263   volatile uint _gc_time_stamp;
 264 
 265   G1HRPrinter _hr_printer;
 266 
 267   // It decides whether an explicit GC should start a concurrent cycle
 268   // instead of doing a STW GC. Currently, a concurrent cycle is
 269   // explicitly started if:
 270   // (a) cause == _gc_locker and +GCLockerInvokesConcurrent, or
 271   // (b) cause == _g1_humongous_allocation
 272   // (c) cause == _java_lang_system_gc and +ExplicitGCInvokesConcurrent.
 273   // (d) cause == _dcmd_gc_run and +ExplicitGCInvokesConcurrent.
 274   // (e) cause == _update_allocation_context_stats_inc
 275   // (f) cause == _wb_conc_mark
 276   bool should_do_concurrent_full_gc(GCCause::Cause cause);
 277 
 278   // indicates whether we are in young or mixed GC mode
 279   G1CollectorState _collector_state;
 280 
 281   // Keeps track of how many "old marking cycles" (i.e., Full GCs or
 282   // concurrent cycles) we have started.
 283   volatile uint _old_marking_cycles_started;
 284 
 285   // Keeps track of how many "old marking cycles" (i.e., Full GCs or
 286   // concurrent cycles) we have completed.
 287   volatile uint _old_marking_cycles_completed;
 288 
 289   // This is a non-product method that is helpful for testing. It is
 290   // called at the end of a GC and artificially expands the heap by
 291   // allocating a number of dead regions. This way we can induce very
 292   // frequent marking cycles and stress the cleanup / concurrent
 293   // cleanup code more (as all the regions that will be allocated by
 294   // this method will be found dead by the marking cycle).
 295   void allocate_dummy_regions() PRODUCT_RETURN;
 296 
 297   // Clear RSets after a compaction. It also resets the GC time stamps.
 298   void clear_rsets_post_compaction();
 299 
 300   // If the HR printer is active, dump the state of the regions in the
 301   // heap after a compaction.
 302   void print_hrm_post_compaction();
 303 
 304   // Create a memory mapper for auxiliary data structures of the given size and
 305   // translation factor.
 306   static G1RegionToSpaceMapper* create_aux_memory_mapper(const char* description,
 307                                                          size_t size,
 308                                                          size_t translation_factor);
 309 
 310   static G1Policy* create_g1_policy(STWGCTimer* gc_timer);
 311 
 312   void trace_heap(GCWhen::Type when, const GCTracer* tracer);
 313 
 314   // These are macros so that, if the assert fires, we get the correct
 315   // line number, file, etc.
 316 
 317 #define heap_locking_asserts_params(_extra_message_)                          \
 318   "%s : Heap_lock locked: %s, at safepoint: %s, is VM thread: %s",            \
 319   (_extra_message_),                                                          \
 320   BOOL_TO_STR(Heap_lock->owned_by_self()),                                    \
 321   BOOL_TO_STR(SafepointSynchronize::is_at_safepoint()),                       \
 322   BOOL_TO_STR(Thread::current()->is_VM_thread())
 323 
 324 #define assert_heap_locked()                                                  \
 325   do {                                                                        \
 326     assert(Heap_lock->owned_by_self(),                                        \
 327            heap_locking_asserts_params("should be holding the Heap_lock"));   \
 328   } while (0)
 329 
 330 #define assert_heap_locked_or_at_safepoint(_should_be_vm_thread_)             \
 331   do {                                                                        \
 332     assert(Heap_lock->owned_by_self() ||                                      \
 333            (SafepointSynchronize::is_at_safepoint() &&                        \
 334              ((_should_be_vm_thread_) == Thread::current()->is_VM_thread())), \
 335            heap_locking_asserts_params("should be holding the Heap_lock or "  \
 336                                         "should be at a safepoint"));         \
 337   } while (0)
 338 
 339 #define assert_heap_locked_and_not_at_safepoint()                             \
 340   do {                                                                        \
 341     assert(Heap_lock->owned_by_self() &&                                      \
 342                                     !SafepointSynchronize::is_at_safepoint(), \
 343           heap_locking_asserts_params("should be holding the Heap_lock and "  \
 344                                        "should not be at a safepoint"));      \
 345   } while (0)
 346 
 347 #define assert_heap_not_locked()                                              \
 348   do {                                                                        \
 349     assert(!Heap_lock->owned_by_self(),                                       \
 350         heap_locking_asserts_params("should not be holding the Heap_lock"));  \
 351   } while (0)
 352 
 353 #define assert_heap_not_locked_and_not_at_safepoint()                         \
 354   do {                                                                        \
 355     assert(!Heap_lock->owned_by_self() &&                                     \
 356                                     !SafepointSynchronize::is_at_safepoint(), \
 357       heap_locking_asserts_params("should not be holding the Heap_lock and "  \
 358                                    "should not be at a safepoint"));          \
 359   } while (0)
 360 
 361 #define assert_at_safepoint(_should_be_vm_thread_)                            \
 362   do {                                                                        \
 363     assert(SafepointSynchronize::is_at_safepoint() &&                         \
 364               ((_should_be_vm_thread_) == Thread::current()->is_VM_thread()), \
 365            heap_locking_asserts_params("should be at a safepoint"));          \
 366   } while (0)
 367 
 368 #define assert_not_at_safepoint()                                             \
 369   do {                                                                        \
 370     assert(!SafepointSynchronize::is_at_safepoint(),                          \
 371            heap_locking_asserts_params("should not be at a safepoint"));      \
 372   } while (0)
 373 
 374 protected:
 375 
 376   // The young region list.
 377   G1EdenRegions _eden;
 378   G1SurvivorRegions _survivor;
 379 
 380   STWGCTimer* _gc_timer_stw;
 381 
 382   G1NewTracer* _gc_tracer_stw;
 383 
 384   // The current policy object for the collector.
 385   G1Policy* _g1_policy;
 386   G1HeapSizingPolicy* _heap_sizing_policy;
 387 
 388   G1CollectionSet _collection_set;
 389 
 390   // This is the second level of trying to allocate a new region. If
 391   // new_region() didn't find a region on the free_list, this call will
 392   // check whether there's anything available on the
 393   // secondary_free_list and/or wait for more regions to appear on
 394   // that list, if _free_regions_coming is set.
 395   HeapRegion* new_region_try_secondary_free_list(bool is_old);
 396 
 397   // Try to allocate a single non-humongous HeapRegion sufficient for
 398   // an allocation of the given word_size. If do_expand is true,
 399   // attempt to expand the heap if necessary to satisfy the allocation
 400   // request. If the region is to be used as an old region or for a
 401   // humongous object, set is_old to true. If not, to false.
 402   HeapRegion* new_region(size_t word_size, bool is_old, bool do_expand);
 403 
 404   // Initialize a contiguous set of free regions of length num_regions
 405   // and starting at index first so that they appear as a single
 406   // humongous region.
 407   HeapWord* humongous_obj_allocate_initialize_regions(uint first,
 408                                                       uint num_regions,
 409                                                       size_t word_size,
 410                                                       AllocationContext_t context);
 411 
 412   // Attempt to allocate a humongous object of the given size. Return
 413   // NULL if unsuccessful.
 414   HeapWord* humongous_obj_allocate(size_t word_size, AllocationContext_t context);
 415 
 416   // The following two methods, allocate_new_tlab() and
 417   // mem_allocate(), are the two main entry points from the runtime
 418   // into the G1's allocation routines. They have the following
 419   // assumptions:
 420   //
 421   // * They should both be called outside safepoints.
 422   //
 423   // * They should both be called without holding the Heap_lock.
 424   //
 425   // * All allocation requests for new TLABs should go to
 426   //   allocate_new_tlab().
 427   //
 428   // * All non-TLAB allocation requests should go to mem_allocate().
 429   //
 430   // * If either call cannot satisfy the allocation request using the
 431   //   current allocating region, they will try to get a new one. If
 432   //   this fails, they will attempt to do an evacuation pause and
 433   //   retry the allocation.
 434   //
 435   // * If all allocation attempts fail, even after trying to schedule
 436   //   an evacuation pause, allocate_new_tlab() will return NULL,
 437   //   whereas mem_allocate() will attempt a heap expansion and/or
 438   //   schedule a Full GC.
 439   //
 440   // * We do not allow humongous-sized TLABs. So, allocate_new_tlab
 441   //   should never be called with word_size being humongous. All
 442   //   humongous allocation requests should go to mem_allocate() which
 443   //   will satisfy them with a special path.
 444 
 445   virtual HeapWord* allocate_new_tlab(size_t word_size);
 446 
 447   virtual HeapWord* mem_allocate(size_t word_size,
 448                                  bool*  gc_overhead_limit_was_exceeded);
 449 
 450   // The following three methods take a gc_count_before_ret
 451   // parameter which is used to return the GC count if the method
 452   // returns NULL. Given that we are required to read the GC count
 453   // while holding the Heap_lock, and these paths will take the
 454   // Heap_lock at some point, it's easier to get them to read the GC
 455   // count while holding the Heap_lock before they return NULL instead
 456   // of the caller (namely: mem_allocate()) having to also take the
 457   // Heap_lock just to read the GC count.
 458 
 459   // First-level mutator allocation attempt: try to allocate out of
 460   // the mutator alloc region without taking the Heap_lock. This
 461   // should only be used for non-humongous allocations.
 462   inline HeapWord* attempt_allocation(size_t word_size,
 463                                       uint* gc_count_before_ret,
 464                                       uint* gclocker_retry_count_ret);
 465 
 466   // Second-level mutator allocation attempt: take the Heap_lock and
 467   // retry the allocation attempt, potentially scheduling a GC
 468   // pause. This should only be used for non-humongous allocations.
 469   HeapWord* attempt_allocation_slow(size_t word_size,
 470                                     AllocationContext_t context,
 471                                     uint* gc_count_before_ret,
 472                                     uint* gclocker_retry_count_ret);
 473 
 474   // Takes the Heap_lock and attempts a humongous allocation. It can
 475   // potentially schedule a GC pause.
 476   HeapWord* attempt_allocation_humongous(size_t word_size,
 477                                          uint* gc_count_before_ret,
 478                                          uint* gclocker_retry_count_ret);
 479 
 480   // Allocation attempt that should be called during safepoints (e.g.,
 481   // at the end of a successful GC). expect_null_mutator_alloc_region
 482   // specifies whether the mutator alloc region is expected to be NULL
 483   // or not.
 484   HeapWord* attempt_allocation_at_safepoint(size_t word_size,
 485                                             AllocationContext_t context,
 486                                             bool expect_null_mutator_alloc_region);
 487 
 488   // These methods are the "callbacks" from the G1AllocRegion class.
 489 
 490   // For mutator alloc regions.
 491   HeapRegion* new_mutator_alloc_region(size_t word_size, bool force);
 492   void retire_mutator_alloc_region(HeapRegion* alloc_region,
 493                                    size_t allocated_bytes);
 494 
 495   // For GC alloc regions.
 496   bool has_more_regions(InCSetState dest);
 497   HeapRegion* new_gc_alloc_region(size_t word_size, InCSetState dest);
 498   void retire_gc_alloc_region(HeapRegion* alloc_region,
 499                               size_t allocated_bytes, InCSetState dest);
 500 
 501   // - if explicit_gc is true, the GC is for a System.gc() etc,
 502   //   otherwise it's for a failed allocation.
 503   // - if clear_all_soft_refs is true, all soft references should be
 504   //   cleared during the GC.
 505   // - it returns false if it is unable to do the collection due to the
 506   //   GC locker being active, true otherwise.
 507   bool do_full_collection(bool explicit_gc,
 508                           bool clear_all_soft_refs);
 509 
 510   // Callback from VM_G1CollectFull operation, or collect_as_vm_thread.
 511   virtual void do_full_collection(bool clear_all_soft_refs);
 512 
 513   // Resize the heap if necessary after a full collection.
 514   void resize_if_necessary_after_full_collection();
 515 
 516   // Callback from VM_G1CollectForAllocation operation.
 517   // This function does everything necessary/possible to satisfy a
 518   // failed allocation request (including collection, expansion, etc.)
 519   HeapWord* satisfy_failed_allocation(size_t word_size,
 520                                       AllocationContext_t context,
 521                                       bool* succeeded);
 522 private:
 523   // Internal helpers used during full GC to split it up to
 524   // increase readability.
 525   void do_full_collection_inner(G1FullGCScope* scope);
 526   void abort_concurrent_cycle();
 527   void verify_before_full_collection(bool explicit_gc);
 528   void prepare_heap_for_full_collection();
 529   void prepare_heap_for_mutators();
 530   void abort_refinement();
 531   void verify_after_full_collection();
 532   void print_heap_after_full_collection(G1HeapTransition* heap_transition);
 533 
 534   // Helper method for satisfy_failed_allocation()
 535   HeapWord* satisfy_failed_allocation_helper(size_t word_size,
 536                                              AllocationContext_t context,
 537                                              bool do_gc,
 538                                              bool clear_all_soft_refs,
 539                                              bool expect_null_mutator_alloc_region,
 540                                              bool* gc_succeeded);
 541 
 542 protected:
 543   // Attempting to expand the heap sufficiently
 544   // to support an allocation of the given "word_size".  If
 545   // successful, perform the allocation and return the address of the
 546   // allocated block, or else "NULL".
 547   HeapWord* expand_and_allocate(size_t word_size, AllocationContext_t context);
 548 
 549   // Preserve any referents discovered by concurrent marking that have not yet been
 550   // copied by the STW pause.
 551   void preserve_cm_referents(G1ParScanThreadStateSet* per_thread_states);
 552   // Process any reference objects discovered during
 553   // an incremental evacuation pause.
 554   void process_discovered_references(G1ParScanThreadStateSet* per_thread_states);
 555 
 556   // Enqueue any remaining discovered references
 557   // after processing.
 558   void enqueue_discovered_references(G1ParScanThreadStateSet* per_thread_states);
 559 
 560   // Merges the information gathered on a per-thread basis for all worker threads
 561   // during GC into global variables.
 562   void merge_per_thread_state_info(G1ParScanThreadStateSet* per_thread_states);
 563 public:
 564   G1YoungRemSetSamplingThread* sampling_thread() const { return _young_gen_sampling_thread; }
 565 
 566   WorkGang* workers() const { return _workers; }
 567 
 568   G1Allocator* allocator() {
 569     return _allocator;
 570   }
 571 
 572   G1HeapVerifier* verifier() {
 573     return _verifier;
 574   }
 575 
 576   G1MonitoringSupport* g1mm() {
 577     assert(_g1mm != NULL, "should have been initialized");
 578     return _g1mm;
 579   }
 580 
 581   // Expand the garbage-first heap by at least the given size (in bytes!).
 582   // Returns true if the heap was expanded by the requested amount;
 583   // false otherwise.
 584   // (Rounds up to a HeapRegion boundary.)
 585   bool expand(size_t expand_bytes, WorkGang* pretouch_workers = NULL, double* expand_time_ms = NULL);
 586 
 587   // Returns the PLAB statistics for a given destination.
 588   inline G1EvacStats* alloc_buffer_stats(InCSetState dest);
 589 
 590   // Determines PLAB size for a given destination.
 591   inline size_t desired_plab_sz(InCSetState dest);
 592 
 593   inline AllocationContextStats& allocation_context_stats();
 594 
 595   // Do anything common to GC's.
 596   void gc_prologue(bool full);
 597   void gc_epilogue(bool full);
 598 
 599   // Modify the reclaim candidate set and test for presence.
 600   // These are only valid for starts_humongous regions.
 601   inline void set_humongous_reclaim_candidate(uint region, bool value);
 602   inline bool is_humongous_reclaim_candidate(uint region);
 603 
 604   // Remove from the reclaim candidate set.  Also remove from the
 605   // collection set so that later encounters avoid the slow path.
 606   inline void set_humongous_is_live(oop obj);
 607 
 608   // Register the given region to be part of the collection set.
 609   inline void register_humongous_region_with_cset(uint index);
 610   // Register regions with humongous objects (actually on the start region) in
 611   // the in_cset_fast_test table.
 612   void register_humongous_regions_with_cset();
 613   // We register a region with the fast "in collection set" test. We
 614   // simply set to true the array slot corresponding to this region.
 615   void register_young_region_with_cset(HeapRegion* r) {
 616     _in_cset_fast_test.set_in_young(r->hrm_index());
 617   }
 618   void register_old_region_with_cset(HeapRegion* r) {
 619     _in_cset_fast_test.set_in_old(r->hrm_index());
 620   }
 621   inline void register_ext_region_with_cset(HeapRegion* r) {
 622     _in_cset_fast_test.set_ext(r->hrm_index());
 623   }
 624   void clear_in_cset(const HeapRegion* hr) {
 625     _in_cset_fast_test.clear(hr);
 626   }
 627 
 628   void clear_cset_fast_test() {
 629     _in_cset_fast_test.clear();
 630   }
 631 
 632   bool is_user_requested_concurrent_full_gc(GCCause::Cause cause);
 633 
 634   // This is called at the start of either a concurrent cycle or a Full
 635   // GC to update the number of old marking cycles started.
 636   void increment_old_marking_cycles_started();
 637 
 638   // This is called at the end of either a concurrent cycle or a Full
 639   // GC to update the number of old marking cycles completed. Those two
 640   // can happen in a nested fashion, i.e., we start a concurrent
 641   // cycle, a Full GC happens half-way through it which ends first,
 642   // and then the cycle notices that a Full GC happened and ends
 643   // too. The concurrent parameter is a boolean to help us do a bit
 644   // tighter consistency checking in the method. If concurrent is
 645   // false, the caller is the inner caller in the nesting (i.e., the
 646   // Full GC). If concurrent is true, the caller is the outer caller
 647   // in this nesting (i.e., the concurrent cycle). Further nesting is
 648   // not currently supported. The end of this call also notifies
 649   // the FullGCCount_lock in case a Java thread is waiting for a full
 650   // GC to happen (e.g., it called System.gc() with
 651   // +ExplicitGCInvokesConcurrent).
 652   void increment_old_marking_cycles_completed(bool concurrent);
 653 
 654   uint old_marking_cycles_completed() {
 655     return _old_marking_cycles_completed;
 656   }
 657 
 658   G1HRPrinter* hr_printer() { return &_hr_printer; }
 659 
 660   // Allocates a new heap region instance.
 661   HeapRegion* new_heap_region(uint hrs_index, MemRegion mr);
 662 
 663   // Allocate the highest free region in the reserved heap. This will commit
 664   // regions as necessary.
 665   HeapRegion* alloc_highest_free_region();
 666 
 667   // Frees a non-humongous region by initializing its contents and
 668   // adding it to the free list that's passed as a parameter (this is
 669   // usually a local list which will be appended to the master free
 670   // list later). The used bytes of freed regions are accumulated in
 671   // pre_used. If skip_remset is true, the region's RSet will not be freed
 672   // up. If skip_hot_card_cache is true, the region's hot card cache will not
 673   // be freed up. The assumption is that this will be done later.
 674   // The locked parameter indicates if the caller has already taken
 675   // care of proper synchronization. This may allow some optimizations.
 676   void free_region(HeapRegion* hr,
 677                    FreeRegionList* free_list,
 678                    bool skip_remset,
 679                    bool skip_hot_card_cache = false,
 680                    bool locked = false);
 681 
 682   // It dirties the cards that cover the block so that the post
 683   // write barrier never queues anything when updating objects on this
 684   // block. It is assumed (and in fact we assert) that the block
 685   // belongs to a young region.
 686   inline void dirty_young_block(HeapWord* start, size_t word_size);
 687 
 688   // Frees a humongous region by collapsing it into individual regions
 689   // and calling free_region() for each of them. The freed regions
 690   // will be added to the free list that's passed as a parameter (this
 691   // is usually a local list which will be appended to the master free
 692   // list later). The used bytes of freed regions are accumulated in
 693   // pre_used. If skip_remset is true, the region's RSet will not be freed
 694   // up. The assumption is that this will be done later.
 695   void free_humongous_region(HeapRegion* hr,
 696                              FreeRegionList* free_list,
 697                              bool skip_remset);
 698 
 699   // Facility for allocating in 'archive' regions in high heap memory and
 700   // recording the allocated ranges. These should all be called from the
 701   // VM thread at safepoints, without the heap lock held. They can be used
 702   // to create and archive a set of heap regions which can be mapped at the
 703   // same fixed addresses in a subsequent JVM invocation.
 704   void begin_archive_alloc_range(bool open = false);
 705 
 706   // Check if the requested size would be too large for an archive allocation.
 707   bool is_archive_alloc_too_large(size_t word_size);
 708 
 709   // Allocate memory of the requested size from the archive region. This will
 710   // return NULL if the size is too large or if no memory is available. It
 711   // does not trigger a garbage collection.
 712   HeapWord* archive_mem_allocate(size_t word_size);
 713 
 714   // Optionally aligns the end address and returns the allocated ranges in
 715   // an array of MemRegions in order of ascending addresses.
 716   void end_archive_alloc_range(GrowableArray<MemRegion>* ranges,
 717                                size_t end_alignment_in_bytes = 0);
 718 
 719   // Facility for allocating a fixed range within the heap and marking
 720   // the containing regions as 'archive'. For use at JVM init time, when the
 721   // caller may mmap archived heap data at the specified range(s).
 722   // Verify that the MemRegions specified in the argument array are within the
 723   // reserved heap.
 724   bool check_archive_addresses(MemRegion* range, size_t count);
 725 
 726   // Commit the appropriate G1 regions containing the specified MemRegions
 727   // and mark them as 'archive' regions. The regions in the array must be
 728   // non-overlapping and in order of ascending address.
 729   bool alloc_archive_regions(MemRegion* range, size_t count, bool open);
 730 
 731   // Insert any required filler objects in the G1 regions around the specified
 732   // ranges to make the regions parseable. This must be called after
 733   // alloc_archive_regions, and after class loading has occurred.
 734   void fill_archive_regions(MemRegion* range, size_t count);
 735 
 736   // For each of the specified MemRegions, uncommit the containing G1 regions
 737   // which had been allocated by alloc_archive_regions. This should be called
 738   // rather than fill_archive_regions at JVM init time if the archive file
 739   // mapping failed, with the same non-overlapping and sorted MemRegion array.
 740   void dealloc_archive_regions(MemRegion* range, size_t count);
 741 
 742 protected:
 743 
 744   // Shrink the garbage-first heap by at most the given size (in bytes!).
 745   // (Rounds down to a HeapRegion boundary.)
 746   virtual void shrink(size_t expand_bytes);
 747   void shrink_helper(size_t expand_bytes);
 748 
 749   #if TASKQUEUE_STATS
 750   static void print_taskqueue_stats_hdr(outputStream* const st);
 751   void print_taskqueue_stats() const;
 752   void reset_taskqueue_stats();
 753   #endif // TASKQUEUE_STATS
 754 
 755   // Schedule the VM operation that will do an evacuation pause to
 756   // satisfy an allocation request of word_size. *succeeded will
 757   // return whether the VM operation was successful (it did do an
 758   // evacuation pause) or not (another thread beat us to it or the GC
 759   // locker was active). Given that we should not be holding the
 760   // Heap_lock when we enter this method, we will pass the
 761   // gc_count_before (i.e., total_collections()) as a parameter since
 762   // it has to be read while holding the Heap_lock. Currently, both
 763   // methods that call do_collection_pause() release the Heap_lock
 764   // before the call, so it's easy to read gc_count_before just before.
 765   HeapWord* do_collection_pause(size_t         word_size,
 766                                 uint           gc_count_before,
 767                                 bool*          succeeded,
 768                                 GCCause::Cause gc_cause);
 769 
 770   void wait_for_root_region_scanning();
 771 
 772   // The guts of the incremental collection pause, executed by the vm
 773   // thread. It returns false if it is unable to do the collection due
 774   // to the GC locker being active, true otherwise
 775   bool do_collection_pause_at_safepoint(double target_pause_time_ms);
 776 
 777   // Actually do the work of evacuating the collection set.
 778   virtual void evacuate_collection_set(EvacuationInfo& evacuation_info, G1ParScanThreadStateSet* per_thread_states);
 779 
 780   void pre_evacuate_collection_set();
 781   void post_evacuate_collection_set(EvacuationInfo& evacuation_info, G1ParScanThreadStateSet* pss);
 782 
 783   // Print the header for the per-thread termination statistics.
 784   static void print_termination_stats_hdr();
 785   // Print actual per-thread termination statistics.
 786   void print_termination_stats(uint worker_id,
 787                                double elapsed_ms,
 788                                double strong_roots_ms,
 789                                double term_ms,
 790                                size_t term_attempts,
 791                                size_t alloc_buffer_waste,
 792                                size_t undo_waste) const;
 793   // Update object copying statistics.
 794   void record_obj_copy_mem_stats();
 795 
 796   // The hot card cache for remembered set insertion optimization.
 797   G1HotCardCache* _hot_card_cache;
 798 
 799   // The g1 remembered set of the heap.
 800   G1RemSet* _g1_rem_set;
 801 
 802   // A set of cards that cover the objects for which the Rsets should be updated
 803   // concurrently after the collection.
 804   DirtyCardQueueSet _dirty_card_queue_set;
 805 
 806   // After a collection pause, convert the regions in the collection set into free
 807   // regions.
 808   void free_collection_set(G1CollectionSet* collection_set, EvacuationInfo& evacuation_info, const size_t* surviving_young_words);
 809 
 810   // Abandon the current collection set without recording policy
 811   // statistics or updating free lists.
 812   void abandon_collection_set(G1CollectionSet* collection_set);
 813 
 814   // The concurrent marker (and the thread it runs in.)
 815   G1ConcurrentMark* _cm;
 816   ConcurrentMarkThread* _cmThread;
 817 
 818   // The concurrent refiner.
 819   G1ConcurrentRefine* _cr;
 820 
 821   // The parallel task queues
 822   RefToScanQueueSet *_task_queues;
 823 
 824   // True iff a evacuation has failed in the current collection.
 825   bool _evacuation_failed;
 826 
 827   EvacuationFailedInfo* _evacuation_failed_info_array;
 828 
 829   // Failed evacuations cause some logical from-space objects to have
 830   // forwarding pointers to themselves.  Reset them.
 831   void remove_self_forwarding_pointers();
 832 
 833   // Restore the objects in the regions in the collection set after an
 834   // evacuation failure.
 835   void restore_after_evac_failure();
 836 
 837   PreservedMarksSet _preserved_marks_set;
 838 
 839   // Preserve the mark of "obj", if necessary, in preparation for its mark
 840   // word being overwritten with a self-forwarding-pointer.
 841   void preserve_mark_during_evac_failure(uint worker_id, oop obj, markOop m);
 842 
 843 #ifndef PRODUCT
 844   // Support for forcing evacuation failures. Analogous to
 845   // PromotionFailureALot for the other collectors.
 846 
 847   // Records whether G1EvacuationFailureALot should be in effect
 848   // for the current GC
 849   bool _evacuation_failure_alot_for_current_gc;
 850 
 851   // Used to record the GC number for interval checking when
 852   // determining whether G1EvaucationFailureALot is in effect
 853   // for the current GC.
 854   size_t _evacuation_failure_alot_gc_number;
 855 
 856   // Count of the number of evacuations between failures.
 857   volatile size_t _evacuation_failure_alot_count;
 858 
 859   // Set whether G1EvacuationFailureALot should be in effect
 860   // for the current GC (based upon the type of GC and which
 861   // command line flags are set);
 862   inline bool evacuation_failure_alot_for_gc_type(bool gcs_are_young,
 863                                                   bool during_initial_mark,
 864                                                   bool during_marking);
 865 
 866   inline void set_evacuation_failure_alot_for_current_gc();
 867 
 868   // Return true if it's time to cause an evacuation failure.
 869   inline bool evacuation_should_fail();
 870 
 871   // Reset the G1EvacuationFailureALot counters.  Should be called at
 872   // the end of an evacuation pause in which an evacuation failure occurred.
 873   inline void reset_evacuation_should_fail();
 874 #endif // !PRODUCT
 875 
 876   // ("Weak") Reference processing support.
 877   //
 878   // G1 has 2 instances of the reference processor class. One
 879   // (_ref_processor_cm) handles reference object discovery
 880   // and subsequent processing during concurrent marking cycles.
 881   //
 882   // The other (_ref_processor_stw) handles reference object
 883   // discovery and processing during full GCs and incremental
 884   // evacuation pauses.
 885   //
 886   // During an incremental pause, reference discovery will be
 887   // temporarily disabled for _ref_processor_cm and will be
 888   // enabled for _ref_processor_stw. At the end of the evacuation
 889   // pause references discovered by _ref_processor_stw will be
 890   // processed and discovery will be disabled. The previous
 891   // setting for reference object discovery for _ref_processor_cm
 892   // will be re-instated.
 893   //
 894   // At the start of marking:
 895   //  * Discovery by the CM ref processor is verified to be inactive
 896   //    and it's discovered lists are empty.
 897   //  * Discovery by the CM ref processor is then enabled.
 898   //
 899   // At the end of marking:
 900   //  * Any references on the CM ref processor's discovered
 901   //    lists are processed (possibly MT).
 902   //
 903   // At the start of full GC we:
 904   //  * Disable discovery by the CM ref processor and
 905   //    empty CM ref processor's discovered lists
 906   //    (without processing any entries).
 907   //  * Verify that the STW ref processor is inactive and it's
 908   //    discovered lists are empty.
 909   //  * Temporarily set STW ref processor discovery as single threaded.
 910   //  * Temporarily clear the STW ref processor's _is_alive_non_header
 911   //    field.
 912   //  * Finally enable discovery by the STW ref processor.
 913   //
 914   // The STW ref processor is used to record any discovered
 915   // references during the full GC.
 916   //
 917   // At the end of a full GC we:
 918   //  * Enqueue any reference objects discovered by the STW ref processor
 919   //    that have non-live referents. This has the side-effect of
 920   //    making the STW ref processor inactive by disabling discovery.
 921   //  * Verify that the CM ref processor is still inactive
 922   //    and no references have been placed on it's discovered
 923   //    lists (also checked as a precondition during initial marking).
 924 
 925   // The (stw) reference processor...
 926   ReferenceProcessor* _ref_processor_stw;
 927 
 928   // During reference object discovery, the _is_alive_non_header
 929   // closure (if non-null) is applied to the referent object to
 930   // determine whether the referent is live. If so then the
 931   // reference object does not need to be 'discovered' and can
 932   // be treated as a regular oop. This has the benefit of reducing
 933   // the number of 'discovered' reference objects that need to
 934   // be processed.
 935   //
 936   // Instance of the is_alive closure for embedding into the
 937   // STW reference processor as the _is_alive_non_header field.
 938   // Supplying a value for the _is_alive_non_header field is
 939   // optional but doing so prevents unnecessary additions to
 940   // the discovered lists during reference discovery.
 941   G1STWIsAliveClosure _is_alive_closure_stw;
 942 
 943   // The (concurrent marking) reference processor...
 944   ReferenceProcessor* _ref_processor_cm;
 945 
 946   // Instance of the concurrent mark is_alive closure for embedding
 947   // into the Concurrent Marking reference processor as the
 948   // _is_alive_non_header field. Supplying a value for the
 949   // _is_alive_non_header field is optional but doing so prevents
 950   // unnecessary additions to the discovered lists during reference
 951   // discovery.
 952   G1CMIsAliveClosure _is_alive_closure_cm;
 953 
 954   volatile bool _free_regions_coming;
 955 
 956 public:
 957 
 958   RefToScanQueue *task_queue(uint i) const;
 959 
 960   uint num_task_queues() const;
 961 
 962   // A set of cards where updates happened during the GC
 963   DirtyCardQueueSet& dirty_card_queue_set() { return _dirty_card_queue_set; }
 964 
 965   // Create a G1CollectedHeap with the specified policy.
 966   // Must call the initialize method afterwards.
 967   // May not return if something goes wrong.
 968   G1CollectedHeap(G1CollectorPolicy* policy);
 969 
 970 private:
 971   jint initialize_concurrent_refinement();
 972   jint initialize_young_gen_sampling_thread();
 973 public:
 974   // Initialize the G1CollectedHeap to have the initial and
 975   // maximum sizes and remembered and barrier sets
 976   // specified by the policy object.
 977   jint initialize();
 978 
 979   virtual void stop();
 980   virtual void safepoint_synchronize_begin();
 981   virtual void safepoint_synchronize_end();
 982 
 983   // Return the (conservative) maximum heap alignment for any G1 heap
 984   static size_t conservative_max_heap_alignment();
 985 
 986   // Does operations required after initialization has been done.
 987   void post_initialize();
 988 
 989   // Initialize weak reference processing.
 990   void ref_processing_init();
 991 
 992   virtual Name kind() const {
 993     return CollectedHeap::G1CollectedHeap;
 994   }
 995 
 996   virtual const char* name() const {
 997     return "G1";
 998   }
 999 
1000   const G1CollectorState* collector_state() const { return &_collector_state; }
1001   G1CollectorState* collector_state() { return &_collector_state; }
1002 
1003   // The current policy object for the collector.
1004   G1Policy* g1_policy() const { return _g1_policy; }
1005 
1006   const G1CollectionSet* collection_set() const { return &_collection_set; }
1007   G1CollectionSet* collection_set() { return &_collection_set; }
1008 
1009   virtual CollectorPolicy* collector_policy() const;
1010 
1011   // Adaptive size policy.  No such thing for g1.
1012   virtual AdaptiveSizePolicy* size_policy() { return NULL; }
1013 
1014   virtual GrowableArray<MemoryManager*> memory_managers();
1015   virtual GrowableArray<MemoryPool*> memory_pools();
1016 
1017   GCMemoryManager* minor_mgr();
1018   GCMemoryManager* major_mgr();
1019 
1020   // The rem set and barrier set.
1021   G1RemSet* g1_rem_set() const { return _g1_rem_set; }
1022 
1023   // Try to minimize the remembered set.
1024   void scrub_rem_set();
1025 
1026   uint get_gc_time_stamp() {
1027     return _gc_time_stamp;
1028   }
1029 
1030   inline void reset_gc_time_stamp();
1031 
1032   void check_gc_time_stamps() PRODUCT_RETURN;
1033 
1034   inline void increment_gc_time_stamp();
1035 
1036   // Reset the given region's GC timestamp. If it's starts humongous,
1037   // also reset the GC timestamp of its corresponding
1038   // continues humongous regions too.
1039   void reset_gc_time_stamps(HeapRegion* hr);
1040 
1041   // Apply the given closure on all cards in the Hot Card Cache, emptying it.
1042   void iterate_hcc_closure(CardTableEntryClosure* cl, uint worker_i);
1043 
1044   // Apply the given closure on all cards in the Dirty Card Queue Set, emptying it.
1045   void iterate_dirty_card_closure(CardTableEntryClosure* cl, uint worker_i);
1046 
1047   // The shared block offset table array.
1048   G1BlockOffsetTable* bot() const { return _bot; }
1049 
1050   // Reference Processing accessors
1051 
1052   // The STW reference processor....
1053   ReferenceProcessor* ref_processor_stw() const { return _ref_processor_stw; }
1054 
1055   G1NewTracer* gc_tracer_stw() const { return _gc_tracer_stw; }
1056 
1057   // The Concurrent Marking reference processor...
1058   ReferenceProcessor* ref_processor_cm() const { return _ref_processor_cm; }
1059 
1060   size_t unused_committed_regions_in_bytes() const;
1061   virtual size_t capacity() const;
1062   virtual size_t used() const;
1063   // This should be called when we're not holding the heap lock. The
1064   // result might be a bit inaccurate.
1065   size_t used_unlocked() const;
1066   size_t recalculate_used() const;
1067 
1068   // These virtual functions do the actual allocation.
1069   // Some heaps may offer a contiguous region for shared non-blocking
1070   // allocation, via inlined code (by exporting the address of the top and
1071   // end fields defining the extent of the contiguous allocation region.)
1072   // But G1CollectedHeap doesn't yet support this.
1073 
1074   virtual bool is_maximal_no_gc() const {
1075     return _hrm.available() == 0;
1076   }
1077 
1078   // The current number of regions in the heap.
1079   uint num_regions() const { return _hrm.length(); }
1080 
1081   // The max number of regions in the heap.
1082   uint max_regions() const { return _hrm.max_length(); }
1083 
1084   // The number of regions that are completely free.
1085   uint num_free_regions() const { return _hrm.num_free_regions(); }
1086 
1087   MemoryUsage get_auxiliary_data_memory_usage() const {
1088     return _hrm.get_auxiliary_data_memory_usage();
1089   }
1090 
1091   // The number of regions that are not completely free.
1092   uint num_used_regions() const { return num_regions() - num_free_regions(); }
1093 
1094 #ifdef ASSERT
1095   bool is_on_master_free_list(HeapRegion* hr) {
1096     return _hrm.is_free(hr);
1097   }
1098 #endif // ASSERT
1099 
1100   // Wrapper for the region list operations that can be called from
1101   // methods outside this class.
1102 
1103   void secondary_free_list_add(FreeRegionList* list) {
1104     _secondary_free_list.add_ordered(list);
1105   }
1106 
1107   void append_secondary_free_list() {
1108     _hrm.insert_list_into_free_list(&_secondary_free_list);
1109   }
1110 
1111   void append_secondary_free_list_if_not_empty_with_lock() {
1112     // If the secondary free list looks empty there's no reason to
1113     // take the lock and then try to append it.
1114     if (!_secondary_free_list.is_empty()) {
1115       MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
1116       append_secondary_free_list();
1117     }
1118   }
1119 
1120   inline void old_set_add(HeapRegion* hr);
1121   inline void old_set_remove(HeapRegion* hr);
1122 
1123   size_t non_young_capacity_bytes() {
1124     return (_old_set.length() + _humongous_set.length()) * HeapRegion::GrainBytes;
1125   }
1126 
1127   void set_free_regions_coming();
1128   void reset_free_regions_coming();
1129   bool free_regions_coming() { return _free_regions_coming; }
1130   void wait_while_free_regions_coming();
1131 
1132   // Determine whether the given region is one that we are using as an
1133   // old GC alloc region.
1134   bool is_old_gc_alloc_region(HeapRegion* hr);
1135 
1136   // Perform a collection of the heap; intended for use in implementing
1137   // "System.gc".  This probably implies as full a collection as the
1138   // "CollectedHeap" supports.
1139   virtual void collect(GCCause::Cause cause);
1140 
1141   virtual bool copy_allocation_context_stats(const jint* contexts,
1142                                              jlong* totals,
1143                                              jbyte* accuracy,
1144                                              jint len);
1145 
1146   // True iff an evacuation has failed in the most-recent collection.
1147   bool evacuation_failed() { return _evacuation_failed; }
1148 
1149   void remove_from_old_sets(const uint old_regions_removed, const uint humongous_regions_removed);
1150   void prepend_to_freelist(FreeRegionList* list);
1151   void decrement_summary_bytes(size_t bytes);
1152 
1153   virtual bool is_in(const void* p) const;
1154 #ifdef ASSERT
1155   // Returns whether p is in one of the available areas of the heap. Slow but
1156   // extensive version.
1157   bool is_in_exact(const void* p) const;
1158 #endif
1159 
1160   // Return "TRUE" iff the given object address is within the collection
1161   // set. Assumes that the reference points into the heap.
1162   inline bool is_in_cset(const HeapRegion *hr);
1163   inline bool is_in_cset(oop obj);
1164   inline bool is_in_cset(HeapWord* addr);
1165 
1166   inline bool is_in_cset_or_humongous(const oop obj);
1167 
1168  private:
1169   // This array is used for a quick test on whether a reference points into
1170   // the collection set or not. Each of the array's elements denotes whether the
1171   // corresponding region is in the collection set or not.
1172   G1InCSetStateFastTestBiasedMappedArray _in_cset_fast_test;
1173 
1174  public:
1175 
1176   inline InCSetState in_cset_state(const oop obj);
1177 
1178   // Return "TRUE" iff the given object address is in the reserved
1179   // region of g1.
1180   bool is_in_g1_reserved(const void* p) const {
1181     return _hrm.reserved().contains(p);
1182   }
1183 
1184   // Returns a MemRegion that corresponds to the space that has been
1185   // reserved for the heap
1186   MemRegion g1_reserved() const {
1187     return _hrm.reserved();
1188   }
1189 
1190   virtual bool is_in_closed_subset(const void* p) const;
1191 
1192   G1SATBCardTableLoggingModRefBS* g1_barrier_set() {
1193     return barrier_set_cast<G1SATBCardTableLoggingModRefBS>(barrier_set());
1194   }
1195 
1196   G1HotCardCache* g1_hot_card_cache() const { return _hot_card_cache; }
1197 
1198   // Iteration functions.
1199 
1200   // Iterate over all objects, calling "cl.do_object" on each.
1201   virtual void object_iterate(ObjectClosure* cl);
1202 
1203   virtual void safe_object_iterate(ObjectClosure* cl) {
1204     object_iterate(cl);
1205   }
1206 
1207   // Iterate over heap regions, in address order, terminating the
1208   // iteration early if the "doHeapRegion" method returns "true".
1209   void heap_region_iterate(HeapRegionClosure* blk) const;
1210 
1211   // Return the region with the given index. It assumes the index is valid.
1212   inline HeapRegion* region_at(uint index) const;
1213 
1214   // Return the next region (by index) that is part of the same
1215   // humongous object that hr is part of.
1216   inline HeapRegion* next_region_in_humongous(HeapRegion* hr) const;
1217 
1218   // Calculate the region index of the given address. Given address must be
1219   // within the heap.
1220   inline uint addr_to_region(HeapWord* addr) const;
1221 
1222   inline HeapWord* bottom_addr_for_region(uint index) const;
1223 
1224   // Two functions to iterate over the heap regions in parallel. Threads
1225   // compete using the HeapRegionClaimer to claim the regions before
1226   // applying the closure on them.
1227   // The _from_worker_offset version uses the HeapRegionClaimer and
1228   // the worker id to calculate a start offset to prevent all workers to
1229   // start from the point.
1230   void heap_region_par_iterate_from_worker_offset(HeapRegionClosure* cl,
1231                                                   HeapRegionClaimer* hrclaimer,
1232                                                   uint worker_id) const;
1233 
1234   void heap_region_par_iterate_from_start(HeapRegionClosure* cl,
1235                                           HeapRegionClaimer* hrclaimer) const;
1236 
1237   // Iterate over the regions (if any) in the current collection set.
1238   void collection_set_iterate(HeapRegionClosure* blk);
1239 
1240   // Iterate over the regions (if any) in the current collection set. Starts the
1241   // iteration over the entire collection set so that the start regions of a given
1242   // worker id over the set active_workers are evenly spread across the set of
1243   // collection set regions.
1244   void collection_set_iterate_from(HeapRegionClosure *blk, uint worker_id);
1245 
1246   // Returns the HeapRegion that contains addr. addr must not be NULL.
1247   template <class T>
1248   inline HeapRegion* heap_region_containing(const T addr) const;
1249 
1250   // A CollectedHeap is divided into a dense sequence of "blocks"; that is,
1251   // each address in the (reserved) heap is a member of exactly
1252   // one block.  The defining characteristic of a block is that it is
1253   // possible to find its size, and thus to progress forward to the next
1254   // block.  (Blocks may be of different sizes.)  Thus, blocks may
1255   // represent Java objects, or they might be free blocks in a
1256   // free-list-based heap (or subheap), as long as the two kinds are
1257   // distinguishable and the size of each is determinable.
1258 
1259   // Returns the address of the start of the "block" that contains the
1260   // address "addr".  We say "blocks" instead of "object" since some heaps
1261   // may not pack objects densely; a chunk may either be an object or a
1262   // non-object.
1263   virtual HeapWord* block_start(const void* addr) const;
1264 
1265   // Requires "addr" to be the start of a chunk, and returns its size.
1266   // "addr + size" is required to be the start of a new chunk, or the end
1267   // of the active area of the heap.
1268   virtual size_t block_size(const HeapWord* addr) const;
1269 
1270   // Requires "addr" to be the start of a block, and returns "TRUE" iff
1271   // the block is an object.
1272   virtual bool block_is_obj(const HeapWord* addr) const;
1273 
1274   // Section on thread-local allocation buffers (TLABs)
1275   // See CollectedHeap for semantics.
1276 
1277   bool supports_tlab_allocation() const;
1278   size_t tlab_capacity(Thread* ignored) const;
1279   size_t tlab_used(Thread* ignored) const;
1280   size_t max_tlab_size() const;
1281   size_t unsafe_max_tlab_alloc(Thread* ignored) const;
1282 
1283   // Can a compiler initialize a new object without store barriers?
1284   // This permission only extends from the creation of a new object
1285   // via a TLAB up to the first subsequent safepoint. If such permission
1286   // is granted for this heap type, the compiler promises to call
1287   // defer_store_barrier() below on any slow path allocation of
1288   // a new object for which such initializing store barriers will
1289   // have been elided. G1, like CMS, allows this, but should be
1290   // ready to provide a compensating write barrier as necessary
1291   // if that storage came out of a non-young region. The efficiency
1292   // of this implementation depends crucially on being able to
1293   // answer very efficiently in constant time whether a piece of
1294   // storage in the heap comes from a young region or not.
1295   // See ReduceInitialCardMarks.
1296   virtual bool can_elide_tlab_store_barriers() const {
1297     return true;
1298   }
1299 
1300   virtual bool card_mark_must_follow_store() const {
1301     return true;
1302   }
1303 
1304   inline bool is_in_young(const oop obj);
1305 
1306   // We don't need barriers for initializing stores to objects
1307   // in the young gen: for the SATB pre-barrier, there is no
1308   // pre-value that needs to be remembered; for the remembered-set
1309   // update logging post-barrier, we don't maintain remembered set
1310   // information for young gen objects.
1311   virtual inline bool can_elide_initializing_store_barrier(oop new_obj);
1312 
1313   // Returns "true" iff the given word_size is "very large".
1314   static bool is_humongous(size_t word_size) {
1315     // Note this has to be strictly greater-than as the TLABs
1316     // are capped at the humongous threshold and we want to
1317     // ensure that we don't try to allocate a TLAB as
1318     // humongous and that we don't allocate a humongous
1319     // object in a TLAB.
1320     return word_size > _humongous_object_threshold_in_words;
1321   }
1322 
1323   // Returns the humongous threshold for a specific region size
1324   static size_t humongous_threshold_for(size_t region_size) {
1325     return (region_size / 2);
1326   }
1327 
1328   // Returns the number of regions the humongous object of the given word size
1329   // requires.
1330   static size_t humongous_obj_size_in_regions(size_t word_size);
1331 
1332   // Print the maximum heap capacity.
1333   virtual size_t max_capacity() const;
1334 
1335   virtual jlong millis_since_last_gc();
1336 
1337 
1338   // Convenience function to be used in situations where the heap type can be
1339   // asserted to be this type.
1340   static G1CollectedHeap* heap();
1341 
1342   void set_region_short_lived_locked(HeapRegion* hr);
1343   // add appropriate methods for any other surv rate groups
1344 
1345   const G1SurvivorRegions* survivor() const { return &_survivor; }
1346 
1347   uint survivor_regions_count() const {
1348     return _survivor.length();
1349   }
1350 
1351   uint eden_regions_count() const {
1352     return _eden.length();
1353   }
1354 
1355   uint young_regions_count() const {
1356     return _eden.length() + _survivor.length();
1357   }
1358 
1359   uint old_regions_count() const { return _old_set.length(); }
1360 
1361   uint humongous_regions_count() const { return _humongous_set.length(); }
1362 
1363 #ifdef ASSERT
1364   bool check_young_list_empty();
1365 #endif
1366 
1367   // *** Stuff related to concurrent marking.  It's not clear to me that so
1368   // many of these need to be public.
1369 
1370   // The functions below are helper functions that a subclass of
1371   // "CollectedHeap" can use in the implementation of its virtual
1372   // functions.
1373   // This performs a concurrent marking of the live objects in a
1374   // bitmap off to the side.
1375   void doConcurrentMark();
1376 
1377   bool isMarkedNext(oop obj) const;
1378 
1379   // Determine if an object is dead, given the object and also
1380   // the region to which the object belongs. An object is dead
1381   // iff a) it was not allocated since the last mark, b) it
1382   // is not marked, and c) it is not in an archive region.
1383   bool is_obj_dead(const oop obj, const HeapRegion* hr) const {
1384     return
1385       hr->is_obj_dead(obj, _cm->prev_mark_bitmap()) &&
1386       !hr->is_archive();
1387   }
1388 
1389   // This function returns true when an object has been
1390   // around since the previous marking and hasn't yet
1391   // been marked during this marking, and is not in an archive region.
1392   bool is_obj_ill(const oop obj, const HeapRegion* hr) const {
1393     return
1394       !hr->obj_allocated_since_next_marking(obj) &&
1395       !isMarkedNext(obj) &&
1396       !hr->is_archive();
1397   }
1398 
1399   // Determine if an object is dead, given only the object itself.
1400   // This will find the region to which the object belongs and
1401   // then call the region version of the same function.
1402 
1403   // Added if it is NULL it isn't dead.
1404 
1405   inline bool is_obj_dead(const oop obj) const;
1406 
1407   inline bool is_obj_ill(const oop obj) const;
1408 
1409   inline bool is_obj_dead_full(const oop obj, const HeapRegion* hr) const;
1410   inline bool is_obj_dead_full(const oop obj) const;
1411 
1412   G1ConcurrentMark* concurrent_mark() const { return _cm; }
1413 
1414   // Refinement
1415 
1416   G1ConcurrentRefine* concurrent_refine() const { return _cr; }
1417 
1418   // Optimized nmethod scanning support routines
1419 
1420   // Is an oop scavengeable
1421   virtual bool is_scavengable(oop obj);
1422 
1423   // Register the given nmethod with the G1 heap.
1424   virtual void register_nmethod(nmethod* nm);
1425 
1426   // Unregister the given nmethod from the G1 heap.
1427   virtual void unregister_nmethod(nmethod* nm);
1428 
1429   // Free up superfluous code root memory.
1430   void purge_code_root_memory();
1431 
1432   // Rebuild the strong code root lists for each region
1433   // after a full GC.
1434   void rebuild_strong_code_roots();
1435 
1436   // Partial cleaning used when class unloading is disabled.
1437   // Let the caller choose what structures to clean out:
1438   // - StringTable
1439   // - SymbolTable
1440   // - StringDeduplication structures
1441   void partial_cleaning(BoolObjectClosure* is_alive, bool unlink_strings, bool unlink_symbols, bool unlink_string_dedup);
1442 
1443   // Complete cleaning used when class unloading is enabled.
1444   // Cleans out all structures handled by partial_cleaning and also the CodeCache.
1445   void complete_cleaning(BoolObjectClosure* is_alive, bool class_unloading_occurred);
1446 
1447   // Redirty logged cards in the refinement queue.
1448   void redirty_logged_cards();
1449   // Verification
1450 
1451   // Perform any cleanup actions necessary before allowing a verification.
1452   virtual void prepare_for_verify();
1453 
1454   // Perform verification.
1455 
1456   // vo == UsePrevMarking -> use "prev" marking information,
1457   // vo == UseNextMarking -> use "next" marking information
1458   // vo == UseFullMarking -> use "next" marking bitmap but no TAMS
1459   //
1460   // NOTE: Only the "prev" marking information is guaranteed to be
1461   // consistent most of the time, so most calls to this should use
1462   // vo == UsePrevMarking.
1463   // Currently, there is only one case where this is called with
1464   // vo == UseNextMarking, which is to verify the "next" marking
1465   // information at the end of remark.
1466   // Currently there is only one place where this is called with
1467   // vo == UseFullMarking, which is to verify the marking during a
1468   // full GC.
1469   void verify(VerifyOption vo);
1470 
1471   // WhiteBox testing support.
1472   virtual bool supports_concurrent_phase_control() const;
1473   virtual const char* const* concurrent_phases() const;
1474   virtual bool request_concurrent_phase(const char* phase);
1475 
1476   // The methods below are here for convenience and dispatch the
1477   // appropriate method depending on value of the given VerifyOption
1478   // parameter. The values for that parameter, and their meanings,
1479   // are the same as those above.
1480 
1481   bool is_obj_dead_cond(const oop obj,
1482                         const HeapRegion* hr,
1483                         const VerifyOption vo) const;
1484 
1485   bool is_obj_dead_cond(const oop obj,
1486                         const VerifyOption vo) const;
1487 
1488   G1HeapSummary create_g1_heap_summary();
1489   G1EvacSummary create_g1_evac_summary(G1EvacStats* stats);
1490 
1491   // Printing
1492 private:
1493   void print_heap_regions() const;
1494   void print_regions_on(outputStream* st) const;
1495 
1496 public:
1497   virtual void print_on(outputStream* st) const;
1498   virtual void print_extended_on(outputStream* st) const;
1499   virtual void print_on_error(outputStream* st) const;
1500 
1501   virtual void print_gc_threads_on(outputStream* st) const;
1502   virtual void gc_threads_do(ThreadClosure* tc) const;
1503 
1504   // Override
1505   void print_tracing_info() const;
1506 
1507   // The following two methods are helpful for debugging RSet issues.
1508   void print_cset_rsets() PRODUCT_RETURN;
1509   void print_all_rsets() PRODUCT_RETURN;
1510 
1511 public:
1512   size_t pending_card_num();
1513 
1514 protected:
1515   size_t _max_heap_capacity;
1516 };
1517 
1518 class G1ParEvacuateFollowersClosure : public VoidClosure {
1519 private:
1520   double _start_term;
1521   double _term_time;
1522   size_t _term_attempts;
1523 
1524   void start_term_time() { _term_attempts++; _start_term = os::elapsedTime(); }
1525   void end_term_time() { _term_time += os::elapsedTime() - _start_term; }
1526 protected:
1527   G1CollectedHeap*              _g1h;
1528   G1ParScanThreadState*         _par_scan_state;
1529   RefToScanQueueSet*            _queues;
1530   ParallelTaskTerminator*       _terminator;
1531 
1532   G1ParScanThreadState*   par_scan_state() { return _par_scan_state; }
1533   RefToScanQueueSet*      queues()         { return _queues; }
1534   ParallelTaskTerminator* terminator()     { return _terminator; }
1535 
1536 public:
1537   G1ParEvacuateFollowersClosure(G1CollectedHeap* g1h,
1538                                 G1ParScanThreadState* par_scan_state,
1539                                 RefToScanQueueSet* queues,
1540                                 ParallelTaskTerminator* terminator)
1541     : _g1h(g1h), _par_scan_state(par_scan_state),
1542       _queues(queues), _terminator(terminator),
1543       _start_term(0.0), _term_time(0.0), _term_attempts(0) {}
1544 
1545   void do_void();
1546 
1547   double term_time() const { return _term_time; }
1548   size_t term_attempts() const { return _term_attempts; }
1549 
1550 private:
1551   inline bool offer_termination();
1552 };
1553 
1554 #endif // SHARE_VM_GC_G1_G1COLLECTEDHEAP_HPP