1 /*
   2  * Copyright (c) 2001, 2017, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_VM_GC_G1_G1COLLECTEDHEAP_HPP
  26 #define SHARE_VM_GC_G1_G1COLLECTEDHEAP_HPP
  27 
  28 #include "gc/g1/evacuationInfo.hpp"
  29 #include "gc/g1/g1AllocationContext.hpp"
  30 #include "gc/g1/g1BiasedArray.hpp"
  31 #include "gc/g1/g1CollectionSet.hpp"
  32 #include "gc/g1/g1CollectorState.hpp"
  33 #include "gc/g1/g1ConcurrentMark.hpp"
  34 #include "gc/g1/g1EdenRegions.hpp"
  35 #include "gc/g1/g1EvacFailure.hpp"
  36 #include "gc/g1/g1EvacStats.hpp"
  37 #include "gc/g1/g1HeapTransition.hpp"
  38 #include "gc/g1/g1HeapVerifier.hpp"
  39 #include "gc/g1/g1HRPrinter.hpp"
  40 #include "gc/g1/g1InCSetState.hpp"
  41 #include "gc/g1/g1MonitoringSupport.hpp"
  42 #include "gc/g1/g1SATBCardTableModRefBS.hpp"
  43 #include "gc/g1/g1SurvivorRegions.hpp"
  44 #include "gc/g1/g1YCTypes.hpp"
  45 #include "gc/g1/heapRegionManager.hpp"
  46 #include "gc/g1/heapRegionSet.hpp"
  47 #include "gc/shared/barrierSet.hpp"
  48 #include "gc/shared/collectedHeap.hpp"
  49 #include "gc/shared/gcHeapSummary.hpp"
  50 #include "gc/shared/plab.hpp"
  51 #include "gc/shared/preservedMarks.hpp"
  52 #include "memory/memRegion.hpp"
  53 #include "services/memoryManager.hpp"
  54 #include "utilities/stack.hpp"
  55 
  56 // A "G1CollectedHeap" is an implementation of a java heap for HotSpot.
  57 // It uses the "Garbage First" heap organization and algorithm, which
  58 // may combine concurrent marking with parallel, incremental compaction of
  59 // heap subsets that will yield large amounts of garbage.
  60 
  61 // Forward declarations
  62 class HeapRegion;
  63 class HRRSCleanupTask;
  64 class GenerationSpec;
  65 class G1ParScanThreadState;
  66 class G1ParScanThreadStateSet;
  67 class G1ParScanThreadState;
  68 class MemoryPool;
  69 class ObjectClosure;
  70 class SpaceClosure;
  71 class CompactibleSpaceClosure;
  72 class Space;
  73 class G1CollectionSet;
  74 class G1CollectorPolicy;
  75 class G1Policy;
  76 class G1HotCardCache;
  77 class G1RemSet;
  78 class G1YoungRemSetSamplingThread;
  79 class HeapRegionRemSetIterator;
  80 class G1ConcurrentMark;
  81 class ConcurrentMarkThread;
  82 class G1ConcurrentRefine;
  83 class GenerationCounters;
  84 class STWGCTimer;
  85 class G1NewTracer;
  86 class EvacuationFailedInfo;
  87 class nmethod;
  88 class Ticks;
  89 class WorkGang;
  90 class G1Allocator;
  91 class G1ArchiveAllocator;
  92 class G1FullGCScope;
  93 class G1HeapVerifier;
  94 class G1HeapSizingPolicy;
  95 class G1HeapSummary;
  96 class G1EvacSummary;
  97 
  98 typedef OverflowTaskQueue<StarTask, mtGC>         RefToScanQueue;
  99 typedef GenericTaskQueueSet<RefToScanQueue, mtGC> RefToScanQueueSet;
 100 
 101 typedef int RegionIdx_t;   // needs to hold [ 0..max_regions() )
 102 typedef int CardIdx_t;     // needs to hold [ 0..CardsPerRegion )
 103 
 104 // The G1 STW is alive closure.
 105 // An instance is embedded into the G1CH and used as the
 106 // (optional) _is_alive_non_header closure in the STW
 107 // reference processor. It is also extensively used during
 108 // reference processing during STW evacuation pauses.
 109 class G1STWIsAliveClosure: public BoolObjectClosure {
 110   G1CollectedHeap* _g1;
 111 public:
 112   G1STWIsAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
 113   bool do_object_b(oop p);
 114 };
 115 
 116 class G1RegionMappingChangedListener : public G1MappingChangedListener {
 117  private:
 118   void reset_from_card_cache(uint start_idx, size_t num_regions);
 119  public:
 120   virtual void on_commit(uint start_idx, size_t num_regions, bool zero_filled);
 121 };
 122 
 123 class G1CollectedHeap : public CollectedHeap {
 124   friend class G1FreeCollectionSetTask;
 125   friend class VM_CollectForMetadataAllocation;
 126   friend class VM_G1CollectForAllocation;
 127   friend class VM_G1CollectFull;
 128   friend class VM_G1IncCollectionPause;
 129   friend class VMStructs;
 130   friend class MutatorAllocRegion;
 131   friend class G1FullCollector;
 132   friend class G1GCAllocRegion;
 133   friend class G1HeapVerifier;
 134 
 135   // Closures used in implementation.
 136   friend class G1ParScanThreadState;
 137   friend class G1ParScanThreadStateSet;
 138   friend class G1ParTask;
 139   friend class G1PLABAllocator;
 140   friend class G1PrepareCompactClosure;
 141 
 142   // Other related classes.
 143   friend class HeapRegionClaimer;
 144 
 145   // Testing classes.
 146   friend class G1CheckCSetFastTableClosure;
 147 
 148 private:
 149   G1YoungRemSetSamplingThread* _young_gen_sampling_thread;
 150 
 151   WorkGang* _workers;
 152   G1CollectorPolicy* _collector_policy;
 153 
 154   GCMemoryManager _memory_manager;
 155   GCMemoryManager _full_gc_memory_manager;
 156 
 157   MemoryPool* _eden_pool;
 158   MemoryPool* _survivor_pool;
 159   MemoryPool* _old_pool;
 160 
 161   static size_t _humongous_object_threshold_in_words;
 162 
 163   // The secondary free list which contains regions that have been
 164   // freed up during the cleanup process. This will be appended to
 165   // the master free list when appropriate.
 166   FreeRegionList _secondary_free_list;
 167 
 168   // It keeps track of the old regions.
 169   HeapRegionSet _old_set;
 170 
 171   // It keeps track of the humongous regions.
 172   HeapRegionSet _humongous_set;
 173 
 174   virtual void initialize_serviceability();
 175 
 176   void eagerly_reclaim_humongous_regions();
 177   // Start a new incremental collection set for the next pause.
 178   void start_new_collection_set();
 179 
 180   // The number of regions we could create by expansion.
 181   uint _expansion_regions;
 182 
 183   // The block offset table for the G1 heap.
 184   G1BlockOffsetTable* _bot;
 185 
 186   // Tears down the region sets / lists so that they are empty and the
 187   // regions on the heap do not belong to a region set / list. The
 188   // only exception is the humongous set which we leave unaltered. If
 189   // free_list_only is true, it will only tear down the master free
 190   // list. It is called before a Full GC (free_list_only == false) or
 191   // before heap shrinking (free_list_only == true).
 192   void tear_down_region_sets(bool free_list_only);
 193 
 194   // Rebuilds the region sets / lists so that they are repopulated to
 195   // reflect the contents of the heap. The only exception is the
 196   // humongous set which was not torn down in the first place. If
 197   // free_list_only is true, it will only rebuild the master free
 198   // list. It is called after a Full GC (free_list_only == false) or
 199   // after heap shrinking (free_list_only == true).
 200   void rebuild_region_sets(bool free_list_only);
 201 
 202   // Callback for region mapping changed events.
 203   G1RegionMappingChangedListener _listener;
 204 
 205   // The sequence of all heap regions in the heap.
 206   HeapRegionManager _hrm;
 207 
 208   // Manages all allocations with regions except humongous object allocations.
 209   G1Allocator* _allocator;
 210 
 211   // Manages all heap verification.
 212   G1HeapVerifier* _verifier;
 213 
 214   // Outside of GC pauses, the number of bytes used in all regions other
 215   // than the current allocation region(s).
 216   size_t _summary_bytes_used;
 217 
 218   void increase_used(size_t bytes);
 219   void decrease_used(size_t bytes);
 220 
 221   void set_used(size_t bytes);
 222 
 223   // Class that handles archive allocation ranges.
 224   G1ArchiveAllocator* _archive_allocator;
 225 
 226   // Statistics for each allocation context
 227   AllocationContextStats _allocation_context_stats;
 228 
 229   // GC allocation statistics policy for survivors.
 230   G1EvacStats _survivor_evac_stats;
 231 
 232   // GC allocation statistics policy for tenured objects.
 233   G1EvacStats _old_evac_stats;
 234 
 235   // It specifies whether we should attempt to expand the heap after a
 236   // region allocation failure. If heap expansion fails we set this to
 237   // false so that we don't re-attempt the heap expansion (it's likely
 238   // that subsequent expansion attempts will also fail if one fails).
 239   // Currently, it is only consulted during GC and it's reset at the
 240   // start of each GC.
 241   bool _expand_heap_after_alloc_failure;
 242 
 243   // Helper for monitoring and management support.
 244   G1MonitoringSupport* _g1mm;
 245 
 246   // Records whether the region at the given index is (still) a
 247   // candidate for eager reclaim.  Only valid for humongous start
 248   // regions; other regions have unspecified values.  Humongous start
 249   // regions are initialized at start of collection pause, with
 250   // candidates removed from the set as they are found reachable from
 251   // roots or the young generation.
 252   class HumongousReclaimCandidates : public G1BiasedMappedArray<bool> {
 253    protected:
 254     bool default_value() const { return false; }
 255    public:
 256     void clear() { G1BiasedMappedArray<bool>::clear(); }
 257     void set_candidate(uint region, bool value) {
 258       set_by_index(region, value);
 259     }
 260     bool is_candidate(uint region) {
 261       return get_by_index(region);
 262     }
 263   };
 264 
 265   HumongousReclaimCandidates _humongous_reclaim_candidates;
 266   // Stores whether during humongous object registration we found candidate regions.
 267   // If not, we can skip a few steps.
 268   bool _has_humongous_reclaim_candidates;
 269 
 270   volatile uint _gc_time_stamp;
 271 
 272   G1HRPrinter _hr_printer;
 273 
 274   // It decides whether an explicit GC should start a concurrent cycle
 275   // instead of doing a STW GC. Currently, a concurrent cycle is
 276   // explicitly started if:
 277   // (a) cause == _gc_locker and +GCLockerInvokesConcurrent, or
 278   // (b) cause == _g1_humongous_allocation
 279   // (c) cause == _java_lang_system_gc and +ExplicitGCInvokesConcurrent.
 280   // (d) cause == _dcmd_gc_run and +ExplicitGCInvokesConcurrent.
 281   // (e) cause == _update_allocation_context_stats_inc
 282   // (f) cause == _wb_conc_mark
 283   bool should_do_concurrent_full_gc(GCCause::Cause cause);
 284 
 285   // indicates whether we are in young or mixed GC mode
 286   G1CollectorState _collector_state;
 287 
 288   // Keeps track of how many "old marking cycles" (i.e., Full GCs or
 289   // concurrent cycles) we have started.
 290   volatile uint _old_marking_cycles_started;
 291 
 292   // Keeps track of how many "old marking cycles" (i.e., Full GCs or
 293   // concurrent cycles) we have completed.
 294   volatile uint _old_marking_cycles_completed;
 295 
 296   // This is a non-product method that is helpful for testing. It is
 297   // called at the end of a GC and artificially expands the heap by
 298   // allocating a number of dead regions. This way we can induce very
 299   // frequent marking cycles and stress the cleanup / concurrent
 300   // cleanup code more (as all the regions that will be allocated by
 301   // this method will be found dead by the marking cycle).
 302   void allocate_dummy_regions() PRODUCT_RETURN;
 303 
 304   // Clear RSets after a compaction. It also resets the GC time stamps.
 305   void clear_rsets_post_compaction();
 306 
 307   // If the HR printer is active, dump the state of the regions in the
 308   // heap after a compaction.
 309   void print_hrm_post_compaction();
 310 
 311   // Create a memory mapper for auxiliary data structures of the given size and
 312   // translation factor.
 313   static G1RegionToSpaceMapper* create_aux_memory_mapper(const char* description,
 314                                                          size_t size,
 315                                                          size_t translation_factor);
 316 
 317   static G1Policy* create_g1_policy(STWGCTimer* gc_timer);
 318 
 319   void trace_heap(GCWhen::Type when, const GCTracer* tracer);
 320 
 321   // These are macros so that, if the assert fires, we get the correct
 322   // line number, file, etc.
 323 
 324 #define heap_locking_asserts_params(_extra_message_)                          \
 325   "%s : Heap_lock locked: %s, at safepoint: %s, is VM thread: %s",            \
 326   (_extra_message_),                                                          \
 327   BOOL_TO_STR(Heap_lock->owned_by_self()),                                    \
 328   BOOL_TO_STR(SafepointSynchronize::is_at_safepoint()),                       \
 329   BOOL_TO_STR(Thread::current()->is_VM_thread())
 330 
 331 #define assert_heap_locked()                                                  \
 332   do {                                                                        \
 333     assert(Heap_lock->owned_by_self(),                                        \
 334            heap_locking_asserts_params("should be holding the Heap_lock"));   \
 335   } while (0)
 336 
 337 #define assert_heap_locked_or_at_safepoint(_should_be_vm_thread_)             \
 338   do {                                                                        \
 339     assert(Heap_lock->owned_by_self() ||                                      \
 340            (SafepointSynchronize::is_at_safepoint() &&                        \
 341              ((_should_be_vm_thread_) == Thread::current()->is_VM_thread())), \
 342            heap_locking_asserts_params("should be holding the Heap_lock or "  \
 343                                         "should be at a safepoint"));         \
 344   } while (0)
 345 
 346 #define assert_heap_locked_and_not_at_safepoint()                             \
 347   do {                                                                        \
 348     assert(Heap_lock->owned_by_self() &&                                      \
 349                                     !SafepointSynchronize::is_at_safepoint(), \
 350           heap_locking_asserts_params("should be holding the Heap_lock and "  \
 351                                        "should not be at a safepoint"));      \
 352   } while (0)
 353 
 354 #define assert_heap_not_locked()                                              \
 355   do {                                                                        \
 356     assert(!Heap_lock->owned_by_self(),                                       \
 357         heap_locking_asserts_params("should not be holding the Heap_lock"));  \
 358   } while (0)
 359 
 360 #define assert_heap_not_locked_and_not_at_safepoint()                         \
 361   do {                                                                        \
 362     assert(!Heap_lock->owned_by_self() &&                                     \
 363                                     !SafepointSynchronize::is_at_safepoint(), \
 364       heap_locking_asserts_params("should not be holding the Heap_lock and "  \
 365                                    "should not be at a safepoint"));          \
 366   } while (0)
 367 
 368 #define assert_at_safepoint(_should_be_vm_thread_)                            \
 369   do {                                                                        \
 370     assert(SafepointSynchronize::is_at_safepoint() &&                         \
 371               ((_should_be_vm_thread_) == Thread::current()->is_VM_thread()), \
 372            heap_locking_asserts_params("should be at a safepoint"));          \
 373   } while (0)
 374 
 375 #define assert_not_at_safepoint()                                             \
 376   do {                                                                        \
 377     assert(!SafepointSynchronize::is_at_safepoint(),                          \
 378            heap_locking_asserts_params("should not be at a safepoint"));      \
 379   } while (0)
 380 
 381 protected:
 382 
 383   // The young region list.
 384   G1EdenRegions _eden;
 385   G1SurvivorRegions _survivor;
 386 
 387   STWGCTimer* _gc_timer_stw;
 388 
 389   G1NewTracer* _gc_tracer_stw;
 390 
 391   // The current policy object for the collector.
 392   G1Policy* _g1_policy;
 393   G1HeapSizingPolicy* _heap_sizing_policy;
 394 
 395   G1CollectionSet _collection_set;
 396 
 397   // This is the second level of trying to allocate a new region. If
 398   // new_region() didn't find a region on the free_list, this call will
 399   // check whether there's anything available on the
 400   // secondary_free_list and/or wait for more regions to appear on
 401   // that list, if _free_regions_coming is set.
 402   HeapRegion* new_region_try_secondary_free_list(bool is_old);
 403 
 404   // Try to allocate a single non-humongous HeapRegion sufficient for
 405   // an allocation of the given word_size. If do_expand is true,
 406   // attempt to expand the heap if necessary to satisfy the allocation
 407   // request. If the region is to be used as an old region or for a
 408   // humongous object, set is_old to true. If not, to false.
 409   HeapRegion* new_region(size_t word_size, bool is_old, bool do_expand);
 410 
 411   // Initialize a contiguous set of free regions of length num_regions
 412   // and starting at index first so that they appear as a single
 413   // humongous region.
 414   HeapWord* humongous_obj_allocate_initialize_regions(uint first,
 415                                                       uint num_regions,
 416                                                       size_t word_size,
 417                                                       AllocationContext_t context);
 418 
 419   // Attempt to allocate a humongous object of the given size. Return
 420   // NULL if unsuccessful.
 421   HeapWord* humongous_obj_allocate(size_t word_size, AllocationContext_t context);
 422 
 423   // The following two methods, allocate_new_tlab() and
 424   // mem_allocate(), are the two main entry points from the runtime
 425   // into the G1's allocation routines. They have the following
 426   // assumptions:
 427   //
 428   // * They should both be called outside safepoints.
 429   //
 430   // * They should both be called without holding the Heap_lock.
 431   //
 432   // * All allocation requests for new TLABs should go to
 433   //   allocate_new_tlab().
 434   //
 435   // * All non-TLAB allocation requests should go to mem_allocate().
 436   //
 437   // * If either call cannot satisfy the allocation request using the
 438   //   current allocating region, they will try to get a new one. If
 439   //   this fails, they will attempt to do an evacuation pause and
 440   //   retry the allocation.
 441   //
 442   // * If all allocation attempts fail, even after trying to schedule
 443   //   an evacuation pause, allocate_new_tlab() will return NULL,
 444   //   whereas mem_allocate() will attempt a heap expansion and/or
 445   //   schedule a Full GC.
 446   //
 447   // * We do not allow humongous-sized TLABs. So, allocate_new_tlab
 448   //   should never be called with word_size being humongous. All
 449   //   humongous allocation requests should go to mem_allocate() which
 450   //   will satisfy them with a special path.
 451 
 452   virtual HeapWord* allocate_new_tlab(size_t word_size);
 453 
 454   virtual HeapWord* mem_allocate(size_t word_size,
 455                                  bool*  gc_overhead_limit_was_exceeded);
 456 
 457   // The following three methods take a gc_count_before_ret
 458   // parameter which is used to return the GC count if the method
 459   // returns NULL. Given that we are required to read the GC count
 460   // while holding the Heap_lock, and these paths will take the
 461   // Heap_lock at some point, it's easier to get them to read the GC
 462   // count while holding the Heap_lock before they return NULL instead
 463   // of the caller (namely: mem_allocate()) having to also take the
 464   // Heap_lock just to read the GC count.
 465 
 466   // First-level mutator allocation attempt: try to allocate out of
 467   // the mutator alloc region without taking the Heap_lock. This
 468   // should only be used for non-humongous allocations.
 469   inline HeapWord* attempt_allocation(size_t word_size,
 470                                       uint* gc_count_before_ret,
 471                                       uint* gclocker_retry_count_ret);
 472 
 473   // Second-level mutator allocation attempt: take the Heap_lock and
 474   // retry the allocation attempt, potentially scheduling a GC
 475   // pause. This should only be used for non-humongous allocations.
 476   HeapWord* attempt_allocation_slow(size_t word_size,
 477                                     AllocationContext_t context,
 478                                     uint* gc_count_before_ret,
 479                                     uint* gclocker_retry_count_ret);
 480 
 481   // Takes the Heap_lock and attempts a humongous allocation. It can
 482   // potentially schedule a GC pause.
 483   HeapWord* attempt_allocation_humongous(size_t word_size,
 484                                          uint* gc_count_before_ret,
 485                                          uint* gclocker_retry_count_ret);
 486 
 487   // Allocation attempt that should be called during safepoints (e.g.,
 488   // at the end of a successful GC). expect_null_mutator_alloc_region
 489   // specifies whether the mutator alloc region is expected to be NULL
 490   // or not.
 491   HeapWord* attempt_allocation_at_safepoint(size_t word_size,
 492                                             AllocationContext_t context,
 493                                             bool expect_null_mutator_alloc_region);
 494 
 495   // These methods are the "callbacks" from the G1AllocRegion class.
 496 
 497   // For mutator alloc regions.
 498   HeapRegion* new_mutator_alloc_region(size_t word_size, bool force);
 499   void retire_mutator_alloc_region(HeapRegion* alloc_region,
 500                                    size_t allocated_bytes);
 501 
 502   // For GC alloc regions.
 503   bool has_more_regions(InCSetState dest);
 504   HeapRegion* new_gc_alloc_region(size_t word_size, InCSetState dest);
 505   void retire_gc_alloc_region(HeapRegion* alloc_region,
 506                               size_t allocated_bytes, InCSetState dest);
 507 
 508   // - if explicit_gc is true, the GC is for a System.gc() etc,
 509   //   otherwise it's for a failed allocation.
 510   // - if clear_all_soft_refs is true, all soft references should be
 511   //   cleared during the GC.
 512   // - it returns false if it is unable to do the collection due to the
 513   //   GC locker being active, true otherwise.
 514   bool do_full_collection(bool explicit_gc,
 515                           bool clear_all_soft_refs);
 516 
 517   // Callback from VM_G1CollectFull operation, or collect_as_vm_thread.
 518   virtual void do_full_collection(bool clear_all_soft_refs);
 519 
 520   // Resize the heap if necessary after a full collection.
 521   void resize_if_necessary_after_full_collection();
 522 
 523   // Callback from VM_G1CollectForAllocation operation.
 524   // This function does everything necessary/possible to satisfy a
 525   // failed allocation request (including collection, expansion, etc.)
 526   HeapWord* satisfy_failed_allocation(size_t word_size,
 527                                       AllocationContext_t context,
 528                                       bool* succeeded);
 529 private:
 530   // Internal helpers used during full GC to split it up to
 531   // increase readability.
 532   void abort_concurrent_cycle();
 533   void verify_before_full_collection(bool explicit_gc);
 534   void prepare_heap_for_full_collection();
 535   void prepare_heap_for_mutators();
 536   void abort_refinement();
 537   void verify_after_full_collection();
 538   void print_heap_after_full_collection(G1HeapTransition* heap_transition);
 539 
 540   // Helper method for satisfy_failed_allocation()
 541   HeapWord* satisfy_failed_allocation_helper(size_t word_size,
 542                                              AllocationContext_t context,
 543                                              bool do_gc,
 544                                              bool clear_all_soft_refs,
 545                                              bool expect_null_mutator_alloc_region,
 546                                              bool* gc_succeeded);
 547 
 548 protected:
 549   // Attempting to expand the heap sufficiently
 550   // to support an allocation of the given "word_size".  If
 551   // successful, perform the allocation and return the address of the
 552   // allocated block, or else "NULL".
 553   HeapWord* expand_and_allocate(size_t word_size, AllocationContext_t context);
 554 
 555   // Preserve any referents discovered by concurrent marking that have not yet been
 556   // copied by the STW pause.
 557   void preserve_cm_referents(G1ParScanThreadStateSet* per_thread_states);
 558   // Process any reference objects discovered during
 559   // an incremental evacuation pause.
 560   void process_discovered_references(G1ParScanThreadStateSet* per_thread_states);
 561 
 562   // Enqueue any remaining discovered references
 563   // after processing.
 564   void enqueue_discovered_references(G1ParScanThreadStateSet* per_thread_states);
 565 
 566   // Merges the information gathered on a per-thread basis for all worker threads
 567   // during GC into global variables.
 568   void merge_per_thread_state_info(G1ParScanThreadStateSet* per_thread_states);
 569 public:
 570   G1YoungRemSetSamplingThread* sampling_thread() const { return _young_gen_sampling_thread; }
 571 
 572   WorkGang* workers() const { return _workers; }
 573 
 574   G1Allocator* allocator() {
 575     return _allocator;
 576   }
 577 
 578   G1HeapVerifier* verifier() {
 579     return _verifier;
 580   }
 581 
 582   G1MonitoringSupport* g1mm() {
 583     assert(_g1mm != NULL, "should have been initialized");
 584     return _g1mm;
 585   }
 586 
 587   // Expand the garbage-first heap by at least the given size (in bytes!).
 588   // Returns true if the heap was expanded by the requested amount;
 589   // false otherwise.
 590   // (Rounds up to a HeapRegion boundary.)
 591   bool expand(size_t expand_bytes, WorkGang* pretouch_workers = NULL, double* expand_time_ms = NULL);
 592 
 593   // Returns the PLAB statistics for a given destination.
 594   inline G1EvacStats* alloc_buffer_stats(InCSetState dest);
 595 
 596   // Determines PLAB size for a given destination.
 597   inline size_t desired_plab_sz(InCSetState dest);
 598 
 599   inline AllocationContextStats& allocation_context_stats();
 600 
 601   // Do anything common to GC's.
 602   void gc_prologue(bool full);
 603   void gc_epilogue(bool full);
 604 
 605   // Modify the reclaim candidate set and test for presence.
 606   // These are only valid for starts_humongous regions.
 607   inline void set_humongous_reclaim_candidate(uint region, bool value);
 608   inline bool is_humongous_reclaim_candidate(uint region);
 609 
 610   // Remove from the reclaim candidate set.  Also remove from the
 611   // collection set so that later encounters avoid the slow path.
 612   inline void set_humongous_is_live(oop obj);
 613 
 614   // Register the given region to be part of the collection set.
 615   inline void register_humongous_region_with_cset(uint index);
 616   // Register regions with humongous objects (actually on the start region) in
 617   // the in_cset_fast_test table.
 618   void register_humongous_regions_with_cset();
 619   // We register a region with the fast "in collection set" test. We
 620   // simply set to true the array slot corresponding to this region.
 621   void register_young_region_with_cset(HeapRegion* r) {
 622     _in_cset_fast_test.set_in_young(r->hrm_index());
 623   }
 624   void register_old_region_with_cset(HeapRegion* r) {
 625     _in_cset_fast_test.set_in_old(r->hrm_index());
 626   }
 627   inline void register_ext_region_with_cset(HeapRegion* r) {
 628     _in_cset_fast_test.set_ext(r->hrm_index());
 629   }
 630   void clear_in_cset(const HeapRegion* hr) {
 631     _in_cset_fast_test.clear(hr);
 632   }
 633 
 634   void clear_cset_fast_test() {
 635     _in_cset_fast_test.clear();
 636   }
 637 
 638   bool is_user_requested_concurrent_full_gc(GCCause::Cause cause);
 639 
 640   // This is called at the start of either a concurrent cycle or a Full
 641   // GC to update the number of old marking cycles started.
 642   void increment_old_marking_cycles_started();
 643 
 644   // This is called at the end of either a concurrent cycle or a Full
 645   // GC to update the number of old marking cycles completed. Those two
 646   // can happen in a nested fashion, i.e., we start a concurrent
 647   // cycle, a Full GC happens half-way through it which ends first,
 648   // and then the cycle notices that a Full GC happened and ends
 649   // too. The concurrent parameter is a boolean to help us do a bit
 650   // tighter consistency checking in the method. If concurrent is
 651   // false, the caller is the inner caller in the nesting (i.e., the
 652   // Full GC). If concurrent is true, the caller is the outer caller
 653   // in this nesting (i.e., the concurrent cycle). Further nesting is
 654   // not currently supported. The end of this call also notifies
 655   // the FullGCCount_lock in case a Java thread is waiting for a full
 656   // GC to happen (e.g., it called System.gc() with
 657   // +ExplicitGCInvokesConcurrent).
 658   void increment_old_marking_cycles_completed(bool concurrent);
 659 
 660   uint old_marking_cycles_completed() {
 661     return _old_marking_cycles_completed;
 662   }
 663 
 664   G1HRPrinter* hr_printer() { return &_hr_printer; }
 665 
 666   // Allocates a new heap region instance.
 667   HeapRegion* new_heap_region(uint hrs_index, MemRegion mr);
 668 
 669   // Allocate the highest free region in the reserved heap. This will commit
 670   // regions as necessary.
 671   HeapRegion* alloc_highest_free_region();
 672 
 673   // Frees a non-humongous region by initializing its contents and
 674   // adding it to the free list that's passed as a parameter (this is
 675   // usually a local list which will be appended to the master free
 676   // list later). The used bytes of freed regions are accumulated in
 677   // pre_used. If skip_remset is true, the region's RSet will not be freed
 678   // up. If skip_hot_card_cache is true, the region's hot card cache will not
 679   // be freed up. The assumption is that this will be done later.
 680   // The locked parameter indicates if the caller has already taken
 681   // care of proper synchronization. This may allow some optimizations.
 682   void free_region(HeapRegion* hr,
 683                    FreeRegionList* free_list,
 684                    bool skip_remset,
 685                    bool skip_hot_card_cache = false,
 686                    bool locked = false);
 687 
 688   // It dirties the cards that cover the block so that the post
 689   // write barrier never queues anything when updating objects on this
 690   // block. It is assumed (and in fact we assert) that the block
 691   // belongs to a young region.
 692   inline void dirty_young_block(HeapWord* start, size_t word_size);
 693 
 694   // Frees a humongous region by collapsing it into individual regions
 695   // and calling free_region() for each of them. The freed regions
 696   // will be added to the free list that's passed as a parameter (this
 697   // is usually a local list which will be appended to the master free
 698   // list later). The used bytes of freed regions are accumulated in
 699   // pre_used. If skip_remset is true, the region's RSet will not be freed
 700   // up. The assumption is that this will be done later.
 701   void free_humongous_region(HeapRegion* hr,
 702                              FreeRegionList* free_list,
 703                              bool skip_remset);
 704 
 705   // Facility for allocating in 'archive' regions in high heap memory and
 706   // recording the allocated ranges. These should all be called from the
 707   // VM thread at safepoints, without the heap lock held. They can be used
 708   // to create and archive a set of heap regions which can be mapped at the
 709   // same fixed addresses in a subsequent JVM invocation.
 710   void begin_archive_alloc_range(bool open = false);
 711 
 712   // Check if the requested size would be too large for an archive allocation.
 713   bool is_archive_alloc_too_large(size_t word_size);
 714 
 715   // Allocate memory of the requested size from the archive region. This will
 716   // return NULL if the size is too large or if no memory is available. It
 717   // does not trigger a garbage collection.
 718   HeapWord* archive_mem_allocate(size_t word_size);
 719 
 720   // Optionally aligns the end address and returns the allocated ranges in
 721   // an array of MemRegions in order of ascending addresses.
 722   void end_archive_alloc_range(GrowableArray<MemRegion>* ranges,
 723                                size_t end_alignment_in_bytes = 0);
 724 
 725   // Facility for allocating a fixed range within the heap and marking
 726   // the containing regions as 'archive'. For use at JVM init time, when the
 727   // caller may mmap archived heap data at the specified range(s).
 728   // Verify that the MemRegions specified in the argument array are within the
 729   // reserved heap.
 730   bool check_archive_addresses(MemRegion* range, size_t count);
 731 
 732   // Commit the appropriate G1 regions containing the specified MemRegions
 733   // and mark them as 'archive' regions. The regions in the array must be
 734   // non-overlapping and in order of ascending address.
 735   bool alloc_archive_regions(MemRegion* range, size_t count, bool open);
 736 
 737   // Insert any required filler objects in the G1 regions around the specified
 738   // ranges to make the regions parseable. This must be called after
 739   // alloc_archive_regions, and after class loading has occurred.
 740   void fill_archive_regions(MemRegion* range, size_t count);
 741 
 742   // For each of the specified MemRegions, uncommit the containing G1 regions
 743   // which had been allocated by alloc_archive_regions. This should be called
 744   // rather than fill_archive_regions at JVM init time if the archive file
 745   // mapping failed, with the same non-overlapping and sorted MemRegion array.
 746   void dealloc_archive_regions(MemRegion* range, size_t count);
 747 
 748 protected:
 749 
 750   // Shrink the garbage-first heap by at most the given size (in bytes!).
 751   // (Rounds down to a HeapRegion boundary.)
 752   virtual void shrink(size_t expand_bytes);
 753   void shrink_helper(size_t expand_bytes);
 754 
 755   #if TASKQUEUE_STATS
 756   static void print_taskqueue_stats_hdr(outputStream* const st);
 757   void print_taskqueue_stats() const;
 758   void reset_taskqueue_stats();
 759   #endif // TASKQUEUE_STATS
 760 
 761   // Schedule the VM operation that will do an evacuation pause to
 762   // satisfy an allocation request of word_size. *succeeded will
 763   // return whether the VM operation was successful (it did do an
 764   // evacuation pause) or not (another thread beat us to it or the GC
 765   // locker was active). Given that we should not be holding the
 766   // Heap_lock when we enter this method, we will pass the
 767   // gc_count_before (i.e., total_collections()) as a parameter since
 768   // it has to be read while holding the Heap_lock. Currently, both
 769   // methods that call do_collection_pause() release the Heap_lock
 770   // before the call, so it's easy to read gc_count_before just before.
 771   HeapWord* do_collection_pause(size_t         word_size,
 772                                 uint           gc_count_before,
 773                                 bool*          succeeded,
 774                                 GCCause::Cause gc_cause);
 775 
 776   void wait_for_root_region_scanning();
 777 
 778   // The guts of the incremental collection pause, executed by the vm
 779   // thread. It returns false if it is unable to do the collection due
 780   // to the GC locker being active, true otherwise
 781   bool do_collection_pause_at_safepoint(double target_pause_time_ms);
 782 
 783   // Actually do the work of evacuating the collection set.
 784   virtual void evacuate_collection_set(EvacuationInfo& evacuation_info, G1ParScanThreadStateSet* per_thread_states);
 785 
 786   void pre_evacuate_collection_set();
 787   void post_evacuate_collection_set(EvacuationInfo& evacuation_info, G1ParScanThreadStateSet* pss);
 788 
 789   // Print the header for the per-thread termination statistics.
 790   static void print_termination_stats_hdr();
 791   // Print actual per-thread termination statistics.
 792   void print_termination_stats(uint worker_id,
 793                                double elapsed_ms,
 794                                double strong_roots_ms,
 795                                double term_ms,
 796                                size_t term_attempts,
 797                                size_t alloc_buffer_waste,
 798                                size_t undo_waste) const;
 799   // Update object copying statistics.
 800   void record_obj_copy_mem_stats();
 801 
 802   // The hot card cache for remembered set insertion optimization.
 803   G1HotCardCache* _hot_card_cache;
 804 
 805   // The g1 remembered set of the heap.
 806   G1RemSet* _g1_rem_set;
 807 
 808   // A set of cards that cover the objects for which the Rsets should be updated
 809   // concurrently after the collection.
 810   DirtyCardQueueSet _dirty_card_queue_set;
 811 
 812   // After a collection pause, convert the regions in the collection set into free
 813   // regions.
 814   void free_collection_set(G1CollectionSet* collection_set, EvacuationInfo& evacuation_info, const size_t* surviving_young_words);
 815 
 816   // Abandon the current collection set without recording policy
 817   // statistics or updating free lists.
 818   void abandon_collection_set(G1CollectionSet* collection_set);
 819 
 820   // The concurrent marker (and the thread it runs in.)
 821   G1ConcurrentMark* _cm;
 822   ConcurrentMarkThread* _cmThread;
 823 
 824   // The concurrent refiner.
 825   G1ConcurrentRefine* _cr;
 826 
 827   // The parallel task queues
 828   RefToScanQueueSet *_task_queues;
 829 
 830   // True iff a evacuation has failed in the current collection.
 831   bool _evacuation_failed;
 832 
 833   EvacuationFailedInfo* _evacuation_failed_info_array;
 834 
 835   // Failed evacuations cause some logical from-space objects to have
 836   // forwarding pointers to themselves.  Reset them.
 837   void remove_self_forwarding_pointers();
 838 
 839   // Restore the objects in the regions in the collection set after an
 840   // evacuation failure.
 841   void restore_after_evac_failure();
 842 
 843   PreservedMarksSet _preserved_marks_set;
 844 
 845   // Preserve the mark of "obj", if necessary, in preparation for its mark
 846   // word being overwritten with a self-forwarding-pointer.
 847   void preserve_mark_during_evac_failure(uint worker_id, oop obj, markOop m);
 848 
 849 #ifndef PRODUCT
 850   // Support for forcing evacuation failures. Analogous to
 851   // PromotionFailureALot for the other collectors.
 852 
 853   // Records whether G1EvacuationFailureALot should be in effect
 854   // for the current GC
 855   bool _evacuation_failure_alot_for_current_gc;
 856 
 857   // Used to record the GC number for interval checking when
 858   // determining whether G1EvaucationFailureALot is in effect
 859   // for the current GC.
 860   size_t _evacuation_failure_alot_gc_number;
 861 
 862   // Count of the number of evacuations between failures.
 863   volatile size_t _evacuation_failure_alot_count;
 864 
 865   // Set whether G1EvacuationFailureALot should be in effect
 866   // for the current GC (based upon the type of GC and which
 867   // command line flags are set);
 868   inline bool evacuation_failure_alot_for_gc_type(bool gcs_are_young,
 869                                                   bool during_initial_mark,
 870                                                   bool during_marking);
 871 
 872   inline void set_evacuation_failure_alot_for_current_gc();
 873 
 874   // Return true if it's time to cause an evacuation failure.
 875   inline bool evacuation_should_fail();
 876 
 877   // Reset the G1EvacuationFailureALot counters.  Should be called at
 878   // the end of an evacuation pause in which an evacuation failure occurred.
 879   inline void reset_evacuation_should_fail();
 880 #endif // !PRODUCT
 881 
 882   // ("Weak") Reference processing support.
 883   //
 884   // G1 has 2 instances of the reference processor class. One
 885   // (_ref_processor_cm) handles reference object discovery
 886   // and subsequent processing during concurrent marking cycles.
 887   //
 888   // The other (_ref_processor_stw) handles reference object
 889   // discovery and processing during full GCs and incremental
 890   // evacuation pauses.
 891   //
 892   // During an incremental pause, reference discovery will be
 893   // temporarily disabled for _ref_processor_cm and will be
 894   // enabled for _ref_processor_stw. At the end of the evacuation
 895   // pause references discovered by _ref_processor_stw will be
 896   // processed and discovery will be disabled. The previous
 897   // setting for reference object discovery for _ref_processor_cm
 898   // will be re-instated.
 899   //
 900   // At the start of marking:
 901   //  * Discovery by the CM ref processor is verified to be inactive
 902   //    and it's discovered lists are empty.
 903   //  * Discovery by the CM ref processor is then enabled.
 904   //
 905   // At the end of marking:
 906   //  * Any references on the CM ref processor's discovered
 907   //    lists are processed (possibly MT).
 908   //
 909   // At the start of full GC we:
 910   //  * Disable discovery by the CM ref processor and
 911   //    empty CM ref processor's discovered lists
 912   //    (without processing any entries).
 913   //  * Verify that the STW ref processor is inactive and it's
 914   //    discovered lists are empty.
 915   //  * Temporarily set STW ref processor discovery as single threaded.
 916   //  * Temporarily clear the STW ref processor's _is_alive_non_header
 917   //    field.
 918   //  * Finally enable discovery by the STW ref processor.
 919   //
 920   // The STW ref processor is used to record any discovered
 921   // references during the full GC.
 922   //
 923   // At the end of a full GC we:
 924   //  * Enqueue any reference objects discovered by the STW ref processor
 925   //    that have non-live referents. This has the side-effect of
 926   //    making the STW ref processor inactive by disabling discovery.
 927   //  * Verify that the CM ref processor is still inactive
 928   //    and no references have been placed on it's discovered
 929   //    lists (also checked as a precondition during initial marking).
 930 
 931   // The (stw) reference processor...
 932   ReferenceProcessor* _ref_processor_stw;
 933 
 934   // During reference object discovery, the _is_alive_non_header
 935   // closure (if non-null) is applied to the referent object to
 936   // determine whether the referent is live. If so then the
 937   // reference object does not need to be 'discovered' and can
 938   // be treated as a regular oop. This has the benefit of reducing
 939   // the number of 'discovered' reference objects that need to
 940   // be processed.
 941   //
 942   // Instance of the is_alive closure for embedding into the
 943   // STW reference processor as the _is_alive_non_header field.
 944   // Supplying a value for the _is_alive_non_header field is
 945   // optional but doing so prevents unnecessary additions to
 946   // the discovered lists during reference discovery.
 947   G1STWIsAliveClosure _is_alive_closure_stw;
 948 
 949   // The (concurrent marking) reference processor...
 950   ReferenceProcessor* _ref_processor_cm;
 951 
 952   // Instance of the concurrent mark is_alive closure for embedding
 953   // into the Concurrent Marking reference processor as the
 954   // _is_alive_non_header field. Supplying a value for the
 955   // _is_alive_non_header field is optional but doing so prevents
 956   // unnecessary additions to the discovered lists during reference
 957   // discovery.
 958   G1CMIsAliveClosure _is_alive_closure_cm;
 959 
 960   volatile bool _free_regions_coming;
 961 
 962 public:
 963 
 964   RefToScanQueue *task_queue(uint i) const;
 965 
 966   uint num_task_queues() const;
 967 
 968   // A set of cards where updates happened during the GC
 969   DirtyCardQueueSet& dirty_card_queue_set() { return _dirty_card_queue_set; }
 970 
 971   // Create a G1CollectedHeap with the specified policy.
 972   // Must call the initialize method afterwards.
 973   // May not return if something goes wrong.
 974   G1CollectedHeap(G1CollectorPolicy* policy);
 975 
 976 private:
 977   jint initialize_concurrent_refinement();
 978   jint initialize_young_gen_sampling_thread();
 979 public:
 980   // Initialize the G1CollectedHeap to have the initial and
 981   // maximum sizes and remembered and barrier sets
 982   // specified by the policy object.
 983   jint initialize();
 984 
 985   virtual void stop();
 986   virtual void safepoint_synchronize_begin();
 987   virtual void safepoint_synchronize_end();
 988 
 989   // Return the (conservative) maximum heap alignment for any G1 heap
 990   static size_t conservative_max_heap_alignment();
 991 
 992   // Does operations required after initialization has been done.
 993   void post_initialize();
 994 
 995   // Initialize weak reference processing.
 996   void ref_processing_init();
 997 
 998   virtual Name kind() const {
 999     return CollectedHeap::G1CollectedHeap;
1000   }
1001 
1002   virtual const char* name() const {
1003     return "G1";
1004   }
1005 
1006   const G1CollectorState* collector_state() const { return &_collector_state; }
1007   G1CollectorState* collector_state() { return &_collector_state; }
1008 
1009   // The current policy object for the collector.
1010   G1Policy* g1_policy() const { return _g1_policy; }
1011 
1012   const G1CollectionSet* collection_set() const { return &_collection_set; }
1013   G1CollectionSet* collection_set() { return &_collection_set; }
1014 
1015   virtual CollectorPolicy* collector_policy() const;
1016 
1017   // Adaptive size policy.  No such thing for g1.
1018   virtual AdaptiveSizePolicy* size_policy() { return NULL; }
1019 
1020   virtual GrowableArray<GCMemoryManager*> memory_managers();
1021   virtual GrowableArray<MemoryPool*> memory_pools();
1022 
1023   // The rem set and barrier set.
1024   G1RemSet* g1_rem_set() const { return _g1_rem_set; }
1025 
1026   // Try to minimize the remembered set.
1027   void scrub_rem_set();
1028 
1029   uint get_gc_time_stamp() {
1030     return _gc_time_stamp;
1031   }
1032 
1033   inline void reset_gc_time_stamp();
1034 
1035   void check_gc_time_stamps() PRODUCT_RETURN;
1036 
1037   inline void increment_gc_time_stamp();
1038 
1039   // Reset the given region's GC timestamp. If it's starts humongous,
1040   // also reset the GC timestamp of its corresponding
1041   // continues humongous regions too.
1042   void reset_gc_time_stamps(HeapRegion* hr);
1043 
1044   // Apply the given closure on all cards in the Hot Card Cache, emptying it.
1045   void iterate_hcc_closure(CardTableEntryClosure* cl, uint worker_i);
1046 
1047   // Apply the given closure on all cards in the Dirty Card Queue Set, emptying it.
1048   void iterate_dirty_card_closure(CardTableEntryClosure* cl, uint worker_i);
1049 
1050   // The shared block offset table array.
1051   G1BlockOffsetTable* bot() const { return _bot; }
1052 
1053   // Reference Processing accessors
1054 
1055   // The STW reference processor....
1056   ReferenceProcessor* ref_processor_stw() const { return _ref_processor_stw; }
1057 
1058   G1NewTracer* gc_tracer_stw() const { return _gc_tracer_stw; }
1059 
1060   // The Concurrent Marking reference processor...
1061   ReferenceProcessor* ref_processor_cm() const { return _ref_processor_cm; }
1062 
1063   size_t unused_committed_regions_in_bytes() const;
1064   virtual size_t capacity() const;
1065   virtual size_t used() const;
1066   // This should be called when we're not holding the heap lock. The
1067   // result might be a bit inaccurate.
1068   size_t used_unlocked() const;
1069   size_t recalculate_used() const;
1070 
1071   // These virtual functions do the actual allocation.
1072   // Some heaps may offer a contiguous region for shared non-blocking
1073   // allocation, via inlined code (by exporting the address of the top and
1074   // end fields defining the extent of the contiguous allocation region.)
1075   // But G1CollectedHeap doesn't yet support this.
1076 
1077   virtual bool is_maximal_no_gc() const {
1078     return _hrm.available() == 0;
1079   }
1080 
1081   // The current number of regions in the heap.
1082   uint num_regions() const { return _hrm.length(); }
1083 
1084   // The max number of regions in the heap.
1085   uint max_regions() const { return _hrm.max_length(); }
1086 
1087   // The number of regions that are completely free.
1088   uint num_free_regions() const { return _hrm.num_free_regions(); }
1089 
1090   MemoryUsage get_auxiliary_data_memory_usage() const {
1091     return _hrm.get_auxiliary_data_memory_usage();
1092   }
1093 
1094   // The number of regions that are not completely free.
1095   uint num_used_regions() const { return num_regions() - num_free_regions(); }
1096 
1097 #ifdef ASSERT
1098   bool is_on_master_free_list(HeapRegion* hr) {
1099     return _hrm.is_free(hr);
1100   }
1101 #endif // ASSERT
1102 
1103   // Wrapper for the region list operations that can be called from
1104   // methods outside this class.
1105 
1106   void secondary_free_list_add(FreeRegionList* list) {
1107     _secondary_free_list.add_ordered(list);
1108   }
1109 
1110   void append_secondary_free_list() {
1111     _hrm.insert_list_into_free_list(&_secondary_free_list);
1112   }
1113 
1114   void append_secondary_free_list_if_not_empty_with_lock() {
1115     // If the secondary free list looks empty there's no reason to
1116     // take the lock and then try to append it.
1117     if (!_secondary_free_list.is_empty()) {
1118       MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
1119       append_secondary_free_list();
1120     }
1121   }
1122 
1123   inline void old_set_add(HeapRegion* hr);
1124   inline void old_set_remove(HeapRegion* hr);
1125 
1126   size_t non_young_capacity_bytes() {
1127     return (_old_set.length() + _humongous_set.length()) * HeapRegion::GrainBytes;
1128   }
1129 
1130   void set_free_regions_coming();
1131   void reset_free_regions_coming();
1132   bool free_regions_coming() { return _free_regions_coming; }
1133   void wait_while_free_regions_coming();
1134 
1135   // Determine whether the given region is one that we are using as an
1136   // old GC alloc region.
1137   bool is_old_gc_alloc_region(HeapRegion* hr);
1138 
1139   // Perform a collection of the heap; intended for use in implementing
1140   // "System.gc".  This probably implies as full a collection as the
1141   // "CollectedHeap" supports.
1142   virtual void collect(GCCause::Cause cause);
1143 
1144   virtual bool copy_allocation_context_stats(const jint* contexts,
1145                                              jlong* totals,
1146                                              jbyte* accuracy,
1147                                              jint len);
1148 
1149   // True iff an evacuation has failed in the most-recent collection.
1150   bool evacuation_failed() { return _evacuation_failed; }
1151 
1152   void remove_from_old_sets(const uint old_regions_removed, const uint humongous_regions_removed);
1153   void prepend_to_freelist(FreeRegionList* list);
1154   void decrement_summary_bytes(size_t bytes);
1155 
1156   virtual bool is_in(const void* p) const;
1157 #ifdef ASSERT
1158   // Returns whether p is in one of the available areas of the heap. Slow but
1159   // extensive version.
1160   bool is_in_exact(const void* p) const;
1161 #endif
1162 
1163   // Return "TRUE" iff the given object address is within the collection
1164   // set. Assumes that the reference points into the heap.
1165   inline bool is_in_cset(const HeapRegion *hr);
1166   inline bool is_in_cset(oop obj);
1167   inline bool is_in_cset(HeapWord* addr);
1168 
1169   inline bool is_in_cset_or_humongous(const oop obj);
1170 
1171  private:
1172   // This array is used for a quick test on whether a reference points into
1173   // the collection set or not. Each of the array's elements denotes whether the
1174   // corresponding region is in the collection set or not.
1175   G1InCSetStateFastTestBiasedMappedArray _in_cset_fast_test;
1176 
1177  public:
1178 
1179   inline InCSetState in_cset_state(const oop obj);
1180 
1181   // Return "TRUE" iff the given object address is in the reserved
1182   // region of g1.
1183   bool is_in_g1_reserved(const void* p) const {
1184     return _hrm.reserved().contains(p);
1185   }
1186 
1187   // Returns a MemRegion that corresponds to the space that has been
1188   // reserved for the heap
1189   MemRegion g1_reserved() const {
1190     return _hrm.reserved();
1191   }
1192 
1193   virtual bool is_in_closed_subset(const void* p) const;
1194 
1195   G1SATBCardTableLoggingModRefBS* g1_barrier_set() {
1196     return barrier_set_cast<G1SATBCardTableLoggingModRefBS>(barrier_set());
1197   }
1198 
1199   G1HotCardCache* g1_hot_card_cache() const { return _hot_card_cache; }
1200 
1201   // Iteration functions.
1202 
1203   // Iterate over all objects, calling "cl.do_object" on each.
1204   virtual void object_iterate(ObjectClosure* cl);
1205 
1206   virtual void safe_object_iterate(ObjectClosure* cl) {
1207     object_iterate(cl);
1208   }
1209 
1210   // Iterate over heap regions, in address order, terminating the
1211   // iteration early if the "doHeapRegion" method returns "true".
1212   void heap_region_iterate(HeapRegionClosure* blk) const;
1213 
1214   // Return the region with the given index. It assumes the index is valid.
1215   inline HeapRegion* region_at(uint index) const;
1216 
1217   // Return the next region (by index) that is part of the same
1218   // humongous object that hr is part of.
1219   inline HeapRegion* next_region_in_humongous(HeapRegion* hr) const;
1220 
1221   // Calculate the region index of the given address. Given address must be
1222   // within the heap.
1223   inline uint addr_to_region(HeapWord* addr) const;
1224 
1225   inline HeapWord* bottom_addr_for_region(uint index) const;
1226 
1227   // Two functions to iterate over the heap regions in parallel. Threads
1228   // compete using the HeapRegionClaimer to claim the regions before
1229   // applying the closure on them.
1230   // The _from_worker_offset version uses the HeapRegionClaimer and
1231   // the worker id to calculate a start offset to prevent all workers to
1232   // start from the point.
1233   void heap_region_par_iterate_from_worker_offset(HeapRegionClosure* cl,
1234                                                   HeapRegionClaimer* hrclaimer,
1235                                                   uint worker_id) const;
1236 
1237   void heap_region_par_iterate_from_start(HeapRegionClosure* cl,
1238                                           HeapRegionClaimer* hrclaimer) const;
1239 
1240   // Iterate over the regions (if any) in the current collection set.
1241   void collection_set_iterate(HeapRegionClosure* blk);
1242 
1243   // Iterate over the regions (if any) in the current collection set. Starts the
1244   // iteration over the entire collection set so that the start regions of a given
1245   // worker id over the set active_workers are evenly spread across the set of
1246   // collection set regions.
1247   void collection_set_iterate_from(HeapRegionClosure *blk, uint worker_id);
1248 
1249   // Returns the HeapRegion that contains addr. addr must not be NULL.
1250   template <class T>
1251   inline HeapRegion* heap_region_containing(const T addr) const;
1252 
1253   // A CollectedHeap is divided into a dense sequence of "blocks"; that is,
1254   // each address in the (reserved) heap is a member of exactly
1255   // one block.  The defining characteristic of a block is that it is
1256   // possible to find its size, and thus to progress forward to the next
1257   // block.  (Blocks may be of different sizes.)  Thus, blocks may
1258   // represent Java objects, or they might be free blocks in a
1259   // free-list-based heap (or subheap), as long as the two kinds are
1260   // distinguishable and the size of each is determinable.
1261 
1262   // Returns the address of the start of the "block" that contains the
1263   // address "addr".  We say "blocks" instead of "object" since some heaps
1264   // may not pack objects densely; a chunk may either be an object or a
1265   // non-object.
1266   virtual HeapWord* block_start(const void* addr) const;
1267 
1268   // Requires "addr" to be the start of a chunk, and returns its size.
1269   // "addr + size" is required to be the start of a new chunk, or the end
1270   // of the active area of the heap.
1271   virtual size_t block_size(const HeapWord* addr) const;
1272 
1273   // Requires "addr" to be the start of a block, and returns "TRUE" iff
1274   // the block is an object.
1275   virtual bool block_is_obj(const HeapWord* addr) const;
1276 
1277   // Section on thread-local allocation buffers (TLABs)
1278   // See CollectedHeap for semantics.
1279 
1280   bool supports_tlab_allocation() const;
1281   size_t tlab_capacity(Thread* ignored) const;
1282   size_t tlab_used(Thread* ignored) const;
1283   size_t max_tlab_size() const;
1284   size_t unsafe_max_tlab_alloc(Thread* ignored) const;
1285 
1286   // Can a compiler initialize a new object without store barriers?
1287   // This permission only extends from the creation of a new object
1288   // via a TLAB up to the first subsequent safepoint. If such permission
1289   // is granted for this heap type, the compiler promises to call
1290   // defer_store_barrier() below on any slow path allocation of
1291   // a new object for which such initializing store barriers will
1292   // have been elided. G1, like CMS, allows this, but should be
1293   // ready to provide a compensating write barrier as necessary
1294   // if that storage came out of a non-young region. The efficiency
1295   // of this implementation depends crucially on being able to
1296   // answer very efficiently in constant time whether a piece of
1297   // storage in the heap comes from a young region or not.
1298   // See ReduceInitialCardMarks.
1299   virtual bool can_elide_tlab_store_barriers() const {
1300     return true;
1301   }
1302 
1303   virtual bool card_mark_must_follow_store() const {
1304     return true;
1305   }
1306 
1307   inline bool is_in_young(const oop obj);
1308 
1309   // We don't need barriers for initializing stores to objects
1310   // in the young gen: for the SATB pre-barrier, there is no
1311   // pre-value that needs to be remembered; for the remembered-set
1312   // update logging post-barrier, we don't maintain remembered set
1313   // information for young gen objects.
1314   virtual inline bool can_elide_initializing_store_barrier(oop new_obj);
1315 
1316   // Returns "true" iff the given word_size is "very large".
1317   static bool is_humongous(size_t word_size) {
1318     // Note this has to be strictly greater-than as the TLABs
1319     // are capped at the humongous threshold and we want to
1320     // ensure that we don't try to allocate a TLAB as
1321     // humongous and that we don't allocate a humongous
1322     // object in a TLAB.
1323     return word_size > _humongous_object_threshold_in_words;
1324   }
1325 
1326   // Returns the humongous threshold for a specific region size
1327   static size_t humongous_threshold_for(size_t region_size) {
1328     return (region_size / 2);
1329   }
1330 
1331   // Returns the number of regions the humongous object of the given word size
1332   // requires.
1333   static size_t humongous_obj_size_in_regions(size_t word_size);
1334 
1335   // Print the maximum heap capacity.
1336   virtual size_t max_capacity() const;
1337 
1338   virtual jlong millis_since_last_gc();
1339 
1340 
1341   // Convenience function to be used in situations where the heap type can be
1342   // asserted to be this type.
1343   static G1CollectedHeap* heap();
1344 
1345   void set_region_short_lived_locked(HeapRegion* hr);
1346   // add appropriate methods for any other surv rate groups
1347 
1348   const G1SurvivorRegions* survivor() const { return &_survivor; }
1349 
1350   uint survivor_regions_count() const {
1351     return _survivor.length();
1352   }
1353 
1354   uint eden_regions_count() const {
1355     return _eden.length();
1356   }
1357 
1358   uint young_regions_count() const {
1359     return _eden.length() + _survivor.length();
1360   }
1361 
1362   uint old_regions_count() const { return _old_set.length(); }
1363 
1364   uint humongous_regions_count() const { return _humongous_set.length(); }
1365 
1366 #ifdef ASSERT
1367   bool check_young_list_empty();
1368 #endif
1369 
1370   // *** Stuff related to concurrent marking.  It's not clear to me that so
1371   // many of these need to be public.
1372 
1373   // The functions below are helper functions that a subclass of
1374   // "CollectedHeap" can use in the implementation of its virtual
1375   // functions.
1376   // This performs a concurrent marking of the live objects in a
1377   // bitmap off to the side.
1378   void doConcurrentMark();
1379 
1380   bool isMarkedNext(oop obj) const;
1381 
1382   // Determine if an object is dead, given the object and also
1383   // the region to which the object belongs. An object is dead
1384   // iff a) it was not allocated since the last mark, b) it
1385   // is not marked, and c) it is not in an archive region.
1386   bool is_obj_dead(const oop obj, const HeapRegion* hr) const {
1387     return
1388       hr->is_obj_dead(obj, _cm->prev_mark_bitmap()) &&
1389       !hr->is_archive();
1390   }
1391 
1392   // This function returns true when an object has been
1393   // around since the previous marking and hasn't yet
1394   // been marked during this marking, and is not in an archive region.
1395   bool is_obj_ill(const oop obj, const HeapRegion* hr) const {
1396     return
1397       !hr->obj_allocated_since_next_marking(obj) &&
1398       !isMarkedNext(obj) &&
1399       !hr->is_archive();
1400   }
1401 
1402   // Determine if an object is dead, given only the object itself.
1403   // This will find the region to which the object belongs and
1404   // then call the region version of the same function.
1405 
1406   // Added if it is NULL it isn't dead.
1407 
1408   inline bool is_obj_dead(const oop obj) const;
1409 
1410   inline bool is_obj_ill(const oop obj) const;
1411 
1412   inline bool is_obj_dead_full(const oop obj, const HeapRegion* hr) const;
1413   inline bool is_obj_dead_full(const oop obj) const;
1414 
1415   G1ConcurrentMark* concurrent_mark() const { return _cm; }
1416 
1417   // Refinement
1418 
1419   G1ConcurrentRefine* concurrent_refine() const { return _cr; }
1420 
1421   // Optimized nmethod scanning support routines
1422 
1423   // Is an oop scavengeable
1424   virtual bool is_scavengable(oop obj);
1425 
1426   // Register the given nmethod with the G1 heap.
1427   virtual void register_nmethod(nmethod* nm);
1428 
1429   // Unregister the given nmethod from the G1 heap.
1430   virtual void unregister_nmethod(nmethod* nm);
1431 
1432   // Free up superfluous code root memory.
1433   void purge_code_root_memory();
1434 
1435   // Rebuild the strong code root lists for each region
1436   // after a full GC.
1437   void rebuild_strong_code_roots();
1438 
1439   // Partial cleaning used when class unloading is disabled.
1440   // Let the caller choose what structures to clean out:
1441   // - StringTable
1442   // - SymbolTable
1443   // - StringDeduplication structures
1444   void partial_cleaning(BoolObjectClosure* is_alive, bool unlink_strings, bool unlink_symbols, bool unlink_string_dedup);
1445 
1446   // Complete cleaning used when class unloading is enabled.
1447   // Cleans out all structures handled by partial_cleaning and also the CodeCache.
1448   void complete_cleaning(BoolObjectClosure* is_alive, bool class_unloading_occurred);
1449 
1450   // Redirty logged cards in the refinement queue.
1451   void redirty_logged_cards();
1452   // Verification
1453 
1454   // Perform any cleanup actions necessary before allowing a verification.
1455   virtual void prepare_for_verify();
1456 
1457   // Perform verification.
1458 
1459   // vo == UsePrevMarking -> use "prev" marking information,
1460   // vo == UseNextMarking -> use "next" marking information
1461   // vo == UseFullMarking -> use "next" marking bitmap but no TAMS
1462   //
1463   // NOTE: Only the "prev" marking information is guaranteed to be
1464   // consistent most of the time, so most calls to this should use
1465   // vo == UsePrevMarking.
1466   // Currently, there is only one case where this is called with
1467   // vo == UseNextMarking, which is to verify the "next" marking
1468   // information at the end of remark.
1469   // Currently there is only one place where this is called with
1470   // vo == UseFullMarking, which is to verify the marking during a
1471   // full GC.
1472   void verify(VerifyOption vo);
1473 
1474   // WhiteBox testing support.
1475   virtual bool supports_concurrent_phase_control() const;
1476   virtual const char* const* concurrent_phases() const;
1477   virtual bool request_concurrent_phase(const char* phase);
1478 
1479   // The methods below are here for convenience and dispatch the
1480   // appropriate method depending on value of the given VerifyOption
1481   // parameter. The values for that parameter, and their meanings,
1482   // are the same as those above.
1483 
1484   bool is_obj_dead_cond(const oop obj,
1485                         const HeapRegion* hr,
1486                         const VerifyOption vo) const;
1487 
1488   bool is_obj_dead_cond(const oop obj,
1489                         const VerifyOption vo) const;
1490 
1491   G1HeapSummary create_g1_heap_summary();
1492   G1EvacSummary create_g1_evac_summary(G1EvacStats* stats);
1493 
1494   // Printing
1495 private:
1496   void print_heap_regions() const;
1497   void print_regions_on(outputStream* st) const;
1498 
1499 public:
1500   virtual void print_on(outputStream* st) const;
1501   virtual void print_extended_on(outputStream* st) const;
1502   virtual void print_on_error(outputStream* st) const;
1503 
1504   virtual void print_gc_threads_on(outputStream* st) const;
1505   virtual void gc_threads_do(ThreadClosure* tc) const;
1506 
1507   // Override
1508   void print_tracing_info() const;
1509 
1510   // The following two methods are helpful for debugging RSet issues.
1511   void print_cset_rsets() PRODUCT_RETURN;
1512   void print_all_rsets() PRODUCT_RETURN;
1513 
1514 public:
1515   size_t pending_card_num();
1516 
1517 protected:
1518   size_t _max_heap_capacity;
1519 };
1520 
1521 class G1ParEvacuateFollowersClosure : public VoidClosure {
1522 private:
1523   double _start_term;
1524   double _term_time;
1525   size_t _term_attempts;
1526 
1527   void start_term_time() { _term_attempts++; _start_term = os::elapsedTime(); }
1528   void end_term_time() { _term_time += os::elapsedTime() - _start_term; }
1529 protected:
1530   G1CollectedHeap*              _g1h;
1531   G1ParScanThreadState*         _par_scan_state;
1532   RefToScanQueueSet*            _queues;
1533   ParallelTaskTerminator*       _terminator;
1534 
1535   G1ParScanThreadState*   par_scan_state() { return _par_scan_state; }
1536   RefToScanQueueSet*      queues()         { return _queues; }
1537   ParallelTaskTerminator* terminator()     { return _terminator; }
1538 
1539 public:
1540   G1ParEvacuateFollowersClosure(G1CollectedHeap* g1h,
1541                                 G1ParScanThreadState* par_scan_state,
1542                                 RefToScanQueueSet* queues,
1543                                 ParallelTaskTerminator* terminator)
1544     : _g1h(g1h), _par_scan_state(par_scan_state),
1545       _queues(queues), _terminator(terminator),
1546       _start_term(0.0), _term_time(0.0), _term_attempts(0) {}
1547 
1548   void do_void();
1549 
1550   double term_time() const { return _term_time; }
1551   size_t term_attempts() const { return _term_attempts; }
1552 
1553 private:
1554   inline bool offer_termination();
1555 };
1556 
1557 #endif // SHARE_VM_GC_G1_G1COLLECTEDHEAP_HPP