1 /*
   2  * Copyright (c) 2000, 2017, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_VM_GC_SHARED_GENCOLLECTEDHEAP_HPP
  26 #define SHARE_VM_GC_SHARED_GENCOLLECTEDHEAP_HPP
  27 
  28 #include "gc/shared/adaptiveSizePolicy.hpp"
  29 #include "gc/shared/collectedHeap.hpp"
  30 #include "gc/shared/collectorPolicy.hpp"
  31 #include "gc/shared/generation.hpp"
  32 
  33 class StrongRootsScope;
  34 class SubTasksDone;
  35 class WorkGang;
  36 
  37 // A "GenCollectedHeap" is a CollectedHeap that uses generational
  38 // collection.  It has two generations, young and old.
  39 class GenCollectedHeap : public CollectedHeap {
  40   friend class GenCollectorPolicy;
  41   friend class Generation;
  42   friend class DefNewGeneration;
  43   friend class TenuredGeneration;
  44   friend class ConcurrentMarkSweepGeneration;
  45   friend class CMSCollector;
  46   friend class GenMarkSweep;
  47   friend class VM_GenCollectForAllocation;
  48   friend class VM_GenCollectFull;
  49   friend class VM_GenCollectFullConcurrent;
  50   friend class VM_GC_HeapInspection;
  51   friend class VM_HeapDumper;
  52   friend class HeapInspection;
  53   friend class GCCauseSetter;
  54   friend class VMStructs;
  55 public:
  56   friend class VM_PopulateDumpSharedSpace;
  57 
  58   enum GenerationType {
  59     YoungGen,
  60     OldGen
  61   };
  62 
  63 private:
  64   Generation* _young_gen;
  65   Generation* _old_gen;
  66 
  67   // The singleton CardTable Remembered Set.
  68   CardTableRS* _rem_set;
  69 
  70   // The generational collector policy.
  71   GenCollectorPolicy* _gen_policy;
  72 
  73   // Indicates that the most recent previous incremental collection failed.
  74   // The flag is cleared when an action is taken that might clear the
  75   // condition that caused that incremental collection to fail.
  76   bool _incremental_collection_failed;
  77 
  78   // In support of ExplicitGCInvokesConcurrent functionality
  79   unsigned int _full_collections_completed;
  80 
  81   // Collects the given generation.
  82   void collect_generation(Generation* gen, bool full, size_t size, bool is_tlab,
  83                           bool run_verification, bool clear_soft_refs,
  84                           bool restore_marks_for_biased_locking);
  85 
  86   // Reserve aligned space for the heap as needed by the contained generations.
  87   char* allocate(size_t alignment, ReservedSpace* heap_rs);
  88 
  89   // Initialize ("weak") refs processing support
  90   void ref_processing_init();
  91 
  92 protected:
  93 
  94   // The set of potentially parallel tasks in root scanning.
  95   enum GCH_strong_roots_tasks {
  96     GCH_PS_Universe_oops_do,
  97     GCH_PS_JNIHandles_oops_do,
  98     GCH_PS_ObjectSynchronizer_oops_do,
  99     GCH_PS_FlatProfiler_oops_do,
 100     GCH_PS_Management_oops_do,
 101     GCH_PS_SystemDictionary_oops_do,
 102     GCH_PS_ClassLoaderDataGraph_oops_do,
 103     GCH_PS_jvmti_oops_do,
 104     GCH_PS_CodeCache_oops_do,
 105     GCH_PS_aot_oops_do,
 106     GCH_PS_younger_gens,
 107     // Leave this one last.
 108     GCH_PS_NumElements
 109   };
 110 
 111   // Data structure for claiming the (potentially) parallel tasks in
 112   // (gen-specific) roots processing.
 113   SubTasksDone* _process_strong_tasks;
 114 
 115   // Helper functions for allocation
 116   HeapWord* attempt_allocation(size_t size,
 117                                bool   is_tlab,
 118                                bool   first_only);
 119 
 120   // Helper function for two callbacks below.
 121   // Considers collection of the first max_level+1 generations.
 122   void do_collection(bool           full,
 123                      bool           clear_all_soft_refs,
 124                      size_t         size,
 125                      bool           is_tlab,
 126                      GenerationType max_generation);
 127 
 128   // Callback from VM_GenCollectForAllocation operation.
 129   // This function does everything necessary/possible to satisfy an
 130   // allocation request that failed in the youngest generation that should
 131   // have handled it (including collection, expansion, etc.)
 132   HeapWord* satisfy_failed_allocation(size_t size, bool is_tlab);
 133 
 134   // Callback from VM_GenCollectFull operation.
 135   // Perform a full collection of the first max_level+1 generations.
 136   virtual void do_full_collection(bool clear_all_soft_refs);
 137   void do_full_collection(bool clear_all_soft_refs, GenerationType max_generation);
 138 
 139   // Does the "cause" of GC indicate that
 140   // we absolutely __must__ clear soft refs?
 141   bool must_clear_all_soft_refs();
 142 
 143   GenCollectedHeap(GenCollectorPolicy *policy);
 144 
 145   virtual void check_gen_kinds() = 0;
 146 
 147 public:
 148 
 149   // Returns JNI_OK on success
 150   virtual jint initialize();
 151 
 152   // Does operations required after initialization has been done.
 153   void post_initialize();
 154 
 155   Generation* young_gen() const { return _young_gen; }
 156   Generation* old_gen()   const { return _old_gen; }
 157 
 158   bool is_young_gen(const Generation* gen) const { return gen == _young_gen; }
 159   bool is_old_gen(const Generation* gen) const { return gen == _old_gen; }
 160 
 161   // The generational collector policy.
 162   GenCollectorPolicy* gen_policy() const { return _gen_policy; }
 163 
 164   virtual CollectorPolicy* collector_policy() const { return gen_policy(); }
 165 
 166   // Adaptive size policy
 167   virtual AdaptiveSizePolicy* size_policy() {
 168     return gen_policy()->size_policy();
 169   }
 170 
 171   // Return the (conservative) maximum heap alignment
 172   static size_t conservative_max_heap_alignment() {
 173     return Generation::GenGrain;
 174   }
 175 
 176   size_t capacity() const;
 177   size_t used() const;
 178 
 179   // Save the "used_region" for both generations.
 180   void save_used_regions();
 181 
 182   size_t max_capacity() const;
 183 
 184   HeapWord* mem_allocate(size_t size, bool*  gc_overhead_limit_was_exceeded);
 185 
 186   // We may support a shared contiguous allocation area, if the youngest
 187   // generation does.
 188   bool supports_inline_contig_alloc() const;
 189   HeapWord* volatile* top_addr() const;
 190   HeapWord** end_addr() const;
 191 
 192   // Perform a full collection of the heap; intended for use in implementing
 193   // "System.gc". This implies as full a collection as the CollectedHeap
 194   // supports. Caller does not hold the Heap_lock on entry.
 195   virtual void collect(GCCause::Cause cause);
 196 
 197   // The same as above but assume that the caller holds the Heap_lock.
 198   void collect_locked(GCCause::Cause cause);
 199 
 200   // Perform a full collection of generations up to and including max_generation.
 201   // Mostly used for testing purposes. Caller does not hold the Heap_lock on entry.
 202   void collect(GCCause::Cause cause, GenerationType max_generation);
 203 
 204   // Returns "TRUE" iff "p" points into the committed areas of the heap.
 205   // The methods is_in(), is_in_closed_subset() and is_in_youngest() may
 206   // be expensive to compute in general, so, to prevent
 207   // their inadvertent use in product jvm's, we restrict their use to
 208   // assertion checking or verification only.
 209   bool is_in(const void* p) const;
 210 
 211   // Returns true if the reference is to an object in the reserved space
 212   // for the young generation.
 213   // Assumes the the young gen address range is less than that of the old gen.
 214   bool is_in_young(oop p);
 215 
 216 #ifdef ASSERT
 217   bool is_in_partial_collection(const void* p);
 218 #endif
 219 
 220   virtual bool is_scavengable(oop obj) {
 221     return is_in_young(obj);
 222   }
 223 
 224   // Optimized nmethod scanning support routines
 225   virtual void register_nmethod(nmethod* nm);
 226   virtual void verify_nmethod(nmethod* nmethod);
 227 
 228   // Iteration functions.
 229   void oop_iterate_no_header(OopClosure* cl);
 230   void oop_iterate(ExtendedOopClosure* cl);
 231   void object_iterate(ObjectClosure* cl);
 232   void safe_object_iterate(ObjectClosure* cl);
 233   Space* space_containing(const void* addr) const;
 234 
 235   // A CollectedHeap is divided into a dense sequence of "blocks"; that is,
 236   // each address in the (reserved) heap is a member of exactly
 237   // one block.  The defining characteristic of a block is that it is
 238   // possible to find its size, and thus to progress forward to the next
 239   // block.  (Blocks may be of different sizes.)  Thus, blocks may
 240   // represent Java objects, or they might be free blocks in a
 241   // free-list-based heap (or subheap), as long as the two kinds are
 242   // distinguishable and the size of each is determinable.
 243 
 244   // Returns the address of the start of the "block" that contains the
 245   // address "addr".  We say "blocks" instead of "object" since some heaps
 246   // may not pack objects densely; a chunk may either be an object or a
 247   // non-object.
 248   virtual HeapWord* block_start(const void* addr) const;
 249 
 250   // Requires "addr" to be the start of a chunk, and returns its size.
 251   // "addr + size" is required to be the start of a new chunk, or the end
 252   // of the active area of the heap. Assumes (and verifies in non-product
 253   // builds) that addr is in the allocated part of the heap and is
 254   // the start of a chunk.
 255   virtual size_t block_size(const HeapWord* addr) const;
 256 
 257   // Requires "addr" to be the start of a block, and returns "TRUE" iff
 258   // the block is an object. Assumes (and verifies in non-product
 259   // builds) that addr is in the allocated part of the heap and is
 260   // the start of a chunk.
 261   virtual bool block_is_obj(const HeapWord* addr) const;
 262 
 263   // Section on TLAB's.
 264   virtual bool supports_tlab_allocation() const;
 265   virtual size_t tlab_capacity(Thread* thr) const;
 266   virtual size_t tlab_used(Thread* thr) const;
 267   virtual size_t unsafe_max_tlab_alloc(Thread* thr) const;
 268   virtual HeapWord* allocate_new_tlab(size_t size);
 269 
 270   // Can a compiler initialize a new object without store barriers?
 271   // This permission only extends from the creation of a new object
 272   // via a TLAB up to the first subsequent safepoint.
 273   virtual bool can_elide_tlab_store_barriers() const {
 274     return true;
 275   }
 276 
 277   // We don't need barriers for stores to objects in the
 278   // young gen and, a fortiori, for initializing stores to
 279   // objects therein. This applies to DefNew+Tenured and ParNew+CMS
 280   // only and may need to be re-examined in case other
 281   // kinds of collectors are implemented in the future.
 282   virtual bool can_elide_initializing_store_barrier(oop new_obj) {
 283     return is_in_young(new_obj);
 284   }
 285 
 286   // The "requestor" generation is performing some garbage collection
 287   // action for which it would be useful to have scratch space.  The
 288   // requestor promises to allocate no more than "max_alloc_words" in any
 289   // older generation (via promotion say.)   Any blocks of space that can
 290   // be provided are returned as a list of ScratchBlocks, sorted by
 291   // decreasing size.
 292   ScratchBlock* gather_scratch(Generation* requestor, size_t max_alloc_words);
 293   // Allow each generation to reset any scratch space that it has
 294   // contributed as it needs.
 295   void release_scratch();
 296 
 297   // Ensure parsability: override
 298   virtual void ensure_parsability(bool retire_tlabs);
 299 
 300   // Time in ms since the longest time a collector ran in
 301   // in any generation.
 302   virtual jlong millis_since_last_gc();
 303 
 304   // Total number of full collections completed.
 305   unsigned int total_full_collections_completed() {
 306     assert(_full_collections_completed <= _total_full_collections,
 307            "Can't complete more collections than were started");
 308     return _full_collections_completed;
 309   }
 310 
 311   // Update above counter, as appropriate, at the end of a stop-world GC cycle
 312   unsigned int update_full_collections_completed();
 313   // Update above counter, as appropriate, at the end of a concurrent GC cycle
 314   unsigned int update_full_collections_completed(unsigned int count);
 315 
 316   // Update "time of last gc" for all generations to "now".
 317   void update_time_of_last_gc(jlong now) {
 318     _young_gen->update_time_of_last_gc(now);
 319     _old_gen->update_time_of_last_gc(now);
 320   }
 321 
 322   // Update the gc statistics for each generation.
 323   void update_gc_stats(Generation* current_generation, bool full) {
 324     _old_gen->update_gc_stats(current_generation, full);
 325   }
 326 
 327   bool no_gc_in_progress() { return !is_gc_active(); }
 328 
 329   // Override.
 330   void prepare_for_verify();
 331 
 332   // Override.
 333   void verify(VerifyOption option);
 334 
 335   // Override.
 336   virtual void print_on(outputStream* st) const;
 337   virtual void print_gc_threads_on(outputStream* st) const;
 338   virtual void gc_threads_do(ThreadClosure* tc) const;
 339   virtual void print_tracing_info() const;
 340 
 341   void print_heap_change(size_t young_prev_used, size_t old_prev_used) const;
 342 
 343   // The functions below are helper functions that a subclass of
 344   // "CollectedHeap" can use in the implementation of its virtual
 345   // functions.
 346 
 347   class GenClosure : public StackObj {
 348    public:
 349     virtual void do_generation(Generation* gen) = 0;
 350   };
 351 
 352   // Apply "cl.do_generation" to all generations in the heap
 353   // If "old_to_young" determines the order.
 354   void generation_iterate(GenClosure* cl, bool old_to_young);
 355 
 356   // Return "true" if all generations have reached the
 357   // maximal committed limit that they can reach, without a garbage
 358   // collection.
 359   virtual bool is_maximal_no_gc() const;
 360 
 361   // This function returns the CardTableRS object that allows us to scan
 362   // generations in a fully generational heap.
 363   CardTableRS* rem_set() { return _rem_set; }
 364 
 365   // Convenience function to be used in situations where the heap type can be
 366   // asserted to be this type.
 367   static GenCollectedHeap* heap();
 368 
 369   // The ScanningOption determines which of the roots
 370   // the closure is applied to:
 371   // "SO_None" does none;
 372   enum ScanningOption {
 373     SO_None                =  0x0,
 374     SO_AllCodeCache        =  0x8,
 375     SO_ScavengeCodeCache   = 0x10
 376   };
 377 
 378  protected:
 379   void process_roots(StrongRootsScope* scope,
 380                      ScanningOption so,
 381                      OopClosure* strong_roots,
 382                      OopClosure* weak_roots,
 383                      CLDClosure* strong_cld_closure,
 384                      CLDClosure* weak_cld_closure,
 385                      CodeBlobToOopClosure* code_roots);
 386 
 387   void process_string_table_roots(StrongRootsScope* scope,
 388                                   OopClosure* root_closure);
 389 
 390   // Accessor for memory state verification support
 391   NOT_PRODUCT(
 392     virtual size_t skip_header_HeapWords() { return 0; }
 393   )
 394 
 395   virtual void gc_prologue(bool full);
 396   virtual void gc_epilogue(bool full);
 397 
 398  public:
 399   void young_process_roots(StrongRootsScope* scope,
 400                            OopsInGenClosure* root_closure,
 401                            OopsInGenClosure* old_gen_closure,
 402                            CLDClosure* cld_closure);
 403 
 404   void full_process_roots(StrongRootsScope* scope,
 405                           bool is_adjust_phase,
 406                           ScanningOption so,
 407                           bool only_strong_roots,
 408                           OopsInGenClosure* root_closure,
 409                           CLDClosure* cld_closure);
 410 
 411   // Apply "root_closure" to all the weak roots of the system.
 412   // These include JNI weak roots, string table,
 413   // and referents of reachable weak refs.
 414   void gen_process_weak_roots(OopClosure* root_closure);
 415 
 416   // Set the saved marks of generations, if that makes sense.
 417   // In particular, if any generation might iterate over the oops
 418   // in other generations, it should call this method.
 419   void save_marks();
 420 
 421   // Apply "cur->do_oop" or "older->do_oop" to all the oops in objects
 422   // allocated since the last call to save_marks in generations at or above
 423   // "level".  The "cur" closure is
 424   // applied to references in the generation at "level", and the "older"
 425   // closure to older generations.
 426 #define GCH_SINCE_SAVE_MARKS_ITERATE_DECL(OopClosureType, nv_suffix)    \
 427   void oop_since_save_marks_iterate(GenerationType start_gen,           \
 428                                     OopClosureType* cur,                \
 429                                     OopClosureType* older);
 430 
 431   ALL_SINCE_SAVE_MARKS_CLOSURES(GCH_SINCE_SAVE_MARKS_ITERATE_DECL)
 432 
 433 #undef GCH_SINCE_SAVE_MARKS_ITERATE_DECL
 434 
 435   // Returns "true" iff no allocations have occurred since the last
 436   // call to "save_marks".
 437   bool no_allocs_since_save_marks();
 438 
 439   // Returns true if an incremental collection is likely to fail.
 440   // We optionally consult the young gen, if asked to do so;
 441   // otherwise we base our answer on whether the previous incremental
 442   // collection attempt failed with no corrective action as of yet.
 443   bool incremental_collection_will_fail(bool consult_young) {
 444     // The first disjunct remembers if an incremental collection failed, even
 445     // when we thought (second disjunct) that it would not.
 446     return incremental_collection_failed() ||
 447            (consult_young && !_young_gen->collection_attempt_is_safe());
 448   }
 449 
 450   // If a generation bails out of an incremental collection,
 451   // it sets this flag.
 452   bool incremental_collection_failed() const {
 453     return _incremental_collection_failed;
 454   }
 455   void set_incremental_collection_failed() {
 456     _incremental_collection_failed = true;
 457   }
 458   void clear_incremental_collection_failed() {
 459     _incremental_collection_failed = false;
 460   }
 461 
 462   // Promotion of obj into gen failed.  Try to promote obj to higher
 463   // gens in ascending order; return the new location of obj if successful.
 464   // Otherwise, try expand-and-allocate for obj in both the young and old
 465   // generation; return the new location of obj if successful.  Otherwise, return NULL.
 466   oop handle_failed_promotion(Generation* old_gen,
 467                               oop obj,
 468                               size_t obj_size);
 469 
 470 
 471 private:
 472   // Override
 473   void check_for_non_bad_heap_word_value(HeapWord* addr,
 474     size_t size) PRODUCT_RETURN;
 475 
 476   // For use by mark-sweep.  As implemented, mark-sweep-compact is global
 477   // in an essential way: compaction is performed across generations, by
 478   // iterating over spaces.
 479   void prepare_for_compaction();
 480 
 481   // Perform a full collection of the generations up to and including max_generation.
 482   // This is the low level interface used by the public versions of
 483   // collect() and collect_locked(). Caller holds the Heap_lock on entry.
 484   void collect_locked(GCCause::Cause cause, GenerationType max_generation);
 485 
 486   // Save the tops of the spaces in all generations
 487   void record_gen_tops_before_GC() PRODUCT_RETURN;
 488 };
 489 
 490 #endif // SHARE_VM_GC_SHARED_GENCOLLECTEDHEAP_HPP