/* * Copyright (c) 2017, 2018, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. * */ #ifndef SHARE_VM_GC_SHARED_MODREFBARRIERSET_INLINE_HPP #define SHARE_VM_GC_SHARED_MODREFBARRIERSET_INLINE_HPP #include "gc/shared/barrierSet.hpp" #include "gc/shared/modRefBarrierSet.hpp" #include "oops/compressedOops.inline.hpp" #include "oops/klass.inline.hpp" #include "oops/objArrayOop.hpp" #include "oops/oop.hpp" // count is number of array elements being written void ModRefBarrierSet::write_ref_array(HeapWord* start, size_t count) { HeapWord* end = (HeapWord*)((char*)start + (count*heapOopSize)); // In the case of compressed oops, start and end may potentially be misaligned; // so we need to conservatively align the first downward (this is not // strictly necessary for current uses, but a case of good hygiene and, // if you will, aesthetics) and the second upward (this is essential for // current uses) to a HeapWord boundary, so we mark all cards overlapping // this write. If this evolves in the future to calling a // logging barrier of narrow oop granularity, like the pre-barrier for G1 // (mentioned here merely by way of example), we will need to change this // interface, so it is "exactly precise" (if i may be allowed the adverbial // redundancy for emphasis) and does not include narrow oop slots not // included in the original write interval. HeapWord* aligned_start = align_down(start, HeapWordSize); HeapWord* aligned_end = align_up (end, HeapWordSize); // If compressed oops were not being used, these should already be aligned assert(UseCompressedOops || (aligned_start == start && aligned_end == end), "Expected heap word alignment of start and end"); write_ref_array_work(MemRegion(aligned_start, aligned_end)); } template template inline void ModRefBarrierSet::AccessBarrier:: oop_store_in_heap(T* addr, oop value) { BarrierSetT *bs = barrier_set_cast(barrier_set()); bs->template write_ref_field_pre(addr); Raw::oop_store(addr, value); bs->template write_ref_field_post(addr, value); } template template inline oop ModRefBarrierSet::AccessBarrier:: oop_atomic_cmpxchg_in_heap(oop new_value, T* addr, oop compare_value) { BarrierSetT *bs = barrier_set_cast(barrier_set()); bs->template write_ref_field_pre(addr); oop result = Raw::oop_atomic_cmpxchg(new_value, addr, compare_value); if (result == compare_value) { bs->template write_ref_field_post(addr, new_value); } return result; } template template inline oop ModRefBarrierSet::AccessBarrier:: oop_atomic_xchg_in_heap(oop new_value, T* addr) { BarrierSetT *bs = barrier_set_cast(barrier_set()); bs->template write_ref_field_pre(addr); oop result = Raw::oop_atomic_xchg(new_value, addr); bs->template write_ref_field_post(addr, new_value); return result; } template template inline bool ModRefBarrierSet::AccessBarrier:: oop_arraycopy_in_heap(arrayOop src_obj, size_t src_offset_in_bytes, const T* src_raw, arrayOop dst_obj, size_t dst_offset_in_bytes, T* dst_raw, size_t length) { BarrierSetT *bs = barrier_set_cast(barrier_set()); src_raw = arrayOopDesc::obj_offset_to_raw(src_obj, src_offset_in_bytes, src_raw); dst_raw = arrayOopDesc::obj_offset_to_raw(dst_obj, dst_offset_in_bytes, dst_raw); if (!HasDecorator::value) { // Optimized covariant case bs->write_ref_array_pre(dst_raw, length, HasDecorator::value); Raw::oop_arraycopy(NULL, 0, src_raw, NULL, 0, dst_raw, length); bs->write_ref_array((HeapWord*)dst_raw, length); } else { assert(dst_obj != NULL, "better have an actual oop"); Klass* bound = objArrayOop(dst_obj)->element_klass(); T* from = const_cast(src_raw); T* end = from + length; for (T* p = dst_raw; from < end; from++, p++) { T element = *from; if (oopDesc::is_instanceof_or_null(CompressedOops::decode(element), bound)) { bs->template write_ref_field_pre(p); *p = element; } else { // We must do a barrier to cover the partial copy. const size_t pd = pointer_delta(p, dst_raw, (size_t)heapOopSize); // pointer delta is scaled to number of elements (length field in // objArrayOop) which we assume is 32 bit. assert(pd == (size_t)(int)pd, "length field overflow"); bs->write_ref_array((HeapWord*)dst_raw, pd); return false; } } bs->write_ref_array((HeapWord*)dst_raw, length); } return true; } template inline void ModRefBarrierSet::AccessBarrier:: clone_in_heap(oop src, oop dst, size_t size) { Raw::clone(src, dst, size); BarrierSetT *bs = barrier_set_cast(barrier_set()); bs->write_region(MemRegion((HeapWord*)(void*)dst, size)); } #endif // SHARE_VM_GC_SHARED_MODREFBARRIERSET_INLINE_HPP