1 /*
   2  * Copyright (c) 2014, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "gc/g1/g1Allocator.inline.hpp"
  27 #include "gc/g1/g1CollectedHeap.inline.hpp"
  28 #include "gc/g1/g1CollectionSet.hpp"
  29 #include "gc/g1/g1OopClosures.inline.hpp"
  30 #include "gc/g1/g1ParScanThreadState.inline.hpp"
  31 #include "gc/g1/g1RootClosures.hpp"
  32 #include "gc/g1/g1StringDedup.hpp"
  33 #include "gc/shared/gcTrace.hpp"
  34 #include "gc/shared/taskqueue.inline.hpp"
  35 #include "memory/allocation.inline.hpp"
  36 #include "oops/oop.inline.hpp"
  37 #include "runtime/prefetch.inline.hpp"
  38 
  39 G1ParScanThreadState::G1ParScanThreadState(G1CollectedHeap* g1h, uint worker_id, size_t young_cset_length)
  40   : _g1h(g1h),
  41     _refs(g1h->task_queue(worker_id)),
  42     _dcq(&g1h->dirty_card_queue_set()),
  43     _ct(g1h->card_table()),
  44     _closures(NULL),
  45     _hash_seed(17),
  46     _worker_id(worker_id),
  47     _tenuring_threshold(g1h->g1_policy()->tenuring_threshold()),
  48     _age_table(false),
  49     _scanner(g1h, this),
  50     _old_gen_is_full(false)
  51 {
  52   // we allocate G1YoungSurvRateNumRegions plus one entries, since
  53   // we "sacrifice" entry 0 to keep track of surviving bytes for
  54   // non-young regions (where the age is -1)
  55   // We also add a few elements at the beginning and at the end in
  56   // an attempt to eliminate cache contention
  57   size_t real_length = 1 + young_cset_length;
  58   size_t array_length = PADDING_ELEM_NUM +
  59                       real_length +
  60                       PADDING_ELEM_NUM;
  61   _surviving_young_words_base = NEW_C_HEAP_ARRAY(size_t, array_length, mtGC);
  62   if (_surviving_young_words_base == NULL)
  63     vm_exit_out_of_memory(array_length * sizeof(size_t), OOM_MALLOC_ERROR,
  64                           "Not enough space for young surv histo.");
  65   _surviving_young_words = _surviving_young_words_base + PADDING_ELEM_NUM;
  66   memset(_surviving_young_words, 0, real_length * sizeof(size_t));
  67 
  68   _plab_allocator = new G1DefaultPLABAllocator(_g1h->allocator());
  69 
  70   _dest[InCSetState::NotInCSet]    = InCSetState::NotInCSet;
  71   // The dest for Young is used when the objects are aged enough to
  72   // need to be moved to the next space.
  73   _dest[InCSetState::Young]        = InCSetState::Old;
  74   _dest[InCSetState::Old]          = InCSetState::Old;
  75 
  76   _closures = G1EvacuationRootClosures::create_root_closures(this, _g1h);
  77 }
  78 
  79 // Pass locally gathered statistics to global state.
  80 void G1ParScanThreadState::flush(size_t* surviving_young_words) {
  81   _dcq.flush();
  82   // Update allocation statistics.
  83   _plab_allocator->flush_and_retire_stats();
  84   _g1h->g1_policy()->record_age_table(&_age_table);
  85 
  86   uint length = _g1h->collection_set()->young_region_length();
  87   for (uint region_index = 0; region_index < length; region_index++) {
  88     surviving_young_words[region_index] += _surviving_young_words[region_index];
  89   }
  90 }
  91 
  92 G1ParScanThreadState::~G1ParScanThreadState() {
  93   delete _plab_allocator;
  94   delete _closures;
  95   FREE_C_HEAP_ARRAY(size_t, _surviving_young_words_base);
  96 }
  97 
  98 void G1ParScanThreadState::waste(size_t& wasted, size_t& undo_wasted) {
  99   _plab_allocator->waste(wasted, undo_wasted);
 100 }
 101 
 102 #ifdef ASSERT
 103 bool G1ParScanThreadState::verify_ref(narrowOop* ref) const {
 104   assert(ref != NULL, "invariant");
 105   assert(UseCompressedOops, "sanity");
 106   assert(!has_partial_array_mask(ref), "ref=" PTR_FORMAT, p2i(ref));
 107   oop p = oopDesc::load_decode_heap_oop(ref);
 108   assert(_g1h->is_in_g1_reserved(p),
 109          "ref=" PTR_FORMAT " p=" PTR_FORMAT, p2i(ref), p2i(p));
 110   return true;
 111 }
 112 
 113 bool G1ParScanThreadState::verify_ref(oop* ref) const {
 114   assert(ref != NULL, "invariant");
 115   if (has_partial_array_mask(ref)) {
 116     // Must be in the collection set--it's already been copied.
 117     oop p = clear_partial_array_mask(ref);
 118     assert(_g1h->is_in_cset(p),
 119            "ref=" PTR_FORMAT " p=" PTR_FORMAT, p2i(ref), p2i(p));
 120   } else {
 121     oop p = oopDesc::load_decode_heap_oop(ref);
 122     assert(_g1h->is_in_g1_reserved(p),
 123            "ref=" PTR_FORMAT " p=" PTR_FORMAT, p2i(ref), p2i(p));
 124   }
 125   return true;
 126 }
 127 
 128 bool G1ParScanThreadState::verify_task(StarTask ref) const {
 129   if (ref.is_narrow()) {
 130     return verify_ref((narrowOop*) ref);
 131   } else {
 132     return verify_ref((oop*) ref);
 133   }
 134 }
 135 #endif // ASSERT
 136 
 137 void G1ParScanThreadState::trim_queue() {
 138   StarTask ref;
 139   do {
 140     // Drain the overflow stack first, so other threads can steal.
 141     while (_refs->pop_overflow(ref)) {
 142       if (!_refs->try_push_to_taskqueue(ref)) {
 143         dispatch_reference(ref);
 144       }
 145     }
 146 
 147     while (_refs->pop_local(ref)) {
 148       dispatch_reference(ref);
 149     }
 150   } while (!_refs->is_empty());
 151 }
 152 
 153 HeapWord* G1ParScanThreadState::allocate_in_next_plab(InCSetState const state,
 154                                                       InCSetState* dest,
 155                                                       size_t word_sz,
 156                                                       bool previous_plab_refill_failed) {
 157   assert(state.is_in_cset_or_humongous(), "Unexpected state: " CSETSTATE_FORMAT, state.value());
 158   assert(dest->is_in_cset_or_humongous(), "Unexpected dest: " CSETSTATE_FORMAT, dest->value());
 159 
 160   // Right now we only have two types of regions (young / old) so
 161   // let's keep the logic here simple. We can generalize it when necessary.
 162   if (dest->is_young()) {
 163     bool plab_refill_in_old_failed = false;
 164     HeapWord* const obj_ptr = _plab_allocator->allocate(InCSetState::Old,
 165                                                         word_sz,
 166                                                         &plab_refill_in_old_failed);
 167     // Make sure that we won't attempt to copy any other objects out
 168     // of a survivor region (given that apparently we cannot allocate
 169     // any new ones) to avoid coming into this slow path again and again.
 170     // Only consider failed PLAB refill here: failed inline allocations are
 171     // typically large, so not indicative of remaining space.
 172     if (previous_plab_refill_failed) {
 173       _tenuring_threshold = 0;
 174     }
 175 
 176     if (obj_ptr != NULL) {
 177       dest->set_old();
 178     } else {
 179       // We just failed to allocate in old gen. The same idea as explained above
 180       // for making survivor gen unavailable for allocation applies for old gen.
 181       _old_gen_is_full = plab_refill_in_old_failed;
 182     }
 183     return obj_ptr;
 184   } else {
 185     _old_gen_is_full = previous_plab_refill_failed;
 186     assert(dest->is_old(), "Unexpected dest: " CSETSTATE_FORMAT, dest->value());
 187     // no other space to try.
 188     return NULL;
 189   }
 190 }
 191 
 192 InCSetState G1ParScanThreadState::next_state(InCSetState const state, markOop const m, uint& age) {
 193   if (state.is_young()) {
 194     age = !m->has_displaced_mark_helper() ? m->age()
 195                                           : m->displaced_mark_helper()->age();
 196     if (age < _tenuring_threshold) {
 197       return state;
 198     }
 199   }
 200   return dest(state);
 201 }
 202 
 203 void G1ParScanThreadState::report_promotion_event(InCSetState const dest_state,
 204                                                   oop const old, size_t word_sz, uint age,
 205                                                   HeapWord * const obj_ptr) const {
 206   PLAB* alloc_buf = _plab_allocator->alloc_buffer(dest_state);
 207   if (alloc_buf->contains(obj_ptr)) {
 208     _g1h->_gc_tracer_stw->report_promotion_in_new_plab_event(old->klass(), word_sz, age,
 209                                                              dest_state.value() == InCSetState::Old,
 210                                                              alloc_buf->word_sz());
 211   } else {
 212     _g1h->_gc_tracer_stw->report_promotion_outside_plab_event(old->klass(), word_sz, age,
 213                                                               dest_state.value() == InCSetState::Old);
 214   }
 215 }
 216 
 217 oop G1ParScanThreadState::copy_to_survivor_space(InCSetState const state,
 218                                                  oop const old,
 219                                                  markOop const old_mark) {
 220   const size_t word_sz = old->size();
 221   HeapRegion* const from_region = _g1h->heap_region_containing(old);
 222   // +1 to make the -1 indexes valid...
 223   const int young_index = from_region->young_index_in_cset()+1;
 224   assert( (from_region->is_young() && young_index >  0) ||
 225          (!from_region->is_young() && young_index == 0), "invariant" );
 226 
 227   uint age = 0;
 228   InCSetState dest_state = next_state(state, old_mark, age);
 229   // The second clause is to prevent premature evacuation failure in case there
 230   // is still space in survivor, but old gen is full.
 231   if (_old_gen_is_full && dest_state.is_old()) {
 232     return handle_evacuation_failure_par(old, old_mark);
 233   }
 234   HeapWord* obj_ptr = _plab_allocator->plab_allocate(dest_state, word_sz);
 235 
 236   // PLAB allocations should succeed most of the time, so we'll
 237   // normally check against NULL once and that's it.
 238   if (obj_ptr == NULL) {
 239     bool plab_refill_failed = false;
 240     obj_ptr = _plab_allocator->allocate_direct_or_new_plab(dest_state, word_sz, &plab_refill_failed);
 241     if (obj_ptr == NULL) {
 242       obj_ptr = allocate_in_next_plab(state, &dest_state, word_sz, plab_refill_failed);
 243       if (obj_ptr == NULL) {
 244         // This will either forward-to-self, or detect that someone else has
 245         // installed a forwarding pointer.
 246         return handle_evacuation_failure_par(old, old_mark);
 247       }
 248     }
 249     if (_g1h->_gc_tracer_stw->should_report_promotion_events()) {
 250       // The events are checked individually as part of the actual commit
 251       report_promotion_event(dest_state, old, word_sz, age, obj_ptr);
 252     }
 253   }
 254 
 255   assert(obj_ptr != NULL, "when we get here, allocation should have succeeded");
 256   assert(_g1h->is_in_reserved(obj_ptr), "Allocated memory should be in the heap");
 257 
 258 #ifndef PRODUCT
 259   // Should this evacuation fail?
 260   if (_g1h->evacuation_should_fail()) {
 261     // Doing this after all the allocation attempts also tests the
 262     // undo_allocation() method too.
 263     _plab_allocator->undo_allocation(dest_state, obj_ptr, word_sz);
 264     return handle_evacuation_failure_par(old, old_mark);
 265   }
 266 #endif // !PRODUCT
 267 
 268   // We're going to allocate linearly, so might as well prefetch ahead.
 269   Prefetch::write(obj_ptr, PrefetchCopyIntervalInBytes);
 270 
 271   const oop obj = oop(obj_ptr);
 272   const oop forward_ptr = old->forward_to_atomic(obj);
 273   if (forward_ptr == NULL) {
 274     Copy::aligned_disjoint_words((HeapWord*) old, obj_ptr, word_sz);
 275 
 276     if (dest_state.is_young()) {
 277       if (age < markOopDesc::max_age) {
 278         age++;
 279       }
 280       if (old_mark->has_displaced_mark_helper()) {
 281         // In this case, we have to install the mark word first,
 282         // otherwise obj looks to be forwarded (the old mark word,
 283         // which contains the forward pointer, was copied)
 284         obj->set_mark_raw(old_mark);
 285         markOop new_mark = old_mark->displaced_mark_helper()->set_age(age);
 286         old_mark->set_displaced_mark_helper(new_mark);
 287       } else {
 288         obj->set_mark_raw(old_mark->set_age(age));
 289       }
 290       _age_table.add(age, word_sz);
 291     } else {
 292       obj->set_mark_raw(old_mark);
 293     }
 294 
 295     if (G1StringDedup::is_enabled()) {
 296       const bool is_from_young = state.is_young();
 297       const bool is_to_young = dest_state.is_young();
 298       assert(is_from_young == _g1h->heap_region_containing(old)->is_young(),
 299              "sanity");
 300       assert(is_to_young == _g1h->heap_region_containing(obj)->is_young(),
 301              "sanity");
 302       G1StringDedup::enqueue_from_evacuation(is_from_young,
 303                                              is_to_young,
 304                                              _worker_id,
 305                                              obj);
 306     }
 307 
 308     _surviving_young_words[young_index] += word_sz;
 309 
 310     if (obj->is_objArray() && arrayOop(obj)->length() >= ParGCArrayScanChunk) {
 311       // We keep track of the next start index in the length field of
 312       // the to-space object. The actual length can be found in the
 313       // length field of the from-space object.
 314       arrayOop(obj)->set_length(0);
 315       oop* old_p = set_partial_array_mask(old);
 316       push_on_queue(old_p);
 317     } else {
 318       HeapRegion* const to_region = _g1h->heap_region_containing(obj_ptr);
 319       _scanner.set_region(to_region);
 320       obj->oop_iterate_backwards(&_scanner);
 321     }
 322     return obj;
 323   } else {
 324     _plab_allocator->undo_allocation(dest_state, obj_ptr, word_sz);
 325     return forward_ptr;
 326   }
 327 }
 328 
 329 G1ParScanThreadState* G1ParScanThreadStateSet::state_for_worker(uint worker_id) {
 330   assert(worker_id < _n_workers, "out of bounds access");
 331   if (_states[worker_id] == NULL) {
 332     _states[worker_id] = new G1ParScanThreadState(_g1h, worker_id, _young_cset_length);
 333   }
 334   return _states[worker_id];
 335 }
 336 
 337 const size_t* G1ParScanThreadStateSet::surviving_young_words() const {
 338   assert(_flushed, "thread local state from the per thread states should have been flushed");
 339   return _surviving_young_words_total;
 340 }
 341 
 342 void G1ParScanThreadStateSet::flush() {
 343   assert(!_flushed, "thread local state from the per thread states should be flushed once");
 344 
 345   for (uint worker_index = 0; worker_index < _n_workers; ++worker_index) {
 346     G1ParScanThreadState* pss = _states[worker_index];
 347 
 348     if (pss == NULL) {
 349       continue;
 350     }
 351 
 352     pss->flush(_surviving_young_words_total);
 353     delete pss;
 354     _states[worker_index] = NULL;
 355   }
 356   _flushed = true;
 357 }
 358 
 359 oop G1ParScanThreadState::handle_evacuation_failure_par(oop old, markOop m) {
 360   assert(_g1h->is_in_cset(old), "Object " PTR_FORMAT " should be in the CSet", p2i(old));
 361 
 362   oop forward_ptr = old->forward_to_atomic(old);
 363   if (forward_ptr == NULL) {
 364     // Forward-to-self succeeded. We are the "owner" of the object.
 365     HeapRegion* r = _g1h->heap_region_containing(old);
 366 
 367     if (!r->evacuation_failed()) {
 368       r->set_evacuation_failed(true);
 369      _g1h->hr_printer()->evac_failure(r);
 370     }
 371 
 372     _g1h->preserve_mark_during_evac_failure(_worker_id, old, m);
 373 
 374     _scanner.set_region(r);
 375     old->oop_iterate_backwards(&_scanner);
 376 
 377     return old;
 378   } else {
 379     // Forward-to-self failed. Either someone else managed to allocate
 380     // space for this object (old != forward_ptr) or they beat us in
 381     // self-forwarding it (old == forward_ptr).
 382     assert(old == forward_ptr || !_g1h->is_in_cset(forward_ptr),
 383            "Object " PTR_FORMAT " forwarded to: " PTR_FORMAT " "
 384            "should not be in the CSet",
 385            p2i(old), p2i(forward_ptr));
 386     return forward_ptr;
 387   }
 388 }
 389 G1ParScanThreadStateSet::G1ParScanThreadStateSet(G1CollectedHeap* g1h, uint n_workers, size_t young_cset_length) :
 390     _g1h(g1h),
 391     _states(NEW_C_HEAP_ARRAY(G1ParScanThreadState*, n_workers, mtGC)),
 392     _surviving_young_words_total(NEW_C_HEAP_ARRAY(size_t, young_cset_length, mtGC)),
 393     _young_cset_length(young_cset_length),
 394     _n_workers(n_workers),
 395     _flushed(false) {
 396   for (uint i = 0; i < n_workers; ++i) {
 397     _states[i] = NULL;
 398   }
 399   memset(_surviving_young_words_total, 0, young_cset_length * sizeof(size_t));
 400 }
 401 
 402 G1ParScanThreadStateSet::~G1ParScanThreadStateSet() {
 403   assert(_flushed, "thread local state from the per thread states should have been flushed");
 404   FREE_C_HEAP_ARRAY(G1ParScanThreadState*, _states);
 405   FREE_C_HEAP_ARRAY(size_t, _surviving_young_words_total);
 406 }