1 /*
   2  * Copyright (c) 1997, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/systemDictionary.hpp"
  27 #include "classfile/vmSymbols.hpp"
  28 #include "gc/serial/defNewGeneration.hpp"
  29 #include "gc/shared/blockOffsetTable.inline.hpp"
  30 #include "gc/shared/collectedHeap.inline.hpp"
  31 #include "gc/shared/genCollectedHeap.hpp"
  32 #include "gc/shared/genOopClosures.inline.hpp"
  33 #include "gc/shared/space.hpp"
  34 #include "gc/shared/space.inline.hpp"
  35 #include "gc/shared/spaceDecorator.hpp"
  36 #include "memory/universe.hpp"
  37 #include "oops/oop.inline.hpp"
  38 #include "runtime/atomic.hpp"
  39 #include "runtime/java.hpp"
  40 #include "runtime/orderAccess.inline.hpp"
  41 #include "runtime/prefetch.inline.hpp"
  42 #include "runtime/safepoint.hpp"
  43 #include "utilities/align.hpp"
  44 #include "utilities/copy.hpp"
  45 #include "utilities/globalDefinitions.hpp"
  46 #include "utilities/macros.hpp"
  47 
  48 HeapWord* DirtyCardToOopClosure::get_actual_top(HeapWord* top,
  49                                                 HeapWord* top_obj) {
  50   if (top_obj != NULL) {
  51     if (_sp->block_is_obj(top_obj)) {
  52       if (_precision == CardTable::ObjHeadPreciseArray) {
  53         if (oop(top_obj)->is_objArray() || oop(top_obj)->is_typeArray()) {
  54           // An arrayOop is starting on the dirty card - since we do exact
  55           // store checks for objArrays we are done.
  56         } else {
  57           // Otherwise, it is possible that the object starting on the dirty
  58           // card spans the entire card, and that the store happened on a
  59           // later card.  Figure out where the object ends.
  60           // Use the block_size() method of the space over which
  61           // the iteration is being done.  That space (e.g. CMS) may have
  62           // specific requirements on object sizes which will
  63           // be reflected in the block_size() method.
  64           top = top_obj + oop(top_obj)->size();
  65         }
  66       }
  67     } else {
  68       top = top_obj;
  69     }
  70   } else {
  71     assert(top == _sp->end(), "only case where top_obj == NULL");
  72   }
  73   return top;
  74 }
  75 
  76 void DirtyCardToOopClosure::walk_mem_region(MemRegion mr,
  77                                             HeapWord* bottom,
  78                                             HeapWord* top) {
  79   // 1. Blocks may or may not be objects.
  80   // 2. Even when a block_is_obj(), it may not entirely
  81   //    occupy the block if the block quantum is larger than
  82   //    the object size.
  83   // We can and should try to optimize by calling the non-MemRegion
  84   // version of oop_iterate() for all but the extremal objects
  85   // (for which we need to call the MemRegion version of
  86   // oop_iterate()) To be done post-beta XXX
  87   for (; bottom < top; bottom += _sp->block_size(bottom)) {
  88     // As in the case of contiguous space above, we'd like to
  89     // just use the value returned by oop_iterate to increment the
  90     // current pointer; unfortunately, that won't work in CMS because
  91     // we'd need an interface change (it seems) to have the space
  92     // "adjust the object size" (for instance pad it up to its
  93     // block alignment or minimum block size restrictions. XXX
  94     if (_sp->block_is_obj(bottom) &&
  95         !_sp->obj_allocated_since_save_marks(oop(bottom))) {
  96       oop(bottom)->oop_iterate(_cl, mr);
  97     }
  98   }
  99 }
 100 
 101 // We get called with "mr" representing the dirty region
 102 // that we want to process. Because of imprecise marking,
 103 // we may need to extend the incoming "mr" to the right,
 104 // and scan more. However, because we may already have
 105 // scanned some of that extended region, we may need to
 106 // trim its right-end back some so we do not scan what
 107 // we (or another worker thread) may already have scanned
 108 // or planning to scan.
 109 void DirtyCardToOopClosure::do_MemRegion(MemRegion mr) {
 110 
 111   // Some collectors need to do special things whenever their dirty
 112   // cards are processed. For instance, CMS must remember mutator updates
 113   // (i.e. dirty cards) so as to re-scan mutated objects.
 114   // Such work can be piggy-backed here on dirty card scanning, so as to make
 115   // it slightly more efficient than doing a complete non-destructive pre-scan
 116   // of the card table.
 117   MemRegionClosure* pCl = _sp->preconsumptionDirtyCardClosure();
 118   if (pCl != NULL) {
 119     pCl->do_MemRegion(mr);
 120   }
 121 
 122   HeapWord* bottom = mr.start();
 123   HeapWord* last = mr.last();
 124   HeapWord* top = mr.end();
 125   HeapWord* bottom_obj;
 126   HeapWord* top_obj;
 127 
 128   assert(_precision == CardTable::ObjHeadPreciseArray ||
 129          _precision == CardTable::Precise,
 130          "Only ones we deal with for now.");
 131 
 132   assert(_precision != CardTable::ObjHeadPreciseArray ||
 133          _cl->idempotent() || _last_bottom == NULL ||
 134          top <= _last_bottom,
 135          "Not decreasing");
 136   NOT_PRODUCT(_last_bottom = mr.start());
 137 
 138   bottom_obj = _sp->block_start(bottom);
 139   top_obj    = _sp->block_start(last);
 140 
 141   assert(bottom_obj <= bottom, "just checking");
 142   assert(top_obj    <= top,    "just checking");
 143 
 144   // Given what we think is the top of the memory region and
 145   // the start of the object at the top, get the actual
 146   // value of the top.
 147   top = get_actual_top(top, top_obj);
 148 
 149   // If the previous call did some part of this region, don't redo.
 150   if (_precision == CardTable::ObjHeadPreciseArray &&
 151       _min_done != NULL &&
 152       _min_done < top) {
 153     top = _min_done;
 154   }
 155 
 156   // Top may have been reset, and in fact may be below bottom,
 157   // e.g. the dirty card region is entirely in a now free object
 158   // -- something that could happen with a concurrent sweeper.
 159   bottom = MIN2(bottom, top);
 160   MemRegion extended_mr = MemRegion(bottom, top);
 161   assert(bottom <= top &&
 162          (_precision != CardTable::ObjHeadPreciseArray ||
 163           _min_done == NULL ||
 164           top <= _min_done),
 165          "overlap!");
 166 
 167   // Walk the region if it is not empty; otherwise there is nothing to do.
 168   if (!extended_mr.is_empty()) {
 169     walk_mem_region(extended_mr, bottom_obj, top);
 170   }
 171 
 172   // An idempotent closure might be applied in any order, so we don't
 173   // record a _min_done for it.
 174   if (!_cl->idempotent()) {
 175     _min_done = bottom;
 176   } else {
 177     assert(_min_done == _last_explicit_min_done,
 178            "Don't update _min_done for idempotent cl");
 179   }
 180 }
 181 
 182 DirtyCardToOopClosure* Space::new_dcto_cl(ExtendedOopClosure* cl,
 183                                           CardTable::PrecisionStyle precision,
 184                                           HeapWord* boundary,
 185                                           bool parallel) {
 186   return new DirtyCardToOopClosure(this, cl, precision, boundary);
 187 }
 188 
 189 HeapWord* ContiguousSpaceDCTOC::get_actual_top(HeapWord* top,
 190                                                HeapWord* top_obj) {
 191   if (top_obj != NULL && top_obj < (_sp->toContiguousSpace())->top()) {
 192     if (_precision == CardTable::ObjHeadPreciseArray) {
 193       if (oop(top_obj)->is_objArray() || oop(top_obj)->is_typeArray()) {
 194         // An arrayOop is starting on the dirty card - since we do exact
 195         // store checks for objArrays we are done.
 196       } else {
 197         // Otherwise, it is possible that the object starting on the dirty
 198         // card spans the entire card, and that the store happened on a
 199         // later card.  Figure out where the object ends.
 200         assert(_sp->block_size(top_obj) == (size_t) oop(top_obj)->size(),
 201           "Block size and object size mismatch");
 202         top = top_obj + oop(top_obj)->size();
 203       }
 204     }
 205   } else {
 206     top = (_sp->toContiguousSpace())->top();
 207   }
 208   return top;
 209 }
 210 
 211 void FilteringDCTOC::walk_mem_region(MemRegion mr,
 212                                      HeapWord* bottom,
 213                                      HeapWord* top) {
 214   // Note that this assumption won't hold if we have a concurrent
 215   // collector in this space, which may have freed up objects after
 216   // they were dirtied and before the stop-the-world GC that is
 217   // examining cards here.
 218   assert(bottom < top, "ought to be at least one obj on a dirty card.");
 219 
 220   if (_boundary != NULL) {
 221     // We have a boundary outside of which we don't want to look
 222     // at objects, so create a filtering closure around the
 223     // oop closure before walking the region.
 224     FilteringClosure filter(_boundary, _cl);
 225     walk_mem_region_with_cl(mr, bottom, top, &filter);
 226   } else {
 227     // No boundary, simply walk the heap with the oop closure.
 228     walk_mem_region_with_cl(mr, bottom, top, _cl);
 229   }
 230 
 231 }
 232 
 233 // We must replicate this so that the static type of "FilteringClosure"
 234 // (see above) is apparent at the oop_iterate calls.
 235 #define ContiguousSpaceDCTOC__walk_mem_region_with_cl_DEFN(ClosureType) \
 236 void ContiguousSpaceDCTOC::walk_mem_region_with_cl(MemRegion mr,        \
 237                                                    HeapWord* bottom,    \
 238                                                    HeapWord* top,       \
 239                                                    ClosureType* cl) {   \
 240   bottom += oop(bottom)->oop_iterate_size(cl, mr);                      \
 241   if (bottom < top) {                                                   \
 242     HeapWord* next_obj = bottom + oop(bottom)->size();                  \
 243     while (next_obj < top) {                                            \
 244       /* Bottom lies entirely below top, so we can call the */          \
 245       /* non-memRegion version of oop_iterate below. */                 \
 246       oop(bottom)->oop_iterate(cl);                                     \
 247       bottom = next_obj;                                                \
 248       next_obj = bottom + oop(bottom)->size();                          \
 249     }                                                                   \
 250     /* Last object. */                                                  \
 251     oop(bottom)->oop_iterate(cl, mr);                                   \
 252   }                                                                     \
 253 }
 254 
 255 // (There are only two of these, rather than N, because the split is due
 256 // only to the introduction of the FilteringClosure, a local part of the
 257 // impl of this abstraction.)
 258 ContiguousSpaceDCTOC__walk_mem_region_with_cl_DEFN(ExtendedOopClosure)
 259 ContiguousSpaceDCTOC__walk_mem_region_with_cl_DEFN(FilteringClosure)
 260 
 261 DirtyCardToOopClosure*
 262 ContiguousSpace::new_dcto_cl(ExtendedOopClosure* cl,
 263                              CardTable::PrecisionStyle precision,
 264                              HeapWord* boundary,
 265                              bool parallel) {
 266   return new ContiguousSpaceDCTOC(this, cl, precision, boundary);
 267 }
 268 
 269 void Space::initialize(MemRegion mr,
 270                        bool clear_space,
 271                        bool mangle_space) {
 272   HeapWord* bottom = mr.start();
 273   HeapWord* end    = mr.end();
 274   assert(Universe::on_page_boundary(bottom) && Universe::on_page_boundary(end),
 275          "invalid space boundaries");
 276   set_bottom(bottom);
 277   set_end(end);
 278   if (clear_space) clear(mangle_space);
 279 }
 280 
 281 void Space::clear(bool mangle_space) {
 282   if (ZapUnusedHeapArea && mangle_space) {
 283     mangle_unused_area();
 284   }
 285 }
 286 
 287 ContiguousSpace::ContiguousSpace(): CompactibleSpace(), _top(NULL),
 288     _concurrent_iteration_safe_limit(NULL) {
 289   _mangler = new GenSpaceMangler(this);
 290 }
 291 
 292 ContiguousSpace::~ContiguousSpace() {
 293   delete _mangler;
 294 }
 295 
 296 void ContiguousSpace::initialize(MemRegion mr,
 297                                  bool clear_space,
 298                                  bool mangle_space)
 299 {
 300   CompactibleSpace::initialize(mr, clear_space, mangle_space);
 301   set_concurrent_iteration_safe_limit(top());
 302 }
 303 
 304 void ContiguousSpace::clear(bool mangle_space) {
 305   set_top(bottom());
 306   set_saved_mark();
 307   CompactibleSpace::clear(mangle_space);
 308 }
 309 
 310 bool ContiguousSpace::is_free_block(const HeapWord* p) const {
 311   return p >= _top;
 312 }
 313 
 314 void OffsetTableContigSpace::clear(bool mangle_space) {
 315   ContiguousSpace::clear(mangle_space);
 316   _offsets.initialize_threshold();
 317 }
 318 
 319 void OffsetTableContigSpace::set_bottom(HeapWord* new_bottom) {
 320   Space::set_bottom(new_bottom);
 321   _offsets.set_bottom(new_bottom);
 322 }
 323 
 324 void OffsetTableContigSpace::set_end(HeapWord* new_end) {
 325   // Space should not advertise an increase in size
 326   // until after the underlying offset table has been enlarged.
 327   _offsets.resize(pointer_delta(new_end, bottom()));
 328   Space::set_end(new_end);
 329 }
 330 
 331 #ifndef PRODUCT
 332 
 333 void ContiguousSpace::set_top_for_allocations(HeapWord* v) {
 334   mangler()->set_top_for_allocations(v);
 335 }
 336 void ContiguousSpace::set_top_for_allocations() {
 337   mangler()->set_top_for_allocations(top());
 338 }
 339 void ContiguousSpace::check_mangled_unused_area(HeapWord* limit) {
 340   mangler()->check_mangled_unused_area(limit);
 341 }
 342 
 343 void ContiguousSpace::check_mangled_unused_area_complete() {
 344   mangler()->check_mangled_unused_area_complete();
 345 }
 346 
 347 // Mangled only the unused space that has not previously
 348 // been mangled and that has not been allocated since being
 349 // mangled.
 350 void ContiguousSpace::mangle_unused_area() {
 351   mangler()->mangle_unused_area();
 352 }
 353 void ContiguousSpace::mangle_unused_area_complete() {
 354   mangler()->mangle_unused_area_complete();
 355 }
 356 #endif  // NOT_PRODUCT
 357 
 358 void CompactibleSpace::initialize(MemRegion mr,
 359                                   bool clear_space,
 360                                   bool mangle_space) {
 361   Space::initialize(mr, clear_space, mangle_space);
 362   set_compaction_top(bottom());
 363   _next_compaction_space = NULL;
 364 }
 365 
 366 void CompactibleSpace::clear(bool mangle_space) {
 367   Space::clear(mangle_space);
 368   _compaction_top = bottom();
 369 }
 370 
 371 HeapWord* CompactibleSpace::forward(oop q, size_t size,
 372                                     CompactPoint* cp, HeapWord* compact_top) {
 373   // q is alive
 374   // First check if we should switch compaction space
 375   assert(this == cp->space, "'this' should be current compaction space.");
 376   size_t compaction_max_size = pointer_delta(end(), compact_top);
 377   while (size > compaction_max_size) {
 378     // switch to next compaction space
 379     cp->space->set_compaction_top(compact_top);
 380     cp->space = cp->space->next_compaction_space();
 381     if (cp->space == NULL) {
 382       cp->gen = GenCollectedHeap::heap()->young_gen();
 383       assert(cp->gen != NULL, "compaction must succeed");
 384       cp->space = cp->gen->first_compaction_space();
 385       assert(cp->space != NULL, "generation must have a first compaction space");
 386     }
 387     compact_top = cp->space->bottom();
 388     cp->space->set_compaction_top(compact_top);
 389     cp->threshold = cp->space->initialize_threshold();
 390     compaction_max_size = pointer_delta(cp->space->end(), compact_top);
 391   }
 392 
 393   // store the forwarding pointer into the mark word
 394   if ((HeapWord*)q != compact_top) {
 395     q->forward_to(oop(compact_top));
 396     assert(q->is_gc_marked(), "encoding the pointer should preserve the mark");
 397   } else {
 398     // if the object isn't moving we can just set the mark to the default
 399     // mark and handle it specially later on.
 400     q->init_mark_raw();
 401     assert(q->forwardee() == NULL, "should be forwarded to NULL");
 402   }
 403 
 404   compact_top += size;
 405 
 406   // we need to update the offset table so that the beginnings of objects can be
 407   // found during scavenge.  Note that we are updating the offset table based on
 408   // where the object will be once the compaction phase finishes.
 409   if (compact_top > cp->threshold)
 410     cp->threshold =
 411       cp->space->cross_threshold(compact_top - size, compact_top);
 412   return compact_top;
 413 }
 414 
 415 void ContiguousSpace::prepare_for_compaction(CompactPoint* cp) {
 416   scan_and_forward(this, cp);
 417 }
 418 
 419 void CompactibleSpace::adjust_pointers() {
 420   // Check first is there is any work to do.
 421   if (used() == 0) {
 422     return;   // Nothing to do.
 423   }
 424 
 425   scan_and_adjust_pointers(this);
 426 }
 427 
 428 void CompactibleSpace::compact() {
 429   scan_and_compact(this);
 430 }
 431 
 432 void Space::print_short() const { print_short_on(tty); }
 433 
 434 void Space::print_short_on(outputStream* st) const {
 435   st->print(" space " SIZE_FORMAT "K, %3d%% used", capacity() / K,
 436               (int) ((double) used() * 100 / capacity()));
 437 }
 438 
 439 void Space::print() const { print_on(tty); }
 440 
 441 void Space::print_on(outputStream* st) const {
 442   print_short_on(st);
 443   st->print_cr(" [" INTPTR_FORMAT ", " INTPTR_FORMAT ")",
 444                 p2i(bottom()), p2i(end()));
 445 }
 446 
 447 void ContiguousSpace::print_on(outputStream* st) const {
 448   print_short_on(st);
 449   st->print_cr(" [" INTPTR_FORMAT ", " INTPTR_FORMAT ", " INTPTR_FORMAT ")",
 450                 p2i(bottom()), p2i(top()), p2i(end()));
 451 }
 452 
 453 void OffsetTableContigSpace::print_on(outputStream* st) const {
 454   print_short_on(st);
 455   st->print_cr(" [" INTPTR_FORMAT ", " INTPTR_FORMAT ", "
 456                 INTPTR_FORMAT ", " INTPTR_FORMAT ")",
 457               p2i(bottom()), p2i(top()), p2i(_offsets.threshold()), p2i(end()));
 458 }
 459 
 460 void ContiguousSpace::verify() const {
 461   HeapWord* p = bottom();
 462   HeapWord* t = top();
 463   HeapWord* prev_p = NULL;
 464   while (p < t) {
 465     oop(p)->verify();
 466     prev_p = p;
 467     p += oop(p)->size();
 468   }
 469   guarantee(p == top(), "end of last object must match end of space");
 470   if (top() != end()) {
 471     guarantee(top() == block_start_const(end()-1) &&
 472               top() == block_start_const(top()),
 473               "top should be start of unallocated block, if it exists");
 474   }
 475 }
 476 
 477 void Space::oop_iterate(ExtendedOopClosure* blk) {
 478   ObjectToOopClosure blk2(blk);
 479   object_iterate(&blk2);
 480 }
 481 
 482 bool Space::obj_is_alive(const HeapWord* p) const {
 483   assert (block_is_obj(p), "The address should point to an object");
 484   return true;
 485 }
 486 
 487 #if INCLUDE_ALL_GCS
 488 #define ContigSpace_PAR_OOP_ITERATE_DEFN(OopClosureType, nv_suffix)         \
 489                                                                             \
 490   void ContiguousSpace::par_oop_iterate(MemRegion mr, OopClosureType* blk) {\
 491     HeapWord* obj_addr = mr.start();                                        \
 492     HeapWord* t = mr.end();                                                 \
 493     while (obj_addr < t) {                                                  \
 494       assert(oopDesc::is_oop(oop(obj_addr)), "Should be an oop");           \
 495       obj_addr += oop(obj_addr)->oop_iterate_size(blk);                     \
 496     }                                                                       \
 497   }
 498 
 499   ALL_PAR_OOP_ITERATE_CLOSURES(ContigSpace_PAR_OOP_ITERATE_DEFN)
 500 
 501 #undef ContigSpace_PAR_OOP_ITERATE_DEFN
 502 #endif // INCLUDE_ALL_GCS
 503 
 504 void ContiguousSpace::oop_iterate(ExtendedOopClosure* blk) {
 505   if (is_empty()) return;
 506   HeapWord* obj_addr = bottom();
 507   HeapWord* t = top();
 508   // Could call objects iterate, but this is easier.
 509   while (obj_addr < t) {
 510     obj_addr += oop(obj_addr)->oop_iterate_size(blk);
 511   }
 512 }
 513 
 514 void ContiguousSpace::object_iterate(ObjectClosure* blk) {
 515   if (is_empty()) return;
 516   object_iterate_from(bottom(), blk);
 517 }
 518 
 519 // For a ContiguousSpace object_iterate() and safe_object_iterate()
 520 // are the same.
 521 void ContiguousSpace::safe_object_iterate(ObjectClosure* blk) {
 522   object_iterate(blk);
 523 }
 524 
 525 void ContiguousSpace::object_iterate_from(HeapWord* mark, ObjectClosure* blk) {
 526   while (mark < top()) {
 527     blk->do_object(oop(mark));
 528     mark += oop(mark)->size();
 529   }
 530 }
 531 
 532 HeapWord*
 533 ContiguousSpace::object_iterate_careful(ObjectClosureCareful* blk) {
 534   HeapWord * limit = concurrent_iteration_safe_limit();
 535   assert(limit <= top(), "sanity check");
 536   for (HeapWord* p = bottom(); p < limit;) {
 537     size_t size = blk->do_object_careful(oop(p));
 538     if (size == 0) {
 539       return p;  // failed at p
 540     } else {
 541       p += size;
 542     }
 543   }
 544   return NULL; // all done
 545 }
 546 
 547 #define ContigSpace_OOP_SINCE_SAVE_MARKS_DEFN(OopClosureType, nv_suffix)  \
 548                                                                           \
 549 void ContiguousSpace::                                                    \
 550 oop_since_save_marks_iterate##nv_suffix(OopClosureType* blk) {            \
 551   HeapWord* t;                                                            \
 552   HeapWord* p = saved_mark_word();                                        \
 553   assert(p != NULL, "expected saved mark");                               \
 554                                                                           \
 555   const intx interval = PrefetchScanIntervalInBytes;                      \
 556   do {                                                                    \
 557     t = top();                                                            \
 558     while (p < t) {                                                       \
 559       Prefetch::write(p, interval);                                       \
 560       debug_only(HeapWord* prev = p);                                     \
 561       oop m = oop(p);                                                     \
 562       p += m->oop_iterate_size(blk);                                      \
 563     }                                                                     \
 564   } while (t < top());                                                    \
 565                                                                           \
 566   set_saved_mark_word(p);                                                 \
 567 }
 568 
 569 ALL_SINCE_SAVE_MARKS_CLOSURES(ContigSpace_OOP_SINCE_SAVE_MARKS_DEFN)
 570 
 571 #undef ContigSpace_OOP_SINCE_SAVE_MARKS_DEFN
 572 
 573 // Very general, slow implementation.
 574 HeapWord* ContiguousSpace::block_start_const(const void* p) const {
 575   assert(MemRegion(bottom(), end()).contains(p),
 576          "p (" PTR_FORMAT ") not in space [" PTR_FORMAT ", " PTR_FORMAT ")",
 577          p2i(p), p2i(bottom()), p2i(end()));
 578   if (p >= top()) {
 579     return top();
 580   } else {
 581     HeapWord* last = bottom();
 582     HeapWord* cur = last;
 583     while (cur <= p) {
 584       last = cur;
 585       cur += oop(cur)->size();
 586     }
 587     assert(oopDesc::is_oop(oop(last)), PTR_FORMAT " should be an object start", p2i(last));
 588     return last;
 589   }
 590 }
 591 
 592 size_t ContiguousSpace::block_size(const HeapWord* p) const {
 593   assert(MemRegion(bottom(), end()).contains(p),
 594          "p (" PTR_FORMAT ") not in space [" PTR_FORMAT ", " PTR_FORMAT ")",
 595          p2i(p), p2i(bottom()), p2i(end()));
 596   HeapWord* current_top = top();
 597   assert(p <= current_top,
 598          "p > current top - p: " PTR_FORMAT ", current top: " PTR_FORMAT,
 599          p2i(p), p2i(current_top));
 600   assert(p == current_top || oopDesc::is_oop(oop(p)),
 601          "p (" PTR_FORMAT ") is not a block start - "
 602          "current_top: " PTR_FORMAT ", is_oop: %s",
 603          p2i(p), p2i(current_top), BOOL_TO_STR(oopDesc::is_oop(oop(p))));
 604   if (p < current_top) {
 605     return oop(p)->size();
 606   } else {
 607     assert(p == current_top, "just checking");
 608     return pointer_delta(end(), (HeapWord*) p);
 609   }
 610 }
 611 
 612 // This version requires locking.
 613 inline HeapWord* ContiguousSpace::allocate_impl(size_t size) {
 614   assert(Heap_lock->owned_by_self() ||
 615          (SafepointSynchronize::is_at_safepoint() && Thread::current()->is_VM_thread()),
 616          "not locked");
 617   HeapWord* obj = top();
 618   if (pointer_delta(end(), obj) >= size) {
 619     HeapWord* new_top = obj + size;
 620     set_top(new_top);
 621     assert(is_aligned(obj) && is_aligned(new_top), "checking alignment");
 622     return obj;
 623   } else {
 624     return NULL;
 625   }
 626 }
 627 
 628 // This version is lock-free.
 629 inline HeapWord* ContiguousSpace::par_allocate_impl(size_t size) {
 630   do {
 631     HeapWord* obj = top();
 632     if (pointer_delta(end(), obj) >= size) {
 633       HeapWord* new_top = obj + size;
 634       HeapWord* result = Atomic::cmpxchg(new_top, top_addr(), obj);
 635       // result can be one of two:
 636       //  the old top value: the exchange succeeded
 637       //  otherwise: the new value of the top is returned.
 638       if (result == obj) {
 639         assert(is_aligned(obj) && is_aligned(new_top), "checking alignment");
 640         return obj;
 641       }
 642     } else {
 643       return NULL;
 644     }
 645   } while (true);
 646 }
 647 
 648 HeapWord* ContiguousSpace::allocate_aligned(size_t size) {
 649   assert(Heap_lock->owned_by_self() || (SafepointSynchronize::is_at_safepoint() && Thread::current()->is_VM_thread()), "not locked");
 650   HeapWord* end_value = end();
 651 
 652   HeapWord* obj = CollectedHeap::align_allocation_or_fail(top(), end_value, SurvivorAlignmentInBytes);
 653   if (obj == NULL) {
 654     return NULL;
 655   }
 656 
 657   if (pointer_delta(end_value, obj) >= size) {
 658     HeapWord* new_top = obj + size;
 659     set_top(new_top);
 660     assert(::is_aligned(obj, SurvivorAlignmentInBytes) && is_aligned(new_top),
 661       "checking alignment");
 662     return obj;
 663   } else {
 664     set_top(obj);
 665     return NULL;
 666   }
 667 }
 668 
 669 // Requires locking.
 670 HeapWord* ContiguousSpace::allocate(size_t size) {
 671   return allocate_impl(size);
 672 }
 673 
 674 // Lock-free.
 675 HeapWord* ContiguousSpace::par_allocate(size_t size) {
 676   return par_allocate_impl(size);
 677 }
 678 
 679 void ContiguousSpace::allocate_temporary_filler(int factor) {
 680   // allocate temporary type array decreasing free size with factor 'factor'
 681   assert(factor >= 0, "just checking");
 682   size_t size = pointer_delta(end(), top());
 683 
 684   // if space is full, return
 685   if (size == 0) return;
 686 
 687   if (factor > 0) {
 688     size -= size/factor;
 689   }
 690   size = align_object_size(size);
 691 
 692   const size_t array_header_size = typeArrayOopDesc::header_size(T_INT);
 693   if (size >= align_object_size(array_header_size)) {
 694     size_t length = (size - array_header_size) * (HeapWordSize / sizeof(jint));
 695     // allocate uninitialized int array
 696     typeArrayOop t = (typeArrayOop) allocate(size);
 697     assert(t != NULL, "allocation should succeed");
 698     t->set_mark_raw(markOopDesc::prototype());
 699     t->set_klass(Universe::intArrayKlassObj());
 700     t->set_length((int)length);
 701   } else {
 702     assert(size == CollectedHeap::min_fill_size(),
 703            "size for smallest fake object doesn't match");
 704     instanceOop obj = (instanceOop) allocate(size);
 705     obj->set_mark_raw(markOopDesc::prototype());
 706     obj->set_klass_gap(0);
 707     obj->set_klass(SystemDictionary::Object_klass());
 708   }
 709 }
 710 
 711 HeapWord* OffsetTableContigSpace::initialize_threshold() {
 712   return _offsets.initialize_threshold();
 713 }
 714 
 715 HeapWord* OffsetTableContigSpace::cross_threshold(HeapWord* start, HeapWord* end) {
 716   _offsets.alloc_block(start, end);
 717   return _offsets.threshold();
 718 }
 719 
 720 OffsetTableContigSpace::OffsetTableContigSpace(BlockOffsetSharedArray* sharedOffsetArray,
 721                                                MemRegion mr) :
 722   _offsets(sharedOffsetArray, mr),
 723   _par_alloc_lock(Mutex::leaf, "OffsetTableContigSpace par alloc lock", true)
 724 {
 725   _offsets.set_contig_space(this);
 726   initialize(mr, SpaceDecorator::Clear, SpaceDecorator::Mangle);
 727 }
 728 
 729 #define OBJ_SAMPLE_INTERVAL 0
 730 #define BLOCK_SAMPLE_INTERVAL 100
 731 
 732 void OffsetTableContigSpace::verify() const {
 733   HeapWord* p = bottom();
 734   HeapWord* prev_p = NULL;
 735   int objs = 0;
 736   int blocks = 0;
 737 
 738   if (VerifyObjectStartArray) {
 739     _offsets.verify();
 740   }
 741 
 742   while (p < top()) {
 743     size_t size = oop(p)->size();
 744     // For a sampling of objects in the space, find it using the
 745     // block offset table.
 746     if (blocks == BLOCK_SAMPLE_INTERVAL) {
 747       guarantee(p == block_start_const(p + (size/2)),
 748                 "check offset computation");
 749       blocks = 0;
 750     } else {
 751       blocks++;
 752     }
 753 
 754     if (objs == OBJ_SAMPLE_INTERVAL) {
 755       oop(p)->verify();
 756       objs = 0;
 757     } else {
 758       objs++;
 759     }
 760     prev_p = p;
 761     p += size;
 762   }
 763   guarantee(p == top(), "end of last object must match end of space");
 764 }
 765 
 766 
 767 size_t TenuredSpace::allowed_dead_ratio() const {
 768   return MarkSweepDeadRatio;
 769 }