1 /*
   2  * Copyright (c) 2002, 2017, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 // no precompiled headers
  26 #include "classfile/vmSymbols.hpp"
  27 #include "gc/shared/collectedHeap.hpp"
  28 #include "interpreter/bytecodeHistogram.hpp"
  29 #include "interpreter/bytecodeInterpreter.hpp"
  30 #include "interpreter/bytecodeInterpreter.inline.hpp"
  31 #include "interpreter/bytecodeInterpreterProfiling.hpp"
  32 #include "interpreter/interpreter.hpp"
  33 #include "interpreter/interpreterRuntime.hpp"
  34 #include "logging/log.hpp"
  35 #include "memory/resourceArea.hpp"
  36 #include "oops/constantPool.inline.hpp"
  37 #include "oops/cpCache.inline.hpp"
  38 #include "oops/method.inline.hpp"
  39 #include "oops/methodCounters.hpp"
  40 #include "oops/objArrayKlass.hpp"
  41 #include "oops/objArrayOop.inline.hpp"
  42 #include "oops/oop.inline.hpp"
  43 #include "oops/typeArrayOop.inline.hpp"
  44 #include "prims/jvmtiExport.hpp"
  45 #include "prims/jvmtiThreadState.hpp"
  46 #include "runtime/atomic.hpp"
  47 #include "runtime/biasedLocking.hpp"
  48 #include "runtime/frame.inline.hpp"
  49 #include "runtime/handles.inline.hpp"
  50 #include "runtime/interfaceSupport.hpp"
  51 #include "runtime/orderAccess.inline.hpp"
  52 #include "runtime/sharedRuntime.hpp"
  53 #include "runtime/threadCritical.hpp"
  54 #include "utilities/exceptions.hpp"
  55 
  56 // no precompiled headers
  57 #ifdef CC_INTERP
  58 
  59 /*
  60  * USELABELS - If using GCC, then use labels for the opcode dispatching
  61  * rather -then a switch statement. This improves performance because it
  62  * gives us the opportunity to have the instructions that calculate the
  63  * next opcode to jump to be intermixed with the rest of the instructions
  64  * that implement the opcode (see UPDATE_PC_AND_TOS_AND_CONTINUE macro).
  65  */
  66 #undef USELABELS
  67 #ifdef __GNUC__
  68 /*
  69    ASSERT signifies debugging. It is much easier to step thru bytecodes if we
  70    don't use the computed goto approach.
  71 */
  72 #ifndef ASSERT
  73 #define USELABELS
  74 #endif
  75 #endif
  76 
  77 #undef CASE
  78 #ifdef USELABELS
  79 #define CASE(opcode) opc ## opcode
  80 #define DEFAULT opc_default
  81 #else
  82 #define CASE(opcode) case Bytecodes:: opcode
  83 #define DEFAULT default
  84 #endif
  85 
  86 /*
  87  * PREFETCH_OPCCODE - Some compilers do better if you prefetch the next
  88  * opcode before going back to the top of the while loop, rather then having
  89  * the top of the while loop handle it. This provides a better opportunity
  90  * for instruction scheduling. Some compilers just do this prefetch
  91  * automatically. Some actually end up with worse performance if you
  92  * force the prefetch. Solaris gcc seems to do better, but cc does worse.
  93  */
  94 #undef PREFETCH_OPCCODE
  95 #define PREFETCH_OPCCODE
  96 
  97 /*
  98   Interpreter safepoint: it is expected that the interpreter will have no live
  99   handles of its own creation live at an interpreter safepoint. Therefore we
 100   run a HandleMarkCleaner and trash all handles allocated in the call chain
 101   since the JavaCalls::call_helper invocation that initiated the chain.
 102   There really shouldn't be any handles remaining to trash but this is cheap
 103   in relation to a safepoint.
 104 */
 105 #define SAFEPOINT                                                                 \
 106     {                                                                             \
 107        /* zap freed handles rather than GC'ing them */                            \
 108        HandleMarkCleaner __hmc(THREAD);                                           \
 109        CALL_VM(SafepointMechanism::block_if_requested(THREAD), handle_exception); \
 110     }
 111 
 112 /*
 113  * VM_JAVA_ERROR - Macro for throwing a java exception from
 114  * the interpreter loop. Should really be a CALL_VM but there
 115  * is no entry point to do the transition to vm so we just
 116  * do it by hand here.
 117  */
 118 #define VM_JAVA_ERROR_NO_JUMP(name, msg, note_a_trap)                             \
 119     DECACHE_STATE();                                                              \
 120     SET_LAST_JAVA_FRAME();                                                        \
 121     {                                                                             \
 122        InterpreterRuntime::note_a_trap(THREAD, istate->method(), BCI());          \
 123        ThreadInVMfromJava trans(THREAD);                                          \
 124        Exceptions::_throw_msg(THREAD, __FILE__, __LINE__, name, msg);             \
 125     }                                                                             \
 126     RESET_LAST_JAVA_FRAME();                                                      \
 127     CACHE_STATE();
 128 
 129 // Normal throw of a java error.
 130 #define VM_JAVA_ERROR(name, msg, note_a_trap)                                     \
 131     VM_JAVA_ERROR_NO_JUMP(name, msg, note_a_trap)                                 \
 132     goto handle_exception;
 133 
 134 #ifdef PRODUCT
 135 #define DO_UPDATE_INSTRUCTION_COUNT(opcode)
 136 #else
 137 #define DO_UPDATE_INSTRUCTION_COUNT(opcode)                                                          \
 138 {                                                                                                    \
 139     BytecodeCounter::_counter_value++;                                                               \
 140     BytecodeHistogram::_counters[(Bytecodes::Code)opcode]++;                                         \
 141     if (StopInterpreterAt && StopInterpreterAt == BytecodeCounter::_counter_value) os::breakpoint(); \
 142     if (TraceBytecodes) {                                                                            \
 143       CALL_VM((void)InterpreterRuntime::trace_bytecode(THREAD, 0,                    \
 144                                         topOfStack[Interpreter::expr_index_at(1)],   \
 145                                         topOfStack[Interpreter::expr_index_at(2)]),  \
 146                                         handle_exception);                           \
 147     }                                                                                \
 148 }
 149 #endif
 150 
 151 #undef DEBUGGER_SINGLE_STEP_NOTIFY
 152 #ifdef VM_JVMTI
 153 /* NOTE: (kbr) This macro must be called AFTER the PC has been
 154    incremented. JvmtiExport::at_single_stepping_point() may cause a
 155    breakpoint opcode to get inserted at the current PC to allow the
 156    debugger to coalesce single-step events.
 157 
 158    As a result if we call at_single_stepping_point() we refetch opcode
 159    to get the current opcode. This will override any other prefetching
 160    that might have occurred.
 161 */
 162 #define DEBUGGER_SINGLE_STEP_NOTIFY()                                            \
 163 {                                                                                \
 164       if (_jvmti_interp_events) {                                                \
 165         if (JvmtiExport::should_post_single_step()) {                            \
 166           DECACHE_STATE();                                                       \
 167           SET_LAST_JAVA_FRAME();                                                 \
 168           ThreadInVMfromJava trans(THREAD);                                      \
 169           JvmtiExport::at_single_stepping_point(THREAD,                          \
 170                                           istate->method(),                      \
 171                                           pc);                                   \
 172           RESET_LAST_JAVA_FRAME();                                               \
 173           CACHE_STATE();                                                         \
 174           if (THREAD->pop_frame_pending() &&                                     \
 175               !THREAD->pop_frame_in_process()) {                                 \
 176             goto handle_Pop_Frame;                                               \
 177           }                                                                      \
 178           if (THREAD->jvmti_thread_state() &&                                    \
 179               THREAD->jvmti_thread_state()->is_earlyret_pending()) {             \
 180             goto handle_Early_Return;                                            \
 181           }                                                                      \
 182           opcode = *pc;                                                          \
 183         }                                                                        \
 184       }                                                                          \
 185 }
 186 #else
 187 #define DEBUGGER_SINGLE_STEP_NOTIFY()
 188 #endif
 189 
 190 /*
 191  * CONTINUE - Macro for executing the next opcode.
 192  */
 193 #undef CONTINUE
 194 #ifdef USELABELS
 195 // Have to do this dispatch this way in C++ because otherwise gcc complains about crossing an
 196 // initialization (which is is the initialization of the table pointer...)
 197 #define DISPATCH(opcode) goto *(void*)dispatch_table[opcode]
 198 #define CONTINUE {                              \
 199         opcode = *pc;                           \
 200         DO_UPDATE_INSTRUCTION_COUNT(opcode);    \
 201         DEBUGGER_SINGLE_STEP_NOTIFY();          \
 202         DISPATCH(opcode);                       \
 203     }
 204 #else
 205 #ifdef PREFETCH_OPCCODE
 206 #define CONTINUE {                              \
 207         opcode = *pc;                           \
 208         DO_UPDATE_INSTRUCTION_COUNT(opcode);    \
 209         DEBUGGER_SINGLE_STEP_NOTIFY();          \
 210         continue;                               \
 211     }
 212 #else
 213 #define CONTINUE {                              \
 214         DO_UPDATE_INSTRUCTION_COUNT(opcode);    \
 215         DEBUGGER_SINGLE_STEP_NOTIFY();          \
 216         continue;                               \
 217     }
 218 #endif
 219 #endif
 220 
 221 
 222 #define UPDATE_PC(opsize) {pc += opsize; }
 223 /*
 224  * UPDATE_PC_AND_TOS - Macro for updating the pc and topOfStack.
 225  */
 226 #undef UPDATE_PC_AND_TOS
 227 #define UPDATE_PC_AND_TOS(opsize, stack) \
 228     {pc += opsize; MORE_STACK(stack); }
 229 
 230 /*
 231  * UPDATE_PC_AND_TOS_AND_CONTINUE - Macro for updating the pc and topOfStack,
 232  * and executing the next opcode. It's somewhat similar to the combination
 233  * of UPDATE_PC_AND_TOS and CONTINUE, but with some minor optimizations.
 234  */
 235 #undef UPDATE_PC_AND_TOS_AND_CONTINUE
 236 #ifdef USELABELS
 237 #define UPDATE_PC_AND_TOS_AND_CONTINUE(opsize, stack) {         \
 238         pc += opsize; opcode = *pc; MORE_STACK(stack);          \
 239         DO_UPDATE_INSTRUCTION_COUNT(opcode);                    \
 240         DEBUGGER_SINGLE_STEP_NOTIFY();                          \
 241         DISPATCH(opcode);                                       \
 242     }
 243 
 244 #define UPDATE_PC_AND_CONTINUE(opsize) {                        \
 245         pc += opsize; opcode = *pc;                             \
 246         DO_UPDATE_INSTRUCTION_COUNT(opcode);                    \
 247         DEBUGGER_SINGLE_STEP_NOTIFY();                          \
 248         DISPATCH(opcode);                                       \
 249     }
 250 #else
 251 #ifdef PREFETCH_OPCCODE
 252 #define UPDATE_PC_AND_TOS_AND_CONTINUE(opsize, stack) {         \
 253         pc += opsize; opcode = *pc; MORE_STACK(stack);          \
 254         DO_UPDATE_INSTRUCTION_COUNT(opcode);                    \
 255         DEBUGGER_SINGLE_STEP_NOTIFY();                          \
 256         goto do_continue;                                       \
 257     }
 258 
 259 #define UPDATE_PC_AND_CONTINUE(opsize) {                        \
 260         pc += opsize; opcode = *pc;                             \
 261         DO_UPDATE_INSTRUCTION_COUNT(opcode);                    \
 262         DEBUGGER_SINGLE_STEP_NOTIFY();                          \
 263         goto do_continue;                                       \
 264     }
 265 #else
 266 #define UPDATE_PC_AND_TOS_AND_CONTINUE(opsize, stack) { \
 267         pc += opsize; MORE_STACK(stack);                \
 268         DO_UPDATE_INSTRUCTION_COUNT(opcode);            \
 269         DEBUGGER_SINGLE_STEP_NOTIFY();                  \
 270         goto do_continue;                               \
 271     }
 272 
 273 #define UPDATE_PC_AND_CONTINUE(opsize) {                \
 274         pc += opsize;                                   \
 275         DO_UPDATE_INSTRUCTION_COUNT(opcode);            \
 276         DEBUGGER_SINGLE_STEP_NOTIFY();                  \
 277         goto do_continue;                               \
 278     }
 279 #endif /* PREFETCH_OPCCODE */
 280 #endif /* USELABELS */
 281 
 282 // About to call a new method, update the save the adjusted pc and return to frame manager
 283 #define UPDATE_PC_AND_RETURN(opsize)  \
 284    DECACHE_TOS();                     \
 285    istate->set_bcp(pc+opsize);        \
 286    return;
 287 
 288 
 289 #define METHOD istate->method()
 290 #define GET_METHOD_COUNTERS(res)    \
 291   res = METHOD->method_counters();  \
 292   if (res == NULL) {                \
 293     CALL_VM(res = InterpreterRuntime::build_method_counters(THREAD, METHOD), handle_exception); \
 294   }
 295 
 296 #define OSR_REQUEST(res, branch_pc) \
 297             CALL_VM(res=InterpreterRuntime::frequency_counter_overflow(THREAD, branch_pc), handle_exception);
 298 /*
 299  * For those opcodes that need to have a GC point on a backwards branch
 300  */
 301 
 302 // Backedge counting is kind of strange. The asm interpreter will increment
 303 // the backedge counter as a separate counter but it does it's comparisons
 304 // to the sum (scaled) of invocation counter and backedge count to make
 305 // a decision. Seems kind of odd to sum them together like that
 306 
 307 // skip is delta from current bcp/bci for target, branch_pc is pre-branch bcp
 308 
 309 
 310 #define DO_BACKEDGE_CHECKS(skip, branch_pc)                                                         \
 311     if ((skip) <= 0) {                                                                              \
 312       MethodCounters* mcs;                                                                          \
 313       GET_METHOD_COUNTERS(mcs);                                                                     \
 314       if (UseLoopCounter) {                                                                         \
 315         bool do_OSR = UseOnStackReplacement;                                                        \
 316         mcs->backedge_counter()->increment();                                                       \
 317         if (ProfileInterpreter) {                                                                   \
 318           BI_PROFILE_GET_OR_CREATE_METHOD_DATA(handle_exception);                                   \
 319           /* Check for overflow against MDO count. */                                               \
 320           do_OSR = do_OSR                                                                           \
 321             && (mdo_last_branch_taken_count >= (uint)InvocationCounter::InterpreterBackwardBranchLimit)\
 322             /* When ProfileInterpreter is on, the backedge_count comes     */                       \
 323             /* from the methodDataOop, which value does not get reset on   */                       \
 324             /* the call to frequency_counter_overflow(). To avoid          */                       \
 325             /* excessive calls to the overflow routine while the method is */                       \
 326             /* being compiled, add a second test to make sure the overflow */                       \
 327             /* function is called only once every overflow_frequency.      */                       \
 328             && (!(mdo_last_branch_taken_count & 1023));                                             \
 329         } else {                                                                                    \
 330           /* check for overflow of backedge counter */                                              \
 331           do_OSR = do_OSR                                                                           \
 332             && mcs->invocation_counter()->reached_InvocationLimit(mcs->backedge_counter());         \
 333         }                                                                                           \
 334         if (do_OSR) {                                                                               \
 335           nmethod* osr_nmethod;                                                                     \
 336           OSR_REQUEST(osr_nmethod, branch_pc);                                                      \
 337           if (osr_nmethod != NULL && osr_nmethod->is_in_use()) {                                    \
 338             intptr_t* buf;                                                                          \
 339             /* Call OSR migration with last java frame only, no checks. */                          \
 340             CALL_VM_NAKED_LJF(buf=SharedRuntime::OSR_migration_begin(THREAD));                      \
 341             istate->set_msg(do_osr);                                                                \
 342             istate->set_osr_buf((address)buf);                                                      \
 343             istate->set_osr_entry(osr_nmethod->osr_entry());                                        \
 344             return;                                                                                 \
 345           }                                                                                         \
 346         }                                                                                           \
 347       }  /* UseCompiler ... */                                                                      \
 348       SAFEPOINT;                                                                                    \
 349     }
 350 
 351 /*
 352  * For those opcodes that need to have a GC point on a backwards branch
 353  */
 354 
 355 /*
 356  * Macros for caching and flushing the interpreter state. Some local
 357  * variables need to be flushed out to the frame before we do certain
 358  * things (like pushing frames or becomming gc safe) and some need to
 359  * be recached later (like after popping a frame). We could use one
 360  * macro to cache or decache everything, but this would be less then
 361  * optimal because we don't always need to cache or decache everything
 362  * because some things we know are already cached or decached.
 363  */
 364 #undef DECACHE_TOS
 365 #undef CACHE_TOS
 366 #undef CACHE_PREV_TOS
 367 #define DECACHE_TOS()    istate->set_stack(topOfStack);
 368 
 369 #define CACHE_TOS()      topOfStack = (intptr_t *)istate->stack();
 370 
 371 #undef DECACHE_PC
 372 #undef CACHE_PC
 373 #define DECACHE_PC()    istate->set_bcp(pc);
 374 #define CACHE_PC()      pc = istate->bcp();
 375 #define CACHE_CP()      cp = istate->constants();
 376 #define CACHE_LOCALS()  locals = istate->locals();
 377 #undef CACHE_FRAME
 378 #define CACHE_FRAME()
 379 
 380 // BCI() returns the current bytecode-index.
 381 #undef  BCI
 382 #define BCI()           ((int)(intptr_t)(pc - (intptr_t)istate->method()->code_base()))
 383 
 384 /*
 385  * CHECK_NULL - Macro for throwing a NullPointerException if the object
 386  * passed is a null ref.
 387  * On some architectures/platforms it should be possible to do this implicitly
 388  */
 389 #undef CHECK_NULL
 390 #define CHECK_NULL(obj_)                                                                         \
 391         if ((obj_) == NULL) {                                                                    \
 392           VM_JAVA_ERROR(vmSymbols::java_lang_NullPointerException(), NULL, note_nullCheck_trap); \
 393         }                                                                                        \
 394         VERIFY_OOP(obj_)
 395 
 396 #define VMdoubleConstZero() 0.0
 397 #define VMdoubleConstOne() 1.0
 398 #define VMlongConstZero() (max_jlong-max_jlong)
 399 #define VMlongConstOne() ((max_jlong-max_jlong)+1)
 400 
 401 /*
 402  * Alignment
 403  */
 404 #define VMalignWordUp(val)          (((uintptr_t)(val) + 3) & ~3)
 405 
 406 // Decache the interpreter state that interpreter modifies directly (i.e. GC is indirect mod)
 407 #define DECACHE_STATE() DECACHE_PC(); DECACHE_TOS();
 408 
 409 // Reload interpreter state after calling the VM or a possible GC
 410 #define CACHE_STATE()   \
 411         CACHE_TOS();    \
 412         CACHE_PC();     \
 413         CACHE_CP();     \
 414         CACHE_LOCALS();
 415 
 416 // Call the VM with last java frame only.
 417 #define CALL_VM_NAKED_LJF(func)                                    \
 418         DECACHE_STATE();                                           \
 419         SET_LAST_JAVA_FRAME();                                     \
 420         func;                                                      \
 421         RESET_LAST_JAVA_FRAME();                                   \
 422         CACHE_STATE();
 423 
 424 // Call the VM. Don't check for pending exceptions.
 425 #define CALL_VM_NOCHECK(func)                                      \
 426         CALL_VM_NAKED_LJF(func)                                    \
 427         if (THREAD->pop_frame_pending() &&                         \
 428             !THREAD->pop_frame_in_process()) {                     \
 429           goto handle_Pop_Frame;                                   \
 430         }                                                          \
 431         if (THREAD->jvmti_thread_state() &&                        \
 432             THREAD->jvmti_thread_state()->is_earlyret_pending()) { \
 433           goto handle_Early_Return;                                \
 434         }
 435 
 436 // Call the VM and check for pending exceptions
 437 #define CALL_VM(func, label) {                                     \
 438           CALL_VM_NOCHECK(func);                                   \
 439           if (THREAD->has_pending_exception()) goto label;         \
 440         }
 441 
 442 /*
 443  * BytecodeInterpreter::run(interpreterState istate)
 444  * BytecodeInterpreter::runWithChecks(interpreterState istate)
 445  *
 446  * The real deal. This is where byte codes actually get interpreted.
 447  * Basically it's a big while loop that iterates until we return from
 448  * the method passed in.
 449  *
 450  * The runWithChecks is used if JVMTI is enabled.
 451  *
 452  */
 453 #if defined(VM_JVMTI)
 454 void
 455 BytecodeInterpreter::runWithChecks(interpreterState istate) {
 456 #else
 457 void
 458 BytecodeInterpreter::run(interpreterState istate) {
 459 #endif
 460 
 461   // In order to simplify some tests based on switches set at runtime
 462   // we invoke the interpreter a single time after switches are enabled
 463   // and set simpler to to test variables rather than method calls or complex
 464   // boolean expressions.
 465 
 466   static int initialized = 0;
 467   static int checkit = 0;
 468   static intptr_t* c_addr = NULL;
 469   static intptr_t  c_value;
 470 
 471   if (checkit && *c_addr != c_value) {
 472     os::breakpoint();
 473   }
 474 #ifdef VM_JVMTI
 475   static bool _jvmti_interp_events = 0;
 476 #endif
 477 
 478   static int _compiling;  // (UseCompiler || CountCompiledCalls)
 479 
 480 #ifdef ASSERT
 481   if (istate->_msg != initialize) {
 482     assert(labs(istate->_stack_base - istate->_stack_limit) == (istate->_method->max_stack() + 1), "bad stack limit");
 483     IA32_ONLY(assert(istate->_stack_limit == istate->_thread->last_Java_sp() + 1, "wrong"));
 484   }
 485   // Verify linkages.
 486   interpreterState l = istate;
 487   do {
 488     assert(l == l->_self_link, "bad link");
 489     l = l->_prev_link;
 490   } while (l != NULL);
 491   // Screwups with stack management usually cause us to overwrite istate
 492   // save a copy so we can verify it.
 493   interpreterState orig = istate;
 494 #endif
 495 
 496   register intptr_t*        topOfStack = (intptr_t *)istate->stack(); /* access with STACK macros */
 497   register address          pc = istate->bcp();
 498   register jubyte opcode;
 499   register intptr_t*        locals = istate->locals();
 500   register ConstantPoolCache*    cp = istate->constants(); // method()->constants()->cache()
 501 #ifdef LOTS_OF_REGS
 502   register JavaThread*      THREAD = istate->thread();
 503 #else
 504 #undef THREAD
 505 #define THREAD istate->thread()
 506 #endif
 507 
 508 #ifdef USELABELS
 509   const static void* const opclabels_data[256] = {
 510 /* 0x00 */ &&opc_nop,     &&opc_aconst_null,&&opc_iconst_m1,&&opc_iconst_0,
 511 /* 0x04 */ &&opc_iconst_1,&&opc_iconst_2,   &&opc_iconst_3, &&opc_iconst_4,
 512 /* 0x08 */ &&opc_iconst_5,&&opc_lconst_0,   &&opc_lconst_1, &&opc_fconst_0,
 513 /* 0x0C */ &&opc_fconst_1,&&opc_fconst_2,   &&opc_dconst_0, &&opc_dconst_1,
 514 
 515 /* 0x10 */ &&opc_bipush, &&opc_sipush, &&opc_ldc,    &&opc_ldc_w,
 516 /* 0x14 */ &&opc_ldc2_w, &&opc_iload,  &&opc_lload,  &&opc_fload,
 517 /* 0x18 */ &&opc_dload,  &&opc_aload,  &&opc_iload_0,&&opc_iload_1,
 518 /* 0x1C */ &&opc_iload_2,&&opc_iload_3,&&opc_lload_0,&&opc_lload_1,
 519 
 520 /* 0x20 */ &&opc_lload_2,&&opc_lload_3,&&opc_fload_0,&&opc_fload_1,
 521 /* 0x24 */ &&opc_fload_2,&&opc_fload_3,&&opc_dload_0,&&opc_dload_1,
 522 /* 0x28 */ &&opc_dload_2,&&opc_dload_3,&&opc_aload_0,&&opc_aload_1,
 523 /* 0x2C */ &&opc_aload_2,&&opc_aload_3,&&opc_iaload, &&opc_laload,
 524 
 525 /* 0x30 */ &&opc_faload,  &&opc_daload,  &&opc_aaload,  &&opc_baload,
 526 /* 0x34 */ &&opc_caload,  &&opc_saload,  &&opc_istore,  &&opc_lstore,
 527 /* 0x38 */ &&opc_fstore,  &&opc_dstore,  &&opc_astore,  &&opc_istore_0,
 528 /* 0x3C */ &&opc_istore_1,&&opc_istore_2,&&opc_istore_3,&&opc_lstore_0,
 529 
 530 /* 0x40 */ &&opc_lstore_1,&&opc_lstore_2,&&opc_lstore_3,&&opc_fstore_0,
 531 /* 0x44 */ &&opc_fstore_1,&&opc_fstore_2,&&opc_fstore_3,&&opc_dstore_0,
 532 /* 0x48 */ &&opc_dstore_1,&&opc_dstore_2,&&opc_dstore_3,&&opc_astore_0,
 533 /* 0x4C */ &&opc_astore_1,&&opc_astore_2,&&opc_astore_3,&&opc_iastore,
 534 
 535 /* 0x50 */ &&opc_lastore,&&opc_fastore,&&opc_dastore,&&opc_aastore,
 536 /* 0x54 */ &&opc_bastore,&&opc_castore,&&opc_sastore,&&opc_pop,
 537 /* 0x58 */ &&opc_pop2,   &&opc_dup,    &&opc_dup_x1, &&opc_dup_x2,
 538 /* 0x5C */ &&opc_dup2,   &&opc_dup2_x1,&&opc_dup2_x2,&&opc_swap,
 539 
 540 /* 0x60 */ &&opc_iadd,&&opc_ladd,&&opc_fadd,&&opc_dadd,
 541 /* 0x64 */ &&opc_isub,&&opc_lsub,&&opc_fsub,&&opc_dsub,
 542 /* 0x68 */ &&opc_imul,&&opc_lmul,&&opc_fmul,&&opc_dmul,
 543 /* 0x6C */ &&opc_idiv,&&opc_ldiv,&&opc_fdiv,&&opc_ddiv,
 544 
 545 /* 0x70 */ &&opc_irem, &&opc_lrem, &&opc_frem,&&opc_drem,
 546 /* 0x74 */ &&opc_ineg, &&opc_lneg, &&opc_fneg,&&opc_dneg,
 547 /* 0x78 */ &&opc_ishl, &&opc_lshl, &&opc_ishr,&&opc_lshr,
 548 /* 0x7C */ &&opc_iushr,&&opc_lushr,&&opc_iand,&&opc_land,
 549 
 550 /* 0x80 */ &&opc_ior, &&opc_lor,&&opc_ixor,&&opc_lxor,
 551 /* 0x84 */ &&opc_iinc,&&opc_i2l,&&opc_i2f, &&opc_i2d,
 552 /* 0x88 */ &&opc_l2i, &&opc_l2f,&&opc_l2d, &&opc_f2i,
 553 /* 0x8C */ &&opc_f2l, &&opc_f2d,&&opc_d2i, &&opc_d2l,
 554 
 555 /* 0x90 */ &&opc_d2f,  &&opc_i2b,  &&opc_i2c,  &&opc_i2s,
 556 /* 0x94 */ &&opc_lcmp, &&opc_fcmpl,&&opc_fcmpg,&&opc_dcmpl,
 557 /* 0x98 */ &&opc_dcmpg,&&opc_ifeq, &&opc_ifne, &&opc_iflt,
 558 /* 0x9C */ &&opc_ifge, &&opc_ifgt, &&opc_ifle, &&opc_if_icmpeq,
 559 
 560 /* 0xA0 */ &&opc_if_icmpne,&&opc_if_icmplt,&&opc_if_icmpge,  &&opc_if_icmpgt,
 561 /* 0xA4 */ &&opc_if_icmple,&&opc_if_acmpeq,&&opc_if_acmpne,  &&opc_goto,
 562 /* 0xA8 */ &&opc_jsr,      &&opc_ret,      &&opc_tableswitch,&&opc_lookupswitch,
 563 /* 0xAC */ &&opc_ireturn,  &&opc_lreturn,  &&opc_freturn,    &&opc_dreturn,
 564 
 565 /* 0xB0 */ &&opc_areturn,     &&opc_return,         &&opc_getstatic,    &&opc_putstatic,
 566 /* 0xB4 */ &&opc_getfield,    &&opc_putfield,       &&opc_invokevirtual,&&opc_invokespecial,
 567 /* 0xB8 */ &&opc_invokestatic,&&opc_invokeinterface,&&opc_invokedynamic,&&opc_new,
 568 /* 0xBC */ &&opc_newarray,    &&opc_anewarray,      &&opc_arraylength,  &&opc_athrow,
 569 
 570 /* 0xC0 */ &&opc_checkcast,   &&opc_instanceof,     &&opc_monitorenter, &&opc_monitorexit,
 571 /* 0xC4 */ &&opc_wide,        &&opc_multianewarray, &&opc_ifnull,       &&opc_ifnonnull,
 572 /* 0xC8 */ &&opc_goto_w,      &&opc_jsr_w,          &&opc_breakpoint,   &&opc_default,
 573 /* 0xCC */ &&opc_default,     &&opc_default,        &&opc_default,      &&opc_default,
 574 
 575 /* 0xD0 */ &&opc_default,     &&opc_default,        &&opc_default,      &&opc_default,
 576 /* 0xD4 */ &&opc_default,     &&opc_default,        &&opc_default,      &&opc_default,
 577 /* 0xD8 */ &&opc_default,     &&opc_default,        &&opc_default,      &&opc_default,
 578 /* 0xDC */ &&opc_default,     &&opc_default,        &&opc_default,      &&opc_default,
 579 
 580 /* 0xE0 */ &&opc_default,     &&opc_default,        &&opc_default,         &&opc_default,
 581 /* 0xE4 */ &&opc_default,     &&opc_default,        &&opc_fast_aldc,    &&opc_fast_aldc_w,
 582 /* 0xE8 */ &&opc_return_register_finalizer,
 583                               &&opc_invokehandle,   &&opc_default,      &&opc_default,
 584 /* 0xEC */ &&opc_default,     &&opc_default,        &&opc_default,         &&opc_default,
 585 
 586 /* 0xF0 */ &&opc_default,     &&opc_default,        &&opc_default,      &&opc_default,
 587 /* 0xF4 */ &&opc_default,     &&opc_default,        &&opc_default,      &&opc_default,
 588 /* 0xF8 */ &&opc_default,     &&opc_default,        &&opc_default,      &&opc_default,
 589 /* 0xFC */ &&opc_default,     &&opc_default,        &&opc_default,      &&opc_default
 590   };
 591   register uintptr_t *dispatch_table = (uintptr_t*)&opclabels_data[0];
 592 #endif /* USELABELS */
 593 
 594 #ifdef ASSERT
 595   // this will trigger a VERIFY_OOP on entry
 596   if (istate->msg() != initialize && ! METHOD->is_static()) {
 597     oop rcvr = LOCALS_OBJECT(0);
 598     VERIFY_OOP(rcvr);
 599   }
 600 #endif
 601 
 602   /* QQQ this should be a stack method so we don't know actual direction */
 603   guarantee(istate->msg() == initialize ||
 604          topOfStack >= istate->stack_limit() &&
 605          topOfStack < istate->stack_base(),
 606          "Stack top out of range");
 607 
 608 #ifdef CC_INTERP_PROFILE
 609   // MethodData's last branch taken count.
 610   uint mdo_last_branch_taken_count = 0;
 611 #else
 612   const uint mdo_last_branch_taken_count = 0;
 613 #endif
 614 
 615   switch (istate->msg()) {
 616     case initialize: {
 617       if (initialized++) ShouldNotReachHere(); // Only one initialize call.
 618       _compiling = (UseCompiler || CountCompiledCalls);
 619 #ifdef VM_JVMTI
 620       _jvmti_interp_events = JvmtiExport::can_post_interpreter_events();
 621 #endif
 622       return;
 623     }
 624     break;
 625     case method_entry: {
 626       THREAD->set_do_not_unlock();
 627       // count invocations
 628       assert(initialized, "Interpreter not initialized");
 629       if (_compiling) {
 630         MethodCounters* mcs;
 631         GET_METHOD_COUNTERS(mcs);
 632 #if COMPILER2_OR_JVMCI
 633         if (ProfileInterpreter) {
 634           METHOD->increment_interpreter_invocation_count(THREAD);
 635         }
 636 #endif
 637         mcs->invocation_counter()->increment();
 638         if (mcs->invocation_counter()->reached_InvocationLimit(mcs->backedge_counter())) {
 639           CALL_VM((void)InterpreterRuntime::frequency_counter_overflow(THREAD, NULL), handle_exception);
 640           // We no longer retry on a counter overflow.
 641         }
 642         // Get or create profile data. Check for pending (async) exceptions.
 643         BI_PROFILE_GET_OR_CREATE_METHOD_DATA(handle_exception);
 644         SAFEPOINT;
 645       }
 646 
 647       if ((istate->_stack_base - istate->_stack_limit) != istate->method()->max_stack() + 1) {
 648         // initialize
 649         os::breakpoint();
 650       }
 651 
 652       // Lock method if synchronized.
 653       if (METHOD->is_synchronized()) {
 654         // oop rcvr = locals[0].j.r;
 655         oop rcvr;
 656         if (METHOD->is_static()) {
 657           rcvr = METHOD->constants()->pool_holder()->java_mirror();
 658         } else {
 659           rcvr = LOCALS_OBJECT(0);
 660           VERIFY_OOP(rcvr);
 661         }
 662         // The initial monitor is ours for the taking.
 663         // Monitor not filled in frame manager any longer as this caused race condition with biased locking.
 664         BasicObjectLock* mon = &istate->monitor_base()[-1];
 665         mon->set_obj(rcvr);
 666         bool success = false;
 667         uintptr_t epoch_mask_in_place = (uintptr_t)markOopDesc::epoch_mask_in_place;
 668         markOop mark = rcvr->mark();
 669         intptr_t hash = (intptr_t) markOopDesc::no_hash;
 670         // Implies UseBiasedLocking.
 671         if (mark->has_bias_pattern()) {
 672           uintptr_t thread_ident;
 673           uintptr_t anticipated_bias_locking_value;
 674           thread_ident = (uintptr_t)istate->thread();
 675           anticipated_bias_locking_value =
 676             (((uintptr_t)rcvr->klass()->prototype_header() | thread_ident) ^ (uintptr_t)mark) &
 677             ~((uintptr_t) markOopDesc::age_mask_in_place);
 678 
 679           if (anticipated_bias_locking_value == 0) {
 680             // Already biased towards this thread, nothing to do.
 681             if (PrintBiasedLockingStatistics) {
 682               (* BiasedLocking::biased_lock_entry_count_addr())++;
 683             }
 684             success = true;
 685           } else if ((anticipated_bias_locking_value & markOopDesc::biased_lock_mask_in_place) != 0) {
 686             // Try to revoke bias.
 687             markOop header = rcvr->klass()->prototype_header();
 688             if (hash != markOopDesc::no_hash) {
 689               header = header->copy_set_hash(hash);
 690             }
 691             if (Atomic::cmpxchg(header, rcvr->mark_addr(), mark) == mark) {
 692               if (PrintBiasedLockingStatistics)
 693                 (*BiasedLocking::revoked_lock_entry_count_addr())++;
 694             }
 695           } else if ((anticipated_bias_locking_value & epoch_mask_in_place) != 0) {
 696             // Try to rebias.
 697             markOop new_header = (markOop) ( (intptr_t) rcvr->klass()->prototype_header() | thread_ident);
 698             if (hash != markOopDesc::no_hash) {
 699               new_header = new_header->copy_set_hash(hash);
 700             }
 701             if (Atomic::cmpxchg(new_header, rcvr->mark_addr(), mark) == mark) {
 702               if (PrintBiasedLockingStatistics) {
 703                 (* BiasedLocking::rebiased_lock_entry_count_addr())++;
 704               }
 705             } else {
 706               CALL_VM(InterpreterRuntime::monitorenter(THREAD, mon), handle_exception);
 707             }
 708             success = true;
 709           } else {
 710             // Try to bias towards thread in case object is anonymously biased.
 711             markOop header = (markOop) ((uintptr_t) mark &
 712                                         ((uintptr_t)markOopDesc::biased_lock_mask_in_place |
 713                                          (uintptr_t)markOopDesc::age_mask_in_place | epoch_mask_in_place));
 714             if (hash != markOopDesc::no_hash) {
 715               header = header->copy_set_hash(hash);
 716             }
 717             markOop new_header = (markOop) ((uintptr_t) header | thread_ident);
 718             // Debugging hint.
 719             DEBUG_ONLY(mon->lock()->set_displaced_header((markOop) (uintptr_t) 0xdeaddead);)
 720             if (Atomic::cmpxchg(new_header, rcvr->mark_addr(), header) == header) {
 721               if (PrintBiasedLockingStatistics) {
 722                 (* BiasedLocking::anonymously_biased_lock_entry_count_addr())++;
 723               }
 724             } else {
 725               CALL_VM(InterpreterRuntime::monitorenter(THREAD, mon), handle_exception);
 726             }
 727             success = true;
 728           }
 729         }
 730 
 731         // Traditional lightweight locking.
 732         if (!success) {
 733           markOop displaced = rcvr->mark()->set_unlocked();
 734           mon->lock()->set_displaced_header(displaced);
 735           bool call_vm = UseHeavyMonitors;
 736           if (call_vm || Atomic::cmpxchg((markOop)mon, rcvr->mark_addr(), displaced) != displaced) {
 737             // Is it simple recursive case?
 738             if (!call_vm && THREAD->is_lock_owned((address) displaced->clear_lock_bits())) {
 739               mon->lock()->set_displaced_header(NULL);
 740             } else {
 741               CALL_VM(InterpreterRuntime::monitorenter(THREAD, mon), handle_exception);
 742             }
 743           }
 744         }
 745       }
 746       THREAD->clr_do_not_unlock();
 747 
 748       // Notify jvmti
 749 #ifdef VM_JVMTI
 750       if (_jvmti_interp_events) {
 751         // Whenever JVMTI puts a thread in interp_only_mode, method
 752         // entry/exit events are sent for that thread to track stack depth.
 753         if (THREAD->is_interp_only_mode()) {
 754           CALL_VM(InterpreterRuntime::post_method_entry(THREAD),
 755                   handle_exception);
 756         }
 757       }
 758 #endif /* VM_JVMTI */
 759 
 760       goto run;
 761     }
 762 
 763     case popping_frame: {
 764       // returned from a java call to pop the frame, restart the call
 765       // clear the message so we don't confuse ourselves later
 766       assert(THREAD->pop_frame_in_process(), "wrong frame pop state");
 767       istate->set_msg(no_request);
 768       if (_compiling) {
 769         // Set MDX back to the ProfileData of the invoke bytecode that will be
 770         // restarted.
 771         SET_MDX(NULL);
 772         BI_PROFILE_GET_OR_CREATE_METHOD_DATA(handle_exception);
 773       }
 774       THREAD->clr_pop_frame_in_process();
 775       goto run;
 776     }
 777 
 778     case method_resume: {
 779       if ((istate->_stack_base - istate->_stack_limit) != istate->method()->max_stack() + 1) {
 780         // resume
 781         os::breakpoint();
 782       }
 783       // returned from a java call, continue executing.
 784       if (THREAD->pop_frame_pending() && !THREAD->pop_frame_in_process()) {
 785         goto handle_Pop_Frame;
 786       }
 787       if (THREAD->jvmti_thread_state() &&
 788           THREAD->jvmti_thread_state()->is_earlyret_pending()) {
 789         goto handle_Early_Return;
 790       }
 791 
 792       if (THREAD->has_pending_exception()) goto handle_exception;
 793       // Update the pc by the saved amount of the invoke bytecode size
 794       UPDATE_PC(istate->bcp_advance());
 795 
 796       if (_compiling) {
 797         // Get or create profile data. Check for pending (async) exceptions.
 798         BI_PROFILE_GET_OR_CREATE_METHOD_DATA(handle_exception);
 799       }
 800       goto run;
 801     }
 802 
 803     case deopt_resume2: {
 804       // Returned from an opcode that will reexecute. Deopt was
 805       // a result of a PopFrame request.
 806       //
 807 
 808       if (_compiling) {
 809         // Get or create profile data. Check for pending (async) exceptions.
 810         BI_PROFILE_GET_OR_CREATE_METHOD_DATA(handle_exception);
 811       }
 812       goto run;
 813     }
 814 
 815     case deopt_resume: {
 816       // Returned from an opcode that has completed. The stack has
 817       // the result all we need to do is skip across the bytecode
 818       // and continue (assuming there is no exception pending)
 819       //
 820       // compute continuation length
 821       //
 822       // Note: it is possible to deopt at a return_register_finalizer opcode
 823       // because this requires entering the vm to do the registering. While the
 824       // opcode is complete we can't advance because there are no more opcodes
 825       // much like trying to deopt at a poll return. In that has we simply
 826       // get out of here
 827       //
 828       if ( Bytecodes::code_at(METHOD, pc) == Bytecodes::_return_register_finalizer) {
 829         // this will do the right thing even if an exception is pending.
 830         goto handle_return;
 831       }
 832       UPDATE_PC(Bytecodes::length_at(METHOD, pc));
 833       if (THREAD->has_pending_exception()) goto handle_exception;
 834 
 835       if (_compiling) {
 836         // Get or create profile data. Check for pending (async) exceptions.
 837         BI_PROFILE_GET_OR_CREATE_METHOD_DATA(handle_exception);
 838       }
 839       goto run;
 840     }
 841     case got_monitors: {
 842       // continue locking now that we have a monitor to use
 843       // we expect to find newly allocated monitor at the "top" of the monitor stack.
 844       oop lockee = STACK_OBJECT(-1);
 845       VERIFY_OOP(lockee);
 846       // derefing's lockee ought to provoke implicit null check
 847       // find a free monitor
 848       BasicObjectLock* entry = (BasicObjectLock*) istate->stack_base();
 849       assert(entry->obj() == NULL, "Frame manager didn't allocate the monitor");
 850       entry->set_obj(lockee);
 851       bool success = false;
 852       uintptr_t epoch_mask_in_place = (uintptr_t)markOopDesc::epoch_mask_in_place;
 853 
 854       markOop mark = lockee->mark();
 855       intptr_t hash = (intptr_t) markOopDesc::no_hash;
 856       // implies UseBiasedLocking
 857       if (mark->has_bias_pattern()) {
 858         uintptr_t thread_ident;
 859         uintptr_t anticipated_bias_locking_value;
 860         thread_ident = (uintptr_t)istate->thread();
 861         anticipated_bias_locking_value =
 862           (((uintptr_t)lockee->klass()->prototype_header() | thread_ident) ^ (uintptr_t)mark) &
 863           ~((uintptr_t) markOopDesc::age_mask_in_place);
 864 
 865         if  (anticipated_bias_locking_value == 0) {
 866           // already biased towards this thread, nothing to do
 867           if (PrintBiasedLockingStatistics) {
 868             (* BiasedLocking::biased_lock_entry_count_addr())++;
 869           }
 870           success = true;
 871         } else if ((anticipated_bias_locking_value & markOopDesc::biased_lock_mask_in_place) != 0) {
 872           // try revoke bias
 873           markOop header = lockee->klass()->prototype_header();
 874           if (hash != markOopDesc::no_hash) {
 875             header = header->copy_set_hash(hash);
 876           }
 877           if (Atomic::cmpxchg(header, lockee->mark_addr(), mark) == mark) {
 878             if (PrintBiasedLockingStatistics) {
 879               (*BiasedLocking::revoked_lock_entry_count_addr())++;
 880             }
 881           }
 882         } else if ((anticipated_bias_locking_value & epoch_mask_in_place) !=0) {
 883           // try rebias
 884           markOop new_header = (markOop) ( (intptr_t) lockee->klass()->prototype_header() | thread_ident);
 885           if (hash != markOopDesc::no_hash) {
 886                 new_header = new_header->copy_set_hash(hash);
 887           }
 888           if (Atomic::cmpxchg(new_header, lockee->mark_addr(), mark) == mark) {
 889             if (PrintBiasedLockingStatistics) {
 890               (* BiasedLocking::rebiased_lock_entry_count_addr())++;
 891             }
 892           } else {
 893             CALL_VM(InterpreterRuntime::monitorenter(THREAD, entry), handle_exception);
 894           }
 895           success = true;
 896         } else {
 897           // try to bias towards thread in case object is anonymously biased
 898           markOop header = (markOop) ((uintptr_t) mark & ((uintptr_t)markOopDesc::biased_lock_mask_in_place |
 899                                                           (uintptr_t)markOopDesc::age_mask_in_place | epoch_mask_in_place));
 900           if (hash != markOopDesc::no_hash) {
 901             header = header->copy_set_hash(hash);
 902           }
 903           markOop new_header = (markOop) ((uintptr_t) header | thread_ident);
 904           // debugging hint
 905           DEBUG_ONLY(entry->lock()->set_displaced_header((markOop) (uintptr_t) 0xdeaddead);)
 906           if (Atomic::cmpxchg(new_header, lockee->mark_addr(), header) == header) {
 907             if (PrintBiasedLockingStatistics) {
 908               (* BiasedLocking::anonymously_biased_lock_entry_count_addr())++;
 909             }
 910           } else {
 911             CALL_VM(InterpreterRuntime::monitorenter(THREAD, entry), handle_exception);
 912           }
 913           success = true;
 914         }
 915       }
 916 
 917       // traditional lightweight locking
 918       if (!success) {
 919         markOop displaced = lockee->mark()->set_unlocked();
 920         entry->lock()->set_displaced_header(displaced);
 921         bool call_vm = UseHeavyMonitors;
 922         if (call_vm || Atomic::cmpxchg((markOop)entry, lockee->mark_addr(), displaced) != displaced) {
 923           // Is it simple recursive case?
 924           if (!call_vm && THREAD->is_lock_owned((address) displaced->clear_lock_bits())) {
 925             entry->lock()->set_displaced_header(NULL);
 926           } else {
 927             CALL_VM(InterpreterRuntime::monitorenter(THREAD, entry), handle_exception);
 928           }
 929         }
 930       }
 931       UPDATE_PC_AND_TOS(1, -1);
 932       goto run;
 933     }
 934     default: {
 935       fatal("Unexpected message from frame manager");
 936     }
 937   }
 938 
 939 run:
 940 
 941   DO_UPDATE_INSTRUCTION_COUNT(*pc)
 942   DEBUGGER_SINGLE_STEP_NOTIFY();
 943 #ifdef PREFETCH_OPCCODE
 944   opcode = *pc;  /* prefetch first opcode */
 945 #endif
 946 
 947 #ifndef USELABELS
 948   while (1)
 949 #endif
 950   {
 951 #ifndef PREFETCH_OPCCODE
 952       opcode = *pc;
 953 #endif
 954       // Seems like this happens twice per opcode. At worst this is only
 955       // need at entry to the loop.
 956       // DEBUGGER_SINGLE_STEP_NOTIFY();
 957       /* Using this labels avoids double breakpoints when quickening and
 958        * when returing from transition frames.
 959        */
 960   opcode_switch:
 961       assert(istate == orig, "Corrupted istate");
 962       /* QQQ Hmm this has knowledge of direction, ought to be a stack method */
 963       assert(topOfStack >= istate->stack_limit(), "Stack overrun");
 964       assert(topOfStack < istate->stack_base(), "Stack underrun");
 965 
 966 #ifdef USELABELS
 967       DISPATCH(opcode);
 968 #else
 969       switch (opcode)
 970 #endif
 971       {
 972       CASE(_nop):
 973           UPDATE_PC_AND_CONTINUE(1);
 974 
 975           /* Push miscellaneous constants onto the stack. */
 976 
 977       CASE(_aconst_null):
 978           SET_STACK_OBJECT(NULL, 0);
 979           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);
 980 
 981 #undef  OPC_CONST_n
 982 #define OPC_CONST_n(opcode, const_type, value)                          \
 983       CASE(opcode):                                                     \
 984           SET_STACK_ ## const_type(value, 0);                           \
 985           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);
 986 
 987           OPC_CONST_n(_iconst_m1,   INT,       -1);
 988           OPC_CONST_n(_iconst_0,    INT,        0);
 989           OPC_CONST_n(_iconst_1,    INT,        1);
 990           OPC_CONST_n(_iconst_2,    INT,        2);
 991           OPC_CONST_n(_iconst_3,    INT,        3);
 992           OPC_CONST_n(_iconst_4,    INT,        4);
 993           OPC_CONST_n(_iconst_5,    INT,        5);
 994           OPC_CONST_n(_fconst_0,    FLOAT,      0.0);
 995           OPC_CONST_n(_fconst_1,    FLOAT,      1.0);
 996           OPC_CONST_n(_fconst_2,    FLOAT,      2.0);
 997 
 998 #undef  OPC_CONST2_n
 999 #define OPC_CONST2_n(opcname, value, key, kind)                         \
1000       CASE(_##opcname):                                                 \
1001       {                                                                 \
1002           SET_STACK_ ## kind(VM##key##Const##value(), 1);               \
1003           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);                         \
1004       }
1005          OPC_CONST2_n(dconst_0, Zero, double, DOUBLE);
1006          OPC_CONST2_n(dconst_1, One,  double, DOUBLE);
1007          OPC_CONST2_n(lconst_0, Zero, long, LONG);
1008          OPC_CONST2_n(lconst_1, One,  long, LONG);
1009 
1010          /* Load constant from constant pool: */
1011 
1012           /* Push a 1-byte signed integer value onto the stack. */
1013       CASE(_bipush):
1014           SET_STACK_INT((jbyte)(pc[1]), 0);
1015           UPDATE_PC_AND_TOS_AND_CONTINUE(2, 1);
1016 
1017           /* Push a 2-byte signed integer constant onto the stack. */
1018       CASE(_sipush):
1019           SET_STACK_INT((int16_t)Bytes::get_Java_u2(pc + 1), 0);
1020           UPDATE_PC_AND_TOS_AND_CONTINUE(3, 1);
1021 
1022           /* load from local variable */
1023 
1024       CASE(_aload):
1025           VERIFY_OOP(LOCALS_OBJECT(pc[1]));
1026           SET_STACK_OBJECT(LOCALS_OBJECT(pc[1]), 0);
1027           UPDATE_PC_AND_TOS_AND_CONTINUE(2, 1);
1028 
1029       CASE(_iload):
1030       CASE(_fload):
1031           SET_STACK_SLOT(LOCALS_SLOT(pc[1]), 0);
1032           UPDATE_PC_AND_TOS_AND_CONTINUE(2, 1);
1033 
1034       CASE(_lload):
1035           SET_STACK_LONG_FROM_ADDR(LOCALS_LONG_AT(pc[1]), 1);
1036           UPDATE_PC_AND_TOS_AND_CONTINUE(2, 2);
1037 
1038       CASE(_dload):
1039           SET_STACK_DOUBLE_FROM_ADDR(LOCALS_DOUBLE_AT(pc[1]), 1);
1040           UPDATE_PC_AND_TOS_AND_CONTINUE(2, 2);
1041 
1042 #undef  OPC_LOAD_n
1043 #define OPC_LOAD_n(num)                                                 \
1044       CASE(_aload_##num):                                               \
1045           VERIFY_OOP(LOCALS_OBJECT(num));                               \
1046           SET_STACK_OBJECT(LOCALS_OBJECT(num), 0);                      \
1047           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);                         \
1048                                                                         \
1049       CASE(_iload_##num):                                               \
1050       CASE(_fload_##num):                                               \
1051           SET_STACK_SLOT(LOCALS_SLOT(num), 0);                          \
1052           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);                         \
1053                                                                         \
1054       CASE(_lload_##num):                                               \
1055           SET_STACK_LONG_FROM_ADDR(LOCALS_LONG_AT(num), 1);             \
1056           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);                         \
1057       CASE(_dload_##num):                                               \
1058           SET_STACK_DOUBLE_FROM_ADDR(LOCALS_DOUBLE_AT(num), 1);         \
1059           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);
1060 
1061           OPC_LOAD_n(0);
1062           OPC_LOAD_n(1);
1063           OPC_LOAD_n(2);
1064           OPC_LOAD_n(3);
1065 
1066           /* store to a local variable */
1067 
1068       CASE(_astore):
1069           astore(topOfStack, -1, locals, pc[1]);
1070           UPDATE_PC_AND_TOS_AND_CONTINUE(2, -1);
1071 
1072       CASE(_istore):
1073       CASE(_fstore):
1074           SET_LOCALS_SLOT(STACK_SLOT(-1), pc[1]);
1075           UPDATE_PC_AND_TOS_AND_CONTINUE(2, -1);
1076 
1077       CASE(_lstore):
1078           SET_LOCALS_LONG(STACK_LONG(-1), pc[1]);
1079           UPDATE_PC_AND_TOS_AND_CONTINUE(2, -2);
1080 
1081       CASE(_dstore):
1082           SET_LOCALS_DOUBLE(STACK_DOUBLE(-1), pc[1]);
1083           UPDATE_PC_AND_TOS_AND_CONTINUE(2, -2);
1084 
1085       CASE(_wide): {
1086           uint16_t reg = Bytes::get_Java_u2(pc + 2);
1087 
1088           opcode = pc[1];
1089 
1090           // Wide and it's sub-bytecode are counted as separate instructions. If we
1091           // don't account for this here, the bytecode trace skips the next bytecode.
1092           DO_UPDATE_INSTRUCTION_COUNT(opcode);
1093 
1094           switch(opcode) {
1095               case Bytecodes::_aload:
1096                   VERIFY_OOP(LOCALS_OBJECT(reg));
1097                   SET_STACK_OBJECT(LOCALS_OBJECT(reg), 0);
1098                   UPDATE_PC_AND_TOS_AND_CONTINUE(4, 1);
1099 
1100               case Bytecodes::_iload:
1101               case Bytecodes::_fload:
1102                   SET_STACK_SLOT(LOCALS_SLOT(reg), 0);
1103                   UPDATE_PC_AND_TOS_AND_CONTINUE(4, 1);
1104 
1105               case Bytecodes::_lload:
1106                   SET_STACK_LONG_FROM_ADDR(LOCALS_LONG_AT(reg), 1);
1107                   UPDATE_PC_AND_TOS_AND_CONTINUE(4, 2);
1108 
1109               case Bytecodes::_dload:
1110                   SET_STACK_DOUBLE_FROM_ADDR(LOCALS_LONG_AT(reg), 1);
1111                   UPDATE_PC_AND_TOS_AND_CONTINUE(4, 2);
1112 
1113               case Bytecodes::_astore:
1114                   astore(topOfStack, -1, locals, reg);
1115                   UPDATE_PC_AND_TOS_AND_CONTINUE(4, -1);
1116 
1117               case Bytecodes::_istore:
1118               case Bytecodes::_fstore:
1119                   SET_LOCALS_SLOT(STACK_SLOT(-1), reg);
1120                   UPDATE_PC_AND_TOS_AND_CONTINUE(4, -1);
1121 
1122               case Bytecodes::_lstore:
1123                   SET_LOCALS_LONG(STACK_LONG(-1), reg);
1124                   UPDATE_PC_AND_TOS_AND_CONTINUE(4, -2);
1125 
1126               case Bytecodes::_dstore:
1127                   SET_LOCALS_DOUBLE(STACK_DOUBLE(-1), reg);
1128                   UPDATE_PC_AND_TOS_AND_CONTINUE(4, -2);
1129 
1130               case Bytecodes::_iinc: {
1131                   int16_t offset = (int16_t)Bytes::get_Java_u2(pc+4);
1132                   // Be nice to see what this generates.... QQQ
1133                   SET_LOCALS_INT(LOCALS_INT(reg) + offset, reg);
1134                   UPDATE_PC_AND_CONTINUE(6);
1135               }
1136               case Bytecodes::_ret:
1137                   // Profile ret.
1138                   BI_PROFILE_UPDATE_RET(/*bci=*/((int)(intptr_t)(LOCALS_ADDR(reg))));
1139                   // Now, update the pc.
1140                   pc = istate->method()->code_base() + (intptr_t)(LOCALS_ADDR(reg));
1141                   UPDATE_PC_AND_CONTINUE(0);
1142               default:
1143                   VM_JAVA_ERROR(vmSymbols::java_lang_InternalError(), "undefined opcode", note_no_trap);
1144           }
1145       }
1146 
1147 
1148 #undef  OPC_STORE_n
1149 #define OPC_STORE_n(num)                                                \
1150       CASE(_astore_##num):                                              \
1151           astore(topOfStack, -1, locals, num);                          \
1152           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1);                        \
1153       CASE(_istore_##num):                                              \
1154       CASE(_fstore_##num):                                              \
1155           SET_LOCALS_SLOT(STACK_SLOT(-1), num);                         \
1156           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1);
1157 
1158           OPC_STORE_n(0);
1159           OPC_STORE_n(1);
1160           OPC_STORE_n(2);
1161           OPC_STORE_n(3);
1162 
1163 #undef  OPC_DSTORE_n
1164 #define OPC_DSTORE_n(num)                                               \
1165       CASE(_dstore_##num):                                              \
1166           SET_LOCALS_DOUBLE(STACK_DOUBLE(-1), num);                     \
1167           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -2);                        \
1168       CASE(_lstore_##num):                                              \
1169           SET_LOCALS_LONG(STACK_LONG(-1), num);                         \
1170           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -2);
1171 
1172           OPC_DSTORE_n(0);
1173           OPC_DSTORE_n(1);
1174           OPC_DSTORE_n(2);
1175           OPC_DSTORE_n(3);
1176 
1177           /* stack pop, dup, and insert opcodes */
1178 
1179 
1180       CASE(_pop):                /* Discard the top item on the stack */
1181           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1);
1182 
1183 
1184       CASE(_pop2):               /* Discard the top 2 items on the stack */
1185           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -2);
1186 
1187 
1188       CASE(_dup):               /* Duplicate the top item on the stack */
1189           dup(topOfStack);
1190           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);
1191 
1192       CASE(_dup2):              /* Duplicate the top 2 items on the stack */
1193           dup2(topOfStack);
1194           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);
1195 
1196       CASE(_dup_x1):    /* insert top word two down */
1197           dup_x1(topOfStack);
1198           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);
1199 
1200       CASE(_dup_x2):    /* insert top word three down  */
1201           dup_x2(topOfStack);
1202           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);
1203 
1204       CASE(_dup2_x1):   /* insert top 2 slots three down */
1205           dup2_x1(topOfStack);
1206           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);
1207 
1208       CASE(_dup2_x2):   /* insert top 2 slots four down */
1209           dup2_x2(topOfStack);
1210           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);
1211 
1212       CASE(_swap): {        /* swap top two elements on the stack */
1213           swap(topOfStack);
1214           UPDATE_PC_AND_CONTINUE(1);
1215       }
1216 
1217           /* Perform various binary integer operations */
1218 
1219 #undef  OPC_INT_BINARY
1220 #define OPC_INT_BINARY(opcname, opname, test)                           \
1221       CASE(_i##opcname):                                                \
1222           if (test && (STACK_INT(-1) == 0)) {                           \
1223               VM_JAVA_ERROR(vmSymbols::java_lang_ArithmeticException(), \
1224                             "/ by zero", note_div0Check_trap);          \
1225           }                                                             \
1226           SET_STACK_INT(VMint##opname(STACK_INT(-2),                    \
1227                                       STACK_INT(-1)),                   \
1228                                       -2);                              \
1229           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1);                        \
1230       CASE(_l##opcname):                                                \
1231       {                                                                 \
1232           if (test) {                                                   \
1233             jlong l1 = STACK_LONG(-1);                                  \
1234             if (VMlongEqz(l1)) {                                        \
1235               VM_JAVA_ERROR(vmSymbols::java_lang_ArithmeticException(), \
1236                             "/ by long zero", note_div0Check_trap);     \
1237             }                                                           \
1238           }                                                             \
1239           /* First long at (-1,-2) next long at (-3,-4) */              \
1240           SET_STACK_LONG(VMlong##opname(STACK_LONG(-3),                 \
1241                                         STACK_LONG(-1)),                \
1242                                         -3);                            \
1243           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -2);                        \
1244       }
1245 
1246       OPC_INT_BINARY(add, Add, 0);
1247       OPC_INT_BINARY(sub, Sub, 0);
1248       OPC_INT_BINARY(mul, Mul, 0);
1249       OPC_INT_BINARY(and, And, 0);
1250       OPC_INT_BINARY(or,  Or,  0);
1251       OPC_INT_BINARY(xor, Xor, 0);
1252       OPC_INT_BINARY(div, Div, 1);
1253       OPC_INT_BINARY(rem, Rem, 1);
1254 
1255 
1256       /* Perform various binary floating number operations */
1257       /* On some machine/platforms/compilers div zero check can be implicit */
1258 
1259 #undef  OPC_FLOAT_BINARY
1260 #define OPC_FLOAT_BINARY(opcname, opname)                                  \
1261       CASE(_d##opcname): {                                                 \
1262           SET_STACK_DOUBLE(VMdouble##opname(STACK_DOUBLE(-3),              \
1263                                             STACK_DOUBLE(-1)),             \
1264                                             -3);                           \
1265           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -2);                           \
1266       }                                                                    \
1267       CASE(_f##opcname):                                                   \
1268           SET_STACK_FLOAT(VMfloat##opname(STACK_FLOAT(-2),                 \
1269                                           STACK_FLOAT(-1)),                \
1270                                           -2);                             \
1271           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1);
1272 
1273 
1274      OPC_FLOAT_BINARY(add, Add);
1275      OPC_FLOAT_BINARY(sub, Sub);
1276      OPC_FLOAT_BINARY(mul, Mul);
1277      OPC_FLOAT_BINARY(div, Div);
1278      OPC_FLOAT_BINARY(rem, Rem);
1279 
1280       /* Shift operations
1281        * Shift left int and long: ishl, lshl
1282        * Logical shift right int and long w/zero extension: iushr, lushr
1283        * Arithmetic shift right int and long w/sign extension: ishr, lshr
1284        */
1285 
1286 #undef  OPC_SHIFT_BINARY
1287 #define OPC_SHIFT_BINARY(opcname, opname)                               \
1288       CASE(_i##opcname):                                                \
1289          SET_STACK_INT(VMint##opname(STACK_INT(-2),                     \
1290                                      STACK_INT(-1)),                    \
1291                                      -2);                               \
1292          UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1);                         \
1293       CASE(_l##opcname):                                                \
1294       {                                                                 \
1295          SET_STACK_LONG(VMlong##opname(STACK_LONG(-2),                  \
1296                                        STACK_INT(-1)),                  \
1297                                        -2);                             \
1298          UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1);                         \
1299       }
1300 
1301       OPC_SHIFT_BINARY(shl, Shl);
1302       OPC_SHIFT_BINARY(shr, Shr);
1303       OPC_SHIFT_BINARY(ushr, Ushr);
1304 
1305      /* Increment local variable by constant */
1306       CASE(_iinc):
1307       {
1308           // locals[pc[1]].j.i += (jbyte)(pc[2]);
1309           SET_LOCALS_INT(LOCALS_INT(pc[1]) + (jbyte)(pc[2]), pc[1]);
1310           UPDATE_PC_AND_CONTINUE(3);
1311       }
1312 
1313      /* negate the value on the top of the stack */
1314 
1315       CASE(_ineg):
1316          SET_STACK_INT(VMintNeg(STACK_INT(-1)), -1);
1317          UPDATE_PC_AND_CONTINUE(1);
1318 
1319       CASE(_fneg):
1320          SET_STACK_FLOAT(VMfloatNeg(STACK_FLOAT(-1)), -1);
1321          UPDATE_PC_AND_CONTINUE(1);
1322 
1323       CASE(_lneg):
1324       {
1325          SET_STACK_LONG(VMlongNeg(STACK_LONG(-1)), -1);
1326          UPDATE_PC_AND_CONTINUE(1);
1327       }
1328 
1329       CASE(_dneg):
1330       {
1331          SET_STACK_DOUBLE(VMdoubleNeg(STACK_DOUBLE(-1)), -1);
1332          UPDATE_PC_AND_CONTINUE(1);
1333       }
1334 
1335       /* Conversion operations */
1336 
1337       CASE(_i2f):       /* convert top of stack int to float */
1338          SET_STACK_FLOAT(VMint2Float(STACK_INT(-1)), -1);
1339          UPDATE_PC_AND_CONTINUE(1);
1340 
1341       CASE(_i2l):       /* convert top of stack int to long */
1342       {
1343           // this is ugly QQQ
1344           jlong r = VMint2Long(STACK_INT(-1));
1345           MORE_STACK(-1); // Pop
1346           SET_STACK_LONG(r, 1);
1347 
1348           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);
1349       }
1350 
1351       CASE(_i2d):       /* convert top of stack int to double */
1352       {
1353           // this is ugly QQQ (why cast to jlong?? )
1354           jdouble r = (jlong)STACK_INT(-1);
1355           MORE_STACK(-1); // Pop
1356           SET_STACK_DOUBLE(r, 1);
1357 
1358           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);
1359       }
1360 
1361       CASE(_l2i):       /* convert top of stack long to int */
1362       {
1363           jint r = VMlong2Int(STACK_LONG(-1));
1364           MORE_STACK(-2); // Pop
1365           SET_STACK_INT(r, 0);
1366           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);
1367       }
1368 
1369       CASE(_l2f):   /* convert top of stack long to float */
1370       {
1371           jlong r = STACK_LONG(-1);
1372           MORE_STACK(-2); // Pop
1373           SET_STACK_FLOAT(VMlong2Float(r), 0);
1374           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);
1375       }
1376 
1377       CASE(_l2d):       /* convert top of stack long to double */
1378       {
1379           jlong r = STACK_LONG(-1);
1380           MORE_STACK(-2); // Pop
1381           SET_STACK_DOUBLE(VMlong2Double(r), 1);
1382           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);
1383       }
1384 
1385       CASE(_f2i):  /* Convert top of stack float to int */
1386           SET_STACK_INT(SharedRuntime::f2i(STACK_FLOAT(-1)), -1);
1387           UPDATE_PC_AND_CONTINUE(1);
1388 
1389       CASE(_f2l):  /* convert top of stack float to long */
1390       {
1391           jlong r = SharedRuntime::f2l(STACK_FLOAT(-1));
1392           MORE_STACK(-1); // POP
1393           SET_STACK_LONG(r, 1);
1394           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);
1395       }
1396 
1397       CASE(_f2d):  /* convert top of stack float to double */
1398       {
1399           jfloat f;
1400           jdouble r;
1401           f = STACK_FLOAT(-1);
1402           r = (jdouble) f;
1403           MORE_STACK(-1); // POP
1404           SET_STACK_DOUBLE(r, 1);
1405           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);
1406       }
1407 
1408       CASE(_d2i): /* convert top of stack double to int */
1409       {
1410           jint r1 = SharedRuntime::d2i(STACK_DOUBLE(-1));
1411           MORE_STACK(-2);
1412           SET_STACK_INT(r1, 0);
1413           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);
1414       }
1415 
1416       CASE(_d2f): /* convert top of stack double to float */
1417       {
1418           jfloat r1 = VMdouble2Float(STACK_DOUBLE(-1));
1419           MORE_STACK(-2);
1420           SET_STACK_FLOAT(r1, 0);
1421           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);
1422       }
1423 
1424       CASE(_d2l): /* convert top of stack double to long */
1425       {
1426           jlong r1 = SharedRuntime::d2l(STACK_DOUBLE(-1));
1427           MORE_STACK(-2);
1428           SET_STACK_LONG(r1, 1);
1429           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);
1430       }
1431 
1432       CASE(_i2b):
1433           SET_STACK_INT(VMint2Byte(STACK_INT(-1)), -1);
1434           UPDATE_PC_AND_CONTINUE(1);
1435 
1436       CASE(_i2c):
1437           SET_STACK_INT(VMint2Char(STACK_INT(-1)), -1);
1438           UPDATE_PC_AND_CONTINUE(1);
1439 
1440       CASE(_i2s):
1441           SET_STACK_INT(VMint2Short(STACK_INT(-1)), -1);
1442           UPDATE_PC_AND_CONTINUE(1);
1443 
1444       /* comparison operators */
1445 
1446 
1447 #define COMPARISON_OP(name, comparison)                                      \
1448       CASE(_if_icmp##name): {                                                \
1449           const bool cmp = (STACK_INT(-2) comparison STACK_INT(-1));         \
1450           int skip = cmp                                                     \
1451                       ? (int16_t)Bytes::get_Java_u2(pc + 1) : 3;             \
1452           address branch_pc = pc;                                            \
1453           /* Profile branch. */                                              \
1454           BI_PROFILE_UPDATE_BRANCH(/*is_taken=*/cmp);                        \
1455           UPDATE_PC_AND_TOS(skip, -2);                                       \
1456           DO_BACKEDGE_CHECKS(skip, branch_pc);                               \
1457           CONTINUE;                                                          \
1458       }                                                                      \
1459       CASE(_if##name): {                                                     \
1460           const bool cmp = (STACK_INT(-1) comparison 0);                     \
1461           int skip = cmp                                                     \
1462                       ? (int16_t)Bytes::get_Java_u2(pc + 1) : 3;             \
1463           address branch_pc = pc;                                            \
1464           /* Profile branch. */                                              \
1465           BI_PROFILE_UPDATE_BRANCH(/*is_taken=*/cmp);                        \
1466           UPDATE_PC_AND_TOS(skip, -1);                                       \
1467           DO_BACKEDGE_CHECKS(skip, branch_pc);                               \
1468           CONTINUE;                                                          \
1469       }
1470 
1471 #define COMPARISON_OP2(name, comparison)                                     \
1472       COMPARISON_OP(name, comparison)                                        \
1473       CASE(_if_acmp##name): {                                                \
1474           const bool cmp = (STACK_OBJECT(-2) comparison STACK_OBJECT(-1));   \
1475           int skip = cmp                                                     \
1476                        ? (int16_t)Bytes::get_Java_u2(pc + 1) : 3;            \
1477           address branch_pc = pc;                                            \
1478           /* Profile branch. */                                              \
1479           BI_PROFILE_UPDATE_BRANCH(/*is_taken=*/cmp);                        \
1480           UPDATE_PC_AND_TOS(skip, -2);                                       \
1481           DO_BACKEDGE_CHECKS(skip, branch_pc);                               \
1482           CONTINUE;                                                          \
1483       }
1484 
1485 #define NULL_COMPARISON_NOT_OP(name)                                         \
1486       CASE(_if##name): {                                                     \
1487           const bool cmp = (!(STACK_OBJECT(-1) == NULL));                    \
1488           int skip = cmp                                                     \
1489                       ? (int16_t)Bytes::get_Java_u2(pc + 1) : 3;             \
1490           address branch_pc = pc;                                            \
1491           /* Profile branch. */                                              \
1492           BI_PROFILE_UPDATE_BRANCH(/*is_taken=*/cmp);                        \
1493           UPDATE_PC_AND_TOS(skip, -1);                                       \
1494           DO_BACKEDGE_CHECKS(skip, branch_pc);                               \
1495           CONTINUE;                                                          \
1496       }
1497 
1498 #define NULL_COMPARISON_OP(name)                                             \
1499       CASE(_if##name): {                                                     \
1500           const bool cmp = ((STACK_OBJECT(-1) == NULL));                     \
1501           int skip = cmp                                                     \
1502                       ? (int16_t)Bytes::get_Java_u2(pc + 1) : 3;             \
1503           address branch_pc = pc;                                            \
1504           /* Profile branch. */                                              \
1505           BI_PROFILE_UPDATE_BRANCH(/*is_taken=*/cmp);                        \
1506           UPDATE_PC_AND_TOS(skip, -1);                                       \
1507           DO_BACKEDGE_CHECKS(skip, branch_pc);                               \
1508           CONTINUE;                                                          \
1509       }
1510       COMPARISON_OP(lt, <);
1511       COMPARISON_OP(gt, >);
1512       COMPARISON_OP(le, <=);
1513       COMPARISON_OP(ge, >=);
1514       COMPARISON_OP2(eq, ==);  /* include ref comparison */
1515       COMPARISON_OP2(ne, !=);  /* include ref comparison */
1516       NULL_COMPARISON_OP(null);
1517       NULL_COMPARISON_NOT_OP(nonnull);
1518 
1519       /* Goto pc at specified offset in switch table. */
1520 
1521       CASE(_tableswitch): {
1522           jint* lpc  = (jint*)VMalignWordUp(pc+1);
1523           int32_t  key  = STACK_INT(-1);
1524           int32_t  low  = Bytes::get_Java_u4((address)&lpc[1]);
1525           int32_t  high = Bytes::get_Java_u4((address)&lpc[2]);
1526           int32_t  skip;
1527           key -= low;
1528           if (((uint32_t) key > (uint32_t)(high - low))) {
1529             key = -1;
1530             skip = Bytes::get_Java_u4((address)&lpc[0]);
1531           } else {
1532             skip = Bytes::get_Java_u4((address)&lpc[key + 3]);
1533           }
1534           // Profile switch.
1535           BI_PROFILE_UPDATE_SWITCH(/*switch_index=*/key);
1536           // Does this really need a full backedge check (osr)?
1537           address branch_pc = pc;
1538           UPDATE_PC_AND_TOS(skip, -1);
1539           DO_BACKEDGE_CHECKS(skip, branch_pc);
1540           CONTINUE;
1541       }
1542 
1543       /* Goto pc whose table entry matches specified key. */
1544 
1545       CASE(_lookupswitch): {
1546           jint* lpc  = (jint*)VMalignWordUp(pc+1);
1547           int32_t  key  = STACK_INT(-1);
1548           int32_t  skip = Bytes::get_Java_u4((address) lpc); /* default amount */
1549           // Remember index.
1550           int      index = -1;
1551           int      newindex = 0;
1552           int32_t  npairs = Bytes::get_Java_u4((address) &lpc[1]);
1553           while (--npairs >= 0) {
1554             lpc += 2;
1555             if (key == (int32_t)Bytes::get_Java_u4((address)lpc)) {
1556               skip = Bytes::get_Java_u4((address)&lpc[1]);
1557               index = newindex;
1558               break;
1559             }
1560             newindex += 1;
1561           }
1562           // Profile switch.
1563           BI_PROFILE_UPDATE_SWITCH(/*switch_index=*/index);
1564           address branch_pc = pc;
1565           UPDATE_PC_AND_TOS(skip, -1);
1566           DO_BACKEDGE_CHECKS(skip, branch_pc);
1567           CONTINUE;
1568       }
1569 
1570       CASE(_fcmpl):
1571       CASE(_fcmpg):
1572       {
1573           SET_STACK_INT(VMfloatCompare(STACK_FLOAT(-2),
1574                                         STACK_FLOAT(-1),
1575                                         (opcode == Bytecodes::_fcmpl ? -1 : 1)),
1576                         -2);
1577           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1);
1578       }
1579 
1580       CASE(_dcmpl):
1581       CASE(_dcmpg):
1582       {
1583           int r = VMdoubleCompare(STACK_DOUBLE(-3),
1584                                   STACK_DOUBLE(-1),
1585                                   (opcode == Bytecodes::_dcmpl ? -1 : 1));
1586           MORE_STACK(-4); // Pop
1587           SET_STACK_INT(r, 0);
1588           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);
1589       }
1590 
1591       CASE(_lcmp):
1592       {
1593           int r = VMlongCompare(STACK_LONG(-3), STACK_LONG(-1));
1594           MORE_STACK(-4);
1595           SET_STACK_INT(r, 0);
1596           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);
1597       }
1598 
1599 
1600       /* Return from a method */
1601 
1602       CASE(_areturn):
1603       CASE(_ireturn):
1604       CASE(_freturn):
1605       {
1606           // Allow a safepoint before returning to frame manager.
1607           SAFEPOINT;
1608 
1609           goto handle_return;
1610       }
1611 
1612       CASE(_lreturn):
1613       CASE(_dreturn):
1614       {
1615           // Allow a safepoint before returning to frame manager.
1616           SAFEPOINT;
1617           goto handle_return;
1618       }
1619 
1620       CASE(_return_register_finalizer): {
1621 
1622           oop rcvr = LOCALS_OBJECT(0);
1623           VERIFY_OOP(rcvr);
1624           if (rcvr->klass()->has_finalizer()) {
1625             CALL_VM(InterpreterRuntime::register_finalizer(THREAD, rcvr), handle_exception);
1626           }
1627           goto handle_return;
1628       }
1629       CASE(_return): {
1630 
1631           // Allow a safepoint before returning to frame manager.
1632           SAFEPOINT;
1633           goto handle_return;
1634       }
1635 
1636       /* Array access byte-codes */
1637 
1638       /* Every array access byte-code starts out like this */
1639 //        arrayOopDesc* arrObj = (arrayOopDesc*)STACK_OBJECT(arrayOff);
1640 #define ARRAY_INTRO(arrayOff)                                                  \
1641       arrayOop arrObj = (arrayOop)STACK_OBJECT(arrayOff);                      \
1642       jint     index  = STACK_INT(arrayOff + 1);                               \
1643       char message[jintAsStringSize];                                          \
1644       CHECK_NULL(arrObj);                                                      \
1645       if ((uint32_t)index >= (uint32_t)arrObj->length()) {                     \
1646           sprintf(message, "%d", index);                                       \
1647           VM_JAVA_ERROR(vmSymbols::java_lang_ArrayIndexOutOfBoundsException(), \
1648                         message, note_rangeCheck_trap);                        \
1649       }
1650 
1651       /* 32-bit loads. These handle conversion from < 32-bit types */
1652 #define ARRAY_LOADTO32(T, T2, format, stackRes, extra)                                \
1653       {                                                                               \
1654           ARRAY_INTRO(-2);                                                            \
1655           (void)extra;                                                                \
1656           SET_ ## stackRes(*(T2 *)(((address) arrObj->base(T)) + index * sizeof(T2)), \
1657                            -2);                                                       \
1658           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1);                                      \
1659       }
1660 
1661       /* 64-bit loads */
1662 #define ARRAY_LOADTO64(T,T2, stackRes, extra)                                              \
1663       {                                                                                    \
1664           ARRAY_INTRO(-2);                                                                 \
1665           SET_ ## stackRes(*(T2 *)(((address) arrObj->base(T)) + index * sizeof(T2)), -1); \
1666           (void)extra;                                                                     \
1667           UPDATE_PC_AND_CONTINUE(1);                                                       \
1668       }
1669 
1670       CASE(_iaload):
1671           ARRAY_LOADTO32(T_INT, jint,   "%d",   STACK_INT, 0);
1672       CASE(_faload):
1673           ARRAY_LOADTO32(T_FLOAT, jfloat, "%f",   STACK_FLOAT, 0);
1674       CASE(_aaload): {
1675           ARRAY_INTRO(-2);
1676           SET_STACK_OBJECT(((objArrayOop) arrObj)->obj_at(index), -2);
1677           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1);
1678       }
1679       CASE(_baload):
1680           ARRAY_LOADTO32(T_BYTE, jbyte,  "%d",   STACK_INT, 0);
1681       CASE(_caload):
1682           ARRAY_LOADTO32(T_CHAR,  jchar, "%d",   STACK_INT, 0);
1683       CASE(_saload):
1684           ARRAY_LOADTO32(T_SHORT, jshort, "%d",   STACK_INT, 0);
1685       CASE(_laload):
1686           ARRAY_LOADTO64(T_LONG, jlong, STACK_LONG, 0);
1687       CASE(_daload):
1688           ARRAY_LOADTO64(T_DOUBLE, jdouble, STACK_DOUBLE, 0);
1689 
1690       /* 32-bit stores. These handle conversion to < 32-bit types */
1691 #define ARRAY_STOREFROM32(T, T2, format, stackSrc, extra)                            \
1692       {                                                                              \
1693           ARRAY_INTRO(-3);                                                           \
1694           (void)extra;                                                               \
1695           *(T2 *)(((address) arrObj->base(T)) + index * sizeof(T2)) = stackSrc( -1); \
1696           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -3);                                     \
1697       }
1698 
1699       /* 64-bit stores */
1700 #define ARRAY_STOREFROM64(T, T2, stackSrc, extra)                                    \
1701       {                                                                              \
1702           ARRAY_INTRO(-4);                                                           \
1703           (void)extra;                                                               \
1704           *(T2 *)(((address) arrObj->base(T)) + index * sizeof(T2)) = stackSrc( -1); \
1705           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -4);                                     \
1706       }
1707 
1708       CASE(_iastore):
1709           ARRAY_STOREFROM32(T_INT, jint,   "%d",   STACK_INT, 0);
1710       CASE(_fastore):
1711           ARRAY_STOREFROM32(T_FLOAT, jfloat, "%f",   STACK_FLOAT, 0);
1712       /*
1713        * This one looks different because of the assignability check
1714        */
1715       CASE(_aastore): {
1716           oop rhsObject = STACK_OBJECT(-1);
1717           VERIFY_OOP(rhsObject);
1718           ARRAY_INTRO( -3);
1719           // arrObj, index are set
1720           if (rhsObject != NULL) {
1721             /* Check assignability of rhsObject into arrObj */
1722             Klass* rhsKlass = rhsObject->klass(); // EBX (subclass)
1723             Klass* elemKlass = ObjArrayKlass::cast(arrObj->klass())->element_klass(); // superklass EAX
1724             //
1725             // Check for compatibilty. This check must not GC!!
1726             // Seems way more expensive now that we must dispatch
1727             //
1728             if (rhsKlass != elemKlass && !rhsKlass->is_subtype_of(elemKlass)) { // ebx->is...
1729               // Decrement counter if subtype check failed.
1730               BI_PROFILE_SUBTYPECHECK_FAILED(rhsKlass);
1731               VM_JAVA_ERROR(vmSymbols::java_lang_ArrayStoreException(), "", note_arrayCheck_trap);
1732             }
1733             // Profile checkcast with null_seen and receiver.
1734             BI_PROFILE_UPDATE_CHECKCAST(/*null_seen=*/false, rhsKlass);
1735           } else {
1736             // Profile checkcast with null_seen and receiver.
1737             BI_PROFILE_UPDATE_CHECKCAST(/*null_seen=*/true, NULL);
1738           }
1739           ((objArrayOop) arrObj)->obj_at_put(index, rhsObject);
1740           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -3);
1741       }
1742       CASE(_bastore): {
1743           ARRAY_INTRO(-3);
1744           int item = STACK_INT(-1);
1745           // if it is a T_BOOLEAN array, mask the stored value to 0/1
1746           if (arrObj->klass() == Universe::boolArrayKlassObj()) {
1747             item &= 1;
1748           } else {
1749             assert(arrObj->klass() == Universe::byteArrayKlassObj(),
1750                    "should be byte array otherwise");
1751           }
1752           ((typeArrayOop)arrObj)->byte_at_put(index, item);
1753           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -3);
1754       }
1755       CASE(_castore):
1756           ARRAY_STOREFROM32(T_CHAR, jchar,  "%d",   STACK_INT, 0);
1757       CASE(_sastore):
1758           ARRAY_STOREFROM32(T_SHORT, jshort, "%d",   STACK_INT, 0);
1759       CASE(_lastore):
1760           ARRAY_STOREFROM64(T_LONG, jlong, STACK_LONG, 0);
1761       CASE(_dastore):
1762           ARRAY_STOREFROM64(T_DOUBLE, jdouble, STACK_DOUBLE, 0);
1763 
1764       CASE(_arraylength):
1765       {
1766           arrayOop ary = (arrayOop) STACK_OBJECT(-1);
1767           CHECK_NULL(ary);
1768           SET_STACK_INT(ary->length(), -1);
1769           UPDATE_PC_AND_CONTINUE(1);
1770       }
1771 
1772       /* monitorenter and monitorexit for locking/unlocking an object */
1773 
1774       CASE(_monitorenter): {
1775         oop lockee = STACK_OBJECT(-1);
1776         // derefing's lockee ought to provoke implicit null check
1777         CHECK_NULL(lockee);
1778         // find a free monitor or one already allocated for this object
1779         // if we find a matching object then we need a new monitor
1780         // since this is recursive enter
1781         BasicObjectLock* limit = istate->monitor_base();
1782         BasicObjectLock* most_recent = (BasicObjectLock*) istate->stack_base();
1783         BasicObjectLock* entry = NULL;
1784         while (most_recent != limit ) {
1785           if (most_recent->obj() == NULL) entry = most_recent;
1786           else if (most_recent->obj() == lockee) break;
1787           most_recent++;
1788         }
1789         if (entry != NULL) {
1790           entry->set_obj(lockee);
1791           int success = false;
1792           uintptr_t epoch_mask_in_place = (uintptr_t)markOopDesc::epoch_mask_in_place;
1793 
1794           markOop mark = lockee->mark();
1795           intptr_t hash = (intptr_t) markOopDesc::no_hash;
1796           // implies UseBiasedLocking
1797           if (mark->has_bias_pattern()) {
1798             uintptr_t thread_ident;
1799             uintptr_t anticipated_bias_locking_value;
1800             thread_ident = (uintptr_t)istate->thread();
1801             anticipated_bias_locking_value =
1802               (((uintptr_t)lockee->klass()->prototype_header() | thread_ident) ^ (uintptr_t)mark) &
1803               ~((uintptr_t) markOopDesc::age_mask_in_place);
1804 
1805             if  (anticipated_bias_locking_value == 0) {
1806               // already biased towards this thread, nothing to do
1807               if (PrintBiasedLockingStatistics) {
1808                 (* BiasedLocking::biased_lock_entry_count_addr())++;
1809               }
1810               success = true;
1811             }
1812             else if ((anticipated_bias_locking_value & markOopDesc::biased_lock_mask_in_place) != 0) {
1813               // try revoke bias
1814               markOop header = lockee->klass()->prototype_header();
1815               if (hash != markOopDesc::no_hash) {
1816                 header = header->copy_set_hash(hash);
1817               }
1818               if (Atomic::cmpxchg(header, lockee->mark_addr(), mark) == mark) {
1819                 if (PrintBiasedLockingStatistics)
1820                   (*BiasedLocking::revoked_lock_entry_count_addr())++;
1821               }
1822             }
1823             else if ((anticipated_bias_locking_value & epoch_mask_in_place) !=0) {
1824               // try rebias
1825               markOop new_header = (markOop) ( (intptr_t) lockee->klass()->prototype_header() | thread_ident);
1826               if (hash != markOopDesc::no_hash) {
1827                 new_header = new_header->copy_set_hash(hash);
1828               }
1829               if (Atomic::cmpxchg(new_header, lockee->mark_addr(), mark) == mark) {
1830                 if (PrintBiasedLockingStatistics)
1831                   (* BiasedLocking::rebiased_lock_entry_count_addr())++;
1832               }
1833               else {
1834                 CALL_VM(InterpreterRuntime::monitorenter(THREAD, entry), handle_exception);
1835               }
1836               success = true;
1837             }
1838             else {
1839               // try to bias towards thread in case object is anonymously biased
1840               markOop header = (markOop) ((uintptr_t) mark & ((uintptr_t)markOopDesc::biased_lock_mask_in_place |
1841                                                               (uintptr_t)markOopDesc::age_mask_in_place |
1842                                                               epoch_mask_in_place));
1843               if (hash != markOopDesc::no_hash) {
1844                 header = header->copy_set_hash(hash);
1845               }
1846               markOop new_header = (markOop) ((uintptr_t) header | thread_ident);
1847               // debugging hint
1848               DEBUG_ONLY(entry->lock()->set_displaced_header((markOop) (uintptr_t) 0xdeaddead);)
1849               if (Atomic::cmpxchg(new_header, lockee->mark_addr(), header) == header) {
1850                 if (PrintBiasedLockingStatistics)
1851                   (* BiasedLocking::anonymously_biased_lock_entry_count_addr())++;
1852               }
1853               else {
1854                 CALL_VM(InterpreterRuntime::monitorenter(THREAD, entry), handle_exception);
1855               }
1856               success = true;
1857             }
1858           }
1859 
1860           // traditional lightweight locking
1861           if (!success) {
1862             markOop displaced = lockee->mark()->set_unlocked();
1863             entry->lock()->set_displaced_header(displaced);
1864             bool call_vm = UseHeavyMonitors;
1865             if (call_vm || Atomic::cmpxchg((markOop)entry, lockee->mark_addr(), displaced) != displaced) {
1866               // Is it simple recursive case?
1867               if (!call_vm && THREAD->is_lock_owned((address) displaced->clear_lock_bits())) {
1868                 entry->lock()->set_displaced_header(NULL);
1869               } else {
1870                 CALL_VM(InterpreterRuntime::monitorenter(THREAD, entry), handle_exception);
1871               }
1872             }
1873           }
1874           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1);
1875         } else {
1876           istate->set_msg(more_monitors);
1877           UPDATE_PC_AND_RETURN(0); // Re-execute
1878         }
1879       }
1880 
1881       CASE(_monitorexit): {
1882         oop lockee = STACK_OBJECT(-1);
1883         CHECK_NULL(lockee);
1884         // derefing's lockee ought to provoke implicit null check
1885         // find our monitor slot
1886         BasicObjectLock* limit = istate->monitor_base();
1887         BasicObjectLock* most_recent = (BasicObjectLock*) istate->stack_base();
1888         while (most_recent != limit ) {
1889           if ((most_recent)->obj() == lockee) {
1890             BasicLock* lock = most_recent->lock();
1891             markOop header = lock->displaced_header();
1892             most_recent->set_obj(NULL);
1893             if (!lockee->mark()->has_bias_pattern()) {
1894               bool call_vm = UseHeavyMonitors;
1895               // If it isn't recursive we either must swap old header or call the runtime
1896               if (header != NULL || call_vm) {
1897                 markOop old_header = markOopDesc::encode(lock);
1898                 if (call_vm || lockee->cas_set_mark(header, old_header) != old_header) {
1899                   // restore object for the slow case
1900                   most_recent->set_obj(lockee);
1901                   CALL_VM(InterpreterRuntime::monitorexit(THREAD, most_recent), handle_exception);
1902                 }
1903               }
1904             }
1905             UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1);
1906           }
1907           most_recent++;
1908         }
1909         // Need to throw illegal monitor state exception
1910         CALL_VM(InterpreterRuntime::throw_illegal_monitor_state_exception(THREAD), handle_exception);
1911         ShouldNotReachHere();
1912       }
1913 
1914       /* All of the non-quick opcodes. */
1915 
1916       /* -Set clobbersCpIndex true if the quickened opcode clobbers the
1917        *  constant pool index in the instruction.
1918        */
1919       CASE(_getfield):
1920       CASE(_getstatic):
1921         {
1922           u2 index;
1923           ConstantPoolCacheEntry* cache;
1924           index = Bytes::get_native_u2(pc+1);
1925 
1926           // QQQ Need to make this as inlined as possible. Probably need to
1927           // split all the bytecode cases out so c++ compiler has a chance
1928           // for constant prop to fold everything possible away.
1929 
1930           cache = cp->entry_at(index);
1931           if (!cache->is_resolved((Bytecodes::Code)opcode)) {
1932             CALL_VM(InterpreterRuntime::resolve_from_cache(THREAD, (Bytecodes::Code)opcode),
1933                     handle_exception);
1934             cache = cp->entry_at(index);
1935           }
1936 
1937 #ifdef VM_JVMTI
1938           if (_jvmti_interp_events) {
1939             int *count_addr;
1940             oop obj;
1941             // Check to see if a field modification watch has been set
1942             // before we take the time to call into the VM.
1943             count_addr = (int *)JvmtiExport::get_field_access_count_addr();
1944             if ( *count_addr > 0 ) {
1945               if ((Bytecodes::Code)opcode == Bytecodes::_getstatic) {
1946                 obj = (oop)NULL;
1947               } else {
1948                 obj = (oop) STACK_OBJECT(-1);
1949                 VERIFY_OOP(obj);
1950               }
1951               CALL_VM(InterpreterRuntime::post_field_access(THREAD,
1952                                           obj,
1953                                           cache),
1954                                           handle_exception);
1955             }
1956           }
1957 #endif /* VM_JVMTI */
1958 
1959           oop obj;
1960           if ((Bytecodes::Code)opcode == Bytecodes::_getstatic) {
1961             Klass* k = cache->f1_as_klass();
1962             obj = k->java_mirror();
1963             MORE_STACK(1);  // Assume single slot push
1964           } else {
1965             obj = (oop) STACK_OBJECT(-1);
1966             CHECK_NULL(obj);
1967           }
1968 
1969           //
1970           // Now store the result on the stack
1971           //
1972           TosState tos_type = cache->flag_state();
1973           int field_offset = cache->f2_as_index();
1974           if (cache->is_volatile()) {
1975             if (support_IRIW_for_not_multiple_copy_atomic_cpu) {
1976               OrderAccess::fence();
1977             }
1978             if (tos_type == atos) {
1979               VERIFY_OOP(obj->obj_field_acquire(field_offset));
1980               SET_STACK_OBJECT(obj->obj_field_acquire(field_offset), -1);
1981             } else if (tos_type == itos) {
1982               SET_STACK_INT(obj->int_field_acquire(field_offset), -1);
1983             } else if (tos_type == ltos) {
1984               SET_STACK_LONG(obj->long_field_acquire(field_offset), 0);
1985               MORE_STACK(1);
1986             } else if (tos_type == btos || tos_type == ztos) {
1987               SET_STACK_INT(obj->byte_field_acquire(field_offset), -1);
1988             } else if (tos_type == ctos) {
1989               SET_STACK_INT(obj->char_field_acquire(field_offset), -1);
1990             } else if (tos_type == stos) {
1991               SET_STACK_INT(obj->short_field_acquire(field_offset), -1);
1992             } else if (tos_type == ftos) {
1993               SET_STACK_FLOAT(obj->float_field_acquire(field_offset), -1);
1994             } else {
1995               SET_STACK_DOUBLE(obj->double_field_acquire(field_offset), 0);
1996               MORE_STACK(1);
1997             }
1998           } else {
1999             if (tos_type == atos) {
2000               VERIFY_OOP(obj->obj_field(field_offset));
2001               SET_STACK_OBJECT(obj->obj_field(field_offset), -1);
2002             } else if (tos_type == itos) {
2003               SET_STACK_INT(obj->int_field(field_offset), -1);
2004             } else if (tos_type == ltos) {
2005               SET_STACK_LONG(obj->long_field(field_offset), 0);
2006               MORE_STACK(1);
2007             } else if (tos_type == btos || tos_type == ztos) {
2008               SET_STACK_INT(obj->byte_field(field_offset), -1);
2009             } else if (tos_type == ctos) {
2010               SET_STACK_INT(obj->char_field(field_offset), -1);
2011             } else if (tos_type == stos) {
2012               SET_STACK_INT(obj->short_field(field_offset), -1);
2013             } else if (tos_type == ftos) {
2014               SET_STACK_FLOAT(obj->float_field(field_offset), -1);
2015             } else {
2016               SET_STACK_DOUBLE(obj->double_field(field_offset), 0);
2017               MORE_STACK(1);
2018             }
2019           }
2020 
2021           UPDATE_PC_AND_CONTINUE(3);
2022          }
2023 
2024       CASE(_putfield):
2025       CASE(_putstatic):
2026         {
2027           u2 index = Bytes::get_native_u2(pc+1);
2028           ConstantPoolCacheEntry* cache = cp->entry_at(index);
2029           if (!cache->is_resolved((Bytecodes::Code)opcode)) {
2030             CALL_VM(InterpreterRuntime::resolve_from_cache(THREAD, (Bytecodes::Code)opcode),
2031                     handle_exception);
2032             cache = cp->entry_at(index);
2033           }
2034 
2035 #ifdef VM_JVMTI
2036           if (_jvmti_interp_events) {
2037             int *count_addr;
2038             oop obj;
2039             // Check to see if a field modification watch has been set
2040             // before we take the time to call into the VM.
2041             count_addr = (int *)JvmtiExport::get_field_modification_count_addr();
2042             if ( *count_addr > 0 ) {
2043               if ((Bytecodes::Code)opcode == Bytecodes::_putstatic) {
2044                 obj = (oop)NULL;
2045               }
2046               else {
2047                 if (cache->is_long() || cache->is_double()) {
2048                   obj = (oop) STACK_OBJECT(-3);
2049                 } else {
2050                   obj = (oop) STACK_OBJECT(-2);
2051                 }
2052                 VERIFY_OOP(obj);
2053               }
2054 
2055               CALL_VM(InterpreterRuntime::post_field_modification(THREAD,
2056                                           obj,
2057                                           cache,
2058                                           (jvalue *)STACK_SLOT(-1)),
2059                                           handle_exception);
2060             }
2061           }
2062 #endif /* VM_JVMTI */
2063 
2064           // QQQ Need to make this as inlined as possible. Probably need to split all the bytecode cases
2065           // out so c++ compiler has a chance for constant prop to fold everything possible away.
2066 
2067           oop obj;
2068           int count;
2069           TosState tos_type = cache->flag_state();
2070 
2071           count = -1;
2072           if (tos_type == ltos || tos_type == dtos) {
2073             --count;
2074           }
2075           if ((Bytecodes::Code)opcode == Bytecodes::_putstatic) {
2076             Klass* k = cache->f1_as_klass();
2077             obj = k->java_mirror();
2078           } else {
2079             --count;
2080             obj = (oop) STACK_OBJECT(count);
2081             CHECK_NULL(obj);
2082           }
2083 
2084           //
2085           // Now store the result
2086           //
2087           int field_offset = cache->f2_as_index();
2088           if (cache->is_volatile()) {
2089             if (tos_type == itos) {
2090               obj->release_int_field_put(field_offset, STACK_INT(-1));
2091             } else if (tos_type == atos) {
2092               VERIFY_OOP(STACK_OBJECT(-1));
2093               obj->release_obj_field_put(field_offset, STACK_OBJECT(-1));
2094             } else if (tos_type == btos) {
2095               obj->release_byte_field_put(field_offset, STACK_INT(-1));
2096             } else if (tos_type == ztos) {
2097               int bool_field = STACK_INT(-1);  // only store LSB
2098               obj->release_byte_field_put(field_offset, (bool_field & 1));
2099             } else if (tos_type == ltos) {
2100               obj->release_long_field_put(field_offset, STACK_LONG(-1));
2101             } else if (tos_type == ctos) {
2102               obj->release_char_field_put(field_offset, STACK_INT(-1));
2103             } else if (tos_type == stos) {
2104               obj->release_short_field_put(field_offset, STACK_INT(-1));
2105             } else if (tos_type == ftos) {
2106               obj->release_float_field_put(field_offset, STACK_FLOAT(-1));
2107             } else {
2108               obj->release_double_field_put(field_offset, STACK_DOUBLE(-1));
2109             }
2110             OrderAccess::storeload();
2111           } else {
2112             if (tos_type == itos) {
2113               obj->int_field_put(field_offset, STACK_INT(-1));
2114             } else if (tos_type == atos) {
2115               VERIFY_OOP(STACK_OBJECT(-1));
2116               obj->obj_field_put(field_offset, STACK_OBJECT(-1));
2117             } else if (tos_type == btos) {
2118               obj->byte_field_put(field_offset, STACK_INT(-1));
2119             } else if (tos_type == ztos) {
2120               int bool_field = STACK_INT(-1);  // only store LSB
2121               obj->byte_field_put(field_offset, (bool_field & 1));
2122             } else if (tos_type == ltos) {
2123               obj->long_field_put(field_offset, STACK_LONG(-1));
2124             } else if (tos_type == ctos) {
2125               obj->char_field_put(field_offset, STACK_INT(-1));
2126             } else if (tos_type == stos) {
2127               obj->short_field_put(field_offset, STACK_INT(-1));
2128             } else if (tos_type == ftos) {
2129               obj->float_field_put(field_offset, STACK_FLOAT(-1));
2130             } else {
2131               obj->double_field_put(field_offset, STACK_DOUBLE(-1));
2132             }
2133           }
2134 
2135           UPDATE_PC_AND_TOS_AND_CONTINUE(3, count);
2136         }
2137 
2138       CASE(_new): {
2139         u2 index = Bytes::get_Java_u2(pc+1);
2140         ConstantPool* constants = istate->method()->constants();
2141         if (!constants->tag_at(index).is_unresolved_klass()) {
2142           // Make sure klass is initialized and doesn't have a finalizer
2143           Klass* entry = constants->resolved_klass_at(index);
2144           InstanceKlass* ik = InstanceKlass::cast(entry);
2145           if (ik->is_initialized() && ik->can_be_fastpath_allocated() ) {
2146             size_t obj_size = ik->size_helper();
2147             oop result = NULL;
2148             // If the TLAB isn't pre-zeroed then we'll have to do it
2149             bool need_zero = !ZeroTLAB;
2150             if (UseTLAB) {
2151               result = (oop) THREAD->tlab().allocate(obj_size);
2152             }
2153             // Disable non-TLAB-based fast-path, because profiling requires that all
2154             // allocations go through InterpreterRuntime::_new() if THREAD->tlab().allocate
2155             // returns NULL.
2156 #ifndef CC_INTERP_PROFILE
2157             if (result == NULL) {
2158               need_zero = true;
2159               // Try allocate in shared eden
2160             retry:
2161               HeapWord* compare_to = *Universe::heap()->top_addr();
2162               HeapWord* new_top = compare_to + obj_size;
2163               if (new_top <= *Universe::heap()->end_addr()) {
2164                 if (Atomic::cmpxchg(new_top, Universe::heap()->top_addr(), compare_to) != compare_to) {
2165                   goto retry;
2166                 }
2167                 result = (oop) compare_to;
2168               }
2169             }
2170 #endif
2171             if (result != NULL) {
2172               // Initialize object (if nonzero size and need) and then the header
2173               if (need_zero ) {
2174                 HeapWord* to_zero = (HeapWord*) result + sizeof(oopDesc) / oopSize;
2175                 obj_size -= sizeof(oopDesc) / oopSize;
2176                 if (obj_size > 0 ) {
2177                   memset(to_zero, 0, obj_size * HeapWordSize);
2178                 }
2179               }
2180               if (UseBiasedLocking) {
2181                 result->set_mark(ik->prototype_header());
2182               } else {
2183                 result->set_mark(markOopDesc::prototype());
2184               }
2185               result->set_klass_gap(0);
2186               result->set_klass(ik);
2187               // Must prevent reordering of stores for object initialization
2188               // with stores that publish the new object.
2189               OrderAccess::storestore();
2190               SET_STACK_OBJECT(result, 0);
2191               UPDATE_PC_AND_TOS_AND_CONTINUE(3, 1);
2192             }
2193           }
2194         }
2195         // Slow case allocation
2196         CALL_VM(InterpreterRuntime::_new(THREAD, METHOD->constants(), index),
2197                 handle_exception);
2198         // Must prevent reordering of stores for object initialization
2199         // with stores that publish the new object.
2200         OrderAccess::storestore();
2201         SET_STACK_OBJECT(THREAD->vm_result(), 0);
2202         THREAD->set_vm_result(NULL);
2203         UPDATE_PC_AND_TOS_AND_CONTINUE(3, 1);
2204       }
2205       CASE(_anewarray): {
2206         u2 index = Bytes::get_Java_u2(pc+1);
2207         jint size = STACK_INT(-1);
2208         CALL_VM(InterpreterRuntime::anewarray(THREAD, METHOD->constants(), index, size),
2209                 handle_exception);
2210         // Must prevent reordering of stores for object initialization
2211         // with stores that publish the new object.
2212         OrderAccess::storestore();
2213         SET_STACK_OBJECT(THREAD->vm_result(), -1);
2214         THREAD->set_vm_result(NULL);
2215         UPDATE_PC_AND_CONTINUE(3);
2216       }
2217       CASE(_multianewarray): {
2218         jint dims = *(pc+3);
2219         jint size = STACK_INT(-1);
2220         // stack grows down, dimensions are up!
2221         jint *dimarray =
2222                    (jint*)&topOfStack[dims * Interpreter::stackElementWords+
2223                                       Interpreter::stackElementWords-1];
2224         //adjust pointer to start of stack element
2225         CALL_VM(InterpreterRuntime::multianewarray(THREAD, dimarray),
2226                 handle_exception);
2227         // Must prevent reordering of stores for object initialization
2228         // with stores that publish the new object.
2229         OrderAccess::storestore();
2230         SET_STACK_OBJECT(THREAD->vm_result(), -dims);
2231         THREAD->set_vm_result(NULL);
2232         UPDATE_PC_AND_TOS_AND_CONTINUE(4, -(dims-1));
2233       }
2234       CASE(_checkcast):
2235           if (STACK_OBJECT(-1) != NULL) {
2236             VERIFY_OOP(STACK_OBJECT(-1));
2237             u2 index = Bytes::get_Java_u2(pc+1);
2238             // Constant pool may have actual klass or unresolved klass. If it is
2239             // unresolved we must resolve it.
2240             if (METHOD->constants()->tag_at(index).is_unresolved_klass()) {
2241               CALL_VM(InterpreterRuntime::quicken_io_cc(THREAD), handle_exception);
2242             }
2243             Klass* klassOf = (Klass*) METHOD->constants()->resolved_klass_at(index);
2244             Klass* objKlass = STACK_OBJECT(-1)->klass(); // ebx
2245             //
2246             // Check for compatibilty. This check must not GC!!
2247             // Seems way more expensive now that we must dispatch.
2248             //
2249             if (objKlass != klassOf && !objKlass->is_subtype_of(klassOf)) {
2250               // Decrement counter at checkcast.
2251               BI_PROFILE_SUBTYPECHECK_FAILED(objKlass);
2252               ResourceMark rm(THREAD);
2253               char* message = SharedRuntime::generate_class_cast_message(
2254                 objKlass, klassOf);
2255               VM_JAVA_ERROR(vmSymbols::java_lang_ClassCastException(), message, note_classCheck_trap);
2256             }
2257             // Profile checkcast with null_seen and receiver.
2258             BI_PROFILE_UPDATE_CHECKCAST(/*null_seen=*/false, objKlass);
2259           } else {
2260             // Profile checkcast with null_seen and receiver.
2261             BI_PROFILE_UPDATE_CHECKCAST(/*null_seen=*/true, NULL);
2262           }
2263           UPDATE_PC_AND_CONTINUE(3);
2264 
2265       CASE(_instanceof):
2266           if (STACK_OBJECT(-1) == NULL) {
2267             SET_STACK_INT(0, -1);
2268             // Profile instanceof with null_seen and receiver.
2269             BI_PROFILE_UPDATE_INSTANCEOF(/*null_seen=*/true, NULL);
2270           } else {
2271             VERIFY_OOP(STACK_OBJECT(-1));
2272             u2 index = Bytes::get_Java_u2(pc+1);
2273             // Constant pool may have actual klass or unresolved klass. If it is
2274             // unresolved we must resolve it.
2275             if (METHOD->constants()->tag_at(index).is_unresolved_klass()) {
2276               CALL_VM(InterpreterRuntime::quicken_io_cc(THREAD), handle_exception);
2277             }
2278             Klass* klassOf = (Klass*) METHOD->constants()->resolved_klass_at(index);
2279             Klass* objKlass = STACK_OBJECT(-1)->klass();
2280             //
2281             // Check for compatibilty. This check must not GC!!
2282             // Seems way more expensive now that we must dispatch.
2283             //
2284             if ( objKlass == klassOf || objKlass->is_subtype_of(klassOf)) {
2285               SET_STACK_INT(1, -1);
2286             } else {
2287               SET_STACK_INT(0, -1);
2288               // Decrement counter at checkcast.
2289               BI_PROFILE_SUBTYPECHECK_FAILED(objKlass);
2290             }
2291             // Profile instanceof with null_seen and receiver.
2292             BI_PROFILE_UPDATE_INSTANCEOF(/*null_seen=*/false, objKlass);
2293           }
2294           UPDATE_PC_AND_CONTINUE(3);
2295 
2296       CASE(_ldc_w):
2297       CASE(_ldc):
2298         {
2299           u2 index;
2300           bool wide = false;
2301           int incr = 2; // frequent case
2302           if (opcode == Bytecodes::_ldc) {
2303             index = pc[1];
2304           } else {
2305             index = Bytes::get_Java_u2(pc+1);
2306             incr = 3;
2307             wide = true;
2308           }
2309 
2310           ConstantPool* constants = METHOD->constants();
2311           switch (constants->tag_at(index).value()) {
2312           case JVM_CONSTANT_Integer:
2313             SET_STACK_INT(constants->int_at(index), 0);
2314             break;
2315 
2316           case JVM_CONSTANT_Float:
2317             SET_STACK_FLOAT(constants->float_at(index), 0);
2318             break;
2319 
2320           case JVM_CONSTANT_String:
2321             {
2322               oop result = constants->resolved_references()->obj_at(index);
2323               if (result == NULL) {
2324                 CALL_VM(InterpreterRuntime::resolve_ldc(THREAD, (Bytecodes::Code) opcode), handle_exception);
2325                 SET_STACK_OBJECT(THREAD->vm_result(), 0);
2326                 THREAD->set_vm_result(NULL);
2327               } else {
2328                 VERIFY_OOP(result);
2329                 SET_STACK_OBJECT(result, 0);
2330               }
2331             break;
2332             }
2333 
2334           case JVM_CONSTANT_Class:
2335             VERIFY_OOP(constants->resolved_klass_at(index)->java_mirror());
2336             SET_STACK_OBJECT(constants->resolved_klass_at(index)->java_mirror(), 0);
2337             break;
2338 
2339           case JVM_CONSTANT_UnresolvedClass:
2340           case JVM_CONSTANT_UnresolvedClassInError:
2341             CALL_VM(InterpreterRuntime::ldc(THREAD, wide), handle_exception);
2342             SET_STACK_OBJECT(THREAD->vm_result(), 0);
2343             THREAD->set_vm_result(NULL);
2344             break;
2345 
2346           case JVM_CONSTANT_Dynamic:
2347             {
2348               oop result = constants->resolved_references()->obj_at(index);
2349               if (result == NULL) {
2350                 CALL_VM(InterpreterRuntime::resolve_ldc(THREAD, (Bytecodes::Code) opcode), handle_exception);
2351                 result = THREAD->vm_result();
2352               }
2353               VERIFY_OOP(result);
2354 
2355               jvalue value;
2356               BasicType type = java_lang_boxing_object::get_value(result, &value);
2357               switch (type) {
2358               case T_FLOAT:   SET_STACK_FLOAT(value.f, 0); break;
2359               case T_INT:     SET_STACK_INT(value.i, 0); break;
2360               case T_SHORT:   SET_STACK_INT(value.s, 0); break;
2361               case T_BYTE:    SET_STACK_INT(value.b, 0); break;
2362               case T_CHAR:    SET_STACK_INT(value.c, 0); break;
2363               case T_BOOLEAN: SET_STACK_INT(value.z, 0); break;
2364               default:  ShouldNotReachHere();
2365               }
2366 
2367               break;
2368             }
2369 
2370           default:  ShouldNotReachHere();
2371           }
2372           UPDATE_PC_AND_TOS_AND_CONTINUE(incr, 1);
2373         }
2374 
2375       CASE(_ldc2_w):
2376         {
2377           u2 index = Bytes::get_Java_u2(pc+1);
2378 
2379           ConstantPool* constants = METHOD->constants();
2380           switch (constants->tag_at(index).value()) {
2381 
2382           case JVM_CONSTANT_Long:
2383              SET_STACK_LONG(constants->long_at(index), 1);
2384             break;
2385 
2386           case JVM_CONSTANT_Double:
2387              SET_STACK_DOUBLE(constants->double_at(index), 1);
2388             break;
2389 
2390           case JVM_CONSTANT_Dynamic:
2391             {
2392               oop result = constants->resolved_references()->obj_at(index);
2393               if (result == NULL) {
2394                 CALL_VM(InterpreterRuntime::resolve_ldc(THREAD, (Bytecodes::Code) opcode), handle_exception);
2395                 result = THREAD->vm_result();
2396               }
2397               VERIFY_OOP(result);
2398 
2399               jvalue value;
2400               BasicType type = java_lang_boxing_object::get_value(result, &value);
2401               switch (type) {
2402               case T_DOUBLE: SET_STACK_DOUBLE(value.d, 1); break;
2403               case T_LONG:   SET_STACK_LONG(value.j, 1); break;
2404               default:  ShouldNotReachHere();
2405               }
2406 
2407               break;
2408             }
2409 
2410           default:  ShouldNotReachHere();
2411           }
2412           UPDATE_PC_AND_TOS_AND_CONTINUE(3, 2);
2413         }
2414 
2415       CASE(_fast_aldc_w):
2416       CASE(_fast_aldc): {
2417         u2 index;
2418         int incr;
2419         if (opcode == Bytecodes::_fast_aldc) {
2420           index = pc[1];
2421           incr = 2;
2422         } else {
2423           index = Bytes::get_native_u2(pc+1);
2424           incr = 3;
2425         }
2426 
2427         // We are resolved if the resolved_references array contains a non-null object (CallSite, etc.)
2428         // This kind of CP cache entry does not need to match the flags byte, because
2429         // there is a 1-1 relation between bytecode type and CP entry type.
2430         ConstantPool* constants = METHOD->constants();
2431         oop result = constants->resolved_references()->obj_at(index);
2432         if (result == NULL) {
2433           CALL_VM(InterpreterRuntime::resolve_ldc(THREAD, (Bytecodes::Code) opcode),
2434                   handle_exception);
2435           result = THREAD->vm_result();
2436         }
2437         if (result == Universe::the_null_sentinel())
2438           result = NULL;
2439 
2440         VERIFY_OOP(result);
2441         SET_STACK_OBJECT(result, 0);
2442         UPDATE_PC_AND_TOS_AND_CONTINUE(incr, 1);
2443       }
2444 
2445       CASE(_invokedynamic): {
2446 
2447         u4 index = Bytes::get_native_u4(pc+1);
2448         ConstantPoolCacheEntry* cache = cp->constant_pool()->invokedynamic_cp_cache_entry_at(index);
2449 
2450         // We are resolved if the resolved_references array contains a non-null object (CallSite, etc.)
2451         // This kind of CP cache entry does not need to match the flags byte, because
2452         // there is a 1-1 relation between bytecode type and CP entry type.
2453         if (! cache->is_resolved((Bytecodes::Code) opcode)) {
2454           CALL_VM(InterpreterRuntime::resolve_from_cache(THREAD, (Bytecodes::Code)opcode),
2455                   handle_exception);
2456           cache = cp->constant_pool()->invokedynamic_cp_cache_entry_at(index);
2457         }
2458 
2459         Method* method = cache->f1_as_method();
2460         if (VerifyOops) method->verify();
2461 
2462         if (cache->has_appendix()) {
2463           ConstantPool* constants = METHOD->constants();
2464           SET_STACK_OBJECT(cache->appendix_if_resolved(constants), 0);
2465           MORE_STACK(1);
2466         }
2467 
2468         istate->set_msg(call_method);
2469         istate->set_callee(method);
2470         istate->set_callee_entry_point(method->from_interpreted_entry());
2471         istate->set_bcp_advance(5);
2472 
2473         // Invokedynamic has got a call counter, just like an invokestatic -> increment!
2474         BI_PROFILE_UPDATE_CALL();
2475 
2476         UPDATE_PC_AND_RETURN(0); // I'll be back...
2477       }
2478 
2479       CASE(_invokehandle): {
2480 
2481         u2 index = Bytes::get_native_u2(pc+1);
2482         ConstantPoolCacheEntry* cache = cp->entry_at(index);
2483 
2484         if (! cache->is_resolved((Bytecodes::Code) opcode)) {
2485           CALL_VM(InterpreterRuntime::resolve_from_cache(THREAD, (Bytecodes::Code)opcode),
2486                   handle_exception);
2487           cache = cp->entry_at(index);
2488         }
2489 
2490         Method* method = cache->f1_as_method();
2491         if (VerifyOops) method->verify();
2492 
2493         if (cache->has_appendix()) {
2494           ConstantPool* constants = METHOD->constants();
2495           SET_STACK_OBJECT(cache->appendix_if_resolved(constants), 0);
2496           MORE_STACK(1);
2497         }
2498 
2499         istate->set_msg(call_method);
2500         istate->set_callee(method);
2501         istate->set_callee_entry_point(method->from_interpreted_entry());
2502         istate->set_bcp_advance(3);
2503 
2504         // Invokehandle has got a call counter, just like a final call -> increment!
2505         BI_PROFILE_UPDATE_FINALCALL();
2506 
2507         UPDATE_PC_AND_RETURN(0); // I'll be back...
2508       }
2509 
2510       CASE(_invokeinterface): {
2511         u2 index = Bytes::get_native_u2(pc+1);
2512 
2513         // QQQ Need to make this as inlined as possible. Probably need to split all the bytecode cases
2514         // out so c++ compiler has a chance for constant prop to fold everything possible away.
2515 
2516         ConstantPoolCacheEntry* cache = cp->entry_at(index);
2517         if (!cache->is_resolved((Bytecodes::Code)opcode)) {
2518           CALL_VM(InterpreterRuntime::resolve_from_cache(THREAD, (Bytecodes::Code)opcode),
2519                   handle_exception);
2520           cache = cp->entry_at(index);
2521         }
2522 
2523         istate->set_msg(call_method);
2524 
2525         // Special case of invokeinterface called for virtual method of
2526         // java.lang.Object.  See cpCacheOop.cpp for details.
2527         // This code isn't produced by javac, but could be produced by
2528         // another compliant java compiler.
2529         if (cache->is_forced_virtual()) {
2530           Method* callee;
2531           CHECK_NULL(STACK_OBJECT(-(cache->parameter_size())));
2532           if (cache->is_vfinal()) {
2533             callee = cache->f2_as_vfinal_method();
2534             // Profile 'special case of invokeinterface' final call.
2535             BI_PROFILE_UPDATE_FINALCALL();
2536           } else {
2537             // Get receiver.
2538             int parms = cache->parameter_size();
2539             // Same comments as invokevirtual apply here.
2540             oop rcvr = STACK_OBJECT(-parms);
2541             VERIFY_OOP(rcvr);
2542             Klass* rcvrKlass = rcvr->klass();
2543             callee = (Method*) rcvrKlass->method_at_vtable(cache->f2_as_index());
2544             // Profile 'special case of invokeinterface' virtual call.
2545             BI_PROFILE_UPDATE_VIRTUALCALL(rcvrKlass);
2546           }
2547           istate->set_callee(callee);
2548           istate->set_callee_entry_point(callee->from_interpreted_entry());
2549 #ifdef VM_JVMTI
2550           if (JvmtiExport::can_post_interpreter_events() && THREAD->is_interp_only_mode()) {
2551             istate->set_callee_entry_point(callee->interpreter_entry());
2552           }
2553 #endif /* VM_JVMTI */
2554           istate->set_bcp_advance(5);
2555           UPDATE_PC_AND_RETURN(0); // I'll be back...
2556         }
2557 
2558         // this could definitely be cleaned up QQQ
2559         Method* callee;
2560         Method *interface_method = cache->f2_as_interface_method();
2561         InstanceKlass* iclass = interface_method->method_holder();
2562 
2563         // get receiver
2564         int parms = cache->parameter_size();
2565         oop rcvr = STACK_OBJECT(-parms);
2566         CHECK_NULL(rcvr);
2567         InstanceKlass* int2 = (InstanceKlass*) rcvr->klass();
2568 
2569         // Receiver subtype check against resolved interface klass (REFC).
2570         {
2571           Klass* refc = cache->f1_as_klass();
2572           itableOffsetEntry* scan;
2573           for (scan = (itableOffsetEntry*) int2->start_of_itable();
2574                scan->interface_klass() != NULL;
2575                scan++) {
2576             if (scan->interface_klass() == refc) {
2577               break;
2578             }
2579           }
2580           // Check that the entry is non-null.  A null entry means
2581           // that the receiver class doesn't implement the
2582           // interface, and wasn't the same as when the caller was
2583           // compiled.
2584           if (scan->interface_klass() == NULL) {
2585             VM_JAVA_ERROR(vmSymbols::java_lang_IncompatibleClassChangeError(), "", note_no_trap);
2586           }
2587         }
2588 
2589         itableOffsetEntry* ki = (itableOffsetEntry*) int2->start_of_itable();
2590         int i;
2591         for ( i = 0 ; i < int2->itable_length() ; i++, ki++ ) {
2592           if (ki->interface_klass() == iclass) break;
2593         }
2594         // If the interface isn't found, this class doesn't implement this
2595         // interface. The link resolver checks this but only for the first
2596         // time this interface is called.
2597         if (i == int2->itable_length()) {
2598           CALL_VM(InterpreterRuntime::throw_IncompatibleClassChangeErrorVerbose(THREAD, rcvr->klass(), iclass),
2599                   handle_exception);
2600         }
2601         int mindex = interface_method->itable_index();
2602 
2603         itableMethodEntry* im = ki->first_method_entry(rcvr->klass());
2604         callee = im[mindex].method();
2605         if (callee == NULL) {
2606           CALL_VM(InterpreterRuntime::throw_AbstractMethodErrorVerbose(THREAD, rcvr->klass(), interface_method),
2607                   handle_exception);
2608         }
2609 
2610         // Profile virtual call.
2611         BI_PROFILE_UPDATE_VIRTUALCALL(rcvr->klass());
2612 
2613         istate->set_callee(callee);
2614         istate->set_callee_entry_point(callee->from_interpreted_entry());
2615 #ifdef VM_JVMTI
2616         if (JvmtiExport::can_post_interpreter_events() && THREAD->is_interp_only_mode()) {
2617           istate->set_callee_entry_point(callee->interpreter_entry());
2618         }
2619 #endif /* VM_JVMTI */
2620         istate->set_bcp_advance(5);
2621         UPDATE_PC_AND_RETURN(0); // I'll be back...
2622       }
2623 
2624       CASE(_invokevirtual):
2625       CASE(_invokespecial):
2626       CASE(_invokestatic): {
2627         u2 index = Bytes::get_native_u2(pc+1);
2628 
2629         ConstantPoolCacheEntry* cache = cp->entry_at(index);
2630         // QQQ Need to make this as inlined as possible. Probably need to split all the bytecode cases
2631         // out so c++ compiler has a chance for constant prop to fold everything possible away.
2632 
2633         if (!cache->is_resolved((Bytecodes::Code)opcode)) {
2634           CALL_VM(InterpreterRuntime::resolve_from_cache(THREAD, (Bytecodes::Code)opcode),
2635                   handle_exception);
2636           cache = cp->entry_at(index);
2637         }
2638 
2639         istate->set_msg(call_method);
2640         {
2641           Method* callee;
2642           if ((Bytecodes::Code)opcode == Bytecodes::_invokevirtual) {
2643             CHECK_NULL(STACK_OBJECT(-(cache->parameter_size())));
2644             if (cache->is_vfinal()) {
2645               callee = cache->f2_as_vfinal_method();
2646               // Profile final call.
2647               BI_PROFILE_UPDATE_FINALCALL();
2648             } else {
2649               // get receiver
2650               int parms = cache->parameter_size();
2651               // this works but needs a resourcemark and seems to create a vtable on every call:
2652               // Method* callee = rcvr->klass()->vtable()->method_at(cache->f2_as_index());
2653               //
2654               // this fails with an assert
2655               // InstanceKlass* rcvrKlass = InstanceKlass::cast(STACK_OBJECT(-parms)->klass());
2656               // but this works
2657               oop rcvr = STACK_OBJECT(-parms);
2658               VERIFY_OOP(rcvr);
2659               Klass* rcvrKlass = rcvr->klass();
2660               /*
2661                 Executing this code in java.lang.String:
2662                     public String(char value[]) {
2663                           this.count = value.length;
2664                           this.value = (char[])value.clone();
2665                      }
2666 
2667                  a find on rcvr->klass() reports:
2668                  {type array char}{type array class}
2669                   - klass: {other class}
2670 
2671                   but using InstanceKlass::cast(STACK_OBJECT(-parms)->klass()) causes in assertion failure
2672                   because rcvr->klass()->is_instance_klass() == 0
2673                   However it seems to have a vtable in the right location. Huh?
2674                   Because vtables have the same offset for ArrayKlass and InstanceKlass.
2675               */
2676               callee = (Method*) rcvrKlass->method_at_vtable(cache->f2_as_index());
2677               // Profile virtual call.
2678               BI_PROFILE_UPDATE_VIRTUALCALL(rcvrKlass);
2679             }
2680           } else {
2681             if ((Bytecodes::Code)opcode == Bytecodes::_invokespecial) {
2682               CHECK_NULL(STACK_OBJECT(-(cache->parameter_size())));
2683             }
2684             callee = cache->f1_as_method();
2685 
2686             // Profile call.
2687             BI_PROFILE_UPDATE_CALL();
2688           }
2689 
2690           istate->set_callee(callee);
2691           istate->set_callee_entry_point(callee->from_interpreted_entry());
2692 #ifdef VM_JVMTI
2693           if (JvmtiExport::can_post_interpreter_events() && THREAD->is_interp_only_mode()) {
2694             istate->set_callee_entry_point(callee->interpreter_entry());
2695           }
2696 #endif /* VM_JVMTI */
2697           istate->set_bcp_advance(3);
2698           UPDATE_PC_AND_RETURN(0); // I'll be back...
2699         }
2700       }
2701 
2702       /* Allocate memory for a new java object. */
2703 
2704       CASE(_newarray): {
2705         BasicType atype = (BasicType) *(pc+1);
2706         jint size = STACK_INT(-1);
2707         CALL_VM(InterpreterRuntime::newarray(THREAD, atype, size),
2708                 handle_exception);
2709         // Must prevent reordering of stores for object initialization
2710         // with stores that publish the new object.
2711         OrderAccess::storestore();
2712         SET_STACK_OBJECT(THREAD->vm_result(), -1);
2713         THREAD->set_vm_result(NULL);
2714 
2715         UPDATE_PC_AND_CONTINUE(2);
2716       }
2717 
2718       /* Throw an exception. */
2719 
2720       CASE(_athrow): {
2721           oop except_oop = STACK_OBJECT(-1);
2722           CHECK_NULL(except_oop);
2723           // set pending_exception so we use common code
2724           THREAD->set_pending_exception(except_oop, NULL, 0);
2725           goto handle_exception;
2726       }
2727 
2728       /* goto and jsr. They are exactly the same except jsr pushes
2729        * the address of the next instruction first.
2730        */
2731 
2732       CASE(_jsr): {
2733           /* push bytecode index on stack */
2734           SET_STACK_ADDR(((address)pc - (intptr_t)(istate->method()->code_base()) + 3), 0);
2735           MORE_STACK(1);
2736           /* FALL THROUGH */
2737       }
2738 
2739       CASE(_goto):
2740       {
2741           int16_t offset = (int16_t)Bytes::get_Java_u2(pc + 1);
2742           // Profile jump.
2743           BI_PROFILE_UPDATE_JUMP();
2744           address branch_pc = pc;
2745           UPDATE_PC(offset);
2746           DO_BACKEDGE_CHECKS(offset, branch_pc);
2747           CONTINUE;
2748       }
2749 
2750       CASE(_jsr_w): {
2751           /* push return address on the stack */
2752           SET_STACK_ADDR(((address)pc - (intptr_t)(istate->method()->code_base()) + 5), 0);
2753           MORE_STACK(1);
2754           /* FALL THROUGH */
2755       }
2756 
2757       CASE(_goto_w):
2758       {
2759           int32_t offset = Bytes::get_Java_u4(pc + 1);
2760           // Profile jump.
2761           BI_PROFILE_UPDATE_JUMP();
2762           address branch_pc = pc;
2763           UPDATE_PC(offset);
2764           DO_BACKEDGE_CHECKS(offset, branch_pc);
2765           CONTINUE;
2766       }
2767 
2768       /* return from a jsr or jsr_w */
2769 
2770       CASE(_ret): {
2771           // Profile ret.
2772           BI_PROFILE_UPDATE_RET(/*bci=*/((int)(intptr_t)(LOCALS_ADDR(pc[1]))));
2773           // Now, update the pc.
2774           pc = istate->method()->code_base() + (intptr_t)(LOCALS_ADDR(pc[1]));
2775           UPDATE_PC_AND_CONTINUE(0);
2776       }
2777 
2778       /* debugger breakpoint */
2779 
2780       CASE(_breakpoint): {
2781           Bytecodes::Code original_bytecode;
2782           DECACHE_STATE();
2783           SET_LAST_JAVA_FRAME();
2784           original_bytecode = InterpreterRuntime::get_original_bytecode_at(THREAD,
2785                               METHOD, pc);
2786           RESET_LAST_JAVA_FRAME();
2787           CACHE_STATE();
2788           if (THREAD->has_pending_exception()) goto handle_exception;
2789             CALL_VM(InterpreterRuntime::_breakpoint(THREAD, METHOD, pc),
2790                                                     handle_exception);
2791 
2792           opcode = (jubyte)original_bytecode;
2793           goto opcode_switch;
2794       }
2795 
2796       DEFAULT:
2797           fatal("Unimplemented opcode %d = %s", opcode,
2798                 Bytecodes::name((Bytecodes::Code)opcode));
2799           goto finish;
2800 
2801       } /* switch(opc) */
2802 
2803 
2804 #ifdef USELABELS
2805     check_for_exception:
2806 #endif
2807     {
2808       if (!THREAD->has_pending_exception()) {
2809         CONTINUE;
2810       }
2811       /* We will be gcsafe soon, so flush our state. */
2812       DECACHE_PC();
2813       goto handle_exception;
2814     }
2815   do_continue: ;
2816 
2817   } /* while (1) interpreter loop */
2818 
2819 
2820   // An exception exists in the thread state see whether this activation can handle it
2821   handle_exception: {
2822 
2823     HandleMarkCleaner __hmc(THREAD);
2824     Handle except_oop(THREAD, THREAD->pending_exception());
2825     // Prevent any subsequent HandleMarkCleaner in the VM
2826     // from freeing the except_oop handle.
2827     HandleMark __hm(THREAD);
2828 
2829     THREAD->clear_pending_exception();
2830     assert(except_oop() != NULL, "No exception to process");
2831     intptr_t continuation_bci;
2832     // expression stack is emptied
2833     topOfStack = istate->stack_base() - Interpreter::stackElementWords;
2834     CALL_VM(continuation_bci = (intptr_t)InterpreterRuntime::exception_handler_for_exception(THREAD, except_oop()),
2835             handle_exception);
2836 
2837     except_oop = Handle(THREAD, THREAD->vm_result());
2838     THREAD->set_vm_result(NULL);
2839     if (continuation_bci >= 0) {
2840       // Place exception on top of stack
2841       SET_STACK_OBJECT(except_oop(), 0);
2842       MORE_STACK(1);
2843       pc = METHOD->code_base() + continuation_bci;
2844       if (log_is_enabled(Info, exceptions)) {
2845         ResourceMark rm(THREAD);
2846         stringStream tempst;
2847         tempst.print("interpreter method <%s>\n"
2848                      " at bci %d, continuing at %d for thread " INTPTR_FORMAT,
2849                      METHOD->print_value_string(),
2850                      (int)(istate->bcp() - METHOD->code_base()),
2851                      (int)continuation_bci, p2i(THREAD));
2852         Exceptions::log_exception(except_oop, tempst);
2853       }
2854       // for AbortVMOnException flag
2855       Exceptions::debug_check_abort(except_oop);
2856 
2857       // Update profiling data.
2858       BI_PROFILE_ALIGN_TO_CURRENT_BCI();
2859       goto run;
2860     }
2861     if (log_is_enabled(Info, exceptions)) {
2862       ResourceMark rm;
2863       stringStream tempst;
2864       tempst.print("interpreter method <%s>\n"
2865              " at bci %d, unwinding for thread " INTPTR_FORMAT,
2866              METHOD->print_value_string(),
2867              (int)(istate->bcp() - METHOD->code_base()),
2868              p2i(THREAD));
2869       Exceptions::log_exception(except_oop, tempst);
2870     }
2871     // for AbortVMOnException flag
2872     Exceptions::debug_check_abort(except_oop);
2873 
2874     // No handler in this activation, unwind and try again
2875     THREAD->set_pending_exception(except_oop(), NULL, 0);
2876     goto handle_return;
2877   }  // handle_exception:
2878 
2879   // Return from an interpreter invocation with the result of the interpretation
2880   // on the top of the Java Stack (or a pending exception)
2881 
2882   handle_Pop_Frame: {
2883 
2884     // We don't really do anything special here except we must be aware
2885     // that we can get here without ever locking the method (if sync).
2886     // Also we skip the notification of the exit.
2887 
2888     istate->set_msg(popping_frame);
2889     // Clear pending so while the pop is in process
2890     // we don't start another one if a call_vm is done.
2891     THREAD->clr_pop_frame_pending();
2892     // Let interpreter (only) see the we're in the process of popping a frame
2893     THREAD->set_pop_frame_in_process();
2894 
2895     goto handle_return;
2896 
2897   } // handle_Pop_Frame
2898 
2899   // ForceEarlyReturn ends a method, and returns to the caller with a return value
2900   // given by the invoker of the early return.
2901   handle_Early_Return: {
2902 
2903     istate->set_msg(early_return);
2904 
2905     // Clear expression stack.
2906     topOfStack = istate->stack_base() - Interpreter::stackElementWords;
2907 
2908     JvmtiThreadState *ts = THREAD->jvmti_thread_state();
2909 
2910     // Push the value to be returned.
2911     switch (istate->method()->result_type()) {
2912       case T_BOOLEAN:
2913       case T_SHORT:
2914       case T_BYTE:
2915       case T_CHAR:
2916       case T_INT:
2917         SET_STACK_INT(ts->earlyret_value().i, 0);
2918         MORE_STACK(1);
2919         break;
2920       case T_LONG:
2921         SET_STACK_LONG(ts->earlyret_value().j, 1);
2922         MORE_STACK(2);
2923         break;
2924       case T_FLOAT:
2925         SET_STACK_FLOAT(ts->earlyret_value().f, 0);
2926         MORE_STACK(1);
2927         break;
2928       case T_DOUBLE:
2929         SET_STACK_DOUBLE(ts->earlyret_value().d, 1);
2930         MORE_STACK(2);
2931         break;
2932       case T_ARRAY:
2933       case T_OBJECT:
2934         SET_STACK_OBJECT(ts->earlyret_oop(), 0);
2935         MORE_STACK(1);
2936         break;
2937     }
2938 
2939     ts->clr_earlyret_value();
2940     ts->set_earlyret_oop(NULL);
2941     ts->clr_earlyret_pending();
2942 
2943     // Fall through to handle_return.
2944 
2945   } // handle_Early_Return
2946 
2947   handle_return: {
2948     // A storestore barrier is required to order initialization of
2949     // final fields with publishing the reference to the object that
2950     // holds the field. Without the barrier the value of final fields
2951     // can be observed to change.
2952     OrderAccess::storestore();
2953 
2954     DECACHE_STATE();
2955 
2956     bool suppress_error = istate->msg() == popping_frame || istate->msg() == early_return;
2957     bool suppress_exit_event = THREAD->has_pending_exception() || istate->msg() == popping_frame;
2958     Handle original_exception(THREAD, THREAD->pending_exception());
2959     Handle illegal_state_oop(THREAD, NULL);
2960 
2961     // We'd like a HandleMark here to prevent any subsequent HandleMarkCleaner
2962     // in any following VM entries from freeing our live handles, but illegal_state_oop
2963     // isn't really allocated yet and so doesn't become live until later and
2964     // in unpredicatable places. Instead we must protect the places where we enter the
2965     // VM. It would be much simpler (and safer) if we could allocate a real handle with
2966     // a NULL oop in it and then overwrite the oop later as needed. This isn't
2967     // unfortunately isn't possible.
2968 
2969     THREAD->clear_pending_exception();
2970 
2971     //
2972     // As far as we are concerned we have returned. If we have a pending exception
2973     // that will be returned as this invocation's result. However if we get any
2974     // exception(s) while checking monitor state one of those IllegalMonitorStateExceptions
2975     // will be our final result (i.e. monitor exception trumps a pending exception).
2976     //
2977 
2978     // If we never locked the method (or really passed the point where we would have),
2979     // there is no need to unlock it (or look for other monitors), since that
2980     // could not have happened.
2981 
2982     if (THREAD->do_not_unlock()) {
2983 
2984       // Never locked, reset the flag now because obviously any caller must
2985       // have passed their point of locking for us to have gotten here.
2986 
2987       THREAD->clr_do_not_unlock();
2988     } else {
2989       // At this point we consider that we have returned. We now check that the
2990       // locks were properly block structured. If we find that they were not
2991       // used properly we will return with an illegal monitor exception.
2992       // The exception is checked by the caller not the callee since this
2993       // checking is considered to be part of the invocation and therefore
2994       // in the callers scope (JVM spec 8.13).
2995       //
2996       // Another weird thing to watch for is if the method was locked
2997       // recursively and then not exited properly. This means we must
2998       // examine all the entries in reverse time(and stack) order and
2999       // unlock as we find them. If we find the method monitor before
3000       // we are at the initial entry then we should throw an exception.
3001       // It is not clear the template based interpreter does this
3002       // correctly
3003 
3004       BasicObjectLock* base = istate->monitor_base();
3005       BasicObjectLock* end = (BasicObjectLock*) istate->stack_base();
3006       bool method_unlock_needed = METHOD->is_synchronized();
3007       // We know the initial monitor was used for the method don't check that
3008       // slot in the loop
3009       if (method_unlock_needed) base--;
3010 
3011       // Check all the monitors to see they are unlocked. Install exception if found to be locked.
3012       while (end < base) {
3013         oop lockee = end->obj();
3014         if (lockee != NULL) {
3015           BasicLock* lock = end->lock();
3016           markOop header = lock->displaced_header();
3017           end->set_obj(NULL);
3018 
3019           if (!lockee->mark()->has_bias_pattern()) {
3020             // If it isn't recursive we either must swap old header or call the runtime
3021             if (header != NULL) {
3022               markOop old_header = markOopDesc::encode(lock);
3023               if (lockee->cas_set_mark(header, old_header) != old_header) {
3024                 // restore object for the slow case
3025                 end->set_obj(lockee);
3026                 {
3027                   // Prevent any HandleMarkCleaner from freeing our live handles
3028                   HandleMark __hm(THREAD);
3029                   CALL_VM_NOCHECK(InterpreterRuntime::monitorexit(THREAD, end));
3030                 }
3031               }
3032             }
3033           }
3034           // One error is plenty
3035           if (illegal_state_oop() == NULL && !suppress_error) {
3036             {
3037               // Prevent any HandleMarkCleaner from freeing our live handles
3038               HandleMark __hm(THREAD);
3039               CALL_VM_NOCHECK(InterpreterRuntime::throw_illegal_monitor_state_exception(THREAD));
3040             }
3041             assert(THREAD->has_pending_exception(), "Lost our exception!");
3042             illegal_state_oop = Handle(THREAD, THREAD->pending_exception());
3043             THREAD->clear_pending_exception();
3044           }
3045         }
3046         end++;
3047       }
3048       // Unlock the method if needed
3049       if (method_unlock_needed) {
3050         if (base->obj() == NULL) {
3051           // The method is already unlocked this is not good.
3052           if (illegal_state_oop() == NULL && !suppress_error) {
3053             {
3054               // Prevent any HandleMarkCleaner from freeing our live handles
3055               HandleMark __hm(THREAD);
3056               CALL_VM_NOCHECK(InterpreterRuntime::throw_illegal_monitor_state_exception(THREAD));
3057             }
3058             assert(THREAD->has_pending_exception(), "Lost our exception!");
3059             illegal_state_oop = Handle(THREAD, THREAD->pending_exception());
3060             THREAD->clear_pending_exception();
3061           }
3062         } else {
3063           //
3064           // The initial monitor is always used for the method
3065           // However if that slot is no longer the oop for the method it was unlocked
3066           // and reused by something that wasn't unlocked!
3067           //
3068           // deopt can come in with rcvr dead because c2 knows
3069           // its value is preserved in the monitor. So we can't use locals[0] at all
3070           // and must use first monitor slot.
3071           //
3072           oop rcvr = base->obj();
3073           if (rcvr == NULL) {
3074             if (!suppress_error) {
3075               VM_JAVA_ERROR_NO_JUMP(vmSymbols::java_lang_NullPointerException(), "", note_nullCheck_trap);
3076               illegal_state_oop = Handle(THREAD, THREAD->pending_exception());
3077               THREAD->clear_pending_exception();
3078             }
3079           } else if (UseHeavyMonitors) {
3080             {
3081               // Prevent any HandleMarkCleaner from freeing our live handles.
3082               HandleMark __hm(THREAD);
3083               CALL_VM_NOCHECK(InterpreterRuntime::monitorexit(THREAD, base));
3084             }
3085             if (THREAD->has_pending_exception()) {
3086               if (!suppress_error) illegal_state_oop = Handle(THREAD, THREAD->pending_exception());
3087               THREAD->clear_pending_exception();
3088             }
3089           } else {
3090             BasicLock* lock = base->lock();
3091             markOop header = lock->displaced_header();
3092             base->set_obj(NULL);
3093 
3094             if (!rcvr->mark()->has_bias_pattern()) {
3095               base->set_obj(NULL);
3096               // If it isn't recursive we either must swap old header or call the runtime
3097               if (header != NULL) {
3098                 markOop old_header = markOopDesc::encode(lock);
3099                 if (rcvr->cas_set_mark(header, old_header) != old_header) {
3100                   // restore object for the slow case
3101                   base->set_obj(rcvr);
3102                   {
3103                     // Prevent any HandleMarkCleaner from freeing our live handles
3104                     HandleMark __hm(THREAD);
3105                     CALL_VM_NOCHECK(InterpreterRuntime::monitorexit(THREAD, base));
3106                   }
3107                   if (THREAD->has_pending_exception()) {
3108                     if (!suppress_error) illegal_state_oop = Handle(THREAD, THREAD->pending_exception());
3109                     THREAD->clear_pending_exception();
3110                   }
3111                 }
3112               }
3113             }
3114           }
3115         }
3116       }
3117     }
3118     // Clear the do_not_unlock flag now.
3119     THREAD->clr_do_not_unlock();
3120 
3121     //
3122     // Notify jvmti/jvmdi
3123     //
3124     // NOTE: we do not notify a method_exit if we have a pending exception,
3125     // including an exception we generate for unlocking checks.  In the former
3126     // case, JVMDI has already been notified by our call for the exception handler
3127     // and in both cases as far as JVMDI is concerned we have already returned.
3128     // If we notify it again JVMDI will be all confused about how many frames
3129     // are still on the stack (4340444).
3130     //
3131     // NOTE Further! It turns out the the JVMTI spec in fact expects to see
3132     // method_exit events whenever we leave an activation unless it was done
3133     // for popframe. This is nothing like jvmdi. However we are passing the
3134     // tests at the moment (apparently because they are jvmdi based) so rather
3135     // than change this code and possibly fail tests we will leave it alone
3136     // (with this note) in anticipation of changing the vm and the tests
3137     // simultaneously.
3138 
3139 
3140     //
3141     suppress_exit_event = suppress_exit_event || illegal_state_oop() != NULL;
3142 
3143 
3144 
3145 #ifdef VM_JVMTI
3146       if (_jvmti_interp_events) {
3147         // Whenever JVMTI puts a thread in interp_only_mode, method
3148         // entry/exit events are sent for that thread to track stack depth.
3149         if ( !suppress_exit_event && THREAD->is_interp_only_mode() ) {
3150           {
3151             // Prevent any HandleMarkCleaner from freeing our live handles
3152             HandleMark __hm(THREAD);
3153             CALL_VM_NOCHECK(InterpreterRuntime::post_method_exit(THREAD));
3154           }
3155         }
3156       }
3157 #endif /* VM_JVMTI */
3158 
3159     //
3160     // See if we are returning any exception
3161     // A pending exception that was pending prior to a possible popping frame
3162     // overrides the popping frame.
3163     //
3164     assert(!suppress_error || (suppress_error && illegal_state_oop() == NULL), "Error was not suppressed");
3165     if (illegal_state_oop() != NULL || original_exception() != NULL) {
3166       // Inform the frame manager we have no result.
3167       istate->set_msg(throwing_exception);
3168       if (illegal_state_oop() != NULL)
3169         THREAD->set_pending_exception(illegal_state_oop(), NULL, 0);
3170       else
3171         THREAD->set_pending_exception(original_exception(), NULL, 0);
3172       UPDATE_PC_AND_RETURN(0);
3173     }
3174 
3175     if (istate->msg() == popping_frame) {
3176       // Make it simpler on the assembly code and set the message for the frame pop.
3177       // returns
3178       if (istate->prev() == NULL) {
3179         // We must be returning to a deoptimized frame (because popframe only happens between
3180         // two interpreted frames). We need to save the current arguments in C heap so that
3181         // the deoptimized frame when it restarts can copy the arguments to its expression
3182         // stack and re-execute the call. We also have to notify deoptimization that this
3183         // has occurred and to pick the preserved args copy them to the deoptimized frame's
3184         // java expression stack. Yuck.
3185         //
3186         THREAD->popframe_preserve_args(in_ByteSize(METHOD->size_of_parameters() * wordSize),
3187                                 LOCALS_SLOT(METHOD->size_of_parameters() - 1));
3188         THREAD->set_popframe_condition_bit(JavaThread::popframe_force_deopt_reexecution_bit);
3189       }
3190     } else {
3191       istate->set_msg(return_from_method);
3192     }
3193 
3194     // Normal return
3195     // Advance the pc and return to frame manager
3196     UPDATE_PC_AND_RETURN(1);
3197   } /* handle_return: */
3198 
3199 // This is really a fatal error return
3200 
3201 finish:
3202   DECACHE_TOS();
3203   DECACHE_PC();
3204 
3205   return;
3206 }
3207 
3208 /*
3209  * All the code following this point is only produced once and is not present
3210  * in the JVMTI version of the interpreter
3211 */
3212 
3213 #ifndef VM_JVMTI
3214 
3215 // This constructor should only be used to contruct the object to signal
3216 // interpreter initialization. All other instances should be created by
3217 // the frame manager.
3218 BytecodeInterpreter::BytecodeInterpreter(messages msg) {
3219   if (msg != initialize) ShouldNotReachHere();
3220   _msg = msg;
3221   _self_link = this;
3222   _prev_link = NULL;
3223 }
3224 
3225 // Inline static functions for Java Stack and Local manipulation
3226 
3227 // The implementations are platform dependent. We have to worry about alignment
3228 // issues on some machines which can change on the same platform depending on
3229 // whether it is an LP64 machine also.
3230 address BytecodeInterpreter::stack_slot(intptr_t *tos, int offset) {
3231   return (address) tos[Interpreter::expr_index_at(-offset)];
3232 }
3233 
3234 jint BytecodeInterpreter::stack_int(intptr_t *tos, int offset) {
3235   return *((jint*) &tos[Interpreter::expr_index_at(-offset)]);
3236 }
3237 
3238 jfloat BytecodeInterpreter::stack_float(intptr_t *tos, int offset) {
3239   return *((jfloat *) &tos[Interpreter::expr_index_at(-offset)]);
3240 }
3241 
3242 oop BytecodeInterpreter::stack_object(intptr_t *tos, int offset) {
3243   return cast_to_oop(tos [Interpreter::expr_index_at(-offset)]);
3244 }
3245 
3246 jdouble BytecodeInterpreter::stack_double(intptr_t *tos, int offset) {
3247   return ((VMJavaVal64*) &tos[Interpreter::expr_index_at(-offset)])->d;
3248 }
3249 
3250 jlong BytecodeInterpreter::stack_long(intptr_t *tos, int offset) {
3251   return ((VMJavaVal64 *) &tos[Interpreter::expr_index_at(-offset)])->l;
3252 }
3253 
3254 // only used for value types
3255 void BytecodeInterpreter::set_stack_slot(intptr_t *tos, address value,
3256                                                         int offset) {
3257   *((address *)&tos[Interpreter::expr_index_at(-offset)]) = value;
3258 }
3259 
3260 void BytecodeInterpreter::set_stack_int(intptr_t *tos, int value,
3261                                                        int offset) {
3262   *((jint *)&tos[Interpreter::expr_index_at(-offset)]) = value;
3263 }
3264 
3265 void BytecodeInterpreter::set_stack_float(intptr_t *tos, jfloat value,
3266                                                          int offset) {
3267   *((jfloat *)&tos[Interpreter::expr_index_at(-offset)]) = value;
3268 }
3269 
3270 void BytecodeInterpreter::set_stack_object(intptr_t *tos, oop value,
3271                                                           int offset) {
3272   *((oop *)&tos[Interpreter::expr_index_at(-offset)]) = value;
3273 }
3274 
3275 // needs to be platform dep for the 32 bit platforms.
3276 void BytecodeInterpreter::set_stack_double(intptr_t *tos, jdouble value,
3277                                                           int offset) {
3278   ((VMJavaVal64*)&tos[Interpreter::expr_index_at(-offset)])->d = value;
3279 }
3280 
3281 void BytecodeInterpreter::set_stack_double_from_addr(intptr_t *tos,
3282                                               address addr, int offset) {
3283   (((VMJavaVal64*)&tos[Interpreter::expr_index_at(-offset)])->d =
3284                         ((VMJavaVal64*)addr)->d);
3285 }
3286 
3287 void BytecodeInterpreter::set_stack_long(intptr_t *tos, jlong value,
3288                                                         int offset) {
3289   ((VMJavaVal64*)&tos[Interpreter::expr_index_at(-offset+1)])->l = 0xdeedbeeb;
3290   ((VMJavaVal64*)&tos[Interpreter::expr_index_at(-offset)])->l = value;
3291 }
3292 
3293 void BytecodeInterpreter::set_stack_long_from_addr(intptr_t *tos,
3294                                             address addr, int offset) {
3295   ((VMJavaVal64*)&tos[Interpreter::expr_index_at(-offset+1)])->l = 0xdeedbeeb;
3296   ((VMJavaVal64*)&tos[Interpreter::expr_index_at(-offset)])->l =
3297                         ((VMJavaVal64*)addr)->l;
3298 }
3299 
3300 // Locals
3301 
3302 address BytecodeInterpreter::locals_slot(intptr_t* locals, int offset) {
3303   return (address)locals[Interpreter::local_index_at(-offset)];
3304 }
3305 jint BytecodeInterpreter::locals_int(intptr_t* locals, int offset) {
3306   return (jint)locals[Interpreter::local_index_at(-offset)];
3307 }
3308 jfloat BytecodeInterpreter::locals_float(intptr_t* locals, int offset) {
3309   return (jfloat)locals[Interpreter::local_index_at(-offset)];
3310 }
3311 oop BytecodeInterpreter::locals_object(intptr_t* locals, int offset) {
3312   return cast_to_oop(locals[Interpreter::local_index_at(-offset)]);
3313 }
3314 jdouble BytecodeInterpreter::locals_double(intptr_t* locals, int offset) {
3315   return ((VMJavaVal64*)&locals[Interpreter::local_index_at(-(offset+1))])->d;
3316 }
3317 jlong BytecodeInterpreter::locals_long(intptr_t* locals, int offset) {
3318   return ((VMJavaVal64*)&locals[Interpreter::local_index_at(-(offset+1))])->l;
3319 }
3320 
3321 // Returns the address of locals value.
3322 address BytecodeInterpreter::locals_long_at(intptr_t* locals, int offset) {
3323   return ((address)&locals[Interpreter::local_index_at(-(offset+1))]);
3324 }
3325 address BytecodeInterpreter::locals_double_at(intptr_t* locals, int offset) {
3326   return ((address)&locals[Interpreter::local_index_at(-(offset+1))]);
3327 }
3328 
3329 // Used for local value or returnAddress
3330 void BytecodeInterpreter::set_locals_slot(intptr_t *locals,
3331                                    address value, int offset) {
3332   *((address*)&locals[Interpreter::local_index_at(-offset)]) = value;
3333 }
3334 void BytecodeInterpreter::set_locals_int(intptr_t *locals,
3335                                    jint value, int offset) {
3336   *((jint *)&locals[Interpreter::local_index_at(-offset)]) = value;
3337 }
3338 void BytecodeInterpreter::set_locals_float(intptr_t *locals,
3339                                    jfloat value, int offset) {
3340   *((jfloat *)&locals[Interpreter::local_index_at(-offset)]) = value;
3341 }
3342 void BytecodeInterpreter::set_locals_object(intptr_t *locals,
3343                                    oop value, int offset) {
3344   *((oop *)&locals[Interpreter::local_index_at(-offset)]) = value;
3345 }
3346 void BytecodeInterpreter::set_locals_double(intptr_t *locals,
3347                                    jdouble value, int offset) {
3348   ((VMJavaVal64*)&locals[Interpreter::local_index_at(-(offset+1))])->d = value;
3349 }
3350 void BytecodeInterpreter::set_locals_long(intptr_t *locals,
3351                                    jlong value, int offset) {
3352   ((VMJavaVal64*)&locals[Interpreter::local_index_at(-(offset+1))])->l = value;
3353 }
3354 void BytecodeInterpreter::set_locals_double_from_addr(intptr_t *locals,
3355                                    address addr, int offset) {
3356   ((VMJavaVal64*)&locals[Interpreter::local_index_at(-(offset+1))])->d = ((VMJavaVal64*)addr)->d;
3357 }
3358 void BytecodeInterpreter::set_locals_long_from_addr(intptr_t *locals,
3359                                    address addr, int offset) {
3360   ((VMJavaVal64*)&locals[Interpreter::local_index_at(-(offset+1))])->l = ((VMJavaVal64*)addr)->l;
3361 }
3362 
3363 void BytecodeInterpreter::astore(intptr_t* tos,    int stack_offset,
3364                           intptr_t* locals, int locals_offset) {
3365   intptr_t value = tos[Interpreter::expr_index_at(-stack_offset)];
3366   locals[Interpreter::local_index_at(-locals_offset)] = value;
3367 }
3368 
3369 
3370 void BytecodeInterpreter::copy_stack_slot(intptr_t *tos, int from_offset,
3371                                    int to_offset) {
3372   tos[Interpreter::expr_index_at(-to_offset)] =
3373                       (intptr_t)tos[Interpreter::expr_index_at(-from_offset)];
3374 }
3375 
3376 void BytecodeInterpreter::dup(intptr_t *tos) {
3377   copy_stack_slot(tos, -1, 0);
3378 }
3379 void BytecodeInterpreter::dup2(intptr_t *tos) {
3380   copy_stack_slot(tos, -2, 0);
3381   copy_stack_slot(tos, -1, 1);
3382 }
3383 
3384 void BytecodeInterpreter::dup_x1(intptr_t *tos) {
3385   /* insert top word two down */
3386   copy_stack_slot(tos, -1, 0);
3387   copy_stack_slot(tos, -2, -1);
3388   copy_stack_slot(tos, 0, -2);
3389 }
3390 
3391 void BytecodeInterpreter::dup_x2(intptr_t *tos) {
3392   /* insert top word three down  */
3393   copy_stack_slot(tos, -1, 0);
3394   copy_stack_slot(tos, -2, -1);
3395   copy_stack_slot(tos, -3, -2);
3396   copy_stack_slot(tos, 0, -3);
3397 }
3398 void BytecodeInterpreter::dup2_x1(intptr_t *tos) {
3399   /* insert top 2 slots three down */
3400   copy_stack_slot(tos, -1, 1);
3401   copy_stack_slot(tos, -2, 0);
3402   copy_stack_slot(tos, -3, -1);
3403   copy_stack_slot(tos, 1, -2);
3404   copy_stack_slot(tos, 0, -3);
3405 }
3406 void BytecodeInterpreter::dup2_x2(intptr_t *tos) {
3407   /* insert top 2 slots four down */
3408   copy_stack_slot(tos, -1, 1);
3409   copy_stack_slot(tos, -2, 0);
3410   copy_stack_slot(tos, -3, -1);
3411   copy_stack_slot(tos, -4, -2);
3412   copy_stack_slot(tos, 1, -3);
3413   copy_stack_slot(tos, 0, -4);
3414 }
3415 
3416 
3417 void BytecodeInterpreter::swap(intptr_t *tos) {
3418   // swap top two elements
3419   intptr_t val = tos[Interpreter::expr_index_at(1)];
3420   // Copy -2 entry to -1
3421   copy_stack_slot(tos, -2, -1);
3422   // Store saved -1 entry into -2
3423   tos[Interpreter::expr_index_at(2)] = val;
3424 }
3425 // --------------------------------------------------------------------------------
3426 // Non-product code
3427 #ifndef PRODUCT
3428 
3429 const char* BytecodeInterpreter::C_msg(BytecodeInterpreter::messages msg) {
3430   switch (msg) {
3431      case BytecodeInterpreter::no_request:  return("no_request");
3432      case BytecodeInterpreter::initialize:  return("initialize");
3433      // status message to C++ interpreter
3434      case BytecodeInterpreter::method_entry:  return("method_entry");
3435      case BytecodeInterpreter::method_resume:  return("method_resume");
3436      case BytecodeInterpreter::got_monitors:  return("got_monitors");
3437      case BytecodeInterpreter::rethrow_exception:  return("rethrow_exception");
3438      // requests to frame manager from C++ interpreter
3439      case BytecodeInterpreter::call_method:  return("call_method");
3440      case BytecodeInterpreter::return_from_method:  return("return_from_method");
3441      case BytecodeInterpreter::more_monitors:  return("more_monitors");
3442      case BytecodeInterpreter::throwing_exception:  return("throwing_exception");
3443      case BytecodeInterpreter::popping_frame:  return("popping_frame");
3444      case BytecodeInterpreter::do_osr:  return("do_osr");
3445      // deopt
3446      case BytecodeInterpreter::deopt_resume:  return("deopt_resume");
3447      case BytecodeInterpreter::deopt_resume2:  return("deopt_resume2");
3448      default: return("BAD MSG");
3449   }
3450 }
3451 void
3452 BytecodeInterpreter::print() {
3453   tty->print_cr("thread: " INTPTR_FORMAT, (uintptr_t) this->_thread);
3454   tty->print_cr("bcp: " INTPTR_FORMAT, (uintptr_t) this->_bcp);
3455   tty->print_cr("locals: " INTPTR_FORMAT, (uintptr_t) this->_locals);
3456   tty->print_cr("constants: " INTPTR_FORMAT, (uintptr_t) this->_constants);
3457   {
3458     ResourceMark rm;
3459     char *method_name = _method->name_and_sig_as_C_string();
3460     tty->print_cr("method: " INTPTR_FORMAT "[ %s ]",  (uintptr_t) this->_method, method_name);
3461   }
3462   tty->print_cr("mdx: " INTPTR_FORMAT, (uintptr_t) this->_mdx);
3463   tty->print_cr("stack: " INTPTR_FORMAT, (uintptr_t) this->_stack);
3464   tty->print_cr("msg: %s", C_msg(this->_msg));
3465   tty->print_cr("result_to_call._callee: " INTPTR_FORMAT, (uintptr_t) this->_result._to_call._callee);
3466   tty->print_cr("result_to_call._callee_entry_point: " INTPTR_FORMAT, (uintptr_t) this->_result._to_call._callee_entry_point);
3467   tty->print_cr("result_to_call._bcp_advance: %d ", this->_result._to_call._bcp_advance);
3468   tty->print_cr("osr._osr_buf: " INTPTR_FORMAT, (uintptr_t) this->_result._osr._osr_buf);
3469   tty->print_cr("osr._osr_entry: " INTPTR_FORMAT, (uintptr_t) this->_result._osr._osr_entry);
3470   tty->print_cr("prev_link: " INTPTR_FORMAT, (uintptr_t) this->_prev_link);
3471   tty->print_cr("native_mirror: " INTPTR_FORMAT, (uintptr_t) p2i(this->_oop_temp));
3472   tty->print_cr("stack_base: " INTPTR_FORMAT, (uintptr_t) this->_stack_base);
3473   tty->print_cr("stack_limit: " INTPTR_FORMAT, (uintptr_t) this->_stack_limit);
3474   tty->print_cr("monitor_base: " INTPTR_FORMAT, (uintptr_t) this->_monitor_base);
3475 #ifdef SPARC
3476   tty->print_cr("last_Java_pc: " INTPTR_FORMAT, (uintptr_t) this->_last_Java_pc);
3477   tty->print_cr("frame_bottom: " INTPTR_FORMAT, (uintptr_t) this->_frame_bottom);
3478   tty->print_cr("&native_fresult: " INTPTR_FORMAT, (uintptr_t) &this->_native_fresult);
3479   tty->print_cr("native_lresult: " INTPTR_FORMAT, (uintptr_t) this->_native_lresult);
3480 #endif
3481 #if !defined(ZERO) && defined(PPC)
3482   tty->print_cr("last_Java_fp: " INTPTR_FORMAT, (uintptr_t) this->_last_Java_fp);
3483 #endif // !ZERO
3484   tty->print_cr("self_link: " INTPTR_FORMAT, (uintptr_t) this->_self_link);
3485 }
3486 
3487 extern "C" {
3488   void PI(uintptr_t arg) {
3489     ((BytecodeInterpreter*)arg)->print();
3490   }
3491 }
3492 #endif // PRODUCT
3493 
3494 #endif // JVMTI
3495 #endif // CC_INTERP