1 /*
   2  * Copyright (c) 1997, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "asm/macroAssembler.hpp"
  27 #include "interpreter/interpreter.hpp"
  28 #include "interpreter/interpreterRuntime.hpp"
  29 #include "interpreter/interp_masm.hpp"
  30 #include "interpreter/templateTable.hpp"
  31 #include "memory/universe.inline.hpp"
  32 #include "oops/methodData.hpp"
  33 #include "oops/objArrayKlass.hpp"
  34 #include "oops/oop.inline.hpp"
  35 #include "prims/methodHandles.hpp"
  36 #include "runtime/sharedRuntime.hpp"
  37 #include "runtime/stubRoutines.hpp"
  38 #include "runtime/synchronizer.hpp"
  39 #include "utilities/macros.hpp"
  40 
  41 #define __ _masm->
  42 
  43 // Global Register Names
  44 static const Register rbcp     = LP64_ONLY(r13) NOT_LP64(rsi);
  45 static const Register rlocals  = LP64_ONLY(r14) NOT_LP64(rdi);
  46 
  47 // Platform-dependent initialization
  48 void TemplateTable::pd_initialize() {
  49   // No x86 specific initialization
  50 }
  51 
  52 // Address Computation: local variables
  53 static inline Address iaddress(int n) {
  54   return Address(rlocals, Interpreter::local_offset_in_bytes(n));
  55 }
  56 
  57 static inline Address laddress(int n) {
  58   return iaddress(n + 1);
  59 }
  60 
  61 #ifndef _LP64
  62 static inline Address haddress(int n) {
  63   return iaddress(n + 0);
  64 }
  65 #endif
  66 
  67 static inline Address faddress(int n) {
  68   return iaddress(n);
  69 }
  70 
  71 static inline Address daddress(int n) {
  72   return laddress(n);
  73 }
  74 
  75 static inline Address aaddress(int n) {
  76   return iaddress(n);
  77 }
  78 
  79 static inline Address iaddress(Register r) {
  80   return Address(rlocals, r, Address::times_ptr);
  81 }
  82 
  83 static inline Address laddress(Register r) {
  84   return Address(rlocals, r, Address::times_ptr, Interpreter::local_offset_in_bytes(1));
  85 }
  86 
  87 #ifndef _LP64
  88 static inline Address haddress(Register r)       {
  89   return Address(rlocals, r, Interpreter::stackElementScale(), Interpreter::local_offset_in_bytes(0));
  90 }
  91 #endif
  92 
  93 static inline Address faddress(Register r) {
  94   return iaddress(r);
  95 }
  96 
  97 static inline Address daddress(Register r) {
  98   return laddress(r);
  99 }
 100 
 101 static inline Address aaddress(Register r) {
 102   return iaddress(r);
 103 }
 104 
 105 
 106 // expression stack
 107 // (Note: Must not use symmetric equivalents at_rsp_m1/2 since they store
 108 // data beyond the rsp which is potentially unsafe in an MT environment;
 109 // an interrupt may overwrite that data.)
 110 static inline Address at_rsp   () {
 111   return Address(rsp, 0);
 112 }
 113 
 114 // At top of Java expression stack which may be different than esp().  It
 115 // isn't for category 1 objects.
 116 static inline Address at_tos   () {
 117   return Address(rsp,  Interpreter::expr_offset_in_bytes(0));
 118 }
 119 
 120 static inline Address at_tos_p1() {
 121   return Address(rsp,  Interpreter::expr_offset_in_bytes(1));
 122 }
 123 
 124 static inline Address at_tos_p2() {
 125   return Address(rsp,  Interpreter::expr_offset_in_bytes(2));
 126 }
 127 
 128 // Condition conversion
 129 static Assembler::Condition j_not(TemplateTable::Condition cc) {
 130   switch (cc) {
 131   case TemplateTable::equal        : return Assembler::notEqual;
 132   case TemplateTable::not_equal    : return Assembler::equal;
 133   case TemplateTable::less         : return Assembler::greaterEqual;
 134   case TemplateTable::less_equal   : return Assembler::greater;
 135   case TemplateTable::greater      : return Assembler::lessEqual;
 136   case TemplateTable::greater_equal: return Assembler::less;
 137   }
 138   ShouldNotReachHere();
 139   return Assembler::zero;
 140 }
 141 
 142 
 143 
 144 // Miscelaneous helper routines
 145 // Store an oop (or NULL) at the address described by obj.
 146 // If val == noreg this means store a NULL
 147 
 148 
 149 static void do_oop_store(InterpreterMacroAssembler* _masm,
 150                          Address obj,
 151                          Register val,
 152                          BarrierSet::Name barrier,
 153                          bool precise) {
 154   assert(val == noreg || val == rax, "parameter is just for looks");
 155   switch (barrier) {
 156 #if INCLUDE_ALL_GCS
 157     case BarrierSet::G1SATBCTLogging:
 158       {
 159         // flatten object address if needed
 160         // We do it regardless of precise because we need the registers
 161         if (obj.index() == noreg && obj.disp() == 0) {
 162           if (obj.base() != rdx) {
 163             __ movptr(rdx, obj.base());
 164           }
 165         } else {
 166           __ lea(rdx, obj);
 167         }
 168 
 169         Register rtmp    = LP64_ONLY(r8)         NOT_LP64(rsi);
 170         Register rthread = LP64_ONLY(r15_thread) NOT_LP64(rcx);
 171 
 172         NOT_LP64(__ get_thread(rcx));
 173         NOT_LP64(__ save_bcp());
 174 
 175         __ g1_write_barrier_pre(rdx /* obj */,
 176                                 rbx /* pre_val */,
 177                                 rthread /* thread */,
 178                                 rtmp  /* tmp */,
 179                                 val != noreg /* tosca_live */,
 180                                 false /* expand_call */);
 181         if (val == noreg) {
 182           __ store_heap_oop_null(Address(rdx, 0));
 183         } else {
 184           // G1 barrier needs uncompressed oop for region cross check.
 185           Register new_val = val;
 186           if (UseCompressedOops) {
 187             new_val = rbx;
 188             __ movptr(new_val, val);
 189           }
 190           __ store_heap_oop(Address(rdx, 0), val);
 191           __ g1_write_barrier_post(rdx /* store_adr */,
 192                                    new_val /* new_val */,
 193                                    rthread /* thread */,
 194                                    rtmp /* tmp */,
 195                                    rbx /* tmp2 */);
 196         }
 197         NOT_LP64( __ restore_bcp());
 198       }
 199       break;
 200 #endif // INCLUDE_ALL_GCS
 201     case BarrierSet::CardTableForRS:
 202     case BarrierSet::CardTableExtension:
 203       {
 204         if (val == noreg) {
 205           __ store_heap_oop_null(obj);
 206         } else {
 207           __ store_heap_oop(obj, val);
 208           // flatten object address if needed
 209           if (!precise || (obj.index() == noreg && obj.disp() == 0)) {
 210             __ store_check(obj.base());
 211           } else {
 212             __ lea(rdx, obj);
 213             __ store_check(rdx);
 214           }
 215         }
 216       }
 217       break;
 218     case BarrierSet::ModRef:
 219       if (val == noreg) {
 220         __ store_heap_oop_null(obj);
 221       } else {
 222         __ store_heap_oop(obj, val);
 223       }
 224       break;
 225     default      :
 226       ShouldNotReachHere();
 227 
 228   }
 229 }
 230 
 231 Address TemplateTable::at_bcp(int offset) {
 232   assert(_desc->uses_bcp(), "inconsistent uses_bcp information");
 233   return Address(rbcp, offset);
 234 }
 235 
 236 
 237 void TemplateTable::patch_bytecode(Bytecodes::Code bc, Register bc_reg,
 238                                    Register temp_reg, bool load_bc_into_bc_reg/*=true*/,
 239                                    int byte_no) {
 240   if (!RewriteBytecodes)  return;
 241   Label L_patch_done;
 242 
 243   switch (bc) {
 244   case Bytecodes::_fast_aputfield:
 245   case Bytecodes::_fast_bputfield:
 246   case Bytecodes::_fast_zputfield:
 247   case Bytecodes::_fast_cputfield:
 248   case Bytecodes::_fast_dputfield:
 249   case Bytecodes::_fast_fputfield:
 250   case Bytecodes::_fast_iputfield:
 251   case Bytecodes::_fast_lputfield:
 252   case Bytecodes::_fast_sputfield:
 253     {
 254       // We skip bytecode quickening for putfield instructions when
 255       // the put_code written to the constant pool cache is zero.
 256       // This is required so that every execution of this instruction
 257       // calls out to InterpreterRuntime::resolve_get_put to do
 258       // additional, required work.
 259       assert(byte_no == f1_byte || byte_no == f2_byte, "byte_no out of range");
 260       assert(load_bc_into_bc_reg, "we use bc_reg as temp");
 261       __ get_cache_and_index_and_bytecode_at_bcp(temp_reg, bc_reg, temp_reg, byte_no, 1);
 262       __ movl(bc_reg, bc);
 263       __ cmpl(temp_reg, (int) 0);
 264       __ jcc(Assembler::zero, L_patch_done);  // don't patch
 265     }
 266     break;
 267   default:
 268     assert(byte_no == -1, "sanity");
 269     // the pair bytecodes have already done the load.
 270     if (load_bc_into_bc_reg) {
 271       __ movl(bc_reg, bc);
 272     }
 273   }
 274 
 275   if (JvmtiExport::can_post_breakpoint()) {
 276     Label L_fast_patch;
 277     // if a breakpoint is present we can't rewrite the stream directly
 278     __ movzbl(temp_reg, at_bcp(0));
 279     __ cmpl(temp_reg, Bytecodes::_breakpoint);
 280     __ jcc(Assembler::notEqual, L_fast_patch);
 281     __ get_method(temp_reg);
 282     // Let breakpoint table handling rewrite to quicker bytecode
 283     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::set_original_bytecode_at), temp_reg, rbcp, bc_reg);
 284 #ifndef ASSERT
 285     __ jmpb(L_patch_done);
 286 #else
 287     __ jmp(L_patch_done);
 288 #endif
 289     __ bind(L_fast_patch);
 290   }
 291 
 292 #ifdef ASSERT
 293   Label L_okay;
 294   __ load_unsigned_byte(temp_reg, at_bcp(0));
 295   __ cmpl(temp_reg, (int) Bytecodes::java_code(bc));
 296   __ jcc(Assembler::equal, L_okay);
 297   __ cmpl(temp_reg, bc_reg);
 298   __ jcc(Assembler::equal, L_okay);
 299   __ stop("patching the wrong bytecode");
 300   __ bind(L_okay);
 301 #endif
 302 
 303   // patch bytecode
 304   __ movb(at_bcp(0), bc_reg);
 305   __ bind(L_patch_done);
 306 }
 307 // Individual instructions
 308 
 309 
 310 void TemplateTable::nop() {
 311   transition(vtos, vtos);
 312   // nothing to do
 313 }
 314 
 315 void TemplateTable::shouldnotreachhere() {
 316   transition(vtos, vtos);
 317   __ stop("shouldnotreachhere bytecode");
 318 }
 319 
 320 void TemplateTable::aconst_null() {
 321   transition(vtos, atos);
 322   __ xorl(rax, rax);
 323 }
 324 
 325 void TemplateTable::iconst(int value) {
 326   transition(vtos, itos);
 327   if (value == 0) {
 328     __ xorl(rax, rax);
 329   } else {
 330     __ movl(rax, value);
 331   }
 332 }
 333 
 334 void TemplateTable::lconst(int value) {
 335   transition(vtos, ltos);
 336   if (value == 0) {
 337     __ xorl(rax, rax);
 338   } else {
 339     __ movl(rax, value);
 340   }
 341 #ifndef _LP64
 342   assert(value >= 0, "check this code");
 343   __ xorptr(rdx, rdx);
 344 #endif
 345 }
 346 
 347 
 348 
 349 void TemplateTable::fconst(int value) {
 350   transition(vtos, ftos);
 351   if (UseSSE >= 1) {
 352     static float one = 1.0f, two = 2.0f;
 353     switch (value) {
 354     case 0:
 355       __ xorps(xmm0, xmm0);
 356       break;
 357     case 1:
 358       __ movflt(xmm0, ExternalAddress((address) &one));
 359       break;
 360     case 2:
 361       __ movflt(xmm0, ExternalAddress((address) &two));
 362       break;
 363     default:
 364       ShouldNotReachHere();
 365       break;
 366     }
 367   } else {
 368 #ifdef _LP64
 369     ShouldNotReachHere();
 370 #else
 371            if (value == 0) { __ fldz();
 372     } else if (value == 1) { __ fld1();
 373     } else if (value == 2) { __ fld1(); __ fld1(); __ faddp(); // should do a better solution here
 374     } else                 { ShouldNotReachHere();
 375     }
 376 #endif // _LP64
 377   }
 378 }
 379 
 380 void TemplateTable::dconst(int value) {
 381   transition(vtos, dtos);
 382   if (UseSSE >= 2) {
 383     static double one = 1.0;
 384     switch (value) {
 385     case 0:
 386       __ xorpd(xmm0, xmm0);
 387       break;
 388     case 1:
 389       __ movdbl(xmm0, ExternalAddress((address) &one));
 390       break;
 391     default:
 392       ShouldNotReachHere();
 393       break;
 394     }
 395   } else {
 396 #ifdef _LP64
 397     ShouldNotReachHere();
 398 #else
 399            if (value == 0) { __ fldz();
 400     } else if (value == 1) { __ fld1();
 401     } else                 { ShouldNotReachHere();
 402     }
 403 #endif
 404   }
 405 }
 406 
 407 void TemplateTable::bipush() {
 408   transition(vtos, itos);
 409   __ load_signed_byte(rax, at_bcp(1));
 410 }
 411 
 412 void TemplateTable::sipush() {
 413   transition(vtos, itos);
 414   __ load_unsigned_short(rax, at_bcp(1));
 415   __ bswapl(rax);
 416   __ sarl(rax, 16);
 417 }
 418 
 419 void TemplateTable::ldc(bool wide) {
 420   transition(vtos, vtos);
 421   Register rarg = NOT_LP64(rcx) LP64_ONLY(c_rarg1);
 422   Label call_ldc, notFloat, notClass, Done;
 423 
 424   if (wide) {
 425     __ get_unsigned_2_byte_index_at_bcp(rbx, 1);
 426   } else {
 427     __ load_unsigned_byte(rbx, at_bcp(1));
 428   }
 429 
 430   __ get_cpool_and_tags(rcx, rax);
 431   const int base_offset = ConstantPool::header_size() * wordSize;
 432   const int tags_offset = Array<u1>::base_offset_in_bytes();
 433 
 434   // get type
 435   __ movzbl(rdx, Address(rax, rbx, Address::times_1, tags_offset));
 436 
 437   // unresolved class - get the resolved class
 438   __ cmpl(rdx, JVM_CONSTANT_UnresolvedClass);
 439   __ jccb(Assembler::equal, call_ldc);
 440 
 441   // unresolved class in error state - call into runtime to throw the error
 442   // from the first resolution attempt
 443   __ cmpl(rdx, JVM_CONSTANT_UnresolvedClassInError);
 444   __ jccb(Assembler::equal, call_ldc);
 445 
 446   // resolved class - need to call vm to get java mirror of the class
 447   __ cmpl(rdx, JVM_CONSTANT_Class);
 448   __ jcc(Assembler::notEqual, notClass);
 449 
 450   __ bind(call_ldc);
 451 
 452   __ movl(rarg, wide);
 453   call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::ldc), rarg);
 454 
 455   __ push(atos);
 456   __ jmp(Done);
 457 
 458   __ bind(notClass);
 459   __ cmpl(rdx, JVM_CONSTANT_Float);
 460   __ jccb(Assembler::notEqual, notFloat);
 461 
 462   // ftos
 463   __ load_float(Address(rcx, rbx, Address::times_ptr, base_offset));
 464   __ push(ftos);
 465   __ jmp(Done);
 466 
 467   __ bind(notFloat);
 468 #ifdef ASSERT
 469   {
 470     Label L;
 471     __ cmpl(rdx, JVM_CONSTANT_Integer);
 472     __ jcc(Assembler::equal, L);
 473     // String and Object are rewritten to fast_aldc
 474     __ stop("unexpected tag type in ldc");
 475     __ bind(L);
 476   }
 477 #endif
 478   // itos JVM_CONSTANT_Integer only
 479   __ movl(rax, Address(rcx, rbx, Address::times_ptr, base_offset));
 480   __ push(itos);
 481   __ bind(Done);
 482 }
 483 
 484 // Fast path for caching oop constants.
 485 void TemplateTable::fast_aldc(bool wide) {
 486   transition(vtos, atos);
 487 
 488   Register result = rax;
 489   Register tmp = rdx;
 490   int index_size = wide ? sizeof(u2) : sizeof(u1);
 491 
 492   Label resolved;
 493 
 494   // We are resolved if the resolved reference cache entry contains a
 495   // non-null object (String, MethodType, etc.)
 496   assert_different_registers(result, tmp);
 497   __ get_cache_index_at_bcp(tmp, 1, index_size);
 498   __ load_resolved_reference_at_index(result, tmp);
 499   __ testl(result, result);
 500   __ jcc(Assembler::notZero, resolved);
 501 
 502   address entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_ldc);
 503 
 504   // first time invocation - must resolve first
 505   __ movl(tmp, (int)bytecode());
 506   __ call_VM(result, entry, tmp);
 507 
 508   __ bind(resolved);
 509 
 510   if (VerifyOops) {
 511     __ verify_oop(result);
 512   }
 513 }
 514 
 515 void TemplateTable::ldc2_w() {
 516   transition(vtos, vtos);
 517   Label Long, Done;
 518   __ get_unsigned_2_byte_index_at_bcp(rbx, 1);
 519 
 520   __ get_cpool_and_tags(rcx, rax);
 521   const int base_offset = ConstantPool::header_size() * wordSize;
 522   const int tags_offset = Array<u1>::base_offset_in_bytes();
 523 
 524   // get type
 525   __ cmpb(Address(rax, rbx, Address::times_1, tags_offset),
 526           JVM_CONSTANT_Double);
 527   __ jccb(Assembler::notEqual, Long);
 528 
 529   // dtos
 530   __ load_double(Address(rcx, rbx, Address::times_ptr, base_offset));
 531   __ push(dtos);
 532 
 533   __ jmpb(Done);
 534   __ bind(Long);
 535 
 536   // ltos
 537   __ movptr(rax, Address(rcx, rbx, Address::times_ptr, base_offset + 0 * wordSize));
 538   NOT_LP64(__ movptr(rdx, Address(rcx, rbx, Address::times_ptr, base_offset + 1 * wordSize)));
 539   __ push(ltos);
 540 
 541   __ bind(Done);
 542 }
 543 
 544 void TemplateTable::locals_index(Register reg, int offset) {
 545   __ load_unsigned_byte(reg, at_bcp(offset));
 546   __ negptr(reg);
 547 }
 548 
 549 void TemplateTable::iload() {
 550   iload_internal();
 551 }
 552 
 553 void TemplateTable::nofast_iload() {
 554   iload_internal(may_not_rewrite);
 555 }
 556 
 557 void TemplateTable::iload_internal(RewriteControl rc) {
 558   transition(vtos, itos);
 559   if (RewriteFrequentPairs && rc == may_rewrite) {
 560     Label rewrite, done;
 561     const Register bc = LP64_ONLY(c_rarg3) NOT_LP64(rcx);
 562     LP64_ONLY(assert(rbx != bc, "register damaged"));
 563 
 564     // get next byte
 565     __ load_unsigned_byte(rbx,
 566                           at_bcp(Bytecodes::length_for(Bytecodes::_iload)));
 567     // if _iload, wait to rewrite to iload2.  We only want to rewrite the
 568     // last two iloads in a pair.  Comparing against fast_iload means that
 569     // the next bytecode is neither an iload or a caload, and therefore
 570     // an iload pair.
 571     __ cmpl(rbx, Bytecodes::_iload);
 572     __ jcc(Assembler::equal, done);
 573 
 574     __ cmpl(rbx, Bytecodes::_fast_iload);
 575     __ movl(bc, Bytecodes::_fast_iload2);
 576 
 577     __ jccb(Assembler::equal, rewrite);
 578 
 579     // if _caload, rewrite to fast_icaload
 580     __ cmpl(rbx, Bytecodes::_caload);
 581     __ movl(bc, Bytecodes::_fast_icaload);
 582     __ jccb(Assembler::equal, rewrite);
 583 
 584     // rewrite so iload doesn't check again.
 585     __ movl(bc, Bytecodes::_fast_iload);
 586 
 587     // rewrite
 588     // bc: fast bytecode
 589     __ bind(rewrite);
 590     patch_bytecode(Bytecodes::_iload, bc, rbx, false);
 591     __ bind(done);
 592   }
 593 
 594   // Get the local value into tos
 595   locals_index(rbx);
 596   __ movl(rax, iaddress(rbx));
 597 }
 598 
 599 void TemplateTable::fast_iload2() {
 600   transition(vtos, itos);
 601   locals_index(rbx);
 602   __ movl(rax, iaddress(rbx));
 603   __ push(itos);
 604   locals_index(rbx, 3);
 605   __ movl(rax, iaddress(rbx));
 606 }
 607 
 608 void TemplateTable::fast_iload() {
 609   transition(vtos, itos);
 610   locals_index(rbx);
 611   __ movl(rax, iaddress(rbx));
 612 }
 613 
 614 void TemplateTable::lload() {
 615   transition(vtos, ltos);
 616   locals_index(rbx);
 617   __ movptr(rax, laddress(rbx));
 618   NOT_LP64(__ movl(rdx, haddress(rbx)));
 619 }
 620 
 621 void TemplateTable::fload() {
 622   transition(vtos, ftos);
 623   locals_index(rbx);
 624   __ load_float(faddress(rbx));
 625 }
 626 
 627 void TemplateTable::dload() {
 628   transition(vtos, dtos);
 629   locals_index(rbx);
 630   __ load_double(daddress(rbx));
 631 }
 632 
 633 void TemplateTable::aload() {
 634   transition(vtos, atos);
 635   locals_index(rbx);
 636   __ movptr(rax, aaddress(rbx));
 637 }
 638 
 639 void TemplateTable::locals_index_wide(Register reg) {
 640   __ load_unsigned_short(reg, at_bcp(2));
 641   __ bswapl(reg);
 642   __ shrl(reg, 16);
 643   __ negptr(reg);
 644 }
 645 
 646 void TemplateTable::wide_iload() {
 647   transition(vtos, itos);
 648   locals_index_wide(rbx);
 649   __ movl(rax, iaddress(rbx));
 650 }
 651 
 652 void TemplateTable::wide_lload() {
 653   transition(vtos, ltos);
 654   locals_index_wide(rbx);
 655   __ movptr(rax, laddress(rbx));
 656   NOT_LP64(__ movl(rdx, haddress(rbx)));
 657 }
 658 
 659 void TemplateTable::wide_fload() {
 660   transition(vtos, ftos);
 661   locals_index_wide(rbx);
 662   __ load_float(faddress(rbx));
 663 }
 664 
 665 void TemplateTable::wide_dload() {
 666   transition(vtos, dtos);
 667   locals_index_wide(rbx);
 668   __ load_double(daddress(rbx));
 669 }
 670 
 671 void TemplateTable::wide_aload() {
 672   transition(vtos, atos);
 673   locals_index_wide(rbx);
 674   __ movptr(rax, aaddress(rbx));
 675 }
 676 
 677 void TemplateTable::index_check(Register array, Register index) {
 678   // Pop ptr into array
 679   __ pop_ptr(array);
 680   index_check_without_pop(array, index);
 681 }
 682 
 683 void TemplateTable::index_check_without_pop(Register array, Register index) {
 684   // destroys rbx
 685   // check array
 686   __ null_check(array, arrayOopDesc::length_offset_in_bytes());
 687   // sign extend index for use by indexed load
 688   __ movl2ptr(index, index);
 689   // check index
 690   __ cmpl(index, Address(array, arrayOopDesc::length_offset_in_bytes()));
 691   if (index != rbx) {
 692     // ??? convention: move aberrant index into rbx for exception message
 693     assert(rbx != array, "different registers");
 694     __ movl(rbx, index);
 695   }
 696   __ jump_cc(Assembler::aboveEqual,
 697              ExternalAddress(Interpreter::_throw_ArrayIndexOutOfBoundsException_entry));
 698 }
 699 
 700 
 701 void TemplateTable::iaload() {
 702   transition(itos, itos);
 703   // rax: index
 704   // rdx: array
 705   index_check(rdx, rax); // kills rbx
 706   __ movl(rax, Address(rdx, rax,
 707                        Address::times_4,
 708                        arrayOopDesc::base_offset_in_bytes(T_INT)));
 709 }
 710 
 711 void TemplateTable::laload() {
 712   transition(itos, ltos);
 713   // rax: index
 714   // rdx: array
 715   index_check(rdx, rax); // kills rbx
 716   NOT_LP64(__ mov(rbx, rax));
 717   // rbx,: index
 718   __ movptr(rax, Address(rdx, rbx, Address::times_8, arrayOopDesc::base_offset_in_bytes(T_LONG) + 0 * wordSize));
 719   NOT_LP64(__ movl(rdx, Address(rdx, rbx, Address::times_8, arrayOopDesc::base_offset_in_bytes(T_LONG) + 1 * wordSize)));
 720 }
 721 
 722 
 723 
 724 void TemplateTable::faload() {
 725   transition(itos, ftos);
 726   // rax: index
 727   // rdx: array
 728   index_check(rdx, rax); // kills rbx
 729   __ load_float(Address(rdx, rax,
 730                         Address::times_4,
 731                         arrayOopDesc::base_offset_in_bytes(T_FLOAT)));
 732 }
 733 
 734 void TemplateTable::daload() {
 735   transition(itos, dtos);
 736   // rax: index
 737   // rdx: array
 738   index_check(rdx, rax); // kills rbx
 739   __ load_double(Address(rdx, rax,
 740                          Address::times_8,
 741                          arrayOopDesc::base_offset_in_bytes(T_DOUBLE)));
 742 }
 743 
 744 void TemplateTable::aaload() {
 745   transition(itos, atos);
 746   // rax: index
 747   // rdx: array
 748   index_check(rdx, rax); // kills rbx
 749   __ load_heap_oop(rax, Address(rdx, rax,
 750                                 UseCompressedOops ? Address::times_4 : Address::times_ptr,
 751                                 arrayOopDesc::base_offset_in_bytes(T_OBJECT)));
 752 }
 753 
 754 void TemplateTable::baload() {
 755   transition(itos, itos);
 756   // rax: index
 757   // rdx: array
 758   index_check(rdx, rax); // kills rbx
 759   __ load_signed_byte(rax, Address(rdx, rax, Address::times_1, arrayOopDesc::base_offset_in_bytes(T_BYTE)));
 760 }
 761 
 762 void TemplateTable::caload() {
 763   transition(itos, itos);
 764   // rax: index
 765   // rdx: array
 766   index_check(rdx, rax); // kills rbx
 767   __ load_unsigned_short(rax, Address(rdx, rax, Address::times_2, arrayOopDesc::base_offset_in_bytes(T_CHAR)));
 768 }
 769 
 770 // iload followed by caload frequent pair
 771 void TemplateTable::fast_icaload() {
 772   transition(vtos, itos);
 773   // load index out of locals
 774   locals_index(rbx);
 775   __ movl(rax, iaddress(rbx));
 776 
 777   // rax: index
 778   // rdx: array
 779   index_check(rdx, rax); // kills rbx
 780   __ load_unsigned_short(rax,
 781                          Address(rdx, rax,
 782                                  Address::times_2,
 783                                  arrayOopDesc::base_offset_in_bytes(T_CHAR)));
 784 }
 785 
 786 
 787 void TemplateTable::saload() {
 788   transition(itos, itos);
 789   // rax: index
 790   // rdx: array
 791   index_check(rdx, rax); // kills rbx
 792   __ load_signed_short(rax, Address(rdx, rax, Address::times_2, arrayOopDesc::base_offset_in_bytes(T_SHORT)));
 793 }
 794 
 795 void TemplateTable::iload(int n) {
 796   transition(vtos, itos);
 797   __ movl(rax, iaddress(n));
 798 }
 799 
 800 void TemplateTable::lload(int n) {
 801   transition(vtos, ltos);
 802   __ movptr(rax, laddress(n));
 803   NOT_LP64(__ movptr(rdx, haddress(n)));
 804 }
 805 
 806 void TemplateTable::fload(int n) {
 807   transition(vtos, ftos);
 808   __ load_float(faddress(n));
 809 }
 810 
 811 void TemplateTable::dload(int n) {
 812   transition(vtos, dtos);
 813   __ load_double(daddress(n));
 814 }
 815 
 816 void TemplateTable::aload(int n) {
 817   transition(vtos, atos);
 818   __ movptr(rax, aaddress(n));
 819 }
 820 
 821 void TemplateTable::aload_0() {
 822   aload_0_internal();
 823 }
 824 
 825 void TemplateTable::nofast_aload_0() {
 826   aload_0_internal(may_not_rewrite);
 827 }
 828 
 829 void TemplateTable::aload_0_internal(RewriteControl rc) {
 830   transition(vtos, atos);
 831   // According to bytecode histograms, the pairs:
 832   //
 833   // _aload_0, _fast_igetfield
 834   // _aload_0, _fast_agetfield
 835   // _aload_0, _fast_fgetfield
 836   //
 837   // occur frequently. If RewriteFrequentPairs is set, the (slow)
 838   // _aload_0 bytecode checks if the next bytecode is either
 839   // _fast_igetfield, _fast_agetfield or _fast_fgetfield and then
 840   // rewrites the current bytecode into a pair bytecode; otherwise it
 841   // rewrites the current bytecode into _fast_aload_0 that doesn't do
 842   // the pair check anymore.
 843   //
 844   // Note: If the next bytecode is _getfield, the rewrite must be
 845   //       delayed, otherwise we may miss an opportunity for a pair.
 846   //
 847   // Also rewrite frequent pairs
 848   //   aload_0, aload_1
 849   //   aload_0, iload_1
 850   // These bytecodes with a small amount of code are most profitable
 851   // to rewrite
 852   if (RewriteFrequentPairs && rc == may_rewrite) {
 853     Label rewrite, done;
 854 
 855     const Register bc = LP64_ONLY(c_rarg3) NOT_LP64(rcx);
 856     LP64_ONLY(assert(rbx != bc, "register damaged"));
 857 
 858     // get next byte
 859     __ load_unsigned_byte(rbx, at_bcp(Bytecodes::length_for(Bytecodes::_aload_0)));
 860 
 861     // do actual aload_0
 862     aload(0);
 863 
 864     // if _getfield then wait with rewrite
 865     __ cmpl(rbx, Bytecodes::_getfield);
 866     __ jcc(Assembler::equal, done);
 867 
 868     // if _igetfield then reqrite to _fast_iaccess_0
 869     assert(Bytecodes::java_code(Bytecodes::_fast_iaccess_0) == Bytecodes::_aload_0, "fix bytecode definition");
 870     __ cmpl(rbx, Bytecodes::_fast_igetfield);
 871     __ movl(bc, Bytecodes::_fast_iaccess_0);
 872     __ jccb(Assembler::equal, rewrite);
 873 
 874     // if _agetfield then reqrite to _fast_aaccess_0
 875     assert(Bytecodes::java_code(Bytecodes::_fast_aaccess_0) == Bytecodes::_aload_0, "fix bytecode definition");
 876     __ cmpl(rbx, Bytecodes::_fast_agetfield);
 877     __ movl(bc, Bytecodes::_fast_aaccess_0);
 878     __ jccb(Assembler::equal, rewrite);
 879 
 880     // if _fgetfield then reqrite to _fast_faccess_0
 881     assert(Bytecodes::java_code(Bytecodes::_fast_faccess_0) == Bytecodes::_aload_0, "fix bytecode definition");
 882     __ cmpl(rbx, Bytecodes::_fast_fgetfield);
 883     __ movl(bc, Bytecodes::_fast_faccess_0);
 884     __ jccb(Assembler::equal, rewrite);
 885 
 886     // else rewrite to _fast_aload0
 887     assert(Bytecodes::java_code(Bytecodes::_fast_aload_0) == Bytecodes::_aload_0, "fix bytecode definition");
 888     __ movl(bc, Bytecodes::_fast_aload_0);
 889 
 890     // rewrite
 891     // bc: fast bytecode
 892     __ bind(rewrite);
 893     patch_bytecode(Bytecodes::_aload_0, bc, rbx, false);
 894 
 895     __ bind(done);
 896   } else {
 897     aload(0);
 898   }
 899 }
 900 
 901 void TemplateTable::istore() {
 902   transition(itos, vtos);
 903   locals_index(rbx);
 904   __ movl(iaddress(rbx), rax);
 905 }
 906 
 907 
 908 void TemplateTable::lstore() {
 909   transition(ltos, vtos);
 910   locals_index(rbx);
 911   __ movptr(laddress(rbx), rax);
 912   NOT_LP64(__ movptr(haddress(rbx), rdx));
 913 }
 914 
 915 void TemplateTable::fstore() {
 916   transition(ftos, vtos);
 917   locals_index(rbx);
 918   __ store_float(faddress(rbx));
 919 }
 920 
 921 void TemplateTable::dstore() {
 922   transition(dtos, vtos);
 923   locals_index(rbx);
 924   __ store_double(daddress(rbx));
 925 }
 926 
 927 void TemplateTable::astore() {
 928   transition(vtos, vtos);
 929   __ pop_ptr(rax);
 930   locals_index(rbx);
 931   __ movptr(aaddress(rbx), rax);
 932 }
 933 
 934 void TemplateTable::wide_istore() {
 935   transition(vtos, vtos);
 936   __ pop_i();
 937   locals_index_wide(rbx);
 938   __ movl(iaddress(rbx), rax);
 939 }
 940 
 941 void TemplateTable::wide_lstore() {
 942   transition(vtos, vtos);
 943   NOT_LP64(__ pop_l(rax, rdx));
 944   LP64_ONLY(__ pop_l());
 945   locals_index_wide(rbx);
 946   __ movptr(laddress(rbx), rax);
 947   NOT_LP64(__ movl(haddress(rbx), rdx));
 948 }
 949 
 950 void TemplateTable::wide_fstore() {
 951 #ifdef _LP64
 952   transition(vtos, vtos);
 953   __ pop_f(xmm0);
 954   locals_index_wide(rbx);
 955   __ movflt(faddress(rbx), xmm0);
 956 #else
 957   wide_istore();
 958 #endif
 959 }
 960 
 961 void TemplateTable::wide_dstore() {
 962 #ifdef _LP64
 963   transition(vtos, vtos);
 964   __ pop_d(xmm0);
 965   locals_index_wide(rbx);
 966   __ movdbl(daddress(rbx), xmm0);
 967 #else
 968   wide_lstore();
 969 #endif
 970 }
 971 
 972 void TemplateTable::wide_astore() {
 973   transition(vtos, vtos);
 974   __ pop_ptr(rax);
 975   locals_index_wide(rbx);
 976   __ movptr(aaddress(rbx), rax);
 977 }
 978 
 979 void TemplateTable::iastore() {
 980   transition(itos, vtos);
 981   __ pop_i(rbx);
 982   // rax: value
 983   // rbx: index
 984   // rdx: array
 985   index_check(rdx, rbx); // prefer index in rbx
 986   __ movl(Address(rdx, rbx,
 987                   Address::times_4,
 988                   arrayOopDesc::base_offset_in_bytes(T_INT)),
 989           rax);
 990 }
 991 
 992 void TemplateTable::lastore() {
 993   transition(ltos, vtos);
 994   __ pop_i(rbx);
 995   // rax,: low(value)
 996   // rcx: array
 997   // rdx: high(value)
 998   index_check(rcx, rbx);  // prefer index in rbx,
 999   // rbx,: index
1000   __ movptr(Address(rcx, rbx, Address::times_8, arrayOopDesc::base_offset_in_bytes(T_LONG) + 0 * wordSize), rax);
1001   NOT_LP64(__ movl(Address(rcx, rbx, Address::times_8, arrayOopDesc::base_offset_in_bytes(T_LONG) + 1 * wordSize), rdx));
1002 }
1003 
1004 
1005 void TemplateTable::fastore() {
1006   transition(ftos, vtos);
1007   __ pop_i(rbx);
1008   // value is in UseSSE >= 1 ? xmm0 : ST(0)
1009   // rbx:  index
1010   // rdx:  array
1011   index_check(rdx, rbx); // prefer index in rbx
1012   __ store_float(Address(rdx, rbx, Address::times_4, arrayOopDesc::base_offset_in_bytes(T_FLOAT)));
1013 }
1014 
1015 void TemplateTable::dastore() {
1016   transition(dtos, vtos);
1017   __ pop_i(rbx);
1018   // value is in UseSSE >= 2 ? xmm0 : ST(0)
1019   // rbx:  index
1020   // rdx:  array
1021   index_check(rdx, rbx); // prefer index in rbx
1022   __ store_double(Address(rdx, rbx, Address::times_8, arrayOopDesc::base_offset_in_bytes(T_DOUBLE)));
1023 }
1024 
1025 void TemplateTable::aastore() {
1026   Label is_null, ok_is_subtype, done;
1027   transition(vtos, vtos);
1028   // stack: ..., array, index, value
1029   __ movptr(rax, at_tos());    // value
1030   __ movl(rcx, at_tos_p1()); // index
1031   __ movptr(rdx, at_tos_p2()); // array
1032 
1033   Address element_address(rdx, rcx,
1034                           UseCompressedOops? Address::times_4 : Address::times_ptr,
1035                           arrayOopDesc::base_offset_in_bytes(T_OBJECT));
1036 
1037   index_check_without_pop(rdx, rcx);     // kills rbx
1038   __ testptr(rax, rax);
1039   __ jcc(Assembler::zero, is_null);
1040 
1041   // Move subklass into rbx
1042   __ load_klass(rbx, rax);
1043   // Move superklass into rax
1044   __ load_klass(rax, rdx);
1045   __ movptr(rax, Address(rax,
1046                          ObjArrayKlass::element_klass_offset()));
1047   // Compress array + index*oopSize + 12 into a single register.  Frees rcx.
1048   __ lea(rdx, element_address);
1049 
1050   // Generate subtype check.  Blows rcx, rdi
1051   // Superklass in rax.  Subklass in rbx.
1052   __ gen_subtype_check(rbx, ok_is_subtype);
1053 
1054   // Come here on failure
1055   // object is at TOS
1056   __ jump(ExternalAddress(Interpreter::_throw_ArrayStoreException_entry));
1057 
1058   // Come here on success
1059   __ bind(ok_is_subtype);
1060 
1061   // Get the value we will store
1062   __ movptr(rax, at_tos());
1063   // Now store using the appropriate barrier
1064   do_oop_store(_masm, Address(rdx, 0), rax, _bs->kind(), true);
1065   __ jmp(done);
1066 
1067   // Have a NULL in rax, rdx=array, ecx=index.  Store NULL at ary[idx]
1068   __ bind(is_null);
1069   __ profile_null_seen(rbx);
1070 
1071   // Store a NULL
1072   do_oop_store(_masm, element_address, noreg, _bs->kind(), true);
1073 
1074   // Pop stack arguments
1075   __ bind(done);
1076   __ addptr(rsp, 3 * Interpreter::stackElementSize);
1077 }
1078 
1079 void TemplateTable::bastore() {
1080   transition(itos, vtos);
1081   __ pop_i(rbx);
1082   // rax: value
1083   // rbx: index
1084   // rdx: array
1085   index_check(rdx, rbx); // prefer index in rbx
1086   // Need to check whether array is boolean or byte
1087   // since both types share the bastore bytecode.
1088   __ load_klass(rcx, rdx);
1089   __ movl(rcx, Address(rcx, Klass::layout_helper_offset()));
1090   int diffbit = Klass::layout_helper_boolean_diffbit();
1091   __ testl(rcx, diffbit);
1092   Label L_skip;
1093   __ jccb(Assembler::zero, L_skip);
1094   __ andl(rax, 1);  // if it is a T_BOOLEAN array, mask the stored value to 0/1
1095   __ bind(L_skip);
1096   __ movb(Address(rdx, rbx,
1097                   Address::times_1,
1098                   arrayOopDesc::base_offset_in_bytes(T_BYTE)),
1099           rax);
1100 }
1101 
1102 void TemplateTable::castore() {
1103   transition(itos, vtos);
1104   __ pop_i(rbx);
1105   // rax: value
1106   // rbx: index
1107   // rdx: array
1108   index_check(rdx, rbx);  // prefer index in rbx
1109   __ movw(Address(rdx, rbx,
1110                   Address::times_2,
1111                   arrayOopDesc::base_offset_in_bytes(T_CHAR)),
1112           rax);
1113 }
1114 
1115 
1116 void TemplateTable::sastore() {
1117   castore();
1118 }
1119 
1120 void TemplateTable::istore(int n) {
1121   transition(itos, vtos);
1122   __ movl(iaddress(n), rax);
1123 }
1124 
1125 void TemplateTable::lstore(int n) {
1126   transition(ltos, vtos);
1127   __ movptr(laddress(n), rax);
1128   NOT_LP64(__ movptr(haddress(n), rdx));
1129 }
1130 
1131 void TemplateTable::fstore(int n) {
1132   transition(ftos, vtos);
1133   __ store_float(faddress(n));
1134 }
1135 
1136 void TemplateTable::dstore(int n) {
1137   transition(dtos, vtos);
1138   __ store_double(daddress(n));
1139 }
1140 
1141 
1142 void TemplateTable::astore(int n) {
1143   transition(vtos, vtos);
1144   __ pop_ptr(rax);
1145   __ movptr(aaddress(n), rax);
1146 }
1147 
1148 void TemplateTable::pop() {
1149   transition(vtos, vtos);
1150   __ addptr(rsp, Interpreter::stackElementSize);
1151 }
1152 
1153 void TemplateTable::pop2() {
1154   transition(vtos, vtos);
1155   __ addptr(rsp, 2 * Interpreter::stackElementSize);
1156 }
1157 
1158 
1159 void TemplateTable::dup() {
1160   transition(vtos, vtos);
1161   __ load_ptr(0, rax);
1162   __ push_ptr(rax);
1163   // stack: ..., a, a
1164 }
1165 
1166 void TemplateTable::dup_x1() {
1167   transition(vtos, vtos);
1168   // stack: ..., a, b
1169   __ load_ptr( 0, rax);  // load b
1170   __ load_ptr( 1, rcx);  // load a
1171   __ store_ptr(1, rax);  // store b
1172   __ store_ptr(0, rcx);  // store a
1173   __ push_ptr(rax);      // push b
1174   // stack: ..., b, a, b
1175 }
1176 
1177 void TemplateTable::dup_x2() {
1178   transition(vtos, vtos);
1179   // stack: ..., a, b, c
1180   __ load_ptr( 0, rax);  // load c
1181   __ load_ptr( 2, rcx);  // load a
1182   __ store_ptr(2, rax);  // store c in a
1183   __ push_ptr(rax);      // push c
1184   // stack: ..., c, b, c, c
1185   __ load_ptr( 2, rax);  // load b
1186   __ store_ptr(2, rcx);  // store a in b
1187   // stack: ..., c, a, c, c
1188   __ store_ptr(1, rax);  // store b in c
1189   // stack: ..., c, a, b, c
1190 }
1191 
1192 void TemplateTable::dup2() {
1193   transition(vtos, vtos);
1194   // stack: ..., a, b
1195   __ load_ptr(1, rax);  // load a
1196   __ push_ptr(rax);     // push a
1197   __ load_ptr(1, rax);  // load b
1198   __ push_ptr(rax);     // push b
1199   // stack: ..., a, b, a, b
1200 }
1201 
1202 
1203 void TemplateTable::dup2_x1() {
1204   transition(vtos, vtos);
1205   // stack: ..., a, b, c
1206   __ load_ptr( 0, rcx);  // load c
1207   __ load_ptr( 1, rax);  // load b
1208   __ push_ptr(rax);      // push b
1209   __ push_ptr(rcx);      // push c
1210   // stack: ..., a, b, c, b, c
1211   __ store_ptr(3, rcx);  // store c in b
1212   // stack: ..., a, c, c, b, c
1213   __ load_ptr( 4, rcx);  // load a
1214   __ store_ptr(2, rcx);  // store a in 2nd c
1215   // stack: ..., a, c, a, b, c
1216   __ store_ptr(4, rax);  // store b in a
1217   // stack: ..., b, c, a, b, c
1218 }
1219 
1220 void TemplateTable::dup2_x2() {
1221   transition(vtos, vtos);
1222   // stack: ..., a, b, c, d
1223   __ load_ptr( 0, rcx);  // load d
1224   __ load_ptr( 1, rax);  // load c
1225   __ push_ptr(rax);      // push c
1226   __ push_ptr(rcx);      // push d
1227   // stack: ..., a, b, c, d, c, d
1228   __ load_ptr( 4, rax);  // load b
1229   __ store_ptr(2, rax);  // store b in d
1230   __ store_ptr(4, rcx);  // store d in b
1231   // stack: ..., a, d, c, b, c, d
1232   __ load_ptr( 5, rcx);  // load a
1233   __ load_ptr( 3, rax);  // load c
1234   __ store_ptr(3, rcx);  // store a in c
1235   __ store_ptr(5, rax);  // store c in a
1236   // stack: ..., c, d, a, b, c, d
1237 }
1238 
1239 void TemplateTable::swap() {
1240   transition(vtos, vtos);
1241   // stack: ..., a, b
1242   __ load_ptr( 1, rcx);  // load a
1243   __ load_ptr( 0, rax);  // load b
1244   __ store_ptr(0, rcx);  // store a in b
1245   __ store_ptr(1, rax);  // store b in a
1246   // stack: ..., b, a
1247 }
1248 
1249 void TemplateTable::iop2(Operation op) {
1250   transition(itos, itos);
1251   switch (op) {
1252   case add  :                    __ pop_i(rdx); __ addl (rax, rdx); break;
1253   case sub  : __ movl(rdx, rax); __ pop_i(rax); __ subl (rax, rdx); break;
1254   case mul  :                    __ pop_i(rdx); __ imull(rax, rdx); break;
1255   case _and :                    __ pop_i(rdx); __ andl (rax, rdx); break;
1256   case _or  :                    __ pop_i(rdx); __ orl  (rax, rdx); break;
1257   case _xor :                    __ pop_i(rdx); __ xorl (rax, rdx); break;
1258   case shl  : __ movl(rcx, rax); __ pop_i(rax); __ shll (rax);      break;
1259   case shr  : __ movl(rcx, rax); __ pop_i(rax); __ sarl (rax);      break;
1260   case ushr : __ movl(rcx, rax); __ pop_i(rax); __ shrl (rax);      break;
1261   default   : ShouldNotReachHere();
1262   }
1263 }
1264 
1265 void TemplateTable::lop2(Operation op) {
1266   transition(ltos, ltos);
1267 #ifdef _LP64
1268   switch (op) {
1269   case add  :                    __ pop_l(rdx); __ addptr(rax, rdx); break;
1270   case sub  : __ mov(rdx, rax);  __ pop_l(rax); __ subptr(rax, rdx); break;
1271   case _and :                    __ pop_l(rdx); __ andptr(rax, rdx); break;
1272   case _or  :                    __ pop_l(rdx); __ orptr (rax, rdx); break;
1273   case _xor :                    __ pop_l(rdx); __ xorptr(rax, rdx); break;
1274   default   : ShouldNotReachHere();
1275   }
1276 #else
1277   __ pop_l(rbx, rcx);
1278   switch (op) {
1279     case add  : __ addl(rax, rbx); __ adcl(rdx, rcx); break;
1280     case sub  : __ subl(rbx, rax); __ sbbl(rcx, rdx);
1281                 __ mov (rax, rbx); __ mov (rdx, rcx); break;
1282     case _and : __ andl(rax, rbx); __ andl(rdx, rcx); break;
1283     case _or  : __ orl (rax, rbx); __ orl (rdx, rcx); break;
1284     case _xor : __ xorl(rax, rbx); __ xorl(rdx, rcx); break;
1285     default   : ShouldNotReachHere();
1286   }
1287 #endif
1288 }
1289 
1290 void TemplateTable::idiv() {
1291   transition(itos, itos);
1292   __ movl(rcx, rax);
1293   __ pop_i(rax);
1294   // Note: could xor rax and ecx and compare with (-1 ^ min_int). If
1295   //       they are not equal, one could do a normal division (no correction
1296   //       needed), which may speed up this implementation for the common case.
1297   //       (see also JVM spec., p.243 & p.271)
1298   __ corrected_idivl(rcx);
1299 }
1300 
1301 void TemplateTable::irem() {
1302   transition(itos, itos);
1303   __ movl(rcx, rax);
1304   __ pop_i(rax);
1305   // Note: could xor rax and ecx and compare with (-1 ^ min_int). If
1306   //       they are not equal, one could do a normal division (no correction
1307   //       needed), which may speed up this implementation for the common case.
1308   //       (see also JVM spec., p.243 & p.271)
1309   __ corrected_idivl(rcx);
1310   __ movl(rax, rdx);
1311 }
1312 
1313 void TemplateTable::lmul() {
1314   transition(ltos, ltos);
1315 #ifdef _LP64
1316   __ pop_l(rdx);
1317   __ imulq(rax, rdx);
1318 #else
1319   __ pop_l(rbx, rcx);
1320   __ push(rcx); __ push(rbx);
1321   __ push(rdx); __ push(rax);
1322   __ lmul(2 * wordSize, 0);
1323   __ addptr(rsp, 4 * wordSize);  // take off temporaries
1324 #endif
1325 }
1326 
1327 void TemplateTable::ldiv() {
1328   transition(ltos, ltos);
1329 #ifdef _LP64
1330   __ mov(rcx, rax);
1331   __ pop_l(rax);
1332   // generate explicit div0 check
1333   __ testq(rcx, rcx);
1334   __ jump_cc(Assembler::zero,
1335              ExternalAddress(Interpreter::_throw_ArithmeticException_entry));
1336   // Note: could xor rax and rcx and compare with (-1 ^ min_int). If
1337   //       they are not equal, one could do a normal division (no correction
1338   //       needed), which may speed up this implementation for the common case.
1339   //       (see also JVM spec., p.243 & p.271)
1340   __ corrected_idivq(rcx); // kills rbx
1341 #else
1342   __ pop_l(rbx, rcx);
1343   __ push(rcx); __ push(rbx);
1344   __ push(rdx); __ push(rax);
1345   // check if y = 0
1346   __ orl(rax, rdx);
1347   __ jump_cc(Assembler::zero,
1348              ExternalAddress(Interpreter::_throw_ArithmeticException_entry));
1349   __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::ldiv));
1350   __ addptr(rsp, 4 * wordSize);  // take off temporaries
1351 #endif
1352 }
1353 
1354 void TemplateTable::lrem() {
1355   transition(ltos, ltos);
1356 #ifdef _LP64
1357   __ mov(rcx, rax);
1358   __ pop_l(rax);
1359   __ testq(rcx, rcx);
1360   __ jump_cc(Assembler::zero,
1361              ExternalAddress(Interpreter::_throw_ArithmeticException_entry));
1362   // Note: could xor rax and rcx and compare with (-1 ^ min_int). If
1363   //       they are not equal, one could do a normal division (no correction
1364   //       needed), which may speed up this implementation for the common case.
1365   //       (see also JVM spec., p.243 & p.271)
1366   __ corrected_idivq(rcx); // kills rbx
1367   __ mov(rax, rdx);
1368 #else
1369   __ pop_l(rbx, rcx);
1370   __ push(rcx); __ push(rbx);
1371   __ push(rdx); __ push(rax);
1372   // check if y = 0
1373   __ orl(rax, rdx);
1374   __ jump_cc(Assembler::zero,
1375              ExternalAddress(Interpreter::_throw_ArithmeticException_entry));
1376   __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::lrem));
1377   __ addptr(rsp, 4 * wordSize);
1378 #endif
1379 }
1380 
1381 void TemplateTable::lshl() {
1382   transition(itos, ltos);
1383   __ movl(rcx, rax);                             // get shift count
1384   #ifdef _LP64
1385   __ pop_l(rax);                                 // get shift value
1386   __ shlq(rax);
1387 #else
1388   __ pop_l(rax, rdx);                            // get shift value
1389   __ lshl(rdx, rax);
1390 #endif
1391 }
1392 
1393 void TemplateTable::lshr() {
1394 #ifdef _LP64
1395   transition(itos, ltos);
1396   __ movl(rcx, rax);                             // get shift count
1397   __ pop_l(rax);                                 // get shift value
1398   __ sarq(rax);
1399 #else
1400   transition(itos, ltos);
1401   __ mov(rcx, rax);                              // get shift count
1402   __ pop_l(rax, rdx);                            // get shift value
1403   __ lshr(rdx, rax, true);
1404 #endif
1405 }
1406 
1407 void TemplateTable::lushr() {
1408   transition(itos, ltos);
1409 #ifdef _LP64
1410   __ movl(rcx, rax);                             // get shift count
1411   __ pop_l(rax);                                 // get shift value
1412   __ shrq(rax);
1413 #else
1414   __ mov(rcx, rax);                              // get shift count
1415   __ pop_l(rax, rdx);                            // get shift value
1416   __ lshr(rdx, rax);
1417 #endif
1418 }
1419 
1420 void TemplateTable::fop2(Operation op) {
1421   transition(ftos, ftos);
1422 
1423   if (UseSSE >= 1) {
1424     switch (op) {
1425     case add:
1426       __ addss(xmm0, at_rsp());
1427       __ addptr(rsp, Interpreter::stackElementSize);
1428       break;
1429     case sub:
1430       __ movflt(xmm1, xmm0);
1431       __ pop_f(xmm0);
1432       __ subss(xmm0, xmm1);
1433       break;
1434     case mul:
1435       __ mulss(xmm0, at_rsp());
1436       __ addptr(rsp, Interpreter::stackElementSize);
1437       break;
1438     case div:
1439       __ movflt(xmm1, xmm0);
1440       __ pop_f(xmm0);
1441       __ divss(xmm0, xmm1);
1442       break;
1443     case rem:
1444       // On x86_64 platforms the SharedRuntime::frem method is called to perform the
1445       // modulo operation. The frem method calls the function
1446       // double fmod(double x, double y) in math.h. The documentation of fmod states:
1447       // "If x or y is a NaN, a NaN is returned." without specifying what type of NaN
1448       // (signalling or quiet) is returned.
1449       //
1450       // On x86_32 platforms the FPU is used to perform the modulo operation. The
1451       // reason is that on 32-bit Windows the sign of modulo operations diverges from
1452       // what is considered the standard (e.g., -0.0f % -3.14f is 0.0f (and not -0.0f).
1453       // The fprem instruction used on x86_32 is functionally equivalent to
1454       // SharedRuntime::frem in that it returns a NaN.
1455 #ifdef _LP64
1456       __ movflt(xmm1, xmm0);
1457       __ pop_f(xmm0);
1458       __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::frem), 2);
1459 #else
1460       __ push_f(xmm0);
1461       __ pop_f();
1462       __ fld_s(at_rsp());
1463       __ fremr(rax);
1464       __ f2ieee();
1465       __ pop(rax);  // pop second operand off the stack
1466       __ push_f();
1467       __ pop_f(xmm0);
1468 #endif
1469       break;
1470     default:
1471       ShouldNotReachHere();
1472       break;
1473     }
1474   } else {
1475 #ifdef _LP64
1476     ShouldNotReachHere();
1477 #else
1478     switch (op) {
1479     case add: __ fadd_s (at_rsp());                break;
1480     case sub: __ fsubr_s(at_rsp());                break;
1481     case mul: __ fmul_s (at_rsp());                break;
1482     case div: __ fdivr_s(at_rsp());                break;
1483     case rem: __ fld_s  (at_rsp()); __ fremr(rax); break;
1484     default : ShouldNotReachHere();
1485     }
1486     __ f2ieee();
1487     __ pop(rax);  // pop second operand off the stack
1488 #endif // _LP64
1489   }
1490 }
1491 
1492 void TemplateTable::dop2(Operation op) {
1493   transition(dtos, dtos);
1494   if (UseSSE >= 2) {
1495     switch (op) {
1496     case add:
1497       __ addsd(xmm0, at_rsp());
1498       __ addptr(rsp, 2 * Interpreter::stackElementSize);
1499       break;
1500     case sub:
1501       __ movdbl(xmm1, xmm0);
1502       __ pop_d(xmm0);
1503       __ subsd(xmm0, xmm1);
1504       break;
1505     case mul:
1506       __ mulsd(xmm0, at_rsp());
1507       __ addptr(rsp, 2 * Interpreter::stackElementSize);
1508       break;
1509     case div:
1510       __ movdbl(xmm1, xmm0);
1511       __ pop_d(xmm0);
1512       __ divsd(xmm0, xmm1);
1513       break;
1514     case rem:
1515       // Similar to fop2(), the modulo operation is performed using the
1516       // SharedRuntime::drem method (on x86_64 platforms) or using the
1517       // FPU (on x86_32 platforms) for the same reasons as mentioned in fop2().
1518 #ifdef _LP64
1519       __ movdbl(xmm1, xmm0);
1520       __ pop_d(xmm0);
1521       __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::drem), 2);
1522 #else
1523       __ push_d(xmm0);
1524       __ pop_d();
1525       __ fld_d(at_rsp());
1526       __ fremr(rax);
1527       __ d2ieee();
1528       __ pop(rax);
1529       __ pop(rdx);
1530       __ push_d();
1531       __ pop_d(xmm0);
1532 #endif
1533       break;
1534     default:
1535       ShouldNotReachHere();
1536       break;
1537     }
1538   } else {
1539 #ifdef _LP64
1540     ShouldNotReachHere();
1541 #else
1542     switch (op) {
1543     case add: __ fadd_d (at_rsp());                break;
1544     case sub: __ fsubr_d(at_rsp());                break;
1545     case mul: {
1546       Label L_strict;
1547       Label L_join;
1548       const Address access_flags      (rcx, Method::access_flags_offset());
1549       __ get_method(rcx);
1550       __ movl(rcx, access_flags);
1551       __ testl(rcx, JVM_ACC_STRICT);
1552       __ jccb(Assembler::notZero, L_strict);
1553       __ fmul_d (at_rsp());
1554       __ jmpb(L_join);
1555       __ bind(L_strict);
1556       __ fld_x(ExternalAddress(StubRoutines::addr_fpu_subnormal_bias1()));
1557       __ fmulp();
1558       __ fmul_d (at_rsp());
1559       __ fld_x(ExternalAddress(StubRoutines::addr_fpu_subnormal_bias2()));
1560       __ fmulp();
1561       __ bind(L_join);
1562       break;
1563     }
1564     case div: {
1565       Label L_strict;
1566       Label L_join;
1567       const Address access_flags      (rcx, Method::access_flags_offset());
1568       __ get_method(rcx);
1569       __ movl(rcx, access_flags);
1570       __ testl(rcx, JVM_ACC_STRICT);
1571       __ jccb(Assembler::notZero, L_strict);
1572       __ fdivr_d(at_rsp());
1573       __ jmp(L_join);
1574       __ bind(L_strict);
1575       __ fld_x(ExternalAddress(StubRoutines::addr_fpu_subnormal_bias1()));
1576       __ fmul_d (at_rsp());
1577       __ fdivrp();
1578       __ fld_x(ExternalAddress(StubRoutines::addr_fpu_subnormal_bias2()));
1579       __ fmulp();
1580       __ bind(L_join);
1581       break;
1582     }
1583     case rem: __ fld_d  (at_rsp()); __ fremr(rax); break;
1584     default : ShouldNotReachHere();
1585     }
1586     __ d2ieee();
1587     // Pop double precision number from rsp.
1588     __ pop(rax);
1589     __ pop(rdx);
1590 #endif
1591   }
1592 }
1593 
1594 void TemplateTable::ineg() {
1595   transition(itos, itos);
1596   __ negl(rax);
1597 }
1598 
1599 void TemplateTable::lneg() {
1600   transition(ltos, ltos);
1601   LP64_ONLY(__ negq(rax));
1602   NOT_LP64(__ lneg(rdx, rax));
1603 }
1604 
1605 // Note: 'double' and 'long long' have 32-bits alignment on x86.
1606 static jlong* double_quadword(jlong *adr, jlong lo, jlong hi) {
1607   // Use the expression (adr)&(~0xF) to provide 128-bits aligned address
1608   // of 128-bits operands for SSE instructions.
1609   jlong *operand = (jlong*)(((intptr_t)adr)&((intptr_t)(~0xF)));
1610   // Store the value to a 128-bits operand.
1611   operand[0] = lo;
1612   operand[1] = hi;
1613   return operand;
1614 }
1615 
1616 // Buffer for 128-bits masks used by SSE instructions.
1617 static jlong float_signflip_pool[2*2];
1618 static jlong double_signflip_pool[2*2];
1619 
1620 void TemplateTable::fneg() {
1621   transition(ftos, ftos);
1622   if (UseSSE >= 1) {
1623     static jlong *float_signflip  = double_quadword(&float_signflip_pool[1],  CONST64(0x8000000080000000),  CONST64(0x8000000080000000));
1624     __ xorps(xmm0, ExternalAddress((address) float_signflip));
1625   } else {
1626     LP64_ONLY(ShouldNotReachHere());
1627     NOT_LP64(__ fchs());
1628   }
1629 }
1630 
1631 void TemplateTable::dneg() {
1632   transition(dtos, dtos);
1633   if (UseSSE >= 2) {
1634     static jlong *double_signflip =
1635       double_quadword(&double_signflip_pool[1], CONST64(0x8000000000000000), CONST64(0x8000000000000000));
1636     __ xorpd(xmm0, ExternalAddress((address) double_signflip));
1637   } else {
1638 #ifdef _LP64
1639     ShouldNotReachHere();
1640 #else
1641     __ fchs();
1642 #endif
1643   }
1644 }
1645 
1646 void TemplateTable::iinc() {
1647   transition(vtos, vtos);
1648   __ load_signed_byte(rdx, at_bcp(2)); // get constant
1649   locals_index(rbx);
1650   __ addl(iaddress(rbx), rdx);
1651 }
1652 
1653 void TemplateTable::wide_iinc() {
1654   transition(vtos, vtos);
1655   __ movl(rdx, at_bcp(4)); // get constant
1656   locals_index_wide(rbx);
1657   __ bswapl(rdx); // swap bytes & sign-extend constant
1658   __ sarl(rdx, 16);
1659   __ addl(iaddress(rbx), rdx);
1660   // Note: should probably use only one movl to get both
1661   //       the index and the constant -> fix this
1662 }
1663 
1664 void TemplateTable::convert() {
1665 #ifdef _LP64
1666   // Checking
1667 #ifdef ASSERT
1668   {
1669     TosState tos_in  = ilgl;
1670     TosState tos_out = ilgl;
1671     switch (bytecode()) {
1672     case Bytecodes::_i2l: // fall through
1673     case Bytecodes::_i2f: // fall through
1674     case Bytecodes::_i2d: // fall through
1675     case Bytecodes::_i2b: // fall through
1676     case Bytecodes::_i2c: // fall through
1677     case Bytecodes::_i2s: tos_in = itos; break;
1678     case Bytecodes::_l2i: // fall through
1679     case Bytecodes::_l2f: // fall through
1680     case Bytecodes::_l2d: tos_in = ltos; break;
1681     case Bytecodes::_f2i: // fall through
1682     case Bytecodes::_f2l: // fall through
1683     case Bytecodes::_f2d: tos_in = ftos; break;
1684     case Bytecodes::_d2i: // fall through
1685     case Bytecodes::_d2l: // fall through
1686     case Bytecodes::_d2f: tos_in = dtos; break;
1687     default             : ShouldNotReachHere();
1688     }
1689     switch (bytecode()) {
1690     case Bytecodes::_l2i: // fall through
1691     case Bytecodes::_f2i: // fall through
1692     case Bytecodes::_d2i: // fall through
1693     case Bytecodes::_i2b: // fall through
1694     case Bytecodes::_i2c: // fall through
1695     case Bytecodes::_i2s: tos_out = itos; break;
1696     case Bytecodes::_i2l: // fall through
1697     case Bytecodes::_f2l: // fall through
1698     case Bytecodes::_d2l: tos_out = ltos; break;
1699     case Bytecodes::_i2f: // fall through
1700     case Bytecodes::_l2f: // fall through
1701     case Bytecodes::_d2f: tos_out = ftos; break;
1702     case Bytecodes::_i2d: // fall through
1703     case Bytecodes::_l2d: // fall through
1704     case Bytecodes::_f2d: tos_out = dtos; break;
1705     default             : ShouldNotReachHere();
1706     }
1707     transition(tos_in, tos_out);
1708   }
1709 #endif // ASSERT
1710 
1711   static const int64_t is_nan = 0x8000000000000000L;
1712 
1713   // Conversion
1714   switch (bytecode()) {
1715   case Bytecodes::_i2l:
1716     __ movslq(rax, rax);
1717     break;
1718   case Bytecodes::_i2f:
1719     __ cvtsi2ssl(xmm0, rax);
1720     break;
1721   case Bytecodes::_i2d:
1722     __ cvtsi2sdl(xmm0, rax);
1723     break;
1724   case Bytecodes::_i2b:
1725     __ movsbl(rax, rax);
1726     break;
1727   case Bytecodes::_i2c:
1728     __ movzwl(rax, rax);
1729     break;
1730   case Bytecodes::_i2s:
1731     __ movswl(rax, rax);
1732     break;
1733   case Bytecodes::_l2i:
1734     __ movl(rax, rax);
1735     break;
1736   case Bytecodes::_l2f:
1737     __ cvtsi2ssq(xmm0, rax);
1738     break;
1739   case Bytecodes::_l2d:
1740     __ cvtsi2sdq(xmm0, rax);
1741     break;
1742   case Bytecodes::_f2i:
1743   {
1744     Label L;
1745     __ cvttss2sil(rax, xmm0);
1746     __ cmpl(rax, 0x80000000); // NaN or overflow/underflow?
1747     __ jcc(Assembler::notEqual, L);
1748     __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::f2i), 1);
1749     __ bind(L);
1750   }
1751     break;
1752   case Bytecodes::_f2l:
1753   {
1754     Label L;
1755     __ cvttss2siq(rax, xmm0);
1756     // NaN or overflow/underflow?
1757     __ cmp64(rax, ExternalAddress((address) &is_nan));
1758     __ jcc(Assembler::notEqual, L);
1759     __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::f2l), 1);
1760     __ bind(L);
1761   }
1762     break;
1763   case Bytecodes::_f2d:
1764     __ cvtss2sd(xmm0, xmm0);
1765     break;
1766   case Bytecodes::_d2i:
1767   {
1768     Label L;
1769     __ cvttsd2sil(rax, xmm0);
1770     __ cmpl(rax, 0x80000000); // NaN or overflow/underflow?
1771     __ jcc(Assembler::notEqual, L);
1772     __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::d2i), 1);
1773     __ bind(L);
1774   }
1775     break;
1776   case Bytecodes::_d2l:
1777   {
1778     Label L;
1779     __ cvttsd2siq(rax, xmm0);
1780     // NaN or overflow/underflow?
1781     __ cmp64(rax, ExternalAddress((address) &is_nan));
1782     __ jcc(Assembler::notEqual, L);
1783     __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::d2l), 1);
1784     __ bind(L);
1785   }
1786     break;
1787   case Bytecodes::_d2f:
1788     __ cvtsd2ss(xmm0, xmm0);
1789     break;
1790   default:
1791     ShouldNotReachHere();
1792   }
1793 #else
1794   // Checking
1795 #ifdef ASSERT
1796   { TosState tos_in  = ilgl;
1797     TosState tos_out = ilgl;
1798     switch (bytecode()) {
1799       case Bytecodes::_i2l: // fall through
1800       case Bytecodes::_i2f: // fall through
1801       case Bytecodes::_i2d: // fall through
1802       case Bytecodes::_i2b: // fall through
1803       case Bytecodes::_i2c: // fall through
1804       case Bytecodes::_i2s: tos_in = itos; break;
1805       case Bytecodes::_l2i: // fall through
1806       case Bytecodes::_l2f: // fall through
1807       case Bytecodes::_l2d: tos_in = ltos; break;
1808       case Bytecodes::_f2i: // fall through
1809       case Bytecodes::_f2l: // fall through
1810       case Bytecodes::_f2d: tos_in = ftos; break;
1811       case Bytecodes::_d2i: // fall through
1812       case Bytecodes::_d2l: // fall through
1813       case Bytecodes::_d2f: tos_in = dtos; break;
1814       default             : ShouldNotReachHere();
1815     }
1816     switch (bytecode()) {
1817       case Bytecodes::_l2i: // fall through
1818       case Bytecodes::_f2i: // fall through
1819       case Bytecodes::_d2i: // fall through
1820       case Bytecodes::_i2b: // fall through
1821       case Bytecodes::_i2c: // fall through
1822       case Bytecodes::_i2s: tos_out = itos; break;
1823       case Bytecodes::_i2l: // fall through
1824       case Bytecodes::_f2l: // fall through
1825       case Bytecodes::_d2l: tos_out = ltos; break;
1826       case Bytecodes::_i2f: // fall through
1827       case Bytecodes::_l2f: // fall through
1828       case Bytecodes::_d2f: tos_out = ftos; break;
1829       case Bytecodes::_i2d: // fall through
1830       case Bytecodes::_l2d: // fall through
1831       case Bytecodes::_f2d: tos_out = dtos; break;
1832       default             : ShouldNotReachHere();
1833     }
1834     transition(tos_in, tos_out);
1835   }
1836 #endif // ASSERT
1837 
1838   // Conversion
1839   // (Note: use push(rcx)/pop(rcx) for 1/2-word stack-ptr manipulation)
1840   switch (bytecode()) {
1841     case Bytecodes::_i2l:
1842       __ extend_sign(rdx, rax);
1843       break;
1844     case Bytecodes::_i2f:
1845       if (UseSSE >= 1) {
1846         __ cvtsi2ssl(xmm0, rax);
1847       } else {
1848         __ push(rax);          // store int on tos
1849         __ fild_s(at_rsp());   // load int to ST0
1850         __ f2ieee();           // truncate to float size
1851         __ pop(rcx);           // adjust rsp
1852       }
1853       break;
1854     case Bytecodes::_i2d:
1855       if (UseSSE >= 2) {
1856         __ cvtsi2sdl(xmm0, rax);
1857       } else {
1858       __ push(rax);          // add one slot for d2ieee()
1859       __ push(rax);          // store int on tos
1860       __ fild_s(at_rsp());   // load int to ST0
1861       __ d2ieee();           // truncate to double size
1862       __ pop(rcx);           // adjust rsp
1863       __ pop(rcx);
1864       }
1865       break;
1866     case Bytecodes::_i2b:
1867       __ shll(rax, 24);      // truncate upper 24 bits
1868       __ sarl(rax, 24);      // and sign-extend byte
1869       LP64_ONLY(__ movsbl(rax, rax));
1870       break;
1871     case Bytecodes::_i2c:
1872       __ andl(rax, 0xFFFF);  // truncate upper 16 bits
1873       LP64_ONLY(__ movzwl(rax, rax));
1874       break;
1875     case Bytecodes::_i2s:
1876       __ shll(rax, 16);      // truncate upper 16 bits
1877       __ sarl(rax, 16);      // and sign-extend short
1878       LP64_ONLY(__ movswl(rax, rax));
1879       break;
1880     case Bytecodes::_l2i:
1881       /* nothing to do */
1882       break;
1883     case Bytecodes::_l2f:
1884       // On 64-bit platforms, the cvtsi2ssq instruction is used to convert
1885       // 64-bit long values to floats. On 32-bit platforms it is not possible
1886       // to use that instruction with 64-bit operands, therefore the FPU is
1887       // used to perform the conversion.
1888       __ push(rdx);          // store long on tos
1889       __ push(rax);
1890       __ fild_d(at_rsp());   // load long to ST0
1891       __ f2ieee();           // truncate to float size
1892       __ pop(rcx);           // adjust rsp
1893       __ pop(rcx);
1894       if (UseSSE >= 1) {
1895         __ push_f();
1896         __ pop_f(xmm0);
1897       }
1898       break;
1899     case Bytecodes::_l2d:
1900       // On 32-bit platforms the FPU is used for conversion because on
1901       // 32-bit platforms it is not not possible to use the cvtsi2sdq
1902       // instruction with 64-bit operands.
1903       __ push(rdx);          // store long on tos
1904       __ push(rax);
1905       __ fild_d(at_rsp());   // load long to ST0
1906       __ d2ieee();           // truncate to double size
1907       __ pop(rcx);           // adjust rsp
1908       __ pop(rcx);
1909       if (UseSSE >= 2) {
1910         __ push_d();
1911         __ pop_d(xmm0);
1912       }
1913       break;
1914     case Bytecodes::_f2i:
1915       // SharedRuntime::f2i does not differentiate between sNaNs and qNaNs
1916       // as it returns 0 for any NaN.
1917       if (UseSSE >= 1) {
1918         __ push_f(xmm0);
1919       } else {
1920         __ push(rcx);          // reserve space for argument
1921         __ fstp_s(at_rsp());   // pass float argument on stack
1922       }
1923       __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::f2i), 1);
1924       break;
1925     case Bytecodes::_f2l:
1926       // SharedRuntime::f2l does not differentiate between sNaNs and qNaNs
1927       // as it returns 0 for any NaN.
1928       if (UseSSE >= 1) {
1929        __ push_f(xmm0);
1930       } else {
1931         __ push(rcx);          // reserve space for argument
1932         __ fstp_s(at_rsp());   // pass float argument on stack
1933       }
1934       __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::f2l), 1);
1935       break;
1936     case Bytecodes::_f2d:
1937       if (UseSSE < 1) {
1938         /* nothing to do */
1939       } else if (UseSSE == 1) {
1940         __ push_f(xmm0);
1941         __ pop_f();
1942       } else { // UseSSE >= 2
1943         __ cvtss2sd(xmm0, xmm0);
1944       }
1945       break;
1946     case Bytecodes::_d2i:
1947       if (UseSSE >= 2) {
1948         __ push_d(xmm0);
1949       } else {
1950         __ push(rcx);          // reserve space for argument
1951         __ push(rcx);
1952         __ fstp_d(at_rsp());   // pass double argument on stack
1953       }
1954       __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::d2i), 2);
1955       break;
1956     case Bytecodes::_d2l:
1957       if (UseSSE >= 2) {
1958         __ push_d(xmm0);
1959       } else {
1960         __ push(rcx);          // reserve space for argument
1961         __ push(rcx);
1962         __ fstp_d(at_rsp());   // pass double argument on stack
1963       }
1964       __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::d2l), 2);
1965       break;
1966     case Bytecodes::_d2f:
1967       if (UseSSE <= 1) {
1968         __ push(rcx);          // reserve space for f2ieee()
1969         __ f2ieee();           // truncate to float size
1970         __ pop(rcx);           // adjust rsp
1971         if (UseSSE == 1) {
1972           // The cvtsd2ss instruction is not available if UseSSE==1, therefore
1973           // the conversion is performed using the FPU in this case.
1974           __ push_f();
1975           __ pop_f(xmm0);
1976         }
1977       } else { // UseSSE >= 2
1978         __ cvtsd2ss(xmm0, xmm0);
1979       }
1980       break;
1981     default             :
1982       ShouldNotReachHere();
1983   }
1984 #endif
1985 }
1986 
1987 void TemplateTable::lcmp() {
1988   transition(ltos, itos);
1989 #ifdef _LP64
1990   Label done;
1991   __ pop_l(rdx);
1992   __ cmpq(rdx, rax);
1993   __ movl(rax, -1);
1994   __ jccb(Assembler::less, done);
1995   __ setb(Assembler::notEqual, rax);
1996   __ movzbl(rax, rax);
1997   __ bind(done);
1998 #else
1999 
2000   // y = rdx:rax
2001   __ pop_l(rbx, rcx);             // get x = rcx:rbx
2002   __ lcmp2int(rcx, rbx, rdx, rax);// rcx := cmp(x, y)
2003   __ mov(rax, rcx);
2004 #endif
2005 }
2006 
2007 void TemplateTable::float_cmp(bool is_float, int unordered_result) {
2008   if ((is_float && UseSSE >= 1) ||
2009       (!is_float && UseSSE >= 2)) {
2010     Label done;
2011     if (is_float) {
2012       // XXX get rid of pop here, use ... reg, mem32
2013       __ pop_f(xmm1);
2014       __ ucomiss(xmm1, xmm0);
2015     } else {
2016       // XXX get rid of pop here, use ... reg, mem64
2017       __ pop_d(xmm1);
2018       __ ucomisd(xmm1, xmm0);
2019     }
2020     if (unordered_result < 0) {
2021       __ movl(rax, -1);
2022       __ jccb(Assembler::parity, done);
2023       __ jccb(Assembler::below, done);
2024       __ setb(Assembler::notEqual, rdx);
2025       __ movzbl(rax, rdx);
2026     } else {
2027       __ movl(rax, 1);
2028       __ jccb(Assembler::parity, done);
2029       __ jccb(Assembler::above, done);
2030       __ movl(rax, 0);
2031       __ jccb(Assembler::equal, done);
2032       __ decrementl(rax);
2033     }
2034     __ bind(done);
2035   } else {
2036 #ifdef _LP64
2037     ShouldNotReachHere();
2038 #else
2039     if (is_float) {
2040       __ fld_s(at_rsp());
2041     } else {
2042       __ fld_d(at_rsp());
2043       __ pop(rdx);
2044     }
2045     __ pop(rcx);
2046     __ fcmp2int(rax, unordered_result < 0);
2047 #endif // _LP64
2048   }
2049 }
2050 
2051 void TemplateTable::branch(bool is_jsr, bool is_wide) {
2052   __ get_method(rcx); // rcx holds method
2053   __ profile_taken_branch(rax, rbx); // rax holds updated MDP, rbx
2054                                      // holds bumped taken count
2055 
2056   const ByteSize be_offset = MethodCounters::backedge_counter_offset() +
2057                              InvocationCounter::counter_offset();
2058   const ByteSize inv_offset = MethodCounters::invocation_counter_offset() +
2059                               InvocationCounter::counter_offset();
2060 
2061   // Load up edx with the branch displacement
2062   if (is_wide) {
2063     __ movl(rdx, at_bcp(1));
2064   } else {
2065     __ load_signed_short(rdx, at_bcp(1));
2066   }
2067   __ bswapl(rdx);
2068 
2069   if (!is_wide) {
2070     __ sarl(rdx, 16);
2071   }
2072   LP64_ONLY(__ movl2ptr(rdx, rdx));
2073 
2074   // Handle all the JSR stuff here, then exit.
2075   // It's much shorter and cleaner than intermingling with the non-JSR
2076   // normal-branch stuff occurring below.
2077   if (is_jsr) {
2078     // Pre-load the next target bytecode into rbx
2079     __ load_unsigned_byte(rbx, Address(rbcp, rdx, Address::times_1, 0));
2080 
2081     // compute return address as bci in rax
2082     __ lea(rax, at_bcp((is_wide ? 5 : 3) -
2083                         in_bytes(ConstMethod::codes_offset())));
2084     __ subptr(rax, Address(rcx, Method::const_offset()));
2085     // Adjust the bcp in r13 by the displacement in rdx
2086     __ addptr(rbcp, rdx);
2087     // jsr returns atos that is not an oop
2088     __ push_i(rax);
2089     __ dispatch_only(vtos);
2090     return;
2091   }
2092 
2093   // Normal (non-jsr) branch handling
2094 
2095   // Adjust the bcp in r13 by the displacement in rdx
2096   __ addptr(rbcp, rdx);
2097 
2098   assert(UseLoopCounter || !UseOnStackReplacement,
2099          "on-stack-replacement requires loop counters");
2100   Label backedge_counter_overflow;
2101   Label profile_method;
2102   Label dispatch;
2103   if (UseLoopCounter) {
2104     // increment backedge counter for backward branches
2105     // rax: MDO
2106     // rbx: MDO bumped taken-count
2107     // rcx: method
2108     // rdx: target offset
2109     // r13: target bcp
2110     // r14: locals pointer
2111     __ testl(rdx, rdx);             // check if forward or backward branch
2112     __ jcc(Assembler::positive, dispatch); // count only if backward branch
2113 
2114     // check if MethodCounters exists
2115     Label has_counters;
2116     __ movptr(rax, Address(rcx, Method::method_counters_offset()));
2117     __ testptr(rax, rax);
2118     __ jcc(Assembler::notZero, has_counters);
2119     __ push(rdx);
2120     __ push(rcx);
2121     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::build_method_counters),
2122                rcx);
2123     __ pop(rcx);
2124     __ pop(rdx);
2125     __ movptr(rax, Address(rcx, Method::method_counters_offset()));
2126     __ testptr(rax, rax);
2127     __ jcc(Assembler::zero, dispatch);
2128     __ bind(has_counters);
2129 
2130     if (TieredCompilation) {
2131       Label no_mdo;
2132       int increment = InvocationCounter::count_increment;
2133       if (ProfileInterpreter) {
2134         // Are we profiling?
2135         __ movptr(rbx, Address(rcx, in_bytes(Method::method_data_offset())));
2136         __ testptr(rbx, rbx);
2137         __ jccb(Assembler::zero, no_mdo);
2138         // Increment the MDO backedge counter
2139         const Address mdo_backedge_counter(rbx, in_bytes(MethodData::backedge_counter_offset()) +
2140                                            in_bytes(InvocationCounter::counter_offset()));
2141         const Address mask(rbx, in_bytes(MethodData::backedge_mask_offset()));
2142         __ increment_mask_and_jump(mdo_backedge_counter, increment, mask,
2143                                    rax, false, Assembler::zero, &backedge_counter_overflow);
2144         __ jmp(dispatch);
2145       }
2146       __ bind(no_mdo);
2147       // Increment backedge counter in MethodCounters*
2148       __ movptr(rcx, Address(rcx, Method::method_counters_offset()));
2149       const Address mask(rcx, in_bytes(MethodCounters::backedge_mask_offset()));
2150       __ increment_mask_and_jump(Address(rcx, be_offset), increment, mask,
2151                                  rax, false, Assembler::zero, &backedge_counter_overflow);
2152     } else { // not TieredCompilation
2153       // increment counter
2154       __ movptr(rcx, Address(rcx, Method::method_counters_offset()));
2155       __ movl(rax, Address(rcx, be_offset));        // load backedge counter
2156       __ incrementl(rax, InvocationCounter::count_increment); // increment counter
2157       __ movl(Address(rcx, be_offset), rax);        // store counter
2158 
2159       __ movl(rax, Address(rcx, inv_offset));    // load invocation counter
2160 
2161       __ andl(rax, InvocationCounter::count_mask_value); // and the status bits
2162       __ addl(rax, Address(rcx, be_offset));        // add both counters
2163 
2164       if (ProfileInterpreter) {
2165         // Test to see if we should create a method data oop
2166         __ cmp32(rax, Address(rcx, in_bytes(MethodCounters::interpreter_profile_limit_offset())));
2167         __ jcc(Assembler::less, dispatch);
2168 
2169         // if no method data exists, go to profile method
2170         __ test_method_data_pointer(rax, profile_method);
2171 
2172         if (UseOnStackReplacement) {
2173           // check for overflow against rbx which is the MDO taken count
2174           __ cmp32(rbx, Address(rcx, in_bytes(MethodCounters::interpreter_backward_branch_limit_offset())));
2175           __ jcc(Assembler::below, dispatch);
2176 
2177           // When ProfileInterpreter is on, the backedge_count comes
2178           // from the MethodData*, which value does not get reset on
2179           // the call to frequency_counter_overflow().  To avoid
2180           // excessive calls to the overflow routine while the method is
2181           // being compiled, add a second test to make sure the overflow
2182           // function is called only once every overflow_frequency.
2183           const int overflow_frequency = 1024;
2184           __ andl(rbx, overflow_frequency - 1);
2185           __ jcc(Assembler::zero, backedge_counter_overflow);
2186 
2187         }
2188       } else {
2189         if (UseOnStackReplacement) {
2190           // check for overflow against rax, which is the sum of the
2191           // counters
2192           __ cmp32(rax, Address(rcx, in_bytes(MethodCounters::interpreter_backward_branch_limit_offset())));
2193           __ jcc(Assembler::aboveEqual, backedge_counter_overflow);
2194 
2195         }
2196       }
2197     }
2198     __ bind(dispatch);
2199   }
2200 
2201   // Pre-load the next target bytecode into rbx
2202   __ load_unsigned_byte(rbx, Address(rbcp, 0));
2203 
2204   // continue with the bytecode @ target
2205   // rax: return bci for jsr's, unused otherwise
2206   // rbx: target bytecode
2207   // r13: target bcp
2208   __ dispatch_only(vtos);
2209 
2210   if (UseLoopCounter) {
2211     if (ProfileInterpreter) {
2212       // Out-of-line code to allocate method data oop.
2213       __ bind(profile_method);
2214       __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::profile_method));
2215       __ load_unsigned_byte(rbx, Address(rbcp, 0));  // restore target bytecode
2216       __ set_method_data_pointer_for_bcp();
2217       __ jmp(dispatch);
2218     }
2219 
2220     if (UseOnStackReplacement) {
2221       // invocation counter overflow
2222       __ bind(backedge_counter_overflow);
2223       __ negptr(rdx);
2224       __ addptr(rdx, rbcp); // branch bcp
2225       // IcoResult frequency_counter_overflow([JavaThread*], address branch_bcp)
2226       __ call_VM(noreg,
2227                  CAST_FROM_FN_PTR(address,
2228                                   InterpreterRuntime::frequency_counter_overflow),
2229                  rdx);
2230       __ load_unsigned_byte(rbx, Address(rbcp, 0));  // restore target bytecode
2231 
2232       // rax: osr nmethod (osr ok) or NULL (osr not possible)
2233       // rbx: target bytecode
2234       // rdx: scratch
2235       // r14: locals pointer
2236       // r13: bcp
2237       __ testptr(rax, rax);                        // test result
2238       __ jcc(Assembler::zero, dispatch);         // no osr if null
2239       // nmethod may have been invalidated (VM may block upon call_VM return)
2240       __ cmpb(Address(rax, nmethod::state_offset()), nmethod::in_use);
2241       __ jcc(Assembler::notEqual, dispatch);
2242 
2243       // We have the address of an on stack replacement routine in rax
2244       // We need to prepare to execute the OSR method. First we must
2245       // migrate the locals and monitors off of the stack.
2246 
2247       LP64_ONLY(__ mov(r13, rax));                             // save the nmethod
2248       NOT_LP64(__ mov(rbx, rax));                             // save the nmethod
2249       NOT_LP64(__ get_thread(rcx));
2250 
2251       call_VM(noreg, CAST_FROM_FN_PTR(address, SharedRuntime::OSR_migration_begin));
2252 
2253       // rax is OSR buffer, move it to expected parameter location
2254       LP64_ONLY(__ mov(j_rarg0, rax));
2255       NOT_LP64(__ mov(rcx, rax));
2256       // We use j_rarg definitions here so that registers don't conflict as parameter
2257       // registers change across platforms as we are in the midst of a calling
2258       // sequence to the OSR nmethod and we don't want collision. These are NOT parameters.
2259 
2260       const Register retaddr   = LP64_ONLY(j_rarg2) NOT_LP64(rdi);
2261       const Register sender_sp = LP64_ONLY(j_rarg1) NOT_LP64(rdx);
2262 
2263 
2264       // pop the interpreter frame
2265       __ movptr(sender_sp, Address(rbp, frame::interpreter_frame_sender_sp_offset * wordSize)); // get sender sp
2266       __ leave();                                // remove frame anchor
2267       __ pop(retaddr);                           // get return address
2268       __ mov(rsp, sender_sp);                   // set sp to sender sp
2269       // Ensure compiled code always sees stack at proper alignment
2270       __ andptr(rsp, -(StackAlignmentInBytes));
2271 
2272       // unlike x86 we need no specialized return from compiled code
2273       // to the interpreter or the call stub.
2274 
2275       // push the return address
2276       __ push(retaddr);
2277 
2278       // and begin the OSR nmethod
2279       LP64_ONLY(__ jmp(Address(r13, nmethod::osr_entry_point_offset())));
2280       NOT_LP64(__ jmp(Address(rbx, nmethod::osr_entry_point_offset())));
2281     }
2282   }
2283 }
2284 
2285 void TemplateTable::if_0cmp(Condition cc) {
2286   transition(itos, vtos);
2287   // assume branch is more often taken than not (loops use backward branches)
2288   Label not_taken;
2289   __ testl(rax, rax);
2290   __ jcc(j_not(cc), not_taken);
2291   branch(false, false);
2292   __ bind(not_taken);
2293   __ profile_not_taken_branch(rax);
2294 }
2295 
2296 void TemplateTable::if_icmp(Condition cc) {
2297   transition(itos, vtos);
2298   // assume branch is more often taken than not (loops use backward branches)
2299   Label not_taken;
2300   __ pop_i(rdx);
2301   __ cmpl(rdx, rax);
2302   __ jcc(j_not(cc), not_taken);
2303   branch(false, false);
2304   __ bind(not_taken);
2305   __ profile_not_taken_branch(rax);
2306 }
2307 
2308 void TemplateTable::if_nullcmp(Condition cc) {
2309   transition(atos, vtos);
2310   // assume branch is more often taken than not (loops use backward branches)
2311   Label not_taken;
2312   __ testptr(rax, rax);
2313   __ jcc(j_not(cc), not_taken);
2314   branch(false, false);
2315   __ bind(not_taken);
2316   __ profile_not_taken_branch(rax);
2317 }
2318 
2319 void TemplateTable::if_acmp(Condition cc) {
2320   transition(atos, vtos);
2321   // assume branch is more often taken than not (loops use backward branches)
2322   Label not_taken;
2323   __ pop_ptr(rdx);
2324   __ cmpptr(rdx, rax);
2325   __ jcc(j_not(cc), not_taken);
2326   branch(false, false);
2327   __ bind(not_taken);
2328   __ profile_not_taken_branch(rax);
2329 }
2330 
2331 void TemplateTable::ret() {
2332   transition(vtos, vtos);
2333   locals_index(rbx);
2334   LP64_ONLY(__ movslq(rbx, iaddress(rbx))); // get return bci, compute return bcp
2335   NOT_LP64(__ movptr(rbx, iaddress(rbx)));
2336   __ profile_ret(rbx, rcx);
2337   __ get_method(rax);
2338   __ movptr(rbcp, Address(rax, Method::const_offset()));
2339   __ lea(rbcp, Address(rbcp, rbx, Address::times_1,
2340                       ConstMethod::codes_offset()));
2341   __ dispatch_next(vtos);
2342 }
2343 
2344 void TemplateTable::wide_ret() {
2345   transition(vtos, vtos);
2346   locals_index_wide(rbx);
2347   __ movptr(rbx, aaddress(rbx)); // get return bci, compute return bcp
2348   __ profile_ret(rbx, rcx);
2349   __ get_method(rax);
2350   __ movptr(rbcp, Address(rax, Method::const_offset()));
2351   __ lea(rbcp, Address(rbcp, rbx, Address::times_1, ConstMethod::codes_offset()));
2352   __ dispatch_next(vtos);
2353 }
2354 
2355 void TemplateTable::tableswitch() {
2356   Label default_case, continue_execution;
2357   transition(itos, vtos);
2358 
2359   // align r13/rsi
2360   __ lea(rbx, at_bcp(BytesPerInt));
2361   __ andptr(rbx, -BytesPerInt);
2362   // load lo & hi
2363   __ movl(rcx, Address(rbx, BytesPerInt));
2364   __ movl(rdx, Address(rbx, 2 * BytesPerInt));
2365   __ bswapl(rcx);
2366   __ bswapl(rdx);
2367   // check against lo & hi
2368   __ cmpl(rax, rcx);
2369   __ jcc(Assembler::less, default_case);
2370   __ cmpl(rax, rdx);
2371   __ jcc(Assembler::greater, default_case);
2372   // lookup dispatch offset
2373   __ subl(rax, rcx);
2374   __ movl(rdx, Address(rbx, rax, Address::times_4, 3 * BytesPerInt));
2375   __ profile_switch_case(rax, rbx, rcx);
2376   // continue execution
2377   __ bind(continue_execution);
2378   __ bswapl(rdx);
2379   LP64_ONLY(__ movl2ptr(rdx, rdx));
2380   __ load_unsigned_byte(rbx, Address(rbcp, rdx, Address::times_1));
2381   __ addptr(rbcp, rdx);
2382   __ dispatch_only(vtos);
2383   // handle default
2384   __ bind(default_case);
2385   __ profile_switch_default(rax);
2386   __ movl(rdx, Address(rbx, 0));
2387   __ jmp(continue_execution);
2388 }
2389 
2390 void TemplateTable::lookupswitch() {
2391   transition(itos, itos);
2392   __ stop("lookupswitch bytecode should have been rewritten");
2393 }
2394 
2395 void TemplateTable::fast_linearswitch() {
2396   transition(itos, vtos);
2397   Label loop_entry, loop, found, continue_execution;
2398   // bswap rax so we can avoid bswapping the table entries
2399   __ bswapl(rax);
2400   // align r13
2401   __ lea(rbx, at_bcp(BytesPerInt)); // btw: should be able to get rid of
2402                                     // this instruction (change offsets
2403                                     // below)
2404   __ andptr(rbx, -BytesPerInt);
2405   // set counter
2406   __ movl(rcx, Address(rbx, BytesPerInt));
2407   __ bswapl(rcx);
2408   __ jmpb(loop_entry);
2409   // table search
2410   __ bind(loop);
2411   __ cmpl(rax, Address(rbx, rcx, Address::times_8, 2 * BytesPerInt));
2412   __ jcc(Assembler::equal, found);
2413   __ bind(loop_entry);
2414   __ decrementl(rcx);
2415   __ jcc(Assembler::greaterEqual, loop);
2416   // default case
2417   __ profile_switch_default(rax);
2418   __ movl(rdx, Address(rbx, 0));
2419   __ jmp(continue_execution);
2420   // entry found -> get offset
2421   __ bind(found);
2422   __ movl(rdx, Address(rbx, rcx, Address::times_8, 3 * BytesPerInt));
2423   __ profile_switch_case(rcx, rax, rbx);
2424   // continue execution
2425   __ bind(continue_execution);
2426   __ bswapl(rdx);
2427   __ movl2ptr(rdx, rdx);
2428   __ load_unsigned_byte(rbx, Address(rbcp, rdx, Address::times_1));
2429   __ addptr(rbcp, rdx);
2430   __ dispatch_only(vtos);
2431 }
2432 
2433 void TemplateTable::fast_binaryswitch() {
2434   transition(itos, vtos);
2435   // Implementation using the following core algorithm:
2436   //
2437   // int binary_search(int key, LookupswitchPair* array, int n) {
2438   //   // Binary search according to "Methodik des Programmierens" by
2439   //   // Edsger W. Dijkstra and W.H.J. Feijen, Addison Wesley Germany 1985.
2440   //   int i = 0;
2441   //   int j = n;
2442   //   while (i+1 < j) {
2443   //     // invariant P: 0 <= i < j <= n and (a[i] <= key < a[j] or Q)
2444   //     // with      Q: for all i: 0 <= i < n: key < a[i]
2445   //     // where a stands for the array and assuming that the (inexisting)
2446   //     // element a[n] is infinitely big.
2447   //     int h = (i + j) >> 1;
2448   //     // i < h < j
2449   //     if (key < array[h].fast_match()) {
2450   //       j = h;
2451   //     } else {
2452   //       i = h;
2453   //     }
2454   //   }
2455   //   // R: a[i] <= key < a[i+1] or Q
2456   //   // (i.e., if key is within array, i is the correct index)
2457   //   return i;
2458   // }
2459 
2460   // Register allocation
2461   const Register key   = rax; // already set (tosca)
2462   const Register array = rbx;
2463   const Register i     = rcx;
2464   const Register j     = rdx;
2465   const Register h     = rdi;
2466   const Register temp  = rsi;
2467 
2468   // Find array start
2469   NOT_LP64(__ save_bcp());
2470 
2471   __ lea(array, at_bcp(3 * BytesPerInt)); // btw: should be able to
2472                                           // get rid of this
2473                                           // instruction (change
2474                                           // offsets below)
2475   __ andptr(array, -BytesPerInt);
2476 
2477   // Initialize i & j
2478   __ xorl(i, i);                            // i = 0;
2479   __ movl(j, Address(array, -BytesPerInt)); // j = length(array);
2480 
2481   // Convert j into native byteordering
2482   __ bswapl(j);
2483 
2484   // And start
2485   Label entry;
2486   __ jmp(entry);
2487 
2488   // binary search loop
2489   {
2490     Label loop;
2491     __ bind(loop);
2492     // int h = (i + j) >> 1;
2493     __ leal(h, Address(i, j, Address::times_1)); // h = i + j;
2494     __ sarl(h, 1);                               // h = (i + j) >> 1;
2495     // if (key < array[h].fast_match()) {
2496     //   j = h;
2497     // } else {
2498     //   i = h;
2499     // }
2500     // Convert array[h].match to native byte-ordering before compare
2501     __ movl(temp, Address(array, h, Address::times_8));
2502     __ bswapl(temp);
2503     __ cmpl(key, temp);
2504     // j = h if (key <  array[h].fast_match())
2505     __ cmov32(Assembler::less, j, h);
2506     // i = h if (key >= array[h].fast_match())
2507     __ cmov32(Assembler::greaterEqual, i, h);
2508     // while (i+1 < j)
2509     __ bind(entry);
2510     __ leal(h, Address(i, 1)); // i+1
2511     __ cmpl(h, j);             // i+1 < j
2512     __ jcc(Assembler::less, loop);
2513   }
2514 
2515   // end of binary search, result index is i (must check again!)
2516   Label default_case;
2517   // Convert array[i].match to native byte-ordering before compare
2518   __ movl(temp, Address(array, i, Address::times_8));
2519   __ bswapl(temp);
2520   __ cmpl(key, temp);
2521   __ jcc(Assembler::notEqual, default_case);
2522 
2523   // entry found -> j = offset
2524   __ movl(j , Address(array, i, Address::times_8, BytesPerInt));
2525   __ profile_switch_case(i, key, array);
2526   __ bswapl(j);
2527   LP64_ONLY(__ movslq(j, j));
2528 
2529   NOT_LP64(__ restore_bcp());
2530   NOT_LP64(__ restore_locals());                           // restore rdi
2531 
2532   __ load_unsigned_byte(rbx, Address(rbcp, j, Address::times_1));
2533   __ addptr(rbcp, j);
2534   __ dispatch_only(vtos);
2535 
2536   // default case -> j = default offset
2537   __ bind(default_case);
2538   __ profile_switch_default(i);
2539   __ movl(j, Address(array, -2 * BytesPerInt));
2540   __ bswapl(j);
2541   LP64_ONLY(__ movslq(j, j));
2542 
2543   NOT_LP64(__ restore_bcp());
2544   NOT_LP64(__ restore_locals());
2545 
2546   __ load_unsigned_byte(rbx, Address(rbcp, j, Address::times_1));
2547   __ addptr(rbcp, j);
2548   __ dispatch_only(vtos);
2549 }
2550 
2551 void TemplateTable::_return(TosState state) {
2552   transition(state, state);
2553 
2554   assert(_desc->calls_vm(),
2555          "inconsistent calls_vm information"); // call in remove_activation
2556 
2557   if (_desc->bytecode() == Bytecodes::_return_register_finalizer) {
2558     assert(state == vtos, "only valid state");
2559     Register robj = LP64_ONLY(c_rarg1) NOT_LP64(rax);
2560     __ movptr(robj, aaddress(0));
2561     __ load_klass(rdi, robj);
2562     __ movl(rdi, Address(rdi, Klass::access_flags_offset()));
2563     __ testl(rdi, JVM_ACC_HAS_FINALIZER);
2564     Label skip_register_finalizer;
2565     __ jcc(Assembler::zero, skip_register_finalizer);
2566 
2567     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::register_finalizer), robj);
2568 
2569     __ bind(skip_register_finalizer);
2570   }
2571 
2572   // Narrow result if state is itos but result type is smaller.
2573   // Need to narrow in the return bytecode rather than in generate_return_entry
2574   // since compiled code callers expect the result to already be narrowed.
2575   if (state == itos) {
2576     __ narrow(rax);
2577   }
2578   __ remove_activation(state, rbcp);
2579 
2580   __ jmp(rbcp);
2581 }
2582 
2583 // ----------------------------------------------------------------------------
2584 // Volatile variables demand their effects be made known to all CPU's
2585 // in order.  Store buffers on most chips allow reads & writes to
2586 // reorder; the JMM's ReadAfterWrite.java test fails in -Xint mode
2587 // without some kind of memory barrier (i.e., it's not sufficient that
2588 // the interpreter does not reorder volatile references, the hardware
2589 // also must not reorder them).
2590 //
2591 // According to the new Java Memory Model (JMM):
2592 // (1) All volatiles are serialized wrt to each other.  ALSO reads &
2593 //     writes act as aquire & release, so:
2594 // (2) A read cannot let unrelated NON-volatile memory refs that
2595 //     happen after the read float up to before the read.  It's OK for
2596 //     non-volatile memory refs that happen before the volatile read to
2597 //     float down below it.
2598 // (3) Similar a volatile write cannot let unrelated NON-volatile
2599 //     memory refs that happen BEFORE the write float down to after the
2600 //     write.  It's OK for non-volatile memory refs that happen after the
2601 //     volatile write to float up before it.
2602 //
2603 // We only put in barriers around volatile refs (they are expensive),
2604 // not _between_ memory refs (that would require us to track the
2605 // flavor of the previous memory refs).  Requirements (2) and (3)
2606 // require some barriers before volatile stores and after volatile
2607 // loads.  These nearly cover requirement (1) but miss the
2608 // volatile-store-volatile-load case.  This final case is placed after
2609 // volatile-stores although it could just as well go before
2610 // volatile-loads.
2611 
2612 void TemplateTable::volatile_barrier(Assembler::Membar_mask_bits order_constraint ) {
2613   // Helper function to insert a is-volatile test and memory barrier
2614   if(!os::is_MP()) return;    // Not needed on single CPU
2615   __ membar(order_constraint);
2616 }
2617 
2618 void TemplateTable::resolve_cache_and_index(int byte_no,
2619                                             Register Rcache,
2620                                             Register index,
2621                                             size_t index_size) {
2622   const Register temp = rbx;
2623   assert_different_registers(Rcache, index, temp);
2624 
2625   Label resolved;
2626 
2627   Bytecodes::Code code = bytecode();
2628   switch (code) {
2629   case Bytecodes::_nofast_getfield: code = Bytecodes::_getfield; break;
2630   case Bytecodes::_nofast_putfield: code = Bytecodes::_putfield; break;
2631   }
2632 
2633   assert(byte_no == f1_byte || byte_no == f2_byte, "byte_no out of range");
2634   __ get_cache_and_index_and_bytecode_at_bcp(Rcache, index, temp, byte_no, 1, index_size);
2635   __ cmpl(temp, code);  // have we resolved this bytecode?
2636   __ jcc(Assembler::equal, resolved);
2637 
2638   // resolve first time through
2639   address entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_from_cache);
2640   __ movl(temp, code);
2641   __ call_VM(noreg, entry, temp);
2642   // Update registers with resolved info
2643   __ get_cache_and_index_at_bcp(Rcache, index, 1, index_size);
2644   __ bind(resolved);
2645 }
2646 
2647 // The cache and index registers must be set before call
2648 void TemplateTable::load_field_cp_cache_entry(Register obj,
2649                                               Register cache,
2650                                               Register index,
2651                                               Register off,
2652                                               Register flags,
2653                                               bool is_static = false) {
2654   assert_different_registers(cache, index, flags, off);
2655 
2656   ByteSize cp_base_offset = ConstantPoolCache::base_offset();
2657   // Field offset
2658   __ movptr(off, Address(cache, index, Address::times_ptr,
2659                          in_bytes(cp_base_offset +
2660                                   ConstantPoolCacheEntry::f2_offset())));
2661   // Flags
2662   __ movl(flags, Address(cache, index, Address::times_ptr,
2663                          in_bytes(cp_base_offset +
2664                                   ConstantPoolCacheEntry::flags_offset())));
2665 
2666   // klass overwrite register
2667   if (is_static) {
2668     __ movptr(obj, Address(cache, index, Address::times_ptr,
2669                            in_bytes(cp_base_offset +
2670                                     ConstantPoolCacheEntry::f1_offset())));
2671     const int mirror_offset = in_bytes(Klass::java_mirror_offset());
2672     __ movptr(obj, Address(obj, mirror_offset));
2673   }
2674 }
2675 
2676 void TemplateTable::load_invoke_cp_cache_entry(int byte_no,
2677                                                Register method,
2678                                                Register itable_index,
2679                                                Register flags,
2680                                                bool is_invokevirtual,
2681                                                bool is_invokevfinal, /*unused*/
2682                                                bool is_invokedynamic) {
2683   // setup registers
2684   const Register cache = rcx;
2685   const Register index = rdx;
2686   assert_different_registers(method, flags);
2687   assert_different_registers(method, cache, index);
2688   assert_different_registers(itable_index, flags);
2689   assert_different_registers(itable_index, cache, index);
2690   // determine constant pool cache field offsets
2691   assert(is_invokevirtual == (byte_no == f2_byte), "is_invokevirtual flag redundant");
2692   const int method_offset = in_bytes(
2693     ConstantPoolCache::base_offset() +
2694       ((byte_no == f2_byte)
2695        ? ConstantPoolCacheEntry::f2_offset()
2696        : ConstantPoolCacheEntry::f1_offset()));
2697   const int flags_offset = in_bytes(ConstantPoolCache::base_offset() +
2698                                     ConstantPoolCacheEntry::flags_offset());
2699   // access constant pool cache fields
2700   const int index_offset = in_bytes(ConstantPoolCache::base_offset() +
2701                                     ConstantPoolCacheEntry::f2_offset());
2702 
2703   size_t index_size = (is_invokedynamic ? sizeof(u4) : sizeof(u2));
2704   resolve_cache_and_index(byte_no, cache, index, index_size);
2705     __ movptr(method, Address(cache, index, Address::times_ptr, method_offset));
2706 
2707   if (itable_index != noreg) {
2708     // pick up itable or appendix index from f2 also:
2709     __ movptr(itable_index, Address(cache, index, Address::times_ptr, index_offset));
2710   }
2711   __ movl(flags, Address(cache, index, Address::times_ptr, flags_offset));
2712 }
2713 
2714 // The registers cache and index expected to be set before call.
2715 // Correct values of the cache and index registers are preserved.
2716 void TemplateTable::jvmti_post_field_access(Register cache,
2717                                             Register index,
2718                                             bool is_static,
2719                                             bool has_tos) {
2720   if (JvmtiExport::can_post_field_access()) {
2721     // Check to see if a field access watch has been set before we take
2722     // the time to call into the VM.
2723     Label L1;
2724     assert_different_registers(cache, index, rax);
2725     __ mov32(rax, ExternalAddress((address) JvmtiExport::get_field_access_count_addr()));
2726     __ testl(rax,rax);
2727     __ jcc(Assembler::zero, L1);
2728 
2729     // cache entry pointer
2730     __ addptr(cache, in_bytes(ConstantPoolCache::base_offset()));
2731     __ shll(index, LogBytesPerWord);
2732     __ addptr(cache, index);
2733     if (is_static) {
2734       __ xorptr(rax, rax);      // NULL object reference
2735     } else {
2736       __ pop(atos);         // Get the object
2737       __ verify_oop(rax);
2738       __ push(atos);        // Restore stack state
2739     }
2740     // rax,:   object pointer or NULL
2741     // cache: cache entry pointer
2742     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_field_access),
2743                rax, cache);
2744     __ get_cache_and_index_at_bcp(cache, index, 1);
2745     __ bind(L1);
2746   }
2747 }
2748 
2749 void TemplateTable::pop_and_check_object(Register r) {
2750   __ pop_ptr(r);
2751   __ null_check(r);  // for field access must check obj.
2752   __ verify_oop(r);
2753 }
2754 
2755 void TemplateTable::getfield_or_static(int byte_no, bool is_static, RewriteControl rc) {
2756   transition(vtos, vtos);
2757 
2758   const Register cache = rcx;
2759   const Register index = rdx;
2760   const Register obj   = LP64_ONLY(c_rarg3) NOT_LP64(rcx);
2761   const Register off   = rbx;
2762   const Register flags = rax;
2763   const Register bc    = LP64_ONLY(c_rarg3) NOT_LP64(rcx); // uses same reg as obj, so don't mix them
2764 
2765   resolve_cache_and_index(byte_no, cache, index, sizeof(u2));
2766   jvmti_post_field_access(cache, index, is_static, false);
2767   load_field_cp_cache_entry(obj, cache, index, off, flags, is_static);
2768 
2769   if (!is_static) pop_and_check_object(obj);
2770 
2771   const Address field(obj, off, Address::times_1, 0*wordSize);
2772   NOT_LP64(const Address hi(obj, off, Address::times_1, 1*wordSize));
2773 
2774   Label Done, notByte, notBool, notInt, notShort, notChar, notLong, notFloat, notObj, notDouble;
2775 
2776   __ shrl(flags, ConstantPoolCacheEntry::tos_state_shift);
2777   // Make sure we don't need to mask edx after the above shift
2778   assert(btos == 0, "change code, btos != 0");
2779 
2780   __ andl(flags, ConstantPoolCacheEntry::tos_state_mask);
2781 
2782   __ jcc(Assembler::notZero, notByte);
2783   // btos
2784   __ load_signed_byte(rax, field);
2785   __ push(btos);
2786   // Rewrite bytecode to be faster
2787   if (!is_static && rc == may_rewrite) {
2788     patch_bytecode(Bytecodes::_fast_bgetfield, bc, rbx);
2789   }
2790   __ jmp(Done);
2791 
2792   __ bind(notByte);
2793   __ cmpl(flags, ztos);
2794   __ jcc(Assembler::notEqual, notBool);
2795 
2796   // ztos (same code as btos)
2797   __ load_signed_byte(rax, field);
2798   __ push(ztos);
2799   // Rewrite bytecode to be faster
2800   if (!is_static && rc == may_rewrite) {
2801     // use btos rewriting, no truncating to t/f bit is needed for getfield.
2802     patch_bytecode(Bytecodes::_fast_bgetfield, bc, rbx);
2803   }
2804   __ jmp(Done);
2805 
2806   __ bind(notBool);
2807   __ cmpl(flags, atos);
2808   __ jcc(Assembler::notEqual, notObj);
2809   // atos
2810   __ load_heap_oop(rax, field);
2811   __ push(atos);
2812   if (!is_static && rc == may_rewrite) {
2813     patch_bytecode(Bytecodes::_fast_agetfield, bc, rbx);
2814   }
2815   __ jmp(Done);
2816 
2817   __ bind(notObj);
2818   __ cmpl(flags, itos);
2819   __ jcc(Assembler::notEqual, notInt);
2820   // itos
2821   __ movl(rax, field);
2822   __ push(itos);
2823   // Rewrite bytecode to be faster
2824   if (!is_static && rc == may_rewrite) {
2825     patch_bytecode(Bytecodes::_fast_igetfield, bc, rbx);
2826   }
2827   __ jmp(Done);
2828 
2829   __ bind(notInt);
2830   __ cmpl(flags, ctos);
2831   __ jcc(Assembler::notEqual, notChar);
2832   // ctos
2833   __ load_unsigned_short(rax, field);
2834   __ push(ctos);
2835   // Rewrite bytecode to be faster
2836   if (!is_static && rc == may_rewrite) {
2837     patch_bytecode(Bytecodes::_fast_cgetfield, bc, rbx);
2838   }
2839   __ jmp(Done);
2840 
2841   __ bind(notChar);
2842   __ cmpl(flags, stos);
2843   __ jcc(Assembler::notEqual, notShort);
2844   // stos
2845   __ load_signed_short(rax, field);
2846   __ push(stos);
2847   // Rewrite bytecode to be faster
2848   if (!is_static && rc == may_rewrite) {
2849     patch_bytecode(Bytecodes::_fast_sgetfield, bc, rbx);
2850   }
2851   __ jmp(Done);
2852 
2853   __ bind(notShort);
2854   __ cmpl(flags, ltos);
2855   __ jcc(Assembler::notEqual, notLong);
2856   // ltos
2857 
2858 #ifndef _LP64
2859   // Generate code as if volatile.  There just aren't enough registers to
2860   // save that information and this code is faster than the test.
2861   __ fild_d(field);                // Must load atomically
2862   __ subptr(rsp,2*wordSize);    // Make space for store
2863   __ fistp_d(Address(rsp,0));
2864   __ pop(rax);
2865   __ pop(rdx);
2866 #else
2867   __ movq(rax, field);
2868 #endif
2869 
2870   __ push(ltos);
2871   // Rewrite bytecode to be faster
2872   LP64_ONLY(if (!is_static && rc == may_rewrite) patch_bytecode(Bytecodes::_fast_lgetfield, bc, rbx));
2873   __ jmp(Done);
2874 
2875   __ bind(notLong);
2876   __ cmpl(flags, ftos);
2877   __ jcc(Assembler::notEqual, notFloat);
2878   // ftos
2879 
2880   __ load_float(field);
2881   __ push(ftos);
2882   // Rewrite bytecode to be faster
2883   if (!is_static && rc == may_rewrite) {
2884     patch_bytecode(Bytecodes::_fast_fgetfield, bc, rbx);
2885   }
2886   __ jmp(Done);
2887 
2888   __ bind(notFloat);
2889 #ifdef ASSERT
2890   __ cmpl(flags, dtos);
2891   __ jcc(Assembler::notEqual, notDouble);
2892 #endif
2893   // dtos
2894   __ load_double(field);
2895   __ push(dtos);
2896   // Rewrite bytecode to be faster
2897   if (!is_static && rc == may_rewrite) {
2898     patch_bytecode(Bytecodes::_fast_dgetfield, bc, rbx);
2899   }
2900 #ifdef ASSERT
2901   __ jmp(Done);
2902 
2903 
2904   __ bind(notDouble);
2905   __ stop("Bad state");
2906 #endif
2907 
2908   __ bind(Done);
2909   // [jk] not needed currently
2910   // volatile_barrier(Assembler::Membar_mask_bits(Assembler::LoadLoad |
2911   //                                              Assembler::LoadStore));
2912 }
2913 
2914 void TemplateTable::getfield(int byte_no) {
2915   getfield_or_static(byte_no, false);
2916 }
2917 
2918 void TemplateTable::nofast_getfield(int byte_no) {
2919   getfield_or_static(byte_no, false, may_not_rewrite);
2920 }
2921 
2922 void TemplateTable::getstatic(int byte_no) {
2923   getfield_or_static(byte_no, true);
2924 }
2925 
2926 
2927 // The registers cache and index expected to be set before call.
2928 // The function may destroy various registers, just not the cache and index registers.
2929 void TemplateTable::jvmti_post_field_mod(Register cache, Register index, bool is_static) {
2930 
2931   const Register robj = LP64_ONLY(c_rarg2)   NOT_LP64(rax);
2932   const Register RBX  = LP64_ONLY(c_rarg1)   NOT_LP64(rbx);
2933   const Register RCX  = LP64_ONLY(c_rarg3)   NOT_LP64(rcx);
2934   const Register RDX  = LP64_ONLY(rscratch1) NOT_LP64(rdx);
2935 
2936   ByteSize cp_base_offset = ConstantPoolCache::base_offset();
2937 
2938   if (JvmtiExport::can_post_field_modification()) {
2939     // Check to see if a field modification watch has been set before
2940     // we take the time to call into the VM.
2941     Label L1;
2942     assert_different_registers(cache, index, rax);
2943     __ mov32(rax, ExternalAddress((address)JvmtiExport::get_field_modification_count_addr()));
2944     __ testl(rax, rax);
2945     __ jcc(Assembler::zero, L1);
2946 
2947     __ get_cache_and_index_at_bcp(robj, RDX, 1);
2948 
2949 
2950     if (is_static) {
2951       // Life is simple.  Null out the object pointer.
2952       __ xorl(RBX, RBX);
2953 
2954     } else {
2955       // Life is harder. The stack holds the value on top, followed by
2956       // the object.  We don't know the size of the value, though; it
2957       // could be one or two words depending on its type. As a result,
2958       // we must find the type to determine where the object is.
2959 #ifndef _LP64
2960       Label two_word, valsize_known;
2961 #endif
2962       __ movl(RCX, Address(robj, RDX,
2963                            Address::times_ptr,
2964                            in_bytes(cp_base_offset +
2965                                      ConstantPoolCacheEntry::flags_offset())));
2966       NOT_LP64(__ mov(rbx, rsp));
2967       __ shrl(RCX, ConstantPoolCacheEntry::tos_state_shift);
2968 
2969       // Make sure we don't need to mask rcx after the above shift
2970       ConstantPoolCacheEntry::verify_tos_state_shift();
2971 #ifdef _LP64
2972       __ movptr(c_rarg1, at_tos_p1());  // initially assume a one word jvalue
2973       __ cmpl(c_rarg3, ltos);
2974       __ cmovptr(Assembler::equal,
2975                  c_rarg1, at_tos_p2()); // ltos (two word jvalue)
2976       __ cmpl(c_rarg3, dtos);
2977       __ cmovptr(Assembler::equal,
2978                  c_rarg1, at_tos_p2()); // dtos (two word jvalue)
2979 #else
2980       __ cmpl(rcx, ltos);
2981       __ jccb(Assembler::equal, two_word);
2982       __ cmpl(rcx, dtos);
2983       __ jccb(Assembler::equal, two_word);
2984       __ addptr(rbx, Interpreter::expr_offset_in_bytes(1)); // one word jvalue (not ltos, dtos)
2985       __ jmpb(valsize_known);
2986 
2987       __ bind(two_word);
2988       __ addptr(rbx, Interpreter::expr_offset_in_bytes(2)); // two words jvalue
2989 
2990       __ bind(valsize_known);
2991       // setup object pointer
2992       __ movptr(rbx, Address(rbx, 0));
2993 #endif
2994     }
2995     // cache entry pointer
2996     __ addptr(robj, in_bytes(cp_base_offset));
2997     __ shll(RDX, LogBytesPerWord);
2998     __ addptr(robj, RDX);
2999     // object (tos)
3000     __ mov(RCX, rsp);
3001     // c_rarg1: object pointer set up above (NULL if static)
3002     // c_rarg2: cache entry pointer
3003     // c_rarg3: jvalue object on the stack
3004     __ call_VM(noreg,
3005                CAST_FROM_FN_PTR(address,
3006                                 InterpreterRuntime::post_field_modification),
3007                RBX, robj, RCX);
3008     __ get_cache_and_index_at_bcp(cache, index, 1);
3009     __ bind(L1);
3010   }
3011 }
3012 
3013 void TemplateTable::putfield_or_static(int byte_no, bool is_static, RewriteControl rc) {
3014   transition(vtos, vtos);
3015 
3016   const Register cache = rcx;
3017   const Register index = rdx;
3018   const Register obj   = rcx;
3019   const Register off   = rbx;
3020   const Register flags = rax;
3021   const Register bc    = LP64_ONLY(c_rarg3) NOT_LP64(rcx);
3022 
3023   resolve_cache_and_index(byte_no, cache, index, sizeof(u2));
3024   jvmti_post_field_mod(cache, index, is_static);
3025   load_field_cp_cache_entry(obj, cache, index, off, flags, is_static);
3026 
3027   // [jk] not needed currently
3028   // volatile_barrier(Assembler::Membar_mask_bits(Assembler::LoadStore |
3029   //                                              Assembler::StoreStore));
3030 
3031   Label notVolatile, Done;
3032   __ movl(rdx, flags);
3033   __ shrl(rdx, ConstantPoolCacheEntry::is_volatile_shift);
3034   __ andl(rdx, 0x1);
3035 
3036   // field addresses
3037   const Address field(obj, off, Address::times_1, 0*wordSize);
3038   NOT_LP64( const Address hi(obj, off, Address::times_1, 1*wordSize);)
3039 
3040   Label notByte, notBool, notInt, notShort, notChar,
3041         notLong, notFloat, notObj, notDouble;
3042 
3043   __ shrl(flags, ConstantPoolCacheEntry::tos_state_shift);
3044 
3045   assert(btos == 0, "change code, btos != 0");
3046   __ andl(flags, ConstantPoolCacheEntry::tos_state_mask);
3047   __ jcc(Assembler::notZero, notByte);
3048 
3049   // btos
3050   {
3051     __ pop(btos);
3052     if (!is_static) pop_and_check_object(obj);
3053     __ movb(field, rax);
3054     if (!is_static && rc == may_rewrite) {
3055       patch_bytecode(Bytecodes::_fast_bputfield, bc, rbx, true, byte_no);
3056     }
3057     __ jmp(Done);
3058   }
3059 
3060   __ bind(notByte);
3061   __ cmpl(flags, ztos);
3062   __ jcc(Assembler::notEqual, notBool);
3063 
3064   // ztos
3065   {
3066     __ pop(ztos);
3067     if (!is_static) pop_and_check_object(obj);
3068     __ andl(rax, 0x1);
3069     __ movb(field, rax);
3070     if (!is_static && rc == may_rewrite) {
3071       patch_bytecode(Bytecodes::_fast_zputfield, bc, rbx, true, byte_no);
3072     }
3073     __ jmp(Done);
3074   }
3075 
3076   __ bind(notBool);
3077   __ cmpl(flags, atos);
3078   __ jcc(Assembler::notEqual, notObj);
3079 
3080   // atos
3081   {
3082     __ pop(atos);
3083     if (!is_static) pop_and_check_object(obj);
3084     // Store into the field
3085     do_oop_store(_masm, field, rax, _bs->kind(), false);
3086     if (!is_static && rc == may_rewrite) {
3087       patch_bytecode(Bytecodes::_fast_aputfield, bc, rbx, true, byte_no);
3088     }
3089     __ jmp(Done);
3090   }
3091 
3092   __ bind(notObj);
3093   __ cmpl(flags, itos);
3094   __ jcc(Assembler::notEqual, notInt);
3095 
3096   // itos
3097   {
3098     __ pop(itos);
3099     if (!is_static) pop_and_check_object(obj);
3100     __ movl(field, rax);
3101     if (!is_static && rc == may_rewrite) {
3102       patch_bytecode(Bytecodes::_fast_iputfield, bc, rbx, true, byte_no);
3103     }
3104     __ jmp(Done);
3105   }
3106 
3107   __ bind(notInt);
3108   __ cmpl(flags, ctos);
3109   __ jcc(Assembler::notEqual, notChar);
3110 
3111   // ctos
3112   {
3113     __ pop(ctos);
3114     if (!is_static) pop_and_check_object(obj);
3115     __ movw(field, rax);
3116     if (!is_static && rc == may_rewrite) {
3117       patch_bytecode(Bytecodes::_fast_cputfield, bc, rbx, true, byte_no);
3118     }
3119     __ jmp(Done);
3120   }
3121 
3122   __ bind(notChar);
3123   __ cmpl(flags, stos);
3124   __ jcc(Assembler::notEqual, notShort);
3125 
3126   // stos
3127   {
3128     __ pop(stos);
3129     if (!is_static) pop_and_check_object(obj);
3130     __ movw(field, rax);
3131     if (!is_static && rc == may_rewrite) {
3132       patch_bytecode(Bytecodes::_fast_sputfield, bc, rbx, true, byte_no);
3133     }
3134     __ jmp(Done);
3135   }
3136 
3137   __ bind(notShort);
3138   __ cmpl(flags, ltos);
3139   __ jcc(Assembler::notEqual, notLong);
3140 
3141   // ltos
3142 #ifdef _LP64
3143   {
3144     __ pop(ltos);
3145     if (!is_static) pop_and_check_object(obj);
3146     __ movq(field, rax);
3147     if (!is_static && rc == may_rewrite) {
3148       patch_bytecode(Bytecodes::_fast_lputfield, bc, rbx, true, byte_no);
3149     }
3150     __ jmp(Done);
3151   }
3152 #else
3153   {
3154     Label notVolatileLong;
3155     __ testl(rdx, rdx);
3156     __ jcc(Assembler::zero, notVolatileLong);
3157 
3158     __ pop(ltos);  // overwrites rdx, do this after testing volatile.
3159     if (!is_static) pop_and_check_object(obj);
3160 
3161     // Replace with real volatile test
3162     __ push(rdx);
3163     __ push(rax);                 // Must update atomically with FIST
3164     __ fild_d(Address(rsp,0));    // So load into FPU register
3165     __ fistp_d(field);            // and put into memory atomically
3166     __ addptr(rsp, 2*wordSize);
3167     // volatile_barrier();
3168     volatile_barrier(Assembler::Membar_mask_bits(Assembler::StoreLoad |
3169                                                  Assembler::StoreStore));
3170     // Don't rewrite volatile version
3171     __ jmp(notVolatile);
3172 
3173     __ bind(notVolatileLong);
3174 
3175     __ pop(ltos);  // overwrites rdx
3176     if (!is_static) pop_and_check_object(obj);
3177     __ movptr(hi, rdx);
3178     __ movptr(field, rax);
3179     // Don't rewrite to _fast_lputfield for potential volatile case.
3180     __ jmp(notVolatile);
3181   }
3182 #endif // _LP64
3183 
3184   __ bind(notLong);
3185   __ cmpl(flags, ftos);
3186   __ jcc(Assembler::notEqual, notFloat);
3187 
3188   // ftos
3189   {
3190     __ pop(ftos);
3191     if (!is_static) pop_and_check_object(obj);
3192     __ store_float(field);
3193     if (!is_static && rc == may_rewrite) {
3194       patch_bytecode(Bytecodes::_fast_fputfield, bc, rbx, true, byte_no);
3195     }
3196     __ jmp(Done);
3197   }
3198 
3199   __ bind(notFloat);
3200 #ifdef ASSERT
3201   __ cmpl(flags, dtos);
3202   __ jcc(Assembler::notEqual, notDouble);
3203 #endif
3204 
3205   // dtos
3206   {
3207     __ pop(dtos);
3208     if (!is_static) pop_and_check_object(obj);
3209     __ store_double(field);
3210     if (!is_static && rc == may_rewrite) {
3211       patch_bytecode(Bytecodes::_fast_dputfield, bc, rbx, true, byte_no);
3212     }
3213   }
3214 
3215 #ifdef ASSERT
3216   __ jmp(Done);
3217 
3218   __ bind(notDouble);
3219   __ stop("Bad state");
3220 #endif
3221 
3222   __ bind(Done);
3223 
3224   // Check for volatile store
3225   __ testl(rdx, rdx);
3226   __ jcc(Assembler::zero, notVolatile);
3227   volatile_barrier(Assembler::Membar_mask_bits(Assembler::StoreLoad |
3228                                                Assembler::StoreStore));
3229   __ bind(notVolatile);
3230 }
3231 
3232 void TemplateTable::putfield(int byte_no) {
3233   putfield_or_static(byte_no, false);
3234 }
3235 
3236 void TemplateTable::nofast_putfield(int byte_no) {
3237   putfield_or_static(byte_no, false, may_not_rewrite);
3238 }
3239 
3240 void TemplateTable::putstatic(int byte_no) {
3241   putfield_or_static(byte_no, true);
3242 }
3243 
3244 void TemplateTable::jvmti_post_fast_field_mod() {
3245 
3246   const Register scratch = LP64_ONLY(c_rarg3) NOT_LP64(rcx);
3247 
3248   if (JvmtiExport::can_post_field_modification()) {
3249     // Check to see if a field modification watch has been set before
3250     // we take the time to call into the VM.
3251     Label L2;
3252     __ mov32(scratch, ExternalAddress((address)JvmtiExport::get_field_modification_count_addr()));
3253     __ testl(scratch, scratch);
3254     __ jcc(Assembler::zero, L2);
3255     __ pop_ptr(rbx);                  // copy the object pointer from tos
3256     __ verify_oop(rbx);
3257     __ push_ptr(rbx);                 // put the object pointer back on tos
3258     // Save tos values before call_VM() clobbers them. Since we have
3259     // to do it for every data type, we use the saved values as the
3260     // jvalue object.
3261     switch (bytecode()) {          // load values into the jvalue object
3262     case Bytecodes::_fast_aputfield: __ push_ptr(rax); break;
3263     case Bytecodes::_fast_bputfield: // fall through
3264     case Bytecodes::_fast_zputfield: // fall through
3265     case Bytecodes::_fast_sputfield: // fall through
3266     case Bytecodes::_fast_cputfield: // fall through
3267     case Bytecodes::_fast_iputfield: __ push_i(rax); break;
3268     case Bytecodes::_fast_dputfield: __ push(dtos); break;
3269     case Bytecodes::_fast_fputfield: __ push(ftos); break;
3270     case Bytecodes::_fast_lputfield: __ push_l(rax); break;
3271 
3272     default:
3273       ShouldNotReachHere();
3274     }
3275     __ mov(scratch, rsp);             // points to jvalue on the stack
3276     // access constant pool cache entry
3277     LP64_ONLY(__ get_cache_entry_pointer_at_bcp(c_rarg2, rax, 1));
3278     NOT_LP64(__ get_cache_entry_pointer_at_bcp(rax, rdx, 1));
3279     __ verify_oop(rbx);
3280     // rbx: object pointer copied above
3281     // c_rarg2: cache entry pointer
3282     // c_rarg3: jvalue object on the stack
3283     LP64_ONLY(__ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_field_modification), rbx, c_rarg2, c_rarg3));
3284     NOT_LP64(__ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_field_modification), rbx, rax, rcx));
3285 
3286     switch (bytecode()) {             // restore tos values
3287     case Bytecodes::_fast_aputfield: __ pop_ptr(rax); break;
3288     case Bytecodes::_fast_bputfield: // fall through
3289     case Bytecodes::_fast_zputfield: // fall through
3290     case Bytecodes::_fast_sputfield: // fall through
3291     case Bytecodes::_fast_cputfield: // fall through
3292     case Bytecodes::_fast_iputfield: __ pop_i(rax); break;
3293     case Bytecodes::_fast_dputfield: __ pop(dtos); break;
3294     case Bytecodes::_fast_fputfield: __ pop(ftos); break;
3295     case Bytecodes::_fast_lputfield: __ pop_l(rax); break;
3296     }
3297     __ bind(L2);
3298   }
3299 }
3300 
3301 void TemplateTable::fast_storefield(TosState state) {
3302   transition(state, vtos);
3303 
3304   ByteSize base = ConstantPoolCache::base_offset();
3305 
3306   jvmti_post_fast_field_mod();
3307 
3308   // access constant pool cache
3309   __ get_cache_and_index_at_bcp(rcx, rbx, 1);
3310 
3311   // test for volatile with rdx but rdx is tos register for lputfield.
3312   __ movl(rdx, Address(rcx, rbx, Address::times_ptr,
3313                        in_bytes(base +
3314                                 ConstantPoolCacheEntry::flags_offset())));
3315 
3316   // replace index with field offset from cache entry
3317   __ movptr(rbx, Address(rcx, rbx, Address::times_ptr,
3318                          in_bytes(base + ConstantPoolCacheEntry::f2_offset())));
3319 
3320   // [jk] not needed currently
3321   // volatile_barrier(Assembler::Membar_mask_bits(Assembler::LoadStore |
3322   //                                              Assembler::StoreStore));
3323 
3324   Label notVolatile;
3325   __ shrl(rdx, ConstantPoolCacheEntry::is_volatile_shift);
3326   __ andl(rdx, 0x1);
3327 
3328   // Get object from stack
3329   pop_and_check_object(rcx);
3330 
3331   // field address
3332   const Address field(rcx, rbx, Address::times_1);
3333 
3334   // access field
3335   switch (bytecode()) {
3336   case Bytecodes::_fast_aputfield:
3337     do_oop_store(_masm, field, rax, _bs->kind(), false);
3338     break;
3339   case Bytecodes::_fast_lputfield:
3340 #ifdef _LP64
3341   __ movq(field, rax);
3342 #else
3343   __ stop("should not be rewritten");
3344 #endif
3345     break;
3346   case Bytecodes::_fast_iputfield:
3347     __ movl(field, rax);
3348     break;
3349   case Bytecodes::_fast_zputfield:
3350     __ andl(rax, 0x1);  // boolean is true if LSB is 1
3351     // fall through to bputfield
3352   case Bytecodes::_fast_bputfield:
3353     __ movb(field, rax);
3354     break;
3355   case Bytecodes::_fast_sputfield:
3356     // fall through
3357   case Bytecodes::_fast_cputfield:
3358     __ movw(field, rax);
3359     break;
3360   case Bytecodes::_fast_fputfield:
3361     __ store_float(field);
3362     break;
3363   case Bytecodes::_fast_dputfield:
3364     __ store_double(field);
3365     break;
3366   default:
3367     ShouldNotReachHere();
3368   }
3369 
3370   // Check for volatile store
3371   __ testl(rdx, rdx);
3372   __ jcc(Assembler::zero, notVolatile);
3373   volatile_barrier(Assembler::Membar_mask_bits(Assembler::StoreLoad |
3374                                                Assembler::StoreStore));
3375   __ bind(notVolatile);
3376 }
3377 
3378 void TemplateTable::fast_accessfield(TosState state) {
3379   transition(atos, state);
3380 
3381   // Do the JVMTI work here to avoid disturbing the register state below
3382   if (JvmtiExport::can_post_field_access()) {
3383     // Check to see if a field access watch has been set before we
3384     // take the time to call into the VM.
3385     Label L1;
3386     __ mov32(rcx, ExternalAddress((address) JvmtiExport::get_field_access_count_addr()));
3387     __ testl(rcx, rcx);
3388     __ jcc(Assembler::zero, L1);
3389     // access constant pool cache entry
3390     LP64_ONLY(__ get_cache_entry_pointer_at_bcp(c_rarg2, rcx, 1));
3391     NOT_LP64(__ get_cache_entry_pointer_at_bcp(rcx, rdx, 1));
3392     __ verify_oop(rax);
3393     __ push_ptr(rax);  // save object pointer before call_VM() clobbers it
3394     LP64_ONLY(__ mov(c_rarg1, rax));
3395     // c_rarg1: object pointer copied above
3396     // c_rarg2: cache entry pointer
3397     LP64_ONLY(__ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_field_access), c_rarg1, c_rarg2));
3398     NOT_LP64(__ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_field_access), rax, rcx));
3399     __ pop_ptr(rax); // restore object pointer
3400     __ bind(L1);
3401   }
3402 
3403   // access constant pool cache
3404   __ get_cache_and_index_at_bcp(rcx, rbx, 1);
3405   // replace index with field offset from cache entry
3406   // [jk] not needed currently
3407   // if (os::is_MP()) {
3408   //   __ movl(rdx, Address(rcx, rbx, Address::times_8,
3409   //                        in_bytes(ConstantPoolCache::base_offset() +
3410   //                                 ConstantPoolCacheEntry::flags_offset())));
3411   //   __ shrl(rdx, ConstantPoolCacheEntry::is_volatile_shift);
3412   //   __ andl(rdx, 0x1);
3413   // }
3414   __ movptr(rbx, Address(rcx, rbx, Address::times_ptr,
3415                          in_bytes(ConstantPoolCache::base_offset() +
3416                                   ConstantPoolCacheEntry::f2_offset())));
3417 
3418   // rax: object
3419   __ verify_oop(rax);
3420   __ null_check(rax);
3421   Address field(rax, rbx, Address::times_1);
3422 
3423   // access field
3424   switch (bytecode()) {
3425   case Bytecodes::_fast_agetfield:
3426     __ load_heap_oop(rax, field);
3427     __ verify_oop(rax);
3428     break;
3429   case Bytecodes::_fast_lgetfield:
3430 #ifdef _LP64
3431   __ movq(rax, field);
3432 #else
3433   __ stop("should not be rewritten");
3434 #endif
3435     break;
3436   case Bytecodes::_fast_igetfield:
3437     __ movl(rax, field);
3438     break;
3439   case Bytecodes::_fast_bgetfield:
3440     __ movsbl(rax, field);
3441     break;
3442   case Bytecodes::_fast_sgetfield:
3443     __ load_signed_short(rax, field);
3444     break;
3445   case Bytecodes::_fast_cgetfield:
3446     __ load_unsigned_short(rax, field);
3447     break;
3448   case Bytecodes::_fast_fgetfield:
3449     __ load_float(field);
3450     break;
3451   case Bytecodes::_fast_dgetfield:
3452     __ load_double(field);
3453     break;
3454   default:
3455     ShouldNotReachHere();
3456   }
3457   // [jk] not needed currently
3458   // if (os::is_MP()) {
3459   //   Label notVolatile;
3460   //   __ testl(rdx, rdx);
3461   //   __ jcc(Assembler::zero, notVolatile);
3462   //   __ membar(Assembler::LoadLoad);
3463   //   __ bind(notVolatile);
3464   //};
3465 }
3466 
3467 void TemplateTable::fast_xaccess(TosState state) {
3468   transition(vtos, state);
3469 
3470   // get receiver
3471   __ movptr(rax, aaddress(0));
3472   // access constant pool cache
3473   __ get_cache_and_index_at_bcp(rcx, rdx, 2);
3474   __ movptr(rbx,
3475             Address(rcx, rdx, Address::times_ptr,
3476                     in_bytes(ConstantPoolCache::base_offset() +
3477                              ConstantPoolCacheEntry::f2_offset())));
3478   // make sure exception is reported in correct bcp range (getfield is
3479   // next instruction)
3480   __ increment(rbcp);
3481   __ null_check(rax);
3482   const Address field = Address(rax, rbx, Address::times_1, 0*wordSize);
3483   switch (state) {
3484   case itos:
3485     __ movl(rax, field);
3486     break;
3487   case atos:
3488     __ load_heap_oop(rax, field);
3489     __ verify_oop(rax);
3490     break;
3491   case ftos:
3492     __ load_float(field);
3493     break;
3494   default:
3495     ShouldNotReachHere();
3496   }
3497 
3498   // [jk] not needed currently
3499   // if (os::is_MP()) {
3500   //   Label notVolatile;
3501   //   __ movl(rdx, Address(rcx, rdx, Address::times_8,
3502   //                        in_bytes(ConstantPoolCache::base_offset() +
3503   //                                 ConstantPoolCacheEntry::flags_offset())));
3504   //   __ shrl(rdx, ConstantPoolCacheEntry::is_volatile_shift);
3505   //   __ testl(rdx, 0x1);
3506   //   __ jcc(Assembler::zero, notVolatile);
3507   //   __ membar(Assembler::LoadLoad);
3508   //   __ bind(notVolatile);
3509   // }
3510 
3511   __ decrement(rbcp);
3512 }
3513 
3514 //-----------------------------------------------------------------------------
3515 // Calls
3516 
3517 void TemplateTable::count_calls(Register method, Register temp) {
3518   // implemented elsewhere
3519   ShouldNotReachHere();
3520 }
3521 
3522 void TemplateTable::prepare_invoke(int byte_no,
3523                                    Register method,  // linked method (or i-klass)
3524                                    Register index,   // itable index, MethodType, etc.
3525                                    Register recv,    // if caller wants to see it
3526                                    Register flags    // if caller wants to test it
3527                                    ) {
3528   // determine flags
3529   const Bytecodes::Code code = bytecode();
3530   const bool is_invokeinterface  = code == Bytecodes::_invokeinterface;
3531   const bool is_invokedynamic    = code == Bytecodes::_invokedynamic;
3532   const bool is_invokehandle     = code == Bytecodes::_invokehandle;
3533   const bool is_invokevirtual    = code == Bytecodes::_invokevirtual;
3534   const bool is_invokespecial    = code == Bytecodes::_invokespecial;
3535   const bool load_receiver       = (recv  != noreg);
3536   const bool save_flags          = (flags != noreg);
3537   assert(load_receiver == (code != Bytecodes::_invokestatic && code != Bytecodes::_invokedynamic), "");
3538   assert(save_flags    == (is_invokeinterface || is_invokevirtual), "need flags for vfinal");
3539   assert(flags == noreg || flags == rdx, "");
3540   assert(recv  == noreg || recv  == rcx, "");
3541 
3542   // setup registers & access constant pool cache
3543   if (recv  == noreg)  recv  = rcx;
3544   if (flags == noreg)  flags = rdx;
3545   assert_different_registers(method, index, recv, flags);
3546 
3547   // save 'interpreter return address'
3548   __ save_bcp();
3549 
3550   load_invoke_cp_cache_entry(byte_no, method, index, flags, is_invokevirtual, false, is_invokedynamic);
3551 
3552   // maybe push appendix to arguments (just before return address)
3553   if (is_invokedynamic || is_invokehandle) {
3554     Label L_no_push;
3555     __ testl(flags, (1 << ConstantPoolCacheEntry::has_appendix_shift));
3556     __ jcc(Assembler::zero, L_no_push);
3557     // Push the appendix as a trailing parameter.
3558     // This must be done before we get the receiver,
3559     // since the parameter_size includes it.
3560     __ push(rbx);
3561     __ mov(rbx, index);
3562     assert(ConstantPoolCacheEntry::_indy_resolved_references_appendix_offset == 0, "appendix expected at index+0");
3563     __ load_resolved_reference_at_index(index, rbx);
3564     __ pop(rbx);
3565     __ push(index);  // push appendix (MethodType, CallSite, etc.)
3566     __ bind(L_no_push);
3567   }
3568 
3569   // load receiver if needed (after appendix is pushed so parameter size is correct)
3570   // Note: no return address pushed yet
3571   if (load_receiver) {
3572     __ movl(recv, flags);
3573     __ andl(recv, ConstantPoolCacheEntry::parameter_size_mask);
3574     const int no_return_pc_pushed_yet = -1;  // argument slot correction before we push return address
3575     const int receiver_is_at_end      = -1;  // back off one slot to get receiver
3576     Address recv_addr = __ argument_address(recv, no_return_pc_pushed_yet + receiver_is_at_end);
3577     __ movptr(recv, recv_addr);
3578     __ verify_oop(recv);
3579   }
3580 
3581   if (save_flags) {
3582     __ movl(rbcp, flags);
3583   }
3584 
3585   // compute return type
3586   __ shrl(flags, ConstantPoolCacheEntry::tos_state_shift);
3587   // Make sure we don't need to mask flags after the above shift
3588   ConstantPoolCacheEntry::verify_tos_state_shift();
3589   // load return address
3590   {
3591     const address table_addr = (address) Interpreter::invoke_return_entry_table_for(code);
3592     ExternalAddress table(table_addr);
3593     LP64_ONLY(__ lea(rscratch1, table));
3594     LP64_ONLY(__ movptr(flags, Address(rscratch1, flags, Address::times_ptr)));
3595     NOT_LP64(__ movptr(flags, ArrayAddress(table, Address(noreg, flags, Address::times_ptr))));
3596   }
3597 
3598   // push return address
3599   __ push(flags);
3600 
3601   // Restore flags value from the constant pool cache, and restore rsi
3602   // for later null checks.  r13 is the bytecode pointer
3603   if (save_flags) {
3604     __ movl(flags, rbcp);
3605     __ restore_bcp();
3606   }
3607 }
3608 
3609 void TemplateTable::invokevirtual_helper(Register index,
3610                                          Register recv,
3611                                          Register flags) {
3612   // Uses temporary registers rax, rdx
3613   assert_different_registers(index, recv, rax, rdx);
3614   assert(index == rbx, "");
3615   assert(recv  == rcx, "");
3616 
3617   // Test for an invoke of a final method
3618   Label notFinal;
3619   __ movl(rax, flags);
3620   __ andl(rax, (1 << ConstantPoolCacheEntry::is_vfinal_shift));
3621   __ jcc(Assembler::zero, notFinal);
3622 
3623   const Register method = index;  // method must be rbx
3624   assert(method == rbx,
3625          "Method* must be rbx for interpreter calling convention");
3626 
3627   // do the call - the index is actually the method to call
3628   // that is, f2 is a vtable index if !is_vfinal, else f2 is a Method*
3629 
3630   // It's final, need a null check here!
3631   __ null_check(recv);
3632 
3633   // profile this call
3634   __ profile_final_call(rax);
3635   __ profile_arguments_type(rax, method, rbcp, true);
3636 
3637   __ jump_from_interpreted(method, rax);
3638 
3639   __ bind(notFinal);
3640 
3641   // get receiver klass
3642   __ null_check(recv, oopDesc::klass_offset_in_bytes());
3643   __ load_klass(rax, recv);
3644 
3645   // profile this call
3646   __ profile_virtual_call(rax, rlocals, rdx);
3647   // get target Method* & entry point
3648   __ lookup_virtual_method(rax, index, method);
3649   __ profile_called_method(method, rdx, rbcp);
3650 
3651   __ profile_arguments_type(rdx, method, rbcp, true);
3652   __ jump_from_interpreted(method, rdx);
3653 }
3654 
3655 void TemplateTable::invokevirtual(int byte_no) {
3656   transition(vtos, vtos);
3657   assert(byte_no == f2_byte, "use this argument");
3658   prepare_invoke(byte_no,
3659                  rbx,    // method or vtable index
3660                  noreg,  // unused itable index
3661                  rcx, rdx); // recv, flags
3662 
3663   // rbx: index
3664   // rcx: receiver
3665   // rdx: flags
3666 
3667   invokevirtual_helper(rbx, rcx, rdx);
3668 }
3669 
3670 void TemplateTable::invokespecial(int byte_no) {
3671   transition(vtos, vtos);
3672   assert(byte_no == f1_byte, "use this argument");
3673   prepare_invoke(byte_no, rbx, noreg,  // get f1 Method*
3674                  rcx);  // get receiver also for null check
3675   __ verify_oop(rcx);
3676   __ null_check(rcx);
3677   // do the call
3678   __ profile_call(rax);
3679   __ profile_arguments_type(rax, rbx, rbcp, false);
3680   __ jump_from_interpreted(rbx, rax);
3681 }
3682 
3683 void TemplateTable::invokestatic(int byte_no) {
3684   transition(vtos, vtos);
3685   assert(byte_no == f1_byte, "use this argument");
3686   prepare_invoke(byte_no, rbx);  // get f1 Method*
3687   // do the call
3688   __ profile_call(rax);
3689   __ profile_arguments_type(rax, rbx, rbcp, false);
3690   __ jump_from_interpreted(rbx, rax);
3691 }
3692 
3693 
3694 void TemplateTable::fast_invokevfinal(int byte_no) {
3695   transition(vtos, vtos);
3696   assert(byte_no == f2_byte, "use this argument");
3697   __ stop("fast_invokevfinal not used on x86");
3698 }
3699 
3700 
3701 void TemplateTable::invokeinterface(int byte_no) {
3702   transition(vtos, vtos);
3703   assert(byte_no == f1_byte, "use this argument");
3704   prepare_invoke(byte_no, rax, rbx,  // get f1 Klass*, f2 itable index
3705                  rcx, rdx); // recv, flags
3706 
3707   // rax: interface klass (from f1)
3708   // rbx: itable index (from f2)
3709   // rcx: receiver
3710   // rdx: flags
3711 
3712   // Special case of invokeinterface called for virtual method of
3713   // java.lang.Object.  See cpCacheOop.cpp for details.
3714   // This code isn't produced by javac, but could be produced by
3715   // another compliant java compiler.
3716   Label notMethod;
3717   __ movl(rlocals, rdx);
3718   __ andl(rlocals, (1 << ConstantPoolCacheEntry::is_forced_virtual_shift));
3719 
3720   __ jcc(Assembler::zero, notMethod);
3721 
3722   invokevirtual_helper(rbx, rcx, rdx);
3723   __ bind(notMethod);
3724 
3725   // Get receiver klass into rdx - also a null check
3726   __ restore_locals();  // restore r14
3727   __ null_check(rcx, oopDesc::klass_offset_in_bytes());
3728   __ load_klass(rdx, rcx);
3729 
3730   // profile this call
3731   __ profile_virtual_call(rdx, rbcp, rlocals);
3732 
3733   Label no_such_interface, no_such_method;
3734 
3735   __ lookup_interface_method(// inputs: rec. class, interface, itable index
3736                              rdx, rax, rbx,
3737                              // outputs: method, scan temp. reg
3738                              rbx, rbcp,
3739                              no_such_interface);
3740 
3741   // rbx: Method* to call
3742   // rcx: receiver
3743   // Check for abstract method error
3744   // Note: This should be done more efficiently via a throw_abstract_method_error
3745   //       interpreter entry point and a conditional jump to it in case of a null
3746   //       method.
3747   __ testptr(rbx, rbx);
3748   __ jcc(Assembler::zero, no_such_method);
3749 
3750   __ profile_called_method(rbx, rbcp, rdx);
3751   __ profile_arguments_type(rdx, rbx, rbcp, true);
3752 
3753   // do the call
3754   // rcx: receiver
3755   // rbx,: Method*
3756   __ jump_from_interpreted(rbx, rdx);
3757   __ should_not_reach_here();
3758 
3759   // exception handling code follows...
3760   // note: must restore interpreter registers to canonical
3761   //       state for exception handling to work correctly!
3762 
3763   __ bind(no_such_method);
3764   // throw exception
3765   __ pop(rbx);           // pop return address (pushed by prepare_invoke)
3766   __ restore_bcp();      // rbcp must be correct for exception handler   (was destroyed)
3767   __ restore_locals();   // make sure locals pointer is correct as well (was destroyed)
3768   __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_AbstractMethodError));
3769   // the call_VM checks for exception, so we should never return here.
3770   __ should_not_reach_here();
3771 
3772   __ bind(no_such_interface);
3773   // throw exception
3774   __ pop(rbx);           // pop return address (pushed by prepare_invoke)
3775   __ restore_bcp();      // rbcp must be correct for exception handler   (was destroyed)
3776   __ restore_locals();   // make sure locals pointer is correct as well (was destroyed)
3777   __ call_VM(noreg, CAST_FROM_FN_PTR(address,
3778                    InterpreterRuntime::throw_IncompatibleClassChangeError));
3779   // the call_VM checks for exception, so we should never return here.
3780   __ should_not_reach_here();
3781 }
3782 
3783 void TemplateTable::invokehandle(int byte_no) {
3784   transition(vtos, vtos);
3785   assert(byte_no == f1_byte, "use this argument");
3786   const Register rbx_method = rbx;
3787   const Register rax_mtype  = rax;
3788   const Register rcx_recv   = rcx;
3789   const Register rdx_flags  = rdx;
3790 
3791   prepare_invoke(byte_no, rbx_method, rax_mtype, rcx_recv);
3792   __ verify_method_ptr(rbx_method);
3793   __ verify_oop(rcx_recv);
3794   __ null_check(rcx_recv);
3795 
3796   // rax: MethodType object (from cpool->resolved_references[f1], if necessary)
3797   // rbx: MH.invokeExact_MT method (from f2)
3798 
3799   // Note:  rax_mtype is already pushed (if necessary) by prepare_invoke
3800 
3801   // FIXME: profile the LambdaForm also
3802   __ profile_final_call(rax);
3803   __ profile_arguments_type(rdx, rbx_method, rbcp, true);
3804 
3805   __ jump_from_interpreted(rbx_method, rdx);
3806 }
3807 
3808 void TemplateTable::invokedynamic(int byte_no) {
3809   transition(vtos, vtos);
3810   assert(byte_no == f1_byte, "use this argument");
3811 
3812   const Register rbx_method   = rbx;
3813   const Register rax_callsite = rax;
3814 
3815   prepare_invoke(byte_no, rbx_method, rax_callsite);
3816 
3817   // rax: CallSite object (from cpool->resolved_references[f1])
3818   // rbx: MH.linkToCallSite method (from f2)
3819 
3820   // Note:  rax_callsite is already pushed by prepare_invoke
3821 
3822   // %%% should make a type profile for any invokedynamic that takes a ref argument
3823   // profile this call
3824   __ profile_call(rbcp);
3825   __ profile_arguments_type(rdx, rbx_method, rbcp, false);
3826 
3827   __ verify_oop(rax_callsite);
3828 
3829   __ jump_from_interpreted(rbx_method, rdx);
3830 }
3831 
3832 //-----------------------------------------------------------------------------
3833 // Allocation
3834 
3835 void TemplateTable::_new() {
3836   transition(vtos, atos);
3837   __ get_unsigned_2_byte_index_at_bcp(rdx, 1);
3838   Label slow_case;
3839   Label slow_case_no_pop;
3840   Label done;
3841   Label initialize_header;
3842   Label initialize_object;  // including clearing the fields
3843   Label allocate_shared;
3844 
3845   __ get_cpool_and_tags(rcx, rax);
3846 
3847   // Make sure the class we're about to instantiate has been resolved.
3848   // This is done before loading InstanceKlass to be consistent with the order
3849   // how Constant Pool is updated (see ConstantPool::klass_at_put)
3850   const int tags_offset = Array<u1>::base_offset_in_bytes();
3851   __ cmpb(Address(rax, rdx, Address::times_1, tags_offset), JVM_CONSTANT_Class);
3852   __ jcc(Assembler::notEqual, slow_case_no_pop);
3853 
3854   // get InstanceKlass
3855   __ movptr(rcx, Address(rcx, rdx, Address::times_ptr, sizeof(ConstantPool)));
3856   __ push(rcx);  // save the contexts of klass for initializing the header
3857 
3858   // make sure klass is initialized & doesn't have finalizer
3859   // make sure klass is fully initialized
3860   __ cmpb(Address(rcx, InstanceKlass::init_state_offset()), InstanceKlass::fully_initialized);
3861   __ jcc(Assembler::notEqual, slow_case);
3862 
3863   // get instance_size in InstanceKlass (scaled to a count of bytes)
3864   __ movl(rdx, Address(rcx, Klass::layout_helper_offset()));
3865   // test to see if it has a finalizer or is malformed in some way
3866   __ testl(rdx, Klass::_lh_instance_slow_path_bit);
3867   __ jcc(Assembler::notZero, slow_case);
3868 
3869   //
3870   // Allocate the instance
3871   // 1) Try to allocate in the TLAB
3872   // 2) if fail and the object is large allocate in the shared Eden
3873   // 3) if the above fails (or is not applicable), go to a slow case
3874   // (creates a new TLAB, etc.)
3875 
3876   const bool allow_shared_alloc =
3877     Universe::heap()->supports_inline_contig_alloc();
3878 
3879   const Register thread = LP64_ONLY(r15_thread) NOT_LP64(rcx);
3880 #ifndef _LP64
3881   if (UseTLAB || allow_shared_alloc) {
3882     __ get_thread(thread);
3883   }
3884 #endif // _LP64
3885 
3886   if (UseTLAB) {
3887     __ movptr(rax, Address(thread, in_bytes(JavaThread::tlab_top_offset())));
3888     __ lea(rbx, Address(rax, rdx, Address::times_1));
3889     __ cmpptr(rbx, Address(thread, in_bytes(JavaThread::tlab_end_offset())));
3890     __ jcc(Assembler::above, allow_shared_alloc ? allocate_shared : slow_case);
3891     __ movptr(Address(thread, in_bytes(JavaThread::tlab_top_offset())), rbx);
3892     if (ZeroTLAB) {
3893       // the fields have been already cleared
3894       __ jmp(initialize_header);
3895     } else {
3896       // initialize both the header and fields
3897       __ jmp(initialize_object);
3898     }
3899   }
3900 
3901   // Allocation in the shared Eden, if allowed.
3902   //
3903   // rdx: instance size in bytes
3904   if (allow_shared_alloc) {
3905     __ bind(allocate_shared);
3906 
3907     ExternalAddress heap_top((address)Universe::heap()->top_addr());
3908     ExternalAddress heap_end((address)Universe::heap()->end_addr());
3909 
3910     Label retry;
3911     __ bind(retry);
3912     __ movptr(rax, heap_top);
3913     __ lea(rbx, Address(rax, rdx, Address::times_1));
3914     __ cmpptr(rbx, heap_end);
3915     __ jcc(Assembler::above, slow_case);
3916 
3917     // Compare rax, with the top addr, and if still equal, store the new
3918     // top addr in rbx, at the address of the top addr pointer. Sets ZF if was
3919     // equal, and clears it otherwise. Use lock prefix for atomicity on MPs.
3920     //
3921     // rax,: object begin
3922     // rbx,: object end
3923     // rdx: instance size in bytes
3924     __ locked_cmpxchgptr(rbx, heap_top);
3925 
3926     // if someone beat us on the allocation, try again, otherwise continue
3927     __ jcc(Assembler::notEqual, retry);
3928 
3929     __ incr_allocated_bytes(thread, rdx, 0);
3930   }
3931 
3932   if (UseTLAB || Universe::heap()->supports_inline_contig_alloc()) {
3933     // The object is initialized before the header.  If the object size is
3934     // zero, go directly to the header initialization.
3935     __ bind(initialize_object);
3936     __ decrement(rdx, sizeof(oopDesc));
3937     __ jcc(Assembler::zero, initialize_header);
3938 
3939     // Initialize topmost object field, divide rdx by 8, check if odd and
3940     // test if zero.
3941     __ xorl(rcx, rcx);    // use zero reg to clear memory (shorter code)
3942     __ shrl(rdx, LogBytesPerLong); // divide by 2*oopSize and set carry flag if odd
3943 
3944     // rdx must have been multiple of 8
3945 #ifdef ASSERT
3946     // make sure rdx was multiple of 8
3947     Label L;
3948     // Ignore partial flag stall after shrl() since it is debug VM
3949     __ jccb(Assembler::carryClear, L);
3950     __ stop("object size is not multiple of 2 - adjust this code");
3951     __ bind(L);
3952     // rdx must be > 0, no extra check needed here
3953 #endif
3954 
3955     // initialize remaining object fields: rdx was a multiple of 8
3956     { Label loop;
3957     __ bind(loop);
3958     __ movptr(Address(rax, rdx, Address::times_8, sizeof(oopDesc) - 1*oopSize), rcx);
3959     NOT_LP64(__ movptr(Address(rax, rdx, Address::times_8, sizeof(oopDesc) - 2*oopSize), rcx));
3960     __ decrement(rdx);
3961     __ jcc(Assembler::notZero, loop);
3962     }
3963 
3964     // initialize object header only.
3965     __ bind(initialize_header);
3966     if (UseBiasedLocking) {
3967       __ pop(rcx);   // get saved klass back in the register.
3968       __ movptr(rbx, Address(rcx, Klass::prototype_header_offset()));
3969       __ movptr(Address(rax, oopDesc::mark_offset_in_bytes ()), rbx);
3970     } else {
3971       __ movptr(Address(rax, oopDesc::mark_offset_in_bytes ()),
3972                 (intptr_t)markOopDesc::prototype()); // header
3973       __ pop(rcx);   // get saved klass back in the register.
3974     }
3975 #ifdef _LP64
3976     __ xorl(rsi, rsi); // use zero reg to clear memory (shorter code)
3977     __ store_klass_gap(rax, rsi);  // zero klass gap for compressed oops
3978 #endif
3979     __ store_klass(rax, rcx);  // klass
3980 
3981     {
3982       SkipIfEqual skip_if(_masm, &DTraceAllocProbes, 0);
3983       // Trigger dtrace event for fastpath
3984       __ push(atos);
3985       __ call_VM_leaf(
3986            CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_object_alloc), rax);
3987       __ pop(atos);
3988     }
3989 
3990     __ jmp(done);
3991   }
3992 
3993   // slow case
3994   __ bind(slow_case);
3995   __ pop(rcx);   // restore stack pointer to what it was when we came in.
3996   __ bind(slow_case_no_pop);
3997 
3998   Register rarg1 = LP64_ONLY(c_rarg1) NOT_LP64(rax);
3999   Register rarg2 = LP64_ONLY(c_rarg2) NOT_LP64(rdx);
4000 
4001   __ get_constant_pool(rarg1);
4002   __ get_unsigned_2_byte_index_at_bcp(rarg2, 1);
4003   call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::_new), rarg1, rarg2);
4004    __ verify_oop(rax);
4005 
4006   // continue
4007   __ bind(done);
4008 }
4009 
4010 void TemplateTable::newarray() {
4011   transition(itos, atos);
4012   Register rarg1 = LP64_ONLY(c_rarg1) NOT_LP64(rdx);
4013   __ load_unsigned_byte(rarg1, at_bcp(1));
4014   call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::newarray),
4015           rarg1, rax);
4016 }
4017 
4018 void TemplateTable::anewarray() {
4019   transition(itos, atos);
4020 
4021   Register rarg1 = LP64_ONLY(c_rarg1) NOT_LP64(rcx);
4022   Register rarg2 = LP64_ONLY(c_rarg2) NOT_LP64(rdx);
4023 
4024   __ get_unsigned_2_byte_index_at_bcp(rarg2, 1);
4025   __ get_constant_pool(rarg1);
4026   call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::anewarray),
4027           rarg1, rarg2, rax);
4028 }
4029 
4030 void TemplateTable::arraylength() {
4031   transition(atos, itos);
4032   __ null_check(rax, arrayOopDesc::length_offset_in_bytes());
4033   __ movl(rax, Address(rax, arrayOopDesc::length_offset_in_bytes()));
4034 }
4035 
4036 void TemplateTable::checkcast() {
4037   transition(atos, atos);
4038   Label done, is_null, ok_is_subtype, quicked, resolved;
4039   __ testptr(rax, rax); // object is in rax
4040   __ jcc(Assembler::zero, is_null);
4041 
4042   // Get cpool & tags index
4043   __ get_cpool_and_tags(rcx, rdx); // rcx=cpool, rdx=tags array
4044   __ get_unsigned_2_byte_index_at_bcp(rbx, 1); // rbx=index
4045   // See if bytecode has already been quicked
4046   __ cmpb(Address(rdx, rbx,
4047                   Address::times_1,
4048                   Array<u1>::base_offset_in_bytes()),
4049           JVM_CONSTANT_Class);
4050   __ jcc(Assembler::equal, quicked);
4051   __ push(atos); // save receiver for result, and for GC
4052   call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::quicken_io_cc));
4053 
4054   // vm_result_2 has metadata result
4055 #ifndef _LP64
4056   // borrow rdi from locals
4057   __ get_thread(rdi);
4058   __ get_vm_result_2(rax, rdi);
4059   __ restore_locals();
4060 #else
4061   __ get_vm_result_2(rax, r15_thread);
4062 #endif
4063 
4064   __ pop_ptr(rdx); // restore receiver
4065   __ jmpb(resolved);
4066 
4067   // Get superklass in rax and subklass in rbx
4068   __ bind(quicked);
4069   __ mov(rdx, rax); // Save object in rdx; rax needed for subtype check
4070   __ movptr(rax, Address(rcx, rbx,
4071                        Address::times_ptr, sizeof(ConstantPool)));
4072 
4073   __ bind(resolved);
4074   __ load_klass(rbx, rdx);
4075 
4076   // Generate subtype check.  Blows rcx, rdi.  Object in rdx.
4077   // Superklass in rax.  Subklass in rbx.
4078   __ gen_subtype_check(rbx, ok_is_subtype);
4079 
4080   // Come here on failure
4081   __ push_ptr(rdx);
4082   // object is at TOS
4083   __ jump(ExternalAddress(Interpreter::_throw_ClassCastException_entry));
4084 
4085   // Come here on success
4086   __ bind(ok_is_subtype);
4087   __ mov(rax, rdx); // Restore object in rdx
4088 
4089   // Collect counts on whether this check-cast sees NULLs a lot or not.
4090   if (ProfileInterpreter) {
4091     __ jmp(done);
4092     __ bind(is_null);
4093     __ profile_null_seen(rcx);
4094   } else {
4095     __ bind(is_null);   // same as 'done'
4096   }
4097   __ bind(done);
4098 }
4099 
4100 void TemplateTable::instanceof() {
4101   transition(atos, itos);
4102   Label done, is_null, ok_is_subtype, quicked, resolved;
4103   __ testptr(rax, rax);
4104   __ jcc(Assembler::zero, is_null);
4105 
4106   // Get cpool & tags index
4107   __ get_cpool_and_tags(rcx, rdx); // rcx=cpool, rdx=tags array
4108   __ get_unsigned_2_byte_index_at_bcp(rbx, 1); // rbx=index
4109   // See if bytecode has already been quicked
4110   __ cmpb(Address(rdx, rbx,
4111                   Address::times_1,
4112                   Array<u1>::base_offset_in_bytes()),
4113           JVM_CONSTANT_Class);
4114   __ jcc(Assembler::equal, quicked);
4115 
4116   __ push(atos); // save receiver for result, and for GC
4117   call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::quicken_io_cc));
4118   // vm_result_2 has metadata result
4119 
4120 #ifndef _LP64
4121   // borrow rdi from locals
4122   __ get_thread(rdi);
4123   __ get_vm_result_2(rax, rdi);
4124   __ restore_locals();
4125 #else
4126   __ get_vm_result_2(rax, r15_thread);
4127 #endif
4128 
4129   __ pop_ptr(rdx); // restore receiver
4130   __ verify_oop(rdx);
4131   __ load_klass(rdx, rdx);
4132   __ jmpb(resolved);
4133 
4134   // Get superklass in rax and subklass in rdx
4135   __ bind(quicked);
4136   __ load_klass(rdx, rax);
4137   __ movptr(rax, Address(rcx, rbx,
4138                          Address::times_ptr, sizeof(ConstantPool)));
4139 
4140   __ bind(resolved);
4141 
4142   // Generate subtype check.  Blows rcx, rdi
4143   // Superklass in rax.  Subklass in rdx.
4144   __ gen_subtype_check(rdx, ok_is_subtype);
4145 
4146   // Come here on failure
4147   __ xorl(rax, rax);
4148   __ jmpb(done);
4149   // Come here on success
4150   __ bind(ok_is_subtype);
4151   __ movl(rax, 1);
4152 
4153   // Collect counts on whether this test sees NULLs a lot or not.
4154   if (ProfileInterpreter) {
4155     __ jmp(done);
4156     __ bind(is_null);
4157     __ profile_null_seen(rcx);
4158   } else {
4159     __ bind(is_null);   // same as 'done'
4160   }
4161   __ bind(done);
4162   // rax = 0: obj == NULL or  obj is not an instanceof the specified klass
4163   // rax = 1: obj != NULL and obj is     an instanceof the specified klass
4164 }
4165 
4166 
4167 //----------------------------------------------------------------------------------------------------
4168 // Breakpoints
4169 void TemplateTable::_breakpoint() {
4170   // Note: We get here even if we are single stepping..
4171   // jbug insists on setting breakpoints at every bytecode
4172   // even if we are in single step mode.
4173 
4174   transition(vtos, vtos);
4175 
4176   Register rarg = LP64_ONLY(c_rarg1) NOT_LP64(rcx);
4177 
4178   // get the unpatched byte code
4179   __ get_method(rarg);
4180   __ call_VM(noreg,
4181              CAST_FROM_FN_PTR(address,
4182                               InterpreterRuntime::get_original_bytecode_at),
4183              rarg, rbcp);
4184   __ mov(rbx, rax);  // why?
4185 
4186   // post the breakpoint event
4187   __ get_method(rarg);
4188   __ call_VM(noreg,
4189              CAST_FROM_FN_PTR(address, InterpreterRuntime::_breakpoint),
4190              rarg, rbcp);
4191 
4192   // complete the execution of original bytecode
4193   __ dispatch_only_normal(vtos);
4194 }
4195 
4196 //-----------------------------------------------------------------------------
4197 // Exceptions
4198 
4199 void TemplateTable::athrow() {
4200   transition(atos, vtos);
4201   __ null_check(rax);
4202   __ jump(ExternalAddress(Interpreter::throw_exception_entry()));
4203 }
4204 
4205 //-----------------------------------------------------------------------------
4206 // Synchronization
4207 //
4208 // Note: monitorenter & exit are symmetric routines; which is reflected
4209 //       in the assembly code structure as well
4210 //
4211 // Stack layout:
4212 //
4213 // [expressions  ] <--- rsp               = expression stack top
4214 // ..
4215 // [expressions  ]
4216 // [monitor entry] <--- monitor block top = expression stack bot
4217 // ..
4218 // [monitor entry]
4219 // [frame data   ] <--- monitor block bot
4220 // ...
4221 // [saved rbp    ] <--- rbp
4222 void TemplateTable::monitorenter() {
4223   transition(atos, vtos);
4224 
4225   // check for NULL object
4226   __ null_check(rax);
4227 
4228   const Address monitor_block_top(
4229         rbp, frame::interpreter_frame_monitor_block_top_offset * wordSize);
4230   const Address monitor_block_bot(
4231         rbp, frame::interpreter_frame_initial_sp_offset * wordSize);
4232   const int entry_size = frame::interpreter_frame_monitor_size() * wordSize;
4233 
4234   Label allocated;
4235 
4236   Register rtop = LP64_ONLY(c_rarg3) NOT_LP64(rcx);
4237   Register rbot = LP64_ONLY(c_rarg2) NOT_LP64(rbx);
4238   Register rmon = LP64_ONLY(c_rarg1) NOT_LP64(rdx);
4239 
4240   // initialize entry pointer
4241   __ xorl(rmon, rmon); // points to free slot or NULL
4242 
4243   // find a free slot in the monitor block (result in rmon)
4244   {
4245     Label entry, loop, exit;
4246     __ movptr(rtop, monitor_block_top); // points to current entry,
4247                                         // starting with top-most entry
4248     __ lea(rbot, monitor_block_bot);    // points to word before bottom
4249                                         // of monitor block
4250     __ jmpb(entry);
4251 
4252     __ bind(loop);
4253     // check if current entry is used
4254     __ cmpptr(Address(rtop, BasicObjectLock::obj_offset_in_bytes()), (int32_t) NULL_WORD);
4255     // if not used then remember entry in rmon
4256     __ cmovptr(Assembler::equal, rmon, rtop);   // cmov => cmovptr
4257     // check if current entry is for same object
4258     __ cmpptr(rax, Address(rtop, BasicObjectLock::obj_offset_in_bytes()));
4259     // if same object then stop searching
4260     __ jccb(Assembler::equal, exit);
4261     // otherwise advance to next entry
4262     __ addptr(rtop, entry_size);
4263     __ bind(entry);
4264     // check if bottom reached
4265     __ cmpptr(rtop, rbot);
4266     // if not at bottom then check this entry
4267     __ jcc(Assembler::notEqual, loop);
4268     __ bind(exit);
4269   }
4270 
4271   __ testptr(rmon, rmon); // check if a slot has been found
4272   __ jcc(Assembler::notZero, allocated); // if found, continue with that one
4273 
4274   // allocate one if there's no free slot
4275   {
4276     Label entry, loop;
4277     // 1. compute new pointers          // rsp: old expression stack top
4278     __ movptr(rmon, monitor_block_bot); // rmon: old expression stack bottom
4279     __ subptr(rsp, entry_size);         // move expression stack top
4280     __ subptr(rmon, entry_size);        // move expression stack bottom
4281     __ mov(rtop, rsp);                  // set start value for copy loop
4282     __ movptr(monitor_block_bot, rmon); // set new monitor block bottom
4283     __ jmp(entry);
4284     // 2. move expression stack contents
4285     __ bind(loop);
4286     __ movptr(rbot, Address(rtop, entry_size)); // load expression stack
4287                                                 // word from old location
4288     __ movptr(Address(rtop, 0), rbot);          // and store it at new location
4289     __ addptr(rtop, wordSize);                  // advance to next word
4290     __ bind(entry);
4291     __ cmpptr(rtop, rmon);                      // check if bottom reached
4292     __ jcc(Assembler::notEqual, loop);          // if not at bottom then
4293                                                 // copy next word
4294   }
4295 
4296   // call run-time routine
4297   // rmon: points to monitor entry
4298   __ bind(allocated);
4299 
4300   // Increment bcp to point to the next bytecode, so exception
4301   // handling for async. exceptions work correctly.
4302   // The object has already been poped from the stack, so the
4303   // expression stack looks correct.
4304   __ increment(rbcp);
4305 
4306   // store object
4307   __ movptr(Address(rmon, BasicObjectLock::obj_offset_in_bytes()), rax);
4308   __ lock_object(rmon);
4309 
4310   // check to make sure this monitor doesn't cause stack overflow after locking
4311   __ save_bcp();  // in case of exception
4312   __ generate_stack_overflow_check(0);
4313 
4314   // The bcp has already been incremented. Just need to dispatch to
4315   // next instruction.
4316   __ dispatch_next(vtos);
4317 }
4318 
4319 void TemplateTable::monitorexit() {
4320   transition(atos, vtos);
4321 
4322   // check for NULL object
4323   __ null_check(rax);
4324 
4325   const Address monitor_block_top(
4326         rbp, frame::interpreter_frame_monitor_block_top_offset * wordSize);
4327   const Address monitor_block_bot(
4328         rbp, frame::interpreter_frame_initial_sp_offset * wordSize);
4329   const int entry_size = frame::interpreter_frame_monitor_size() * wordSize;
4330 
4331   Register rtop = LP64_ONLY(c_rarg1) NOT_LP64(rdx);
4332   Register rbot = LP64_ONLY(c_rarg2) NOT_LP64(rbx);
4333 
4334   Label found;
4335 
4336   // find matching slot
4337   {
4338     Label entry, loop;
4339     __ movptr(rtop, monitor_block_top); // points to current entry,
4340                                         // starting with top-most entry
4341     __ lea(rbot, monitor_block_bot);    // points to word before bottom
4342                                         // of monitor block
4343     __ jmpb(entry);
4344 
4345     __ bind(loop);
4346     // check if current entry is for same object
4347     __ cmpptr(rax, Address(rtop, BasicObjectLock::obj_offset_in_bytes()));
4348     // if same object then stop searching
4349     __ jcc(Assembler::equal, found);
4350     // otherwise advance to next entry
4351     __ addptr(rtop, entry_size);
4352     __ bind(entry);
4353     // check if bottom reached
4354     __ cmpptr(rtop, rbot);
4355     // if not at bottom then check this entry
4356     __ jcc(Assembler::notEqual, loop);
4357   }
4358 
4359   // error handling. Unlocking was not block-structured
4360   __ call_VM(noreg, CAST_FROM_FN_PTR(address,
4361                    InterpreterRuntime::throw_illegal_monitor_state_exception));
4362   __ should_not_reach_here();
4363 
4364   // call run-time routine
4365   __ bind(found);
4366   __ push_ptr(rax); // make sure object is on stack (contract with oopMaps)
4367   __ unlock_object(rtop);
4368   __ pop_ptr(rax); // discard object
4369 }
4370 
4371 // Wide instructions
4372 void TemplateTable::wide() {
4373   transition(vtos, vtos);
4374   __ load_unsigned_byte(rbx, at_bcp(1));
4375   ExternalAddress wtable((address)Interpreter::_wentry_point);
4376   __ jump(ArrayAddress(wtable, Address(noreg, rbx, Address::times_ptr)));
4377   // Note: the rbcp increment step is part of the individual wide bytecode implementations
4378 }
4379 
4380 // Multi arrays
4381 void TemplateTable::multianewarray() {
4382   transition(vtos, atos);
4383 
4384   Register rarg = LP64_ONLY(c_rarg1) NOT_LP64(rax);
4385   __ load_unsigned_byte(rax, at_bcp(3)); // get number of dimensions
4386   // last dim is on top of stack; we want address of first one:
4387   // first_addr = last_addr + (ndims - 1) * stackElementSize - 1*wordsize
4388   // the latter wordSize to point to the beginning of the array.
4389   __ lea(rarg, Address(rsp, rax, Interpreter::stackElementScale(), -wordSize));
4390   call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::multianewarray), rarg);
4391   __ load_unsigned_byte(rbx, at_bcp(3));
4392   __ lea(rsp, Address(rsp, rbx, Interpreter::stackElementScale()));  // get rid of counts
4393 }