1 /*
   2  * Copyright (c) 2000, 2016, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/symbolTable.hpp"
  27 #include "classfile/systemDictionary.hpp"
  28 #include "classfile/vmSymbols.hpp"
  29 #include "code/codeCache.hpp"
  30 #include "code/icBuffer.hpp"
  31 #include "gc/shared/collectedHeap.inline.hpp"
  32 #include "gc/shared/collectorCounters.hpp"
  33 #include "gc/shared/gcId.hpp"
  34 #include "gc/shared/gcLocker.inline.hpp"
  35 #include "gc/shared/gcTrace.hpp"
  36 #include "gc/shared/gcTraceTime.inline.hpp"
  37 #include "gc/shared/genCollectedHeap.hpp"
  38 #include "gc/shared/genOopClosures.inline.hpp"
  39 #include "gc/shared/generationSpec.hpp"
  40 #include "gc/shared/space.hpp"
  41 #include "gc/shared/strongRootsScope.hpp"
  42 #include "gc/shared/vmGCOperations.hpp"
  43 #include "gc/shared/workgroup.hpp"
  44 #include "memory/filemap.hpp"
  45 #include "memory/resourceArea.hpp"
  46 #include "oops/oop.inline.hpp"
  47 #include "runtime/biasedLocking.hpp"
  48 #include "runtime/fprofiler.hpp"
  49 #include "runtime/handles.hpp"
  50 #include "runtime/handles.inline.hpp"
  51 #include "runtime/java.hpp"
  52 #include "runtime/vmThread.hpp"
  53 #include "services/management.hpp"
  54 #include "services/memoryService.hpp"
  55 #include "utilities/macros.hpp"
  56 #include "utilities/stack.inline.hpp"
  57 #include "utilities/vmError.hpp"
  58 
  59 NOT_PRODUCT(size_t GenCollectedHeap::_skip_header_HeapWords = 0;)
  60 
  61 // The set of potentially parallel tasks in root scanning.
  62 enum GCH_strong_roots_tasks {
  63   GCH_PS_Universe_oops_do,
  64   GCH_PS_JNIHandles_oops_do,
  65   GCH_PS_ObjectSynchronizer_oops_do,
  66   GCH_PS_FlatProfiler_oops_do,
  67   GCH_PS_Management_oops_do,
  68   GCH_PS_SystemDictionary_oops_do,
  69   GCH_PS_ClassLoaderDataGraph_oops_do,
  70   GCH_PS_jvmti_oops_do,
  71   GCH_PS_CodeCache_oops_do,
  72   GCH_PS_younger_gens,
  73   // Leave this one last.
  74   GCH_PS_NumElements
  75 };
  76 
  77 GenCollectedHeap::GenCollectedHeap(GenCollectorPolicy *policy) :
  78   CollectedHeap(),
  79   _rem_set(NULL),
  80   _gen_policy(policy),
  81   _process_strong_tasks(new SubTasksDone(GCH_PS_NumElements)),
  82   _full_collections_completed(0)
  83 {
  84   assert(policy != NULL, "Sanity check");
  85   if (UseConcMarkSweepGC) {
  86     _workers = new WorkGang("GC Thread", ParallelGCThreads,
  87                             /* are_GC_task_threads */true,
  88                             /* are_ConcurrentGC_threads */false);
  89     _workers->initialize_workers();
  90   } else {
  91     // Serial GC does not use workers.
  92     _workers = NULL;
  93   }
  94 }
  95 
  96 jint GenCollectedHeap::initialize() {
  97   CollectedHeap::pre_initialize();
  98 
  99   // While there are no constraints in the GC code that HeapWordSize
 100   // be any particular value, there are multiple other areas in the
 101   // system which believe this to be true (e.g. oop->object_size in some
 102   // cases incorrectly returns the size in wordSize units rather than
 103   // HeapWordSize).
 104   guarantee(HeapWordSize == wordSize, "HeapWordSize must equal wordSize");
 105 
 106   // Allocate space for the heap.
 107 
 108   char* heap_address;
 109   ReservedSpace heap_rs;
 110 
 111   size_t heap_alignment = collector_policy()->heap_alignment();
 112 
 113   heap_address = allocate(heap_alignment, &heap_rs);
 114 
 115   if (!heap_rs.is_reserved()) {
 116     vm_shutdown_during_initialization(
 117       "Could not reserve enough space for object heap");
 118     return JNI_ENOMEM;
 119   }
 120 
 121   initialize_reserved_region((HeapWord*)heap_rs.base(), (HeapWord*)(heap_rs.base() + heap_rs.size()));
 122 
 123   _rem_set = collector_policy()->create_rem_set(reserved_region());
 124   set_barrier_set(rem_set()->bs());
 125 
 126   ReservedSpace young_rs = heap_rs.first_part(gen_policy()->young_gen_spec()->max_size(), false, false);
 127   _young_gen = gen_policy()->young_gen_spec()->init(young_rs, rem_set());
 128   heap_rs = heap_rs.last_part(gen_policy()->young_gen_spec()->max_size());
 129 
 130   ReservedSpace old_rs = heap_rs.first_part(gen_policy()->old_gen_spec()->max_size(), false, false);
 131   _old_gen = gen_policy()->old_gen_spec()->init(old_rs, rem_set());
 132   clear_incremental_collection_failed();
 133 
 134   return JNI_OK;
 135 }
 136 
 137 char* GenCollectedHeap::allocate(size_t alignment,
 138                                  ReservedSpace* heap_rs){
 139   // Now figure out the total size.
 140   const size_t pageSize = UseLargePages ? os::large_page_size() : os::vm_page_size();
 141   assert(alignment % pageSize == 0, "Must be");
 142 
 143   GenerationSpec* young_spec = gen_policy()->young_gen_spec();
 144   GenerationSpec* old_spec = gen_policy()->old_gen_spec();
 145 
 146   // Check for overflow.
 147   size_t total_reserved = young_spec->max_size() + old_spec->max_size();
 148   if (total_reserved < young_spec->max_size()) {
 149     vm_exit_during_initialization("The size of the object heap + VM data exceeds "
 150                                   "the maximum representable size");
 151   }
 152   assert(total_reserved % alignment == 0,
 153          "Gen size; total_reserved=" SIZE_FORMAT ", alignment="
 154          SIZE_FORMAT, total_reserved, alignment);
 155 
 156   *heap_rs = Universe::reserve_heap(total_reserved, alignment);
 157 
 158   os::trace_page_sizes("Heap",
 159                        collector_policy()->min_heap_byte_size(),
 160                        total_reserved,
 161                        alignment,
 162                        heap_rs->base(),
 163                        heap_rs->size());
 164 
 165   return heap_rs->base();
 166 }
 167 
 168 void GenCollectedHeap::post_initialize() {
 169   ref_processing_init();
 170   assert((_young_gen->kind() == Generation::DefNew) ||
 171          (_young_gen->kind() == Generation::ParNew),
 172     "Wrong youngest generation type");
 173   DefNewGeneration* def_new_gen = (DefNewGeneration*)_young_gen;
 174 
 175   assert(_old_gen->kind() == Generation::ConcurrentMarkSweep ||
 176          _old_gen->kind() == Generation::MarkSweepCompact,
 177     "Wrong generation kind");
 178 
 179   _gen_policy->initialize_size_policy(def_new_gen->eden()->capacity(),
 180                                       _old_gen->capacity(),
 181                                       def_new_gen->from()->capacity());
 182   _gen_policy->initialize_gc_policy_counters();
 183 }
 184 
 185 void GenCollectedHeap::ref_processing_init() {
 186   _young_gen->ref_processor_init();
 187   _old_gen->ref_processor_init();
 188 }
 189 
 190 size_t GenCollectedHeap::capacity() const {
 191   return _young_gen->capacity() + _old_gen->capacity();
 192 }
 193 
 194 size_t GenCollectedHeap::used() const {
 195   return _young_gen->used() + _old_gen->used();
 196 }
 197 
 198 void GenCollectedHeap::save_used_regions() {
 199   _old_gen->save_used_region();
 200   _young_gen->save_used_region();
 201 }
 202 
 203 size_t GenCollectedHeap::max_capacity() const {
 204   return _young_gen->max_capacity() + _old_gen->max_capacity();
 205 }
 206 
 207 // Update the _full_collections_completed counter
 208 // at the end of a stop-world full GC.
 209 unsigned int GenCollectedHeap::update_full_collections_completed() {
 210   MonitorLockerEx ml(FullGCCount_lock, Mutex::_no_safepoint_check_flag);
 211   assert(_full_collections_completed <= _total_full_collections,
 212          "Can't complete more collections than were started");
 213   _full_collections_completed = _total_full_collections;
 214   ml.notify_all();
 215   return _full_collections_completed;
 216 }
 217 
 218 // Update the _full_collections_completed counter, as appropriate,
 219 // at the end of a concurrent GC cycle. Note the conditional update
 220 // below to allow this method to be called by a concurrent collector
 221 // without synchronizing in any manner with the VM thread (which
 222 // may already have initiated a STW full collection "concurrently").
 223 unsigned int GenCollectedHeap::update_full_collections_completed(unsigned int count) {
 224   MonitorLockerEx ml(FullGCCount_lock, Mutex::_no_safepoint_check_flag);
 225   assert((_full_collections_completed <= _total_full_collections) &&
 226          (count <= _total_full_collections),
 227          "Can't complete more collections than were started");
 228   if (count > _full_collections_completed) {
 229     _full_collections_completed = count;
 230     ml.notify_all();
 231   }
 232   return _full_collections_completed;
 233 }
 234 
 235 
 236 #ifndef PRODUCT
 237 // Override of memory state checking method in CollectedHeap:
 238 // Some collectors (CMS for example) can't have badHeapWordVal written
 239 // in the first two words of an object. (For instance , in the case of
 240 // CMS these words hold state used to synchronize between certain
 241 // (concurrent) GC steps and direct allocating mutators.)
 242 // The skip_header_HeapWords() method below, allows us to skip
 243 // over the requisite number of HeapWord's. Note that (for
 244 // generational collectors) this means that those many words are
 245 // skipped in each object, irrespective of the generation in which
 246 // that object lives. The resultant loss of precision seems to be
 247 // harmless and the pain of avoiding that imprecision appears somewhat
 248 // higher than we are prepared to pay for such rudimentary debugging
 249 // support.
 250 void GenCollectedHeap::check_for_non_bad_heap_word_value(HeapWord* addr,
 251                                                          size_t size) {
 252   if (CheckMemoryInitialization && ZapUnusedHeapArea) {
 253     // We are asked to check a size in HeapWords,
 254     // but the memory is mangled in juint words.
 255     juint* start = (juint*) (addr + skip_header_HeapWords());
 256     juint* end   = (juint*) (addr + size);
 257     for (juint* slot = start; slot < end; slot += 1) {
 258       assert(*slot == badHeapWordVal,
 259              "Found non badHeapWordValue in pre-allocation check");
 260     }
 261   }
 262 }
 263 #endif
 264 
 265 HeapWord* GenCollectedHeap::attempt_allocation(size_t size,
 266                                                bool is_tlab,
 267                                                bool first_only) {
 268   HeapWord* res = NULL;
 269 
 270   if (_young_gen->should_allocate(size, is_tlab)) {
 271     res = _young_gen->allocate(size, is_tlab);
 272     if (res != NULL || first_only) {
 273       return res;
 274     }
 275   }
 276 
 277   if (_old_gen->should_allocate(size, is_tlab)) {
 278     res = _old_gen->allocate(size, is_tlab);
 279   }
 280 
 281   return res;
 282 }
 283 
 284 HeapWord* GenCollectedHeap::mem_allocate(size_t size,
 285                                          bool* gc_overhead_limit_was_exceeded) {
 286   return gen_policy()->mem_allocate_work(size,
 287                                          false /* is_tlab */,
 288                                          gc_overhead_limit_was_exceeded);
 289 }
 290 
 291 bool GenCollectedHeap::must_clear_all_soft_refs() {
 292   return _gc_cause == GCCause::_metadata_GC_clear_soft_refs ||
 293          _gc_cause == GCCause::_wb_full_gc;
 294 }
 295 
 296 void GenCollectedHeap::collect_generation(Generation* gen, bool full, size_t size,
 297                                           bool is_tlab, bool run_verification, bool clear_soft_refs,
 298                                           bool restore_marks_for_biased_locking) {
 299   FormatBuffer<> title("Collect gen: %s", gen->short_name());
 300   GCTraceTime(Trace, gc, phases) t1(title);
 301   TraceCollectorStats tcs(gen->counters());
 302   TraceMemoryManagerStats tmms(gen->kind(),gc_cause());
 303 
 304   gen->stat_record()->invocations++;
 305   gen->stat_record()->accumulated_time.start();
 306 
 307   // Must be done anew before each collection because
 308   // a previous collection will do mangling and will
 309   // change top of some spaces.
 310   record_gen_tops_before_GC();
 311 
 312   log_trace(gc)("%s invoke=%d size=" SIZE_FORMAT, heap()->is_young_gen(gen) ? "Young" : "Old", gen->stat_record()->invocations, size * HeapWordSize);
 313 
 314   if (run_verification && VerifyBeforeGC) {
 315     HandleMark hm;  // Discard invalid handles created during verification
 316     Universe::verify("Before GC");
 317   }
 318   COMPILER2_PRESENT(DerivedPointerTable::clear());
 319 
 320   if (restore_marks_for_biased_locking) {
 321     // We perform this mark word preservation work lazily
 322     // because it's only at this point that we know whether we
 323     // absolutely have to do it; we want to avoid doing it for
 324     // scavenge-only collections where it's unnecessary
 325     BiasedLocking::preserve_marks();
 326   }
 327 
 328   // Do collection work
 329   {
 330     // Note on ref discovery: For what appear to be historical reasons,
 331     // GCH enables and disabled (by enqueing) refs discovery.
 332     // In the future this should be moved into the generation's
 333     // collect method so that ref discovery and enqueueing concerns
 334     // are local to a generation. The collect method could return
 335     // an appropriate indication in the case that notification on
 336     // the ref lock was needed. This will make the treatment of
 337     // weak refs more uniform (and indeed remove such concerns
 338     // from GCH). XXX
 339 
 340     HandleMark hm;  // Discard invalid handles created during gc
 341     save_marks();   // save marks for all gens
 342     // We want to discover references, but not process them yet.
 343     // This mode is disabled in process_discovered_references if the
 344     // generation does some collection work, or in
 345     // enqueue_discovered_references if the generation returns
 346     // without doing any work.
 347     ReferenceProcessor* rp = gen->ref_processor();
 348     // If the discovery of ("weak") refs in this generation is
 349     // atomic wrt other collectors in this configuration, we
 350     // are guaranteed to have empty discovered ref lists.
 351     if (rp->discovery_is_atomic()) {
 352       rp->enable_discovery();
 353       rp->setup_policy(clear_soft_refs);
 354     } else {
 355       // collect() below will enable discovery as appropriate
 356     }
 357     gen->collect(full, clear_soft_refs, size, is_tlab);
 358     if (!rp->enqueuing_is_done()) {
 359       rp->enqueue_discovered_references();
 360     } else {
 361       rp->set_enqueuing_is_done(false);
 362     }
 363     rp->verify_no_references_recorded();
 364   }
 365 
 366   COMPILER2_PRESENT(DerivedPointerTable::update_pointers());
 367 
 368   gen->stat_record()->accumulated_time.stop();
 369 
 370   update_gc_stats(gen, full);
 371 
 372   if (run_verification && VerifyAfterGC) {
 373     HandleMark hm;  // Discard invalid handles created during verification
 374     Universe::verify("After GC");
 375   }
 376 }
 377 
 378 void GenCollectedHeap::do_collection(bool           full,
 379                                      bool           clear_all_soft_refs,
 380                                      size_t         size,
 381                                      bool           is_tlab,
 382                                      GenerationType max_generation) {
 383   ResourceMark rm;
 384   DEBUG_ONLY(Thread* my_thread = Thread::current();)
 385 
 386   assert(SafepointSynchronize::is_at_safepoint(), "should be at safepoint");
 387   assert(my_thread->is_VM_thread() ||
 388          my_thread->is_ConcurrentGC_thread(),
 389          "incorrect thread type capability");
 390   assert(Heap_lock->is_locked(),
 391          "the requesting thread should have the Heap_lock");
 392   guarantee(!is_gc_active(), "collection is not reentrant");
 393 
 394   if (GCLocker::check_active_before_gc()) {
 395     return; // GC is disabled (e.g. JNI GetXXXCritical operation)
 396   }
 397 
 398   GCIdMarkAndRestore gc_id_mark;
 399 
 400   const bool do_clear_all_soft_refs = clear_all_soft_refs ||
 401                           collector_policy()->should_clear_all_soft_refs();
 402 
 403   ClearedAllSoftRefs casr(do_clear_all_soft_refs, collector_policy());
 404 
 405   const size_t metadata_prev_used = MetaspaceAux::used_bytes();
 406 
 407   print_heap_before_gc();
 408 
 409   {
 410     FlagSetting fl(_is_gc_active, true);
 411 
 412     bool complete = full && (max_generation == OldGen);
 413     bool old_collects_young = complete && !ScavengeBeforeFullGC;
 414     bool do_young_collection = !old_collects_young && _young_gen->should_collect(full, size, is_tlab);
 415 
 416     FormatBuffer<> gc_string("%s", "Pause ");
 417     if (do_young_collection) {
 418       gc_string.append("Young");
 419     } else {
 420       gc_string.append("Full");
 421     }
 422 
 423     GCTraceCPUTime tcpu;
 424     GCTraceTime(Info, gc) t(gc_string, NULL, gc_cause(), true);
 425 
 426     gc_prologue(complete);
 427     increment_total_collections(complete);
 428 
 429     size_t young_prev_used = _young_gen->used();
 430     size_t old_prev_used = _old_gen->used();
 431 
 432     bool run_verification = total_collections() >= VerifyGCStartAt;
 433 
 434     bool prepared_for_verification = false;
 435     bool collected_old = false;
 436 
 437     if (do_young_collection) {
 438       if (run_verification && VerifyGCLevel <= 0 && VerifyBeforeGC) {
 439         prepare_for_verify();
 440         prepared_for_verification = true;
 441       }
 442 
 443       collect_generation(_young_gen,
 444                          full,
 445                          size,
 446                          is_tlab,
 447                          run_verification && VerifyGCLevel <= 0,
 448                          do_clear_all_soft_refs,
 449                          false);
 450 
 451       if (size > 0 && (!is_tlab || _young_gen->supports_tlab_allocation()) &&
 452           size * HeapWordSize <= _young_gen->unsafe_max_alloc_nogc()) {
 453         // Allocation request was met by young GC.
 454         size = 0;
 455       }
 456     }
 457 
 458     bool must_restore_marks_for_biased_locking = false;
 459 
 460     if (max_generation == OldGen && _old_gen->should_collect(full, size, is_tlab)) {
 461       if (!complete) {
 462         // The full_collections increment was missed above.
 463         increment_total_full_collections();
 464       }
 465 
 466       if (!prepared_for_verification && run_verification &&
 467           VerifyGCLevel <= 1 && VerifyBeforeGC) {
 468         prepare_for_verify();
 469       }
 470 
 471       if (do_young_collection) {
 472         // We did a young GC. Need a new GC id for the old GC.
 473         GCIdMarkAndRestore gc_id_mark;
 474         GCTraceTime(Info, gc) t("Pause Full", NULL, gc_cause(), true);
 475         collect_generation(_old_gen, full, size, is_tlab, run_verification && VerifyGCLevel <= 1, do_clear_all_soft_refs, true);
 476       } else {
 477         // No young GC done. Use the same GC id as was set up earlier in this method.
 478         collect_generation(_old_gen, full, size, is_tlab, run_verification && VerifyGCLevel <= 1, do_clear_all_soft_refs, true);
 479       }
 480 
 481       must_restore_marks_for_biased_locking = true;
 482       collected_old = true;
 483     }
 484 
 485     // Update "complete" boolean wrt what actually transpired --
 486     // for instance, a promotion failure could have led to
 487     // a whole heap collection.
 488     complete = complete || collected_old;
 489 
 490     print_heap_change(young_prev_used, old_prev_used);
 491     MetaspaceAux::print_metaspace_change(metadata_prev_used);
 492 
 493     // Adjust generation sizes.
 494     if (collected_old) {
 495       _old_gen->compute_new_size();
 496     }
 497     _young_gen->compute_new_size();
 498 
 499     if (complete) {
 500       // Delete metaspaces for unloaded class loaders and clean up loader_data graph
 501       ClassLoaderDataGraph::purge();
 502       MetaspaceAux::verify_metrics();
 503       // Resize the metaspace capacity after full collections
 504       MetaspaceGC::compute_new_size();
 505       update_full_collections_completed();
 506     }
 507 
 508     // Track memory usage and detect low memory after GC finishes
 509     MemoryService::track_memory_usage();
 510 
 511     gc_epilogue(complete);
 512 
 513     if (must_restore_marks_for_biased_locking) {
 514       BiasedLocking::restore_marks();
 515     }
 516   }
 517 
 518   print_heap_after_gc();
 519 
 520 #ifdef TRACESPINNING
 521   ParallelTaskTerminator::print_termination_counts();
 522 #endif
 523 }
 524 
 525 HeapWord* GenCollectedHeap::satisfy_failed_allocation(size_t size, bool is_tlab) {
 526   return gen_policy()->satisfy_failed_allocation(size, is_tlab);
 527 }
 528 
 529 #ifdef ASSERT
 530 class AssertNonScavengableClosure: public OopClosure {
 531 public:
 532   virtual void do_oop(oop* p) {
 533     assert(!GenCollectedHeap::heap()->is_in_partial_collection(*p),
 534       "Referent should not be scavengable.");  }
 535   virtual void do_oop(narrowOop* p) { ShouldNotReachHere(); }
 536 };
 537 static AssertNonScavengableClosure assert_is_non_scavengable_closure;
 538 #endif
 539 
 540 void GenCollectedHeap::process_roots(StrongRootsScope* scope,
 541                                      ScanningOption so,
 542                                      OopClosure* strong_roots,
 543                                      OopClosure* weak_roots,
 544                                      CLDClosure* strong_cld_closure,
 545                                      CLDClosure* weak_cld_closure,
 546                                      CodeBlobToOopClosure* code_roots) {
 547   // General roots.
 548   assert(Threads::thread_claim_parity() != 0, "must have called prologue code");
 549   assert(code_roots != NULL, "code root closure should always be set");
 550   // _n_termination for _process_strong_tasks should be set up stream
 551   // in a method not running in a GC worker.  Otherwise the GC worker
 552   // could be trying to change the termination condition while the task
 553   // is executing in another GC worker.
 554 
 555   if (!_process_strong_tasks->is_task_claimed(GCH_PS_ClassLoaderDataGraph_oops_do)) {
 556     ClassLoaderDataGraph::roots_cld_do(strong_cld_closure, weak_cld_closure);
 557   }
 558 
 559   // Only process code roots from thread stacks if we aren't visiting the entire CodeCache anyway
 560   CodeBlobToOopClosure* roots_from_code_p = (so & SO_AllCodeCache) ? NULL : code_roots;
 561 
 562   bool is_par = scope->n_threads() > 1;
 563   Threads::possibly_parallel_oops_do(is_par, strong_roots, roots_from_code_p);
 564 
 565   if (!_process_strong_tasks->is_task_claimed(GCH_PS_Universe_oops_do)) {
 566     Universe::oops_do(strong_roots);
 567   }
 568   // Global (strong) JNI handles
 569   if (!_process_strong_tasks->is_task_claimed(GCH_PS_JNIHandles_oops_do)) {
 570     JNIHandles::oops_do(strong_roots);
 571   }
 572 
 573   if (!_process_strong_tasks->is_task_claimed(GCH_PS_ObjectSynchronizer_oops_do)) {
 574     ObjectSynchronizer::oops_do(strong_roots);
 575   }
 576   if (!_process_strong_tasks->is_task_claimed(GCH_PS_FlatProfiler_oops_do)) {
 577     FlatProfiler::oops_do(strong_roots);
 578   }
 579   if (!_process_strong_tasks->is_task_claimed(GCH_PS_Management_oops_do)) {
 580     Management::oops_do(strong_roots);
 581   }
 582   if (!_process_strong_tasks->is_task_claimed(GCH_PS_jvmti_oops_do)) {
 583     JvmtiExport::oops_do(strong_roots);
 584   }
 585 
 586   if (!_process_strong_tasks->is_task_claimed(GCH_PS_SystemDictionary_oops_do)) {
 587     SystemDictionary::roots_oops_do(strong_roots, weak_roots);
 588   }
 589 
 590   // All threads execute the following. A specific chunk of buckets
 591   // from the StringTable are the individual tasks.
 592   if (weak_roots != NULL) {
 593     if (is_par) {
 594       StringTable::possibly_parallel_oops_do(weak_roots);
 595     } else {
 596       StringTable::oops_do(weak_roots);
 597     }
 598   }
 599 
 600   if (!_process_strong_tasks->is_task_claimed(GCH_PS_CodeCache_oops_do)) {
 601     if (so & SO_ScavengeCodeCache) {
 602       assert(code_roots != NULL, "must supply closure for code cache");
 603 
 604       // We only visit parts of the CodeCache when scavenging.
 605       CodeCache::scavenge_root_nmethods_do(code_roots);
 606     }
 607     if (so & SO_AllCodeCache) {
 608       assert(code_roots != NULL, "must supply closure for code cache");
 609 
 610       // CMSCollector uses this to do intermediate-strength collections.
 611       // We scan the entire code cache, since CodeCache::do_unloading is not called.
 612       CodeCache::blobs_do(code_roots);
 613     }
 614     // Verify that the code cache contents are not subject to
 615     // movement by a scavenging collection.
 616     DEBUG_ONLY(CodeBlobToOopClosure assert_code_is_non_scavengable(&assert_is_non_scavengable_closure, !CodeBlobToOopClosure::FixRelocations));
 617     DEBUG_ONLY(CodeCache::asserted_non_scavengable_nmethods_do(&assert_code_is_non_scavengable));
 618   }
 619 }
 620 
 621 void GenCollectedHeap::gen_process_roots(StrongRootsScope* scope,
 622                                          GenerationType type,
 623                                          bool young_gen_as_roots,
 624                                          ScanningOption so,
 625                                          bool only_strong_roots,
 626                                          OopsInGenClosure* not_older_gens,
 627                                          OopsInGenClosure* older_gens,
 628                                          CLDClosure* cld_closure) {
 629   const bool is_adjust_phase = !only_strong_roots && !young_gen_as_roots;
 630 
 631   bool is_moving_collection = false;
 632   if (type == YoungGen || is_adjust_phase) {
 633     // young collections are always moving
 634     is_moving_collection = true;
 635   }
 636 
 637   MarkingCodeBlobClosure mark_code_closure(not_older_gens, is_moving_collection);
 638   OopsInGenClosure* weak_roots = only_strong_roots ? NULL : not_older_gens;
 639   CLDClosure* weak_cld_closure = only_strong_roots ? NULL : cld_closure;
 640 
 641   process_roots(scope, so,
 642                 not_older_gens, weak_roots,
 643                 cld_closure, weak_cld_closure,
 644                 &mark_code_closure);
 645 
 646   if (young_gen_as_roots) {
 647     if (!_process_strong_tasks->is_task_claimed(GCH_PS_younger_gens)) {
 648       if (type == OldGen) {
 649         not_older_gens->set_generation(_young_gen);
 650         _young_gen->oop_iterate(not_older_gens);
 651       }
 652       not_older_gens->reset_generation();
 653     }
 654   }
 655   // When collection is parallel, all threads get to cooperate to do
 656   // old generation scanning.
 657   if (type == YoungGen) {
 658     older_gens->set_generation(_old_gen);
 659     rem_set()->younger_refs_iterate(_old_gen, older_gens, scope->n_threads());
 660     older_gens->reset_generation();
 661   }
 662 
 663   _process_strong_tasks->all_tasks_completed(scope->n_threads());
 664 }
 665 
 666 void GenCollectedHeap::gen_process_weak_roots(OopClosure* root_closure) {
 667   JNIHandles::weak_oops_do(root_closure);
 668   _young_gen->ref_processor()->weak_oops_do(root_closure);
 669   _old_gen->ref_processor()->weak_oops_do(root_closure);
 670 }
 671 
 672 #define GCH_SINCE_SAVE_MARKS_ITERATE_DEFN(OopClosureType, nv_suffix)    \
 673 void GenCollectedHeap::                                                 \
 674 oop_since_save_marks_iterate(GenerationType gen,                        \
 675                              OopClosureType* cur,                       \
 676                              OopClosureType* older) {                   \
 677   if (gen == YoungGen) {                              \
 678     _young_gen->oop_since_save_marks_iterate##nv_suffix(cur);           \
 679     _old_gen->oop_since_save_marks_iterate##nv_suffix(older);           \
 680   } else {                                                              \
 681     _old_gen->oop_since_save_marks_iterate##nv_suffix(cur);             \
 682   }                                                                     \
 683 }
 684 
 685 ALL_SINCE_SAVE_MARKS_CLOSURES(GCH_SINCE_SAVE_MARKS_ITERATE_DEFN)
 686 
 687 #undef GCH_SINCE_SAVE_MARKS_ITERATE_DEFN
 688 
 689 bool GenCollectedHeap::no_allocs_since_save_marks() {
 690   return _young_gen->no_allocs_since_save_marks() &&
 691          _old_gen->no_allocs_since_save_marks();
 692 }
 693 
 694 bool GenCollectedHeap::supports_inline_contig_alloc() const {
 695   return _young_gen->supports_inline_contig_alloc();
 696 }
 697 
 698 HeapWord** GenCollectedHeap::top_addr() const {
 699   return _young_gen->top_addr();
 700 }
 701 
 702 HeapWord** GenCollectedHeap::end_addr() const {
 703   return _young_gen->end_addr();
 704 }
 705 
 706 // public collection interfaces
 707 
 708 void GenCollectedHeap::collect(GCCause::Cause cause) {
 709   if (cause == GCCause::_wb_young_gc) {
 710     // Young collection for the WhiteBox API.
 711     collect(cause, YoungGen);
 712   } else {
 713 #ifdef ASSERT
 714   if (cause == GCCause::_scavenge_alot) {
 715     // Young collection only.
 716     collect(cause, YoungGen);
 717   } else {
 718     // Stop-the-world full collection.
 719     collect(cause, OldGen);
 720   }
 721 #else
 722     // Stop-the-world full collection.
 723     collect(cause, OldGen);
 724 #endif
 725   }
 726 }
 727 
 728 void GenCollectedHeap::collect(GCCause::Cause cause, GenerationType max_generation) {
 729   // The caller doesn't have the Heap_lock
 730   assert(!Heap_lock->owned_by_self(), "this thread should not own the Heap_lock");
 731   MutexLocker ml(Heap_lock);
 732   collect_locked(cause, max_generation);
 733 }
 734 
 735 void GenCollectedHeap::collect_locked(GCCause::Cause cause) {
 736   // The caller has the Heap_lock
 737   assert(Heap_lock->owned_by_self(), "this thread should own the Heap_lock");
 738   collect_locked(cause, OldGen);
 739 }
 740 
 741 // this is the private collection interface
 742 // The Heap_lock is expected to be held on entry.
 743 
 744 void GenCollectedHeap::collect_locked(GCCause::Cause cause, GenerationType max_generation) {
 745   // Read the GC count while holding the Heap_lock
 746   unsigned int gc_count_before      = total_collections();
 747   unsigned int full_gc_count_before = total_full_collections();
 748   {
 749     MutexUnlocker mu(Heap_lock);  // give up heap lock, execute gets it back
 750     VM_GenCollectFull op(gc_count_before, full_gc_count_before,
 751                          cause, max_generation);
 752     VMThread::execute(&op);
 753   }
 754 }
 755 
 756 void GenCollectedHeap::do_full_collection(bool clear_all_soft_refs) {
 757    do_full_collection(clear_all_soft_refs, OldGen);
 758 }
 759 
 760 void GenCollectedHeap::do_full_collection(bool clear_all_soft_refs,
 761                                           GenerationType last_generation) {
 762   GenerationType local_last_generation;
 763   if (!incremental_collection_will_fail(false /* don't consult_young */) &&
 764       gc_cause() == GCCause::_gc_locker) {
 765     local_last_generation = YoungGen;
 766   } else {
 767     local_last_generation = last_generation;
 768   }
 769 
 770   do_collection(true,                   // full
 771                 clear_all_soft_refs,    // clear_all_soft_refs
 772                 0,                      // size
 773                 false,                  // is_tlab
 774                 local_last_generation); // last_generation
 775   // Hack XXX FIX ME !!!
 776   // A scavenge may not have been attempted, or may have
 777   // been attempted and failed, because the old gen was too full
 778   if (local_last_generation == YoungGen && gc_cause() == GCCause::_gc_locker &&
 779       incremental_collection_will_fail(false /* don't consult_young */)) {
 780     log_debug(gc, jni)("GC locker: Trying a full collection because scavenge failed");
 781     // This time allow the old gen to be collected as well
 782     do_collection(true,                // full
 783                   clear_all_soft_refs, // clear_all_soft_refs
 784                   0,                   // size
 785                   false,               // is_tlab
 786                   OldGen);             // last_generation
 787   }
 788 }
 789 
 790 bool GenCollectedHeap::is_in_young(oop p) {
 791   bool result = ((HeapWord*)p) < _old_gen->reserved().start();
 792   assert(result == _young_gen->is_in_reserved(p),
 793          "incorrect test - result=%d, p=" INTPTR_FORMAT, result, p2i((void*)p));
 794   return result;
 795 }
 796 
 797 // Returns "TRUE" iff "p" points into the committed areas of the heap.
 798 bool GenCollectedHeap::is_in(const void* p) const {
 799   return _young_gen->is_in(p) || _old_gen->is_in(p);
 800 }
 801 
 802 #ifdef ASSERT
 803 // Don't implement this by using is_in_young().  This method is used
 804 // in some cases to check that is_in_young() is correct.
 805 bool GenCollectedHeap::is_in_partial_collection(const void* p) {
 806   assert(is_in_reserved(p) || p == NULL,
 807     "Does not work if address is non-null and outside of the heap");
 808   return p < _young_gen->reserved().end() && p != NULL;
 809 }
 810 #endif
 811 
 812 void GenCollectedHeap::oop_iterate_no_header(OopClosure* cl) {
 813   NoHeaderExtendedOopClosure no_header_cl(cl);
 814   oop_iterate(&no_header_cl);
 815 }
 816 
 817 void GenCollectedHeap::oop_iterate(ExtendedOopClosure* cl) {
 818   _young_gen->oop_iterate(cl);
 819   _old_gen->oop_iterate(cl);
 820 }
 821 
 822 void GenCollectedHeap::object_iterate(ObjectClosure* cl) {
 823   _young_gen->object_iterate(cl);
 824   _old_gen->object_iterate(cl);
 825 }
 826 
 827 void GenCollectedHeap::safe_object_iterate(ObjectClosure* cl) {
 828   _young_gen->safe_object_iterate(cl);
 829   _old_gen->safe_object_iterate(cl);
 830 }
 831 
 832 Space* GenCollectedHeap::space_containing(const void* addr) const {
 833   Space* res = _young_gen->space_containing(addr);
 834   if (res != NULL) {
 835     return res;
 836   }
 837   res = _old_gen->space_containing(addr);
 838   assert(res != NULL, "Could not find containing space");
 839   return res;
 840 }
 841 
 842 HeapWord* GenCollectedHeap::block_start(const void* addr) const {
 843   assert(is_in_reserved(addr), "block_start of address outside of heap");
 844   if (_young_gen->is_in_reserved(addr)) {
 845     assert(_young_gen->is_in(addr), "addr should be in allocated part of generation");
 846     return _young_gen->block_start(addr);
 847   }
 848 
 849   assert(_old_gen->is_in_reserved(addr), "Some generation should contain the address");
 850   assert(_old_gen->is_in(addr), "addr should be in allocated part of generation");
 851   return _old_gen->block_start(addr);
 852 }
 853 
 854 size_t GenCollectedHeap::block_size(const HeapWord* addr) const {
 855   assert(is_in_reserved(addr), "block_size of address outside of heap");
 856   if (_young_gen->is_in_reserved(addr)) {
 857     assert(_young_gen->is_in(addr), "addr should be in allocated part of generation");
 858     return _young_gen->block_size(addr);
 859   }
 860 
 861   assert(_old_gen->is_in_reserved(addr), "Some generation should contain the address");
 862   assert(_old_gen->is_in(addr), "addr should be in allocated part of generation");
 863   return _old_gen->block_size(addr);
 864 }
 865 
 866 bool GenCollectedHeap::block_is_obj(const HeapWord* addr) const {
 867   assert(is_in_reserved(addr), "block_is_obj of address outside of heap");
 868   assert(block_start(addr) == addr, "addr must be a block start");
 869   if (_young_gen->is_in_reserved(addr)) {
 870     return _young_gen->block_is_obj(addr);
 871   }
 872 
 873   assert(_old_gen->is_in_reserved(addr), "Some generation should contain the address");
 874   return _old_gen->block_is_obj(addr);
 875 }
 876 
 877 bool GenCollectedHeap::supports_tlab_allocation() const {
 878   assert(!_old_gen->supports_tlab_allocation(), "Old gen supports TLAB allocation?!");
 879   return _young_gen->supports_tlab_allocation();
 880 }
 881 
 882 size_t GenCollectedHeap::tlab_capacity(Thread* thr) const {
 883   assert(!_old_gen->supports_tlab_allocation(), "Old gen supports TLAB allocation?!");
 884   if (_young_gen->supports_tlab_allocation()) {
 885     return _young_gen->tlab_capacity();
 886   }
 887   return 0;
 888 }
 889 
 890 size_t GenCollectedHeap::tlab_used(Thread* thr) const {
 891   assert(!_old_gen->supports_tlab_allocation(), "Old gen supports TLAB allocation?!");
 892   if (_young_gen->supports_tlab_allocation()) {
 893     return _young_gen->tlab_used();
 894   }
 895   return 0;
 896 }
 897 
 898 size_t GenCollectedHeap::unsafe_max_tlab_alloc(Thread* thr) const {
 899   assert(!_old_gen->supports_tlab_allocation(), "Old gen supports TLAB allocation?!");
 900   if (_young_gen->supports_tlab_allocation()) {
 901     return _young_gen->unsafe_max_tlab_alloc();
 902   }
 903   return 0;
 904 }
 905 
 906 HeapWord* GenCollectedHeap::allocate_new_tlab(size_t size) {
 907   bool gc_overhead_limit_was_exceeded;
 908   return gen_policy()->mem_allocate_work(size /* size */,
 909                                          true /* is_tlab */,
 910                                          &gc_overhead_limit_was_exceeded);
 911 }
 912 
 913 // Requires "*prev_ptr" to be non-NULL.  Deletes and a block of minimal size
 914 // from the list headed by "*prev_ptr".
 915 static ScratchBlock *removeSmallestScratch(ScratchBlock **prev_ptr) {
 916   bool first = true;
 917   size_t min_size = 0;   // "first" makes this conceptually infinite.
 918   ScratchBlock **smallest_ptr, *smallest;
 919   ScratchBlock  *cur = *prev_ptr;
 920   while (cur) {
 921     assert(*prev_ptr == cur, "just checking");
 922     if (first || cur->num_words < min_size) {
 923       smallest_ptr = prev_ptr;
 924       smallest     = cur;
 925       min_size     = smallest->num_words;
 926       first        = false;
 927     }
 928     prev_ptr = &cur->next;
 929     cur     =  cur->next;
 930   }
 931   smallest      = *smallest_ptr;
 932   *smallest_ptr = smallest->next;
 933   return smallest;
 934 }
 935 
 936 // Sort the scratch block list headed by res into decreasing size order,
 937 // and set "res" to the result.
 938 static void sort_scratch_list(ScratchBlock*& list) {
 939   ScratchBlock* sorted = NULL;
 940   ScratchBlock* unsorted = list;
 941   while (unsorted) {
 942     ScratchBlock *smallest = removeSmallestScratch(&unsorted);
 943     smallest->next  = sorted;
 944     sorted          = smallest;
 945   }
 946   list = sorted;
 947 }
 948 
 949 ScratchBlock* GenCollectedHeap::gather_scratch(Generation* requestor,
 950                                                size_t max_alloc_words) {
 951   ScratchBlock* res = NULL;
 952   _young_gen->contribute_scratch(res, requestor, max_alloc_words);
 953   _old_gen->contribute_scratch(res, requestor, max_alloc_words);
 954   sort_scratch_list(res);
 955   return res;
 956 }
 957 
 958 void GenCollectedHeap::release_scratch() {
 959   _young_gen->reset_scratch();
 960   _old_gen->reset_scratch();
 961 }
 962 
 963 class GenPrepareForVerifyClosure: public GenCollectedHeap::GenClosure {
 964   void do_generation(Generation* gen) {
 965     gen->prepare_for_verify();
 966   }
 967 };
 968 
 969 void GenCollectedHeap::prepare_for_verify() {
 970   ensure_parsability(false);        // no need to retire TLABs
 971   GenPrepareForVerifyClosure blk;
 972   generation_iterate(&blk, false);
 973 }
 974 
 975 void GenCollectedHeap::generation_iterate(GenClosure* cl,
 976                                           bool old_to_young) {
 977   if (old_to_young) {
 978     cl->do_generation(_old_gen);
 979     cl->do_generation(_young_gen);
 980   } else {
 981     cl->do_generation(_young_gen);
 982     cl->do_generation(_old_gen);
 983   }
 984 }
 985 
 986 bool GenCollectedHeap::is_maximal_no_gc() const {
 987   return _young_gen->is_maximal_no_gc() && _old_gen->is_maximal_no_gc();
 988 }
 989 
 990 void GenCollectedHeap::save_marks() {
 991   _young_gen->save_marks();
 992   _old_gen->save_marks();
 993 }
 994 
 995 GenCollectedHeap* GenCollectedHeap::heap() {
 996   CollectedHeap* heap = GC::gc()->heap();
 997   assert(heap != NULL, "Uninitialized access to GenCollectedHeap::heap()");
 998   assert(heap->kind() == CollectedHeap::GenCollectedHeap, "Not a GenCollectedHeap");
 999   return (GenCollectedHeap*)heap;
1000 }
1001 
1002 void GenCollectedHeap::prepare_for_compaction() {
1003   // Start by compacting into same gen.
1004   CompactPoint cp(_old_gen);
1005   _old_gen->prepare_for_compaction(&cp);
1006   _young_gen->prepare_for_compaction(&cp);
1007 }
1008 
1009 void GenCollectedHeap::verify(VerifyOption option /* ignored */) {
1010   log_debug(gc, verify)("%s", _old_gen->name());
1011   _old_gen->verify();
1012 
1013   log_debug(gc, verify)("%s", _old_gen->name());
1014   _young_gen->verify();
1015 
1016   log_debug(gc, verify)("RemSet");
1017   rem_set()->verify();
1018 }
1019 
1020 void GenCollectedHeap::print_on(outputStream* st) const {
1021   _young_gen->print_on(st);
1022   _old_gen->print_on(st);
1023   MetaspaceAux::print_on(st);
1024 }
1025 
1026 void GenCollectedHeap::gc_threads_do(ThreadClosure* tc) const {
1027   if (workers() != NULL) {
1028     workers()->threads_do(tc);
1029   }
1030 }
1031 
1032 void GenCollectedHeap::print_gc_threads_on(outputStream* st) const {
1033 }
1034 
1035 void GenCollectedHeap::print_on_error(outputStream* st) const {
1036   this->CollectedHeap::print_on_error(st);
1037 }
1038 
1039 void GenCollectedHeap::print_tracing_info() const {
1040   if (TraceYoungGenTime) {
1041     _young_gen->print_summary_info();
1042   }
1043   if (TraceOldGenTime) {
1044     _old_gen->print_summary_info();
1045   }
1046 }
1047 
1048 void GenCollectedHeap::print_heap_change(size_t young_prev_used, size_t old_prev_used) const {
1049   log_info(gc, heap)("%s: " SIZE_FORMAT "K->" SIZE_FORMAT "K("  SIZE_FORMAT "K)",
1050                      _young_gen->short_name(), young_prev_used / K, _young_gen->used() /K, _young_gen->capacity() /K);
1051   log_info(gc, heap)("%s: " SIZE_FORMAT "K->" SIZE_FORMAT "K("  SIZE_FORMAT "K)",
1052                      _old_gen->short_name(), old_prev_used / K, _old_gen->used() /K, _old_gen->capacity() /K);
1053 }
1054 
1055 class GenGCPrologueClosure: public GenCollectedHeap::GenClosure {
1056  private:
1057   bool _full;
1058  public:
1059   void do_generation(Generation* gen) {
1060     gen->gc_prologue(_full);
1061   }
1062   GenGCPrologueClosure(bool full) : _full(full) {};
1063 };
1064 
1065 void GenCollectedHeap::gc_prologue(bool full) {
1066   assert(InlineCacheBuffer::is_empty(), "should have cleaned up ICBuffer");
1067 
1068   always_do_update_barrier = false;
1069   // Fill TLAB's and such
1070   CollectedHeap::accumulate_statistics_all_tlabs();
1071   ensure_parsability(true);   // retire TLABs
1072 
1073   // Walk generations
1074   GenGCPrologueClosure blk(full);
1075   generation_iterate(&blk, false);  // not old-to-young.
1076 };
1077 
1078 class GenGCEpilogueClosure: public GenCollectedHeap::GenClosure {
1079  private:
1080   bool _full;
1081  public:
1082   void do_generation(Generation* gen) {
1083     gen->gc_epilogue(_full);
1084   }
1085   GenGCEpilogueClosure(bool full) : _full(full) {};
1086 };
1087 
1088 void GenCollectedHeap::gc_epilogue(bool full) {
1089 #if defined(COMPILER2) || INCLUDE_JVMCI
1090   assert(DerivedPointerTable::is_empty(), "derived pointer present");
1091   size_t actual_gap = pointer_delta((HeapWord*) (max_uintx-3), *(end_addr()));
1092   guarantee(actual_gap > (size_t)FastAllocateSizeLimit, "inline allocation wraps");
1093 #endif /* COMPILER2 || INCLUDE_JVMCI */
1094 
1095   resize_all_tlabs();
1096 
1097   GenGCEpilogueClosure blk(full);
1098   generation_iterate(&blk, false);  // not old-to-young.
1099 
1100   if (!CleanChunkPoolAsync) {
1101     Chunk::clean_chunk_pool();
1102   }
1103 
1104   MetaspaceCounters::update_performance_counters();
1105   CompressedClassSpaceCounters::update_performance_counters();
1106 
1107   always_do_update_barrier = UseConcMarkSweepGC;
1108 };
1109 
1110 #ifndef PRODUCT
1111 class GenGCSaveTopsBeforeGCClosure: public GenCollectedHeap::GenClosure {
1112  private:
1113  public:
1114   void do_generation(Generation* gen) {
1115     gen->record_spaces_top();
1116   }
1117 };
1118 
1119 void GenCollectedHeap::record_gen_tops_before_GC() {
1120   if (ZapUnusedHeapArea) {
1121     GenGCSaveTopsBeforeGCClosure blk;
1122     generation_iterate(&blk, false);  // not old-to-young.
1123   }
1124 }
1125 #endif  // not PRODUCT
1126 
1127 class GenEnsureParsabilityClosure: public GenCollectedHeap::GenClosure {
1128  public:
1129   void do_generation(Generation* gen) {
1130     gen->ensure_parsability();
1131   }
1132 };
1133 
1134 void GenCollectedHeap::ensure_parsability(bool retire_tlabs) {
1135   CollectedHeap::ensure_parsability(retire_tlabs);
1136   GenEnsureParsabilityClosure ep_cl;
1137   generation_iterate(&ep_cl, false);
1138 }
1139 
1140 oop GenCollectedHeap::handle_failed_promotion(Generation* old_gen,
1141                                               oop obj,
1142                                               size_t obj_size) {
1143   guarantee(old_gen == _old_gen, "We only get here with an old generation");
1144   assert(obj_size == (size_t)obj->size(), "bad obj_size passed in");
1145   HeapWord* result = NULL;
1146 
1147   result = old_gen->expand_and_allocate(obj_size, false);
1148 
1149   if (result != NULL) {
1150     Copy::aligned_disjoint_words((HeapWord*)obj, result, obj_size);
1151   }
1152   return oop(result);
1153 }
1154 
1155 class GenTimeOfLastGCClosure: public GenCollectedHeap::GenClosure {
1156   jlong _time;   // in ms
1157   jlong _now;    // in ms
1158 
1159  public:
1160   GenTimeOfLastGCClosure(jlong now) : _time(now), _now(now) { }
1161 
1162   jlong time() { return _time; }
1163 
1164   void do_generation(Generation* gen) {
1165     _time = MIN2(_time, gen->time_of_last_gc(_now));
1166   }
1167 };
1168 
1169 jlong GenCollectedHeap::millis_since_last_gc() {
1170   // javaTimeNanos() is guaranteed to be monotonically non-decreasing
1171   // provided the underlying platform provides such a time source
1172   // (and it is bug free). So we still have to guard against getting
1173   // back a time later than 'now'.
1174   jlong now = os::javaTimeNanos() / NANOSECS_PER_MILLISEC;
1175   GenTimeOfLastGCClosure tolgc_cl(now);
1176   // iterate over generations getting the oldest
1177   // time that a generation was collected
1178   generation_iterate(&tolgc_cl, false);
1179 
1180   jlong retVal = now - tolgc_cl.time();
1181   if (retVal < 0) {
1182     log_warning(gc)("Detected clock going backwards. "
1183       "Milliseconds since last GC would be " JLONG_FORMAT
1184       ". returning zero instead.", retVal);
1185     return 0;
1186   }
1187   return retVal;
1188 }