1 /*
   2  * Copyright (c) 1997, 2016, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/dictionary.hpp"
  27 #include "classfile/javaClasses.hpp"
  28 #include "classfile/systemDictionary.hpp"
  29 #include "classfile/vmSymbols.hpp"
  30 #include "gc/shared/collectedHeap.inline.hpp"
  31 #include "logging/log.hpp"
  32 #include "memory/heapInspection.hpp"
  33 #include "memory/metadataFactory.hpp"
  34 #include "memory/oopFactory.hpp"
  35 #include "memory/resourceArea.hpp"
  36 #include "oops/instanceKlass.hpp"
  37 #include "oops/klass.inline.hpp"
  38 #include "oops/oop.inline.hpp"
  39 #include "runtime/atomic.inline.hpp"
  40 #include "runtime/orderAccess.inline.hpp"
  41 #include "trace/traceMacros.hpp"
  42 #include "utilities/macros.hpp"
  43 #include "utilities/stack.inline.hpp"
  44 #if INCLUDE_ALL_GCS
  45 #include "gc/g1/g1SATBCardTableModRefBS.hpp"
  46 #endif // INCLUDE_ALL_GCS
  47 
  48 bool Klass::is_cloneable() const {
  49   return _access_flags.is_cloneable_fast() ||
  50          is_subtype_of(SystemDictionary::Cloneable_klass());
  51 }
  52 
  53 void Klass::set_is_cloneable() {
  54   if (name() != vmSymbols::java_lang_invoke_MemberName()) {
  55     _access_flags.set_is_cloneable_fast();
  56   } else {
  57     assert(is_final(), "no subclasses allowed");
  58     // MemberName cloning should not be intrinsified and always happen in JVM_Clone.
  59   }
  60 }
  61 
  62 void Klass::set_name(Symbol* n) {
  63   _name = n;
  64   if (_name != NULL) _name->increment_refcount();
  65 }
  66 
  67 bool Klass::is_subclass_of(const Klass* k) const {
  68   // Run up the super chain and check
  69   if (this == k) return true;
  70 
  71   Klass* t = const_cast<Klass*>(this)->super();
  72 
  73   while (t != NULL) {
  74     if (t == k) return true;
  75     t = t->super();
  76   }
  77   return false;
  78 }
  79 
  80 bool Klass::search_secondary_supers(Klass* k) const {
  81   // Put some extra logic here out-of-line, before the search proper.
  82   // This cuts down the size of the inline method.
  83 
  84   // This is necessary, since I am never in my own secondary_super list.
  85   if (this == k)
  86     return true;
  87   // Scan the array-of-objects for a match
  88   int cnt = secondary_supers()->length();
  89   for (int i = 0; i < cnt; i++) {
  90     if (secondary_supers()->at(i) == k) {
  91       ((Klass*)this)->set_secondary_super_cache(k);
  92       return true;
  93     }
  94   }
  95   return false;
  96 }
  97 
  98 // Return self, except for abstract classes with exactly 1
  99 // implementor.  Then return the 1 concrete implementation.
 100 Klass *Klass::up_cast_abstract() {
 101   Klass *r = this;
 102   while( r->is_abstract() ) {   // Receiver is abstract?
 103     Klass *s = r->subklass();   // Check for exactly 1 subklass
 104     if( !s || s->next_sibling() ) // Oops; wrong count; give up
 105       return this;              // Return 'this' as a no-progress flag
 106     r = s;                    // Loop till find concrete class
 107   }
 108   return r;                   // Return the 1 concrete class
 109 }
 110 
 111 // Find LCA in class hierarchy
 112 Klass *Klass::LCA( Klass *k2 ) {
 113   Klass *k1 = this;
 114   while( 1 ) {
 115     if( k1->is_subtype_of(k2) ) return k2;
 116     if( k2->is_subtype_of(k1) ) return k1;
 117     k1 = k1->super();
 118     k2 = k2->super();
 119   }
 120 }
 121 
 122 
 123 void Klass::check_valid_for_instantiation(bool throwError, TRAPS) {
 124   ResourceMark rm(THREAD);
 125   THROW_MSG(throwError ? vmSymbols::java_lang_InstantiationError()
 126             : vmSymbols::java_lang_InstantiationException(), external_name());
 127 }
 128 
 129 
 130 void Klass::copy_array(arrayOop s, int src_pos, arrayOop d, int dst_pos, int length, TRAPS) {
 131   THROW(vmSymbols::java_lang_ArrayStoreException());
 132 }
 133 
 134 
 135 void Klass::initialize(TRAPS) {
 136   ShouldNotReachHere();
 137 }
 138 
 139 bool Klass::compute_is_subtype_of(Klass* k) {
 140   assert(k->is_klass(), "argument must be a class");
 141   return is_subclass_of(k);
 142 }
 143 
 144 Klass* Klass::find_field(Symbol* name, Symbol* sig, fieldDescriptor* fd) const {
 145 #ifdef ASSERT
 146   tty->print_cr("Error: find_field called on a klass oop."
 147                 " Likely error: reflection method does not correctly"
 148                 " wrap return value in a mirror object.");
 149 #endif
 150   ShouldNotReachHere();
 151   return NULL;
 152 }
 153 
 154 Method* Klass::uncached_lookup_method(const Symbol* name, const Symbol* signature, OverpassLookupMode overpass_mode) const {
 155 #ifdef ASSERT
 156   tty->print_cr("Error: uncached_lookup_method called on a klass oop."
 157                 " Likely error: reflection method does not correctly"
 158                 " wrap return value in a mirror object.");
 159 #endif
 160   ShouldNotReachHere();
 161   return NULL;
 162 }
 163 
 164 void* Klass::operator new(size_t size, ClassLoaderData* loader_data, size_t word_size, TRAPS) throw() {
 165   return Metaspace::allocate(loader_data, word_size, /*read_only*/false,
 166                              MetaspaceObj::ClassType, THREAD);
 167 }
 168 
 169 // "Normal" instantiation is preceeded by a MetaspaceObj allocation
 170 // which zeros out memory - calloc equivalent.
 171 // The constructor is also used from init_self_patching_vtbl_list,
 172 // which doesn't zero out the memory before calling the constructor.
 173 // Need to set the _java_mirror field explicitly to not hit an assert that the field
 174 // should be NULL before setting it.
 175 Klass::Klass() : _prototype_header(markOopDesc::prototype()),
 176                  _shared_class_path_index(-1),
 177                  _java_mirror(NULL) {
 178 
 179   _primary_supers[0] = this;
 180   set_super_check_offset(in_bytes(primary_supers_offset()));
 181 }
 182 
 183 jint Klass::array_layout_helper(BasicType etype) {
 184   assert(etype >= T_BOOLEAN && etype <= T_OBJECT, "valid etype");
 185   // Note that T_ARRAY is not allowed here.
 186   int  hsize = arrayOopDesc::base_offset_in_bytes(etype);
 187   int  esize = type2aelembytes(etype);
 188   bool isobj = (etype == T_OBJECT);
 189   int  tag   =  isobj ? _lh_array_tag_obj_value : _lh_array_tag_type_value;
 190   int lh = array_layout_helper(tag, hsize, etype, exact_log2(esize));
 191 
 192   assert(lh < (int)_lh_neutral_value, "must look like an array layout");
 193   assert(layout_helper_is_array(lh), "correct kind");
 194   assert(layout_helper_is_objArray(lh) == isobj, "correct kind");
 195   assert(layout_helper_is_typeArray(lh) == !isobj, "correct kind");
 196   assert(layout_helper_header_size(lh) == hsize, "correct decode");
 197   assert(layout_helper_element_type(lh) == etype, "correct decode");
 198   assert(1 << layout_helper_log2_element_size(lh) == esize, "correct decode");
 199 
 200   return lh;
 201 }
 202 
 203 bool Klass::can_be_primary_super_slow() const {
 204   if (super() == NULL)
 205     return true;
 206   else if (super()->super_depth() >= primary_super_limit()-1)
 207     return false;
 208   else
 209     return true;
 210 }
 211 
 212 void Klass::initialize_supers(Klass* k, TRAPS) {
 213   if (FastSuperclassLimit == 0) {
 214     // None of the other machinery matters.
 215     set_super(k);
 216     return;
 217   }
 218   if (k == NULL) {
 219     set_super(NULL);
 220     _primary_supers[0] = this;
 221     assert(super_depth() == 0, "Object must already be initialized properly");
 222   } else if (k != super() || k == SystemDictionary::Object_klass()) {
 223     assert(super() == NULL || super() == SystemDictionary::Object_klass(),
 224            "initialize this only once to a non-trivial value");
 225     set_super(k);
 226     Klass* sup = k;
 227     int sup_depth = sup->super_depth();
 228     juint my_depth  = MIN2(sup_depth + 1, (int)primary_super_limit());
 229     if (!can_be_primary_super_slow())
 230       my_depth = primary_super_limit();
 231     for (juint i = 0; i < my_depth; i++) {
 232       _primary_supers[i] = sup->_primary_supers[i];
 233     }
 234     Klass* *super_check_cell;
 235     if (my_depth < primary_super_limit()) {
 236       _primary_supers[my_depth] = this;
 237       super_check_cell = &_primary_supers[my_depth];
 238     } else {
 239       // Overflow of the primary_supers array forces me to be secondary.
 240       super_check_cell = &_secondary_super_cache;
 241     }
 242     set_super_check_offset((address)super_check_cell - (address) this);
 243 
 244 #ifdef ASSERT
 245     {
 246       juint j = super_depth();
 247       assert(j == my_depth, "computed accessor gets right answer");
 248       Klass* t = this;
 249       while (!t->can_be_primary_super()) {
 250         t = t->super();
 251         j = t->super_depth();
 252       }
 253       for (juint j1 = j+1; j1 < primary_super_limit(); j1++) {
 254         assert(primary_super_of_depth(j1) == NULL, "super list padding");
 255       }
 256       while (t != NULL) {
 257         assert(primary_super_of_depth(j) == t, "super list initialization");
 258         t = t->super();
 259         --j;
 260       }
 261       assert(j == (juint)-1, "correct depth count");
 262     }
 263 #endif
 264   }
 265 
 266   if (secondary_supers() == NULL) {
 267     KlassHandle this_kh (THREAD, this);
 268 
 269     // Now compute the list of secondary supertypes.
 270     // Secondaries can occasionally be on the super chain,
 271     // if the inline "_primary_supers" array overflows.
 272     int extras = 0;
 273     Klass* p;
 274     for (p = super(); !(p == NULL || p->can_be_primary_super()); p = p->super()) {
 275       ++extras;
 276     }
 277 
 278     ResourceMark rm(THREAD);  // need to reclaim GrowableArrays allocated below
 279 
 280     // Compute the "real" non-extra secondaries.
 281     GrowableArray<Klass*>* secondaries = compute_secondary_supers(extras);
 282     if (secondaries == NULL) {
 283       // secondary_supers set by compute_secondary_supers
 284       return;
 285     }
 286 
 287     GrowableArray<Klass*>* primaries = new GrowableArray<Klass*>(extras);
 288 
 289     for (p = this_kh->super(); !(p == NULL || p->can_be_primary_super()); p = p->super()) {
 290       int i;                    // Scan for overflow primaries being duplicates of 2nd'arys
 291 
 292       // This happens frequently for very deeply nested arrays: the
 293       // primary superclass chain overflows into the secondary.  The
 294       // secondary list contains the element_klass's secondaries with
 295       // an extra array dimension added.  If the element_klass's
 296       // secondary list already contains some primary overflows, they
 297       // (with the extra level of array-ness) will collide with the
 298       // normal primary superclass overflows.
 299       for( i = 0; i < secondaries->length(); i++ ) {
 300         if( secondaries->at(i) == p )
 301           break;
 302       }
 303       if( i < secondaries->length() )
 304         continue;               // It's a dup, don't put it in
 305       primaries->push(p);
 306     }
 307     // Combine the two arrays into a metadata object to pack the array.
 308     // The primaries are added in the reverse order, then the secondaries.
 309     int new_length = primaries->length() + secondaries->length();
 310     Array<Klass*>* s2 = MetadataFactory::new_array<Klass*>(
 311                                        class_loader_data(), new_length, CHECK);
 312     int fill_p = primaries->length();
 313     for (int j = 0; j < fill_p; j++) {
 314       s2->at_put(j, primaries->pop());  // add primaries in reverse order.
 315     }
 316     for( int j = 0; j < secondaries->length(); j++ ) {
 317       s2->at_put(j+fill_p, secondaries->at(j));  // add secondaries on the end.
 318     }
 319 
 320   #ifdef ASSERT
 321       // We must not copy any NULL placeholders left over from bootstrap.
 322     for (int j = 0; j < s2->length(); j++) {
 323       assert(s2->at(j) != NULL, "correct bootstrapping order");
 324     }
 325   #endif
 326 
 327     this_kh->set_secondary_supers(s2);
 328   }
 329 }
 330 
 331 GrowableArray<Klass*>* Klass::compute_secondary_supers(int num_extra_slots) {
 332   assert(num_extra_slots == 0, "override for complex klasses");
 333   set_secondary_supers(Universe::the_empty_klass_array());
 334   return NULL;
 335 }
 336 
 337 
 338 InstanceKlass* Klass::superklass() const {
 339   assert(super() == NULL || super()->is_instance_klass(), "must be instance klass");
 340   return _super == NULL ? NULL : InstanceKlass::cast(_super);
 341 }
 342 
 343 void Klass::set_subklass(Klass* s) {
 344   assert(s != this, "sanity check");
 345   _subklass = s;
 346 }
 347 
 348 void Klass::set_next_sibling(Klass* s) {
 349   assert(s != this, "sanity check");
 350   _next_sibling = s;
 351 }
 352 
 353 void Klass::append_to_sibling_list() {
 354   debug_only(verify();)
 355   // add ourselves to superklass' subklass list
 356   InstanceKlass* super = superklass();
 357   if (super == NULL) return;        // special case: class Object
 358   assert((!super->is_interface()    // interfaces cannot be supers
 359           && (super->superklass() == NULL || !is_interface())),
 360          "an interface can only be a subklass of Object");
 361   Klass* prev_first_subklass = super->subklass();
 362   if (prev_first_subklass != NULL) {
 363     // set our sibling to be the superklass' previous first subklass
 364     set_next_sibling(prev_first_subklass);
 365   }
 366   // make ourselves the superklass' first subklass
 367   super->set_subklass(this);
 368   debug_only(verify();)
 369 }
 370 
 371 bool Klass::is_loader_alive(BoolObjectClosure* is_alive) {
 372 #ifdef ASSERT
 373   // The class is alive iff the class loader is alive.
 374   oop loader = class_loader();
 375   bool loader_alive = (loader == NULL) || is_alive->do_object_b(loader);
 376 #endif // ASSERT
 377 
 378   // The class is alive if it's mirror is alive (which should be marked if the
 379   // loader is alive) unless it's an anoymous class.
 380   bool mirror_alive = is_alive->do_object_b(java_mirror());
 381   assert(!mirror_alive || loader_alive, "loader must be alive if the mirror is"
 382                         " but not the other way around with anonymous classes");
 383   return mirror_alive;
 384 }
 385 
 386 void Klass::clean_weak_klass_links(BoolObjectClosure* is_alive, bool clean_alive_klasses) {
 387   if (!ClassUnloading) {
 388     return;
 389   }
 390 
 391   Klass* root = SystemDictionary::Object_klass();
 392   Stack<Klass*, mtGC> stack;
 393 
 394   stack.push(root);
 395   while (!stack.is_empty()) {
 396     Klass* current = stack.pop();
 397 
 398     assert(current->is_loader_alive(is_alive), "just checking, this should be live");
 399 
 400     // Find and set the first alive subklass
 401     Klass* sub = current->subklass();
 402     while (sub != NULL && !sub->is_loader_alive(is_alive)) {
 403 #ifndef PRODUCT
 404       if (log_is_enabled(Trace, class, unload)) {
 405         ResourceMark rm;
 406         log_trace(class, unload)("unlinking class (subclass): %s", sub->external_name());
 407       }
 408 #endif
 409       sub = sub->next_sibling();
 410     }
 411     current->set_subklass(sub);
 412     if (sub != NULL) {
 413       stack.push(sub);
 414     }
 415 
 416     // Find and set the first alive sibling
 417     Klass* sibling = current->next_sibling();
 418     while (sibling != NULL && !sibling->is_loader_alive(is_alive)) {
 419       if (log_is_enabled(Trace, class, unload)) {
 420         ResourceMark rm;
 421         log_trace(class, unload)("[Unlinking class (sibling) %s]", sibling->external_name());
 422       }
 423       sibling = sibling->next_sibling();
 424     }
 425     current->set_next_sibling(sibling);
 426     if (sibling != NULL) {
 427       stack.push(sibling);
 428     }
 429 
 430     // Clean the implementors list and method data.
 431     if (clean_alive_klasses && current->is_instance_klass()) {
 432       InstanceKlass* ik = InstanceKlass::cast(current);
 433       ik->clean_weak_instanceklass_links(is_alive);
 434     }
 435   }
 436 }
 437 
 438 void Klass::klass_update_barrier_set(oop v) {
 439   record_modified_oops();
 440 }
 441 
 442 // This barrier is used by G1 to remember the old oop values, so
 443 // that we don't forget any objects that were live at the snapshot at
 444 // the beginning. This function is only used when we write oops into Klasses.
 445 void Klass::klass_update_barrier_set_pre(oop* p, oop v) {
 446 #if INCLUDE_ALL_GCS
 447   if (UseG1GC) {
 448     oop obj = *p;
 449     if (obj != NULL) {
 450       G1SATBCardTableModRefBS::enqueue(obj);
 451     }
 452   }
 453 #endif
 454 }
 455 
 456 void Klass::klass_oop_store(oop* p, oop v) {
 457   assert(!GC::gc()->heap()->is_in_reserved((void*)p), "Should store pointer into metadata");
 458   assert(v == NULL || GC::gc()->heap()->is_in_reserved((void*)v), "Should store pointer to an object");
 459 
 460   // do the store
 461   if (always_do_update_barrier) {
 462     klass_oop_store((volatile oop*)p, v);
 463   } else {
 464     klass_update_barrier_set_pre(p, v);
 465     *p = v;
 466     klass_update_barrier_set(v);
 467   }
 468 }
 469 
 470 void Klass::klass_oop_store(volatile oop* p, oop v) {
 471   assert(!GC::gc()->heap()->is_in_reserved((void*)p), "Should store pointer into metadata");
 472   assert(v == NULL || GC::gc()->heap()->is_in_reserved((void*)v), "Should store pointer to an object");
 473 
 474   klass_update_barrier_set_pre((oop*)p, v); // Cast away volatile.
 475   OrderAccess::release_store_ptr(p, v);
 476   klass_update_barrier_set(v);
 477 }
 478 
 479 void Klass::oops_do(OopClosure* cl) {
 480   cl->do_oop(&_java_mirror);
 481 }
 482 
 483 void Klass::remove_unshareable_info() {
 484   assert (DumpSharedSpaces, "only called for DumpSharedSpaces");
 485   TRACE_REMOVE_KLASS_ID(this);
 486 
 487   set_subklass(NULL);
 488   set_next_sibling(NULL);
 489   // Clear the java mirror
 490   set_java_mirror(NULL);
 491   set_next_link(NULL);
 492 
 493   // Null out class_loader_data because we don't share that yet.
 494   set_class_loader_data(NULL);
 495 }
 496 
 497 void Klass::restore_unshareable_info(ClassLoaderData* loader_data, Handle protection_domain, TRAPS) {
 498   TRACE_RESTORE_KLASS_ID(this);
 499 
 500   // If an exception happened during CDS restore, some of these fields may already be
 501   // set.  We leave the class on the CLD list, even if incomplete so that we don't
 502   // modify the CLD list outside a safepoint.
 503   if (class_loader_data() == NULL) {
 504     // Restore class_loader_data to the null class loader data
 505     set_class_loader_data(loader_data);
 506 
 507     // Add to null class loader list first before creating the mirror
 508     // (same order as class file parsing)
 509     loader_data->add_class(this);
 510   }
 511 
 512   // Recreate the class mirror.
 513   // Only recreate it if not present.  A previous attempt to restore may have
 514   // gotten an OOM later but keep the mirror if it was created.
 515   if (java_mirror() == NULL) {
 516     Handle loader = loader_data->class_loader();
 517     ModuleEntry* module_entry = NULL;
 518     Klass* k = this;
 519     if (k->is_objArray_klass()) {
 520       k = ObjArrayKlass::cast(k)->bottom_klass();
 521     }
 522     // Obtain klass' module.
 523     if (k->is_instance_klass()) {
 524       InstanceKlass* ik = (InstanceKlass*) k;
 525       module_entry = ik->module();
 526     } else {
 527       module_entry = ModuleEntryTable::javabase_module();
 528     }
 529     // Obtain java.lang.reflect.Module, if available
 530     Handle module_handle(THREAD, ((module_entry != NULL) ? JNIHandles::resolve(module_entry->module()) : (oop)NULL));
 531     java_lang_Class::create_mirror(this, loader, module_handle, protection_domain, CHECK);
 532   }
 533 }
 534 
 535 Klass* Klass::array_klass_or_null(int rank) {
 536   EXCEPTION_MARK;
 537   // No exception can be thrown by array_klass_impl when called with or_null == true.
 538   // (In anycase, the execption mark will fail if it do so)
 539   return array_klass_impl(true, rank, THREAD);
 540 }
 541 
 542 
 543 Klass* Klass::array_klass_or_null() {
 544   EXCEPTION_MARK;
 545   // No exception can be thrown by array_klass_impl when called with or_null == true.
 546   // (In anycase, the execption mark will fail if it do so)
 547   return array_klass_impl(true, THREAD);
 548 }
 549 
 550 
 551 Klass* Klass::array_klass_impl(bool or_null, int rank, TRAPS) {
 552   fatal("array_klass should be dispatched to InstanceKlass, ObjArrayKlass or TypeArrayKlass");
 553   return NULL;
 554 }
 555 
 556 
 557 Klass* Klass::array_klass_impl(bool or_null, TRAPS) {
 558   fatal("array_klass should be dispatched to InstanceKlass, ObjArrayKlass or TypeArrayKlass");
 559   return NULL;
 560 }
 561 
 562 oop Klass::class_loader() const { return class_loader_data()->class_loader(); }
 563 
 564 // In product mode, this function doesn't have virtual function calls so
 565 // there might be some performance advantage to handling InstanceKlass here.
 566 const char* Klass::external_name() const {
 567   if (is_instance_klass()) {
 568     const InstanceKlass* ik = static_cast<const InstanceKlass*>(this);
 569     if (ik->is_anonymous()) {
 570       intptr_t hash = 0;
 571       if (ik->java_mirror() != NULL) {
 572         // java_mirror might not be created yet, return 0 as hash.
 573         hash = ik->java_mirror()->identity_hash();
 574       }
 575       char     hash_buf[40];
 576       sprintf(hash_buf, "/" UINTX_FORMAT, (uintx)hash);
 577       size_t   hash_len = strlen(hash_buf);
 578 
 579       size_t result_len = name()->utf8_length();
 580       char*  result     = NEW_RESOURCE_ARRAY(char, result_len + hash_len + 1);
 581       name()->as_klass_external_name(result, (int) result_len + 1);
 582       assert(strlen(result) == result_len, "");
 583       strcpy(result + result_len, hash_buf);
 584       assert(strlen(result) == result_len + hash_len, "");
 585       return result;
 586     }
 587   }
 588   if (name() == NULL)  return "<unknown>";
 589   return name()->as_klass_external_name();
 590 }
 591 
 592 
 593 const char* Klass::signature_name() const {
 594   if (name() == NULL)  return "<unknown>";
 595   return name()->as_C_string();
 596 }
 597 
 598 // Unless overridden, modifier_flags is 0.
 599 jint Klass::compute_modifier_flags(TRAPS) const {
 600   return 0;
 601 }
 602 
 603 int Klass::atomic_incr_biased_lock_revocation_count() {
 604   return (int) Atomic::add(1, &_biased_lock_revocation_count);
 605 }
 606 
 607 // Unless overridden, jvmti_class_status has no flags set.
 608 jint Klass::jvmti_class_status() const {
 609   return 0;
 610 }
 611 
 612 
 613 // Printing
 614 
 615 void Klass::print_on(outputStream* st) const {
 616   ResourceMark rm;
 617   // print title
 618   st->print("%s", internal_name());
 619   print_address_on(st);
 620   st->cr();
 621 }
 622 
 623 void Klass::oop_print_on(oop obj, outputStream* st) {
 624   ResourceMark rm;
 625   // print title
 626   st->print_cr("%s ", internal_name());
 627   obj->print_address_on(st);
 628 
 629   if (WizardMode) {
 630      // print header
 631      obj->mark()->print_on(st);
 632   }
 633 
 634   // print class
 635   st->print(" - klass: ");
 636   obj->klass()->print_value_on(st);
 637   st->cr();
 638 }
 639 
 640 void Klass::oop_print_value_on(oop obj, outputStream* st) {
 641   // print title
 642   ResourceMark rm;              // Cannot print in debug mode without this
 643   st->print("%s", internal_name());
 644   obj->print_address_on(st);
 645 }
 646 
 647 #if INCLUDE_SERVICES
 648 // Size Statistics
 649 void Klass::collect_statistics(KlassSizeStats *sz) const {
 650   sz->_klass_bytes = sz->count(this);
 651   sz->_mirror_bytes = sz->count(java_mirror());
 652   sz->_secondary_supers_bytes = sz->count_array(secondary_supers());
 653 
 654   sz->_ro_bytes += sz->_secondary_supers_bytes;
 655   sz->_rw_bytes += sz->_klass_bytes + sz->_mirror_bytes;
 656 }
 657 #endif // INCLUDE_SERVICES
 658 
 659 // Verification
 660 
 661 void Klass::verify_on(outputStream* st) {
 662 
 663   // This can be expensive, but it is worth checking that this klass is actually
 664   // in the CLD graph but not in production.
 665   assert(Metaspace::contains((address)this), "Should be");
 666 
 667   guarantee(this->is_klass(),"should be klass");
 668 
 669   if (super() != NULL) {
 670     guarantee(super()->is_klass(), "should be klass");
 671   }
 672   if (secondary_super_cache() != NULL) {
 673     Klass* ko = secondary_super_cache();
 674     guarantee(ko->is_klass(), "should be klass");
 675   }
 676   for ( uint i = 0; i < primary_super_limit(); i++ ) {
 677     Klass* ko = _primary_supers[i];
 678     if (ko != NULL) {
 679       guarantee(ko->is_klass(), "should be klass");
 680     }
 681   }
 682 
 683   if (java_mirror() != NULL) {
 684     guarantee(java_mirror()->is_oop(), "should be instance");
 685   }
 686 }
 687 
 688 void Klass::oop_verify_on(oop obj, outputStream* st) {
 689   guarantee(obj->is_oop(),  "should be oop");
 690   guarantee(obj->klass()->is_klass(), "klass field is not a klass");
 691 }
 692 
 693 klassVtable* Klass::vtable() const {
 694   return new klassVtable(this, start_of_vtable(), vtable_length() / vtableEntry::size());
 695 }
 696 
 697 vtableEntry* Klass::start_of_vtable() const {
 698   return (vtableEntry*) ((address)this + in_bytes(vtable_start_offset()));
 699 }
 700 
 701 Method* Klass::method_at_vtable(int index)  {
 702 #ifndef PRODUCT
 703   assert(index >= 0, "valid vtable index");
 704   if (DebugVtables) {
 705     verify_vtable_index(index);
 706   }
 707 #endif
 708   return start_of_vtable()[index].method();
 709 }
 710 
 711 ByteSize Klass::vtable_start_offset() {
 712   return in_ByteSize(InstanceKlass::header_size() * wordSize);
 713 }
 714 
 715 #ifndef PRODUCT
 716 
 717 bool Klass::verify_vtable_index(int i) {
 718   int limit = vtable_length()/vtableEntry::size();
 719   assert(i >= 0 && i < limit, "index %d out of bounds %d", i, limit);
 720   return true;
 721 }
 722 
 723 bool Klass::verify_itable_index(int i) {
 724   assert(is_instance_klass(), "");
 725   int method_count = klassItable::method_count_for_interface(this);
 726   assert(i >= 0 && i < method_count, "index out of bounds");
 727   return true;
 728 }
 729 
 730 #endif
 731 
 732 /////////////// Unit tests ///////////////
 733 
 734 #ifndef PRODUCT
 735 
 736 class TestKlass {
 737  public:
 738   static void test_oop_is_instanceClassLoader() {
 739     Klass* klass = SystemDictionary::ClassLoader_klass();
 740     guarantee(klass->is_instance_klass(), "assert");
 741     guarantee(InstanceKlass::cast(klass)->is_class_loader_instance_klass(), "test failed");
 742 
 743     klass = SystemDictionary::String_klass();
 744     guarantee(!klass->is_instance_klass() ||
 745               !InstanceKlass::cast(klass)->is_class_loader_instance_klass(),
 746               "test failed");
 747   }
 748 };
 749 
 750 void TestKlass_test() {
 751   TestKlass::test_oop_is_instanceClassLoader();
 752 }
 753 
 754 #endif  // PRODUCT