1 /*
   2  * Copyright (c) 1997, 2016, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/classLoader.hpp"
  27 #include "classfile/javaClasses.hpp"
  28 #include "classfile/moduleEntry.hpp"
  29 #include "classfile/systemDictionary.hpp"
  30 #include "classfile/vmSymbols.hpp"
  31 #include "code/codeCache.hpp"
  32 #include "code/codeCacheExtensions.hpp"
  33 #include "code/scopeDesc.hpp"
  34 #include "compiler/compileBroker.hpp"
  35 #include "compiler/compileTask.hpp"
  36 #include "gc/shared/gcId.hpp"
  37 #include "gc/shared/gcLocker.inline.hpp"
  38 #include "gc/shared/referencePendingListLocker.hpp"
  39 #include "gc/shared/workgroup.hpp"
  40 #include "interpreter/interpreter.hpp"
  41 #include "interpreter/linkResolver.hpp"
  42 #include "interpreter/oopMapCache.hpp"
  43 #include "jvmtifiles/jvmtiEnv.hpp"
  44 #include "logging/log.hpp"
  45 #include "logging/logConfiguration.hpp"
  46 #include "memory/metaspaceShared.hpp"
  47 #include "memory/oopFactory.hpp"
  48 #include "memory/resourceArea.hpp"
  49 #include "memory/universe.inline.hpp"
  50 #include "oops/instanceKlass.hpp"
  51 #include "oops/objArrayOop.hpp"
  52 #include "oops/oop.inline.hpp"
  53 #include "oops/symbol.hpp"
  54 #include "oops/verifyOopClosure.hpp"
  55 #include "prims/jvm_misc.hpp"
  56 #include "prims/jvmtiExport.hpp"
  57 #include "prims/jvmtiThreadState.hpp"
  58 #include "prims/privilegedStack.hpp"
  59 #include "runtime/arguments.hpp"
  60 #include "runtime/atomic.inline.hpp"
  61 #include "runtime/biasedLocking.hpp"
  62 #include "runtime/commandLineFlagConstraintList.hpp"
  63 #include "runtime/commandLineFlagWriteableList.hpp"
  64 #include "runtime/commandLineFlagRangeList.hpp"
  65 #include "runtime/deoptimization.hpp"
  66 #include "runtime/fprofiler.hpp"
  67 #include "runtime/frame.inline.hpp"
  68 #include "runtime/globals.hpp"
  69 #include "runtime/init.hpp"
  70 #include "runtime/interfaceSupport.hpp"
  71 #include "runtime/java.hpp"
  72 #include "runtime/javaCalls.hpp"
  73 #include "runtime/jniPeriodicChecker.hpp"
  74 #include "runtime/timerTrace.hpp"
  75 #include "runtime/memprofiler.hpp"
  76 #include "runtime/mutexLocker.hpp"
  77 #include "runtime/objectMonitor.hpp"
  78 #include "runtime/orderAccess.inline.hpp"
  79 #include "runtime/osThread.hpp"
  80 #include "runtime/safepoint.hpp"
  81 #include "runtime/sharedRuntime.hpp"
  82 #include "runtime/statSampler.hpp"
  83 #include "runtime/stubRoutines.hpp"
  84 #include "runtime/sweeper.hpp"
  85 #include "runtime/task.hpp"
  86 #include "runtime/thread.inline.hpp"
  87 #include "runtime/threadCritical.hpp"
  88 #include "runtime/vframe.hpp"
  89 #include "runtime/vframeArray.hpp"
  90 #include "runtime/vframe_hp.hpp"
  91 #include "runtime/vmThread.hpp"
  92 #include "runtime/vm_operations.hpp"
  93 #include "runtime/vm_version.hpp"
  94 #include "services/attachListener.hpp"
  95 #include "services/management.hpp"
  96 #include "services/memTracker.hpp"
  97 #include "services/threadService.hpp"
  98 #include "trace/traceMacros.hpp"
  99 #include "trace/tracing.hpp"
 100 #include "utilities/defaultStream.hpp"
 101 #include "utilities/dtrace.hpp"
 102 #include "utilities/events.hpp"
 103 #include "utilities/macros.hpp"
 104 #include "utilities/preserveException.hpp"
 105 #if INCLUDE_JVMCI
 106 #include "jvmci/jvmciCompiler.hpp"
 107 #include "jvmci/jvmciRuntime.hpp"
 108 #endif
 109 #ifdef COMPILER1
 110 #include "c1/c1_Compiler.hpp"
 111 #endif
 112 #ifdef COMPILER2
 113 #include "opto/c2compiler.hpp"
 114 #include "opto/idealGraphPrinter.hpp"
 115 #endif
 116 #if INCLUDE_RTM_OPT
 117 #include "runtime/rtmLocking.hpp"
 118 #endif
 119 
 120 // Initialization after module runtime initialization
 121 void universe_post_module_init();  // must happen after call_initPhase2
 122 
 123 #ifdef DTRACE_ENABLED
 124 
 125 // Only bother with this argument setup if dtrace is available
 126 
 127   #define HOTSPOT_THREAD_PROBE_start HOTSPOT_THREAD_START
 128   #define HOTSPOT_THREAD_PROBE_stop HOTSPOT_THREAD_STOP
 129 
 130   #define DTRACE_THREAD_PROBE(probe, javathread)                           \
 131     {                                                                      \
 132       ResourceMark rm(this);                                               \
 133       int len = 0;                                                         \
 134       const char* name = (javathread)->get_thread_name();                  \
 135       len = strlen(name);                                                  \
 136       HOTSPOT_THREAD_PROBE_##probe(/* probe = start, stop */               \
 137         (char *) name, len,                                                \
 138         java_lang_Thread::thread_id((javathread)->threadObj()),            \
 139         (uintptr_t) (javathread)->osthread()->thread_id(),                 \
 140         java_lang_Thread::is_daemon((javathread)->threadObj()));           \
 141     }
 142 
 143 #else //  ndef DTRACE_ENABLED
 144 
 145   #define DTRACE_THREAD_PROBE(probe, javathread)
 146 
 147 #endif // ndef DTRACE_ENABLED
 148 
 149 #ifndef USE_LIBRARY_BASED_TLS_ONLY
 150 // Current thread is maintained as a thread-local variable
 151 THREAD_LOCAL_DECL Thread* Thread::_thr_current = NULL;
 152 #endif
 153 // Class hierarchy
 154 // - Thread
 155 //   - VMThread
 156 //   - WatcherThread
 157 //   - ConcurrentMarkSweepThread
 158 //   - JavaThread
 159 //     - CompilerThread
 160 
 161 // ======= Thread ========
 162 // Support for forcing alignment of thread objects for biased locking
 163 void* Thread::allocate(size_t size, bool throw_excpt, MEMFLAGS flags) {
 164   if (UseBiasedLocking) {
 165     const int alignment = markOopDesc::biased_lock_alignment;
 166     size_t aligned_size = size + (alignment - sizeof(intptr_t));
 167     void* real_malloc_addr = throw_excpt? AllocateHeap(aligned_size, flags, CURRENT_PC)
 168                                           : AllocateHeap(aligned_size, flags, CURRENT_PC,
 169                                                          AllocFailStrategy::RETURN_NULL);
 170     void* aligned_addr     = (void*) align_size_up((intptr_t) real_malloc_addr, alignment);
 171     assert(((uintptr_t) aligned_addr + (uintptr_t) size) <=
 172            ((uintptr_t) real_malloc_addr + (uintptr_t) aligned_size),
 173            "JavaThread alignment code overflowed allocated storage");
 174     if (aligned_addr != real_malloc_addr) {
 175       log_info(biasedlocking)("Aligned thread " INTPTR_FORMAT " to " INTPTR_FORMAT,
 176                               p2i(real_malloc_addr),
 177                               p2i(aligned_addr));
 178     }
 179     ((Thread*) aligned_addr)->_real_malloc_address = real_malloc_addr;
 180     return aligned_addr;
 181   } else {
 182     return throw_excpt? AllocateHeap(size, flags, CURRENT_PC)
 183                        : AllocateHeap(size, flags, CURRENT_PC, AllocFailStrategy::RETURN_NULL);
 184   }
 185 }
 186 
 187 void Thread::operator delete(void* p) {
 188   if (UseBiasedLocking) {
 189     void* real_malloc_addr = ((Thread*) p)->_real_malloc_address;
 190     FreeHeap(real_malloc_addr);
 191   } else {
 192     FreeHeap(p);
 193   }
 194 }
 195 
 196 
 197 // Base class for all threads: VMThread, WatcherThread, ConcurrentMarkSweepThread,
 198 // JavaThread
 199 
 200 
 201 Thread::Thread() {
 202   // stack and get_thread
 203   set_stack_base(NULL);
 204   set_stack_size(0);
 205   set_self_raw_id(0);
 206   set_lgrp_id(-1);
 207   DEBUG_ONLY(clear_suspendible_thread();)
 208 
 209   // allocated data structures
 210   set_osthread(NULL);
 211   set_resource_area(new (mtThread)ResourceArea());
 212   DEBUG_ONLY(_current_resource_mark = NULL;)
 213   set_handle_area(new (mtThread) HandleArea(NULL));
 214   set_metadata_handles(new (ResourceObj::C_HEAP, mtClass) GrowableArray<Metadata*>(30, true));
 215   set_active_handles(NULL);
 216   set_free_handle_block(NULL);
 217   set_last_handle_mark(NULL);
 218 
 219   // This initial value ==> never claimed.
 220   _oops_do_parity = 0;
 221 
 222   // the handle mark links itself to last_handle_mark
 223   new HandleMark(this);
 224 
 225   // plain initialization
 226   debug_only(_owned_locks = NULL;)
 227   debug_only(_allow_allocation_count = 0;)
 228   NOT_PRODUCT(_allow_safepoint_count = 0;)
 229   NOT_PRODUCT(_skip_gcalot = false;)
 230   _jvmti_env_iteration_count = 0;
 231   set_allocated_bytes(0);
 232   _vm_operation_started_count = 0;
 233   _vm_operation_completed_count = 0;
 234   _current_pending_monitor = NULL;
 235   _current_pending_monitor_is_from_java = true;
 236   _current_waiting_monitor = NULL;
 237   _num_nested_signal = 0;
 238   omFreeList = NULL;
 239   omFreeCount = 0;
 240   omFreeProvision = 32;
 241   omInUseList = NULL;
 242   omInUseCount = 0;
 243 
 244 #ifdef ASSERT
 245   _visited_for_critical_count = false;
 246 #endif
 247 
 248   _SR_lock = new Monitor(Mutex::suspend_resume, "SR_lock", true,
 249                          Monitor::_safepoint_check_sometimes);
 250   _suspend_flags = 0;
 251 
 252   // thread-specific hashCode stream generator state - Marsaglia shift-xor form
 253   _hashStateX = os::random();
 254   _hashStateY = 842502087;
 255   _hashStateZ = 0x8767;    // (int)(3579807591LL & 0xffff) ;
 256   _hashStateW = 273326509;
 257 
 258   _OnTrap   = 0;
 259   _schedctl = NULL;
 260   _Stalled  = 0;
 261   _TypeTag  = 0x2BAD;
 262 
 263   // Many of the following fields are effectively final - immutable
 264   // Note that nascent threads can't use the Native Monitor-Mutex
 265   // construct until the _MutexEvent is initialized ...
 266   // CONSIDER: instead of using a fixed set of purpose-dedicated ParkEvents
 267   // we might instead use a stack of ParkEvents that we could provision on-demand.
 268   // The stack would act as a cache to avoid calls to ParkEvent::Allocate()
 269   // and ::Release()
 270   _ParkEvent   = ParkEvent::Allocate(this);
 271   _SleepEvent  = ParkEvent::Allocate(this);
 272   _MutexEvent  = ParkEvent::Allocate(this);
 273   _MuxEvent    = ParkEvent::Allocate(this);
 274 
 275 #ifdef CHECK_UNHANDLED_OOPS
 276   if (CheckUnhandledOops) {
 277     _unhandled_oops = new UnhandledOops(this);
 278   }
 279 #endif // CHECK_UNHANDLED_OOPS
 280 #ifdef ASSERT
 281   if (UseBiasedLocking) {
 282     assert((((uintptr_t) this) & (markOopDesc::biased_lock_alignment - 1)) == 0, "forced alignment of thread object failed");
 283     assert(this == _real_malloc_address ||
 284            this == (void*) align_size_up((intptr_t) _real_malloc_address, markOopDesc::biased_lock_alignment),
 285            "bug in forced alignment of thread objects");
 286   }
 287 #endif // ASSERT
 288 }
 289 
 290 void Thread::initialize_thread_current() {
 291 #ifndef USE_LIBRARY_BASED_TLS_ONLY
 292   assert(_thr_current == NULL, "Thread::current already initialized");
 293   _thr_current = this;
 294 #endif
 295   assert(ThreadLocalStorage::thread() == NULL, "ThreadLocalStorage::thread already initialized");
 296   ThreadLocalStorage::set_thread(this);
 297   assert(Thread::current() == ThreadLocalStorage::thread(), "TLS mismatch!");
 298 }
 299 
 300 void Thread::clear_thread_current() {
 301   assert(Thread::current() == ThreadLocalStorage::thread(), "TLS mismatch!");
 302 #ifndef USE_LIBRARY_BASED_TLS_ONLY
 303   _thr_current = NULL;
 304 #endif
 305   ThreadLocalStorage::set_thread(NULL);
 306 }
 307 
 308 void Thread::record_stack_base_and_size() {
 309   set_stack_base(os::current_stack_base());
 310   set_stack_size(os::current_stack_size());
 311   // CR 7190089: on Solaris, primordial thread's stack is adjusted
 312   // in initialize_thread(). Without the adjustment, stack size is
 313   // incorrect if stack is set to unlimited (ulimit -s unlimited).
 314   // So far, only Solaris has real implementation of initialize_thread().
 315   //
 316   // set up any platform-specific state.
 317   os::initialize_thread(this);
 318 
 319   // Set stack limits after thread is initialized.
 320   if (is_Java_thread()) {
 321     ((JavaThread*) this)->set_stack_overflow_limit();
 322     ((JavaThread*) this)->set_reserved_stack_activation(stack_base());
 323   }
 324 #if INCLUDE_NMT
 325   // record thread's native stack, stack grows downward
 326   MemTracker::record_thread_stack(stack_end(), stack_size());
 327 #endif // INCLUDE_NMT
 328   log_debug(os, thread)("Thread " UINTX_FORMAT " stack dimensions: "
 329     PTR_FORMAT "-" PTR_FORMAT " (" SIZE_FORMAT "k).",
 330     os::current_thread_id(), p2i(stack_base() - stack_size()),
 331     p2i(stack_base()), stack_size()/1024);
 332 }
 333 
 334 
 335 Thread::~Thread() {
 336   // Reclaim the objectmonitors from the omFreeList of the moribund thread.
 337   ObjectSynchronizer::omFlush(this);
 338 
 339   EVENT_THREAD_DESTRUCT(this);
 340 
 341   // stack_base can be NULL if the thread is never started or exited before
 342   // record_stack_base_and_size called. Although, we would like to ensure
 343   // that all started threads do call record_stack_base_and_size(), there is
 344   // not proper way to enforce that.
 345 #if INCLUDE_NMT
 346   if (_stack_base != NULL) {
 347     MemTracker::release_thread_stack(stack_end(), stack_size());
 348 #ifdef ASSERT
 349     set_stack_base(NULL);
 350 #endif
 351   }
 352 #endif // INCLUDE_NMT
 353 
 354   // deallocate data structures
 355   delete resource_area();
 356   // since the handle marks are using the handle area, we have to deallocated the root
 357   // handle mark before deallocating the thread's handle area,
 358   assert(last_handle_mark() != NULL, "check we have an element");
 359   delete last_handle_mark();
 360   assert(last_handle_mark() == NULL, "check we have reached the end");
 361 
 362   // It's possible we can encounter a null _ParkEvent, etc., in stillborn threads.
 363   // We NULL out the fields for good hygiene.
 364   ParkEvent::Release(_ParkEvent); _ParkEvent   = NULL;
 365   ParkEvent::Release(_SleepEvent); _SleepEvent  = NULL;
 366   ParkEvent::Release(_MutexEvent); _MutexEvent  = NULL;
 367   ParkEvent::Release(_MuxEvent); _MuxEvent    = NULL;
 368 
 369   delete handle_area();
 370   delete metadata_handles();
 371 
 372   // osthread() can be NULL, if creation of thread failed.
 373   if (osthread() != NULL) os::free_thread(osthread());
 374 
 375   delete _SR_lock;
 376 
 377   // clear Thread::current if thread is deleting itself.
 378   // Needed to ensure JNI correctly detects non-attached threads.
 379   if (this == Thread::current()) {
 380     clear_thread_current();
 381   }
 382 
 383   CHECK_UNHANDLED_OOPS_ONLY(if (CheckUnhandledOops) delete unhandled_oops();)
 384 }
 385 
 386 // NOTE: dummy function for assertion purpose.
 387 void Thread::run() {
 388   ShouldNotReachHere();
 389 }
 390 
 391 #ifdef ASSERT
 392 // Private method to check for dangling thread pointer
 393 void check_for_dangling_thread_pointer(Thread *thread) {
 394   assert(!thread->is_Java_thread() || Thread::current() == thread || Threads_lock->owned_by_self(),
 395          "possibility of dangling Thread pointer");
 396 }
 397 #endif
 398 
 399 ThreadPriority Thread::get_priority(const Thread* const thread) {
 400   ThreadPriority priority;
 401   // Can return an error!
 402   (void)os::get_priority(thread, priority);
 403   assert(MinPriority <= priority && priority <= MaxPriority, "non-Java priority found");
 404   return priority;
 405 }
 406 
 407 void Thread::set_priority(Thread* thread, ThreadPriority priority) {
 408   debug_only(check_for_dangling_thread_pointer(thread);)
 409   // Can return an error!
 410   (void)os::set_priority(thread, priority);
 411 }
 412 
 413 
 414 void Thread::start(Thread* thread) {
 415   // Start is different from resume in that its safety is guaranteed by context or
 416   // being called from a Java method synchronized on the Thread object.
 417   if (!DisableStartThread) {
 418     if (thread->is_Java_thread()) {
 419       // Initialize the thread state to RUNNABLE before starting this thread.
 420       // Can not set it after the thread started because we do not know the
 421       // exact thread state at that time. It could be in MONITOR_WAIT or
 422       // in SLEEPING or some other state.
 423       java_lang_Thread::set_thread_status(((JavaThread*)thread)->threadObj(),
 424                                           java_lang_Thread::RUNNABLE);
 425     }
 426     os::start_thread(thread);
 427   }
 428 }
 429 
 430 // Enqueue a VM_Operation to do the job for us - sometime later
 431 void Thread::send_async_exception(oop java_thread, oop java_throwable) {
 432   VM_ThreadStop* vm_stop = new VM_ThreadStop(java_thread, java_throwable);
 433   VMThread::execute(vm_stop);
 434 }
 435 
 436 
 437 // Check if an external suspend request has completed (or has been
 438 // cancelled). Returns true if the thread is externally suspended and
 439 // false otherwise.
 440 //
 441 // The bits parameter returns information about the code path through
 442 // the routine. Useful for debugging:
 443 //
 444 // set in is_ext_suspend_completed():
 445 // 0x00000001 - routine was entered
 446 // 0x00000010 - routine return false at end
 447 // 0x00000100 - thread exited (return false)
 448 // 0x00000200 - suspend request cancelled (return false)
 449 // 0x00000400 - thread suspended (return true)
 450 // 0x00001000 - thread is in a suspend equivalent state (return true)
 451 // 0x00002000 - thread is native and walkable (return true)
 452 // 0x00004000 - thread is native_trans and walkable (needed retry)
 453 //
 454 // set in wait_for_ext_suspend_completion():
 455 // 0x00010000 - routine was entered
 456 // 0x00020000 - suspend request cancelled before loop (return false)
 457 // 0x00040000 - thread suspended before loop (return true)
 458 // 0x00080000 - suspend request cancelled in loop (return false)
 459 // 0x00100000 - thread suspended in loop (return true)
 460 // 0x00200000 - suspend not completed during retry loop (return false)
 461 
 462 // Helper class for tracing suspend wait debug bits.
 463 //
 464 // 0x00000100 indicates that the target thread exited before it could
 465 // self-suspend which is not a wait failure. 0x00000200, 0x00020000 and
 466 // 0x00080000 each indicate a cancelled suspend request so they don't
 467 // count as wait failures either.
 468 #define DEBUG_FALSE_BITS (0x00000010 | 0x00200000)
 469 
 470 class TraceSuspendDebugBits : public StackObj {
 471  private:
 472   JavaThread * jt;
 473   bool         is_wait;
 474   bool         called_by_wait;  // meaningful when !is_wait
 475   uint32_t *   bits;
 476 
 477  public:
 478   TraceSuspendDebugBits(JavaThread *_jt, bool _is_wait, bool _called_by_wait,
 479                         uint32_t *_bits) {
 480     jt             = _jt;
 481     is_wait        = _is_wait;
 482     called_by_wait = _called_by_wait;
 483     bits           = _bits;
 484   }
 485 
 486   ~TraceSuspendDebugBits() {
 487     if (!is_wait) {
 488 #if 1
 489       // By default, don't trace bits for is_ext_suspend_completed() calls.
 490       // That trace is very chatty.
 491       return;
 492 #else
 493       if (!called_by_wait) {
 494         // If tracing for is_ext_suspend_completed() is enabled, then only
 495         // trace calls to it from wait_for_ext_suspend_completion()
 496         return;
 497       }
 498 #endif
 499     }
 500 
 501     if (AssertOnSuspendWaitFailure || TraceSuspendWaitFailures) {
 502       if (bits != NULL && (*bits & DEBUG_FALSE_BITS) != 0) {
 503         MutexLocker ml(Threads_lock);  // needed for get_thread_name()
 504         ResourceMark rm;
 505 
 506         tty->print_cr(
 507                       "Failed wait_for_ext_suspend_completion(thread=%s, debug_bits=%x)",
 508                       jt->get_thread_name(), *bits);
 509 
 510         guarantee(!AssertOnSuspendWaitFailure, "external suspend wait failed");
 511       }
 512     }
 513   }
 514 };
 515 #undef DEBUG_FALSE_BITS
 516 
 517 
 518 bool JavaThread::is_ext_suspend_completed(bool called_by_wait, int delay,
 519                                           uint32_t *bits) {
 520   TraceSuspendDebugBits tsdb(this, false /* !is_wait */, called_by_wait, bits);
 521 
 522   bool did_trans_retry = false;  // only do thread_in_native_trans retry once
 523   bool do_trans_retry;           // flag to force the retry
 524 
 525   *bits |= 0x00000001;
 526 
 527   do {
 528     do_trans_retry = false;
 529 
 530     if (is_exiting()) {
 531       // Thread is in the process of exiting. This is always checked
 532       // first to reduce the risk of dereferencing a freed JavaThread.
 533       *bits |= 0x00000100;
 534       return false;
 535     }
 536 
 537     if (!is_external_suspend()) {
 538       // Suspend request is cancelled. This is always checked before
 539       // is_ext_suspended() to reduce the risk of a rogue resume
 540       // confusing the thread that made the suspend request.
 541       *bits |= 0x00000200;
 542       return false;
 543     }
 544 
 545     if (is_ext_suspended()) {
 546       // thread is suspended
 547       *bits |= 0x00000400;
 548       return true;
 549     }
 550 
 551     // Now that we no longer do hard suspends of threads running
 552     // native code, the target thread can be changing thread state
 553     // while we are in this routine:
 554     //
 555     //   _thread_in_native -> _thread_in_native_trans -> _thread_blocked
 556     //
 557     // We save a copy of the thread state as observed at this moment
 558     // and make our decision about suspend completeness based on the
 559     // copy. This closes the race where the thread state is seen as
 560     // _thread_in_native_trans in the if-thread_blocked check, but is
 561     // seen as _thread_blocked in if-thread_in_native_trans check.
 562     JavaThreadState save_state = thread_state();
 563 
 564     if (save_state == _thread_blocked && is_suspend_equivalent()) {
 565       // If the thread's state is _thread_blocked and this blocking
 566       // condition is known to be equivalent to a suspend, then we can
 567       // consider the thread to be externally suspended. This means that
 568       // the code that sets _thread_blocked has been modified to do
 569       // self-suspension if the blocking condition releases. We also
 570       // used to check for CONDVAR_WAIT here, but that is now covered by
 571       // the _thread_blocked with self-suspension check.
 572       //
 573       // Return true since we wouldn't be here unless there was still an
 574       // external suspend request.
 575       *bits |= 0x00001000;
 576       return true;
 577     } else if (save_state == _thread_in_native && frame_anchor()->walkable()) {
 578       // Threads running native code will self-suspend on native==>VM/Java
 579       // transitions. If its stack is walkable (should always be the case
 580       // unless this function is called before the actual java_suspend()
 581       // call), then the wait is done.
 582       *bits |= 0x00002000;
 583       return true;
 584     } else if (!called_by_wait && !did_trans_retry &&
 585                save_state == _thread_in_native_trans &&
 586                frame_anchor()->walkable()) {
 587       // The thread is transitioning from thread_in_native to another
 588       // thread state. check_safepoint_and_suspend_for_native_trans()
 589       // will force the thread to self-suspend. If it hasn't gotten
 590       // there yet we may have caught the thread in-between the native
 591       // code check above and the self-suspend. Lucky us. If we were
 592       // called by wait_for_ext_suspend_completion(), then it
 593       // will be doing the retries so we don't have to.
 594       //
 595       // Since we use the saved thread state in the if-statement above,
 596       // there is a chance that the thread has already transitioned to
 597       // _thread_blocked by the time we get here. In that case, we will
 598       // make a single unnecessary pass through the logic below. This
 599       // doesn't hurt anything since we still do the trans retry.
 600 
 601       *bits |= 0x00004000;
 602 
 603       // Once the thread leaves thread_in_native_trans for another
 604       // thread state, we break out of this retry loop. We shouldn't
 605       // need this flag to prevent us from getting back here, but
 606       // sometimes paranoia is good.
 607       did_trans_retry = true;
 608 
 609       // We wait for the thread to transition to a more usable state.
 610       for (int i = 1; i <= SuspendRetryCount; i++) {
 611         // We used to do an "os::yield_all(i)" call here with the intention
 612         // that yielding would increase on each retry. However, the parameter
 613         // is ignored on Linux which means the yield didn't scale up. Waiting
 614         // on the SR_lock below provides a much more predictable scale up for
 615         // the delay. It also provides a simple/direct point to check for any
 616         // safepoint requests from the VMThread
 617 
 618         // temporarily drops SR_lock while doing wait with safepoint check
 619         // (if we're a JavaThread - the WatcherThread can also call this)
 620         // and increase delay with each retry
 621         SR_lock()->wait(!Thread::current()->is_Java_thread(), i * delay);
 622 
 623         // check the actual thread state instead of what we saved above
 624         if (thread_state() != _thread_in_native_trans) {
 625           // the thread has transitioned to another thread state so
 626           // try all the checks (except this one) one more time.
 627           do_trans_retry = true;
 628           break;
 629         }
 630       } // end retry loop
 631 
 632 
 633     }
 634   } while (do_trans_retry);
 635 
 636   *bits |= 0x00000010;
 637   return false;
 638 }
 639 
 640 // Wait for an external suspend request to complete (or be cancelled).
 641 // Returns true if the thread is externally suspended and false otherwise.
 642 //
 643 bool JavaThread::wait_for_ext_suspend_completion(int retries, int delay,
 644                                                  uint32_t *bits) {
 645   TraceSuspendDebugBits tsdb(this, true /* is_wait */,
 646                              false /* !called_by_wait */, bits);
 647 
 648   // local flag copies to minimize SR_lock hold time
 649   bool is_suspended;
 650   bool pending;
 651   uint32_t reset_bits;
 652 
 653   // set a marker so is_ext_suspend_completed() knows we are the caller
 654   *bits |= 0x00010000;
 655 
 656   // We use reset_bits to reinitialize the bits value at the top of
 657   // each retry loop. This allows the caller to make use of any
 658   // unused bits for their own marking purposes.
 659   reset_bits = *bits;
 660 
 661   {
 662     MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
 663     is_suspended = is_ext_suspend_completed(true /* called_by_wait */,
 664                                             delay, bits);
 665     pending = is_external_suspend();
 666   }
 667   // must release SR_lock to allow suspension to complete
 668 
 669   if (!pending) {
 670     // A cancelled suspend request is the only false return from
 671     // is_ext_suspend_completed() that keeps us from entering the
 672     // retry loop.
 673     *bits |= 0x00020000;
 674     return false;
 675   }
 676 
 677   if (is_suspended) {
 678     *bits |= 0x00040000;
 679     return true;
 680   }
 681 
 682   for (int i = 1; i <= retries; i++) {
 683     *bits = reset_bits;  // reinit to only track last retry
 684 
 685     // We used to do an "os::yield_all(i)" call here with the intention
 686     // that yielding would increase on each retry. However, the parameter
 687     // is ignored on Linux which means the yield didn't scale up. Waiting
 688     // on the SR_lock below provides a much more predictable scale up for
 689     // the delay. It also provides a simple/direct point to check for any
 690     // safepoint requests from the VMThread
 691 
 692     {
 693       MutexLocker ml(SR_lock());
 694       // wait with safepoint check (if we're a JavaThread - the WatcherThread
 695       // can also call this)  and increase delay with each retry
 696       SR_lock()->wait(!Thread::current()->is_Java_thread(), i * delay);
 697 
 698       is_suspended = is_ext_suspend_completed(true /* called_by_wait */,
 699                                               delay, bits);
 700 
 701       // It is possible for the external suspend request to be cancelled
 702       // (by a resume) before the actual suspend operation is completed.
 703       // Refresh our local copy to see if we still need to wait.
 704       pending = is_external_suspend();
 705     }
 706 
 707     if (!pending) {
 708       // A cancelled suspend request is the only false return from
 709       // is_ext_suspend_completed() that keeps us from staying in the
 710       // retry loop.
 711       *bits |= 0x00080000;
 712       return false;
 713     }
 714 
 715     if (is_suspended) {
 716       *bits |= 0x00100000;
 717       return true;
 718     }
 719   } // end retry loop
 720 
 721   // thread did not suspend after all our retries
 722   *bits |= 0x00200000;
 723   return false;
 724 }
 725 
 726 #ifndef PRODUCT
 727 void JavaThread::record_jump(address target, address instr, const char* file,
 728                              int line) {
 729 
 730   // This should not need to be atomic as the only way for simultaneous
 731   // updates is via interrupts. Even then this should be rare or non-existent
 732   // and we don't care that much anyway.
 733 
 734   int index = _jmp_ring_index;
 735   _jmp_ring_index = (index + 1) & (jump_ring_buffer_size - 1);
 736   _jmp_ring[index]._target = (intptr_t) target;
 737   _jmp_ring[index]._instruction = (intptr_t) instr;
 738   _jmp_ring[index]._file = file;
 739   _jmp_ring[index]._line = line;
 740 }
 741 #endif // PRODUCT
 742 
 743 // Called by flat profiler
 744 // Callers have already called wait_for_ext_suspend_completion
 745 // The assertion for that is currently too complex to put here:
 746 bool JavaThread::profile_last_Java_frame(frame* _fr) {
 747   bool gotframe = false;
 748   // self suspension saves needed state.
 749   if (has_last_Java_frame() && _anchor.walkable()) {
 750     *_fr = pd_last_frame();
 751     gotframe = true;
 752   }
 753   return gotframe;
 754 }
 755 
 756 void Thread::interrupt(Thread* thread) {
 757   debug_only(check_for_dangling_thread_pointer(thread);)
 758   os::interrupt(thread);
 759 }
 760 
 761 bool Thread::is_interrupted(Thread* thread, bool clear_interrupted) {
 762   debug_only(check_for_dangling_thread_pointer(thread);)
 763   // Note:  If clear_interrupted==false, this simply fetches and
 764   // returns the value of the field osthread()->interrupted().
 765   return os::is_interrupted(thread, clear_interrupted);
 766 }
 767 
 768 
 769 // GC Support
 770 bool Thread::claim_oops_do_par_case(int strong_roots_parity) {
 771   jint thread_parity = _oops_do_parity;
 772   if (thread_parity != strong_roots_parity) {
 773     jint res = Atomic::cmpxchg(strong_roots_parity, &_oops_do_parity, thread_parity);
 774     if (res == thread_parity) {
 775       return true;
 776     } else {
 777       guarantee(res == strong_roots_parity, "Or else what?");
 778       return false;
 779     }
 780   }
 781   return false;
 782 }
 783 
 784 void Thread::oops_do(OopClosure* f, CodeBlobClosure* cf) {
 785   active_handles()->oops_do(f);
 786   // Do oop for ThreadShadow
 787   f->do_oop((oop*)&_pending_exception);
 788   handle_area()->oops_do(f);
 789 }
 790 
 791 void Thread::metadata_handles_do(void f(Metadata*)) {
 792   // Only walk the Handles in Thread.
 793   if (metadata_handles() != NULL) {
 794     for (int i = 0; i< metadata_handles()->length(); i++) {
 795       f(metadata_handles()->at(i));
 796     }
 797   }
 798 }
 799 
 800 void Thread::print_on(outputStream* st) const {
 801   // get_priority assumes osthread initialized
 802   if (osthread() != NULL) {
 803     int os_prio;
 804     if (os::get_native_priority(this, &os_prio) == OS_OK) {
 805       st->print("os_prio=%d ", os_prio);
 806     }
 807     st->print("tid=" INTPTR_FORMAT " ", p2i(this));
 808     ext().print_on(st);
 809     osthread()->print_on(st);
 810   }
 811   debug_only(if (WizardMode) print_owned_locks_on(st);)
 812 }
 813 
 814 // Thread::print_on_error() is called by fatal error handler. Don't use
 815 // any lock or allocate memory.
 816 void Thread::print_on_error(outputStream* st, char* buf, int buflen) const {
 817   assert(!(is_Compiler_thread() || is_Java_thread()), "Can't call name() here if it allocates");
 818 
 819   if (is_VM_thread())                 { st->print("VMThread"); }
 820   else if (is_GC_task_thread())       { st->print("GCTaskThread"); }
 821   else if (is_Watcher_thread())       { st->print("WatcherThread"); }
 822   else if (is_ConcurrentGC_thread())  { st->print("ConcurrentGCThread"); }
 823   else                                { st->print("Thread"); }
 824 
 825   if (is_Named_thread()) {
 826     st->print(" \"%s\"", name());
 827   }
 828 
 829   st->print(" [stack: " PTR_FORMAT "," PTR_FORMAT "]",
 830             p2i(stack_end()), p2i(stack_base()));
 831 
 832   if (osthread()) {
 833     st->print(" [id=%d]", osthread()->thread_id());
 834   }
 835 }
 836 
 837 #ifdef ASSERT
 838 void Thread::print_owned_locks_on(outputStream* st) const {
 839   Monitor *cur = _owned_locks;
 840   if (cur == NULL) {
 841     st->print(" (no locks) ");
 842   } else {
 843     st->print_cr(" Locks owned:");
 844     while (cur) {
 845       cur->print_on(st);
 846       cur = cur->next();
 847     }
 848   }
 849 }
 850 
 851 static int ref_use_count  = 0;
 852 
 853 bool Thread::owns_locks_but_compiled_lock() const {
 854   for (Monitor *cur = _owned_locks; cur; cur = cur->next()) {
 855     if (cur != Compile_lock) return true;
 856   }
 857   return false;
 858 }
 859 
 860 
 861 #endif
 862 
 863 #ifndef PRODUCT
 864 
 865 // The flag: potential_vm_operation notifies if this particular safepoint state could potential
 866 // invoke the vm-thread (i.e., and oop allocation). In that case, we also have to make sure that
 867 // no threads which allow_vm_block's are held
 868 void Thread::check_for_valid_safepoint_state(bool potential_vm_operation) {
 869   // Check if current thread is allowed to block at a safepoint
 870   if (!(_allow_safepoint_count == 0)) {
 871     fatal("Possible safepoint reached by thread that does not allow it");
 872   }
 873   if (is_Java_thread() && ((JavaThread*)this)->thread_state() != _thread_in_vm) {
 874     fatal("LEAF method calling lock?");
 875   }
 876 
 877 #ifdef ASSERT
 878   if (potential_vm_operation && is_Java_thread()
 879       && !Universe::is_bootstrapping()) {
 880     // Make sure we do not hold any locks that the VM thread also uses.
 881     // This could potentially lead to deadlocks
 882     for (Monitor *cur = _owned_locks; cur; cur = cur->next()) {
 883       // Threads_lock is special, since the safepoint synchronization will not start before this is
 884       // acquired. Hence, a JavaThread cannot be holding it at a safepoint. So is VMOperationRequest_lock,
 885       // since it is used to transfer control between JavaThreads and the VMThread
 886       // Do not *exclude* any locks unless you are absolutely sure it is correct. Ask someone else first!
 887       if ((cur->allow_vm_block() &&
 888            cur != Threads_lock &&
 889            cur != Compile_lock &&               // Temporary: should not be necessary when we get separate compilation
 890            cur != VMOperationRequest_lock &&
 891            cur != VMOperationQueue_lock) ||
 892            cur->rank() == Mutex::special) {
 893         fatal("Thread holding lock at safepoint that vm can block on: %s", cur->name());
 894       }
 895     }
 896   }
 897 
 898   if (GCALotAtAllSafepoints) {
 899     // We could enter a safepoint here and thus have a gc
 900     InterfaceSupport::check_gc_alot();
 901   }
 902 #endif
 903 }
 904 #endif
 905 
 906 bool Thread::is_in_stack(address adr) const {
 907   assert(Thread::current() == this, "is_in_stack can only be called from current thread");
 908   address end = os::current_stack_pointer();
 909   // Allow non Java threads to call this without stack_base
 910   if (_stack_base == NULL) return true;
 911   if (stack_base() >= adr && adr >= end) return true;
 912 
 913   return false;
 914 }
 915 
 916 bool Thread::is_in_usable_stack(address adr) const {
 917   size_t stack_guard_size = os::uses_stack_guard_pages() ? JavaThread::stack_guard_zone_size() : 0;
 918   size_t usable_stack_size = _stack_size - stack_guard_size;
 919 
 920   return ((adr < stack_base()) && (adr >= stack_base() - usable_stack_size));
 921 }
 922 
 923 
 924 // We had to move these methods here, because vm threads get into ObjectSynchronizer::enter
 925 // However, there is a note in JavaThread::is_lock_owned() about the VM threads not being
 926 // used for compilation in the future. If that change is made, the need for these methods
 927 // should be revisited, and they should be removed if possible.
 928 
 929 bool Thread::is_lock_owned(address adr) const {
 930   return on_local_stack(adr);
 931 }
 932 
 933 bool Thread::set_as_starting_thread() {
 934   // NOTE: this must be called inside the main thread.
 935   return os::create_main_thread((JavaThread*)this);
 936 }
 937 
 938 static void initialize_class(Symbol* class_name, TRAPS) {
 939   Klass* klass = SystemDictionary::resolve_or_fail(class_name, true, CHECK);
 940   InstanceKlass::cast(klass)->initialize(CHECK);
 941 }
 942 
 943 
 944 // Creates the initial ThreadGroup
 945 static Handle create_initial_thread_group(TRAPS) {
 946   Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_ThreadGroup(), true, CHECK_NH);
 947   instanceKlassHandle klass (THREAD, k);
 948 
 949   Handle system_instance = klass->allocate_instance_handle(CHECK_NH);
 950   {
 951     JavaValue result(T_VOID);
 952     JavaCalls::call_special(&result,
 953                             system_instance,
 954                             klass,
 955                             vmSymbols::object_initializer_name(),
 956                             vmSymbols::void_method_signature(),
 957                             CHECK_NH);
 958   }
 959   Universe::set_system_thread_group(system_instance());
 960 
 961   Handle main_instance = klass->allocate_instance_handle(CHECK_NH);
 962   {
 963     JavaValue result(T_VOID);
 964     Handle string = java_lang_String::create_from_str("main", CHECK_NH);
 965     JavaCalls::call_special(&result,
 966                             main_instance,
 967                             klass,
 968                             vmSymbols::object_initializer_name(),
 969                             vmSymbols::threadgroup_string_void_signature(),
 970                             system_instance,
 971                             string,
 972                             CHECK_NH);
 973   }
 974   return main_instance;
 975 }
 976 
 977 // Creates the initial Thread
 978 static oop create_initial_thread(Handle thread_group, JavaThread* thread,
 979                                  TRAPS) {
 980   Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_Thread(), true, CHECK_NULL);
 981   instanceKlassHandle klass (THREAD, k);
 982   instanceHandle thread_oop = klass->allocate_instance_handle(CHECK_NULL);
 983 
 984   java_lang_Thread::set_thread(thread_oop(), thread);
 985   java_lang_Thread::set_priority(thread_oop(), NormPriority);
 986   thread->set_threadObj(thread_oop());
 987 
 988   Handle string = java_lang_String::create_from_str("main", CHECK_NULL);
 989 
 990   JavaValue result(T_VOID);
 991   JavaCalls::call_special(&result, thread_oop,
 992                           klass,
 993                           vmSymbols::object_initializer_name(),
 994                           vmSymbols::threadgroup_string_void_signature(),
 995                           thread_group,
 996                           string,
 997                           CHECK_NULL);
 998   return thread_oop();
 999 }
1000 
1001 char java_runtime_name[128] = "";
1002 char java_runtime_version[128] = "";
1003 
1004 // extract the JRE name from java.lang.VersionProps.java_runtime_name
1005 static const char* get_java_runtime_name(TRAPS) {
1006   Klass* k = SystemDictionary::find(vmSymbols::java_lang_VersionProps(),
1007                                     Handle(), Handle(), CHECK_AND_CLEAR_NULL);
1008   fieldDescriptor fd;
1009   bool found = k != NULL &&
1010                InstanceKlass::cast(k)->find_local_field(vmSymbols::java_runtime_name_name(),
1011                                                         vmSymbols::string_signature(), &fd);
1012   if (found) {
1013     oop name_oop = k->java_mirror()->obj_field(fd.offset());
1014     if (name_oop == NULL) {
1015       return NULL;
1016     }
1017     const char* name = java_lang_String::as_utf8_string(name_oop,
1018                                                         java_runtime_name,
1019                                                         sizeof(java_runtime_name));
1020     return name;
1021   } else {
1022     return NULL;
1023   }
1024 }
1025 
1026 // extract the JRE version from java.lang.VersionProps.java_runtime_version
1027 static const char* get_java_runtime_version(TRAPS) {
1028   Klass* k = SystemDictionary::find(vmSymbols::java_lang_VersionProps(),
1029                                     Handle(), Handle(), CHECK_AND_CLEAR_NULL);
1030   fieldDescriptor fd;
1031   bool found = k != NULL &&
1032                InstanceKlass::cast(k)->find_local_field(vmSymbols::java_runtime_version_name(),
1033                                                         vmSymbols::string_signature(), &fd);
1034   if (found) {
1035     oop name_oop = k->java_mirror()->obj_field(fd.offset());
1036     if (name_oop == NULL) {
1037       return NULL;
1038     }
1039     const char* name = java_lang_String::as_utf8_string(name_oop,
1040                                                         java_runtime_version,
1041                                                         sizeof(java_runtime_version));
1042     return name;
1043   } else {
1044     return NULL;
1045   }
1046 }
1047 
1048 // General purpose hook into Java code, run once when the VM is initialized.
1049 // The Java library method itself may be changed independently from the VM.
1050 static void call_postVMInitHook(TRAPS) {
1051   Klass* k = SystemDictionary::resolve_or_null(vmSymbols::jdk_internal_vm_PostVMInitHook(), THREAD);
1052   instanceKlassHandle klass (THREAD, k);
1053   if (klass.not_null()) {
1054     JavaValue result(T_VOID);
1055     JavaCalls::call_static(&result, klass, vmSymbols::run_method_name(),
1056                            vmSymbols::void_method_signature(),
1057                            CHECK);
1058   }
1059 }
1060 
1061 static void reset_vm_info_property(TRAPS) {
1062   // the vm info string
1063   ResourceMark rm(THREAD);
1064   const char *vm_info = VM_Version::vm_info_string();
1065 
1066   // java.lang.System class
1067   Klass* k =  SystemDictionary::resolve_or_fail(vmSymbols::java_lang_System(), true, CHECK);
1068   instanceKlassHandle klass (THREAD, k);
1069 
1070   // setProperty arguments
1071   Handle key_str    = java_lang_String::create_from_str("java.vm.info", CHECK);
1072   Handle value_str  = java_lang_String::create_from_str(vm_info, CHECK);
1073 
1074   // return value
1075   JavaValue r(T_OBJECT);
1076 
1077   // public static String setProperty(String key, String value);
1078   JavaCalls::call_static(&r,
1079                          klass,
1080                          vmSymbols::setProperty_name(),
1081                          vmSymbols::string_string_string_signature(),
1082                          key_str,
1083                          value_str,
1084                          CHECK);
1085 }
1086 
1087 
1088 void JavaThread::allocate_threadObj(Handle thread_group, const char* thread_name,
1089                                     bool daemon, TRAPS) {
1090   assert(thread_group.not_null(), "thread group should be specified");
1091   assert(threadObj() == NULL, "should only create Java thread object once");
1092 
1093   Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_Thread(), true, CHECK);
1094   instanceKlassHandle klass (THREAD, k);
1095   instanceHandle thread_oop = klass->allocate_instance_handle(CHECK);
1096 
1097   java_lang_Thread::set_thread(thread_oop(), this);
1098   java_lang_Thread::set_priority(thread_oop(), NormPriority);
1099   set_threadObj(thread_oop());
1100 
1101   JavaValue result(T_VOID);
1102   if (thread_name != NULL) {
1103     Handle name = java_lang_String::create_from_str(thread_name, CHECK);
1104     // Thread gets assigned specified name and null target
1105     JavaCalls::call_special(&result,
1106                             thread_oop,
1107                             klass,
1108                             vmSymbols::object_initializer_name(),
1109                             vmSymbols::threadgroup_string_void_signature(),
1110                             thread_group, // Argument 1
1111                             name,         // Argument 2
1112                             THREAD);
1113   } else {
1114     // Thread gets assigned name "Thread-nnn" and null target
1115     // (java.lang.Thread doesn't have a constructor taking only a ThreadGroup argument)
1116     JavaCalls::call_special(&result,
1117                             thread_oop,
1118                             klass,
1119                             vmSymbols::object_initializer_name(),
1120                             vmSymbols::threadgroup_runnable_void_signature(),
1121                             thread_group, // Argument 1
1122                             Handle(),     // Argument 2
1123                             THREAD);
1124   }
1125 
1126 
1127   if (daemon) {
1128     java_lang_Thread::set_daemon(thread_oop());
1129   }
1130 
1131   if (HAS_PENDING_EXCEPTION) {
1132     return;
1133   }
1134 
1135   KlassHandle group(THREAD, SystemDictionary::ThreadGroup_klass());
1136   Handle threadObj(THREAD, this->threadObj());
1137 
1138   JavaCalls::call_special(&result,
1139                           thread_group,
1140                           group,
1141                           vmSymbols::add_method_name(),
1142                           vmSymbols::thread_void_signature(),
1143                           threadObj,          // Arg 1
1144                           THREAD);
1145 }
1146 
1147 // NamedThread --  non-JavaThread subclasses with multiple
1148 // uniquely named instances should derive from this.
1149 NamedThread::NamedThread() : Thread() {
1150   _name = NULL;
1151   _processed_thread = NULL;
1152   _gc_id = GCId::undefined();
1153 }
1154 
1155 NamedThread::~NamedThread() {
1156   if (_name != NULL) {
1157     FREE_C_HEAP_ARRAY(char, _name);
1158     _name = NULL;
1159   }
1160 }
1161 
1162 void NamedThread::set_name(const char* format, ...) {
1163   guarantee(_name == NULL, "Only get to set name once.");
1164   _name = NEW_C_HEAP_ARRAY(char, max_name_len, mtThread);
1165   guarantee(_name != NULL, "alloc failure");
1166   va_list ap;
1167   va_start(ap, format);
1168   jio_vsnprintf(_name, max_name_len, format, ap);
1169   va_end(ap);
1170 }
1171 
1172 void NamedThread::initialize_named_thread() {
1173   set_native_thread_name(name());
1174 }
1175 
1176 void NamedThread::print_on(outputStream* st) const {
1177   st->print("\"%s\" ", name());
1178   Thread::print_on(st);
1179   st->cr();
1180 }
1181 
1182 
1183 // ======= WatcherThread ========
1184 
1185 // The watcher thread exists to simulate timer interrupts.  It should
1186 // be replaced by an abstraction over whatever native support for
1187 // timer interrupts exists on the platform.
1188 
1189 WatcherThread* WatcherThread::_watcher_thread   = NULL;
1190 bool WatcherThread::_startable = false;
1191 volatile bool  WatcherThread::_should_terminate = false;
1192 
1193 WatcherThread::WatcherThread() : Thread(), _crash_protection(NULL) {
1194   assert(watcher_thread() == NULL, "we can only allocate one WatcherThread");
1195   if (os::create_thread(this, os::watcher_thread)) {
1196     _watcher_thread = this;
1197 
1198     // Set the watcher thread to the highest OS priority which should not be
1199     // used, unless a Java thread with priority java.lang.Thread.MAX_PRIORITY
1200     // is created. The only normal thread using this priority is the reference
1201     // handler thread, which runs for very short intervals only.
1202     // If the VMThread's priority is not lower than the WatcherThread profiling
1203     // will be inaccurate.
1204     os::set_priority(this, MaxPriority);
1205     if (!DisableStartThread) {
1206       os::start_thread(this);
1207     }
1208   }
1209 }
1210 
1211 int WatcherThread::sleep() const {
1212   // The WatcherThread does not participate in the safepoint protocol
1213   // for the PeriodicTask_lock because it is not a JavaThread.
1214   MutexLockerEx ml(PeriodicTask_lock, Mutex::_no_safepoint_check_flag);
1215 
1216   if (_should_terminate) {
1217     // check for termination before we do any housekeeping or wait
1218     return 0;  // we did not sleep.
1219   }
1220 
1221   // remaining will be zero if there are no tasks,
1222   // causing the WatcherThread to sleep until a task is
1223   // enrolled
1224   int remaining = PeriodicTask::time_to_wait();
1225   int time_slept = 0;
1226 
1227   // we expect this to timeout - we only ever get unparked when
1228   // we should terminate or when a new task has been enrolled
1229   OSThreadWaitState osts(this->osthread(), false /* not Object.wait() */);
1230 
1231   jlong time_before_loop = os::javaTimeNanos();
1232 
1233   while (true) {
1234     bool timedout = PeriodicTask_lock->wait(Mutex::_no_safepoint_check_flag,
1235                                             remaining);
1236     jlong now = os::javaTimeNanos();
1237 
1238     if (remaining == 0) {
1239       // if we didn't have any tasks we could have waited for a long time
1240       // consider the time_slept zero and reset time_before_loop
1241       time_slept = 0;
1242       time_before_loop = now;
1243     } else {
1244       // need to recalculate since we might have new tasks in _tasks
1245       time_slept = (int) ((now - time_before_loop) / 1000000);
1246     }
1247 
1248     // Change to task list or spurious wakeup of some kind
1249     if (timedout || _should_terminate) {
1250       break;
1251     }
1252 
1253     remaining = PeriodicTask::time_to_wait();
1254     if (remaining == 0) {
1255       // Last task was just disenrolled so loop around and wait until
1256       // another task gets enrolled
1257       continue;
1258     }
1259 
1260     remaining -= time_slept;
1261     if (remaining <= 0) {
1262       break;
1263     }
1264   }
1265 
1266   return time_slept;
1267 }
1268 
1269 void WatcherThread::run() {
1270   assert(this == watcher_thread(), "just checking");
1271 
1272   this->record_stack_base_and_size();
1273   this->set_native_thread_name(this->name());
1274   this->set_active_handles(JNIHandleBlock::allocate_block());
1275   while (true) {
1276     assert(watcher_thread() == Thread::current(), "thread consistency check");
1277     assert(watcher_thread() == this, "thread consistency check");
1278 
1279     // Calculate how long it'll be until the next PeriodicTask work
1280     // should be done, and sleep that amount of time.
1281     int time_waited = sleep();
1282 
1283     if (is_error_reported()) {
1284       // A fatal error has happened, the error handler(VMError::report_and_die)
1285       // should abort JVM after creating an error log file. However in some
1286       // rare cases, the error handler itself might deadlock. Here we try to
1287       // kill JVM if the fatal error handler fails to abort in 2 minutes.
1288       //
1289       // This code is in WatcherThread because WatcherThread wakes up
1290       // periodically so the fatal error handler doesn't need to do anything;
1291       // also because the WatcherThread is less likely to crash than other
1292       // threads.
1293 
1294       for (;;) {
1295         if (!ShowMessageBoxOnError
1296             && (OnError == NULL || OnError[0] == '\0')
1297             && Arguments::abort_hook() == NULL) {
1298           os::sleep(this, (jlong)ErrorLogTimeout * 1000, false); // in seconds
1299           fdStream err(defaultStream::output_fd());
1300           err.print_raw_cr("# [ timer expired, abort... ]");
1301           // skip atexit/vm_exit/vm_abort hooks
1302           os::die();
1303         }
1304 
1305         // Wake up 5 seconds later, the fatal handler may reset OnError or
1306         // ShowMessageBoxOnError when it is ready to abort.
1307         os::sleep(this, 5 * 1000, false);
1308       }
1309     }
1310 
1311     if (_should_terminate) {
1312       // check for termination before posting the next tick
1313       break;
1314     }
1315 
1316     PeriodicTask::real_time_tick(time_waited);
1317   }
1318 
1319   // Signal that it is terminated
1320   {
1321     MutexLockerEx mu(Terminator_lock, Mutex::_no_safepoint_check_flag);
1322     _watcher_thread = NULL;
1323     Terminator_lock->notify();
1324   }
1325 }
1326 
1327 void WatcherThread::start() {
1328   assert(PeriodicTask_lock->owned_by_self(), "PeriodicTask_lock required");
1329 
1330   if (watcher_thread() == NULL && _startable) {
1331     _should_terminate = false;
1332     // Create the single instance of WatcherThread
1333     new WatcherThread();
1334   }
1335 }
1336 
1337 void WatcherThread::make_startable() {
1338   assert(PeriodicTask_lock->owned_by_self(), "PeriodicTask_lock required");
1339   _startable = true;
1340 }
1341 
1342 void WatcherThread::stop() {
1343   {
1344     // Follow normal safepoint aware lock enter protocol since the
1345     // WatcherThread is stopped by another JavaThread.
1346     MutexLocker ml(PeriodicTask_lock);
1347     _should_terminate = true;
1348 
1349     WatcherThread* watcher = watcher_thread();
1350     if (watcher != NULL) {
1351       // unpark the WatcherThread so it can see that it should terminate
1352       watcher->unpark();
1353     }
1354   }
1355 
1356   MutexLocker mu(Terminator_lock);
1357 
1358   while (watcher_thread() != NULL) {
1359     // This wait should make safepoint checks, wait without a timeout,
1360     // and wait as a suspend-equivalent condition.
1361     //
1362     // Note: If the FlatProfiler is running, then this thread is waiting
1363     // for the WatcherThread to terminate and the WatcherThread, via the
1364     // FlatProfiler task, is waiting for the external suspend request on
1365     // this thread to complete. wait_for_ext_suspend_completion() will
1366     // eventually timeout, but that takes time. Making this wait a
1367     // suspend-equivalent condition solves that timeout problem.
1368     //
1369     Terminator_lock->wait(!Mutex::_no_safepoint_check_flag, 0,
1370                           Mutex::_as_suspend_equivalent_flag);
1371   }
1372 }
1373 
1374 void WatcherThread::unpark() {
1375   assert(PeriodicTask_lock->owned_by_self(), "PeriodicTask_lock required");
1376   PeriodicTask_lock->notify();
1377 }
1378 
1379 void WatcherThread::print_on(outputStream* st) const {
1380   st->print("\"%s\" ", name());
1381   Thread::print_on(st);
1382   st->cr();
1383 }
1384 
1385 // ======= JavaThread ========
1386 
1387 #if INCLUDE_JVMCI
1388 
1389 jlong* JavaThread::_jvmci_old_thread_counters;
1390 
1391 bool jvmci_counters_include(JavaThread* thread) {
1392   oop threadObj = thread->threadObj();
1393   return !JVMCICountersExcludeCompiler || !thread->is_Compiler_thread();
1394 }
1395 
1396 void JavaThread::collect_counters(typeArrayOop array) {
1397   if (JVMCICounterSize > 0) {
1398     MutexLocker tl(Threads_lock);
1399     for (int i = 0; i < array->length(); i++) {
1400       array->long_at_put(i, _jvmci_old_thread_counters[i]);
1401     }
1402     for (JavaThread* tp = Threads::first(); tp != NULL; tp = tp->next()) {
1403       if (jvmci_counters_include(tp)) {
1404         for (int i = 0; i < array->length(); i++) {
1405           array->long_at_put(i, array->long_at(i) + tp->_jvmci_counters[i]);
1406         }
1407       }
1408     }
1409   }
1410 }
1411 
1412 #endif // INCLUDE_JVMCI
1413 
1414 // A JavaThread is a normal Java thread
1415 
1416 void JavaThread::initialize() {
1417   // Initialize fields
1418 
1419   set_saved_exception_pc(NULL);
1420   set_threadObj(NULL);
1421   _anchor.clear();
1422   set_entry_point(NULL);
1423   set_jni_functions(jni_functions());
1424   set_callee_target(NULL);
1425   set_vm_result(NULL);
1426   set_vm_result_2(NULL);
1427   set_vframe_array_head(NULL);
1428   set_vframe_array_last(NULL);
1429   set_deferred_locals(NULL);
1430   set_deopt_mark(NULL);
1431   set_deopt_compiled_method(NULL);
1432   clear_must_deopt_id();
1433   set_monitor_chunks(NULL);
1434   set_next(NULL);
1435   set_thread_state(_thread_new);
1436   _terminated = _not_terminated;
1437   _privileged_stack_top = NULL;
1438   _array_for_gc = NULL;
1439   _suspend_equivalent = false;
1440   _in_deopt_handler = 0;
1441   _doing_unsafe_access = false;
1442   _stack_guard_state = stack_guard_unused;
1443 #if INCLUDE_JVMCI
1444   _pending_monitorenter = false;
1445   _pending_deoptimization = -1;
1446   _pending_failed_speculation = NULL;
1447   _pending_transfer_to_interpreter = false;
1448   _adjusting_comp_level = false;
1449   _jvmci._alternate_call_target = NULL;
1450   assert(_jvmci._implicit_exception_pc == NULL, "must be");
1451   if (JVMCICounterSize > 0) {
1452     _jvmci_counters = NEW_C_HEAP_ARRAY(jlong, JVMCICounterSize, mtInternal);
1453     memset(_jvmci_counters, 0, sizeof(jlong) * JVMCICounterSize);
1454   } else {
1455     _jvmci_counters = NULL;
1456   }
1457 #endif // INCLUDE_JVMCI
1458   _reserved_stack_activation = NULL;  // stack base not known yet
1459   (void)const_cast<oop&>(_exception_oop = oop(NULL));
1460   _exception_pc  = 0;
1461   _exception_handler_pc = 0;
1462   _is_method_handle_return = 0;
1463   _jvmti_thread_state= NULL;
1464   _should_post_on_exceptions_flag = JNI_FALSE;
1465   _jvmti_get_loaded_classes_closure = NULL;
1466   _interp_only_mode    = 0;
1467   _special_runtime_exit_condition = _no_async_condition;
1468   _pending_async_exception = NULL;
1469   _thread_stat = NULL;
1470   _thread_stat = new ThreadStatistics();
1471   _blocked_on_compilation = false;
1472   _jni_active_critical = 0;
1473   _pending_jni_exception_check_fn = NULL;
1474   _do_not_unlock_if_synchronized = false;
1475   _cached_monitor_info = NULL;
1476   _parker = Parker::Allocate(this);
1477 
1478 #ifndef PRODUCT
1479   _jmp_ring_index = 0;
1480   for (int ji = 0; ji < jump_ring_buffer_size; ji++) {
1481     record_jump(NULL, NULL, NULL, 0);
1482   }
1483 #endif // PRODUCT
1484 
1485   set_thread_profiler(NULL);
1486   if (FlatProfiler::is_active()) {
1487     // This is where we would decide to either give each thread it's own profiler
1488     // or use one global one from FlatProfiler,
1489     // or up to some count of the number of profiled threads, etc.
1490     ThreadProfiler* pp = new ThreadProfiler();
1491     pp->engage();
1492     set_thread_profiler(pp);
1493   }
1494 
1495   // Setup safepoint state info for this thread
1496   ThreadSafepointState::create(this);
1497 
1498   debug_only(_java_call_counter = 0);
1499 
1500   // JVMTI PopFrame support
1501   _popframe_condition = popframe_inactive;
1502   _popframe_preserved_args = NULL;
1503   _popframe_preserved_args_size = 0;
1504   _frames_to_pop_failed_realloc = 0;
1505 
1506   pd_initialize();
1507 }
1508 
1509 #if INCLUDE_ALL_GCS
1510 SATBMarkQueueSet JavaThread::_satb_mark_queue_set;
1511 DirtyCardQueueSet JavaThread::_dirty_card_queue_set;
1512 #endif // INCLUDE_ALL_GCS
1513 
1514 JavaThread::JavaThread(bool is_attaching_via_jni) :
1515                        Thread()
1516 #if INCLUDE_ALL_GCS
1517                        , _satb_mark_queue(&_satb_mark_queue_set),
1518                        _dirty_card_queue(&_dirty_card_queue_set)
1519 #endif // INCLUDE_ALL_GCS
1520 {
1521   initialize();
1522   if (is_attaching_via_jni) {
1523     _jni_attach_state = _attaching_via_jni;
1524   } else {
1525     _jni_attach_state = _not_attaching_via_jni;
1526   }
1527   assert(deferred_card_mark().is_empty(), "Default MemRegion ctor");
1528 }
1529 
1530 bool JavaThread::reguard_stack(address cur_sp) {
1531   if (_stack_guard_state != stack_guard_yellow_reserved_disabled
1532       && _stack_guard_state != stack_guard_reserved_disabled) {
1533     return true; // Stack already guarded or guard pages not needed.
1534   }
1535 
1536   if (register_stack_overflow()) {
1537     // For those architectures which have separate register and
1538     // memory stacks, we must check the register stack to see if
1539     // it has overflowed.
1540     return false;
1541   }
1542 
1543   // Java code never executes within the yellow zone: the latter is only
1544   // there to provoke an exception during stack banging.  If java code
1545   // is executing there, either StackShadowPages should be larger, or
1546   // some exception code in c1, c2 or the interpreter isn't unwinding
1547   // when it should.
1548   guarantee(cur_sp > stack_reserved_zone_base(),
1549             "not enough space to reguard - increase StackShadowPages");
1550   if (_stack_guard_state == stack_guard_yellow_reserved_disabled) {
1551     enable_stack_yellow_reserved_zone();
1552     if (reserved_stack_activation() != stack_base()) {
1553       set_reserved_stack_activation(stack_base());
1554     }
1555   } else if (_stack_guard_state == stack_guard_reserved_disabled) {
1556     set_reserved_stack_activation(stack_base());
1557     enable_stack_reserved_zone();
1558   }
1559   return true;
1560 }
1561 
1562 bool JavaThread::reguard_stack(void) {
1563   return reguard_stack(os::current_stack_pointer());
1564 }
1565 
1566 
1567 void JavaThread::block_if_vm_exited() {
1568   if (_terminated == _vm_exited) {
1569     // _vm_exited is set at safepoint, and Threads_lock is never released
1570     // we will block here forever
1571     Threads_lock->lock_without_safepoint_check();
1572     ShouldNotReachHere();
1573   }
1574 }
1575 
1576 
1577 // Remove this ifdef when C1 is ported to the compiler interface.
1578 static void compiler_thread_entry(JavaThread* thread, TRAPS);
1579 static void sweeper_thread_entry(JavaThread* thread, TRAPS);
1580 
1581 JavaThread::JavaThread(ThreadFunction entry_point, size_t stack_sz) :
1582                        Thread()
1583 #if INCLUDE_ALL_GCS
1584                        , _satb_mark_queue(&_satb_mark_queue_set),
1585                        _dirty_card_queue(&_dirty_card_queue_set)
1586 #endif // INCLUDE_ALL_GCS
1587 {
1588   initialize();
1589   _jni_attach_state = _not_attaching_via_jni;
1590   set_entry_point(entry_point);
1591   // Create the native thread itself.
1592   // %note runtime_23
1593   os::ThreadType thr_type = os::java_thread;
1594   thr_type = entry_point == &compiler_thread_entry ? os::compiler_thread :
1595                                                      os::java_thread;
1596   os::create_thread(this, thr_type, stack_sz);
1597   // The _osthread may be NULL here because we ran out of memory (too many threads active).
1598   // We need to throw and OutOfMemoryError - however we cannot do this here because the caller
1599   // may hold a lock and all locks must be unlocked before throwing the exception (throwing
1600   // the exception consists of creating the exception object & initializing it, initialization
1601   // will leave the VM via a JavaCall and then all locks must be unlocked).
1602   //
1603   // The thread is still suspended when we reach here. Thread must be explicit started
1604   // by creator! Furthermore, the thread must also explicitly be added to the Threads list
1605   // by calling Threads:add. The reason why this is not done here, is because the thread
1606   // object must be fully initialized (take a look at JVM_Start)
1607 }
1608 
1609 JavaThread::~JavaThread() {
1610 
1611   // JSR166 -- return the parker to the free list
1612   Parker::Release(_parker);
1613   _parker = NULL;
1614 
1615   // Free any remaining  previous UnrollBlock
1616   vframeArray* old_array = vframe_array_last();
1617 
1618   if (old_array != NULL) {
1619     Deoptimization::UnrollBlock* old_info = old_array->unroll_block();
1620     old_array->set_unroll_block(NULL);
1621     delete old_info;
1622     delete old_array;
1623   }
1624 
1625   GrowableArray<jvmtiDeferredLocalVariableSet*>* deferred = deferred_locals();
1626   if (deferred != NULL) {
1627     // This can only happen if thread is destroyed before deoptimization occurs.
1628     assert(deferred->length() != 0, "empty array!");
1629     do {
1630       jvmtiDeferredLocalVariableSet* dlv = deferred->at(0);
1631       deferred->remove_at(0);
1632       // individual jvmtiDeferredLocalVariableSet are CHeapObj's
1633       delete dlv;
1634     } while (deferred->length() != 0);
1635     delete deferred;
1636   }
1637 
1638   // All Java related clean up happens in exit
1639   ThreadSafepointState::destroy(this);
1640   if (_thread_profiler != NULL) delete _thread_profiler;
1641   if (_thread_stat != NULL) delete _thread_stat;
1642 
1643 #if INCLUDE_JVMCI
1644   if (JVMCICounterSize > 0) {
1645     if (jvmci_counters_include(this)) {
1646       for (int i = 0; i < JVMCICounterSize; i++) {
1647         _jvmci_old_thread_counters[i] += _jvmci_counters[i];
1648       }
1649     }
1650     FREE_C_HEAP_ARRAY(jlong, _jvmci_counters);
1651   }
1652 #endif // INCLUDE_JVMCI
1653 }
1654 
1655 
1656 // The first routine called by a new Java thread
1657 void JavaThread::run() {
1658   // initialize thread-local alloc buffer related fields
1659   this->initialize_tlab();
1660 
1661   // used to test validity of stack trace backs
1662   this->record_base_of_stack_pointer();
1663 
1664   // Record real stack base and size.
1665   this->record_stack_base_and_size();
1666 
1667   this->create_stack_guard_pages();
1668 
1669   this->cache_global_variables();
1670 
1671   // Thread is now sufficient initialized to be handled by the safepoint code as being
1672   // in the VM. Change thread state from _thread_new to _thread_in_vm
1673   ThreadStateTransition::transition_and_fence(this, _thread_new, _thread_in_vm);
1674 
1675   assert(JavaThread::current() == this, "sanity check");
1676   assert(!Thread::current()->owns_locks(), "sanity check");
1677 
1678   DTRACE_THREAD_PROBE(start, this);
1679 
1680   // This operation might block. We call that after all safepoint checks for a new thread has
1681   // been completed.
1682   this->set_active_handles(JNIHandleBlock::allocate_block());
1683 
1684   if (JvmtiExport::should_post_thread_life()) {
1685     JvmtiExport::post_thread_start(this);
1686   }
1687 
1688   EventThreadStart event;
1689   if (event.should_commit()) {
1690     event.set_thread(THREAD_TRACE_ID(this));
1691     event.commit();
1692   }
1693 
1694   // We call another function to do the rest so we are sure that the stack addresses used
1695   // from there will be lower than the stack base just computed
1696   thread_main_inner();
1697 
1698   // Note, thread is no longer valid at this point!
1699 }
1700 
1701 
1702 void JavaThread::thread_main_inner() {
1703   assert(JavaThread::current() == this, "sanity check");
1704   assert(this->threadObj() != NULL, "just checking");
1705 
1706   // Execute thread entry point unless this thread has a pending exception
1707   // or has been stopped before starting.
1708   // Note: Due to JVM_StopThread we can have pending exceptions already!
1709   if (!this->has_pending_exception() &&
1710       !java_lang_Thread::is_stillborn(this->threadObj())) {
1711     {
1712       ResourceMark rm(this);
1713       this->set_native_thread_name(this->get_thread_name());
1714     }
1715     HandleMark hm(this);
1716     this->entry_point()(this, this);
1717   }
1718 
1719   DTRACE_THREAD_PROBE(stop, this);
1720 
1721   this->exit(false);
1722   delete this;
1723 }
1724 
1725 
1726 static void ensure_join(JavaThread* thread) {
1727   // We do not need to grap the Threads_lock, since we are operating on ourself.
1728   Handle threadObj(thread, thread->threadObj());
1729   assert(threadObj.not_null(), "java thread object must exist");
1730   ObjectLocker lock(threadObj, thread);
1731   // Ignore pending exception (ThreadDeath), since we are exiting anyway
1732   thread->clear_pending_exception();
1733   // Thread is exiting. So set thread_status field in  java.lang.Thread class to TERMINATED.
1734   java_lang_Thread::set_thread_status(threadObj(), java_lang_Thread::TERMINATED);
1735   // Clear the native thread instance - this makes isAlive return false and allows the join()
1736   // to complete once we've done the notify_all below
1737   java_lang_Thread::set_thread(threadObj(), NULL);
1738   lock.notify_all(thread);
1739   // Ignore pending exception (ThreadDeath), since we are exiting anyway
1740   thread->clear_pending_exception();
1741 }
1742 
1743 
1744 // For any new cleanup additions, please check to see if they need to be applied to
1745 // cleanup_failed_attach_current_thread as well.
1746 void JavaThread::exit(bool destroy_vm, ExitType exit_type) {
1747   assert(this == JavaThread::current(), "thread consistency check");
1748 
1749   HandleMark hm(this);
1750   Handle uncaught_exception(this, this->pending_exception());
1751   this->clear_pending_exception();
1752   Handle threadObj(this, this->threadObj());
1753   assert(threadObj.not_null(), "Java thread object should be created");
1754 
1755   if (get_thread_profiler() != NULL) {
1756     get_thread_profiler()->disengage();
1757     ResourceMark rm;
1758     get_thread_profiler()->print(get_thread_name());
1759   }
1760 
1761 
1762   // FIXIT: This code should be moved into else part, when reliable 1.2/1.3 check is in place
1763   {
1764     EXCEPTION_MARK;
1765 
1766     CLEAR_PENDING_EXCEPTION;
1767   }
1768   if (!destroy_vm) {
1769     if (uncaught_exception.not_null()) {
1770       EXCEPTION_MARK;
1771       // Call method Thread.dispatchUncaughtException().
1772       KlassHandle thread_klass(THREAD, SystemDictionary::Thread_klass());
1773       JavaValue result(T_VOID);
1774       JavaCalls::call_virtual(&result,
1775                               threadObj, thread_klass,
1776                               vmSymbols::dispatchUncaughtException_name(),
1777                               vmSymbols::throwable_void_signature(),
1778                               uncaught_exception,
1779                               THREAD);
1780       if (HAS_PENDING_EXCEPTION) {
1781         ResourceMark rm(this);
1782         jio_fprintf(defaultStream::error_stream(),
1783                     "\nException: %s thrown from the UncaughtExceptionHandler"
1784                     " in thread \"%s\"\n",
1785                     pending_exception()->klass()->external_name(),
1786                     get_thread_name());
1787         CLEAR_PENDING_EXCEPTION;
1788       }
1789     }
1790 
1791     // Called before the java thread exit since we want to read info
1792     // from java_lang_Thread object
1793     EventThreadEnd event;
1794     if (event.should_commit()) {
1795       event.set_thread(THREAD_TRACE_ID(this));
1796       event.commit();
1797     }
1798 
1799     // Call after last event on thread
1800     EVENT_THREAD_EXIT(this);
1801 
1802     // Call Thread.exit(). We try 3 times in case we got another Thread.stop during
1803     // the execution of the method. If that is not enough, then we don't really care. Thread.stop
1804     // is deprecated anyhow.
1805     if (!is_Compiler_thread()) {
1806       int count = 3;
1807       while (java_lang_Thread::threadGroup(threadObj()) != NULL && (count-- > 0)) {
1808         EXCEPTION_MARK;
1809         JavaValue result(T_VOID);
1810         KlassHandle thread_klass(THREAD, SystemDictionary::Thread_klass());
1811         JavaCalls::call_virtual(&result,
1812                                 threadObj, thread_klass,
1813                                 vmSymbols::exit_method_name(),
1814                                 vmSymbols::void_method_signature(),
1815                                 THREAD);
1816         CLEAR_PENDING_EXCEPTION;
1817       }
1818     }
1819     // notify JVMTI
1820     if (JvmtiExport::should_post_thread_life()) {
1821       JvmtiExport::post_thread_end(this);
1822     }
1823 
1824     // We have notified the agents that we are exiting, before we go on,
1825     // we must check for a pending external suspend request and honor it
1826     // in order to not surprise the thread that made the suspend request.
1827     while (true) {
1828       {
1829         MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
1830         if (!is_external_suspend()) {
1831           set_terminated(_thread_exiting);
1832           ThreadService::current_thread_exiting(this);
1833           break;
1834         }
1835         // Implied else:
1836         // Things get a little tricky here. We have a pending external
1837         // suspend request, but we are holding the SR_lock so we
1838         // can't just self-suspend. So we temporarily drop the lock
1839         // and then self-suspend.
1840       }
1841 
1842       ThreadBlockInVM tbivm(this);
1843       java_suspend_self();
1844 
1845       // We're done with this suspend request, but we have to loop around
1846       // and check again. Eventually we will get SR_lock without a pending
1847       // external suspend request and will be able to mark ourselves as
1848       // exiting.
1849     }
1850     // no more external suspends are allowed at this point
1851   } else {
1852     // before_exit() has already posted JVMTI THREAD_END events
1853   }
1854 
1855   // Notify waiters on thread object. This has to be done after exit() is called
1856   // on the thread (if the thread is the last thread in a daemon ThreadGroup the
1857   // group should have the destroyed bit set before waiters are notified).
1858   ensure_join(this);
1859   assert(!this->has_pending_exception(), "ensure_join should have cleared");
1860 
1861   // 6282335 JNI DetachCurrentThread spec states that all Java monitors
1862   // held by this thread must be released. The spec does not distinguish
1863   // between JNI-acquired and regular Java monitors. We can only see
1864   // regular Java monitors here if monitor enter-exit matching is broken.
1865   //
1866   // Optionally release any monitors for regular JavaThread exits. This
1867   // is provided as a work around for any bugs in monitor enter-exit
1868   // matching. This can be expensive so it is not enabled by default.
1869   //
1870   // ensure_join() ignores IllegalThreadStateExceptions, and so does
1871   // ObjectSynchronizer::release_monitors_owned_by_thread().
1872   if (exit_type == jni_detach || ObjectMonitor::Knob_ExitRelease) {
1873     // Sanity check even though JNI DetachCurrentThread() would have
1874     // returned JNI_ERR if there was a Java frame. JavaThread exit
1875     // should be done executing Java code by the time we get here.
1876     assert(!this->has_last_Java_frame(),
1877            "should not have a Java frame when detaching or exiting");
1878     ObjectSynchronizer::release_monitors_owned_by_thread(this);
1879     assert(!this->has_pending_exception(), "release_monitors should have cleared");
1880   }
1881 
1882   // These things needs to be done while we are still a Java Thread. Make sure that thread
1883   // is in a consistent state, in case GC happens
1884   assert(_privileged_stack_top == NULL, "must be NULL when we get here");
1885 
1886   if (active_handles() != NULL) {
1887     JNIHandleBlock* block = active_handles();
1888     set_active_handles(NULL);
1889     JNIHandleBlock::release_block(block);
1890   }
1891 
1892   if (free_handle_block() != NULL) {
1893     JNIHandleBlock* block = free_handle_block();
1894     set_free_handle_block(NULL);
1895     JNIHandleBlock::release_block(block);
1896   }
1897 
1898   // These have to be removed while this is still a valid thread.
1899   remove_stack_guard_pages();
1900 
1901   if (UseTLAB) {
1902     tlab().make_parsable(true);  // retire TLAB
1903   }
1904 
1905   if (JvmtiEnv::environments_might_exist()) {
1906     JvmtiExport::cleanup_thread(this);
1907   }
1908 
1909   // We must flush any deferred card marks before removing a thread from
1910   // the list of active threads.
1911   GC::gc()->heap()->flush_deferred_store_barrier(this);
1912   assert(deferred_card_mark().is_empty(), "Should have been flushed");
1913 
1914 #if INCLUDE_ALL_GCS
1915   // We must flush the G1-related buffers before removing a thread
1916   // from the list of active threads. We must do this after any deferred
1917   // card marks have been flushed (above) so that any entries that are
1918   // added to the thread's dirty card queue as a result are not lost.
1919   if (UseG1GC) {
1920     flush_barrier_queues();
1921   }
1922 #endif // INCLUDE_ALL_GCS
1923 
1924   log_info(os, thread)("JavaThread %s (tid: " UINTX_FORMAT ").",
1925     exit_type == JavaThread::normal_exit ? "exiting" : "detaching",
1926     os::current_thread_id());
1927 
1928   // Remove from list of active threads list, and notify VM thread if we are the last non-daemon thread
1929   Threads::remove(this);
1930 }
1931 
1932 #if INCLUDE_ALL_GCS
1933 // Flush G1-related queues.
1934 void JavaThread::flush_barrier_queues() {
1935   satb_mark_queue().flush();
1936   dirty_card_queue().flush();
1937 }
1938 
1939 void JavaThread::initialize_queues() {
1940   assert(!SafepointSynchronize::is_at_safepoint(),
1941          "we should not be at a safepoint");
1942 
1943   SATBMarkQueue& satb_queue = satb_mark_queue();
1944   SATBMarkQueueSet& satb_queue_set = satb_mark_queue_set();
1945   // The SATB queue should have been constructed with its active
1946   // field set to false.
1947   assert(!satb_queue.is_active(), "SATB queue should not be active");
1948   assert(satb_queue.is_empty(), "SATB queue should be empty");
1949   // If we are creating the thread during a marking cycle, we should
1950   // set the active field of the SATB queue to true.
1951   if (satb_queue_set.is_active()) {
1952     satb_queue.set_active(true);
1953   }
1954 
1955   DirtyCardQueue& dirty_queue = dirty_card_queue();
1956   // The dirty card queue should have been constructed with its
1957   // active field set to true.
1958   assert(dirty_queue.is_active(), "dirty card queue should be active");
1959 }
1960 #endif // INCLUDE_ALL_GCS
1961 
1962 void JavaThread::cleanup_failed_attach_current_thread() {
1963   if (get_thread_profiler() != NULL) {
1964     get_thread_profiler()->disengage();
1965     ResourceMark rm;
1966     get_thread_profiler()->print(get_thread_name());
1967   }
1968 
1969   if (active_handles() != NULL) {
1970     JNIHandleBlock* block = active_handles();
1971     set_active_handles(NULL);
1972     JNIHandleBlock::release_block(block);
1973   }
1974 
1975   if (free_handle_block() != NULL) {
1976     JNIHandleBlock* block = free_handle_block();
1977     set_free_handle_block(NULL);
1978     JNIHandleBlock::release_block(block);
1979   }
1980 
1981   // These have to be removed while this is still a valid thread.
1982   remove_stack_guard_pages();
1983 
1984   if (UseTLAB) {
1985     tlab().make_parsable(true);  // retire TLAB, if any
1986   }
1987 
1988 #if INCLUDE_ALL_GCS
1989   if (UseG1GC) {
1990     flush_barrier_queues();
1991   }
1992 #endif // INCLUDE_ALL_GCS
1993 
1994   Threads::remove(this);
1995   delete this;
1996 }
1997 
1998 
1999 
2000 
2001 JavaThread* JavaThread::active() {
2002   Thread* thread = Thread::current();
2003   if (thread->is_Java_thread()) {
2004     return (JavaThread*) thread;
2005   } else {
2006     assert(thread->is_VM_thread(), "this must be a vm thread");
2007     VM_Operation* op = ((VMThread*) thread)->vm_operation();
2008     JavaThread *ret=op == NULL ? NULL : (JavaThread *)op->calling_thread();
2009     assert(ret->is_Java_thread(), "must be a Java thread");
2010     return ret;
2011   }
2012 }
2013 
2014 bool JavaThread::is_lock_owned(address adr) const {
2015   if (Thread::is_lock_owned(adr)) return true;
2016 
2017   for (MonitorChunk* chunk = monitor_chunks(); chunk != NULL; chunk = chunk->next()) {
2018     if (chunk->contains(adr)) return true;
2019   }
2020 
2021   return false;
2022 }
2023 
2024 
2025 void JavaThread::add_monitor_chunk(MonitorChunk* chunk) {
2026   chunk->set_next(monitor_chunks());
2027   set_monitor_chunks(chunk);
2028 }
2029 
2030 void JavaThread::remove_monitor_chunk(MonitorChunk* chunk) {
2031   guarantee(monitor_chunks() != NULL, "must be non empty");
2032   if (monitor_chunks() == chunk) {
2033     set_monitor_chunks(chunk->next());
2034   } else {
2035     MonitorChunk* prev = monitor_chunks();
2036     while (prev->next() != chunk) prev = prev->next();
2037     prev->set_next(chunk->next());
2038   }
2039 }
2040 
2041 // JVM support.
2042 
2043 // Note: this function shouldn't block if it's called in
2044 // _thread_in_native_trans state (such as from
2045 // check_special_condition_for_native_trans()).
2046 void JavaThread::check_and_handle_async_exceptions(bool check_unsafe_error) {
2047 
2048   if (has_last_Java_frame() && has_async_condition()) {
2049     // If we are at a polling page safepoint (not a poll return)
2050     // then we must defer async exception because live registers
2051     // will be clobbered by the exception path. Poll return is
2052     // ok because the call we a returning from already collides
2053     // with exception handling registers and so there is no issue.
2054     // (The exception handling path kills call result registers but
2055     //  this is ok since the exception kills the result anyway).
2056 
2057     if (is_at_poll_safepoint()) {
2058       // if the code we are returning to has deoptimized we must defer
2059       // the exception otherwise live registers get clobbered on the
2060       // exception path before deoptimization is able to retrieve them.
2061       //
2062       RegisterMap map(this, false);
2063       frame caller_fr = last_frame().sender(&map);
2064       assert(caller_fr.is_compiled_frame(), "what?");
2065       if (caller_fr.is_deoptimized_frame()) {
2066         log_info(exceptions)("deferred async exception at compiled safepoint");
2067         return;
2068       }
2069     }
2070   }
2071 
2072   JavaThread::AsyncRequests condition = clear_special_runtime_exit_condition();
2073   if (condition == _no_async_condition) {
2074     // Conditions have changed since has_special_runtime_exit_condition()
2075     // was called:
2076     // - if we were here only because of an external suspend request,
2077     //   then that was taken care of above (or cancelled) so we are done
2078     // - if we were here because of another async request, then it has
2079     //   been cleared between the has_special_runtime_exit_condition()
2080     //   and now so again we are done
2081     return;
2082   }
2083 
2084   // Check for pending async. exception
2085   if (_pending_async_exception != NULL) {
2086     // Only overwrite an already pending exception, if it is not a threadDeath.
2087     if (!has_pending_exception() || !pending_exception()->is_a(SystemDictionary::ThreadDeath_klass())) {
2088 
2089       // We cannot call Exceptions::_throw(...) here because we cannot block
2090       set_pending_exception(_pending_async_exception, __FILE__, __LINE__);
2091 
2092       if (log_is_enabled(Info, exceptions)) {
2093         ResourceMark rm;
2094         outputStream* logstream = Log(exceptions)::info_stream();
2095         logstream->print("Async. exception installed at runtime exit (" INTPTR_FORMAT ")", p2i(this));
2096           if (has_last_Java_frame()) {
2097             frame f = last_frame();
2098            logstream->print(" (pc: " INTPTR_FORMAT " sp: " INTPTR_FORMAT " )", p2i(f.pc()), p2i(f.sp()));
2099           }
2100         logstream->print_cr(" of type: %s", _pending_async_exception->klass()->external_name());
2101       }
2102       _pending_async_exception = NULL;
2103       clear_has_async_exception();
2104     }
2105   }
2106 
2107   if (check_unsafe_error &&
2108       condition == _async_unsafe_access_error && !has_pending_exception()) {
2109     condition = _no_async_condition;  // done
2110     switch (thread_state()) {
2111     case _thread_in_vm: {
2112       JavaThread* THREAD = this;
2113       THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in an unsafe memory access operation");
2114     }
2115     case _thread_in_native: {
2116       ThreadInVMfromNative tiv(this);
2117       JavaThread* THREAD = this;
2118       THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in an unsafe memory access operation");
2119     }
2120     case _thread_in_Java: {
2121       ThreadInVMfromJava tiv(this);
2122       JavaThread* THREAD = this;
2123       THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in a recent unsafe memory access operation in compiled Java code");
2124     }
2125     default:
2126       ShouldNotReachHere();
2127     }
2128   }
2129 
2130   assert(condition == _no_async_condition || has_pending_exception() ||
2131          (!check_unsafe_error && condition == _async_unsafe_access_error),
2132          "must have handled the async condition, if no exception");
2133 }
2134 
2135 void JavaThread::handle_special_runtime_exit_condition(bool check_asyncs) {
2136   //
2137   // Check for pending external suspend. Internal suspend requests do
2138   // not use handle_special_runtime_exit_condition().
2139   // If JNIEnv proxies are allowed, don't self-suspend if the target
2140   // thread is not the current thread. In older versions of jdbx, jdbx
2141   // threads could call into the VM with another thread's JNIEnv so we
2142   // can be here operating on behalf of a suspended thread (4432884).
2143   bool do_self_suspend = is_external_suspend_with_lock();
2144   if (do_self_suspend && (!AllowJNIEnvProxy || this == JavaThread::current())) {
2145     //
2146     // Because thread is external suspended the safepoint code will count
2147     // thread as at a safepoint. This can be odd because we can be here
2148     // as _thread_in_Java which would normally transition to _thread_blocked
2149     // at a safepoint. We would like to mark the thread as _thread_blocked
2150     // before calling java_suspend_self like all other callers of it but
2151     // we must then observe proper safepoint protocol. (We can't leave
2152     // _thread_blocked with a safepoint in progress). However we can be
2153     // here as _thread_in_native_trans so we can't use a normal transition
2154     // constructor/destructor pair because they assert on that type of
2155     // transition. We could do something like:
2156     //
2157     // JavaThreadState state = thread_state();
2158     // set_thread_state(_thread_in_vm);
2159     // {
2160     //   ThreadBlockInVM tbivm(this);
2161     //   java_suspend_self()
2162     // }
2163     // set_thread_state(_thread_in_vm_trans);
2164     // if (safepoint) block;
2165     // set_thread_state(state);
2166     //
2167     // but that is pretty messy. Instead we just go with the way the
2168     // code has worked before and note that this is the only path to
2169     // java_suspend_self that doesn't put the thread in _thread_blocked
2170     // mode.
2171 
2172     frame_anchor()->make_walkable(this);
2173     java_suspend_self();
2174 
2175     // We might be here for reasons in addition to the self-suspend request
2176     // so check for other async requests.
2177   }
2178 
2179   if (check_asyncs) {
2180     check_and_handle_async_exceptions();
2181   }
2182 }
2183 
2184 void JavaThread::send_thread_stop(oop java_throwable)  {
2185   assert(Thread::current()->is_VM_thread(), "should be in the vm thread");
2186   assert(Threads_lock->is_locked(), "Threads_lock should be locked by safepoint code");
2187   assert(SafepointSynchronize::is_at_safepoint(), "all threads are stopped");
2188 
2189   // Do not throw asynchronous exceptions against the compiler thread
2190   // (the compiler thread should not be a Java thread -- fix in 1.4.2)
2191   if (!can_call_java()) return;
2192 
2193   {
2194     // Actually throw the Throwable against the target Thread - however
2195     // only if there is no thread death exception installed already.
2196     if (_pending_async_exception == NULL || !_pending_async_exception->is_a(SystemDictionary::ThreadDeath_klass())) {
2197       // If the topmost frame is a runtime stub, then we are calling into
2198       // OptoRuntime from compiled code. Some runtime stubs (new, monitor_exit..)
2199       // must deoptimize the caller before continuing, as the compiled  exception handler table
2200       // may not be valid
2201       if (has_last_Java_frame()) {
2202         frame f = last_frame();
2203         if (f.is_runtime_frame() || f.is_safepoint_blob_frame()) {
2204           // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
2205           RegisterMap reg_map(this, UseBiasedLocking);
2206           frame compiled_frame = f.sender(&reg_map);
2207           if (!StressCompiledExceptionHandlers && compiled_frame.can_be_deoptimized()) {
2208             Deoptimization::deoptimize(this, compiled_frame, &reg_map);
2209           }
2210         }
2211       }
2212 
2213       // Set async. pending exception in thread.
2214       set_pending_async_exception(java_throwable);
2215 
2216       if (log_is_enabled(Info, exceptions)) {
2217          ResourceMark rm;
2218         log_info(exceptions)("Pending Async. exception installed of type: %s",
2219                              InstanceKlass::cast(_pending_async_exception->klass())->external_name());
2220       }
2221       // for AbortVMOnException flag
2222       Exceptions::debug_check_abort(_pending_async_exception->klass()->external_name());
2223     }
2224   }
2225 
2226 
2227   // Interrupt thread so it will wake up from a potential wait()
2228   Thread::interrupt(this);
2229 }
2230 
2231 // External suspension mechanism.
2232 //
2233 // Tell the VM to suspend a thread when ever it knows that it does not hold on
2234 // to any VM_locks and it is at a transition
2235 // Self-suspension will happen on the transition out of the vm.
2236 // Catch "this" coming in from JNIEnv pointers when the thread has been freed
2237 //
2238 // Guarantees on return:
2239 //   + Target thread will not execute any new bytecode (that's why we need to
2240 //     force a safepoint)
2241 //   + Target thread will not enter any new monitors
2242 //
2243 void JavaThread::java_suspend() {
2244   { MutexLocker mu(Threads_lock);
2245     if (!Threads::includes(this) || is_exiting() || this->threadObj() == NULL) {
2246       return;
2247     }
2248   }
2249 
2250   { MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2251     if (!is_external_suspend()) {
2252       // a racing resume has cancelled us; bail out now
2253       return;
2254     }
2255 
2256     // suspend is done
2257     uint32_t debug_bits = 0;
2258     // Warning: is_ext_suspend_completed() may temporarily drop the
2259     // SR_lock to allow the thread to reach a stable thread state if
2260     // it is currently in a transient thread state.
2261     if (is_ext_suspend_completed(false /* !called_by_wait */,
2262                                  SuspendRetryDelay, &debug_bits)) {
2263       return;
2264     }
2265   }
2266 
2267   VM_ForceSafepoint vm_suspend;
2268   VMThread::execute(&vm_suspend);
2269 }
2270 
2271 // Part II of external suspension.
2272 // A JavaThread self suspends when it detects a pending external suspend
2273 // request. This is usually on transitions. It is also done in places
2274 // where continuing to the next transition would surprise the caller,
2275 // e.g., monitor entry.
2276 //
2277 // Returns the number of times that the thread self-suspended.
2278 //
2279 // Note: DO NOT call java_suspend_self() when you just want to block current
2280 //       thread. java_suspend_self() is the second stage of cooperative
2281 //       suspension for external suspend requests and should only be used
2282 //       to complete an external suspend request.
2283 //
2284 int JavaThread::java_suspend_self() {
2285   int ret = 0;
2286 
2287   // we are in the process of exiting so don't suspend
2288   if (is_exiting()) {
2289     clear_external_suspend();
2290     return ret;
2291   }
2292 
2293   assert(_anchor.walkable() ||
2294          (is_Java_thread() && !((JavaThread*)this)->has_last_Java_frame()),
2295          "must have walkable stack");
2296 
2297   MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2298 
2299   assert(!this->is_ext_suspended(),
2300          "a thread trying to self-suspend should not already be suspended");
2301 
2302   if (this->is_suspend_equivalent()) {
2303     // If we are self-suspending as a result of the lifting of a
2304     // suspend equivalent condition, then the suspend_equivalent
2305     // flag is not cleared until we set the ext_suspended flag so
2306     // that wait_for_ext_suspend_completion() returns consistent
2307     // results.
2308     this->clear_suspend_equivalent();
2309   }
2310 
2311   // A racing resume may have cancelled us before we grabbed SR_lock
2312   // above. Or another external suspend request could be waiting for us
2313   // by the time we return from SR_lock()->wait(). The thread
2314   // that requested the suspension may already be trying to walk our
2315   // stack and if we return now, we can change the stack out from under
2316   // it. This would be a "bad thing (TM)" and cause the stack walker
2317   // to crash. We stay self-suspended until there are no more pending
2318   // external suspend requests.
2319   while (is_external_suspend()) {
2320     ret++;
2321     this->set_ext_suspended();
2322 
2323     // _ext_suspended flag is cleared by java_resume()
2324     while (is_ext_suspended()) {
2325       this->SR_lock()->wait(Mutex::_no_safepoint_check_flag);
2326     }
2327   }
2328 
2329   return ret;
2330 }
2331 
2332 #ifdef ASSERT
2333 // verify the JavaThread has not yet been published in the Threads::list, and
2334 // hence doesn't need protection from concurrent access at this stage
2335 void JavaThread::verify_not_published() {
2336   if (!Threads_lock->owned_by_self()) {
2337     MutexLockerEx ml(Threads_lock,  Mutex::_no_safepoint_check_flag);
2338     assert(!Threads::includes(this),
2339            "java thread shouldn't have been published yet!");
2340   } else {
2341     assert(!Threads::includes(this),
2342            "java thread shouldn't have been published yet!");
2343   }
2344 }
2345 #endif
2346 
2347 // Slow path when the native==>VM/Java barriers detect a safepoint is in
2348 // progress or when _suspend_flags is non-zero.
2349 // Current thread needs to self-suspend if there is a suspend request and/or
2350 // block if a safepoint is in progress.
2351 // Async exception ISN'T checked.
2352 // Note only the ThreadInVMfromNative transition can call this function
2353 // directly and when thread state is _thread_in_native_trans
2354 void JavaThread::check_safepoint_and_suspend_for_native_trans(JavaThread *thread) {
2355   assert(thread->thread_state() == _thread_in_native_trans, "wrong state");
2356 
2357   JavaThread *curJT = JavaThread::current();
2358   bool do_self_suspend = thread->is_external_suspend();
2359 
2360   assert(!curJT->has_last_Java_frame() || curJT->frame_anchor()->walkable(), "Unwalkable stack in native->vm transition");
2361 
2362   // If JNIEnv proxies are allowed, don't self-suspend if the target
2363   // thread is not the current thread. In older versions of jdbx, jdbx
2364   // threads could call into the VM with another thread's JNIEnv so we
2365   // can be here operating on behalf of a suspended thread (4432884).
2366   if (do_self_suspend && (!AllowJNIEnvProxy || curJT == thread)) {
2367     JavaThreadState state = thread->thread_state();
2368 
2369     // We mark this thread_blocked state as a suspend-equivalent so
2370     // that a caller to is_ext_suspend_completed() won't be confused.
2371     // The suspend-equivalent state is cleared by java_suspend_self().
2372     thread->set_suspend_equivalent();
2373 
2374     // If the safepoint code sees the _thread_in_native_trans state, it will
2375     // wait until the thread changes to other thread state. There is no
2376     // guarantee on how soon we can obtain the SR_lock and complete the
2377     // self-suspend request. It would be a bad idea to let safepoint wait for
2378     // too long. Temporarily change the state to _thread_blocked to
2379     // let the VM thread know that this thread is ready for GC. The problem
2380     // of changing thread state is that safepoint could happen just after
2381     // java_suspend_self() returns after being resumed, and VM thread will
2382     // see the _thread_blocked state. We must check for safepoint
2383     // after restoring the state and make sure we won't leave while a safepoint
2384     // is in progress.
2385     thread->set_thread_state(_thread_blocked);
2386     thread->java_suspend_self();
2387     thread->set_thread_state(state);
2388     // Make sure new state is seen by VM thread
2389     if (os::is_MP()) {
2390       if (UseMembar) {
2391         // Force a fence between the write above and read below
2392         OrderAccess::fence();
2393       } else {
2394         // Must use this rather than serialization page in particular on Windows
2395         InterfaceSupport::serialize_memory(thread);
2396       }
2397     }
2398   }
2399 
2400   if (SafepointSynchronize::do_call_back()) {
2401     // If we are safepointing, then block the caller which may not be
2402     // the same as the target thread (see above).
2403     SafepointSynchronize::block(curJT);
2404   }
2405 
2406   if (thread->is_deopt_suspend()) {
2407     thread->clear_deopt_suspend();
2408     RegisterMap map(thread, false);
2409     frame f = thread->last_frame();
2410     while (f.id() != thread->must_deopt_id() && ! f.is_first_frame()) {
2411       f = f.sender(&map);
2412     }
2413     if (f.id() == thread->must_deopt_id()) {
2414       thread->clear_must_deopt_id();
2415       f.deoptimize(thread);
2416     } else {
2417       fatal("missed deoptimization!");
2418     }
2419   }
2420 }
2421 
2422 // Slow path when the native==>VM/Java barriers detect a safepoint is in
2423 // progress or when _suspend_flags is non-zero.
2424 // Current thread needs to self-suspend if there is a suspend request and/or
2425 // block if a safepoint is in progress.
2426 // Also check for pending async exception (not including unsafe access error).
2427 // Note only the native==>VM/Java barriers can call this function and when
2428 // thread state is _thread_in_native_trans.
2429 void JavaThread::check_special_condition_for_native_trans(JavaThread *thread) {
2430   check_safepoint_and_suspend_for_native_trans(thread);
2431 
2432   if (thread->has_async_exception()) {
2433     // We are in _thread_in_native_trans state, don't handle unsafe
2434     // access error since that may block.
2435     thread->check_and_handle_async_exceptions(false);
2436   }
2437 }
2438 
2439 // This is a variant of the normal
2440 // check_special_condition_for_native_trans with slightly different
2441 // semantics for use by critical native wrappers.  It does all the
2442 // normal checks but also performs the transition back into
2443 // thread_in_Java state.  This is required so that critical natives
2444 // can potentially block and perform a GC if they are the last thread
2445 // exiting the GCLocker.
2446 void JavaThread::check_special_condition_for_native_trans_and_transition(JavaThread *thread) {
2447   check_special_condition_for_native_trans(thread);
2448 
2449   // Finish the transition
2450   thread->set_thread_state(_thread_in_Java);
2451 
2452   if (thread->do_critical_native_unlock()) {
2453     ThreadInVMfromJavaNoAsyncException tiv(thread);
2454     GCLocker::unlock_critical(thread);
2455     thread->clear_critical_native_unlock();
2456   }
2457 }
2458 
2459 // We need to guarantee the Threads_lock here, since resumes are not
2460 // allowed during safepoint synchronization
2461 // Can only resume from an external suspension
2462 void JavaThread::java_resume() {
2463   assert_locked_or_safepoint(Threads_lock);
2464 
2465   // Sanity check: thread is gone, has started exiting or the thread
2466   // was not externally suspended.
2467   if (!Threads::includes(this) || is_exiting() || !is_external_suspend()) {
2468     return;
2469   }
2470 
2471   MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2472 
2473   clear_external_suspend();
2474 
2475   if (is_ext_suspended()) {
2476     clear_ext_suspended();
2477     SR_lock()->notify_all();
2478   }
2479 }
2480 
2481 size_t JavaThread::_stack_red_zone_size = 0;
2482 size_t JavaThread::_stack_yellow_zone_size = 0;
2483 size_t JavaThread::_stack_reserved_zone_size = 0;
2484 size_t JavaThread::_stack_shadow_zone_size = 0;
2485 
2486 void JavaThread::create_stack_guard_pages() {
2487   if (!os::uses_stack_guard_pages() || _stack_guard_state != stack_guard_unused) { return; }
2488   address low_addr = stack_end();
2489   size_t len = stack_guard_zone_size();
2490 
2491   int must_commit = os::must_commit_stack_guard_pages();
2492   // warning("Guarding at " PTR_FORMAT " for len " SIZE_FORMAT "\n", low_addr, len);
2493 
2494   if (must_commit && !os::create_stack_guard_pages((char *) low_addr, len)) {
2495     log_warning(os, thread)("Attempt to allocate stack guard pages failed.");
2496     return;
2497   }
2498 
2499   if (os::guard_memory((char *) low_addr, len)) {
2500     _stack_guard_state = stack_guard_enabled;
2501   } else {
2502     log_warning(os, thread)("Attempt to protect stack guard pages failed ("
2503       PTR_FORMAT "-" PTR_FORMAT ").", p2i(low_addr), p2i(low_addr + len));
2504     if (os::uncommit_memory((char *) low_addr, len)) {
2505       log_warning(os, thread)("Attempt to deallocate stack guard pages failed.");
2506     }
2507     return;
2508   }
2509 
2510   log_debug(os, thread)("Thread " UINTX_FORMAT " stack guard pages activated: "
2511     PTR_FORMAT "-" PTR_FORMAT ".",
2512     os::current_thread_id(), p2i(low_addr), p2i(low_addr + len));
2513 }
2514 
2515 void JavaThread::remove_stack_guard_pages() {
2516   assert(Thread::current() == this, "from different thread");
2517   if (_stack_guard_state == stack_guard_unused) return;
2518   address low_addr = stack_end();
2519   size_t len = stack_guard_zone_size();
2520 
2521   if (os::must_commit_stack_guard_pages()) {
2522     if (os::remove_stack_guard_pages((char *) low_addr, len)) {
2523       _stack_guard_state = stack_guard_unused;
2524     } else {
2525       log_warning(os, thread)("Attempt to deallocate stack guard pages failed ("
2526         PTR_FORMAT "-" PTR_FORMAT ").", p2i(low_addr), p2i(low_addr + len));
2527       return;
2528     }
2529   } else {
2530     if (_stack_guard_state == stack_guard_unused) return;
2531     if (os::unguard_memory((char *) low_addr, len)) {
2532       _stack_guard_state = stack_guard_unused;
2533     } else {
2534       log_warning(os, thread)("Attempt to unprotect stack guard pages failed ("
2535         PTR_FORMAT "-" PTR_FORMAT ").", p2i(low_addr), p2i(low_addr + len));
2536       return;
2537     }
2538   }
2539 
2540   log_debug(os, thread)("Thread " UINTX_FORMAT " stack guard pages removed: "
2541     PTR_FORMAT "-" PTR_FORMAT ".",
2542     os::current_thread_id(), p2i(low_addr), p2i(low_addr + len));
2543 }
2544 
2545 void JavaThread::enable_stack_reserved_zone() {
2546   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2547   assert(_stack_guard_state != stack_guard_enabled, "already enabled");
2548 
2549   // The base notation is from the stack's point of view, growing downward.
2550   // We need to adjust it to work correctly with guard_memory()
2551   address base = stack_reserved_zone_base() - stack_reserved_zone_size();
2552 
2553   guarantee(base < stack_base(),"Error calculating stack reserved zone");
2554   guarantee(base < os::current_stack_pointer(),"Error calculating stack reserved zone");
2555 
2556   if (os::guard_memory((char *) base, stack_reserved_zone_size())) {
2557     _stack_guard_state = stack_guard_enabled;
2558   } else {
2559     warning("Attempt to guard stack reserved zone failed.");
2560   }
2561   enable_register_stack_guard();
2562 }
2563 
2564 void JavaThread::disable_stack_reserved_zone() {
2565   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2566   assert(_stack_guard_state != stack_guard_reserved_disabled, "already disabled");
2567 
2568   // Simply return if called for a thread that does not use guard pages.
2569   if (_stack_guard_state == stack_guard_unused) return;
2570 
2571   // The base notation is from the stack's point of view, growing downward.
2572   // We need to adjust it to work correctly with guard_memory()
2573   address base = stack_reserved_zone_base() - stack_reserved_zone_size();
2574 
2575   if (os::unguard_memory((char *)base, stack_reserved_zone_size())) {
2576     _stack_guard_state = stack_guard_reserved_disabled;
2577   } else {
2578     warning("Attempt to unguard stack reserved zone failed.");
2579   }
2580   disable_register_stack_guard();
2581 }
2582 
2583 void JavaThread::enable_stack_yellow_reserved_zone() {
2584   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2585   assert(_stack_guard_state != stack_guard_enabled, "already enabled");
2586 
2587   // The base notation is from the stacks point of view, growing downward.
2588   // We need to adjust it to work correctly with guard_memory()
2589   address base = stack_red_zone_base();
2590 
2591   guarantee(base < stack_base(), "Error calculating stack yellow zone");
2592   guarantee(base < os::current_stack_pointer(), "Error calculating stack yellow zone");
2593 
2594   if (os::guard_memory((char *) base, stack_yellow_reserved_zone_size())) {
2595     _stack_guard_state = stack_guard_enabled;
2596   } else {
2597     warning("Attempt to guard stack yellow zone failed.");
2598   }
2599   enable_register_stack_guard();
2600 }
2601 
2602 void JavaThread::disable_stack_yellow_reserved_zone() {
2603   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2604   assert(_stack_guard_state != stack_guard_yellow_reserved_disabled, "already disabled");
2605 
2606   // Simply return if called for a thread that does not use guard pages.
2607   if (_stack_guard_state == stack_guard_unused) return;
2608 
2609   // The base notation is from the stacks point of view, growing downward.
2610   // We need to adjust it to work correctly with guard_memory()
2611   address base = stack_red_zone_base();
2612 
2613   if (os::unguard_memory((char *)base, stack_yellow_reserved_zone_size())) {
2614     _stack_guard_state = stack_guard_yellow_reserved_disabled;
2615   } else {
2616     warning("Attempt to unguard stack yellow zone failed.");
2617   }
2618   disable_register_stack_guard();
2619 }
2620 
2621 void JavaThread::enable_stack_red_zone() {
2622   // The base notation is from the stacks point of view, growing downward.
2623   // We need to adjust it to work correctly with guard_memory()
2624   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2625   address base = stack_red_zone_base() - stack_red_zone_size();
2626 
2627   guarantee(base < stack_base(), "Error calculating stack red zone");
2628   guarantee(base < os::current_stack_pointer(), "Error calculating stack red zone");
2629 
2630   if (!os::guard_memory((char *) base, stack_red_zone_size())) {
2631     warning("Attempt to guard stack red zone failed.");
2632   }
2633 }
2634 
2635 void JavaThread::disable_stack_red_zone() {
2636   // The base notation is from the stacks point of view, growing downward.
2637   // We need to adjust it to work correctly with guard_memory()
2638   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2639   address base = stack_red_zone_base() - stack_red_zone_size();
2640   if (!os::unguard_memory((char *)base, stack_red_zone_size())) {
2641     warning("Attempt to unguard stack red zone failed.");
2642   }
2643 }
2644 
2645 void JavaThread::frames_do(void f(frame*, const RegisterMap* map)) {
2646   // ignore is there is no stack
2647   if (!has_last_Java_frame()) return;
2648   // traverse the stack frames. Starts from top frame.
2649   for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2650     frame* fr = fst.current();
2651     f(fr, fst.register_map());
2652   }
2653 }
2654 
2655 
2656 #ifndef PRODUCT
2657 // Deoptimization
2658 // Function for testing deoptimization
2659 void JavaThread::deoptimize() {
2660   // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
2661   StackFrameStream fst(this, UseBiasedLocking);
2662   bool deopt = false;           // Dump stack only if a deopt actually happens.
2663   bool only_at = strlen(DeoptimizeOnlyAt) > 0;
2664   // Iterate over all frames in the thread and deoptimize
2665   for (; !fst.is_done(); fst.next()) {
2666     if (fst.current()->can_be_deoptimized()) {
2667 
2668       if (only_at) {
2669         // Deoptimize only at particular bcis.  DeoptimizeOnlyAt
2670         // consists of comma or carriage return separated numbers so
2671         // search for the current bci in that string.
2672         address pc = fst.current()->pc();
2673         nmethod* nm =  (nmethod*) fst.current()->cb();
2674         ScopeDesc* sd = nm->scope_desc_at(pc);
2675         char buffer[8];
2676         jio_snprintf(buffer, sizeof(buffer), "%d", sd->bci());
2677         size_t len = strlen(buffer);
2678         const char * found = strstr(DeoptimizeOnlyAt, buffer);
2679         while (found != NULL) {
2680           if ((found[len] == ',' || found[len] == '\n' || found[len] == '\0') &&
2681               (found == DeoptimizeOnlyAt || found[-1] == ',' || found[-1] == '\n')) {
2682             // Check that the bci found is bracketed by terminators.
2683             break;
2684           }
2685           found = strstr(found + 1, buffer);
2686         }
2687         if (!found) {
2688           continue;
2689         }
2690       }
2691 
2692       if (DebugDeoptimization && !deopt) {
2693         deopt = true; // One-time only print before deopt
2694         tty->print_cr("[BEFORE Deoptimization]");
2695         trace_frames();
2696         trace_stack();
2697       }
2698       Deoptimization::deoptimize(this, *fst.current(), fst.register_map());
2699     }
2700   }
2701 
2702   if (DebugDeoptimization && deopt) {
2703     tty->print_cr("[AFTER Deoptimization]");
2704     trace_frames();
2705   }
2706 }
2707 
2708 
2709 // Make zombies
2710 void JavaThread::make_zombies() {
2711   for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2712     if (fst.current()->can_be_deoptimized()) {
2713       // it is a Java nmethod
2714       nmethod* nm = CodeCache::find_nmethod(fst.current()->pc());
2715       nm->make_not_entrant();
2716     }
2717   }
2718 }
2719 #endif // PRODUCT
2720 
2721 
2722 void JavaThread::deoptimized_wrt_marked_nmethods() {
2723   if (!has_last_Java_frame()) return;
2724   // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
2725   StackFrameStream fst(this, UseBiasedLocking);
2726   for (; !fst.is_done(); fst.next()) {
2727     if (fst.current()->should_be_deoptimized()) {
2728       Deoptimization::deoptimize(this, *fst.current(), fst.register_map());
2729     }
2730   }
2731 }
2732 
2733 
2734 // If the caller is a NamedThread, then remember, in the current scope,
2735 // the given JavaThread in its _processed_thread field.
2736 class RememberProcessedThread: public StackObj {
2737   NamedThread* _cur_thr;
2738  public:
2739   RememberProcessedThread(JavaThread* jthr) {
2740     Thread* thread = Thread::current();
2741     if (thread->is_Named_thread()) {
2742       _cur_thr = (NamedThread *)thread;
2743       _cur_thr->set_processed_thread(jthr);
2744     } else {
2745       _cur_thr = NULL;
2746     }
2747   }
2748 
2749   ~RememberProcessedThread() {
2750     if (_cur_thr) {
2751       _cur_thr->set_processed_thread(NULL);
2752     }
2753   }
2754 };
2755 
2756 void JavaThread::oops_do(OopClosure* f, CodeBlobClosure* cf) {
2757   // Verify that the deferred card marks have been flushed.
2758   assert(deferred_card_mark().is_empty(), "Should be empty during GC");
2759 
2760   // The ThreadProfiler oops_do is done from FlatProfiler::oops_do
2761   // since there may be more than one thread using each ThreadProfiler.
2762 
2763   // Traverse the GCHandles
2764   Thread::oops_do(f, cf);
2765 
2766   JVMCI_ONLY(f->do_oop((oop*)&_pending_failed_speculation);)
2767 
2768   assert((!has_last_Java_frame() && java_call_counter() == 0) ||
2769          (has_last_Java_frame() && java_call_counter() > 0), "wrong java_sp info!");
2770 
2771   if (has_last_Java_frame()) {
2772     // Record JavaThread to GC thread
2773     RememberProcessedThread rpt(this);
2774 
2775     // Traverse the privileged stack
2776     if (_privileged_stack_top != NULL) {
2777       _privileged_stack_top->oops_do(f);
2778     }
2779 
2780     // traverse the registered growable array
2781     if (_array_for_gc != NULL) {
2782       for (int index = 0; index < _array_for_gc->length(); index++) {
2783         f->do_oop(_array_for_gc->adr_at(index));
2784       }
2785     }
2786 
2787     // Traverse the monitor chunks
2788     for (MonitorChunk* chunk = monitor_chunks(); chunk != NULL; chunk = chunk->next()) {
2789       chunk->oops_do(f);
2790     }
2791 
2792     // Traverse the execution stack
2793     for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2794       fst.current()->oops_do(f, cf, fst.register_map());
2795     }
2796   }
2797 
2798   // callee_target is never live across a gc point so NULL it here should
2799   // it still contain a methdOop.
2800 
2801   set_callee_target(NULL);
2802 
2803   assert(vframe_array_head() == NULL, "deopt in progress at a safepoint!");
2804   // If we have deferred set_locals there might be oops waiting to be
2805   // written
2806   GrowableArray<jvmtiDeferredLocalVariableSet*>* list = deferred_locals();
2807   if (list != NULL) {
2808     for (int i = 0; i < list->length(); i++) {
2809       list->at(i)->oops_do(f);
2810     }
2811   }
2812 
2813   // Traverse instance variables at the end since the GC may be moving things
2814   // around using this function
2815   f->do_oop((oop*) &_threadObj);
2816   f->do_oop((oop*) &_vm_result);
2817   f->do_oop((oop*) &_exception_oop);
2818   f->do_oop((oop*) &_pending_async_exception);
2819 
2820   if (jvmti_thread_state() != NULL) {
2821     jvmti_thread_state()->oops_do(f);
2822   }
2823 }
2824 
2825 void JavaThread::nmethods_do(CodeBlobClosure* cf) {
2826   assert((!has_last_Java_frame() && java_call_counter() == 0) ||
2827          (has_last_Java_frame() && java_call_counter() > 0), "wrong java_sp info!");
2828 
2829   if (has_last_Java_frame()) {
2830     // Traverse the execution stack
2831     for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2832       fst.current()->nmethods_do(cf);
2833     }
2834   }
2835 }
2836 
2837 void JavaThread::metadata_do(void f(Metadata*)) {
2838   if (has_last_Java_frame()) {
2839     // Traverse the execution stack to call f() on the methods in the stack
2840     for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2841       fst.current()->metadata_do(f);
2842     }
2843   } else if (is_Compiler_thread()) {
2844     // need to walk ciMetadata in current compile tasks to keep alive.
2845     CompilerThread* ct = (CompilerThread*)this;
2846     if (ct->env() != NULL) {
2847       ct->env()->metadata_do(f);
2848     }
2849     if (ct->task() != NULL) {
2850       ct->task()->metadata_do(f);
2851     }
2852   }
2853 }
2854 
2855 // Printing
2856 const char* _get_thread_state_name(JavaThreadState _thread_state) {
2857   switch (_thread_state) {
2858   case _thread_uninitialized:     return "_thread_uninitialized";
2859   case _thread_new:               return "_thread_new";
2860   case _thread_new_trans:         return "_thread_new_trans";
2861   case _thread_in_native:         return "_thread_in_native";
2862   case _thread_in_native_trans:   return "_thread_in_native_trans";
2863   case _thread_in_vm:             return "_thread_in_vm";
2864   case _thread_in_vm_trans:       return "_thread_in_vm_trans";
2865   case _thread_in_Java:           return "_thread_in_Java";
2866   case _thread_in_Java_trans:     return "_thread_in_Java_trans";
2867   case _thread_blocked:           return "_thread_blocked";
2868   case _thread_blocked_trans:     return "_thread_blocked_trans";
2869   default:                        return "unknown thread state";
2870   }
2871 }
2872 
2873 #ifndef PRODUCT
2874 void JavaThread::print_thread_state_on(outputStream *st) const {
2875   st->print_cr("   JavaThread state: %s", _get_thread_state_name(_thread_state));
2876 };
2877 void JavaThread::print_thread_state() const {
2878   print_thread_state_on(tty);
2879 }
2880 #endif // PRODUCT
2881 
2882 // Called by Threads::print() for VM_PrintThreads operation
2883 void JavaThread::print_on(outputStream *st) const {
2884   st->print_raw("\"");
2885   st->print_raw(get_thread_name());
2886   st->print_raw("\" ");
2887   oop thread_oop = threadObj();
2888   if (thread_oop != NULL) {
2889     st->print("#" INT64_FORMAT " ", java_lang_Thread::thread_id(thread_oop));
2890     if (java_lang_Thread::is_daemon(thread_oop))  st->print("daemon ");
2891     st->print("prio=%d ", java_lang_Thread::priority(thread_oop));
2892   }
2893   Thread::print_on(st);
2894   // print guess for valid stack memory region (assume 4K pages); helps lock debugging
2895   st->print_cr("[" INTPTR_FORMAT "]", (intptr_t)last_Java_sp() & ~right_n_bits(12));
2896   if (thread_oop != NULL) {
2897     st->print_cr("   java.lang.Thread.State: %s", java_lang_Thread::thread_status_name(thread_oop));
2898   }
2899 #ifndef PRODUCT
2900   print_thread_state_on(st);
2901   _safepoint_state->print_on(st);
2902 #endif // PRODUCT
2903   if (is_Compiler_thread()) {
2904     CompilerThread* ct = (CompilerThread*)this;
2905     if (ct->task() != NULL) {
2906       st->print("   Compiling: ");
2907       ct->task()->print(st, NULL, true, false);
2908     } else {
2909       st->print("   No compile task");
2910     }
2911     st->cr();
2912   }
2913 }
2914 
2915 void JavaThread::print_name_on_error(outputStream* st, char *buf, int buflen) const {
2916   st->print("%s", get_thread_name_string(buf, buflen));
2917 }
2918 
2919 // Called by fatal error handler. The difference between this and
2920 // JavaThread::print() is that we can't grab lock or allocate memory.
2921 void JavaThread::print_on_error(outputStream* st, char *buf, int buflen) const {
2922   st->print("JavaThread \"%s\"", get_thread_name_string(buf, buflen));
2923   oop thread_obj = threadObj();
2924   if (thread_obj != NULL) {
2925     if (java_lang_Thread::is_daemon(thread_obj)) st->print(" daemon");
2926   }
2927   st->print(" [");
2928   st->print("%s", _get_thread_state_name(_thread_state));
2929   if (osthread()) {
2930     st->print(", id=%d", osthread()->thread_id());
2931   }
2932   st->print(", stack(" PTR_FORMAT "," PTR_FORMAT ")",
2933             p2i(stack_end()), p2i(stack_base()));
2934   st->print("]");
2935   return;
2936 }
2937 
2938 // Verification
2939 
2940 static void frame_verify(frame* f, const RegisterMap *map) { f->verify(map); }
2941 
2942 void JavaThread::verify() {
2943   // Verify oops in the thread.
2944   oops_do(&VerifyOopClosure::verify_oop, NULL);
2945 
2946   // Verify the stack frames.
2947   frames_do(frame_verify);
2948 }
2949 
2950 // CR 6300358 (sub-CR 2137150)
2951 // Most callers of this method assume that it can't return NULL but a
2952 // thread may not have a name whilst it is in the process of attaching to
2953 // the VM - see CR 6412693, and there are places where a JavaThread can be
2954 // seen prior to having it's threadObj set (eg JNI attaching threads and
2955 // if vm exit occurs during initialization). These cases can all be accounted
2956 // for such that this method never returns NULL.
2957 const char* JavaThread::get_thread_name() const {
2958 #ifdef ASSERT
2959   // early safepoints can hit while current thread does not yet have TLS
2960   if (!SafepointSynchronize::is_at_safepoint()) {
2961     Thread *cur = Thread::current();
2962     if (!(cur->is_Java_thread() && cur == this)) {
2963       // Current JavaThreads are allowed to get their own name without
2964       // the Threads_lock.
2965       assert_locked_or_safepoint(Threads_lock);
2966     }
2967   }
2968 #endif // ASSERT
2969   return get_thread_name_string();
2970 }
2971 
2972 // Returns a non-NULL representation of this thread's name, or a suitable
2973 // descriptive string if there is no set name
2974 const char* JavaThread::get_thread_name_string(char* buf, int buflen) const {
2975   const char* name_str;
2976   oop thread_obj = threadObj();
2977   if (thread_obj != NULL) {
2978     oop name = java_lang_Thread::name(thread_obj);
2979     if (name != NULL) {
2980       if (buf == NULL) {
2981         name_str = java_lang_String::as_utf8_string(name);
2982       } else {
2983         name_str = java_lang_String::as_utf8_string(name, buf, buflen);
2984       }
2985     } else if (is_attaching_via_jni()) { // workaround for 6412693 - see 6404306
2986       name_str = "<no-name - thread is attaching>";
2987     } else {
2988       name_str = Thread::name();
2989     }
2990   } else {
2991     name_str = Thread::name();
2992   }
2993   assert(name_str != NULL, "unexpected NULL thread name");
2994   return name_str;
2995 }
2996 
2997 
2998 const char* JavaThread::get_threadgroup_name() const {
2999   debug_only(if (JavaThread::current() != this) assert_locked_or_safepoint(Threads_lock);)
3000   oop thread_obj = threadObj();
3001   if (thread_obj != NULL) {
3002     oop thread_group = java_lang_Thread::threadGroup(thread_obj);
3003     if (thread_group != NULL) {
3004       // ThreadGroup.name can be null
3005       return java_lang_ThreadGroup::name(thread_group);
3006     }
3007   }
3008   return NULL;
3009 }
3010 
3011 const char* JavaThread::get_parent_name() const {
3012   debug_only(if (JavaThread::current() != this) assert_locked_or_safepoint(Threads_lock);)
3013   oop thread_obj = threadObj();
3014   if (thread_obj != NULL) {
3015     oop thread_group = java_lang_Thread::threadGroup(thread_obj);
3016     if (thread_group != NULL) {
3017       oop parent = java_lang_ThreadGroup::parent(thread_group);
3018       if (parent != NULL) {
3019         // ThreadGroup.name can be null
3020         return java_lang_ThreadGroup::name(parent);
3021       }
3022     }
3023   }
3024   return NULL;
3025 }
3026 
3027 ThreadPriority JavaThread::java_priority() const {
3028   oop thr_oop = threadObj();
3029   if (thr_oop == NULL) return NormPriority; // Bootstrapping
3030   ThreadPriority priority = java_lang_Thread::priority(thr_oop);
3031   assert(MinPriority <= priority && priority <= MaxPriority, "sanity check");
3032   return priority;
3033 }
3034 
3035 void JavaThread::prepare(jobject jni_thread, ThreadPriority prio) {
3036 
3037   assert(Threads_lock->owner() == Thread::current(), "must have threads lock");
3038   // Link Java Thread object <-> C++ Thread
3039 
3040   // Get the C++ thread object (an oop) from the JNI handle (a jthread)
3041   // and put it into a new Handle.  The Handle "thread_oop" can then
3042   // be used to pass the C++ thread object to other methods.
3043 
3044   // Set the Java level thread object (jthread) field of the
3045   // new thread (a JavaThread *) to C++ thread object using the
3046   // "thread_oop" handle.
3047 
3048   // Set the thread field (a JavaThread *) of the
3049   // oop representing the java_lang_Thread to the new thread (a JavaThread *).
3050 
3051   Handle thread_oop(Thread::current(),
3052                     JNIHandles::resolve_non_null(jni_thread));
3053   assert(InstanceKlass::cast(thread_oop->klass())->is_linked(),
3054          "must be initialized");
3055   set_threadObj(thread_oop());
3056   java_lang_Thread::set_thread(thread_oop(), this);
3057 
3058   if (prio == NoPriority) {
3059     prio = java_lang_Thread::priority(thread_oop());
3060     assert(prio != NoPriority, "A valid priority should be present");
3061   }
3062 
3063   // Push the Java priority down to the native thread; needs Threads_lock
3064   Thread::set_priority(this, prio);
3065 
3066   prepare_ext();
3067 
3068   // Add the new thread to the Threads list and set it in motion.
3069   // We must have threads lock in order to call Threads::add.
3070   // It is crucial that we do not block before the thread is
3071   // added to the Threads list for if a GC happens, then the java_thread oop
3072   // will not be visited by GC.
3073   Threads::add(this);
3074 }
3075 
3076 oop JavaThread::current_park_blocker() {
3077   // Support for JSR-166 locks
3078   oop thread_oop = threadObj();
3079   if (thread_oop != NULL &&
3080       JDK_Version::current().supports_thread_park_blocker()) {
3081     return java_lang_Thread::park_blocker(thread_oop);
3082   }
3083   return NULL;
3084 }
3085 
3086 
3087 void JavaThread::print_stack_on(outputStream* st) {
3088   if (!has_last_Java_frame()) return;
3089   ResourceMark rm;
3090   HandleMark   hm;
3091 
3092   RegisterMap reg_map(this);
3093   vframe* start_vf = last_java_vframe(&reg_map);
3094   int count = 0;
3095   for (vframe* f = start_vf; f; f = f->sender()) {
3096     if (f->is_java_frame()) {
3097       javaVFrame* jvf = javaVFrame::cast(f);
3098       java_lang_Throwable::print_stack_element(st, jvf->method(), jvf->bci());
3099 
3100       // Print out lock information
3101       if (JavaMonitorsInStackTrace) {
3102         jvf->print_lock_info_on(st, count);
3103       }
3104     } else {
3105       // Ignore non-Java frames
3106     }
3107 
3108     // Bail-out case for too deep stacks
3109     count++;
3110     if (MaxJavaStackTraceDepth == count) return;
3111   }
3112 }
3113 
3114 
3115 // JVMTI PopFrame support
3116 void JavaThread::popframe_preserve_args(ByteSize size_in_bytes, void* start) {
3117   assert(_popframe_preserved_args == NULL, "should not wipe out old PopFrame preserved arguments");
3118   if (in_bytes(size_in_bytes) != 0) {
3119     _popframe_preserved_args = NEW_C_HEAP_ARRAY(char, in_bytes(size_in_bytes), mtThread);
3120     _popframe_preserved_args_size = in_bytes(size_in_bytes);
3121     Copy::conjoint_jbytes(start, _popframe_preserved_args, _popframe_preserved_args_size);
3122   }
3123 }
3124 
3125 void* JavaThread::popframe_preserved_args() {
3126   return _popframe_preserved_args;
3127 }
3128 
3129 ByteSize JavaThread::popframe_preserved_args_size() {
3130   return in_ByteSize(_popframe_preserved_args_size);
3131 }
3132 
3133 WordSize JavaThread::popframe_preserved_args_size_in_words() {
3134   int sz = in_bytes(popframe_preserved_args_size());
3135   assert(sz % wordSize == 0, "argument size must be multiple of wordSize");
3136   return in_WordSize(sz / wordSize);
3137 }
3138 
3139 void JavaThread::popframe_free_preserved_args() {
3140   assert(_popframe_preserved_args != NULL, "should not free PopFrame preserved arguments twice");
3141   FREE_C_HEAP_ARRAY(char, (char*) _popframe_preserved_args);
3142   _popframe_preserved_args = NULL;
3143   _popframe_preserved_args_size = 0;
3144 }
3145 
3146 #ifndef PRODUCT
3147 
3148 void JavaThread::trace_frames() {
3149   tty->print_cr("[Describe stack]");
3150   int frame_no = 1;
3151   for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
3152     tty->print("  %d. ", frame_no++);
3153     fst.current()->print_value_on(tty, this);
3154     tty->cr();
3155   }
3156 }
3157 
3158 class PrintAndVerifyOopClosure: public OopClosure {
3159  protected:
3160   template <class T> inline void do_oop_work(T* p) {
3161     oop obj = oopDesc::load_decode_heap_oop(p);
3162     if (obj == NULL) return;
3163     tty->print(INTPTR_FORMAT ": ", p2i(p));
3164     if (obj->is_oop_or_null()) {
3165       if (obj->is_objArray()) {
3166         tty->print_cr("valid objArray: " INTPTR_FORMAT, p2i(obj));
3167       } else {
3168         obj->print();
3169       }
3170     } else {
3171       tty->print_cr("invalid oop: " INTPTR_FORMAT, p2i(obj));
3172     }
3173     tty->cr();
3174   }
3175  public:
3176   virtual void do_oop(oop* p) { do_oop_work(p); }
3177   virtual void do_oop(narrowOop* p)  { do_oop_work(p); }
3178 };
3179 
3180 
3181 static void oops_print(frame* f, const RegisterMap *map) {
3182   PrintAndVerifyOopClosure print;
3183   f->print_value();
3184   f->oops_do(&print, NULL, (RegisterMap*)map);
3185 }
3186 
3187 // Print our all the locations that contain oops and whether they are
3188 // valid or not.  This useful when trying to find the oldest frame
3189 // where an oop has gone bad since the frame walk is from youngest to
3190 // oldest.
3191 void JavaThread::trace_oops() {
3192   tty->print_cr("[Trace oops]");
3193   frames_do(oops_print);
3194 }
3195 
3196 
3197 #ifdef ASSERT
3198 // Print or validate the layout of stack frames
3199 void JavaThread::print_frame_layout(int depth, bool validate_only) {
3200   ResourceMark rm;
3201   PRESERVE_EXCEPTION_MARK;
3202   FrameValues values;
3203   int frame_no = 0;
3204   for (StackFrameStream fst(this, false); !fst.is_done(); fst.next()) {
3205     fst.current()->describe(values, ++frame_no);
3206     if (depth == frame_no) break;
3207   }
3208   if (validate_only) {
3209     values.validate();
3210   } else {
3211     tty->print_cr("[Describe stack layout]");
3212     values.print(this);
3213   }
3214 }
3215 #endif
3216 
3217 void JavaThread::trace_stack_from(vframe* start_vf) {
3218   ResourceMark rm;
3219   int vframe_no = 1;
3220   for (vframe* f = start_vf; f; f = f->sender()) {
3221     if (f->is_java_frame()) {
3222       javaVFrame::cast(f)->print_activation(vframe_no++);
3223     } else {
3224       f->print();
3225     }
3226     if (vframe_no > StackPrintLimit) {
3227       tty->print_cr("...<more frames>...");
3228       return;
3229     }
3230   }
3231 }
3232 
3233 
3234 void JavaThread::trace_stack() {
3235   if (!has_last_Java_frame()) return;
3236   ResourceMark rm;
3237   HandleMark   hm;
3238   RegisterMap reg_map(this);
3239   trace_stack_from(last_java_vframe(&reg_map));
3240 }
3241 
3242 
3243 #endif // PRODUCT
3244 
3245 
3246 javaVFrame* JavaThread::last_java_vframe(RegisterMap *reg_map) {
3247   assert(reg_map != NULL, "a map must be given");
3248   frame f = last_frame();
3249   for (vframe* vf = vframe::new_vframe(&f, reg_map, this); vf; vf = vf->sender()) {
3250     if (vf->is_java_frame()) return javaVFrame::cast(vf);
3251   }
3252   return NULL;
3253 }
3254 
3255 
3256 Klass* JavaThread::security_get_caller_class(int depth) {
3257   vframeStream vfst(this);
3258   vfst.security_get_caller_frame(depth);
3259   if (!vfst.at_end()) {
3260     return vfst.method()->method_holder();
3261   }
3262   return NULL;
3263 }
3264 
3265 static void compiler_thread_entry(JavaThread* thread, TRAPS) {
3266   assert(thread->is_Compiler_thread(), "must be compiler thread");
3267   CompileBroker::compiler_thread_loop();
3268 }
3269 
3270 static void sweeper_thread_entry(JavaThread* thread, TRAPS) {
3271   NMethodSweeper::sweeper_loop();
3272 }
3273 
3274 // Create a CompilerThread
3275 CompilerThread::CompilerThread(CompileQueue* queue,
3276                                CompilerCounters* counters)
3277                                : JavaThread(&compiler_thread_entry) {
3278   _env   = NULL;
3279   _log   = NULL;
3280   _task  = NULL;
3281   _queue = queue;
3282   _counters = counters;
3283   _buffer_blob = NULL;
3284   _compiler = NULL;
3285 
3286 #ifndef PRODUCT
3287   _ideal_graph_printer = NULL;
3288 #endif
3289 }
3290 
3291 bool CompilerThread::can_call_java() const {
3292   return _compiler != NULL && _compiler->is_jvmci();
3293 }
3294 
3295 // Create sweeper thread
3296 CodeCacheSweeperThread::CodeCacheSweeperThread()
3297 : JavaThread(&sweeper_thread_entry) {
3298   _scanned_compiled_method = NULL;
3299 }
3300 
3301 void CodeCacheSweeperThread::oops_do(OopClosure* f, CodeBlobClosure* cf) {
3302   JavaThread::oops_do(f, cf);
3303   if (_scanned_compiled_method != NULL && cf != NULL) {
3304     // Safepoints can occur when the sweeper is scanning an nmethod so
3305     // process it here to make sure it isn't unloaded in the middle of
3306     // a scan.
3307     cf->do_code_blob(_scanned_compiled_method);
3308   }
3309 }
3310 
3311 void CodeCacheSweeperThread::nmethods_do(CodeBlobClosure* cf) {
3312   JavaThread::nmethods_do(cf);
3313   if (_scanned_compiled_method != NULL && cf != NULL) {
3314     // Safepoints can occur when the sweeper is scanning an nmethod so
3315     // process it here to make sure it isn't unloaded in the middle of
3316     // a scan.
3317     cf->do_code_blob(_scanned_compiled_method);
3318   }
3319 }
3320 
3321 
3322 // ======= Threads ========
3323 
3324 // The Threads class links together all active threads, and provides
3325 // operations over all threads.  It is protected by its own Mutex
3326 // lock, which is also used in other contexts to protect thread
3327 // operations from having the thread being operated on from exiting
3328 // and going away unexpectedly (e.g., safepoint synchronization)
3329 
3330 JavaThread* Threads::_thread_list = NULL;
3331 int         Threads::_number_of_threads = 0;
3332 int         Threads::_number_of_non_daemon_threads = 0;
3333 int         Threads::_return_code = 0;
3334 int         Threads::_thread_claim_parity = 0;
3335 size_t      JavaThread::_stack_size_at_create = 0;
3336 #ifdef ASSERT
3337 bool        Threads::_vm_complete = false;
3338 #endif
3339 
3340 // All JavaThreads
3341 #define ALL_JAVA_THREADS(X) for (JavaThread* X = _thread_list; X; X = X->next())
3342 
3343 // All JavaThreads + all non-JavaThreads (i.e., every thread in the system)
3344 void Threads::threads_do(ThreadClosure* tc) {
3345   assert_locked_or_safepoint(Threads_lock);
3346   // ALL_JAVA_THREADS iterates through all JavaThreads
3347   ALL_JAVA_THREADS(p) {
3348     tc->do_thread(p);
3349   }
3350   // Someday we could have a table or list of all non-JavaThreads.
3351   // For now, just manually iterate through them.
3352   tc->do_thread(VMThread::vm_thread());
3353   GC::gc()->heap()->gc_threads_do(tc);
3354   WatcherThread *wt = WatcherThread::watcher_thread();
3355   // Strictly speaking, the following NULL check isn't sufficient to make sure
3356   // the data for WatcherThread is still valid upon being examined. However,
3357   // considering that WatchThread terminates when the VM is on the way to
3358   // exit at safepoint, the chance of the above is extremely small. The right
3359   // way to prevent termination of WatcherThread would be to acquire
3360   // Terminator_lock, but we can't do that without violating the lock rank
3361   // checking in some cases.
3362   if (wt != NULL) {
3363     tc->do_thread(wt);
3364   }
3365 
3366   // If CompilerThreads ever become non-JavaThreads, add them here
3367 }
3368 
3369 // The system initialization in the library has three phases.
3370 //
3371 // Phase 1: java.lang.System class initialization
3372 //     java.lang.System is a primordial class loaded and initialized
3373 //     by the VM early during startup.  java.lang.System.<clinit>
3374 //     only does registerNatives and keeps the rest of the class
3375 //     initialization work later until thread initialization completes.
3376 //
3377 //     System.initPhase1 initializes the system properties, the static
3378 //     fields in, out, and err. Set up java signal handlers, OS-specific
3379 //     system settings, and thread group of the main thread.
3380 static void call_initPhase1(TRAPS) {
3381   Klass* k =  SystemDictionary::resolve_or_fail(vmSymbols::java_lang_System(), true, CHECK);
3382   instanceKlassHandle klass (THREAD, k);
3383 
3384   JavaValue result(T_VOID);
3385   JavaCalls::call_static(&result, klass, vmSymbols::initPhase1_name(),
3386                                          vmSymbols::void_method_signature(), CHECK);
3387 }
3388 
3389 // Phase 2. Module system initialization
3390 //     This will initialize the module system.  Only java.base classes
3391 //     can be loaded until phase 2 completes.
3392 //
3393 //     Call System.initPhase2 after the compiler initialization and jsr292
3394 //     classes get initialized because module initialization runs a lot of java
3395 //     code, that for performance reasons, should be compiled.  Also, this will
3396 //     enable the startup code to use lambda and other language features in this
3397 //     phase and onward.
3398 //
3399 //     After phase 2, The VM will begin search classes from -Xbootclasspath/a.
3400 static void call_initPhase2(TRAPS) {
3401   TraceTime timer("Phase2 initialization", TRACETIME_LOG(Info, modules, startuptime));
3402 
3403   Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_System(), true, CHECK);
3404   instanceKlassHandle klass (THREAD, k);
3405 
3406   JavaValue result(T_VOID);
3407   JavaCalls::call_static(&result, klass, vmSymbols::initPhase2_name(),
3408                                          vmSymbols::void_method_signature(), CHECK);
3409   universe_post_module_init();
3410 }
3411 
3412 // Phase 3. final setup - set security manager, system class loader and TCCL
3413 //
3414 //     This will instantiate and set the security manager, set the system class
3415 //     loader as well as the thread context class loader.  The security manager
3416 //     and system class loader may be a custom class loaded from -Xbootclasspath/a,
3417 //     other modules or the application's classpath.
3418 static void call_initPhase3(TRAPS) {
3419   Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_System(), true, CHECK);
3420   instanceKlassHandle klass (THREAD, k);
3421 
3422   JavaValue result(T_VOID);
3423   JavaCalls::call_static(&result, klass, vmSymbols::initPhase3_name(),
3424                                          vmSymbols::void_method_signature(), CHECK);
3425 }
3426 
3427 void Threads::initialize_java_lang_classes(JavaThread* main_thread, TRAPS) {
3428   TraceTime timer("Initialize java.lang classes", TRACETIME_LOG(Info, startuptime));
3429 
3430   if (EagerXrunInit && Arguments::init_libraries_at_startup()) {
3431     create_vm_init_libraries();
3432   }
3433 
3434   initialize_class(vmSymbols::java_lang_String(), CHECK);
3435 
3436   // Inject CompactStrings value after the static initializers for String ran.
3437   java_lang_String::set_compact_strings(CompactStrings);
3438 
3439   // Initialize java_lang.System (needed before creating the thread)
3440   initialize_class(vmSymbols::java_lang_System(), CHECK);
3441   // The VM creates & returns objects of this class. Make sure it's initialized.
3442   initialize_class(vmSymbols::java_lang_Class(), CHECK);
3443   initialize_class(vmSymbols::java_lang_ThreadGroup(), CHECK);
3444   Handle thread_group = create_initial_thread_group(CHECK);
3445   Universe::set_main_thread_group(thread_group());
3446   initialize_class(vmSymbols::java_lang_Thread(), CHECK);
3447   oop thread_object = create_initial_thread(thread_group, main_thread, CHECK);
3448   main_thread->set_threadObj(thread_object);
3449   // Set thread status to running since main thread has
3450   // been started and running.
3451   java_lang_Thread::set_thread_status(thread_object,
3452                                       java_lang_Thread::RUNNABLE);
3453 
3454   // The VM creates objects of this class.
3455   initialize_class(vmSymbols::java_lang_reflect_Module(), CHECK);
3456 
3457   // The VM preresolves methods to these classes. Make sure that they get initialized
3458   initialize_class(vmSymbols::java_lang_reflect_Method(), CHECK);
3459   initialize_class(vmSymbols::java_lang_ref_Finalizer(), CHECK);
3460 
3461   // Phase 1 of the system initialization in the library, java.lang.System class initialization
3462   call_initPhase1(CHECK);
3463 
3464   // get the Java runtime name after java.lang.System is initialized
3465   JDK_Version::set_runtime_name(get_java_runtime_name(THREAD));
3466   JDK_Version::set_runtime_version(get_java_runtime_version(THREAD));
3467 
3468   // an instance of OutOfMemory exception has been allocated earlier
3469   initialize_class(vmSymbols::java_lang_OutOfMemoryError(), CHECK);
3470   initialize_class(vmSymbols::java_lang_NullPointerException(), CHECK);
3471   initialize_class(vmSymbols::java_lang_ClassCastException(), CHECK);
3472   initialize_class(vmSymbols::java_lang_ArrayStoreException(), CHECK);
3473   initialize_class(vmSymbols::java_lang_ArithmeticException(), CHECK);
3474   initialize_class(vmSymbols::java_lang_StackOverflowError(), CHECK);
3475   initialize_class(vmSymbols::java_lang_IllegalMonitorStateException(), CHECK);
3476   initialize_class(vmSymbols::java_lang_IllegalArgumentException(), CHECK);
3477 }
3478 
3479 void Threads::initialize_jsr292_core_classes(TRAPS) {
3480   TraceTime timer("Initialize java.lang.invoke classes", TRACETIME_LOG(Info, startuptime));
3481 
3482   initialize_class(vmSymbols::java_lang_invoke_MethodHandle(), CHECK);
3483   initialize_class(vmSymbols::java_lang_invoke_MemberName(), CHECK);
3484   initialize_class(vmSymbols::java_lang_invoke_MethodHandleNatives(), CHECK);
3485 }
3486 
3487 jint Threads::create_vm(JavaVMInitArgs* args, bool* canTryAgain) {
3488   extern void JDK_Version_init();
3489 
3490   // Preinitialize version info.
3491   VM_Version::early_initialize();
3492 
3493   // Check version
3494   if (!is_supported_jni_version(args->version)) return JNI_EVERSION;
3495 
3496   // Initialize library-based TLS
3497   ThreadLocalStorage::init();
3498 
3499   // Initialize the output stream module
3500   ostream_init();
3501 
3502   // Process java launcher properties.
3503   Arguments::process_sun_java_launcher_properties(args);
3504 
3505   // Initialize the os module
3506   os::init();
3507 
3508   // Record VM creation timing statistics
3509   TraceVmCreationTime create_vm_timer;
3510   create_vm_timer.start();
3511 
3512   // Initialize system properties.
3513   Arguments::init_system_properties();
3514 
3515   // So that JDK version can be used as a discriminator when parsing arguments
3516   JDK_Version_init();
3517 
3518   // Update/Initialize System properties after JDK version number is known
3519   Arguments::init_version_specific_system_properties();
3520 
3521   // Make sure to initialize log configuration *before* parsing arguments
3522   LogConfiguration::initialize(create_vm_timer.begin_time());
3523 
3524   // Parse arguments
3525   jint parse_result = Arguments::parse(args);
3526   if (parse_result != JNI_OK) return parse_result;
3527 
3528   os::init_before_ergo();
3529 
3530   Arguments::select_gc();
3531   jint gc_result = GC::initialize();
3532   if (gc_result != JNI_OK) {
3533     return gc_result;
3534   }
3535 
3536   jint ergo_result = Arguments::apply_ergo();
3537   if (ergo_result != JNI_OK) return ergo_result;
3538 
3539   // Final check of all ranges after ergonomics which may change values.
3540   if (!CommandLineFlagRangeList::check_ranges()) {
3541     return JNI_EINVAL;
3542   }
3543 
3544   // Final check of all 'AfterErgo' constraints after ergonomics which may change values.
3545   bool constraint_result = CommandLineFlagConstraintList::check_constraints(CommandLineFlagConstraint::AfterErgo);
3546   if (!constraint_result) {
3547     return JNI_EINVAL;
3548   }
3549 
3550   CommandLineFlagWriteableList::mark_startup();
3551 
3552   if (PauseAtStartup) {
3553     os::pause();
3554   }
3555 
3556   HOTSPOT_VM_INIT_BEGIN();
3557 
3558   // Timing (must come after argument parsing)
3559   TraceTime timer("Create VM", TRACETIME_LOG(Info, startuptime));
3560 
3561   // Initialize the os module after parsing the args
3562   jint os_init_2_result = os::init_2();
3563   if (os_init_2_result != JNI_OK) return os_init_2_result;
3564 
3565   jint adjust_after_os_result = Arguments::adjust_after_os();
3566   if (adjust_after_os_result != JNI_OK) return adjust_after_os_result;
3567 
3568   // Initialize output stream logging
3569   ostream_init_log();
3570 
3571   // Convert -Xrun to -agentlib: if there is no JVM_OnLoad
3572   // Must be before create_vm_init_agents()
3573   if (Arguments::init_libraries_at_startup()) {
3574     convert_vm_init_libraries_to_agents();
3575   }
3576 
3577   // Launch -agentlib/-agentpath and converted -Xrun agents
3578   if (Arguments::init_agents_at_startup()) {
3579     create_vm_init_agents();
3580   }
3581 
3582   // Initialize Threads state
3583   _thread_list = NULL;
3584   _number_of_threads = 0;
3585   _number_of_non_daemon_threads = 0;
3586 
3587   // Initialize global data structures and create system classes in heap
3588   vm_init_globals();
3589 
3590 #if INCLUDE_JVMCI
3591   if (JVMCICounterSize > 0) {
3592     JavaThread::_jvmci_old_thread_counters = NEW_C_HEAP_ARRAY(jlong, JVMCICounterSize, mtInternal);
3593     memset(JavaThread::_jvmci_old_thread_counters, 0, sizeof(jlong) * JVMCICounterSize);
3594   } else {
3595     JavaThread::_jvmci_old_thread_counters = NULL;
3596   }
3597 #endif // INCLUDE_JVMCI
3598 
3599   // Attach the main thread to this os thread
3600   JavaThread* main_thread = new JavaThread();
3601   main_thread->set_thread_state(_thread_in_vm);
3602   main_thread->initialize_thread_current();
3603   // must do this before set_active_handles
3604   main_thread->record_stack_base_and_size();
3605   main_thread->set_active_handles(JNIHandleBlock::allocate_block());
3606 
3607   if (!main_thread->set_as_starting_thread()) {
3608     vm_shutdown_during_initialization(
3609                                       "Failed necessary internal allocation. Out of swap space");
3610     delete main_thread;
3611     *canTryAgain = false; // don't let caller call JNI_CreateJavaVM again
3612     return JNI_ENOMEM;
3613   }
3614 
3615   // Enable guard page *after* os::create_main_thread(), otherwise it would
3616   // crash Linux VM, see notes in os_linux.cpp.
3617   main_thread->create_stack_guard_pages();
3618 
3619   // Initialize Java-Level synchronization subsystem
3620   ObjectMonitor::Initialize();
3621 
3622   // Initialize global modules
3623   jint status = init_globals();
3624   if (status != JNI_OK) {
3625     delete main_thread;
3626     *canTryAgain = false; // don't let caller call JNI_CreateJavaVM again
3627     return status;
3628   }
3629 
3630   if (TRACE_INITIALIZE() != JNI_OK) {
3631     vm_exit_during_initialization("Failed to initialize tracing backend");
3632   }
3633 
3634   // Should be done after the heap is fully created
3635   main_thread->cache_global_variables();
3636 
3637   HandleMark hm;
3638 
3639   { MutexLocker mu(Threads_lock);
3640     Threads::add(main_thread);
3641   }
3642 
3643   // Any JVMTI raw monitors entered in onload will transition into
3644   // real raw monitor. VM is setup enough here for raw monitor enter.
3645   JvmtiExport::transition_pending_onload_raw_monitors();
3646 
3647   // Create the VMThread
3648   { TraceTime timer("Start VMThread", TRACETIME_LOG(Info, startuptime));
3649 
3650   VMThread::create();
3651     Thread* vmthread = VMThread::vm_thread();
3652 
3653     if (!os::create_thread(vmthread, os::vm_thread)) {
3654       vm_exit_during_initialization("Cannot create VM thread. "
3655                                     "Out of system resources.");
3656     }
3657 
3658     // Wait for the VM thread to become ready, and VMThread::run to initialize
3659     // Monitors can have spurious returns, must always check another state flag
3660     {
3661       MutexLocker ml(Notify_lock);
3662       os::start_thread(vmthread);
3663       while (vmthread->active_handles() == NULL) {
3664         Notify_lock->wait();
3665       }
3666     }
3667   }
3668 
3669   assert(Universe::is_fully_initialized(), "not initialized");
3670   if (VerifyDuringStartup) {
3671     // Make sure we're starting with a clean slate.
3672     VM_Verify verify_op;
3673     VMThread::execute(&verify_op);
3674   }
3675 
3676   Thread* THREAD = Thread::current();
3677 
3678   // At this point, the Universe is initialized, but we have not executed
3679   // any byte code.  Now is a good time (the only time) to dump out the
3680   // internal state of the JVM for sharing.
3681   if (DumpSharedSpaces) {
3682     MetaspaceShared::preload_and_dump(CHECK_JNI_ERR);
3683     ShouldNotReachHere();
3684   }
3685 
3686   // Always call even when there are not JVMTI environments yet, since environments
3687   // may be attached late and JVMTI must track phases of VM execution
3688   JvmtiExport::enter_early_start_phase();
3689 
3690   // Notify JVMTI agents that VM has started (JNI is up) - nop if no agents.
3691   JvmtiExport::post_early_vm_start();
3692 
3693   initialize_java_lang_classes(main_thread, CHECK_JNI_ERR);
3694 
3695   // We need this for ClassDataSharing - the initial vm.info property is set
3696   // with the default value of CDS "sharing" which may be reset through
3697   // command line options.
3698   reset_vm_info_property(CHECK_JNI_ERR);
3699 
3700   quicken_jni_functions();
3701 
3702   // No more stub generation allowed after that point.
3703   StubCodeDesc::freeze();
3704 
3705   // Set flag that basic initialization has completed. Used by exceptions and various
3706   // debug stuff, that does not work until all basic classes have been initialized.
3707   set_init_completed();
3708 
3709   LogConfiguration::post_initialize();
3710   Metaspace::post_initialize();
3711 
3712   HOTSPOT_VM_INIT_END();
3713 
3714   // record VM initialization completion time
3715 #if INCLUDE_MANAGEMENT
3716   Management::record_vm_init_completed();
3717 #endif // INCLUDE_MANAGEMENT
3718 
3719   // Note that we do not use CHECK_0 here since we are inside an EXCEPTION_MARK and
3720   // set_init_completed has just been called, causing exceptions not to be shortcut
3721   // anymore. We call vm_exit_during_initialization directly instead.
3722 
3723   // Initialize reference pending list locker
3724   bool needs_locker_thread = GC::gc()->heap()->needs_reference_pending_list_locker_thread();
3725   ReferencePendingListLocker::initialize(needs_locker_thread, CHECK_JNI_ERR);
3726 
3727   // Signal Dispatcher needs to be started before VMInit event is posted
3728   os::signal_init();
3729 
3730   // Start Attach Listener if +StartAttachListener or it can't be started lazily
3731   if (!DisableAttachMechanism) {
3732     AttachListener::vm_start();
3733     if (StartAttachListener || AttachListener::init_at_startup()) {
3734       AttachListener::init();
3735     }
3736   }
3737 
3738   // Launch -Xrun agents
3739   // Must be done in the JVMTI live phase so that for backward compatibility the JDWP
3740   // back-end can launch with -Xdebug -Xrunjdwp.
3741   if (!EagerXrunInit && Arguments::init_libraries_at_startup()) {
3742     create_vm_init_libraries();
3743   }
3744 
3745   if (CleanChunkPoolAsync) {
3746     Chunk::start_chunk_pool_cleaner_task();
3747   }
3748 
3749   // initialize compiler(s)
3750 #if defined(COMPILER1) || defined(COMPILER2) || defined(SHARK) || INCLUDE_JVMCI
3751   CompileBroker::compilation_init(CHECK_JNI_ERR);
3752 #endif
3753 
3754   // Pre-initialize some JSR292 core classes to avoid deadlock during class loading.
3755   // It is done after compilers are initialized, because otherwise compilations of
3756   // signature polymorphic MH intrinsics can be missed
3757   // (see SystemDictionary::find_method_handle_intrinsic).
3758   initialize_jsr292_core_classes(CHECK_JNI_ERR);
3759 
3760   // This will initialize the module system.  Only java.base classes can be
3761   // loaded until phase 2 completes
3762   call_initPhase2(CHECK_JNI_ERR);
3763 
3764   // Always call even when there are not JVMTI environments yet, since environments
3765   // may be attached late and JVMTI must track phases of VM execution
3766   JvmtiExport::enter_start_phase();
3767 
3768   // Notify JVMTI agents that VM has started (JNI is up) - nop if no agents.
3769   JvmtiExport::post_vm_start();
3770 
3771   // Final system initialization including security manager and system class loader
3772   call_initPhase3(CHECK_JNI_ERR);
3773 
3774   // cache the system class loader
3775   SystemDictionary::compute_java_system_loader(CHECK_(JNI_ERR));
3776 
3777 #if INCLUDE_JVMCI
3778   if (EnableJVMCI && UseJVMCICompiler && (!UseInterpreter || !BackgroundCompilation)) {
3779     // 8145270: Force initialization of JVMCI runtime otherwise requests for blocking
3780     // compilations via JVMCI will not actually block until JVMCI is initialized.
3781     JVMCIRuntime::force_initialization(CHECK_JNI_ERR);
3782   }
3783 #endif
3784 
3785   // Always call even when there are not JVMTI environments yet, since environments
3786   // may be attached late and JVMTI must track phases of VM execution
3787   JvmtiExport::enter_live_phase();
3788 
3789   // Notify JVMTI agents that VM initialization is complete - nop if no agents.
3790   JvmtiExport::post_vm_initialized();
3791 
3792   if (TRACE_START() != JNI_OK) {
3793     vm_exit_during_initialization("Failed to start tracing backend.");
3794   }
3795 
3796 #if INCLUDE_MANAGEMENT
3797   Management::initialize(THREAD);
3798 
3799   if (HAS_PENDING_EXCEPTION) {
3800     // management agent fails to start possibly due to
3801     // configuration problem and is responsible for printing
3802     // stack trace if appropriate. Simply exit VM.
3803     vm_exit(1);
3804   }
3805 #endif // INCLUDE_MANAGEMENT
3806 
3807   if (Arguments::has_profile())       FlatProfiler::engage(main_thread, true);
3808   if (MemProfiling)                   MemProfiler::engage();
3809   StatSampler::engage();
3810   if (CheckJNICalls)                  JniPeriodicChecker::engage();
3811 
3812   BiasedLocking::init();
3813 
3814 #if INCLUDE_RTM_OPT
3815   RTMLockingCounters::init();
3816 #endif
3817 
3818   if (JDK_Version::current().post_vm_init_hook_enabled()) {
3819     call_postVMInitHook(THREAD);
3820     // The Java side of PostVMInitHook.run must deal with all
3821     // exceptions and provide means of diagnosis.
3822     if (HAS_PENDING_EXCEPTION) {
3823       CLEAR_PENDING_EXCEPTION;
3824     }
3825   }
3826 
3827   {
3828     MutexLocker ml(PeriodicTask_lock);
3829     // Make sure the WatcherThread can be started by WatcherThread::start()
3830     // or by dynamic enrollment.
3831     WatcherThread::make_startable();
3832     // Start up the WatcherThread if there are any periodic tasks
3833     // NOTE:  All PeriodicTasks should be registered by now. If they
3834     //   aren't, late joiners might appear to start slowly (we might
3835     //   take a while to process their first tick).
3836     if (PeriodicTask::num_tasks() > 0) {
3837       WatcherThread::start();
3838     }
3839   }
3840 
3841   CodeCacheExtensions::complete_step(CodeCacheExtensionsSteps::CreateVM);
3842 
3843   create_vm_timer.end();
3844 #ifdef ASSERT
3845   _vm_complete = true;
3846 #endif
3847   return JNI_OK;
3848 }
3849 
3850 // type for the Agent_OnLoad and JVM_OnLoad entry points
3851 extern "C" {
3852   typedef jint (JNICALL *OnLoadEntry_t)(JavaVM *, char *, void *);
3853 }
3854 // Find a command line agent library and return its entry point for
3855 //         -agentlib:  -agentpath:   -Xrun
3856 // num_symbol_entries must be passed-in since only the caller knows the number of symbols in the array.
3857 static OnLoadEntry_t lookup_on_load(AgentLibrary* agent,
3858                                     const char *on_load_symbols[],
3859                                     size_t num_symbol_entries) {
3860   OnLoadEntry_t on_load_entry = NULL;
3861   void *library = NULL;
3862 
3863   if (!agent->valid()) {
3864     char buffer[JVM_MAXPATHLEN];
3865     char ebuf[1024] = "";
3866     const char *name = agent->name();
3867     const char *msg = "Could not find agent library ";
3868 
3869     // First check to see if agent is statically linked into executable
3870     if (os::find_builtin_agent(agent, on_load_symbols, num_symbol_entries)) {
3871       library = agent->os_lib();
3872     } else if (agent->is_absolute_path()) {
3873       library = os::dll_load(name, ebuf, sizeof ebuf);
3874       if (library == NULL) {
3875         const char *sub_msg = " in absolute path, with error: ";
3876         size_t len = strlen(msg) + strlen(name) + strlen(sub_msg) + strlen(ebuf) + 1;
3877         char *buf = NEW_C_HEAP_ARRAY(char, len, mtThread);
3878         jio_snprintf(buf, len, "%s%s%s%s", msg, name, sub_msg, ebuf);
3879         // If we can't find the agent, exit.
3880         vm_exit_during_initialization(buf, NULL);
3881         FREE_C_HEAP_ARRAY(char, buf);
3882       }
3883     } else {
3884       // Try to load the agent from the standard dll directory
3885       if (os::dll_build_name(buffer, sizeof(buffer), Arguments::get_dll_dir(),
3886                              name)) {
3887         library = os::dll_load(buffer, ebuf, sizeof ebuf);
3888       }
3889       if (library == NULL) { // Try the local directory
3890         char ns[1] = {0};
3891         if (os::dll_build_name(buffer, sizeof(buffer), ns, name)) {
3892           library = os::dll_load(buffer, ebuf, sizeof ebuf);
3893         }
3894         if (library == NULL) {
3895           const char *sub_msg = " on the library path, with error: ";
3896           size_t len = strlen(msg) + strlen(name) + strlen(sub_msg) + strlen(ebuf) + 1;
3897           char *buf = NEW_C_HEAP_ARRAY(char, len, mtThread);
3898           jio_snprintf(buf, len, "%s%s%s%s", msg, name, sub_msg, ebuf);
3899           // If we can't find the agent, exit.
3900           vm_exit_during_initialization(buf, NULL);
3901           FREE_C_HEAP_ARRAY(char, buf);
3902         }
3903       }
3904     }
3905     agent->set_os_lib(library);
3906     agent->set_valid();
3907   }
3908 
3909   // Find the OnLoad function.
3910   on_load_entry =
3911     CAST_TO_FN_PTR(OnLoadEntry_t, os::find_agent_function(agent,
3912                                                           false,
3913                                                           on_load_symbols,
3914                                                           num_symbol_entries));
3915   return on_load_entry;
3916 }
3917 
3918 // Find the JVM_OnLoad entry point
3919 static OnLoadEntry_t lookup_jvm_on_load(AgentLibrary* agent) {
3920   const char *on_load_symbols[] = JVM_ONLOAD_SYMBOLS;
3921   return lookup_on_load(agent, on_load_symbols, sizeof(on_load_symbols) / sizeof(char*));
3922 }
3923 
3924 // Find the Agent_OnLoad entry point
3925 static OnLoadEntry_t lookup_agent_on_load(AgentLibrary* agent) {
3926   const char *on_load_symbols[] = AGENT_ONLOAD_SYMBOLS;
3927   return lookup_on_load(agent, on_load_symbols, sizeof(on_load_symbols) / sizeof(char*));
3928 }
3929 
3930 // For backwards compatibility with -Xrun
3931 // Convert libraries with no JVM_OnLoad, but which have Agent_OnLoad to be
3932 // treated like -agentpath:
3933 // Must be called before agent libraries are created
3934 void Threads::convert_vm_init_libraries_to_agents() {
3935   AgentLibrary* agent;
3936   AgentLibrary* next;
3937 
3938   for (agent = Arguments::libraries(); agent != NULL; agent = next) {
3939     next = agent->next();  // cache the next agent now as this agent may get moved off this list
3940     OnLoadEntry_t on_load_entry = lookup_jvm_on_load(agent);
3941 
3942     // If there is an JVM_OnLoad function it will get called later,
3943     // otherwise see if there is an Agent_OnLoad
3944     if (on_load_entry == NULL) {
3945       on_load_entry = lookup_agent_on_load(agent);
3946       if (on_load_entry != NULL) {
3947         // switch it to the agent list -- so that Agent_OnLoad will be called,
3948         // JVM_OnLoad won't be attempted and Agent_OnUnload will
3949         Arguments::convert_library_to_agent(agent);
3950       } else {
3951         vm_exit_during_initialization("Could not find JVM_OnLoad or Agent_OnLoad function in the library", agent->name());
3952       }
3953     }
3954   }
3955 }
3956 
3957 // Create agents for -agentlib:  -agentpath:  and converted -Xrun
3958 // Invokes Agent_OnLoad
3959 // Called very early -- before JavaThreads exist
3960 void Threads::create_vm_init_agents() {
3961   extern struct JavaVM_ main_vm;
3962   AgentLibrary* agent;
3963 
3964   JvmtiExport::enter_onload_phase();
3965 
3966   for (agent = Arguments::agents(); agent != NULL; agent = agent->next()) {
3967     OnLoadEntry_t  on_load_entry = lookup_agent_on_load(agent);
3968 
3969     if (on_load_entry != NULL) {
3970       // Invoke the Agent_OnLoad function
3971       jint err = (*on_load_entry)(&main_vm, agent->options(), NULL);
3972       if (err != JNI_OK) {
3973         vm_exit_during_initialization("agent library failed to init", agent->name());
3974       }
3975     } else {
3976       vm_exit_during_initialization("Could not find Agent_OnLoad function in the agent library", agent->name());
3977     }
3978   }
3979   JvmtiExport::enter_primordial_phase();
3980 }
3981 
3982 extern "C" {
3983   typedef void (JNICALL *Agent_OnUnload_t)(JavaVM *);
3984 }
3985 
3986 void Threads::shutdown_vm_agents() {
3987   // Send any Agent_OnUnload notifications
3988   const char *on_unload_symbols[] = AGENT_ONUNLOAD_SYMBOLS;
3989   size_t num_symbol_entries = ARRAY_SIZE(on_unload_symbols);
3990   extern struct JavaVM_ main_vm;
3991   for (AgentLibrary* agent = Arguments::agents(); agent != NULL; agent = agent->next()) {
3992 
3993     // Find the Agent_OnUnload function.
3994     Agent_OnUnload_t unload_entry = CAST_TO_FN_PTR(Agent_OnUnload_t,
3995                                                    os::find_agent_function(agent,
3996                                                    false,
3997                                                    on_unload_symbols,
3998                                                    num_symbol_entries));
3999 
4000     // Invoke the Agent_OnUnload function
4001     if (unload_entry != NULL) {
4002       JavaThread* thread = JavaThread::current();
4003       ThreadToNativeFromVM ttn(thread);
4004       HandleMark hm(thread);
4005       (*unload_entry)(&main_vm);
4006     }
4007   }
4008 }
4009 
4010 // Called for after the VM is initialized for -Xrun libraries which have not been converted to agent libraries
4011 // Invokes JVM_OnLoad
4012 void Threads::create_vm_init_libraries() {
4013   extern struct JavaVM_ main_vm;
4014   AgentLibrary* agent;
4015 
4016   for (agent = Arguments::libraries(); agent != NULL; agent = agent->next()) {
4017     OnLoadEntry_t on_load_entry = lookup_jvm_on_load(agent);
4018 
4019     if (on_load_entry != NULL) {
4020       // Invoke the JVM_OnLoad function
4021       JavaThread* thread = JavaThread::current();
4022       ThreadToNativeFromVM ttn(thread);
4023       HandleMark hm(thread);
4024       jint err = (*on_load_entry)(&main_vm, agent->options(), NULL);
4025       if (err != JNI_OK) {
4026         vm_exit_during_initialization("-Xrun library failed to init", agent->name());
4027       }
4028     } else {
4029       vm_exit_during_initialization("Could not find JVM_OnLoad function in -Xrun library", agent->name());
4030     }
4031   }
4032 }
4033 
4034 JavaThread* Threads::find_java_thread_from_java_tid(jlong java_tid) {
4035   assert(Threads_lock->owned_by_self(), "Must hold Threads_lock");
4036 
4037   JavaThread* java_thread = NULL;
4038   // Sequential search for now.  Need to do better optimization later.
4039   for (JavaThread* thread = Threads::first(); thread != NULL; thread = thread->next()) {
4040     oop tobj = thread->threadObj();
4041     if (!thread->is_exiting() &&
4042         tobj != NULL &&
4043         java_tid == java_lang_Thread::thread_id(tobj)) {
4044       java_thread = thread;
4045       break;
4046     }
4047   }
4048   return java_thread;
4049 }
4050 
4051 
4052 // Last thread running calls java.lang.Shutdown.shutdown()
4053 void JavaThread::invoke_shutdown_hooks() {
4054   HandleMark hm(this);
4055 
4056   // We could get here with a pending exception, if so clear it now.
4057   if (this->has_pending_exception()) {
4058     this->clear_pending_exception();
4059   }
4060 
4061   EXCEPTION_MARK;
4062   Klass* k =
4063     SystemDictionary::resolve_or_null(vmSymbols::java_lang_Shutdown(),
4064                                       THREAD);
4065   if (k != NULL) {
4066     // SystemDictionary::resolve_or_null will return null if there was
4067     // an exception.  If we cannot load the Shutdown class, just don't
4068     // call Shutdown.shutdown() at all.  This will mean the shutdown hooks
4069     // and finalizers (if runFinalizersOnExit is set) won't be run.
4070     // Note that if a shutdown hook was registered or runFinalizersOnExit
4071     // was called, the Shutdown class would have already been loaded
4072     // (Runtime.addShutdownHook and runFinalizersOnExit will load it).
4073     instanceKlassHandle shutdown_klass (THREAD, k);
4074     JavaValue result(T_VOID);
4075     JavaCalls::call_static(&result,
4076                            shutdown_klass,
4077                            vmSymbols::shutdown_method_name(),
4078                            vmSymbols::void_method_signature(),
4079                            THREAD);
4080   }
4081   CLEAR_PENDING_EXCEPTION;
4082 }
4083 
4084 // Threads::destroy_vm() is normally called from jni_DestroyJavaVM() when
4085 // the program falls off the end of main(). Another VM exit path is through
4086 // vm_exit() when the program calls System.exit() to return a value or when
4087 // there is a serious error in VM. The two shutdown paths are not exactly
4088 // the same, but they share Shutdown.shutdown() at Java level and before_exit()
4089 // and VM_Exit op at VM level.
4090 //
4091 // Shutdown sequence:
4092 //   + Shutdown native memory tracking if it is on
4093 //   + Wait until we are the last non-daemon thread to execute
4094 //     <-- every thing is still working at this moment -->
4095 //   + Call java.lang.Shutdown.shutdown(), which will invoke Java level
4096 //        shutdown hooks, run finalizers if finalization-on-exit
4097 //   + Call before_exit(), prepare for VM exit
4098 //      > run VM level shutdown hooks (they are registered through JVM_OnExit(),
4099 //        currently the only user of this mechanism is File.deleteOnExit())
4100 //      > stop flat profiler, StatSampler, watcher thread, CMS threads,
4101 //        post thread end and vm death events to JVMTI,
4102 //        stop signal thread
4103 //   + Call JavaThread::exit(), it will:
4104 //      > release JNI handle blocks, remove stack guard pages
4105 //      > remove this thread from Threads list
4106 //     <-- no more Java code from this thread after this point -->
4107 //   + Stop VM thread, it will bring the remaining VM to a safepoint and stop
4108 //     the compiler threads at safepoint
4109 //     <-- do not use anything that could get blocked by Safepoint -->
4110 //   + Disable tracing at JNI/JVM barriers
4111 //   + Set _vm_exited flag for threads that are still running native code
4112 //   + Delete this thread
4113 //   + Call exit_globals()
4114 //      > deletes tty
4115 //      > deletes PerfMemory resources
4116 //   + Return to caller
4117 
4118 bool Threads::destroy_vm() {
4119   JavaThread* thread = JavaThread::current();
4120 
4121 #ifdef ASSERT
4122   _vm_complete = false;
4123 #endif
4124   // Wait until we are the last non-daemon thread to execute
4125   { MutexLocker nu(Threads_lock);
4126     while (Threads::number_of_non_daemon_threads() > 1)
4127       // This wait should make safepoint checks, wait without a timeout,
4128       // and wait as a suspend-equivalent condition.
4129       //
4130       // Note: If the FlatProfiler is running and this thread is waiting
4131       // for another non-daemon thread to finish, then the FlatProfiler
4132       // is waiting for the external suspend request on this thread to
4133       // complete. wait_for_ext_suspend_completion() will eventually
4134       // timeout, but that takes time. Making this wait a suspend-
4135       // equivalent condition solves that timeout problem.
4136       //
4137       Threads_lock->wait(!Mutex::_no_safepoint_check_flag, 0,
4138                          Mutex::_as_suspend_equivalent_flag);
4139   }
4140 
4141   // Hang forever on exit if we are reporting an error.
4142   if (ShowMessageBoxOnError && is_error_reported()) {
4143     os::infinite_sleep();
4144   }
4145   os::wait_for_keypress_at_exit();
4146 
4147   // run Java level shutdown hooks
4148   thread->invoke_shutdown_hooks();
4149 
4150   before_exit(thread);
4151 
4152   thread->exit(true);
4153 
4154   // Stop VM thread.
4155   {
4156     // 4945125 The vm thread comes to a safepoint during exit.
4157     // GC vm_operations can get caught at the safepoint, and the
4158     // heap is unparseable if they are caught. Grab the Heap_lock
4159     // to prevent this. The GC vm_operations will not be able to
4160     // queue until after the vm thread is dead. After this point,
4161     // we'll never emerge out of the safepoint before the VM exits.
4162 
4163     MutexLocker ml(Heap_lock);
4164 
4165     VMThread::wait_for_vm_thread_exit();
4166     assert(SafepointSynchronize::is_at_safepoint(), "VM thread should exit at Safepoint");
4167     VMThread::destroy();
4168   }
4169 
4170   // clean up ideal graph printers
4171 #if defined(COMPILER2) && !defined(PRODUCT)
4172   IdealGraphPrinter::clean_up();
4173 #endif
4174 
4175   // Now, all Java threads are gone except daemon threads. Daemon threads
4176   // running Java code or in VM are stopped by the Safepoint. However,
4177   // daemon threads executing native code are still running.  But they
4178   // will be stopped at native=>Java/VM barriers. Note that we can't
4179   // simply kill or suspend them, as it is inherently deadlock-prone.
4180 
4181   VM_Exit::set_vm_exited();
4182 
4183   notify_vm_shutdown();
4184 
4185   delete thread;
4186 
4187 #if INCLUDE_JVMCI
4188   if (JVMCICounterSize > 0) {
4189     FREE_C_HEAP_ARRAY(jlong, JavaThread::_jvmci_old_thread_counters);
4190   }
4191 #endif
4192 
4193   // exit_globals() will delete tty
4194   exit_globals();
4195 
4196   LogConfiguration::finalize();
4197 
4198   return true;
4199 }
4200 
4201 
4202 jboolean Threads::is_supported_jni_version_including_1_1(jint version) {
4203   if (version == JNI_VERSION_1_1) return JNI_TRUE;
4204   return is_supported_jni_version(version);
4205 }
4206 
4207 
4208 jboolean Threads::is_supported_jni_version(jint version) {
4209   if (version == JNI_VERSION_1_2) return JNI_TRUE;
4210   if (version == JNI_VERSION_1_4) return JNI_TRUE;
4211   if (version == JNI_VERSION_1_6) return JNI_TRUE;
4212   if (version == JNI_VERSION_1_8) return JNI_TRUE;
4213   if (version == JNI_VERSION_9) return JNI_TRUE;
4214   return JNI_FALSE;
4215 }
4216 
4217 
4218 void Threads::add(JavaThread* p, bool force_daemon) {
4219   // The threads lock must be owned at this point
4220   assert_locked_or_safepoint(Threads_lock);
4221 
4222   // See the comment for this method in thread.hpp for its purpose and
4223   // why it is called here.
4224   p->initialize_queues();
4225   p->set_next(_thread_list);
4226   _thread_list = p;
4227   _number_of_threads++;
4228   oop threadObj = p->threadObj();
4229   bool daemon = true;
4230   // Bootstrapping problem: threadObj can be null for initial
4231   // JavaThread (or for threads attached via JNI)
4232   if ((!force_daemon) && (threadObj == NULL || !java_lang_Thread::is_daemon(threadObj))) {
4233     _number_of_non_daemon_threads++;
4234     daemon = false;
4235   }
4236 
4237   ThreadService::add_thread(p, daemon);
4238 
4239   // Possible GC point.
4240   Events::log(p, "Thread added: " INTPTR_FORMAT, p2i(p));
4241 }
4242 
4243 void Threads::remove(JavaThread* p) {
4244   // Extra scope needed for Thread_lock, so we can check
4245   // that we do not remove thread without safepoint code notice
4246   { MutexLocker ml(Threads_lock);
4247 
4248     assert(includes(p), "p must be present");
4249 
4250     JavaThread* current = _thread_list;
4251     JavaThread* prev    = NULL;
4252 
4253     while (current != p) {
4254       prev    = current;
4255       current = current->next();
4256     }
4257 
4258     if (prev) {
4259       prev->set_next(current->next());
4260     } else {
4261       _thread_list = p->next();
4262     }
4263     _number_of_threads--;
4264     oop threadObj = p->threadObj();
4265     bool daemon = true;
4266     if (threadObj == NULL || !java_lang_Thread::is_daemon(threadObj)) {
4267       _number_of_non_daemon_threads--;
4268       daemon = false;
4269 
4270       // Only one thread left, do a notify on the Threads_lock so a thread waiting
4271       // on destroy_vm will wake up.
4272       if (number_of_non_daemon_threads() == 1) {
4273         Threads_lock->notify_all();
4274       }
4275     }
4276     ThreadService::remove_thread(p, daemon);
4277 
4278     // Make sure that safepoint code disregard this thread. This is needed since
4279     // the thread might mess around with locks after this point. This can cause it
4280     // to do callbacks into the safepoint code. However, the safepoint code is not aware
4281     // of this thread since it is removed from the queue.
4282     p->set_terminated_value();
4283   } // unlock Threads_lock
4284 
4285   // Since Events::log uses a lock, we grab it outside the Threads_lock
4286   Events::log(p, "Thread exited: " INTPTR_FORMAT, p2i(p));
4287 }
4288 
4289 // Threads_lock must be held when this is called (or must be called during a safepoint)
4290 bool Threads::includes(JavaThread* p) {
4291   assert(Threads_lock->is_locked(), "sanity check");
4292   ALL_JAVA_THREADS(q) {
4293     if (q == p) {
4294       return true;
4295     }
4296   }
4297   return false;
4298 }
4299 
4300 // Operations on the Threads list for GC.  These are not explicitly locked,
4301 // but the garbage collector must provide a safe context for them to run.
4302 // In particular, these things should never be called when the Threads_lock
4303 // is held by some other thread. (Note: the Safepoint abstraction also
4304 // uses the Threads_lock to guarantee this property. It also makes sure that
4305 // all threads gets blocked when exiting or starting).
4306 
4307 void Threads::oops_do(OopClosure* f, CodeBlobClosure* cf) {
4308   ALL_JAVA_THREADS(p) {
4309     p->oops_do(f, cf);
4310   }
4311   VMThread::vm_thread()->oops_do(f, cf);
4312 }
4313 
4314 void Threads::change_thread_claim_parity() {
4315   // Set the new claim parity.
4316   assert(_thread_claim_parity >= 0 && _thread_claim_parity <= 2,
4317          "Not in range.");
4318   _thread_claim_parity++;
4319   if (_thread_claim_parity == 3) _thread_claim_parity = 1;
4320   assert(_thread_claim_parity >= 1 && _thread_claim_parity <= 2,
4321          "Not in range.");
4322 }
4323 
4324 #ifdef ASSERT
4325 void Threads::assert_all_threads_claimed() {
4326   ALL_JAVA_THREADS(p) {
4327     const int thread_parity = p->oops_do_parity();
4328     assert((thread_parity == _thread_claim_parity),
4329            "Thread " PTR_FORMAT " has incorrect parity %d != %d", p2i(p), thread_parity, _thread_claim_parity);
4330   }
4331 }
4332 #endif // ASSERT
4333 
4334 void Threads::possibly_parallel_oops_do(bool is_par, OopClosure* f, CodeBlobClosure* cf) {
4335   int cp = Threads::thread_claim_parity();
4336   ALL_JAVA_THREADS(p) {
4337     if (p->claim_oops_do(is_par, cp)) {
4338       p->oops_do(f, cf);
4339     }
4340   }
4341   VMThread* vmt = VMThread::vm_thread();
4342   if (vmt->claim_oops_do(is_par, cp)) {
4343     vmt->oops_do(f, cf);
4344   }
4345 }
4346 
4347 void Threads::nmethods_do(CodeBlobClosure* cf) {
4348   ALL_JAVA_THREADS(p) {
4349     // This is used by the code cache sweeper to mark nmethods that are active
4350     // on the stack of a Java thread. Ignore the sweeper thread itself to avoid
4351     // marking CodeCacheSweeperThread::_scanned_compiled_method as active.
4352     if(!p->is_Code_cache_sweeper_thread()) {
4353       p->nmethods_do(cf);
4354     }
4355   }
4356 }
4357 
4358 void Threads::metadata_do(void f(Metadata*)) {
4359   ALL_JAVA_THREADS(p) {
4360     p->metadata_do(f);
4361   }
4362 }
4363 
4364 class ThreadHandlesClosure : public ThreadClosure {
4365   void (*_f)(Metadata*);
4366  public:
4367   ThreadHandlesClosure(void f(Metadata*)) : _f(f) {}
4368   virtual void do_thread(Thread* thread) {
4369     thread->metadata_handles_do(_f);
4370   }
4371 };
4372 
4373 void Threads::metadata_handles_do(void f(Metadata*)) {
4374   // Only walk the Handles in Thread.
4375   ThreadHandlesClosure handles_closure(f);
4376   threads_do(&handles_closure);
4377 }
4378 
4379 void Threads::deoptimized_wrt_marked_nmethods() {
4380   ALL_JAVA_THREADS(p) {
4381     p->deoptimized_wrt_marked_nmethods();
4382   }
4383 }
4384 
4385 
4386 // Get count Java threads that are waiting to enter the specified monitor.
4387 GrowableArray<JavaThread*>* Threads::get_pending_threads(int count,
4388                                                          address monitor,
4389                                                          bool doLock) {
4390   assert(doLock || SafepointSynchronize::is_at_safepoint(),
4391          "must grab Threads_lock or be at safepoint");
4392   GrowableArray<JavaThread*>* result = new GrowableArray<JavaThread*>(count);
4393 
4394   int i = 0;
4395   {
4396     MutexLockerEx ml(doLock ? Threads_lock : NULL);
4397     ALL_JAVA_THREADS(p) {
4398       if (!p->can_call_java()) continue;
4399 
4400       address pending = (address)p->current_pending_monitor();
4401       if (pending == monitor) {             // found a match
4402         if (i < count) result->append(p);   // save the first count matches
4403         i++;
4404       }
4405     }
4406   }
4407   return result;
4408 }
4409 
4410 
4411 JavaThread *Threads::owning_thread_from_monitor_owner(address owner,
4412                                                       bool doLock) {
4413   assert(doLock ||
4414          Threads_lock->owned_by_self() ||
4415          SafepointSynchronize::is_at_safepoint(),
4416          "must grab Threads_lock or be at safepoint");
4417 
4418   // NULL owner means not locked so we can skip the search
4419   if (owner == NULL) return NULL;
4420 
4421   {
4422     MutexLockerEx ml(doLock ? Threads_lock : NULL);
4423     ALL_JAVA_THREADS(p) {
4424       // first, see if owner is the address of a Java thread
4425       if (owner == (address)p) return p;
4426     }
4427   }
4428   // Cannot assert on lack of success here since this function may be
4429   // used by code that is trying to report useful problem information
4430   // like deadlock detection.
4431   if (UseHeavyMonitors) return NULL;
4432 
4433   // If we didn't find a matching Java thread and we didn't force use of
4434   // heavyweight monitors, then the owner is the stack address of the
4435   // Lock Word in the owning Java thread's stack.
4436   //
4437   JavaThread* the_owner = NULL;
4438   {
4439     MutexLockerEx ml(doLock ? Threads_lock : NULL);
4440     ALL_JAVA_THREADS(q) {
4441       if (q->is_lock_owned(owner)) {
4442         the_owner = q;
4443         break;
4444       }
4445     }
4446   }
4447   // cannot assert on lack of success here; see above comment
4448   return the_owner;
4449 }
4450 
4451 // Threads::print_on() is called at safepoint by VM_PrintThreads operation.
4452 void Threads::print_on(outputStream* st, bool print_stacks,
4453                        bool internal_format, bool print_concurrent_locks) {
4454   char buf[32];
4455   st->print_raw_cr(os::local_time_string(buf, sizeof(buf)));
4456 
4457   st->print_cr("Full thread dump %s (%s %s):",
4458                Abstract_VM_Version::vm_name(),
4459                Abstract_VM_Version::vm_release(),
4460                Abstract_VM_Version::vm_info_string());
4461   st->cr();
4462 
4463 #if INCLUDE_SERVICES
4464   // Dump concurrent locks
4465   ConcurrentLocksDump concurrent_locks;
4466   if (print_concurrent_locks) {
4467     concurrent_locks.dump_at_safepoint();
4468   }
4469 #endif // INCLUDE_SERVICES
4470 
4471   ALL_JAVA_THREADS(p) {
4472     ResourceMark rm;
4473     p->print_on(st);
4474     if (print_stacks) {
4475       if (internal_format) {
4476         p->trace_stack();
4477       } else {
4478         p->print_stack_on(st);
4479       }
4480     }
4481     st->cr();
4482 #if INCLUDE_SERVICES
4483     if (print_concurrent_locks) {
4484       concurrent_locks.print_locks_on(p, st);
4485     }
4486 #endif // INCLUDE_SERVICES
4487   }
4488 
4489   VMThread::vm_thread()->print_on(st);
4490   st->cr();
4491   GC::gc()->heap()->print_gc_threads_on(st);
4492   WatcherThread* wt = WatcherThread::watcher_thread();
4493   if (wt != NULL) {
4494     wt->print_on(st);
4495     st->cr();
4496   }
4497   st->flush();
4498 }
4499 
4500 void Threads::print_on_error(Thread* this_thread, outputStream* st, Thread* current, char* buf,
4501                              int buflen, bool* found_current) {
4502   if (this_thread != NULL) {
4503     bool is_current = (current == this_thread);
4504     *found_current = *found_current || is_current;
4505     st->print("%s", is_current ? "=>" : "  ");
4506 
4507     st->print(PTR_FORMAT, p2i(this_thread));
4508     st->print(" ");
4509     this_thread->print_on_error(st, buf, buflen);
4510     st->cr();
4511   }
4512 }
4513 
4514 class PrintOnErrorClosure : public ThreadClosure {
4515   outputStream* _st;
4516   Thread* _current;
4517   char* _buf;
4518   int _buflen;
4519   bool* _found_current;
4520  public:
4521   PrintOnErrorClosure(outputStream* st, Thread* current, char* buf,
4522                       int buflen, bool* found_current) :
4523    _st(st), _current(current), _buf(buf), _buflen(buflen), _found_current(found_current) {}
4524 
4525   virtual void do_thread(Thread* thread) {
4526     Threads::print_on_error(thread, _st, _current, _buf, _buflen, _found_current);
4527   }
4528 };
4529 
4530 // Threads::print_on_error() is called by fatal error handler. It's possible
4531 // that VM is not at safepoint and/or current thread is inside signal handler.
4532 // Don't print stack trace, as the stack may not be walkable. Don't allocate
4533 // memory (even in resource area), it might deadlock the error handler.
4534 void Threads::print_on_error(outputStream* st, Thread* current, char* buf,
4535                              int buflen) {
4536   bool found_current = false;
4537   st->print_cr("Java Threads: ( => current thread )");
4538   ALL_JAVA_THREADS(thread) {
4539     print_on_error(thread, st, current, buf, buflen, &found_current);
4540   }
4541   st->cr();
4542 
4543   st->print_cr("Other Threads:");
4544   print_on_error(VMThread::vm_thread(), st, current, buf, buflen, &found_current);
4545   print_on_error(WatcherThread::watcher_thread(), st, current, buf, buflen, &found_current);
4546 
4547   PrintOnErrorClosure print_closure(st, current, buf, buflen, &found_current);
4548   GC::gc()->heap()->gc_threads_do(&print_closure);
4549 
4550   if (!found_current) {
4551     st->cr();
4552     st->print("=>" PTR_FORMAT " (exited) ", p2i(current));
4553     current->print_on_error(st, buf, buflen);
4554     st->cr();
4555   }
4556   st->cr();
4557   st->print_cr("Threads with active compile tasks:");
4558   print_threads_compiling(st, buf, buflen);
4559 }
4560 
4561 void Threads::print_threads_compiling(outputStream* st, char* buf, int buflen) {
4562   ALL_JAVA_THREADS(thread) {
4563     if (thread->is_Compiler_thread()) {
4564       CompilerThread* ct = (CompilerThread*) thread;
4565       if (ct->task() != NULL) {
4566         thread->print_name_on_error(st, buf, buflen);
4567         ct->task()->print(st, NULL, true, true);
4568       }
4569     }
4570   }
4571 }
4572 
4573 
4574 // Internal SpinLock and Mutex
4575 // Based on ParkEvent
4576 
4577 // Ad-hoc mutual exclusion primitives: SpinLock and Mux
4578 //
4579 // We employ SpinLocks _only for low-contention, fixed-length
4580 // short-duration critical sections where we're concerned
4581 // about native mutex_t or HotSpot Mutex:: latency.
4582 // The mux construct provides a spin-then-block mutual exclusion
4583 // mechanism.
4584 //
4585 // Testing has shown that contention on the ListLock guarding gFreeList
4586 // is common.  If we implement ListLock as a simple SpinLock it's common
4587 // for the JVM to devolve to yielding with little progress.  This is true
4588 // despite the fact that the critical sections protected by ListLock are
4589 // extremely short.
4590 //
4591 // TODO-FIXME: ListLock should be of type SpinLock.
4592 // We should make this a 1st-class type, integrated into the lock
4593 // hierarchy as leaf-locks.  Critically, the SpinLock structure
4594 // should have sufficient padding to avoid false-sharing and excessive
4595 // cache-coherency traffic.
4596 
4597 
4598 typedef volatile int SpinLockT;
4599 
4600 void Thread::SpinAcquire(volatile int * adr, const char * LockName) {
4601   if (Atomic::cmpxchg (1, adr, 0) == 0) {
4602     return;   // normal fast-path return
4603   }
4604 
4605   // Slow-path : We've encountered contention -- Spin/Yield/Block strategy.
4606   TEVENT(SpinAcquire - ctx);
4607   int ctr = 0;
4608   int Yields = 0;
4609   for (;;) {
4610     while (*adr != 0) {
4611       ++ctr;
4612       if ((ctr & 0xFFF) == 0 || !os::is_MP()) {
4613         if (Yields > 5) {
4614           os::naked_short_sleep(1);
4615         } else {
4616           os::naked_yield();
4617           ++Yields;
4618         }
4619       } else {
4620         SpinPause();
4621       }
4622     }
4623     if (Atomic::cmpxchg(1, adr, 0) == 0) return;
4624   }
4625 }
4626 
4627 void Thread::SpinRelease(volatile int * adr) {
4628   assert(*adr != 0, "invariant");
4629   OrderAccess::fence();      // guarantee at least release consistency.
4630   // Roach-motel semantics.
4631   // It's safe if subsequent LDs and STs float "up" into the critical section,
4632   // but prior LDs and STs within the critical section can't be allowed
4633   // to reorder or float past the ST that releases the lock.
4634   // Loads and stores in the critical section - which appear in program
4635   // order before the store that releases the lock - must also appear
4636   // before the store that releases the lock in memory visibility order.
4637   // Conceptually we need a #loadstore|#storestore "release" MEMBAR before
4638   // the ST of 0 into the lock-word which releases the lock, so fence
4639   // more than covers this on all platforms.
4640   *adr = 0;
4641 }
4642 
4643 // muxAcquire and muxRelease:
4644 //
4645 // *  muxAcquire and muxRelease support a single-word lock-word construct.
4646 //    The LSB of the word is set IFF the lock is held.
4647 //    The remainder of the word points to the head of a singly-linked list
4648 //    of threads blocked on the lock.
4649 //
4650 // *  The current implementation of muxAcquire-muxRelease uses its own
4651 //    dedicated Thread._MuxEvent instance.  If we're interested in
4652 //    minimizing the peak number of extant ParkEvent instances then
4653 //    we could eliminate _MuxEvent and "borrow" _ParkEvent as long
4654 //    as certain invariants were satisfied.  Specifically, care would need
4655 //    to be taken with regards to consuming unpark() "permits".
4656 //    A safe rule of thumb is that a thread would never call muxAcquire()
4657 //    if it's enqueued (cxq, EntryList, WaitList, etc) and will subsequently
4658 //    park().  Otherwise the _ParkEvent park() operation in muxAcquire() could
4659 //    consume an unpark() permit intended for monitorenter, for instance.
4660 //    One way around this would be to widen the restricted-range semaphore
4661 //    implemented in park().  Another alternative would be to provide
4662 //    multiple instances of the PlatformEvent() for each thread.  One
4663 //    instance would be dedicated to muxAcquire-muxRelease, for instance.
4664 //
4665 // *  Usage:
4666 //    -- Only as leaf locks
4667 //    -- for short-term locking only as muxAcquire does not perform
4668 //       thread state transitions.
4669 //
4670 // Alternatives:
4671 // *  We could implement muxAcquire and muxRelease with MCS or CLH locks
4672 //    but with parking or spin-then-park instead of pure spinning.
4673 // *  Use Taura-Oyama-Yonenzawa locks.
4674 // *  It's possible to construct a 1-0 lock if we encode the lockword as
4675 //    (List,LockByte).  Acquire will CAS the full lockword while Release
4676 //    will STB 0 into the LockByte.  The 1-0 scheme admits stranding, so
4677 //    acquiring threads use timers (ParkTimed) to detect and recover from
4678 //    the stranding window.  Thread/Node structures must be aligned on 256-byte
4679 //    boundaries by using placement-new.
4680 // *  Augment MCS with advisory back-link fields maintained with CAS().
4681 //    Pictorially:  LockWord -> T1 <-> T2 <-> T3 <-> ... <-> Tn <-> Owner.
4682 //    The validity of the backlinks must be ratified before we trust the value.
4683 //    If the backlinks are invalid the exiting thread must back-track through the
4684 //    the forward links, which are always trustworthy.
4685 // *  Add a successor indication.  The LockWord is currently encoded as
4686 //    (List, LOCKBIT:1).  We could also add a SUCCBIT or an explicit _succ variable
4687 //    to provide the usual futile-wakeup optimization.
4688 //    See RTStt for details.
4689 // *  Consider schedctl.sc_nopreempt to cover the critical section.
4690 //
4691 
4692 
4693 typedef volatile intptr_t MutexT;      // Mux Lock-word
4694 enum MuxBits { LOCKBIT = 1 };
4695 
4696 void Thread::muxAcquire(volatile intptr_t * Lock, const char * LockName) {
4697   intptr_t w = Atomic::cmpxchg_ptr(LOCKBIT, Lock, 0);
4698   if (w == 0) return;
4699   if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4700     return;
4701   }
4702 
4703   TEVENT(muxAcquire - Contention);
4704   ParkEvent * const Self = Thread::current()->_MuxEvent;
4705   assert((intptr_t(Self) & LOCKBIT) == 0, "invariant");
4706   for (;;) {
4707     int its = (os::is_MP() ? 100 : 0) + 1;
4708 
4709     // Optional spin phase: spin-then-park strategy
4710     while (--its >= 0) {
4711       w = *Lock;
4712       if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4713         return;
4714       }
4715     }
4716 
4717     Self->reset();
4718     Self->OnList = intptr_t(Lock);
4719     // The following fence() isn't _strictly necessary as the subsequent
4720     // CAS() both serializes execution and ratifies the fetched *Lock value.
4721     OrderAccess::fence();
4722     for (;;) {
4723       w = *Lock;
4724       if ((w & LOCKBIT) == 0) {
4725         if (Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4726           Self->OnList = 0;   // hygiene - allows stronger asserts
4727           return;
4728         }
4729         continue;      // Interference -- *Lock changed -- Just retry
4730       }
4731       assert(w & LOCKBIT, "invariant");
4732       Self->ListNext = (ParkEvent *) (w & ~LOCKBIT);
4733       if (Atomic::cmpxchg_ptr(intptr_t(Self)|LOCKBIT, Lock, w) == w) break;
4734     }
4735 
4736     while (Self->OnList != 0) {
4737       Self->park();
4738     }
4739   }
4740 }
4741 
4742 void Thread::muxAcquireW(volatile intptr_t * Lock, ParkEvent * ev) {
4743   intptr_t w = Atomic::cmpxchg_ptr(LOCKBIT, Lock, 0);
4744   if (w == 0) return;
4745   if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4746     return;
4747   }
4748 
4749   TEVENT(muxAcquire - Contention);
4750   ParkEvent * ReleaseAfter = NULL;
4751   if (ev == NULL) {
4752     ev = ReleaseAfter = ParkEvent::Allocate(NULL);
4753   }
4754   assert((intptr_t(ev) & LOCKBIT) == 0, "invariant");
4755   for (;;) {
4756     guarantee(ev->OnList == 0, "invariant");
4757     int its = (os::is_MP() ? 100 : 0) + 1;
4758 
4759     // Optional spin phase: spin-then-park strategy
4760     while (--its >= 0) {
4761       w = *Lock;
4762       if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4763         if (ReleaseAfter != NULL) {
4764           ParkEvent::Release(ReleaseAfter);
4765         }
4766         return;
4767       }
4768     }
4769 
4770     ev->reset();
4771     ev->OnList = intptr_t(Lock);
4772     // The following fence() isn't _strictly necessary as the subsequent
4773     // CAS() both serializes execution and ratifies the fetched *Lock value.
4774     OrderAccess::fence();
4775     for (;;) {
4776       w = *Lock;
4777       if ((w & LOCKBIT) == 0) {
4778         if (Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4779           ev->OnList = 0;
4780           // We call ::Release while holding the outer lock, thus
4781           // artificially lengthening the critical section.
4782           // Consider deferring the ::Release() until the subsequent unlock(),
4783           // after we've dropped the outer lock.
4784           if (ReleaseAfter != NULL) {
4785             ParkEvent::Release(ReleaseAfter);
4786           }
4787           return;
4788         }
4789         continue;      // Interference -- *Lock changed -- Just retry
4790       }
4791       assert(w & LOCKBIT, "invariant");
4792       ev->ListNext = (ParkEvent *) (w & ~LOCKBIT);
4793       if (Atomic::cmpxchg_ptr(intptr_t(ev)|LOCKBIT, Lock, w) == w) break;
4794     }
4795 
4796     while (ev->OnList != 0) {
4797       ev->park();
4798     }
4799   }
4800 }
4801 
4802 // Release() must extract a successor from the list and then wake that thread.
4803 // It can "pop" the front of the list or use a detach-modify-reattach (DMR) scheme
4804 // similar to that used by ParkEvent::Allocate() and ::Release().  DMR-based
4805 // Release() would :
4806 // (A) CAS() or swap() null to *Lock, releasing the lock and detaching the list.
4807 // (B) Extract a successor from the private list "in-hand"
4808 // (C) attempt to CAS() the residual back into *Lock over null.
4809 //     If there were any newly arrived threads and the CAS() would fail.
4810 //     In that case Release() would detach the RATs, re-merge the list in-hand
4811 //     with the RATs and repeat as needed.  Alternately, Release() might
4812 //     detach and extract a successor, but then pass the residual list to the wakee.
4813 //     The wakee would be responsible for reattaching and remerging before it
4814 //     competed for the lock.
4815 //
4816 // Both "pop" and DMR are immune from ABA corruption -- there can be
4817 // multiple concurrent pushers, but only one popper or detacher.
4818 // This implementation pops from the head of the list.  This is unfair,
4819 // but tends to provide excellent throughput as hot threads remain hot.
4820 // (We wake recently run threads first).
4821 //
4822 // All paths through muxRelease() will execute a CAS.
4823 // Release consistency -- We depend on the CAS in muxRelease() to provide full
4824 // bidirectional fence/MEMBAR semantics, ensuring that all prior memory operations
4825 // executed within the critical section are complete and globally visible before the
4826 // store (CAS) to the lock-word that releases the lock becomes globally visible.
4827 void Thread::muxRelease(volatile intptr_t * Lock)  {
4828   for (;;) {
4829     const intptr_t w = Atomic::cmpxchg_ptr(0, Lock, LOCKBIT);
4830     assert(w & LOCKBIT, "invariant");
4831     if (w == LOCKBIT) return;
4832     ParkEvent * const List = (ParkEvent *) (w & ~LOCKBIT);
4833     assert(List != NULL, "invariant");
4834     assert(List->OnList == intptr_t(Lock), "invariant");
4835     ParkEvent * const nxt = List->ListNext;
4836     guarantee((intptr_t(nxt) & LOCKBIT) == 0, "invariant");
4837 
4838     // The following CAS() releases the lock and pops the head element.
4839     // The CAS() also ratifies the previously fetched lock-word value.
4840     if (Atomic::cmpxchg_ptr (intptr_t(nxt), Lock, w) != w) {
4841       continue;
4842     }
4843     List->OnList = 0;
4844     OrderAccess::fence();
4845     List->unpark();
4846     return;
4847   }
4848 }
4849 
4850 
4851 void Threads::verify() {
4852   ALL_JAVA_THREADS(p) {
4853     p->verify();
4854   }
4855   VMThread* thread = VMThread::vm_thread();
4856   if (thread != NULL) thread->verify();
4857 }