1 /*
   2  * Copyright (c) 2000, 2016, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_VM_GC_SHARED_GENCOLLECTEDHEAP_HPP
  26 #define SHARE_VM_GC_SHARED_GENCOLLECTEDHEAP_HPP
  27 
  28 #include "gc/shared/adaptiveSizePolicy.hpp"
  29 #include "gc/shared/collectedHeap.hpp"
  30 #include "gc/shared/collectorPolicy.hpp"
  31 #include "gc/shared/generation.hpp"
  32 
  33 class StrongRootsScope;
  34 class SubTasksDone;
  35 class WorkGang;
  36 
  37 // A "GenCollectedHeap" is a CollectedHeap that uses generational
  38 // collection.  It has two generations, young and old.
  39 class GenCollectedHeap : public CollectedHeap {
  40   friend class GenCollectorPolicy;
  41   friend class Generation;
  42   friend class DefNewGeneration;
  43   friend class TenuredGeneration;
  44   friend class ConcurrentMarkSweepGeneration;
  45   friend class CMSCollector;
  46   friend class GenMarkSweep;
  47   friend class VM_GenCollectForAllocation;
  48   friend class VM_GenCollectFull;
  49   friend class VM_GenCollectFullConcurrent;
  50   friend class VM_GC_HeapInspection;
  51   friend class VM_HeapDumper;
  52   friend class HeapInspection;
  53   friend class GCCauseSetter;
  54   friend class VMStructs;
  55 public:
  56   friend class VM_PopulateDumpSharedSpace;
  57 
  58   enum GenerationType {
  59     YoungGen,
  60     OldGen
  61   };
  62 
  63 private:
  64   Generation* _young_gen;
  65   Generation* _old_gen;
  66 
  67   // The singleton CardTable Remembered Set.
  68   CardTableRS* _rem_set;
  69 
  70   // The generational collector policy.
  71   GenCollectorPolicy* _gen_policy;
  72 
  73   // Indicates that the most recent previous incremental collection failed.
  74   // The flag is cleared when an action is taken that might clear the
  75   // condition that caused that incremental collection to fail.
  76   bool _incremental_collection_failed;
  77 
  78   // In support of ExplicitGCInvokesConcurrent functionality
  79   unsigned int _full_collections_completed;
  80 
  81   // Data structure for claiming the (potentially) parallel tasks in
  82   // (gen-specific) roots processing.
  83   SubTasksDone* _process_strong_tasks;
  84 
  85   // Collects the given generation.
  86   void collect_generation(Generation* gen, bool full, size_t size, bool is_tlab,
  87                           bool run_verification, bool clear_soft_refs,
  88                           bool restore_marks_for_biased_locking);
  89 
  90 protected:
  91   // In block contents verification, the number of header words to skip
  92   NOT_PRODUCT(static size_t _skip_header_HeapWords;)
  93 
  94   WorkGang* _workers;
  95 
  96 protected:
  97   // Helper functions for allocation
  98   HeapWord* attempt_allocation(size_t size,
  99                                bool   is_tlab,
 100                                bool   first_only);
 101 
 102   // Helper function for two callbacks below.
 103   // Considers collection of the first max_level+1 generations.
 104   void do_collection(bool           full,
 105                      bool           clear_all_soft_refs,
 106                      size_t         size,
 107                      bool           is_tlab,
 108                      GenerationType max_generation);
 109 
 110   // Callback from VM_GenCollectForAllocation operation.
 111   // This function does everything necessary/possible to satisfy an
 112   // allocation request that failed in the youngest generation that should
 113   // have handled it (including collection, expansion, etc.)
 114   HeapWord* satisfy_failed_allocation(size_t size, bool is_tlab);
 115 
 116   // Callback from VM_GenCollectFull operation.
 117   // Perform a full collection of the first max_level+1 generations.
 118   virtual void do_full_collection(bool clear_all_soft_refs);
 119   void do_full_collection(bool clear_all_soft_refs, GenerationType max_generation);
 120 
 121   // Does the "cause" of GC indicate that
 122   // we absolutely __must__ clear soft refs?
 123   bool must_clear_all_soft_refs();
 124 
 125 public:
 126   GenCollectedHeap(GenCollectorPolicy *policy);
 127 
 128   WorkGang* workers() const { return _workers; }
 129 
 130   // Returns JNI_OK on success
 131   virtual jint initialize();
 132 
 133   // Reserve aligned space for the heap as needed by the contained generations.
 134   char* allocate(size_t alignment, ReservedSpace* heap_rs);
 135 
 136   // Does operations required after initialization has been done.
 137   void post_initialize();
 138 
 139   // Initialize ("weak") refs processing support
 140   virtual void ref_processing_init();
 141 
 142   virtual Name kind() const {
 143     return CollectedHeap::GenCollectedHeap;
 144   }
 145 
 146   virtual const char* name() const {
 147     if (UseConcMarkSweepGC) {
 148       return "Concurrent Mark Sweep";
 149     } else {
 150       return "Serial";
 151     }
 152   }
 153 
 154   Generation* young_gen() const { return _young_gen; }
 155   Generation* old_gen()   const { return _old_gen; }
 156 
 157   bool is_young_gen(const Generation* gen) const { return gen == _young_gen; }
 158   bool is_old_gen(const Generation* gen) const { return gen == _old_gen; }
 159 
 160   // The generational collector policy.
 161   GenCollectorPolicy* gen_policy() const { return _gen_policy; }
 162 
 163   virtual CollectorPolicy* collector_policy() const { return gen_policy(); }
 164 
 165   // Adaptive size policy
 166   virtual AdaptiveSizePolicy* size_policy() {
 167     return gen_policy()->size_policy();
 168   }
 169 
 170   // Return the (conservative) maximum heap alignment
 171   static size_t conservative_max_heap_alignment() {
 172     return Generation::GenGrain;
 173   }
 174 
 175   size_t capacity() const;
 176   size_t used() const;
 177 
 178   // Save the "used_region" for both generations.
 179   void save_used_regions();
 180 
 181   size_t max_capacity() const;
 182 
 183   HeapWord* mem_allocate(size_t size, bool*  gc_overhead_limit_was_exceeded);
 184 
 185   // We may support a shared contiguous allocation area, if the youngest
 186   // generation does.
 187   bool supports_inline_contig_alloc() const;
 188   HeapWord* volatile* top_addr() const;
 189   HeapWord** end_addr() const;
 190 
 191   // Perform a full collection of the heap; intended for use in implementing
 192   // "System.gc". This implies as full a collection as the CollectedHeap
 193   // supports. Caller does not hold the Heap_lock on entry.
 194   virtual void collect(GCCause::Cause cause);
 195 
 196   // The same as above but assume that the caller holds the Heap_lock.
 197   void collect_locked(GCCause::Cause cause);
 198 
 199   // Perform a full collection of generations up to and including max_generation.
 200   // Mostly used for testing purposes. Caller does not hold the Heap_lock on entry.
 201   void collect(GCCause::Cause cause, GenerationType max_generation);
 202 
 203   // Returns "TRUE" iff "p" points into the committed areas of the heap.
 204   // The methods is_in(), is_in_closed_subset() and is_in_youngest() may
 205   // be expensive to compute in general, so, to prevent
 206   // their inadvertent use in product jvm's, we restrict their use to
 207   // assertion checking or verification only.
 208   bool is_in(const void* p) const;
 209 
 210   // override
 211   bool is_in_closed_subset(const void* p) const {
 212     if (UseConcMarkSweepGC) {
 213       return is_in_reserved(p);
 214     } else {
 215       return is_in(p);
 216     }
 217   }
 218 
 219   // Returns true if the reference is to an object in the reserved space
 220   // for the young generation.
 221   // Assumes the the young gen address range is less than that of the old gen.
 222   bool is_in_young(oop p);
 223 
 224 #ifdef ASSERT
 225   bool is_in_partial_collection(const void* p);
 226 #endif
 227 
 228   virtual bool is_scavengable(const void* addr) {
 229     return is_in_young((oop)addr);
 230   }
 231 
 232   // Iteration functions.
 233   void oop_iterate_no_header(OopClosure* cl);
 234   void oop_iterate(ExtendedOopClosure* cl);
 235   void object_iterate(ObjectClosure* cl);
 236   void safe_object_iterate(ObjectClosure* cl);
 237   Space* space_containing(const void* addr) const;
 238 
 239   // A CollectedHeap is divided into a dense sequence of "blocks"; that is,
 240   // each address in the (reserved) heap is a member of exactly
 241   // one block.  The defining characteristic of a block is that it is
 242   // possible to find its size, and thus to progress forward to the next
 243   // block.  (Blocks may be of different sizes.)  Thus, blocks may
 244   // represent Java objects, or they might be free blocks in a
 245   // free-list-based heap (or subheap), as long as the two kinds are
 246   // distinguishable and the size of each is determinable.
 247 
 248   // Returns the address of the start of the "block" that contains the
 249   // address "addr".  We say "blocks" instead of "object" since some heaps
 250   // may not pack objects densely; a chunk may either be an object or a
 251   // non-object.
 252   virtual HeapWord* block_start(const void* addr) const;
 253 
 254   // Requires "addr" to be the start of a chunk, and returns its size.
 255   // "addr + size" is required to be the start of a new chunk, or the end
 256   // of the active area of the heap. Assumes (and verifies in non-product
 257   // builds) that addr is in the allocated part of the heap and is
 258   // the start of a chunk.
 259   virtual size_t block_size(const HeapWord* addr) const;
 260 
 261   // Requires "addr" to be the start of a block, and returns "TRUE" iff
 262   // the block is an object. Assumes (and verifies in non-product
 263   // builds) that addr is in the allocated part of the heap and is
 264   // the start of a chunk.
 265   virtual bool block_is_obj(const HeapWord* addr) const;
 266 
 267   // Section on TLAB's.
 268   virtual bool supports_tlab_allocation() const;
 269   virtual size_t tlab_capacity(Thread* thr) const;
 270   virtual size_t tlab_used(Thread* thr) const;
 271   virtual size_t unsafe_max_tlab_alloc(Thread* thr) const;
 272   virtual HeapWord* allocate_new_tlab(size_t size);
 273 
 274   // Can a compiler initialize a new object without store barriers?
 275   // This permission only extends from the creation of a new object
 276   // via a TLAB up to the first subsequent safepoint.
 277   virtual bool can_elide_tlab_store_barriers() const {
 278     return true;
 279   }
 280 
 281   virtual bool card_mark_must_follow_store() const {
 282     return UseConcMarkSweepGC;
 283   }
 284 
 285   // We don't need barriers for stores to objects in the
 286   // young gen and, a fortiori, for initializing stores to
 287   // objects therein. This applies to DefNew+Tenured and ParNew+CMS
 288   // only and may need to be re-examined in case other
 289   // kinds of collectors are implemented in the future.
 290   virtual bool can_elide_initializing_store_barrier(oop new_obj) {
 291     return is_in_young(new_obj);
 292   }
 293 
 294   // The "requestor" generation is performing some garbage collection
 295   // action for which it would be useful to have scratch space.  The
 296   // requestor promises to allocate no more than "max_alloc_words" in any
 297   // older generation (via promotion say.)   Any blocks of space that can
 298   // be provided are returned as a list of ScratchBlocks, sorted by
 299   // decreasing size.
 300   ScratchBlock* gather_scratch(Generation* requestor, size_t max_alloc_words);
 301   // Allow each generation to reset any scratch space that it has
 302   // contributed as it needs.
 303   void release_scratch();
 304 
 305   // Ensure parsability: override
 306   virtual void ensure_parsability(bool retire_tlabs);
 307 
 308   // Time in ms since the longest time a collector ran in
 309   // in any generation.
 310   virtual jlong millis_since_last_gc();
 311 
 312   // Total number of full collections completed.
 313   unsigned int total_full_collections_completed() {
 314     assert(_full_collections_completed <= _total_full_collections,
 315            "Can't complete more collections than were started");
 316     return _full_collections_completed;
 317   }
 318 
 319   // Update above counter, as appropriate, at the end of a stop-world GC cycle
 320   unsigned int update_full_collections_completed();
 321   // Update above counter, as appropriate, at the end of a concurrent GC cycle
 322   unsigned int update_full_collections_completed(unsigned int count);
 323 
 324   // Update "time of last gc" for all generations to "now".
 325   void update_time_of_last_gc(jlong now) {
 326     _young_gen->update_time_of_last_gc(now);
 327     _old_gen->update_time_of_last_gc(now);
 328   }
 329 
 330   // Update the gc statistics for each generation.
 331   void update_gc_stats(Generation* current_generation, bool full) {
 332     _old_gen->update_gc_stats(current_generation, full);
 333   }
 334 
 335   bool no_gc_in_progress() { return !is_gc_active(); }
 336 
 337   // Override.
 338   void prepare_for_verify();
 339 
 340   // Override.
 341   void verify(VerifyOption option);
 342 
 343   // Override.
 344   virtual void print_on(outputStream* st) const;
 345   virtual void print_gc_threads_on(outputStream* st) const;
 346   virtual void gc_threads_do(ThreadClosure* tc) const;
 347   virtual void print_tracing_info() const;
 348   virtual void print_on_error(outputStream* st) const;
 349 
 350   void print_heap_change(size_t young_prev_used, size_t old_prev_used) const;
 351 
 352   // The functions below are helper functions that a subclass of
 353   // "CollectedHeap" can use in the implementation of its virtual
 354   // functions.
 355 
 356   class GenClosure : public StackObj {
 357    public:
 358     virtual void do_generation(Generation* gen) = 0;
 359   };
 360 
 361   // Apply "cl.do_generation" to all generations in the heap
 362   // If "old_to_young" determines the order.
 363   void generation_iterate(GenClosure* cl, bool old_to_young);
 364 
 365   // Return "true" if all generations have reached the
 366   // maximal committed limit that they can reach, without a garbage
 367   // collection.
 368   virtual bool is_maximal_no_gc() const;
 369 
 370   // This function returns the CardTableRS object that allows us to scan
 371   // generations in a fully generational heap.
 372   CardTableRS* rem_set() { return _rem_set; }
 373 
 374   // Convenience function to be used in situations where the heap type can be
 375   // asserted to be this type.
 376   static GenCollectedHeap* heap();
 377 
 378   // The ScanningOption determines which of the roots
 379   // the closure is applied to:
 380   // "SO_None" does none;
 381   enum ScanningOption {
 382     SO_None                =  0x0,
 383     SO_AllCodeCache        =  0x8,
 384     SO_ScavengeCodeCache   = 0x10
 385   };
 386 
 387  private:
 388   void process_roots(StrongRootsScope* scope,
 389                      ScanningOption so,
 390                      OopClosure* strong_roots,
 391                      OopClosure* weak_roots,
 392                      CLDClosure* strong_cld_closure,
 393                      CLDClosure* weak_cld_closure,
 394                      CodeBlobToOopClosure* code_roots);
 395 
 396   void process_string_table_roots(StrongRootsScope* scope,
 397                                   OopClosure* root_closure);
 398 
 399  public:
 400   void young_process_roots(StrongRootsScope* scope,
 401                            OopsInGenClosure* root_closure,
 402                            OopsInGenClosure* old_gen_closure,
 403                            CLDClosure* cld_closure);
 404 
 405   // If "young_gen_as_roots" is false, younger generations are
 406   // not scanned as roots; in this case, the caller must be arranging to
 407   // scan the younger generations itself.  (For example, a generation might
 408   // explicitly mark reachable objects in younger generations, to avoid
 409   // excess storage retention.)
 410   void cms_process_roots(StrongRootsScope* scope,
 411                          bool young_gen_as_roots,
 412                          ScanningOption so,
 413                          bool only_strong_roots,
 414                          OopsInGenClosure* root_closure,
 415                          CLDClosure* cld_closure);
 416 
 417   void full_process_roots(StrongRootsScope* scope,
 418                           bool is_adjust_phase,
 419                           ScanningOption so,
 420                           bool only_strong_roots,
 421                           OopsInGenClosure* root_closure,
 422                           CLDClosure* cld_closure);
 423 
 424   // Apply "root_closure" to all the weak roots of the system.
 425   // These include JNI weak roots, string table,
 426   // and referents of reachable weak refs.
 427   void gen_process_weak_roots(OopClosure* root_closure);
 428 
 429   // Set the saved marks of generations, if that makes sense.
 430   // In particular, if any generation might iterate over the oops
 431   // in other generations, it should call this method.
 432   void save_marks();
 433 
 434   // Apply "cur->do_oop" or "older->do_oop" to all the oops in objects
 435   // allocated since the last call to save_marks in generations at or above
 436   // "level".  The "cur" closure is
 437   // applied to references in the generation at "level", and the "older"
 438   // closure to older generations.
 439 #define GCH_SINCE_SAVE_MARKS_ITERATE_DECL(OopClosureType, nv_suffix)    \
 440   void oop_since_save_marks_iterate(GenerationType start_gen,           \
 441                                     OopClosureType* cur,                \
 442                                     OopClosureType* older);
 443 
 444   ALL_SINCE_SAVE_MARKS_CLOSURES(GCH_SINCE_SAVE_MARKS_ITERATE_DECL)
 445 
 446 #undef GCH_SINCE_SAVE_MARKS_ITERATE_DECL
 447 
 448   // Returns "true" iff no allocations have occurred since the last
 449   // call to "save_marks".
 450   bool no_allocs_since_save_marks();
 451 
 452   // Returns true if an incremental collection is likely to fail.
 453   // We optionally consult the young gen, if asked to do so;
 454   // otherwise we base our answer on whether the previous incremental
 455   // collection attempt failed with no corrective action as of yet.
 456   bool incremental_collection_will_fail(bool consult_young) {
 457     // The first disjunct remembers if an incremental collection failed, even
 458     // when we thought (second disjunct) that it would not.
 459     return incremental_collection_failed() ||
 460            (consult_young && !_young_gen->collection_attempt_is_safe());
 461   }
 462 
 463   // If a generation bails out of an incremental collection,
 464   // it sets this flag.
 465   bool incremental_collection_failed() const {
 466     return _incremental_collection_failed;
 467   }
 468   void set_incremental_collection_failed() {
 469     _incremental_collection_failed = true;
 470   }
 471   void clear_incremental_collection_failed() {
 472     _incremental_collection_failed = false;
 473   }
 474 
 475   // Promotion of obj into gen failed.  Try to promote obj to higher
 476   // gens in ascending order; return the new location of obj if successful.
 477   // Otherwise, try expand-and-allocate for obj in both the young and old
 478   // generation; return the new location of obj if successful.  Otherwise, return NULL.
 479   oop handle_failed_promotion(Generation* old_gen,
 480                               oop obj,
 481                               size_t obj_size);
 482 
 483 private:
 484   // Accessor for memory state verification support
 485   NOT_PRODUCT(
 486     static size_t skip_header_HeapWords() { return _skip_header_HeapWords; }
 487   )
 488 
 489   // Override
 490   void check_for_non_bad_heap_word_value(HeapWord* addr,
 491     size_t size) PRODUCT_RETURN;
 492 
 493   // For use by mark-sweep.  As implemented, mark-sweep-compact is global
 494   // in an essential way: compaction is performed across generations, by
 495   // iterating over spaces.
 496   void prepare_for_compaction();
 497 
 498   // Perform a full collection of the generations up to and including max_generation.
 499   // This is the low level interface used by the public versions of
 500   // collect() and collect_locked(). Caller holds the Heap_lock on entry.
 501   void collect_locked(GCCause::Cause cause, GenerationType max_generation);
 502 
 503   // Save the tops of the spaces in all generations
 504   void record_gen_tops_before_GC() PRODUCT_RETURN;
 505 
 506 protected:
 507   void gc_prologue(bool full);
 508   void gc_epilogue(bool full);
 509 
 510 };
 511 
 512 #endif // SHARE_VM_GC_SHARED_GENCOLLECTEDHEAP_HPP