1 /*
   2  * Copyright (c) 1997, 2016, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/stringTable.hpp"
  27 #include "classfile/systemDictionary.hpp"
  28 #include "classfile/vmSymbols.hpp"
  29 #include "code/codeCache.hpp"
  30 #include "code/compiledIC.hpp"
  31 #include "code/codeCacheExtensions.hpp"
  32 #include "code/scopeDesc.hpp"
  33 #include "code/vtableStubs.hpp"
  34 #include "compiler/abstractCompiler.hpp"
  35 #include "compiler/compileBroker.hpp"
  36 #include "compiler/disassembler.hpp"
  37 #include "gc/shared/gcLocker.inline.hpp"
  38 #include "interpreter/interpreter.hpp"
  39 #include "interpreter/interpreterRuntime.hpp"
  40 #include "logging/log.hpp"
  41 #include "memory/metaspaceShared.hpp"
  42 #include "memory/resourceArea.hpp"
  43 #include "memory/universe.inline.hpp"
  44 #include "oops/klass.hpp"
  45 #include "oops/objArrayKlass.hpp"
  46 #include "oops/oop.inline.hpp"
  47 #include "prims/forte.hpp"
  48 #include "prims/jvmtiExport.hpp"
  49 #include "prims/methodHandles.hpp"
  50 #include "prims/nativeLookup.hpp"
  51 #include "runtime/arguments.hpp"
  52 #include "runtime/atomic.hpp"
  53 #include "runtime/biasedLocking.hpp"
  54 #include "runtime/compilationPolicy.hpp"
  55 #include "runtime/handles.inline.hpp"
  56 #include "runtime/init.hpp"
  57 #include "runtime/interfaceSupport.hpp"
  58 #include "runtime/javaCalls.hpp"
  59 #include "runtime/sharedRuntime.hpp"
  60 #include "runtime/stubRoutines.hpp"
  61 #include "runtime/vframe.hpp"
  62 #include "runtime/vframeArray.hpp"
  63 #include "trace/tracing.hpp"
  64 #include "utilities/copy.hpp"
  65 #include "utilities/dtrace.hpp"
  66 #include "utilities/events.hpp"
  67 #include "utilities/hashtable.inline.hpp"
  68 #include "utilities/macros.hpp"
  69 #include "utilities/xmlstream.hpp"
  70 #ifdef COMPILER1
  71 #include "c1/c1_Runtime1.hpp"
  72 #endif
  73 
  74 // Shared stub locations
  75 RuntimeStub*        SharedRuntime::_wrong_method_blob;
  76 RuntimeStub*        SharedRuntime::_wrong_method_abstract_blob;
  77 RuntimeStub*        SharedRuntime::_ic_miss_blob;
  78 RuntimeStub*        SharedRuntime::_resolve_opt_virtual_call_blob;
  79 RuntimeStub*        SharedRuntime::_resolve_virtual_call_blob;
  80 RuntimeStub*        SharedRuntime::_resolve_static_call_blob;
  81 
  82 DeoptimizationBlob* SharedRuntime::_deopt_blob;
  83 SafepointBlob*      SharedRuntime::_polling_page_vectors_safepoint_handler_blob;
  84 SafepointBlob*      SharedRuntime::_polling_page_safepoint_handler_blob;
  85 SafepointBlob*      SharedRuntime::_polling_page_return_handler_blob;
  86 
  87 #ifdef COMPILER2
  88 UncommonTrapBlob*   SharedRuntime::_uncommon_trap_blob;
  89 #endif // COMPILER2
  90 
  91 
  92 //----------------------------generate_stubs-----------------------------------
  93 void SharedRuntime::generate_stubs() {
  94   _wrong_method_blob                   = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method),          "wrong_method_stub");
  95   _wrong_method_abstract_blob          = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method_abstract), "wrong_method_abstract_stub");
  96   _ic_miss_blob                        = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method_ic_miss),  "ic_miss_stub");
  97   _resolve_opt_virtual_call_blob       = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_opt_virtual_call_C),   "resolve_opt_virtual_call");
  98   _resolve_virtual_call_blob           = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_virtual_call_C),       "resolve_virtual_call");
  99   _resolve_static_call_blob            = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_static_call_C),        "resolve_static_call");
 100 
 101 #if defined(COMPILER2) || INCLUDE_JVMCI
 102   // Vectors are generated only by C2 and JVMCI.
 103   bool support_wide = is_wide_vector(MaxVectorSize);
 104   if (support_wide) {
 105     _polling_page_vectors_safepoint_handler_blob = generate_handler_blob(CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception), POLL_AT_VECTOR_LOOP);
 106   }
 107 #endif // COMPILER2 || INCLUDE_JVMCI
 108   _polling_page_safepoint_handler_blob = generate_handler_blob(CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception), POLL_AT_LOOP);
 109   _polling_page_return_handler_blob    = generate_handler_blob(CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception), POLL_AT_RETURN);
 110 
 111   generate_deopt_blob();
 112 
 113 #ifdef COMPILER2
 114   generate_uncommon_trap_blob();
 115 #endif // COMPILER2
 116 }
 117 
 118 #include <math.h>
 119 
 120 // Implementation of SharedRuntime
 121 
 122 #ifndef PRODUCT
 123 // For statistics
 124 int SharedRuntime::_ic_miss_ctr = 0;
 125 int SharedRuntime::_wrong_method_ctr = 0;
 126 int SharedRuntime::_resolve_static_ctr = 0;
 127 int SharedRuntime::_resolve_virtual_ctr = 0;
 128 int SharedRuntime::_resolve_opt_virtual_ctr = 0;
 129 int SharedRuntime::_implicit_null_throws = 0;
 130 int SharedRuntime::_implicit_div0_throws = 0;
 131 int SharedRuntime::_throw_null_ctr = 0;
 132 
 133 int SharedRuntime::_nof_normal_calls = 0;
 134 int SharedRuntime::_nof_optimized_calls = 0;
 135 int SharedRuntime::_nof_inlined_calls = 0;
 136 int SharedRuntime::_nof_megamorphic_calls = 0;
 137 int SharedRuntime::_nof_static_calls = 0;
 138 int SharedRuntime::_nof_inlined_static_calls = 0;
 139 int SharedRuntime::_nof_interface_calls = 0;
 140 int SharedRuntime::_nof_optimized_interface_calls = 0;
 141 int SharedRuntime::_nof_inlined_interface_calls = 0;
 142 int SharedRuntime::_nof_megamorphic_interface_calls = 0;
 143 int SharedRuntime::_nof_removable_exceptions = 0;
 144 
 145 int SharedRuntime::_new_instance_ctr=0;
 146 int SharedRuntime::_new_array_ctr=0;
 147 int SharedRuntime::_multi1_ctr=0;
 148 int SharedRuntime::_multi2_ctr=0;
 149 int SharedRuntime::_multi3_ctr=0;
 150 int SharedRuntime::_multi4_ctr=0;
 151 int SharedRuntime::_multi5_ctr=0;
 152 int SharedRuntime::_mon_enter_stub_ctr=0;
 153 int SharedRuntime::_mon_exit_stub_ctr=0;
 154 int SharedRuntime::_mon_enter_ctr=0;
 155 int SharedRuntime::_mon_exit_ctr=0;
 156 int SharedRuntime::_partial_subtype_ctr=0;
 157 int SharedRuntime::_jbyte_array_copy_ctr=0;
 158 int SharedRuntime::_jshort_array_copy_ctr=0;
 159 int SharedRuntime::_jint_array_copy_ctr=0;
 160 int SharedRuntime::_jlong_array_copy_ctr=0;
 161 int SharedRuntime::_oop_array_copy_ctr=0;
 162 int SharedRuntime::_checkcast_array_copy_ctr=0;
 163 int SharedRuntime::_unsafe_array_copy_ctr=0;
 164 int SharedRuntime::_generic_array_copy_ctr=0;
 165 int SharedRuntime::_slow_array_copy_ctr=0;
 166 int SharedRuntime::_find_handler_ctr=0;
 167 int SharedRuntime::_rethrow_ctr=0;
 168 
 169 int     SharedRuntime::_ICmiss_index                    = 0;
 170 int     SharedRuntime::_ICmiss_count[SharedRuntime::maxICmiss_count];
 171 address SharedRuntime::_ICmiss_at[SharedRuntime::maxICmiss_count];
 172 
 173 
 174 void SharedRuntime::trace_ic_miss(address at) {
 175   for (int i = 0; i < _ICmiss_index; i++) {
 176     if (_ICmiss_at[i] == at) {
 177       _ICmiss_count[i]++;
 178       return;
 179     }
 180   }
 181   int index = _ICmiss_index++;
 182   if (_ICmiss_index >= maxICmiss_count) _ICmiss_index = maxICmiss_count - 1;
 183   _ICmiss_at[index] = at;
 184   _ICmiss_count[index] = 1;
 185 }
 186 
 187 void SharedRuntime::print_ic_miss_histogram() {
 188   if (ICMissHistogram) {
 189     tty->print_cr("IC Miss Histogram:");
 190     int tot_misses = 0;
 191     for (int i = 0; i < _ICmiss_index; i++) {
 192       tty->print_cr("  at: " INTPTR_FORMAT "  nof: %d", p2i(_ICmiss_at[i]), _ICmiss_count[i]);
 193       tot_misses += _ICmiss_count[i];
 194     }
 195     tty->print_cr("Total IC misses: %7d", tot_misses);
 196   }
 197 }
 198 #endif // PRODUCT
 199 
 200 #if INCLUDE_ALL_GCS
 201 
 202 // G1 write-barrier pre: executed before a pointer store.
 203 JRT_LEAF(void, SharedRuntime::g1_wb_pre(oopDesc* orig, JavaThread *thread))
 204   if (orig == NULL) {
 205     assert(false, "should be optimized out");
 206     return;
 207   }
 208   assert(orig->is_oop(true /* ignore mark word */), "Error");
 209   // store the original value that was in the field reference
 210   thread->satb_mark_queue().enqueue(orig);
 211 JRT_END
 212 
 213 // G1 write-barrier post: executed after a pointer store.
 214 JRT_LEAF(void, SharedRuntime::g1_wb_post(void* card_addr, JavaThread* thread))
 215   thread->dirty_card_queue().enqueue(card_addr);
 216 JRT_END
 217 
 218 #endif // INCLUDE_ALL_GCS
 219 
 220 
 221 JRT_LEAF(jlong, SharedRuntime::lmul(jlong y, jlong x))
 222   return x * y;
 223 JRT_END
 224 
 225 
 226 JRT_LEAF(jlong, SharedRuntime::ldiv(jlong y, jlong x))
 227   if (x == min_jlong && y == CONST64(-1)) {
 228     return x;
 229   } else {
 230     return x / y;
 231   }
 232 JRT_END
 233 
 234 
 235 JRT_LEAF(jlong, SharedRuntime::lrem(jlong y, jlong x))
 236   if (x == min_jlong && y == CONST64(-1)) {
 237     return 0;
 238   } else {
 239     return x % y;
 240   }
 241 JRT_END
 242 
 243 
 244 const juint  float_sign_mask  = 0x7FFFFFFF;
 245 const juint  float_infinity   = 0x7F800000;
 246 const julong double_sign_mask = CONST64(0x7FFFFFFFFFFFFFFF);
 247 const julong double_infinity  = CONST64(0x7FF0000000000000);
 248 
 249 JRT_LEAF(jfloat, SharedRuntime::frem(jfloat  x, jfloat  y))
 250 #ifdef _WIN64
 251   // 64-bit Windows on amd64 returns the wrong values for
 252   // infinity operands.
 253   union { jfloat f; juint i; } xbits, ybits;
 254   xbits.f = x;
 255   ybits.f = y;
 256   // x Mod Infinity == x unless x is infinity
 257   if (((xbits.i & float_sign_mask) != float_infinity) &&
 258        ((ybits.i & float_sign_mask) == float_infinity) ) {
 259     return x;
 260   }
 261   return ((jfloat)fmod_winx64((double)x, (double)y));
 262 #else
 263   return ((jfloat)fmod((double)x,(double)y));
 264 #endif
 265 JRT_END
 266 
 267 
 268 JRT_LEAF(jdouble, SharedRuntime::drem(jdouble x, jdouble y))
 269 #ifdef _WIN64
 270   union { jdouble d; julong l; } xbits, ybits;
 271   xbits.d = x;
 272   ybits.d = y;
 273   // x Mod Infinity == x unless x is infinity
 274   if (((xbits.l & double_sign_mask) != double_infinity) &&
 275        ((ybits.l & double_sign_mask) == double_infinity) ) {
 276     return x;
 277   }
 278   return ((jdouble)fmod_winx64((double)x, (double)y));
 279 #else
 280   return ((jdouble)fmod((double)x,(double)y));
 281 #endif
 282 JRT_END
 283 
 284 #ifdef __SOFTFP__
 285 JRT_LEAF(jfloat, SharedRuntime::fadd(jfloat x, jfloat y))
 286   return x + y;
 287 JRT_END
 288 
 289 JRT_LEAF(jfloat, SharedRuntime::fsub(jfloat x, jfloat y))
 290   return x - y;
 291 JRT_END
 292 
 293 JRT_LEAF(jfloat, SharedRuntime::fmul(jfloat x, jfloat y))
 294   return x * y;
 295 JRT_END
 296 
 297 JRT_LEAF(jfloat, SharedRuntime::fdiv(jfloat x, jfloat y))
 298   return x / y;
 299 JRT_END
 300 
 301 JRT_LEAF(jdouble, SharedRuntime::dadd(jdouble x, jdouble y))
 302   return x + y;
 303 JRT_END
 304 
 305 JRT_LEAF(jdouble, SharedRuntime::dsub(jdouble x, jdouble y))
 306   return x - y;
 307 JRT_END
 308 
 309 JRT_LEAF(jdouble, SharedRuntime::dmul(jdouble x, jdouble y))
 310   return x * y;
 311 JRT_END
 312 
 313 JRT_LEAF(jdouble, SharedRuntime::ddiv(jdouble x, jdouble y))
 314   return x / y;
 315 JRT_END
 316 
 317 JRT_LEAF(jfloat, SharedRuntime::i2f(jint x))
 318   return (jfloat)x;
 319 JRT_END
 320 
 321 JRT_LEAF(jdouble, SharedRuntime::i2d(jint x))
 322   return (jdouble)x;
 323 JRT_END
 324 
 325 JRT_LEAF(jdouble, SharedRuntime::f2d(jfloat x))
 326   return (jdouble)x;
 327 JRT_END
 328 
 329 JRT_LEAF(int,  SharedRuntime::fcmpl(float x, float y))
 330   return x>y ? 1 : (x==y ? 0 : -1);  /* x<y or is_nan*/
 331 JRT_END
 332 
 333 JRT_LEAF(int,  SharedRuntime::fcmpg(float x, float y))
 334   return x<y ? -1 : (x==y ? 0 : 1);  /* x>y or is_nan */
 335 JRT_END
 336 
 337 JRT_LEAF(int,  SharedRuntime::dcmpl(double x, double y))
 338   return x>y ? 1 : (x==y ? 0 : -1); /* x<y or is_nan */
 339 JRT_END
 340 
 341 JRT_LEAF(int,  SharedRuntime::dcmpg(double x, double y))
 342   return x<y ? -1 : (x==y ? 0 : 1);  /* x>y or is_nan */
 343 JRT_END
 344 
 345 // Functions to return the opposite of the aeabi functions for nan.
 346 JRT_LEAF(int, SharedRuntime::unordered_fcmplt(float x, float y))
 347   return (x < y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 348 JRT_END
 349 
 350 JRT_LEAF(int, SharedRuntime::unordered_dcmplt(double x, double y))
 351   return (x < y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 352 JRT_END
 353 
 354 JRT_LEAF(int, SharedRuntime::unordered_fcmple(float x, float y))
 355   return (x <= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 356 JRT_END
 357 
 358 JRT_LEAF(int, SharedRuntime::unordered_dcmple(double x, double y))
 359   return (x <= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 360 JRT_END
 361 
 362 JRT_LEAF(int, SharedRuntime::unordered_fcmpge(float x, float y))
 363   return (x >= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 364 JRT_END
 365 
 366 JRT_LEAF(int, SharedRuntime::unordered_dcmpge(double x, double y))
 367   return (x >= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 368 JRT_END
 369 
 370 JRT_LEAF(int, SharedRuntime::unordered_fcmpgt(float x, float y))
 371   return (x > y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 372 JRT_END
 373 
 374 JRT_LEAF(int, SharedRuntime::unordered_dcmpgt(double x, double y))
 375   return (x > y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 376 JRT_END
 377 
 378 // Intrinsics make gcc generate code for these.
 379 float  SharedRuntime::fneg(float f)   {
 380   return -f;
 381 }
 382 
 383 double SharedRuntime::dneg(double f)  {
 384   return -f;
 385 }
 386 
 387 #endif // __SOFTFP__
 388 
 389 #if defined(__SOFTFP__) || defined(E500V2)
 390 // Intrinsics make gcc generate code for these.
 391 double SharedRuntime::dabs(double f)  {
 392   return (f <= (double)0.0) ? (double)0.0 - f : f;
 393 }
 394 
 395 #endif
 396 
 397 #if defined(__SOFTFP__) || defined(PPC)
 398 double SharedRuntime::dsqrt(double f) {
 399   return sqrt(f);
 400 }
 401 #endif
 402 
 403 JRT_LEAF(jint, SharedRuntime::f2i(jfloat  x))
 404   if (g_isnan(x))
 405     return 0;
 406   if (x >= (jfloat) max_jint)
 407     return max_jint;
 408   if (x <= (jfloat) min_jint)
 409     return min_jint;
 410   return (jint) x;
 411 JRT_END
 412 
 413 
 414 JRT_LEAF(jlong, SharedRuntime::f2l(jfloat  x))
 415   if (g_isnan(x))
 416     return 0;
 417   if (x >= (jfloat) max_jlong)
 418     return max_jlong;
 419   if (x <= (jfloat) min_jlong)
 420     return min_jlong;
 421   return (jlong) x;
 422 JRT_END
 423 
 424 
 425 JRT_LEAF(jint, SharedRuntime::d2i(jdouble x))
 426   if (g_isnan(x))
 427     return 0;
 428   if (x >= (jdouble) max_jint)
 429     return max_jint;
 430   if (x <= (jdouble) min_jint)
 431     return min_jint;
 432   return (jint) x;
 433 JRT_END
 434 
 435 
 436 JRT_LEAF(jlong, SharedRuntime::d2l(jdouble x))
 437   if (g_isnan(x))
 438     return 0;
 439   if (x >= (jdouble) max_jlong)
 440     return max_jlong;
 441   if (x <= (jdouble) min_jlong)
 442     return min_jlong;
 443   return (jlong) x;
 444 JRT_END
 445 
 446 
 447 JRT_LEAF(jfloat, SharedRuntime::d2f(jdouble x))
 448   return (jfloat)x;
 449 JRT_END
 450 
 451 
 452 JRT_LEAF(jfloat, SharedRuntime::l2f(jlong x))
 453   return (jfloat)x;
 454 JRT_END
 455 
 456 
 457 JRT_LEAF(jdouble, SharedRuntime::l2d(jlong x))
 458   return (jdouble)x;
 459 JRT_END
 460 
 461 // Exception handling across interpreter/compiler boundaries
 462 //
 463 // exception_handler_for_return_address(...) returns the continuation address.
 464 // The continuation address is the entry point of the exception handler of the
 465 // previous frame depending on the return address.
 466 
 467 address SharedRuntime::raw_exception_handler_for_return_address(JavaThread* thread, address return_address) {
 468   assert(frame::verify_return_pc(return_address), "must be a return address: " INTPTR_FORMAT, p2i(return_address));
 469   assert(thread->frames_to_pop_failed_realloc() == 0 || Interpreter::contains(return_address), "missed frames to pop?");
 470 
 471   // Reset method handle flag.
 472   thread->set_is_method_handle_return(false);
 473 
 474 #if INCLUDE_JVMCI
 475   // JVMCI's ExceptionHandlerStub expects the thread local exception PC to be clear
 476   // and other exception handler continuations do not read it
 477   thread->set_exception_pc(NULL);
 478 #endif
 479 
 480   // The fastest case first
 481   CodeBlob* blob = CodeCache::find_blob(return_address);
 482   nmethod* nm = (blob != NULL) ? blob->as_nmethod_or_null() : NULL;
 483   if (nm != NULL) {
 484     // Set flag if return address is a method handle call site.
 485     thread->set_is_method_handle_return(nm->is_method_handle_return(return_address));
 486     // native nmethods don't have exception handlers
 487     assert(!nm->is_native_method(), "no exception handler");
 488     assert(nm->header_begin() != nm->exception_begin(), "no exception handler");
 489     if (nm->is_deopt_pc(return_address)) {
 490       // If we come here because of a stack overflow, the stack may be
 491       // unguarded. Reguard the stack otherwise if we return to the
 492       // deopt blob and the stack bang causes a stack overflow we
 493       // crash.
 494       bool guard_pages_enabled = thread->stack_guards_enabled();
 495       if (!guard_pages_enabled) guard_pages_enabled = thread->reguard_stack();
 496       if (thread->reserved_stack_activation() != thread->stack_base()) {
 497         thread->set_reserved_stack_activation(thread->stack_base());
 498       }
 499       assert(guard_pages_enabled, "stack banging in deopt blob may cause crash");
 500       return SharedRuntime::deopt_blob()->unpack_with_exception();
 501     } else {
 502       return nm->exception_begin();
 503     }
 504   }
 505 
 506   // Entry code
 507   if (StubRoutines::returns_to_call_stub(return_address)) {
 508     return StubRoutines::catch_exception_entry();
 509   }
 510   // Interpreted code
 511   if (Interpreter::contains(return_address)) {
 512     return Interpreter::rethrow_exception_entry();
 513   }
 514 
 515   guarantee(blob == NULL || !blob->is_runtime_stub(), "caller should have skipped stub");
 516   guarantee(!VtableStubs::contains(return_address), "NULL exceptions in vtables should have been handled already!");
 517 
 518 #ifndef PRODUCT
 519   { ResourceMark rm;
 520     tty->print_cr("No exception handler found for exception at " INTPTR_FORMAT " - potential problems:", p2i(return_address));
 521     tty->print_cr("a) exception happened in (new?) code stubs/buffers that is not handled here");
 522     tty->print_cr("b) other problem");
 523   }
 524 #endif // PRODUCT
 525 
 526   ShouldNotReachHere();
 527   return NULL;
 528 }
 529 
 530 
 531 JRT_LEAF(address, SharedRuntime::exception_handler_for_return_address(JavaThread* thread, address return_address))
 532   return raw_exception_handler_for_return_address(thread, return_address);
 533 JRT_END
 534 
 535 
 536 address SharedRuntime::get_poll_stub(address pc) {
 537   address stub;
 538   // Look up the code blob
 539   CodeBlob *cb = CodeCache::find_blob(pc);
 540 
 541   // Should be an nmethod
 542   assert(cb && cb->is_compiled(), "safepoint polling: pc must refer to an nmethod");
 543 
 544   // Look up the relocation information
 545   assert(((CompiledMethod*)cb)->is_at_poll_or_poll_return(pc),
 546     "safepoint polling: type must be poll");
 547 
 548 #ifdef ASSERT
 549   if (!((NativeInstruction*)pc)->is_safepoint_poll()) {
 550     tty->print_cr("bad pc: " PTR_FORMAT, p2i(pc));
 551     Disassembler::decode(cb);
 552     fatal("Only polling locations are used for safepoint");
 553   }
 554 #endif
 555 
 556   bool at_poll_return = ((CompiledMethod*)cb)->is_at_poll_return(pc);
 557   bool has_wide_vectors = ((CompiledMethod*)cb)->has_wide_vectors();
 558   if (at_poll_return) {
 559     assert(SharedRuntime::polling_page_return_handler_blob() != NULL,
 560            "polling page return stub not created yet");
 561     stub = SharedRuntime::polling_page_return_handler_blob()->entry_point();
 562   } else if (has_wide_vectors) {
 563     assert(SharedRuntime::polling_page_vectors_safepoint_handler_blob() != NULL,
 564            "polling page vectors safepoint stub not created yet");
 565     stub = SharedRuntime::polling_page_vectors_safepoint_handler_blob()->entry_point();
 566   } else {
 567     assert(SharedRuntime::polling_page_safepoint_handler_blob() != NULL,
 568            "polling page safepoint stub not created yet");
 569     stub = SharedRuntime::polling_page_safepoint_handler_blob()->entry_point();
 570   }
 571   log_debug(safepoint)("... found polling page %s exception at pc = "
 572                        INTPTR_FORMAT ", stub =" INTPTR_FORMAT,
 573                        at_poll_return ? "return" : "loop",
 574                        (intptr_t)pc, (intptr_t)stub);
 575   return stub;
 576 }
 577 
 578 
 579 oop SharedRuntime::retrieve_receiver( Symbol* sig, frame caller ) {
 580   assert(caller.is_interpreted_frame(), "");
 581   int args_size = ArgumentSizeComputer(sig).size() + 1;
 582   assert(args_size <= caller.interpreter_frame_expression_stack_size(), "receiver must be on interpreter stack");
 583   oop result = cast_to_oop(*caller.interpreter_frame_tos_at(args_size - 1));
 584   assert(GC::gc()->heap()->is_in(result) && result->is_oop(), "receiver must be an oop");
 585   return result;
 586 }
 587 
 588 
 589 void SharedRuntime::throw_and_post_jvmti_exception(JavaThread *thread, Handle h_exception) {
 590   if (JvmtiExport::can_post_on_exceptions()) {
 591     vframeStream vfst(thread, true);
 592     methodHandle method = methodHandle(thread, vfst.method());
 593     address bcp = method()->bcp_from(vfst.bci());
 594     JvmtiExport::post_exception_throw(thread, method(), bcp, h_exception());
 595   }
 596   Exceptions::_throw(thread, __FILE__, __LINE__, h_exception);
 597 }
 598 
 599 void SharedRuntime::throw_and_post_jvmti_exception(JavaThread *thread, Symbol* name, const char *message) {
 600   Handle h_exception = Exceptions::new_exception(thread, name, message);
 601   throw_and_post_jvmti_exception(thread, h_exception);
 602 }
 603 
 604 // The interpreter code to call this tracing function is only
 605 // called/generated when UL is on for redefine, class and has the right level
 606 // and tags. Since obsolete methods are never compiled, we don't have
 607 // to modify the compilers to generate calls to this function.
 608 //
 609 JRT_LEAF(int, SharedRuntime::rc_trace_method_entry(
 610     JavaThread* thread, Method* method))
 611   if (method->is_obsolete()) {
 612     // We are calling an obsolete method, but this is not necessarily
 613     // an error. Our method could have been redefined just after we
 614     // fetched the Method* from the constant pool.
 615     ResourceMark rm;
 616     log_trace(redefine, class, obsolete)("calling obsolete method '%s'", method->name_and_sig_as_C_string());
 617   }
 618   return 0;
 619 JRT_END
 620 
 621 // ret_pc points into caller; we are returning caller's exception handler
 622 // for given exception
 623 address SharedRuntime::compute_compiled_exc_handler(CompiledMethod* cm, address ret_pc, Handle& exception,
 624                                                     bool force_unwind, bool top_frame_only, bool& recursive_exception_occurred) {
 625   assert(cm != NULL, "must exist");
 626   ResourceMark rm;
 627 
 628 #if INCLUDE_JVMCI
 629   if (cm->is_compiled_by_jvmci()) {
 630     // lookup exception handler for this pc
 631     int catch_pco = ret_pc - cm->code_begin();
 632     ExceptionHandlerTable table(cm);
 633     HandlerTableEntry *t = table.entry_for(catch_pco, -1, 0);
 634     if (t != NULL) {
 635       return cm->code_begin() + t->pco();
 636     } else {
 637       // there is no exception handler for this pc => deoptimize
 638       cm->make_not_entrant();
 639 
 640       // Use Deoptimization::deoptimize for all of its side-effects:
 641       // revoking biases of monitors, gathering traps statistics, logging...
 642       // it also patches the return pc but we do not care about that
 643       // since we return a continuation to the deopt_blob below.
 644       JavaThread* thread = JavaThread::current();
 645       RegisterMap reg_map(thread, UseBiasedLocking);
 646       frame runtime_frame = thread->last_frame();
 647       frame caller_frame = runtime_frame.sender(&reg_map);
 648       Deoptimization::deoptimize(thread, caller_frame, &reg_map, Deoptimization::Reason_not_compiled_exception_handler);
 649 
 650       return SharedRuntime::deopt_blob()->unpack_with_exception_in_tls();
 651     }
 652   }
 653 #endif // INCLUDE_JVMCI
 654 
 655   nmethod* nm = cm->as_nmethod();
 656   ScopeDesc* sd = nm->scope_desc_at(ret_pc);
 657   // determine handler bci, if any
 658   EXCEPTION_MARK;
 659 
 660   int handler_bci = -1;
 661   int scope_depth = 0;
 662   if (!force_unwind) {
 663     int bci = sd->bci();
 664     bool recursive_exception = false;
 665     do {
 666       bool skip_scope_increment = false;
 667       // exception handler lookup
 668       KlassHandle ek (THREAD, exception->klass());
 669       methodHandle mh(THREAD, sd->method());
 670       handler_bci = Method::fast_exception_handler_bci_for(mh, ek, bci, THREAD);
 671       if (HAS_PENDING_EXCEPTION) {
 672         recursive_exception = true;
 673         // We threw an exception while trying to find the exception handler.
 674         // Transfer the new exception to the exception handle which will
 675         // be set into thread local storage, and do another lookup for an
 676         // exception handler for this exception, this time starting at the
 677         // BCI of the exception handler which caused the exception to be
 678         // thrown (bugs 4307310 and 4546590). Set "exception" reference
 679         // argument to ensure that the correct exception is thrown (4870175).
 680         recursive_exception_occurred = true;
 681         exception = Handle(THREAD, PENDING_EXCEPTION);
 682         CLEAR_PENDING_EXCEPTION;
 683         if (handler_bci >= 0) {
 684           bci = handler_bci;
 685           handler_bci = -1;
 686           skip_scope_increment = true;
 687         }
 688       }
 689       else {
 690         recursive_exception = false;
 691       }
 692       if (!top_frame_only && handler_bci < 0 && !skip_scope_increment) {
 693         sd = sd->sender();
 694         if (sd != NULL) {
 695           bci = sd->bci();
 696         }
 697         ++scope_depth;
 698       }
 699     } while (recursive_exception || (!top_frame_only && handler_bci < 0 && sd != NULL));
 700   }
 701 
 702   // found handling method => lookup exception handler
 703   int catch_pco = ret_pc - nm->code_begin();
 704 
 705   ExceptionHandlerTable table(nm);
 706   HandlerTableEntry *t = table.entry_for(catch_pco, handler_bci, scope_depth);
 707   if (t == NULL && (nm->is_compiled_by_c1() || handler_bci != -1)) {
 708     // Allow abbreviated catch tables.  The idea is to allow a method
 709     // to materialize its exceptions without committing to the exact
 710     // routing of exceptions.  In particular this is needed for adding
 711     // a synthetic handler to unlock monitors when inlining
 712     // synchronized methods since the unlock path isn't represented in
 713     // the bytecodes.
 714     t = table.entry_for(catch_pco, -1, 0);
 715   }
 716 
 717 #ifdef COMPILER1
 718   if (t == NULL && nm->is_compiled_by_c1()) {
 719     assert(nm->unwind_handler_begin() != NULL, "");
 720     return nm->unwind_handler_begin();
 721   }
 722 #endif
 723 
 724   if (t == NULL) {
 725     ttyLocker ttyl;
 726     tty->print_cr("MISSING EXCEPTION HANDLER for pc " INTPTR_FORMAT " and handler bci %d", p2i(ret_pc), handler_bci);
 727     tty->print_cr("   Exception:");
 728     exception->print();
 729     tty->cr();
 730     tty->print_cr(" Compiled exception table :");
 731     table.print();
 732     nm->print_code();
 733     guarantee(false, "missing exception handler");
 734     return NULL;
 735   }
 736 
 737   return nm->code_begin() + t->pco();
 738 }
 739 
 740 JRT_ENTRY(void, SharedRuntime::throw_AbstractMethodError(JavaThread* thread))
 741   // These errors occur only at call sites
 742   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_AbstractMethodError());
 743 JRT_END
 744 
 745 JRT_ENTRY(void, SharedRuntime::throw_IncompatibleClassChangeError(JavaThread* thread))
 746   // These errors occur only at call sites
 747   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_IncompatibleClassChangeError(), "vtable stub");
 748 JRT_END
 749 
 750 JRT_ENTRY(void, SharedRuntime::throw_ArithmeticException(JavaThread* thread))
 751   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_ArithmeticException(), "/ by zero");
 752 JRT_END
 753 
 754 JRT_ENTRY(void, SharedRuntime::throw_NullPointerException(JavaThread* thread))
 755   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_NullPointerException());
 756 JRT_END
 757 
 758 JRT_ENTRY(void, SharedRuntime::throw_NullPointerException_at_call(JavaThread* thread))
 759   // This entry point is effectively only used for NullPointerExceptions which occur at inline
 760   // cache sites (when the callee activation is not yet set up) so we are at a call site
 761   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_NullPointerException());
 762 JRT_END
 763 
 764 JRT_ENTRY(void, SharedRuntime::throw_StackOverflowError(JavaThread* thread))
 765   throw_StackOverflowError_common(thread, false);
 766 JRT_END
 767 
 768 JRT_ENTRY(void, SharedRuntime::throw_delayed_StackOverflowError(JavaThread* thread))
 769   throw_StackOverflowError_common(thread, true);
 770 JRT_END
 771 
 772 void SharedRuntime::throw_StackOverflowError_common(JavaThread* thread, bool delayed) {
 773   // We avoid using the normal exception construction in this case because
 774   // it performs an upcall to Java, and we're already out of stack space.
 775   Thread* THREAD = thread;
 776   Klass* k = SystemDictionary::StackOverflowError_klass();
 777   oop exception_oop = InstanceKlass::cast(k)->allocate_instance(CHECK);
 778   if (delayed) {
 779     java_lang_Throwable::set_message(exception_oop,
 780                                      Universe::delayed_stack_overflow_error_message());
 781   }
 782   Handle exception (thread, exception_oop);
 783   if (StackTraceInThrowable) {
 784     java_lang_Throwable::fill_in_stack_trace(exception);
 785   }
 786   // Increment counter for hs_err file reporting
 787   Atomic::inc(&Exceptions::_stack_overflow_errors);
 788   throw_and_post_jvmti_exception(thread, exception);
 789 }
 790 
 791 #if INCLUDE_JVMCI
 792 address SharedRuntime::deoptimize_for_implicit_exception(JavaThread* thread, address pc, CompiledMethod* nm, int deopt_reason) {
 793   assert(deopt_reason > Deoptimization::Reason_none && deopt_reason < Deoptimization::Reason_LIMIT, "invalid deopt reason");
 794   thread->set_jvmci_implicit_exception_pc(pc);
 795   thread->set_pending_deoptimization(Deoptimization::make_trap_request((Deoptimization::DeoptReason)deopt_reason, Deoptimization::Action_reinterpret));
 796   return (SharedRuntime::deopt_blob()->implicit_exception_uncommon_trap());
 797 }
 798 #endif // INCLUDE_JVMCI
 799 
 800 address SharedRuntime::continuation_for_implicit_exception(JavaThread* thread,
 801                                                            address pc,
 802                                                            SharedRuntime::ImplicitExceptionKind exception_kind)
 803 {
 804   address target_pc = NULL;
 805 
 806   if (Interpreter::contains(pc)) {
 807 #ifdef CC_INTERP
 808     // C++ interpreter doesn't throw implicit exceptions
 809     ShouldNotReachHere();
 810 #else
 811     switch (exception_kind) {
 812       case IMPLICIT_NULL:           return Interpreter::throw_NullPointerException_entry();
 813       case IMPLICIT_DIVIDE_BY_ZERO: return Interpreter::throw_ArithmeticException_entry();
 814       case STACK_OVERFLOW:          return Interpreter::throw_StackOverflowError_entry();
 815       default:                      ShouldNotReachHere();
 816     }
 817 #endif // !CC_INTERP
 818   } else {
 819     switch (exception_kind) {
 820       case STACK_OVERFLOW: {
 821         // Stack overflow only occurs upon frame setup; the callee is
 822         // going to be unwound. Dispatch to a shared runtime stub
 823         // which will cause the StackOverflowError to be fabricated
 824         // and processed.
 825         // Stack overflow should never occur during deoptimization:
 826         // the compiled method bangs the stack by as much as the
 827         // interpreter would need in case of a deoptimization. The
 828         // deoptimization blob and uncommon trap blob bang the stack
 829         // in a debug VM to verify the correctness of the compiled
 830         // method stack banging.
 831         assert(thread->deopt_mark() == NULL, "no stack overflow from deopt blob/uncommon trap");
 832         Events::log_exception(thread, "StackOverflowError at " INTPTR_FORMAT, p2i(pc));
 833         return StubRoutines::throw_StackOverflowError_entry();
 834       }
 835 
 836       case IMPLICIT_NULL: {
 837         if (VtableStubs::contains(pc)) {
 838           // We haven't yet entered the callee frame. Fabricate an
 839           // exception and begin dispatching it in the caller. Since
 840           // the caller was at a call site, it's safe to destroy all
 841           // caller-saved registers, as these entry points do.
 842           VtableStub* vt_stub = VtableStubs::stub_containing(pc);
 843 
 844           // If vt_stub is NULL, then return NULL to signal handler to report the SEGV error.
 845           if (vt_stub == NULL) return NULL;
 846 
 847           if (vt_stub->is_abstract_method_error(pc)) {
 848             assert(!vt_stub->is_vtable_stub(), "should never see AbstractMethodErrors from vtable-type VtableStubs");
 849             Events::log_exception(thread, "AbstractMethodError at " INTPTR_FORMAT, p2i(pc));
 850             return StubRoutines::throw_AbstractMethodError_entry();
 851           } else {
 852             Events::log_exception(thread, "NullPointerException at vtable entry " INTPTR_FORMAT, p2i(pc));
 853             return StubRoutines::throw_NullPointerException_at_call_entry();
 854           }
 855         } else {
 856           CodeBlob* cb = CodeCache::find_blob(pc);
 857 
 858           // If code blob is NULL, then return NULL to signal handler to report the SEGV error.
 859           if (cb == NULL) return NULL;
 860 
 861           // Exception happened in CodeCache. Must be either:
 862           // 1. Inline-cache check in C2I handler blob,
 863           // 2. Inline-cache check in nmethod, or
 864           // 3. Implicit null exception in nmethod
 865 
 866           if (!cb->is_compiled()) {
 867             bool is_in_blob = cb->is_adapter_blob() || cb->is_method_handles_adapter_blob();
 868             if (!is_in_blob) {
 869               // Allow normal crash reporting to handle this
 870               return NULL;
 871             }
 872             Events::log_exception(thread, "NullPointerException in code blob at " INTPTR_FORMAT, p2i(pc));
 873             // There is no handler here, so we will simply unwind.
 874             return StubRoutines::throw_NullPointerException_at_call_entry();
 875           }
 876 
 877           // Otherwise, it's a compiled method.  Consult its exception handlers.
 878           CompiledMethod* cm = (CompiledMethod*)cb;
 879           if (cm->inlinecache_check_contains(pc)) {
 880             // exception happened inside inline-cache check code
 881             // => the nmethod is not yet active (i.e., the frame
 882             // is not set up yet) => use return address pushed by
 883             // caller => don't push another return address
 884             Events::log_exception(thread, "NullPointerException in IC check " INTPTR_FORMAT, p2i(pc));
 885             return StubRoutines::throw_NullPointerException_at_call_entry();
 886           }
 887 
 888           if (cm->method()->is_method_handle_intrinsic()) {
 889             // exception happened inside MH dispatch code, similar to a vtable stub
 890             Events::log_exception(thread, "NullPointerException in MH adapter " INTPTR_FORMAT, p2i(pc));
 891             return StubRoutines::throw_NullPointerException_at_call_entry();
 892           }
 893 
 894 #ifndef PRODUCT
 895           _implicit_null_throws++;
 896 #endif
 897 #if INCLUDE_JVMCI
 898           if (cm->is_compiled_by_jvmci() && cm->pc_desc_at(pc) != NULL) {
 899             // If there's no PcDesc then we'll die way down inside of
 900             // deopt instead of just getting normal error reporting,
 901             // so only go there if it will succeed.
 902             return deoptimize_for_implicit_exception(thread, pc, cm, Deoptimization::Reason_null_check);
 903           } else {
 904 #endif // INCLUDE_JVMCI
 905           assert (cm->is_nmethod(), "Expect nmethod");
 906           target_pc = ((nmethod*)cm)->continuation_for_implicit_exception(pc);
 907 #if INCLUDE_JVMCI
 908           }
 909 #endif // INCLUDE_JVMCI
 910           // If there's an unexpected fault, target_pc might be NULL,
 911           // in which case we want to fall through into the normal
 912           // error handling code.
 913         }
 914 
 915         break; // fall through
 916       }
 917 
 918 
 919       case IMPLICIT_DIVIDE_BY_ZERO: {
 920         CompiledMethod* cm = CodeCache::find_compiled(pc);
 921         guarantee(cm != NULL, "must have containing compiled method for implicit division-by-zero exceptions");
 922 #ifndef PRODUCT
 923         _implicit_div0_throws++;
 924 #endif
 925 #if INCLUDE_JVMCI
 926         if (cm->is_compiled_by_jvmci() && cm->pc_desc_at(pc) != NULL) {
 927           return deoptimize_for_implicit_exception(thread, pc, cm, Deoptimization::Reason_div0_check);
 928         } else {
 929 #endif // INCLUDE_JVMCI
 930         target_pc = cm->continuation_for_implicit_exception(pc);
 931 #if INCLUDE_JVMCI
 932         }
 933 #endif // INCLUDE_JVMCI
 934         // If there's an unexpected fault, target_pc might be NULL,
 935         // in which case we want to fall through into the normal
 936         // error handling code.
 937         break; // fall through
 938       }
 939 
 940       default: ShouldNotReachHere();
 941     }
 942 
 943     assert(exception_kind == IMPLICIT_NULL || exception_kind == IMPLICIT_DIVIDE_BY_ZERO, "wrong implicit exception kind");
 944 
 945     if (exception_kind == IMPLICIT_NULL) {
 946 #ifndef PRODUCT
 947       // for AbortVMOnException flag
 948       Exceptions::debug_check_abort("java.lang.NullPointerException");
 949 #endif //PRODUCT
 950       Events::log_exception(thread, "Implicit null exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, p2i(pc), p2i(target_pc));
 951     } else {
 952 #ifndef PRODUCT
 953       // for AbortVMOnException flag
 954       Exceptions::debug_check_abort("java.lang.ArithmeticException");
 955 #endif //PRODUCT
 956       Events::log_exception(thread, "Implicit division by zero exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, p2i(pc), p2i(target_pc));
 957     }
 958     return target_pc;
 959   }
 960 
 961   ShouldNotReachHere();
 962   return NULL;
 963 }
 964 
 965 
 966 /**
 967  * Throws an java/lang/UnsatisfiedLinkError.  The address of this method is
 968  * installed in the native function entry of all native Java methods before
 969  * they get linked to their actual native methods.
 970  *
 971  * \note
 972  * This method actually never gets called!  The reason is because
 973  * the interpreter's native entries call NativeLookup::lookup() which
 974  * throws the exception when the lookup fails.  The exception is then
 975  * caught and forwarded on the return from NativeLookup::lookup() call
 976  * before the call to the native function.  This might change in the future.
 977  */
 978 JNI_ENTRY(void*, throw_unsatisfied_link_error(JNIEnv* env, ...))
 979 {
 980   // We return a bad value here to make sure that the exception is
 981   // forwarded before we look at the return value.
 982   THROW_(vmSymbols::java_lang_UnsatisfiedLinkError(), (void*)badJNIHandle);
 983 }
 984 JNI_END
 985 
 986 address SharedRuntime::native_method_throw_unsatisfied_link_error_entry() {
 987   return CAST_FROM_FN_PTR(address, &throw_unsatisfied_link_error);
 988 }
 989 
 990 JRT_ENTRY_NO_ASYNC(void, SharedRuntime::register_finalizer(JavaThread* thread, oopDesc* obj))
 991   assert(obj->is_oop(), "must be a valid oop");
 992 #if INCLUDE_JVMCI
 993   // This removes the requirement for JVMCI compilers to emit code
 994   // performing a dynamic check that obj has a finalizer before
 995   // calling this routine. There should be no performance impact
 996   // for C1 since it emits a dynamic check. C2 and the interpreter
 997   // uses other runtime routines for registering finalizers.
 998   if (!obj->klass()->has_finalizer()) {
 999     return;
1000   }
1001 #endif // INCLUDE_JVMCI
1002   assert(obj->klass()->has_finalizer(), "shouldn't be here otherwise");
1003   InstanceKlass::register_finalizer(instanceOop(obj), CHECK);
1004 JRT_END
1005 
1006 
1007 jlong SharedRuntime::get_java_tid(Thread* thread) {
1008   if (thread != NULL) {
1009     if (thread->is_Java_thread()) {
1010       oop obj = ((JavaThread*)thread)->threadObj();
1011       return (obj == NULL) ? 0 : java_lang_Thread::thread_id(obj);
1012     }
1013   }
1014   return 0;
1015 }
1016 
1017 /**
1018  * This function ought to be a void function, but cannot be because
1019  * it gets turned into a tail-call on sparc, which runs into dtrace bug
1020  * 6254741.  Once that is fixed we can remove the dummy return value.
1021  */
1022 int SharedRuntime::dtrace_object_alloc(oopDesc* o, int size) {
1023   return dtrace_object_alloc_base(Thread::current(), o, size);
1024 }
1025 
1026 int SharedRuntime::dtrace_object_alloc_base(Thread* thread, oopDesc* o, int size) {
1027   assert(DTraceAllocProbes, "wrong call");
1028   Klass* klass = o->klass();
1029   Symbol* name = klass->name();
1030   HOTSPOT_OBJECT_ALLOC(
1031                    get_java_tid(thread),
1032                    (char *) name->bytes(), name->utf8_length(), size * HeapWordSize);
1033   return 0;
1034 }
1035 
1036 JRT_LEAF(int, SharedRuntime::dtrace_method_entry(
1037     JavaThread* thread, Method* method))
1038   assert(DTraceMethodProbes, "wrong call");
1039   Symbol* kname = method->klass_name();
1040   Symbol* name = method->name();
1041   Symbol* sig = method->signature();
1042   HOTSPOT_METHOD_ENTRY(
1043       get_java_tid(thread),
1044       (char *) kname->bytes(), kname->utf8_length(),
1045       (char *) name->bytes(), name->utf8_length(),
1046       (char *) sig->bytes(), sig->utf8_length());
1047   return 0;
1048 JRT_END
1049 
1050 JRT_LEAF(int, SharedRuntime::dtrace_method_exit(
1051     JavaThread* thread, Method* method))
1052   assert(DTraceMethodProbes, "wrong call");
1053   Symbol* kname = method->klass_name();
1054   Symbol* name = method->name();
1055   Symbol* sig = method->signature();
1056   HOTSPOT_METHOD_RETURN(
1057       get_java_tid(thread),
1058       (char *) kname->bytes(), kname->utf8_length(),
1059       (char *) name->bytes(), name->utf8_length(),
1060       (char *) sig->bytes(), sig->utf8_length());
1061   return 0;
1062 JRT_END
1063 
1064 
1065 // Finds receiver, CallInfo (i.e. receiver method), and calling bytecode)
1066 // for a call current in progress, i.e., arguments has been pushed on stack
1067 // put callee has not been invoked yet.  Used by: resolve virtual/static,
1068 // vtable updates, etc.  Caller frame must be compiled.
1069 Handle SharedRuntime::find_callee_info(JavaThread* thread, Bytecodes::Code& bc, CallInfo& callinfo, TRAPS) {
1070   ResourceMark rm(THREAD);
1071 
1072   // last java frame on stack (which includes native call frames)
1073   vframeStream vfst(thread, true);  // Do not skip and javaCalls
1074 
1075   return find_callee_info_helper(thread, vfst, bc, callinfo, THREAD);
1076 }
1077 
1078 methodHandle SharedRuntime::extract_attached_method(vframeStream& vfst) {
1079   CompiledMethod* caller = vfst.nm();
1080 
1081   nmethodLocker caller_lock(caller);
1082 
1083   address pc = vfst.frame_pc();
1084   { // Get call instruction under lock because another thread may be busy patching it.
1085     MutexLockerEx ml_patch(Patching_lock, Mutex::_no_safepoint_check_flag);
1086     return caller->attached_method_before_pc(pc);
1087   }
1088   return NULL;
1089 }
1090 
1091 // Finds receiver, CallInfo (i.e. receiver method), and calling bytecode
1092 // for a call current in progress, i.e., arguments has been pushed on stack
1093 // but callee has not been invoked yet.  Caller frame must be compiled.
1094 Handle SharedRuntime::find_callee_info_helper(JavaThread* thread,
1095                                               vframeStream& vfst,
1096                                               Bytecodes::Code& bc,
1097                                               CallInfo& callinfo, TRAPS) {
1098   Handle receiver;
1099   Handle nullHandle;  //create a handy null handle for exception returns
1100 
1101   assert(!vfst.at_end(), "Java frame must exist");
1102 
1103   // Find caller and bci from vframe
1104   methodHandle caller(THREAD, vfst.method());
1105   int          bci   = vfst.bci();
1106 
1107   Bytecode_invoke bytecode(caller, bci);
1108   int bytecode_index = bytecode.index();
1109 
1110   methodHandle attached_method = extract_attached_method(vfst);
1111   if (attached_method.not_null()) {
1112     methodHandle callee = bytecode.static_target(CHECK_NH);
1113     vmIntrinsics::ID id = callee->intrinsic_id();
1114     // When VM replaces MH.invokeBasic/linkTo* call with a direct/virtual call,
1115     // it attaches statically resolved method to the call site.
1116     if (MethodHandles::is_signature_polymorphic(id) &&
1117         MethodHandles::is_signature_polymorphic_intrinsic(id)) {
1118       bc = MethodHandles::signature_polymorphic_intrinsic_bytecode(id);
1119 
1120       // Adjust invocation mode according to the attached method.
1121       switch (bc) {
1122         case Bytecodes::_invokeinterface:
1123           if (!attached_method->method_holder()->is_interface()) {
1124             bc = Bytecodes::_invokevirtual;
1125           }
1126           break;
1127         case Bytecodes::_invokehandle:
1128           if (!MethodHandles::is_signature_polymorphic_method(attached_method())) {
1129             bc = attached_method->is_static() ? Bytecodes::_invokestatic
1130                                               : Bytecodes::_invokevirtual;
1131           }
1132           break;
1133       }
1134     }
1135   } else {
1136     bc = bytecode.invoke_code();
1137   }
1138 
1139   bool has_receiver = bc != Bytecodes::_invokestatic &&
1140                       bc != Bytecodes::_invokedynamic &&
1141                       bc != Bytecodes::_invokehandle;
1142 
1143   // Find receiver for non-static call
1144   if (has_receiver) {
1145     // This register map must be update since we need to find the receiver for
1146     // compiled frames. The receiver might be in a register.
1147     RegisterMap reg_map2(thread);
1148     frame stubFrame   = thread->last_frame();
1149     // Caller-frame is a compiled frame
1150     frame callerFrame = stubFrame.sender(&reg_map2);
1151 
1152     if (attached_method.is_null()) {
1153       methodHandle callee = bytecode.static_target(CHECK_NH);
1154       if (callee.is_null()) {
1155         THROW_(vmSymbols::java_lang_NoSuchMethodException(), nullHandle);
1156       }
1157     }
1158 
1159     // Retrieve from a compiled argument list
1160     receiver = Handle(THREAD, callerFrame.retrieve_receiver(&reg_map2));
1161 
1162     if (receiver.is_null()) {
1163       THROW_(vmSymbols::java_lang_NullPointerException(), nullHandle);
1164     }
1165   }
1166 
1167   assert(receiver.is_null() || receiver->is_oop(), "wrong receiver");
1168 
1169   // Resolve method
1170   if (attached_method.not_null()) {
1171     // Parameterized by attached method.
1172     LinkResolver::resolve_invoke(callinfo, receiver, attached_method, bc, CHECK_NH);
1173   } else {
1174     // Parameterized by bytecode.
1175     constantPoolHandle constants(THREAD, caller->constants());
1176     LinkResolver::resolve_invoke(callinfo, receiver, constants, bytecode_index, bc, CHECK_NH);
1177   }
1178 
1179 #ifdef ASSERT
1180   // Check that the receiver klass is of the right subtype and that it is initialized for virtual calls
1181   if (has_receiver) {
1182     assert(receiver.not_null(), "should have thrown exception");
1183     KlassHandle receiver_klass(THREAD, receiver->klass());
1184     Klass* rk = NULL;
1185     if (attached_method.not_null()) {
1186       // In case there's resolved method attached, use its holder during the check.
1187       rk = attached_method->method_holder();
1188     } else {
1189       // Klass is already loaded.
1190       constantPoolHandle constants(THREAD, caller->constants());
1191       rk = constants->klass_ref_at(bytecode_index, CHECK_NH);
1192     }
1193     KlassHandle static_receiver_klass(THREAD, rk);
1194     methodHandle callee = callinfo.selected_method();
1195     assert(receiver_klass->is_subtype_of(static_receiver_klass()),
1196            "actual receiver must be subclass of static receiver klass");
1197     if (receiver_klass->is_instance_klass()) {
1198       if (InstanceKlass::cast(receiver_klass())->is_not_initialized()) {
1199         tty->print_cr("ERROR: Klass not yet initialized!!");
1200         receiver_klass()->print();
1201       }
1202       assert(!InstanceKlass::cast(receiver_klass())->is_not_initialized(), "receiver_klass must be initialized");
1203     }
1204   }
1205 #endif
1206 
1207   return receiver;
1208 }
1209 
1210 methodHandle SharedRuntime::find_callee_method(JavaThread* thread, TRAPS) {
1211   ResourceMark rm(THREAD);
1212   // We need first to check if any Java activations (compiled, interpreted)
1213   // exist on the stack since last JavaCall.  If not, we need
1214   // to get the target method from the JavaCall wrapper.
1215   vframeStream vfst(thread, true);  // Do not skip any javaCalls
1216   methodHandle callee_method;
1217   if (vfst.at_end()) {
1218     // No Java frames were found on stack since we did the JavaCall.
1219     // Hence the stack can only contain an entry_frame.  We need to
1220     // find the target method from the stub frame.
1221     RegisterMap reg_map(thread, false);
1222     frame fr = thread->last_frame();
1223     assert(fr.is_runtime_frame(), "must be a runtimeStub");
1224     fr = fr.sender(&reg_map);
1225     assert(fr.is_entry_frame(), "must be");
1226     // fr is now pointing to the entry frame.
1227     callee_method = methodHandle(THREAD, fr.entry_frame_call_wrapper()->callee_method());
1228     assert(fr.entry_frame_call_wrapper()->receiver() == NULL || !callee_method->is_static(), "non-null receiver for static call??");
1229   } else {
1230     Bytecodes::Code bc;
1231     CallInfo callinfo;
1232     find_callee_info_helper(thread, vfst, bc, callinfo, CHECK_(methodHandle()));
1233     callee_method = callinfo.selected_method();
1234   }
1235   assert(callee_method()->is_method(), "must be");
1236   return callee_method;
1237 }
1238 
1239 // Resolves a call.
1240 methodHandle SharedRuntime::resolve_helper(JavaThread *thread,
1241                                            bool is_virtual,
1242                                            bool is_optimized, TRAPS) {
1243   methodHandle callee_method;
1244   callee_method = resolve_sub_helper(thread, is_virtual, is_optimized, THREAD);
1245   if (JvmtiExport::can_hotswap_or_post_breakpoint()) {
1246     int retry_count = 0;
1247     while (!HAS_PENDING_EXCEPTION && callee_method->is_old() &&
1248            callee_method->method_holder() != SystemDictionary::Object_klass()) {
1249       // If has a pending exception then there is no need to re-try to
1250       // resolve this method.
1251       // If the method has been redefined, we need to try again.
1252       // Hack: we have no way to update the vtables of arrays, so don't
1253       // require that java.lang.Object has been updated.
1254 
1255       // It is very unlikely that method is redefined more than 100 times
1256       // in the middle of resolve. If it is looping here more than 100 times
1257       // means then there could be a bug here.
1258       guarantee((retry_count++ < 100),
1259                 "Could not resolve to latest version of redefined method");
1260       // method is redefined in the middle of resolve so re-try.
1261       callee_method = resolve_sub_helper(thread, is_virtual, is_optimized, THREAD);
1262     }
1263   }
1264   return callee_method;
1265 }
1266 
1267 // Resolves a call.  The compilers generate code for calls that go here
1268 // and are patched with the real destination of the call.
1269 methodHandle SharedRuntime::resolve_sub_helper(JavaThread *thread,
1270                                            bool is_virtual,
1271                                            bool is_optimized, TRAPS) {
1272 
1273   ResourceMark rm(thread);
1274   RegisterMap cbl_map(thread, false);
1275   frame caller_frame = thread->last_frame().sender(&cbl_map);
1276 
1277   CodeBlob* caller_cb = caller_frame.cb();
1278   guarantee(caller_cb != NULL && caller_cb->is_compiled(), "must be called from compiled method");
1279   CompiledMethod* caller_nm = caller_cb->as_compiled_method_or_null();
1280 
1281   // make sure caller is not getting deoptimized
1282   // and removed before we are done with it.
1283   // CLEANUP - with lazy deopt shouldn't need this lock
1284   nmethodLocker caller_lock(caller_nm);
1285 
1286   // determine call info & receiver
1287   // note: a) receiver is NULL for static calls
1288   //       b) an exception is thrown if receiver is NULL for non-static calls
1289   CallInfo call_info;
1290   Bytecodes::Code invoke_code = Bytecodes::_illegal;
1291   Handle receiver = find_callee_info(thread, invoke_code,
1292                                      call_info, CHECK_(methodHandle()));
1293   methodHandle callee_method = call_info.selected_method();
1294 
1295   assert((!is_virtual && invoke_code == Bytecodes::_invokestatic ) ||
1296          (!is_virtual && invoke_code == Bytecodes::_invokespecial) ||
1297          (!is_virtual && invoke_code == Bytecodes::_invokehandle ) ||
1298          (!is_virtual && invoke_code == Bytecodes::_invokedynamic) ||
1299          ( is_virtual && invoke_code != Bytecodes::_invokestatic ), "inconsistent bytecode");
1300 
1301   assert(caller_nm->is_alive(), "It should be alive");
1302 
1303 #ifndef PRODUCT
1304   // tracing/debugging/statistics
1305   int *addr = (is_optimized) ? (&_resolve_opt_virtual_ctr) :
1306                 (is_virtual) ? (&_resolve_virtual_ctr) :
1307                                (&_resolve_static_ctr);
1308   Atomic::inc(addr);
1309 
1310   if (TraceCallFixup) {
1311     ResourceMark rm(thread);
1312     tty->print("resolving %s%s (%s) call to",
1313       (is_optimized) ? "optimized " : "", (is_virtual) ? "virtual" : "static",
1314       Bytecodes::name(invoke_code));
1315     callee_method->print_short_name(tty);
1316     tty->print_cr(" at pc: " INTPTR_FORMAT " to code: " INTPTR_FORMAT,
1317                   p2i(caller_frame.pc()), p2i(callee_method->code()));
1318   }
1319 #endif
1320 
1321   // JSR 292 key invariant:
1322   // If the resolved method is a MethodHandle invoke target, the call
1323   // site must be a MethodHandle call site, because the lambda form might tail-call
1324   // leaving the stack in a state unknown to either caller or callee
1325   // TODO detune for now but we might need it again
1326 //  assert(!callee_method->is_compiled_lambda_form() ||
1327 //         caller_nm->is_method_handle_return(caller_frame.pc()), "must be MH call site");
1328 
1329   // Compute entry points. This might require generation of C2I converter
1330   // frames, so we cannot be holding any locks here. Furthermore, the
1331   // computation of the entry points is independent of patching the call.  We
1332   // always return the entry-point, but we only patch the stub if the call has
1333   // not been deoptimized.  Return values: For a virtual call this is an
1334   // (cached_oop, destination address) pair. For a static call/optimized
1335   // virtual this is just a destination address.
1336 
1337   StaticCallInfo static_call_info;
1338   CompiledICInfo virtual_call_info;
1339 
1340   // Make sure the callee nmethod does not get deoptimized and removed before
1341   // we are done patching the code.
1342   CompiledMethod* callee = callee_method->code();
1343 
1344   if (callee != NULL) {
1345     assert(callee->is_compiled(), "must be nmethod for patching");
1346   }
1347 
1348   if (callee != NULL && !callee->is_in_use()) {
1349     // Patch call site to C2I adapter if callee nmethod is deoptimized or unloaded.
1350     callee = NULL;
1351   }
1352   nmethodLocker nl_callee(callee);
1353 #ifdef ASSERT
1354   address dest_entry_point = callee == NULL ? 0 : callee->entry_point(); // used below
1355 #endif
1356 
1357   if (is_virtual) {
1358     assert(receiver.not_null() || invoke_code == Bytecodes::_invokehandle, "sanity check");
1359     bool static_bound = call_info.resolved_method()->can_be_statically_bound();
1360     KlassHandle h_klass(THREAD, invoke_code == Bytecodes::_invokehandle ? NULL : receiver->klass());
1361     CompiledIC::compute_monomorphic_entry(callee_method, h_klass,
1362                      is_optimized, static_bound, virtual_call_info,
1363                      CHECK_(methodHandle()));
1364   } else {
1365     // static call
1366     CompiledStaticCall::compute_entry(callee_method, static_call_info);
1367   }
1368 
1369   // grab lock, check for deoptimization and potentially patch caller
1370   {
1371     MutexLocker ml_patch(CompiledIC_lock);
1372 
1373     // Lock blocks for safepoint during which both nmethods can change state.
1374 
1375     // Now that we are ready to patch if the Method* was redefined then
1376     // don't update call site and let the caller retry.
1377     // Don't update call site if callee nmethod was unloaded or deoptimized.
1378     // Don't update call site if callee nmethod was replaced by an other nmethod
1379     // which may happen when multiply alive nmethod (tiered compilation)
1380     // will be supported.
1381     if (!callee_method->is_old() &&
1382         (callee == NULL || callee->is_in_use() && (callee_method->code() == callee))) {
1383 #ifdef ASSERT
1384       // We must not try to patch to jump to an already unloaded method.
1385       if (dest_entry_point != 0) {
1386         CodeBlob* cb = CodeCache::find_blob(dest_entry_point);
1387         assert((cb != NULL) && cb->is_compiled() && (((CompiledMethod*)cb) == callee),
1388                "should not call unloaded nmethod");
1389       }
1390 #endif
1391       if (is_virtual) {
1392         CompiledIC* inline_cache = CompiledIC_before(caller_nm, caller_frame.pc());
1393         if (inline_cache->is_clean()) {
1394           inline_cache->set_to_monomorphic(virtual_call_info);
1395         }
1396       } else {
1397         CompiledStaticCall* ssc = compiledStaticCall_before(caller_frame.pc());
1398         if (ssc->is_clean()) ssc->set(static_call_info);
1399       }
1400     }
1401 
1402   } // unlock CompiledIC_lock
1403 
1404   return callee_method;
1405 }
1406 
1407 
1408 // Inline caches exist only in compiled code
1409 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method_ic_miss(JavaThread* thread))
1410 #ifdef ASSERT
1411   RegisterMap reg_map(thread, false);
1412   frame stub_frame = thread->last_frame();
1413   assert(stub_frame.is_runtime_frame(), "sanity check");
1414   frame caller_frame = stub_frame.sender(&reg_map);
1415   assert(!caller_frame.is_interpreted_frame() && !caller_frame.is_entry_frame(), "unexpected frame");
1416 #endif /* ASSERT */
1417 
1418   methodHandle callee_method;
1419   JRT_BLOCK
1420     callee_method = SharedRuntime::handle_ic_miss_helper(thread, CHECK_NULL);
1421     // Return Method* through TLS
1422     thread->set_vm_result_2(callee_method());
1423   JRT_BLOCK_END
1424   // return compiled code entry point after potential safepoints
1425   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1426   return callee_method->verified_code_entry();
1427 JRT_END
1428 
1429 
1430 // Handle call site that has been made non-entrant
1431 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method(JavaThread* thread))
1432   // 6243940 We might end up in here if the callee is deoptimized
1433   // as we race to call it.  We don't want to take a safepoint if
1434   // the caller was interpreted because the caller frame will look
1435   // interpreted to the stack walkers and arguments are now
1436   // "compiled" so it is much better to make this transition
1437   // invisible to the stack walking code. The i2c path will
1438   // place the callee method in the callee_target. It is stashed
1439   // there because if we try and find the callee by normal means a
1440   // safepoint is possible and have trouble gc'ing the compiled args.
1441   RegisterMap reg_map(thread, false);
1442   frame stub_frame = thread->last_frame();
1443   assert(stub_frame.is_runtime_frame(), "sanity check");
1444   frame caller_frame = stub_frame.sender(&reg_map);
1445 
1446   if (caller_frame.is_interpreted_frame() ||
1447       caller_frame.is_entry_frame()) {
1448     Method* callee = thread->callee_target();
1449     guarantee(callee != NULL && callee->is_method(), "bad handshake");
1450     thread->set_vm_result_2(callee);
1451     thread->set_callee_target(NULL);
1452     return callee->get_c2i_entry();
1453   }
1454 
1455   // Must be compiled to compiled path which is safe to stackwalk
1456   methodHandle callee_method;
1457   JRT_BLOCK
1458     // Force resolving of caller (if we called from compiled frame)
1459     callee_method = SharedRuntime::reresolve_call_site(thread, CHECK_NULL);
1460     thread->set_vm_result_2(callee_method());
1461   JRT_BLOCK_END
1462   // return compiled code entry point after potential safepoints
1463   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1464   return callee_method->verified_code_entry();
1465 JRT_END
1466 
1467 // Handle abstract method call
1468 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method_abstract(JavaThread* thread))
1469   return StubRoutines::throw_AbstractMethodError_entry();
1470 JRT_END
1471 
1472 
1473 // resolve a static call and patch code
1474 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_static_call_C(JavaThread *thread ))
1475   methodHandle callee_method;
1476   JRT_BLOCK
1477     callee_method = SharedRuntime::resolve_helper(thread, false, false, CHECK_NULL);
1478     thread->set_vm_result_2(callee_method());
1479   JRT_BLOCK_END
1480   // return compiled code entry point after potential safepoints
1481   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1482   return callee_method->verified_code_entry();
1483 JRT_END
1484 
1485 
1486 // resolve virtual call and update inline cache to monomorphic
1487 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_virtual_call_C(JavaThread *thread ))
1488   methodHandle callee_method;
1489   JRT_BLOCK
1490     callee_method = SharedRuntime::resolve_helper(thread, true, false, CHECK_NULL);
1491     thread->set_vm_result_2(callee_method());
1492   JRT_BLOCK_END
1493   // return compiled code entry point after potential safepoints
1494   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1495   return callee_method->verified_code_entry();
1496 JRT_END
1497 
1498 
1499 // Resolve a virtual call that can be statically bound (e.g., always
1500 // monomorphic, so it has no inline cache).  Patch code to resolved target.
1501 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_opt_virtual_call_C(JavaThread *thread))
1502   methodHandle callee_method;
1503   JRT_BLOCK
1504     callee_method = SharedRuntime::resolve_helper(thread, true, true, CHECK_NULL);
1505     thread->set_vm_result_2(callee_method());
1506   JRT_BLOCK_END
1507   // return compiled code entry point after potential safepoints
1508   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1509   return callee_method->verified_code_entry();
1510 JRT_END
1511 
1512 
1513 methodHandle SharedRuntime::handle_ic_miss_helper(JavaThread *thread, TRAPS) {
1514   ResourceMark rm(thread);
1515   CallInfo call_info;
1516   Bytecodes::Code bc;
1517 
1518   // receiver is NULL for static calls. An exception is thrown for NULL
1519   // receivers for non-static calls
1520   Handle receiver = find_callee_info(thread, bc, call_info,
1521                                      CHECK_(methodHandle()));
1522   // Compiler1 can produce virtual call sites that can actually be statically bound
1523   // If we fell thru to below we would think that the site was going megamorphic
1524   // when in fact the site can never miss. Worse because we'd think it was megamorphic
1525   // we'd try and do a vtable dispatch however methods that can be statically bound
1526   // don't have vtable entries (vtable_index < 0) and we'd blow up. So we force a
1527   // reresolution of the  call site (as if we did a handle_wrong_method and not an
1528   // plain ic_miss) and the site will be converted to an optimized virtual call site
1529   // never to miss again. I don't believe C2 will produce code like this but if it
1530   // did this would still be the correct thing to do for it too, hence no ifdef.
1531   //
1532   if (call_info.resolved_method()->can_be_statically_bound()) {
1533     methodHandle callee_method = SharedRuntime::reresolve_call_site(thread, CHECK_(methodHandle()));
1534     if (TraceCallFixup) {
1535       RegisterMap reg_map(thread, false);
1536       frame caller_frame = thread->last_frame().sender(&reg_map);
1537       ResourceMark rm(thread);
1538       tty->print("converting IC miss to reresolve (%s) call to", Bytecodes::name(bc));
1539       callee_method->print_short_name(tty);
1540       tty->print_cr(" from pc: " INTPTR_FORMAT, p2i(caller_frame.pc()));
1541       tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code()));
1542     }
1543     return callee_method;
1544   }
1545 
1546   methodHandle callee_method = call_info.selected_method();
1547 
1548   bool should_be_mono = false;
1549 
1550 #ifndef PRODUCT
1551   Atomic::inc(&_ic_miss_ctr);
1552 
1553   // Statistics & Tracing
1554   if (TraceCallFixup) {
1555     ResourceMark rm(thread);
1556     tty->print("IC miss (%s) call to", Bytecodes::name(bc));
1557     callee_method->print_short_name(tty);
1558     tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code()));
1559   }
1560 
1561   if (ICMissHistogram) {
1562     MutexLocker m(VMStatistic_lock);
1563     RegisterMap reg_map(thread, false);
1564     frame f = thread->last_frame().real_sender(&reg_map);// skip runtime stub
1565     // produce statistics under the lock
1566     trace_ic_miss(f.pc());
1567   }
1568 #endif
1569 
1570   // install an event collector so that when a vtable stub is created the
1571   // profiler can be notified via a DYNAMIC_CODE_GENERATED event. The
1572   // event can't be posted when the stub is created as locks are held
1573   // - instead the event will be deferred until the event collector goes
1574   // out of scope.
1575   JvmtiDynamicCodeEventCollector event_collector;
1576 
1577   // Update inline cache to megamorphic. Skip update if we are called from interpreted.
1578   { MutexLocker ml_patch (CompiledIC_lock);
1579     RegisterMap reg_map(thread, false);
1580     frame caller_frame = thread->last_frame().sender(&reg_map);
1581     CodeBlob* cb = caller_frame.cb();
1582     CompiledMethod* caller_nm = cb->as_compiled_method_or_null();
1583     if (cb->is_compiled()) {
1584       CompiledIC* inline_cache = CompiledIC_before(((CompiledMethod*)cb), caller_frame.pc());
1585       bool should_be_mono = false;
1586       if (inline_cache->is_optimized()) {
1587         if (TraceCallFixup) {
1588           ResourceMark rm(thread);
1589           tty->print("OPTIMIZED IC miss (%s) call to", Bytecodes::name(bc));
1590           callee_method->print_short_name(tty);
1591           tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code()));
1592         }
1593         should_be_mono = true;
1594       } else if (inline_cache->is_icholder_call()) {
1595         CompiledICHolder* ic_oop = inline_cache->cached_icholder();
1596         if (ic_oop != NULL) {
1597 
1598           if (receiver()->klass() == ic_oop->holder_klass()) {
1599             // This isn't a real miss. We must have seen that compiled code
1600             // is now available and we want the call site converted to a
1601             // monomorphic compiled call site.
1602             // We can't assert for callee_method->code() != NULL because it
1603             // could have been deoptimized in the meantime
1604             if (TraceCallFixup) {
1605               ResourceMark rm(thread);
1606               tty->print("FALSE IC miss (%s) converting to compiled call to", Bytecodes::name(bc));
1607               callee_method->print_short_name(tty);
1608               tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code()));
1609             }
1610             should_be_mono = true;
1611           }
1612         }
1613       }
1614 
1615       if (should_be_mono) {
1616 
1617         // We have a path that was monomorphic but was going interpreted
1618         // and now we have (or had) a compiled entry. We correct the IC
1619         // by using a new icBuffer.
1620         CompiledICInfo info;
1621         KlassHandle receiver_klass(THREAD, receiver()->klass());
1622         inline_cache->compute_monomorphic_entry(callee_method,
1623                                                 receiver_klass,
1624                                                 inline_cache->is_optimized(),
1625                                                 false,
1626                                                 info, CHECK_(methodHandle()));
1627         inline_cache->set_to_monomorphic(info);
1628       } else if (!inline_cache->is_megamorphic() && !inline_cache->is_clean()) {
1629         // Potential change to megamorphic
1630         bool successful = inline_cache->set_to_megamorphic(&call_info, bc, CHECK_(methodHandle()));
1631         if (!successful) {
1632           inline_cache->set_to_clean();
1633         }
1634       } else {
1635         // Either clean or megamorphic
1636       }
1637     } else {
1638       fatal("Unimplemented");
1639     }
1640   } // Release CompiledIC_lock
1641 
1642   return callee_method;
1643 }
1644 
1645 //
1646 // Resets a call-site in compiled code so it will get resolved again.
1647 // This routines handles both virtual call sites, optimized virtual call
1648 // sites, and static call sites. Typically used to change a call sites
1649 // destination from compiled to interpreted.
1650 //
1651 methodHandle SharedRuntime::reresolve_call_site(JavaThread *thread, TRAPS) {
1652   ResourceMark rm(thread);
1653   RegisterMap reg_map(thread, false);
1654   frame stub_frame = thread->last_frame();
1655   assert(stub_frame.is_runtime_frame(), "must be a runtimeStub");
1656   frame caller = stub_frame.sender(&reg_map);
1657 
1658   // Do nothing if the frame isn't a live compiled frame.
1659   // nmethod could be deoptimized by the time we get here
1660   // so no update to the caller is needed.
1661 
1662   if (caller.is_compiled_frame() && !caller.is_deoptimized_frame()) {
1663 
1664     address pc = caller.pc();
1665 
1666     // Check for static or virtual call
1667     bool is_static_call = false;
1668     CompiledMethod* caller_nm = CodeCache::find_compiled(pc);
1669 
1670     // Default call_addr is the location of the "basic" call.
1671     // Determine the address of the call we a reresolving. With
1672     // Inline Caches we will always find a recognizable call.
1673     // With Inline Caches disabled we may or may not find a
1674     // recognizable call. We will always find a call for static
1675     // calls and for optimized virtual calls. For vanilla virtual
1676     // calls it depends on the state of the UseInlineCaches switch.
1677     //
1678     // With Inline Caches disabled we can get here for a virtual call
1679     // for two reasons:
1680     //   1 - calling an abstract method. The vtable for abstract methods
1681     //       will run us thru handle_wrong_method and we will eventually
1682     //       end up in the interpreter to throw the ame.
1683     //   2 - a racing deoptimization. We could be doing a vanilla vtable
1684     //       call and between the time we fetch the entry address and
1685     //       we jump to it the target gets deoptimized. Similar to 1
1686     //       we will wind up in the interprter (thru a c2i with c2).
1687     //
1688     address call_addr = NULL;
1689     {
1690       // Get call instruction under lock because another thread may be
1691       // busy patching it.
1692       MutexLockerEx ml_patch(Patching_lock, Mutex::_no_safepoint_check_flag);
1693       // Location of call instruction
1694       if (NativeCall::is_call_before(pc)) {
1695         NativeCall *ncall = nativeCall_before(pc);
1696         call_addr = ncall->instruction_address();
1697       }
1698     }
1699     // Make sure nmethod doesn't get deoptimized and removed until
1700     // this is done with it.
1701     // CLEANUP - with lazy deopt shouldn't need this lock
1702     nmethodLocker nmlock(caller_nm);
1703 
1704     if (call_addr != NULL) {
1705       RelocIterator iter(caller_nm, call_addr, call_addr+1);
1706       int ret = iter.next(); // Get item
1707       if (ret) {
1708         assert(iter.addr() == call_addr, "must find call");
1709         if (iter.type() == relocInfo::static_call_type) {
1710           is_static_call = true;
1711         } else {
1712           assert(iter.type() == relocInfo::virtual_call_type ||
1713                  iter.type() == relocInfo::opt_virtual_call_type
1714                 , "unexpected relocInfo. type");
1715         }
1716       } else {
1717         assert(!UseInlineCaches, "relocation info. must exist for this address");
1718       }
1719 
1720       // Cleaning the inline cache will force a new resolve. This is more robust
1721       // than directly setting it to the new destination, since resolving of calls
1722       // is always done through the same code path. (experience shows that it
1723       // leads to very hard to track down bugs, if an inline cache gets updated
1724       // to a wrong method). It should not be performance critical, since the
1725       // resolve is only done once.
1726 
1727       MutexLocker ml(CompiledIC_lock);
1728       if (is_static_call) {
1729         CompiledStaticCall* ssc= compiledStaticCall_at(call_addr);
1730         ssc->set_to_clean();
1731       } else {
1732         // compiled, dispatched call (which used to call an interpreted method)
1733         CompiledIC* inline_cache = CompiledIC_at(caller_nm, call_addr);
1734         inline_cache->set_to_clean();
1735       }
1736     }
1737   }
1738 
1739   methodHandle callee_method = find_callee_method(thread, CHECK_(methodHandle()));
1740 
1741 
1742 #ifndef PRODUCT
1743   Atomic::inc(&_wrong_method_ctr);
1744 
1745   if (TraceCallFixup) {
1746     ResourceMark rm(thread);
1747     tty->print("handle_wrong_method reresolving call to");
1748     callee_method->print_short_name(tty);
1749     tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code()));
1750   }
1751 #endif
1752 
1753   return callee_method;
1754 }
1755 
1756 address SharedRuntime::handle_unsafe_access(JavaThread* thread, address next_pc) {
1757   // The faulting unsafe accesses should be changed to throw the error
1758   // synchronously instead. Meanwhile the faulting instruction will be
1759   // skipped over (effectively turning it into a no-op) and an
1760   // asynchronous exception will be raised which the thread will
1761   // handle at a later point. If the instruction is a load it will
1762   // return garbage.
1763 
1764   // Request an async exception.
1765   thread->set_pending_unsafe_access_error();
1766 
1767   // Return address of next instruction to execute.
1768   return next_pc;
1769 }
1770 
1771 #ifdef ASSERT
1772 void SharedRuntime::check_member_name_argument_is_last_argument(const methodHandle& method,
1773                                                                 const BasicType* sig_bt,
1774                                                                 const VMRegPair* regs) {
1775   ResourceMark rm;
1776   const int total_args_passed = method->size_of_parameters();
1777   const VMRegPair*    regs_with_member_name = regs;
1778         VMRegPair* regs_without_member_name = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed - 1);
1779 
1780   const int member_arg_pos = total_args_passed - 1;
1781   assert(member_arg_pos >= 0 && member_arg_pos < total_args_passed, "oob");
1782   assert(sig_bt[member_arg_pos] == T_OBJECT, "dispatch argument must be an object");
1783 
1784   const bool is_outgoing = method->is_method_handle_intrinsic();
1785   int comp_args_on_stack = java_calling_convention(sig_bt, regs_without_member_name, total_args_passed - 1, is_outgoing);
1786 
1787   for (int i = 0; i < member_arg_pos; i++) {
1788     VMReg a =    regs_with_member_name[i].first();
1789     VMReg b = regs_without_member_name[i].first();
1790     assert(a->value() == b->value(), "register allocation mismatch: a=" INTX_FORMAT ", b=" INTX_FORMAT, a->value(), b->value());
1791   }
1792   assert(regs_with_member_name[member_arg_pos].first()->is_valid(), "bad member arg");
1793 }
1794 #endif
1795 
1796 // ---------------------------------------------------------------------------
1797 // We are calling the interpreter via a c2i. Normally this would mean that
1798 // we were called by a compiled method. However we could have lost a race
1799 // where we went int -> i2c -> c2i and so the caller could in fact be
1800 // interpreted. If the caller is compiled we attempt to patch the caller
1801 // so he no longer calls into the interpreter.
1802 IRT_LEAF(void, SharedRuntime::fixup_callers_callsite(Method* method, address caller_pc))
1803   Method* moop(method);
1804 
1805   address entry_point = moop->from_compiled_entry_no_trampoline();
1806 
1807   // It's possible that deoptimization can occur at a call site which hasn't
1808   // been resolved yet, in which case this function will be called from
1809   // an nmethod that has been patched for deopt and we can ignore the
1810   // request for a fixup.
1811   // Also it is possible that we lost a race in that from_compiled_entry
1812   // is now back to the i2c in that case we don't need to patch and if
1813   // we did we'd leap into space because the callsite needs to use
1814   // "to interpreter" stub in order to load up the Method*. Don't
1815   // ask me how I know this...
1816 
1817   CodeBlob* cb = CodeCache::find_blob(caller_pc);
1818   if (!cb->is_compiled() || entry_point == moop->get_c2i_entry()) {
1819     return;
1820   }
1821 
1822   // The check above makes sure this is a nmethod.
1823   CompiledMethod* nm = cb->as_compiled_method_or_null();
1824   assert(nm, "must be");
1825 
1826   // Get the return PC for the passed caller PC.
1827   address return_pc = caller_pc + frame::pc_return_offset;
1828 
1829   // There is a benign race here. We could be attempting to patch to a compiled
1830   // entry point at the same time the callee is being deoptimized. If that is
1831   // the case then entry_point may in fact point to a c2i and we'd patch the
1832   // call site with the same old data. clear_code will set code() to NULL
1833   // at the end of it. If we happen to see that NULL then we can skip trying
1834   // to patch. If we hit the window where the callee has a c2i in the
1835   // from_compiled_entry and the NULL isn't present yet then we lose the race
1836   // and patch the code with the same old data. Asi es la vida.
1837 
1838   if (moop->code() == NULL) return;
1839 
1840   if (nm->is_in_use()) {
1841 
1842     // Expect to find a native call there (unless it was no-inline cache vtable dispatch)
1843     MutexLockerEx ml_patch(Patching_lock, Mutex::_no_safepoint_check_flag);
1844     if (NativeCall::is_call_before(return_pc)) {
1845       NativeCall *call = nativeCall_before(return_pc);
1846       //
1847       // bug 6281185. We might get here after resolving a call site to a vanilla
1848       // virtual call. Because the resolvee uses the verified entry it may then
1849       // see compiled code and attempt to patch the site by calling us. This would
1850       // then incorrectly convert the call site to optimized and its downhill from
1851       // there. If you're lucky you'll get the assert in the bugid, if not you've
1852       // just made a call site that could be megamorphic into a monomorphic site
1853       // for the rest of its life! Just another racing bug in the life of
1854       // fixup_callers_callsite ...
1855       //
1856       RelocIterator iter(nm, call->instruction_address(), call->next_instruction_address());
1857       iter.next();
1858       assert(iter.has_current(), "must have a reloc at java call site");
1859       relocInfo::relocType typ = iter.reloc()->type();
1860       if (typ != relocInfo::static_call_type &&
1861            typ != relocInfo::opt_virtual_call_type &&
1862            typ != relocInfo::static_stub_type) {
1863         return;
1864       }
1865       address destination = call->destination();
1866       if (destination != entry_point) {
1867         CodeBlob* callee = CodeCache::find_blob(destination);
1868         // callee == cb seems weird. It means calling interpreter thru stub.
1869         if (callee == cb || callee->is_adapter_blob()) {
1870           // static call or optimized virtual
1871           if (TraceCallFixup) {
1872             tty->print("fixup callsite           at " INTPTR_FORMAT " to compiled code for", p2i(caller_pc));
1873             moop->print_short_name(tty);
1874             tty->print_cr(" to " INTPTR_FORMAT, p2i(entry_point));
1875           }
1876           call->set_destination_mt_safe(entry_point);
1877         } else {
1878           if (TraceCallFixup) {
1879             tty->print("failed to fixup callsite at " INTPTR_FORMAT " to compiled code for", p2i(caller_pc));
1880             moop->print_short_name(tty);
1881             tty->print_cr(" to " INTPTR_FORMAT, p2i(entry_point));
1882           }
1883           // assert is too strong could also be resolve destinations.
1884           // assert(InlineCacheBuffer::contains(destination) || VtableStubs::contains(destination), "must be");
1885         }
1886       } else {
1887           if (TraceCallFixup) {
1888             tty->print("already patched callsite at " INTPTR_FORMAT " to compiled code for", p2i(caller_pc));
1889             moop->print_short_name(tty);
1890             tty->print_cr(" to " INTPTR_FORMAT, p2i(entry_point));
1891           }
1892       }
1893     }
1894   }
1895 IRT_END
1896 
1897 
1898 // same as JVM_Arraycopy, but called directly from compiled code
1899 JRT_ENTRY(void, SharedRuntime::slow_arraycopy_C(oopDesc* src,  jint src_pos,
1900                                                 oopDesc* dest, jint dest_pos,
1901                                                 jint length,
1902                                                 JavaThread* thread)) {
1903 #ifndef PRODUCT
1904   _slow_array_copy_ctr++;
1905 #endif
1906   // Check if we have null pointers
1907   if (src == NULL || dest == NULL) {
1908     THROW(vmSymbols::java_lang_NullPointerException());
1909   }
1910   // Do the copy.  The casts to arrayOop are necessary to the copy_array API,
1911   // even though the copy_array API also performs dynamic checks to ensure
1912   // that src and dest are truly arrays (and are conformable).
1913   // The copy_array mechanism is awkward and could be removed, but
1914   // the compilers don't call this function except as a last resort,
1915   // so it probably doesn't matter.
1916   src->klass()->copy_array((arrayOopDesc*)src, src_pos,
1917                                         (arrayOopDesc*)dest, dest_pos,
1918                                         length, thread);
1919 }
1920 JRT_END
1921 
1922 // The caller of generate_class_cast_message() (or one of its callers)
1923 // must use a ResourceMark in order to correctly free the result.
1924 char* SharedRuntime::generate_class_cast_message(
1925     JavaThread* thread, Klass* caster_klass) {
1926 
1927   // Get target class name from the checkcast instruction
1928   vframeStream vfst(thread, true);
1929   assert(!vfst.at_end(), "Java frame must exist");
1930   Bytecode_checkcast cc(vfst.method(), vfst.method()->bcp_from(vfst.bci()));
1931   Klass* target_klass = vfst.method()->constants()->klass_at(
1932     cc.index(), thread);
1933   return generate_class_cast_message(caster_klass, target_klass);
1934 }
1935 
1936 char* SharedRuntime::generate_class_cast_message(
1937     Klass* caster_klass, Klass* target_klass) {
1938 
1939   const char* caster_klass_name = caster_klass->external_name();
1940   Klass* c_klass = caster_klass->is_objArray_klass() ?
1941     ObjArrayKlass::cast(caster_klass)->bottom_klass() : caster_klass;
1942   ModuleEntry* caster_module;
1943   const char* caster_module_name;
1944   if (c_klass->is_instance_klass()) {
1945     caster_module = InstanceKlass::cast(c_klass)->module();
1946     caster_module_name = caster_module->is_named() ?
1947       caster_module->name()->as_C_string() : UNNAMED_MODULE;
1948   } else {
1949     caster_module_name = "java.base";
1950   }
1951   const char* target_klass_name = target_klass->external_name();
1952   Klass* t_klass = target_klass->is_objArray_klass() ?
1953     ObjArrayKlass::cast(target_klass)->bottom_klass() : target_klass;
1954   ModuleEntry* target_module;
1955   const char* target_module_name;
1956   if (t_klass->is_instance_klass()) {
1957     target_module = InstanceKlass::cast(t_klass)->module();
1958     target_module_name = target_module->is_named() ?
1959       target_module->name()->as_C_string(): UNNAMED_MODULE;
1960   } else {
1961     target_module_name = "java.base";
1962   }
1963 
1964   size_t msglen = strlen(caster_klass_name) + strlen(caster_module_name) +
1965      strlen(target_klass_name) + strlen(target_module_name) + 50;
1966 
1967   char* message = NEW_RESOURCE_ARRAY(char, msglen);
1968   if (NULL == message) {
1969     // Shouldn't happen, but don't cause even more problems if it does
1970     message = const_cast<char*>(caster_klass_name);
1971   } else {
1972     jio_snprintf(message, msglen, "%s (in module: %s) cannot be cast to %s (in module: %s)",
1973       caster_klass_name, caster_module_name, target_klass_name, target_module_name);
1974   }
1975   return message;
1976 }
1977 
1978 JRT_LEAF(void, SharedRuntime::reguard_yellow_pages())
1979   (void) JavaThread::current()->reguard_stack();
1980 JRT_END
1981 
1982 
1983 // Handles the uncommon case in locking, i.e., contention or an inflated lock.
1984 JRT_BLOCK_ENTRY(void, SharedRuntime::complete_monitor_locking_C(oopDesc* _obj, BasicLock* lock, JavaThread* thread))
1985   // Disable ObjectSynchronizer::quick_enter() in default config
1986   // on AARCH64 and ARM until JDK-8153107 is resolved.
1987   if (ARM_ONLY((SyncFlags & 256) != 0 &&)
1988       AARCH64_ONLY((SyncFlags & 256) != 0 &&)
1989       !SafepointSynchronize::is_synchronizing()) {
1990     // Only try quick_enter() if we're not trying to reach a safepoint
1991     // so that the calling thread reaches the safepoint more quickly.
1992     if (ObjectSynchronizer::quick_enter(_obj, thread, lock)) return;
1993   }
1994   // NO_ASYNC required because an async exception on the state transition destructor
1995   // would leave you with the lock held and it would never be released.
1996   // The normal monitorenter NullPointerException is thrown without acquiring a lock
1997   // and the model is that an exception implies the method failed.
1998   JRT_BLOCK_NO_ASYNC
1999   oop obj(_obj);
2000   if (PrintBiasedLockingStatistics) {
2001     Atomic::inc(BiasedLocking::slow_path_entry_count_addr());
2002   }
2003   Handle h_obj(THREAD, obj);
2004   if (UseBiasedLocking) {
2005     // Retry fast entry if bias is revoked to avoid unnecessary inflation
2006     ObjectSynchronizer::fast_enter(h_obj, lock, true, CHECK);
2007   } else {
2008     ObjectSynchronizer::slow_enter(h_obj, lock, CHECK);
2009   }
2010   assert(!HAS_PENDING_EXCEPTION, "Should have no exception here");
2011   JRT_BLOCK_END
2012 JRT_END
2013 
2014 // Handles the uncommon cases of monitor unlocking in compiled code
2015 JRT_LEAF(void, SharedRuntime::complete_monitor_unlocking_C(oopDesc* _obj, BasicLock* lock, JavaThread * THREAD))
2016    oop obj(_obj);
2017   assert(JavaThread::current() == THREAD, "invariant");
2018   // I'm not convinced we need the code contained by MIGHT_HAVE_PENDING anymore
2019   // testing was unable to ever fire the assert that guarded it so I have removed it.
2020   assert(!HAS_PENDING_EXCEPTION, "Do we need code below anymore?");
2021 #undef MIGHT_HAVE_PENDING
2022 #ifdef MIGHT_HAVE_PENDING
2023   // Save and restore any pending_exception around the exception mark.
2024   // While the slow_exit must not throw an exception, we could come into
2025   // this routine with one set.
2026   oop pending_excep = NULL;
2027   const char* pending_file;
2028   int pending_line;
2029   if (HAS_PENDING_EXCEPTION) {
2030     pending_excep = PENDING_EXCEPTION;
2031     pending_file  = THREAD->exception_file();
2032     pending_line  = THREAD->exception_line();
2033     CLEAR_PENDING_EXCEPTION;
2034   }
2035 #endif /* MIGHT_HAVE_PENDING */
2036 
2037   {
2038     // Exit must be non-blocking, and therefore no exceptions can be thrown.
2039     EXCEPTION_MARK;
2040     ObjectSynchronizer::slow_exit(obj, lock, THREAD);
2041   }
2042 
2043 #ifdef MIGHT_HAVE_PENDING
2044   if (pending_excep != NULL) {
2045     THREAD->set_pending_exception(pending_excep, pending_file, pending_line);
2046   }
2047 #endif /* MIGHT_HAVE_PENDING */
2048 JRT_END
2049 
2050 #ifndef PRODUCT
2051 
2052 void SharedRuntime::print_statistics() {
2053   ttyLocker ttyl;
2054   if (xtty != NULL)  xtty->head("statistics type='SharedRuntime'");
2055 
2056   if (_throw_null_ctr) tty->print_cr("%5d implicit null throw", _throw_null_ctr);
2057 
2058   SharedRuntime::print_ic_miss_histogram();
2059 
2060   if (CountRemovableExceptions) {
2061     if (_nof_removable_exceptions > 0) {
2062       Unimplemented(); // this counter is not yet incremented
2063       tty->print_cr("Removable exceptions: %d", _nof_removable_exceptions);
2064     }
2065   }
2066 
2067   // Dump the JRT_ENTRY counters
2068   if (_new_instance_ctr) tty->print_cr("%5d new instance requires GC", _new_instance_ctr);
2069   if (_new_array_ctr) tty->print_cr("%5d new array requires GC", _new_array_ctr);
2070   if (_multi1_ctr) tty->print_cr("%5d multianewarray 1 dim", _multi1_ctr);
2071   if (_multi2_ctr) tty->print_cr("%5d multianewarray 2 dim", _multi2_ctr);
2072   if (_multi3_ctr) tty->print_cr("%5d multianewarray 3 dim", _multi3_ctr);
2073   if (_multi4_ctr) tty->print_cr("%5d multianewarray 4 dim", _multi4_ctr);
2074   if (_multi5_ctr) tty->print_cr("%5d multianewarray 5 dim", _multi5_ctr);
2075 
2076   tty->print_cr("%5d inline cache miss in compiled", _ic_miss_ctr);
2077   tty->print_cr("%5d wrong method", _wrong_method_ctr);
2078   tty->print_cr("%5d unresolved static call site", _resolve_static_ctr);
2079   tty->print_cr("%5d unresolved virtual call site", _resolve_virtual_ctr);
2080   tty->print_cr("%5d unresolved opt virtual call site", _resolve_opt_virtual_ctr);
2081 
2082   if (_mon_enter_stub_ctr) tty->print_cr("%5d monitor enter stub", _mon_enter_stub_ctr);
2083   if (_mon_exit_stub_ctr) tty->print_cr("%5d monitor exit stub", _mon_exit_stub_ctr);
2084   if (_mon_enter_ctr) tty->print_cr("%5d monitor enter slow", _mon_enter_ctr);
2085   if (_mon_exit_ctr) tty->print_cr("%5d monitor exit slow", _mon_exit_ctr);
2086   if (_partial_subtype_ctr) tty->print_cr("%5d slow partial subtype", _partial_subtype_ctr);
2087   if (_jbyte_array_copy_ctr) tty->print_cr("%5d byte array copies", _jbyte_array_copy_ctr);
2088   if (_jshort_array_copy_ctr) tty->print_cr("%5d short array copies", _jshort_array_copy_ctr);
2089   if (_jint_array_copy_ctr) tty->print_cr("%5d int array copies", _jint_array_copy_ctr);
2090   if (_jlong_array_copy_ctr) tty->print_cr("%5d long array copies", _jlong_array_copy_ctr);
2091   if (_oop_array_copy_ctr) tty->print_cr("%5d oop array copies", _oop_array_copy_ctr);
2092   if (_checkcast_array_copy_ctr) tty->print_cr("%5d checkcast array copies", _checkcast_array_copy_ctr);
2093   if (_unsafe_array_copy_ctr) tty->print_cr("%5d unsafe array copies", _unsafe_array_copy_ctr);
2094   if (_generic_array_copy_ctr) tty->print_cr("%5d generic array copies", _generic_array_copy_ctr);
2095   if (_slow_array_copy_ctr) tty->print_cr("%5d slow array copies", _slow_array_copy_ctr);
2096   if (_find_handler_ctr) tty->print_cr("%5d find exception handler", _find_handler_ctr);
2097   if (_rethrow_ctr) tty->print_cr("%5d rethrow handler", _rethrow_ctr);
2098 
2099   AdapterHandlerLibrary::print_statistics();
2100 
2101   if (xtty != NULL)  xtty->tail("statistics");
2102 }
2103 
2104 inline double percent(int x, int y) {
2105   return 100.0 * x / MAX2(y, 1);
2106 }
2107 
2108 class MethodArityHistogram {
2109  public:
2110   enum { MAX_ARITY = 256 };
2111  private:
2112   static int _arity_histogram[MAX_ARITY];     // histogram of #args
2113   static int _size_histogram[MAX_ARITY];      // histogram of arg size in words
2114   static int _max_arity;                      // max. arity seen
2115   static int _max_size;                       // max. arg size seen
2116 
2117   static void add_method_to_histogram(nmethod* nm) {
2118     Method* m = nm->method();
2119     ArgumentCount args(m->signature());
2120     int arity   = args.size() + (m->is_static() ? 0 : 1);
2121     int argsize = m->size_of_parameters();
2122     arity   = MIN2(arity, MAX_ARITY-1);
2123     argsize = MIN2(argsize, MAX_ARITY-1);
2124     int count = nm->method()->compiled_invocation_count();
2125     _arity_histogram[arity]  += count;
2126     _size_histogram[argsize] += count;
2127     _max_arity = MAX2(_max_arity, arity);
2128     _max_size  = MAX2(_max_size, argsize);
2129   }
2130 
2131   void print_histogram_helper(int n, int* histo, const char* name) {
2132     const int N = MIN2(5, n);
2133     tty->print_cr("\nHistogram of call arity (incl. rcvr, calls to compiled methods only):");
2134     double sum = 0;
2135     double weighted_sum = 0;
2136     int i;
2137     for (i = 0; i <= n; i++) { sum += histo[i]; weighted_sum += i*histo[i]; }
2138     double rest = sum;
2139     double percent = sum / 100;
2140     for (i = 0; i <= N; i++) {
2141       rest -= histo[i];
2142       tty->print_cr("%4d: %7d (%5.1f%%)", i, histo[i], histo[i] / percent);
2143     }
2144     tty->print_cr("rest: %7d (%5.1f%%))", (int)rest, rest / percent);
2145     tty->print_cr("(avg. %s = %3.1f, max = %d)", name, weighted_sum / sum, n);
2146   }
2147 
2148   void print_histogram() {
2149     tty->print_cr("\nHistogram of call arity (incl. rcvr, calls to compiled methods only):");
2150     print_histogram_helper(_max_arity, _arity_histogram, "arity");
2151     tty->print_cr("\nSame for parameter size (in words):");
2152     print_histogram_helper(_max_size, _size_histogram, "size");
2153     tty->cr();
2154   }
2155 
2156  public:
2157   MethodArityHistogram() {
2158     MutexLockerEx mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
2159     _max_arity = _max_size = 0;
2160     for (int i = 0; i < MAX_ARITY; i++) _arity_histogram[i] = _size_histogram[i] = 0;
2161     CodeCache::nmethods_do(add_method_to_histogram);
2162     print_histogram();
2163   }
2164 };
2165 
2166 int MethodArityHistogram::_arity_histogram[MethodArityHistogram::MAX_ARITY];
2167 int MethodArityHistogram::_size_histogram[MethodArityHistogram::MAX_ARITY];
2168 int MethodArityHistogram::_max_arity;
2169 int MethodArityHistogram::_max_size;
2170 
2171 void SharedRuntime::print_call_statistics(int comp_total) {
2172   tty->print_cr("Calls from compiled code:");
2173   int total  = _nof_normal_calls + _nof_interface_calls + _nof_static_calls;
2174   int mono_c = _nof_normal_calls - _nof_optimized_calls - _nof_megamorphic_calls;
2175   int mono_i = _nof_interface_calls - _nof_optimized_interface_calls - _nof_megamorphic_interface_calls;
2176   tty->print_cr("\t%9d   (%4.1f%%) total non-inlined   ", total, percent(total, total));
2177   tty->print_cr("\t%9d   (%4.1f%%) virtual calls       ", _nof_normal_calls, percent(_nof_normal_calls, total));
2178   tty->print_cr("\t  %9d  (%3.0f%%)   inlined          ", _nof_inlined_calls, percent(_nof_inlined_calls, _nof_normal_calls));
2179   tty->print_cr("\t  %9d  (%3.0f%%)   optimized        ", _nof_optimized_calls, percent(_nof_optimized_calls, _nof_normal_calls));
2180   tty->print_cr("\t  %9d  (%3.0f%%)   monomorphic      ", mono_c, percent(mono_c, _nof_normal_calls));
2181   tty->print_cr("\t  %9d  (%3.0f%%)   megamorphic      ", _nof_megamorphic_calls, percent(_nof_megamorphic_calls, _nof_normal_calls));
2182   tty->print_cr("\t%9d   (%4.1f%%) interface calls     ", _nof_interface_calls, percent(_nof_interface_calls, total));
2183   tty->print_cr("\t  %9d  (%3.0f%%)   inlined          ", _nof_inlined_interface_calls, percent(_nof_inlined_interface_calls, _nof_interface_calls));
2184   tty->print_cr("\t  %9d  (%3.0f%%)   optimized        ", _nof_optimized_interface_calls, percent(_nof_optimized_interface_calls, _nof_interface_calls));
2185   tty->print_cr("\t  %9d  (%3.0f%%)   monomorphic      ", mono_i, percent(mono_i, _nof_interface_calls));
2186   tty->print_cr("\t  %9d  (%3.0f%%)   megamorphic      ", _nof_megamorphic_interface_calls, percent(_nof_megamorphic_interface_calls, _nof_interface_calls));
2187   tty->print_cr("\t%9d   (%4.1f%%) static/special calls", _nof_static_calls, percent(_nof_static_calls, total));
2188   tty->print_cr("\t  %9d  (%3.0f%%)   inlined          ", _nof_inlined_static_calls, percent(_nof_inlined_static_calls, _nof_static_calls));
2189   tty->cr();
2190   tty->print_cr("Note 1: counter updates are not MT-safe.");
2191   tty->print_cr("Note 2: %% in major categories are relative to total non-inlined calls;");
2192   tty->print_cr("        %% in nested categories are relative to their category");
2193   tty->print_cr("        (and thus add up to more than 100%% with inlining)");
2194   tty->cr();
2195 
2196   MethodArityHistogram h;
2197 }
2198 #endif
2199 
2200 
2201 // A simple wrapper class around the calling convention information
2202 // that allows sharing of adapters for the same calling convention.
2203 class AdapterFingerPrint : public CHeapObj<mtCode> {
2204  private:
2205   enum {
2206     _basic_type_bits = 4,
2207     _basic_type_mask = right_n_bits(_basic_type_bits),
2208     _basic_types_per_int = BitsPerInt / _basic_type_bits,
2209     _compact_int_count = 3
2210   };
2211   // TO DO:  Consider integrating this with a more global scheme for compressing signatures.
2212   // For now, 4 bits per components (plus T_VOID gaps after double/long) is not excessive.
2213 
2214   union {
2215     int  _compact[_compact_int_count];
2216     int* _fingerprint;
2217   } _value;
2218   int _length; // A negative length indicates the fingerprint is in the compact form,
2219                // Otherwise _value._fingerprint is the array.
2220 
2221   // Remap BasicTypes that are handled equivalently by the adapters.
2222   // These are correct for the current system but someday it might be
2223   // necessary to make this mapping platform dependent.
2224   static int adapter_encoding(BasicType in) {
2225     switch (in) {
2226       case T_BOOLEAN:
2227       case T_BYTE:
2228       case T_SHORT:
2229       case T_CHAR:
2230         // There are all promoted to T_INT in the calling convention
2231         return T_INT;
2232 
2233       case T_OBJECT:
2234       case T_ARRAY:
2235         // In other words, we assume that any register good enough for
2236         // an int or long is good enough for a managed pointer.
2237 #ifdef _LP64
2238         return T_LONG;
2239 #else
2240         return T_INT;
2241 #endif
2242 
2243       case T_INT:
2244       case T_LONG:
2245       case T_FLOAT:
2246       case T_DOUBLE:
2247       case T_VOID:
2248         return in;
2249 
2250       default:
2251         ShouldNotReachHere();
2252         return T_CONFLICT;
2253     }
2254   }
2255 
2256  public:
2257   AdapterFingerPrint(int total_args_passed, BasicType* sig_bt) {
2258     // The fingerprint is based on the BasicType signature encoded
2259     // into an array of ints with eight entries per int.
2260     int* ptr;
2261     int len = (total_args_passed + (_basic_types_per_int-1)) / _basic_types_per_int;
2262     if (len <= _compact_int_count) {
2263       assert(_compact_int_count == 3, "else change next line");
2264       _value._compact[0] = _value._compact[1] = _value._compact[2] = 0;
2265       // Storing the signature encoded as signed chars hits about 98%
2266       // of the time.
2267       _length = -len;
2268       ptr = _value._compact;
2269     } else {
2270       _length = len;
2271       _value._fingerprint = NEW_C_HEAP_ARRAY(int, _length, mtCode);
2272       ptr = _value._fingerprint;
2273     }
2274 
2275     // Now pack the BasicTypes with 8 per int
2276     int sig_index = 0;
2277     for (int index = 0; index < len; index++) {
2278       int value = 0;
2279       for (int byte = 0; byte < _basic_types_per_int; byte++) {
2280         int bt = ((sig_index < total_args_passed)
2281                   ? adapter_encoding(sig_bt[sig_index++])
2282                   : 0);
2283         assert((bt & _basic_type_mask) == bt, "must fit in 4 bits");
2284         value = (value << _basic_type_bits) | bt;
2285       }
2286       ptr[index] = value;
2287     }
2288   }
2289 
2290   ~AdapterFingerPrint() {
2291     if (_length > 0) {
2292       FREE_C_HEAP_ARRAY(int, _value._fingerprint);
2293     }
2294   }
2295 
2296   int value(int index) {
2297     if (_length < 0) {
2298       return _value._compact[index];
2299     }
2300     return _value._fingerprint[index];
2301   }
2302   int length() {
2303     if (_length < 0) return -_length;
2304     return _length;
2305   }
2306 
2307   bool is_compact() {
2308     return _length <= 0;
2309   }
2310 
2311   unsigned int compute_hash() {
2312     int hash = 0;
2313     for (int i = 0; i < length(); i++) {
2314       int v = value(i);
2315       hash = (hash << 8) ^ v ^ (hash >> 5);
2316     }
2317     return (unsigned int)hash;
2318   }
2319 
2320   const char* as_string() {
2321     stringStream st;
2322     st.print("0x");
2323     for (int i = 0; i < length(); i++) {
2324       st.print("%08x", value(i));
2325     }
2326     return st.as_string();
2327   }
2328 
2329   bool equals(AdapterFingerPrint* other) {
2330     if (other->_length != _length) {
2331       return false;
2332     }
2333     if (_length < 0) {
2334       assert(_compact_int_count == 3, "else change next line");
2335       return _value._compact[0] == other->_value._compact[0] &&
2336              _value._compact[1] == other->_value._compact[1] &&
2337              _value._compact[2] == other->_value._compact[2];
2338     } else {
2339       for (int i = 0; i < _length; i++) {
2340         if (_value._fingerprint[i] != other->_value._fingerprint[i]) {
2341           return false;
2342         }
2343       }
2344     }
2345     return true;
2346   }
2347 };
2348 
2349 
2350 // A hashtable mapping from AdapterFingerPrints to AdapterHandlerEntries
2351 class AdapterHandlerTable : public BasicHashtable<mtCode> {
2352   friend class AdapterHandlerTableIterator;
2353 
2354  private:
2355 
2356 #ifndef PRODUCT
2357   static int _lookups; // number of calls to lookup
2358   static int _buckets; // number of buckets checked
2359   static int _equals;  // number of buckets checked with matching hash
2360   static int _hits;    // number of successful lookups
2361   static int _compact; // number of equals calls with compact signature
2362 #endif
2363 
2364   AdapterHandlerEntry* bucket(int i) {
2365     return (AdapterHandlerEntry*)BasicHashtable<mtCode>::bucket(i);
2366   }
2367 
2368  public:
2369   AdapterHandlerTable()
2370     : BasicHashtable<mtCode>(293, (DumpSharedSpaces ? sizeof(CDSAdapterHandlerEntry) : sizeof(AdapterHandlerEntry))) { }
2371 
2372   // Create a new entry suitable for insertion in the table
2373   AdapterHandlerEntry* new_entry(AdapterFingerPrint* fingerprint, address i2c_entry, address c2i_entry, address c2i_unverified_entry) {
2374     AdapterHandlerEntry* entry = (AdapterHandlerEntry*)BasicHashtable<mtCode>::new_entry(fingerprint->compute_hash());
2375     entry->init(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry);
2376     if (DumpSharedSpaces) {
2377       ((CDSAdapterHandlerEntry*)entry)->init();
2378     }
2379     return entry;
2380   }
2381 
2382   // Insert an entry into the table
2383   void add(AdapterHandlerEntry* entry) {
2384     int index = hash_to_index(entry->hash());
2385     add_entry(index, entry);
2386   }
2387 
2388   void free_entry(AdapterHandlerEntry* entry) {
2389     entry->deallocate();
2390     BasicHashtable<mtCode>::free_entry(entry);
2391   }
2392 
2393   // Find a entry with the same fingerprint if it exists
2394   AdapterHandlerEntry* lookup(int total_args_passed, BasicType* sig_bt) {
2395     NOT_PRODUCT(_lookups++);
2396     AdapterFingerPrint fp(total_args_passed, sig_bt);
2397     unsigned int hash = fp.compute_hash();
2398     int index = hash_to_index(hash);
2399     for (AdapterHandlerEntry* e = bucket(index); e != NULL; e = e->next()) {
2400       NOT_PRODUCT(_buckets++);
2401       if (e->hash() == hash) {
2402         NOT_PRODUCT(_equals++);
2403         if (fp.equals(e->fingerprint())) {
2404 #ifndef PRODUCT
2405           if (fp.is_compact()) _compact++;
2406           _hits++;
2407 #endif
2408           return e;
2409         }
2410       }
2411     }
2412     return NULL;
2413   }
2414 
2415 #ifndef PRODUCT
2416   void print_statistics() {
2417     ResourceMark rm;
2418     int longest = 0;
2419     int empty = 0;
2420     int total = 0;
2421     int nonempty = 0;
2422     for (int index = 0; index < table_size(); index++) {
2423       int count = 0;
2424       for (AdapterHandlerEntry* e = bucket(index); e != NULL; e = e->next()) {
2425         count++;
2426       }
2427       if (count != 0) nonempty++;
2428       if (count == 0) empty++;
2429       if (count > longest) longest = count;
2430       total += count;
2431     }
2432     tty->print_cr("AdapterHandlerTable: empty %d longest %d total %d average %f",
2433                   empty, longest, total, total / (double)nonempty);
2434     tty->print_cr("AdapterHandlerTable: lookups %d buckets %d equals %d hits %d compact %d",
2435                   _lookups, _buckets, _equals, _hits, _compact);
2436   }
2437 #endif
2438 };
2439 
2440 
2441 #ifndef PRODUCT
2442 
2443 int AdapterHandlerTable::_lookups;
2444 int AdapterHandlerTable::_buckets;
2445 int AdapterHandlerTable::_equals;
2446 int AdapterHandlerTable::_hits;
2447 int AdapterHandlerTable::_compact;
2448 
2449 #endif
2450 
2451 class AdapterHandlerTableIterator : public StackObj {
2452  private:
2453   AdapterHandlerTable* _table;
2454   int _index;
2455   AdapterHandlerEntry* _current;
2456 
2457   void scan() {
2458     while (_index < _table->table_size()) {
2459       AdapterHandlerEntry* a = _table->bucket(_index);
2460       _index++;
2461       if (a != NULL) {
2462         _current = a;
2463         return;
2464       }
2465     }
2466   }
2467 
2468  public:
2469   AdapterHandlerTableIterator(AdapterHandlerTable* table): _table(table), _index(0), _current(NULL) {
2470     scan();
2471   }
2472   bool has_next() {
2473     return _current != NULL;
2474   }
2475   AdapterHandlerEntry* next() {
2476     if (_current != NULL) {
2477       AdapterHandlerEntry* result = _current;
2478       _current = _current->next();
2479       if (_current == NULL) scan();
2480       return result;
2481     } else {
2482       return NULL;
2483     }
2484   }
2485 };
2486 
2487 
2488 // ---------------------------------------------------------------------------
2489 // Implementation of AdapterHandlerLibrary
2490 AdapterHandlerTable* AdapterHandlerLibrary::_adapters = NULL;
2491 AdapterHandlerEntry* AdapterHandlerLibrary::_abstract_method_handler = NULL;
2492 const int AdapterHandlerLibrary_size = 16*K;
2493 BufferBlob* AdapterHandlerLibrary::_buffer = NULL;
2494 
2495 BufferBlob* AdapterHandlerLibrary::buffer_blob() {
2496   // Should be called only when AdapterHandlerLibrary_lock is active.
2497   if (_buffer == NULL) // Initialize lazily
2498       _buffer = BufferBlob::create("adapters", AdapterHandlerLibrary_size);
2499   return _buffer;
2500 }
2501 
2502 extern "C" void unexpected_adapter_call() {
2503   ShouldNotCallThis();
2504 }
2505 
2506 void AdapterHandlerLibrary::initialize() {
2507   if (_adapters != NULL) return;
2508   _adapters = new AdapterHandlerTable();
2509 
2510   if (!CodeCacheExtensions::skip_compiler_support()) {
2511     // Create a special handler for abstract methods.  Abstract methods
2512     // are never compiled so an i2c entry is somewhat meaningless, but
2513     // throw AbstractMethodError just in case.
2514     // Pass wrong_method_abstract for the c2i transitions to return
2515     // AbstractMethodError for invalid invocations.
2516     address wrong_method_abstract = SharedRuntime::get_handle_wrong_method_abstract_stub();
2517     _abstract_method_handler = AdapterHandlerLibrary::new_entry(new AdapterFingerPrint(0, NULL),
2518                                                                 StubRoutines::throw_AbstractMethodError_entry(),
2519                                                                 wrong_method_abstract, wrong_method_abstract);
2520   } else {
2521     // Adapters are not supposed to be used.
2522     // Generate a special one to cause an error if used (and store this
2523     // singleton in place of the useless _abstract_method_error adapter).
2524     address entry = (address) &unexpected_adapter_call;
2525     _abstract_method_handler = AdapterHandlerLibrary::new_entry(new AdapterFingerPrint(0, NULL),
2526                                                                 entry,
2527                                                                 entry,
2528                                                                 entry);
2529 
2530   }
2531 }
2532 
2533 AdapterHandlerEntry* AdapterHandlerLibrary::new_entry(AdapterFingerPrint* fingerprint,
2534                                                       address i2c_entry,
2535                                                       address c2i_entry,
2536                                                       address c2i_unverified_entry) {
2537   return _adapters->new_entry(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry);
2538 }
2539 
2540 AdapterHandlerEntry* AdapterHandlerLibrary::get_adapter(const methodHandle& method) {
2541   AdapterHandlerEntry* entry = get_adapter0(method);
2542   if (method->is_shared()) {
2543     MutexLocker mu(AdapterHandlerLibrary_lock);
2544     if (method->adapter() == NULL) {
2545       method->update_adapter_trampoline(entry);
2546     }
2547     address trampoline = method->from_compiled_entry();
2548     if (*(int*)trampoline == 0) {
2549       CodeBuffer buffer(trampoline, (int)SharedRuntime::trampoline_size());
2550       MacroAssembler _masm(&buffer);
2551       SharedRuntime::generate_trampoline(&_masm, entry->get_c2i_entry());
2552 
2553       if (PrintInterpreter) {
2554         Disassembler::decode(buffer.insts_begin(), buffer.insts_end());
2555       }
2556     }
2557   }
2558 
2559   return entry;
2560 }
2561 
2562 AdapterHandlerEntry* AdapterHandlerLibrary::get_adapter0(const methodHandle& method) {
2563   // Use customized signature handler.  Need to lock around updates to
2564   // the AdapterHandlerTable (it is not safe for concurrent readers
2565   // and a single writer: this could be fixed if it becomes a
2566   // problem).
2567 
2568   ResourceMark rm;
2569 
2570   NOT_PRODUCT(int insts_size);
2571   AdapterBlob* new_adapter = NULL;
2572   AdapterHandlerEntry* entry = NULL;
2573   AdapterFingerPrint* fingerprint = NULL;
2574   {
2575     MutexLocker mu(AdapterHandlerLibrary_lock);
2576     // make sure data structure is initialized
2577     initialize();
2578 
2579     // during dump time, always generate adapters, even if the
2580     // compiler has been turned off.
2581     if (!DumpSharedSpaces && CodeCacheExtensions::skip_compiler_support()) {
2582       // adapters are useless and should not be used, including the
2583       // abstract_method_handler. However, some callers check that
2584       // an adapter was installed.
2585       // Return the singleton adapter, stored into _abstract_method_handler
2586       // and modified to cause an error if we ever call it.
2587       return _abstract_method_handler;
2588     }
2589 
2590     if (method->is_abstract()) {
2591       return _abstract_method_handler;
2592     }
2593 
2594     // Fill in the signature array, for the calling-convention call.
2595     int total_args_passed = method->size_of_parameters(); // All args on stack
2596 
2597     BasicType* sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_args_passed);
2598     VMRegPair* regs   = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed);
2599     int i = 0;
2600     if (!method->is_static())  // Pass in receiver first
2601       sig_bt[i++] = T_OBJECT;
2602     for (SignatureStream ss(method->signature()); !ss.at_return_type(); ss.next()) {
2603       sig_bt[i++] = ss.type();  // Collect remaining bits of signature
2604       if (ss.type() == T_LONG || ss.type() == T_DOUBLE)
2605         sig_bt[i++] = T_VOID;   // Longs & doubles take 2 Java slots
2606     }
2607     assert(i == total_args_passed, "");
2608 
2609     // Lookup method signature's fingerprint
2610     entry = _adapters->lookup(total_args_passed, sig_bt);
2611 
2612 #ifdef ASSERT
2613     AdapterHandlerEntry* shared_entry = NULL;
2614     // Start adapter sharing verification only after the VM is booted.
2615     if (VerifyAdapterSharing && (entry != NULL)) {
2616       shared_entry = entry;
2617       entry = NULL;
2618     }
2619 #endif
2620 
2621     if (entry != NULL) {
2622       return entry;
2623     }
2624 
2625     // Get a description of the compiled java calling convention and the largest used (VMReg) stack slot usage
2626     int comp_args_on_stack = SharedRuntime::java_calling_convention(sig_bt, regs, total_args_passed, false);
2627 
2628     // Make a C heap allocated version of the fingerprint to store in the adapter
2629     fingerprint = new AdapterFingerPrint(total_args_passed, sig_bt);
2630 
2631     // StubRoutines::code2() is initialized after this function can be called. As a result,
2632     // VerifyAdapterCalls and VerifyAdapterSharing can fail if we re-use code that generated
2633     // prior to StubRoutines::code2() being set. Checks refer to checks generated in an I2C
2634     // stub that ensure that an I2C stub is called from an interpreter frame.
2635     bool contains_all_checks = StubRoutines::code2() != NULL;
2636 
2637     // Create I2C & C2I handlers
2638     BufferBlob* buf = buffer_blob(); // the temporary code buffer in CodeCache
2639     if (buf != NULL) {
2640       CodeBuffer buffer(buf);
2641       short buffer_locs[20];
2642       buffer.insts()->initialize_shared_locs((relocInfo*)buffer_locs,
2643                                              sizeof(buffer_locs)/sizeof(relocInfo));
2644 
2645       MacroAssembler _masm(&buffer);
2646       entry = SharedRuntime::generate_i2c2i_adapters(&_masm,
2647                                                      total_args_passed,
2648                                                      comp_args_on_stack,
2649                                                      sig_bt,
2650                                                      regs,
2651                                                      fingerprint);
2652 #ifdef ASSERT
2653       if (VerifyAdapterSharing) {
2654         if (shared_entry != NULL) {
2655           assert(shared_entry->compare_code(buf->code_begin(), buffer.insts_size()), "code must match");
2656           // Release the one just created and return the original
2657           _adapters->free_entry(entry);
2658           return shared_entry;
2659         } else  {
2660           entry->save_code(buf->code_begin(), buffer.insts_size());
2661         }
2662       }
2663 #endif
2664 
2665       new_adapter = AdapterBlob::create(&buffer);
2666       NOT_PRODUCT(insts_size = buffer.insts_size());
2667     }
2668     if (new_adapter == NULL) {
2669       // CodeCache is full, disable compilation
2670       // Ought to log this but compile log is only per compile thread
2671       // and we're some non descript Java thread.
2672       return NULL; // Out of CodeCache space
2673     }
2674     entry->relocate(new_adapter->content_begin());
2675 #ifndef PRODUCT
2676     // debugging suppport
2677     if (PrintAdapterHandlers || PrintStubCode) {
2678       ttyLocker ttyl;
2679       entry->print_adapter_on(tty);
2680       tty->print_cr("i2c argument handler #%d for: %s %s %s (%d bytes generated)",
2681                     _adapters->number_of_entries(), (method->is_static() ? "static" : "receiver"),
2682                     method->signature()->as_C_string(), fingerprint->as_string(), insts_size);
2683       tty->print_cr("c2i argument handler starts at %p", entry->get_c2i_entry());
2684       if (Verbose || PrintStubCode) {
2685         address first_pc = entry->base_address();
2686         if (first_pc != NULL) {
2687           Disassembler::decode(first_pc, first_pc + insts_size);
2688           tty->cr();
2689         }
2690       }
2691     }
2692 #endif
2693     // Add the entry only if the entry contains all required checks (see sharedRuntime_xxx.cpp)
2694     // The checks are inserted only if -XX:+VerifyAdapterCalls is specified.
2695     if (contains_all_checks || !VerifyAdapterCalls) {
2696       _adapters->add(entry);
2697     }
2698   }
2699   // Outside of the lock
2700   if (new_adapter != NULL) {
2701     char blob_id[256];
2702     jio_snprintf(blob_id,
2703                  sizeof(blob_id),
2704                  "%s(%s)@" PTR_FORMAT,
2705                  new_adapter->name(),
2706                  fingerprint->as_string(),
2707                  new_adapter->content_begin());
2708     Forte::register_stub(blob_id, new_adapter->content_begin(), new_adapter->content_end());
2709 
2710     if (JvmtiExport::should_post_dynamic_code_generated()) {
2711       JvmtiExport::post_dynamic_code_generated(blob_id, new_adapter->content_begin(), new_adapter->content_end());
2712     }
2713   }
2714   return entry;
2715 }
2716 
2717 address AdapterHandlerEntry::base_address() {
2718   address base = _i2c_entry;
2719   if (base == NULL)  base = _c2i_entry;
2720   assert(base <= _c2i_entry || _c2i_entry == NULL, "");
2721   assert(base <= _c2i_unverified_entry || _c2i_unverified_entry == NULL, "");
2722   return base;
2723 }
2724 
2725 void AdapterHandlerEntry::relocate(address new_base) {
2726   address old_base = base_address();
2727   assert(old_base != NULL, "");
2728   ptrdiff_t delta = new_base - old_base;
2729   if (_i2c_entry != NULL)
2730     _i2c_entry += delta;
2731   if (_c2i_entry != NULL)
2732     _c2i_entry += delta;
2733   if (_c2i_unverified_entry != NULL)
2734     _c2i_unverified_entry += delta;
2735   assert(base_address() == new_base, "");
2736 }
2737 
2738 
2739 void AdapterHandlerEntry::deallocate() {
2740   delete _fingerprint;
2741 #ifdef ASSERT
2742   if (_saved_code) FREE_C_HEAP_ARRAY(unsigned char, _saved_code);
2743 #endif
2744 }
2745 
2746 
2747 #ifdef ASSERT
2748 // Capture the code before relocation so that it can be compared
2749 // against other versions.  If the code is captured after relocation
2750 // then relative instructions won't be equivalent.
2751 void AdapterHandlerEntry::save_code(unsigned char* buffer, int length) {
2752   _saved_code = NEW_C_HEAP_ARRAY(unsigned char, length, mtCode);
2753   _saved_code_length = length;
2754   memcpy(_saved_code, buffer, length);
2755 }
2756 
2757 
2758 bool AdapterHandlerEntry::compare_code(unsigned char* buffer, int length) {
2759   if (length != _saved_code_length) {
2760     return false;
2761   }
2762 
2763   return (memcmp(buffer, _saved_code, length) == 0) ? true : false;
2764 }
2765 #endif
2766 
2767 
2768 /**
2769  * Create a native wrapper for this native method.  The wrapper converts the
2770  * Java-compiled calling convention to the native convention, handles
2771  * arguments, and transitions to native.  On return from the native we transition
2772  * back to java blocking if a safepoint is in progress.
2773  */
2774 void AdapterHandlerLibrary::create_native_wrapper(const methodHandle& method) {
2775   ResourceMark rm;
2776   nmethod* nm = NULL;
2777 
2778   assert(method->is_native(), "must be native");
2779   assert(method->is_method_handle_intrinsic() ||
2780          method->has_native_function(), "must have something valid to call!");
2781 
2782   {
2783     // Perform the work while holding the lock, but perform any printing outside the lock
2784     MutexLocker mu(AdapterHandlerLibrary_lock);
2785     // See if somebody beat us to it
2786     if (method->code() != NULL) {
2787       return;
2788     }
2789 
2790     const int compile_id = CompileBroker::assign_compile_id(method, CompileBroker::standard_entry_bci);
2791     assert(compile_id > 0, "Must generate native wrapper");
2792 
2793 
2794     ResourceMark rm;
2795     BufferBlob*  buf = buffer_blob(); // the temporary code buffer in CodeCache
2796     if (buf != NULL) {
2797       CodeBuffer buffer(buf);
2798       double locs_buf[20];
2799       buffer.insts()->initialize_shared_locs((relocInfo*)locs_buf, sizeof(locs_buf) / sizeof(relocInfo));
2800       MacroAssembler _masm(&buffer);
2801 
2802       // Fill in the signature array, for the calling-convention call.
2803       const int total_args_passed = method->size_of_parameters();
2804 
2805       BasicType* sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_args_passed);
2806       VMRegPair*   regs = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed);
2807       int i=0;
2808       if (!method->is_static())  // Pass in receiver first
2809         sig_bt[i++] = T_OBJECT;
2810       SignatureStream ss(method->signature());
2811       for (; !ss.at_return_type(); ss.next()) {
2812         sig_bt[i++] = ss.type();  // Collect remaining bits of signature
2813         if (ss.type() == T_LONG || ss.type() == T_DOUBLE)
2814           sig_bt[i++] = T_VOID;   // Longs & doubles take 2 Java slots
2815       }
2816       assert(i == total_args_passed, "");
2817       BasicType ret_type = ss.type();
2818 
2819       // Now get the compiled-Java layout as input (or output) arguments.
2820       // NOTE: Stubs for compiled entry points of method handle intrinsics
2821       // are just trampolines so the argument registers must be outgoing ones.
2822       const bool is_outgoing = method->is_method_handle_intrinsic();
2823       int comp_args_on_stack = SharedRuntime::java_calling_convention(sig_bt, regs, total_args_passed, is_outgoing);
2824 
2825       // Generate the compiled-to-native wrapper code
2826       nm = SharedRuntime::generate_native_wrapper(&_masm, method, compile_id, sig_bt, regs, ret_type);
2827 
2828       if (nm != NULL) {
2829         method->set_code(method, nm);
2830 
2831         DirectiveSet* directive = DirectivesStack::getDefaultDirective(CompileBroker::compiler(CompLevel_simple));
2832         if (directive->PrintAssemblyOption) {
2833           nm->print_code();
2834         }
2835         DirectivesStack::release(directive);
2836       }
2837     }
2838   } // Unlock AdapterHandlerLibrary_lock
2839 
2840 
2841   // Install the generated code.
2842   if (nm != NULL) {
2843     if (PrintCompilation) {
2844       ttyLocker ttyl;
2845       CompileTask::print(tty, nm, method->is_static() ? "(static)" : "");
2846     }
2847     nm->post_compiled_method_load_event();
2848   }
2849 }
2850 
2851 JRT_ENTRY_NO_ASYNC(void, SharedRuntime::block_for_jni_critical(JavaThread* thread))
2852   assert(thread == JavaThread::current(), "must be");
2853   // The code is about to enter a JNI lazy critical native method and
2854   // _needs_gc is true, so if this thread is already in a critical
2855   // section then just return, otherwise this thread should block
2856   // until needs_gc has been cleared.
2857   if (thread->in_critical()) {
2858     return;
2859   }
2860   // Lock and unlock a critical section to give the system a chance to block
2861   GCLocker::lock_critical(thread);
2862   GCLocker::unlock_critical(thread);
2863 JRT_END
2864 
2865 // -------------------------------------------------------------------------
2866 // Java-Java calling convention
2867 // (what you use when Java calls Java)
2868 
2869 //------------------------------name_for_receiver----------------------------------
2870 // For a given signature, return the VMReg for parameter 0.
2871 VMReg SharedRuntime::name_for_receiver() {
2872   VMRegPair regs;
2873   BasicType sig_bt = T_OBJECT;
2874   (void) java_calling_convention(&sig_bt, &regs, 1, true);
2875   // Return argument 0 register.  In the LP64 build pointers
2876   // take 2 registers, but the VM wants only the 'main' name.
2877   return regs.first();
2878 }
2879 
2880 VMRegPair *SharedRuntime::find_callee_arguments(Symbol* sig, bool has_receiver, bool has_appendix, int* arg_size) {
2881   // This method is returning a data structure allocating as a
2882   // ResourceObject, so do not put any ResourceMarks in here.
2883   char *s = sig->as_C_string();
2884   int len = (int)strlen(s);
2885   s++; len--;                   // Skip opening paren
2886 
2887   BasicType *sig_bt = NEW_RESOURCE_ARRAY(BasicType, 256);
2888   VMRegPair *regs = NEW_RESOURCE_ARRAY(VMRegPair, 256);
2889   int cnt = 0;
2890   if (has_receiver) {
2891     sig_bt[cnt++] = T_OBJECT; // Receiver is argument 0; not in signature
2892   }
2893 
2894   while (*s != ')') {          // Find closing right paren
2895     switch (*s++) {            // Switch on signature character
2896     case 'B': sig_bt[cnt++] = T_BYTE;    break;
2897     case 'C': sig_bt[cnt++] = T_CHAR;    break;
2898     case 'D': sig_bt[cnt++] = T_DOUBLE;  sig_bt[cnt++] = T_VOID; break;
2899     case 'F': sig_bt[cnt++] = T_FLOAT;   break;
2900     case 'I': sig_bt[cnt++] = T_INT;     break;
2901     case 'J': sig_bt[cnt++] = T_LONG;    sig_bt[cnt++] = T_VOID; break;
2902     case 'S': sig_bt[cnt++] = T_SHORT;   break;
2903     case 'Z': sig_bt[cnt++] = T_BOOLEAN; break;
2904     case 'V': sig_bt[cnt++] = T_VOID;    break;
2905     case 'L':                   // Oop
2906       while (*s++ != ';');   // Skip signature
2907       sig_bt[cnt++] = T_OBJECT;
2908       break;
2909     case '[': {                 // Array
2910       do {                      // Skip optional size
2911         while (*s >= '0' && *s <= '9') s++;
2912       } while (*s++ == '[');   // Nested arrays?
2913       // Skip element type
2914       if (s[-1] == 'L')
2915         while (*s++ != ';'); // Skip signature
2916       sig_bt[cnt++] = T_ARRAY;
2917       break;
2918     }
2919     default : ShouldNotReachHere();
2920     }
2921   }
2922 
2923   if (has_appendix) {
2924     sig_bt[cnt++] = T_OBJECT;
2925   }
2926 
2927   assert(cnt < 256, "grow table size");
2928 
2929   int comp_args_on_stack;
2930   comp_args_on_stack = java_calling_convention(sig_bt, regs, cnt, true);
2931 
2932   // the calling convention doesn't count out_preserve_stack_slots so
2933   // we must add that in to get "true" stack offsets.
2934 
2935   if (comp_args_on_stack) {
2936     for (int i = 0; i < cnt; i++) {
2937       VMReg reg1 = regs[i].first();
2938       if (reg1->is_stack()) {
2939         // Yuck
2940         reg1 = reg1->bias(out_preserve_stack_slots());
2941       }
2942       VMReg reg2 = regs[i].second();
2943       if (reg2->is_stack()) {
2944         // Yuck
2945         reg2 = reg2->bias(out_preserve_stack_slots());
2946       }
2947       regs[i].set_pair(reg2, reg1);
2948     }
2949   }
2950 
2951   // results
2952   *arg_size = cnt;
2953   return regs;
2954 }
2955 
2956 // OSR Migration Code
2957 //
2958 // This code is used convert interpreter frames into compiled frames.  It is
2959 // called from very start of a compiled OSR nmethod.  A temp array is
2960 // allocated to hold the interesting bits of the interpreter frame.  All
2961 // active locks are inflated to allow them to move.  The displaced headers and
2962 // active interpreter locals are copied into the temp buffer.  Then we return
2963 // back to the compiled code.  The compiled code then pops the current
2964 // interpreter frame off the stack and pushes a new compiled frame.  Then it
2965 // copies the interpreter locals and displaced headers where it wants.
2966 // Finally it calls back to free the temp buffer.
2967 //
2968 // All of this is done NOT at any Safepoint, nor is any safepoint or GC allowed.
2969 
2970 JRT_LEAF(intptr_t*, SharedRuntime::OSR_migration_begin( JavaThread *thread) )
2971 
2972   //
2973   // This code is dependent on the memory layout of the interpreter local
2974   // array and the monitors. On all of our platforms the layout is identical
2975   // so this code is shared. If some platform lays the their arrays out
2976   // differently then this code could move to platform specific code or
2977   // the code here could be modified to copy items one at a time using
2978   // frame accessor methods and be platform independent.
2979 
2980   frame fr = thread->last_frame();
2981   assert(fr.is_interpreted_frame(), "");
2982   assert(fr.interpreter_frame_expression_stack_size()==0, "only handle empty stacks");
2983 
2984   // Figure out how many monitors are active.
2985   int active_monitor_count = 0;
2986   for (BasicObjectLock *kptr = fr.interpreter_frame_monitor_end();
2987        kptr < fr.interpreter_frame_monitor_begin();
2988        kptr = fr.next_monitor_in_interpreter_frame(kptr) ) {
2989     if (kptr->obj() != NULL) active_monitor_count++;
2990   }
2991 
2992   // QQQ we could place number of active monitors in the array so that compiled code
2993   // could double check it.
2994 
2995   Method* moop = fr.interpreter_frame_method();
2996   int max_locals = moop->max_locals();
2997   // Allocate temp buffer, 1 word per local & 2 per active monitor
2998   int buf_size_words = max_locals + active_monitor_count * BasicObjectLock::size();
2999   intptr_t *buf = NEW_C_HEAP_ARRAY(intptr_t,buf_size_words, mtCode);
3000 
3001   // Copy the locals.  Order is preserved so that loading of longs works.
3002   // Since there's no GC I can copy the oops blindly.
3003   assert(sizeof(HeapWord)==sizeof(intptr_t), "fix this code");
3004   Copy::disjoint_words((HeapWord*)fr.interpreter_frame_local_at(max_locals-1),
3005                        (HeapWord*)&buf[0],
3006                        max_locals);
3007 
3008   // Inflate locks.  Copy the displaced headers.  Be careful, there can be holes.
3009   int i = max_locals;
3010   for (BasicObjectLock *kptr2 = fr.interpreter_frame_monitor_end();
3011        kptr2 < fr.interpreter_frame_monitor_begin();
3012        kptr2 = fr.next_monitor_in_interpreter_frame(kptr2) ) {
3013     if (kptr2->obj() != NULL) {         // Avoid 'holes' in the monitor array
3014       BasicLock *lock = kptr2->lock();
3015       // Inflate so the displaced header becomes position-independent
3016       if (lock->displaced_header()->is_unlocked())
3017         ObjectSynchronizer::inflate_helper(kptr2->obj());
3018       // Now the displaced header is free to move
3019       buf[i++] = (intptr_t)lock->displaced_header();
3020       buf[i++] = cast_from_oop<intptr_t>(kptr2->obj());
3021     }
3022   }
3023   assert(i - max_locals == active_monitor_count*2, "found the expected number of monitors");
3024 
3025   return buf;
3026 JRT_END
3027 
3028 JRT_LEAF(void, SharedRuntime::OSR_migration_end( intptr_t* buf) )
3029   FREE_C_HEAP_ARRAY(intptr_t, buf);
3030 JRT_END
3031 
3032 bool AdapterHandlerLibrary::contains(const CodeBlob* b) {
3033   AdapterHandlerTableIterator iter(_adapters);
3034   while (iter.has_next()) {
3035     AdapterHandlerEntry* a = iter.next();
3036     if (b == CodeCache::find_blob(a->get_i2c_entry())) return true;
3037   }
3038   return false;
3039 }
3040 
3041 void AdapterHandlerLibrary::print_handler_on(outputStream* st, const CodeBlob* b) {
3042   AdapterHandlerTableIterator iter(_adapters);
3043   while (iter.has_next()) {
3044     AdapterHandlerEntry* a = iter.next();
3045     if (b == CodeCache::find_blob(a->get_i2c_entry())) {
3046       st->print("Adapter for signature: ");
3047       a->print_adapter_on(tty);
3048       return;
3049     }
3050   }
3051   assert(false, "Should have found handler");
3052 }
3053 
3054 void AdapterHandlerEntry::print_adapter_on(outputStream* st) const {
3055   st->print_cr("AHE@" INTPTR_FORMAT ": %s i2c: " INTPTR_FORMAT " c2i: " INTPTR_FORMAT " c2iUV: " INTPTR_FORMAT,
3056                p2i(this), fingerprint()->as_string(),
3057                p2i(get_i2c_entry()), p2i(get_c2i_entry()), p2i(get_c2i_unverified_entry()));
3058 
3059 }
3060 
3061 #if INCLUDE_CDS
3062 
3063 void CDSAdapterHandlerEntry::init() {
3064   assert(DumpSharedSpaces, "used during dump time only");
3065   _c2i_entry_trampoline = (address)MetaspaceShared::misc_data_space_alloc(SharedRuntime::trampoline_size());
3066   _adapter_trampoline = (AdapterHandlerEntry**)MetaspaceShared::misc_data_space_alloc(sizeof(AdapterHandlerEntry*));
3067 };
3068 
3069 #endif // INCLUDE_CDS
3070 
3071 
3072 #ifndef PRODUCT
3073 
3074 void AdapterHandlerLibrary::print_statistics() {
3075   _adapters->print_statistics();
3076 }
3077 
3078 #endif /* PRODUCT */
3079 
3080 JRT_LEAF(void, SharedRuntime::enable_stack_reserved_zone(JavaThread* thread))
3081   assert(thread->is_Java_thread(), "Only Java threads have a stack reserved zone");
3082   thread->enable_stack_reserved_zone();
3083   thread->set_reserved_stack_activation(thread->stack_base());
3084 JRT_END
3085 
3086 frame SharedRuntime::look_for_reserved_stack_annotated_method(JavaThread* thread, frame fr) {
3087   frame activation;
3088   CompiledMethod* nm = NULL;
3089   int count = 1;
3090 
3091   assert(fr.is_java_frame(), "Must start on Java frame");
3092 
3093   while (true) {
3094     Method* method = NULL;
3095     if (fr.is_interpreted_frame()) {
3096       method = fr.interpreter_frame_method();
3097     } else {
3098       CodeBlob* cb = fr.cb();
3099       if (cb != NULL && cb->is_compiled()) {
3100         nm = cb->as_compiled_method();
3101         method = nm->method();
3102       }
3103     }
3104     if ((method != NULL) && method->has_reserved_stack_access()) {
3105       ResourceMark rm(thread);
3106       activation = fr;
3107       warning("Potentially dangerous stack overflow in "
3108               "ReservedStackAccess annotated method %s [%d]",
3109               method->name_and_sig_as_C_string(), count++);
3110       EventReservedStackActivation event;
3111       if (event.should_commit()) {
3112         event.set_method(method);
3113         event.commit();
3114       }
3115     }
3116     if (fr.is_first_java_frame()) {
3117       break;
3118     } else {
3119       fr = fr.java_sender();
3120     }
3121   }
3122   return activation;
3123 }
3124