1 /*
   2  * Copyright (c) 1997, 2016, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/classLoader.hpp"
  27 #include "classfile/javaClasses.hpp"
  28 #include "classfile/moduleEntry.hpp"
  29 #include "classfile/systemDictionary.hpp"
  30 #include "classfile/vmSymbols.hpp"
  31 #include "code/codeCache.hpp"
  32 #include "code/codeCacheExtensions.hpp"
  33 #include "code/scopeDesc.hpp"
  34 #include "compiler/compileBroker.hpp"
  35 #include "compiler/compileTask.hpp"
  36 #include "gc/shared/gcId.hpp"
  37 #include "gc/shared/gcLocker.inline.hpp"
  38 #include "gc/shared/workgroup.hpp"
  39 #include "interpreter/interpreter.hpp"
  40 #include "interpreter/linkResolver.hpp"
  41 #include "interpreter/oopMapCache.hpp"
  42 #include "jvmtifiles/jvmtiEnv.hpp"
  43 #include "logging/log.hpp"
  44 #include "logging/logConfiguration.hpp"
  45 #include "memory/metaspaceShared.hpp"
  46 #include "memory/oopFactory.hpp"
  47 #include "memory/resourceArea.hpp"
  48 #include "memory/universe.inline.hpp"
  49 #include "oops/instanceKlass.hpp"
  50 #include "oops/objArrayOop.hpp"
  51 #include "oops/oop.inline.hpp"
  52 #include "oops/symbol.hpp"
  53 #include "oops/verifyOopClosure.hpp"
  54 #include "prims/jvm_misc.hpp"
  55 #include "prims/jvmtiExport.hpp"
  56 #include "prims/jvmtiThreadState.hpp"
  57 #include "prims/privilegedStack.hpp"
  58 #include "runtime/arguments.hpp"
  59 #include "runtime/atomic.hpp"
  60 #include "runtime/biasedLocking.hpp"
  61 #include "runtime/commandLineFlagConstraintList.hpp"
  62 #include "runtime/commandLineFlagWriteableList.hpp"
  63 #include "runtime/commandLineFlagRangeList.hpp"
  64 #include "runtime/deoptimization.hpp"
  65 #include "runtime/fprofiler.hpp"
  66 #include "runtime/frame.inline.hpp"
  67 #include "runtime/globals.hpp"
  68 #include "runtime/init.hpp"
  69 #include "runtime/interfaceSupport.hpp"
  70 #include "runtime/java.hpp"
  71 #include "runtime/javaCalls.hpp"
  72 #include "runtime/jniPeriodicChecker.hpp"
  73 #include "runtime/timerTrace.hpp"
  74 #include "runtime/memprofiler.hpp"
  75 #include "runtime/mutexLocker.hpp"
  76 #include "runtime/objectMonitor.hpp"
  77 #include "runtime/orderAccess.inline.hpp"
  78 #include "runtime/osThread.hpp"
  79 #include "runtime/safepoint.hpp"
  80 #include "runtime/sharedRuntime.hpp"
  81 #include "runtime/statSampler.hpp"
  82 #include "runtime/stubRoutines.hpp"
  83 #include "runtime/sweeper.hpp"
  84 #include "runtime/task.hpp"
  85 #include "runtime/thread.inline.hpp"
  86 #include "runtime/threadCritical.hpp"
  87 #include "runtime/vframe.hpp"
  88 #include "runtime/vframeArray.hpp"
  89 #include "runtime/vframe_hp.hpp"
  90 #include "runtime/vmThread.hpp"
  91 #include "runtime/vm_operations.hpp"
  92 #include "runtime/vm_version.hpp"
  93 #include "services/attachListener.hpp"
  94 #include "services/management.hpp"
  95 #include "services/memTracker.hpp"
  96 #include "services/threadService.hpp"
  97 #include "trace/traceMacros.hpp"
  98 #include "trace/tracing.hpp"
  99 #include "utilities/defaultStream.hpp"
 100 #include "utilities/dtrace.hpp"
 101 #include "utilities/events.hpp"
 102 #include "utilities/macros.hpp"
 103 #include "utilities/preserveException.hpp"
 104 #if INCLUDE_JVMCI
 105 #include "jvmci/jvmciCompiler.hpp"
 106 #include "jvmci/jvmciRuntime.hpp"
 107 #endif
 108 #ifdef COMPILER1
 109 #include "c1/c1_Compiler.hpp"
 110 #endif
 111 #ifdef COMPILER2
 112 #include "opto/c2compiler.hpp"
 113 #include "opto/idealGraphPrinter.hpp"
 114 #endif
 115 #if INCLUDE_RTM_OPT
 116 #include "runtime/rtmLocking.hpp"
 117 #endif
 118 
 119 // Initialization after module runtime initialization
 120 void universe_post_module_init();  // must happen after call_initPhase2
 121 
 122 #ifdef DTRACE_ENABLED
 123 
 124 // Only bother with this argument setup if dtrace is available
 125 
 126   #define HOTSPOT_THREAD_PROBE_start HOTSPOT_THREAD_START
 127   #define HOTSPOT_THREAD_PROBE_stop HOTSPOT_THREAD_STOP
 128 
 129   #define DTRACE_THREAD_PROBE(probe, javathread)                           \
 130     {                                                                      \
 131       ResourceMark rm(this);                                               \
 132       int len = 0;                                                         \
 133       const char* name = (javathread)->get_thread_name();                  \
 134       len = strlen(name);                                                  \
 135       HOTSPOT_THREAD_PROBE_##probe(/* probe = start, stop */               \
 136         (char *) name, len,                                                \
 137         java_lang_Thread::thread_id((javathread)->threadObj()),            \
 138         (uintptr_t) (javathread)->osthread()->thread_id(),                 \
 139         java_lang_Thread::is_daemon((javathread)->threadObj()));           \
 140     }
 141 
 142 #else //  ndef DTRACE_ENABLED
 143 
 144   #define DTRACE_THREAD_PROBE(probe, javathread)
 145 
 146 #endif // ndef DTRACE_ENABLED
 147 
 148 #ifndef USE_LIBRARY_BASED_TLS_ONLY
 149 // Current thread is maintained as a thread-local variable
 150 THREAD_LOCAL_DECL Thread* Thread::_thr_current = NULL;
 151 #endif
 152 // Class hierarchy
 153 // - Thread
 154 //   - VMThread
 155 //   - WatcherThread
 156 //   - ConcurrentMarkSweepThread
 157 //   - JavaThread
 158 //     - CompilerThread
 159 
 160 // ======= Thread ========
 161 // Support for forcing alignment of thread objects for biased locking
 162 void* Thread::allocate(size_t size, bool throw_excpt, MEMFLAGS flags) {
 163   if (UseBiasedLocking) {
 164     const int alignment = markOopDesc::biased_lock_alignment;
 165     size_t aligned_size = size + (alignment - sizeof(intptr_t));
 166     void* real_malloc_addr = throw_excpt? AllocateHeap(aligned_size, flags, CURRENT_PC)
 167                                           : AllocateHeap(aligned_size, flags, CURRENT_PC,
 168                                                          AllocFailStrategy::RETURN_NULL);
 169     void* aligned_addr     = (void*) align_size_up((intptr_t) real_malloc_addr, alignment);
 170     assert(((uintptr_t) aligned_addr + (uintptr_t) size) <=
 171            ((uintptr_t) real_malloc_addr + (uintptr_t) aligned_size),
 172            "JavaThread alignment code overflowed allocated storage");
 173     if (aligned_addr != real_malloc_addr) {
 174       log_info(biasedlocking)("Aligned thread " INTPTR_FORMAT " to " INTPTR_FORMAT,
 175                               p2i(real_malloc_addr),
 176                               p2i(aligned_addr));
 177     }
 178     ((Thread*) aligned_addr)->_real_malloc_address = real_malloc_addr;
 179     return aligned_addr;
 180   } else {
 181     return throw_excpt? AllocateHeap(size, flags, CURRENT_PC)
 182                        : AllocateHeap(size, flags, CURRENT_PC, AllocFailStrategy::RETURN_NULL);
 183   }
 184 }
 185 
 186 void Thread::operator delete(void* p) {
 187   if (UseBiasedLocking) {
 188     void* real_malloc_addr = ((Thread*) p)->_real_malloc_address;
 189     FreeHeap(real_malloc_addr);
 190   } else {
 191     FreeHeap(p);
 192   }
 193 }
 194 
 195 
 196 // Base class for all threads: VMThread, WatcherThread, ConcurrentMarkSweepThread,
 197 // JavaThread
 198 
 199 
 200 Thread::Thread() {
 201   // stack and get_thread
 202   set_stack_base(NULL);
 203   set_stack_size(0);
 204   set_self_raw_id(0);
 205   set_lgrp_id(-1);
 206   DEBUG_ONLY(clear_suspendible_thread();)
 207 
 208   // allocated data structures
 209   set_osthread(NULL);
 210   set_resource_area(new (mtThread)ResourceArea());
 211   DEBUG_ONLY(_current_resource_mark = NULL;)
 212   set_handle_area(new (mtThread) HandleArea(NULL));
 213   set_metadata_handles(new (ResourceObj::C_HEAP, mtClass) GrowableArray<Metadata*>(30, true));
 214   set_active_handles(NULL);
 215   set_free_handle_block(NULL);
 216   set_last_handle_mark(NULL);
 217 
 218   // This initial value ==> never claimed.
 219   _oops_do_parity = 0;
 220 
 221   // the handle mark links itself to last_handle_mark
 222   new HandleMark(this);
 223 
 224   // plain initialization
 225   debug_only(_owned_locks = NULL;)
 226   debug_only(_allow_allocation_count = 0;)
 227   NOT_PRODUCT(_allow_safepoint_count = 0;)
 228   NOT_PRODUCT(_skip_gcalot = false;)
 229   _jvmti_env_iteration_count = 0;
 230   set_allocated_bytes(0);
 231   _vm_operation_started_count = 0;
 232   _vm_operation_completed_count = 0;
 233   _current_pending_monitor = NULL;
 234   _current_pending_monitor_is_from_java = true;
 235   _current_waiting_monitor = NULL;
 236   _num_nested_signal = 0;
 237   omFreeList = NULL;
 238   omFreeCount = 0;
 239   omFreeProvision = 32;
 240   omInUseList = NULL;
 241   omInUseCount = 0;
 242 
 243 #ifdef ASSERT
 244   _visited_for_critical_count = false;
 245 #endif
 246 
 247   _SR_lock = new Monitor(Mutex::suspend_resume, "SR_lock", true,
 248                          Monitor::_safepoint_check_sometimes);
 249   _suspend_flags = 0;
 250 
 251   // thread-specific hashCode stream generator state - Marsaglia shift-xor form
 252   _hashStateX = os::random();
 253   _hashStateY = 842502087;
 254   _hashStateZ = 0x8767;    // (int)(3579807591LL & 0xffff) ;
 255   _hashStateW = 273326509;
 256 
 257   _OnTrap   = 0;
 258   _schedctl = NULL;
 259   _Stalled  = 0;
 260   _TypeTag  = 0x2BAD;
 261 
 262   // Many of the following fields are effectively final - immutable
 263   // Note that nascent threads can't use the Native Monitor-Mutex
 264   // construct until the _MutexEvent is initialized ...
 265   // CONSIDER: instead of using a fixed set of purpose-dedicated ParkEvents
 266   // we might instead use a stack of ParkEvents that we could provision on-demand.
 267   // The stack would act as a cache to avoid calls to ParkEvent::Allocate()
 268   // and ::Release()
 269   _ParkEvent   = ParkEvent::Allocate(this);
 270   _SleepEvent  = ParkEvent::Allocate(this);
 271   _MutexEvent  = ParkEvent::Allocate(this);
 272   _MuxEvent    = ParkEvent::Allocate(this);
 273 
 274 #ifdef CHECK_UNHANDLED_OOPS
 275   if (CheckUnhandledOops) {
 276     _unhandled_oops = new UnhandledOops(this);
 277   }
 278 #endif // CHECK_UNHANDLED_OOPS
 279 #ifdef ASSERT
 280   if (UseBiasedLocking) {
 281     assert((((uintptr_t) this) & (markOopDesc::biased_lock_alignment - 1)) == 0, "forced alignment of thread object failed");
 282     assert(this == _real_malloc_address ||
 283            this == (void*) align_size_up((intptr_t) _real_malloc_address, markOopDesc::biased_lock_alignment),
 284            "bug in forced alignment of thread objects");
 285   }
 286 #endif // ASSERT
 287 }
 288 
 289 void Thread::initialize_thread_current() {
 290 #ifndef USE_LIBRARY_BASED_TLS_ONLY
 291   assert(_thr_current == NULL, "Thread::current already initialized");
 292   _thr_current = this;
 293 #endif
 294   assert(ThreadLocalStorage::thread() == NULL, "ThreadLocalStorage::thread already initialized");
 295   ThreadLocalStorage::set_thread(this);
 296   assert(Thread::current() == ThreadLocalStorage::thread(), "TLS mismatch!");
 297 }
 298 
 299 void Thread::clear_thread_current() {
 300   assert(Thread::current() == ThreadLocalStorage::thread(), "TLS mismatch!");
 301 #ifndef USE_LIBRARY_BASED_TLS_ONLY
 302   _thr_current = NULL;
 303 #endif
 304   ThreadLocalStorage::set_thread(NULL);
 305 }
 306 
 307 void Thread::record_stack_base_and_size() {
 308   set_stack_base(os::current_stack_base());
 309   set_stack_size(os::current_stack_size());
 310   // CR 7190089: on Solaris, primordial thread's stack is adjusted
 311   // in initialize_thread(). Without the adjustment, stack size is
 312   // incorrect if stack is set to unlimited (ulimit -s unlimited).
 313   // So far, only Solaris has real implementation of initialize_thread().
 314   //
 315   // set up any platform-specific state.
 316   os::initialize_thread(this);
 317 
 318   // Set stack limits after thread is initialized.
 319   if (is_Java_thread()) {
 320     ((JavaThread*) this)->set_stack_overflow_limit();
 321     ((JavaThread*) this)->set_reserved_stack_activation(stack_base());
 322   }
 323 #if INCLUDE_NMT
 324   // record thread's native stack, stack grows downward
 325   MemTracker::record_thread_stack(stack_end(), stack_size());
 326 #endif // INCLUDE_NMT
 327   log_debug(os, thread)("Thread " UINTX_FORMAT " stack dimensions: "
 328     PTR_FORMAT "-" PTR_FORMAT " (" SIZE_FORMAT "k).",
 329     os::current_thread_id(), p2i(stack_base() - stack_size()),
 330     p2i(stack_base()), stack_size()/1024);
 331 }
 332 
 333 
 334 Thread::~Thread() {
 335   // Reclaim the objectmonitors from the omFreeList of the moribund thread.
 336   ObjectSynchronizer::omFlush(this);
 337 
 338   EVENT_THREAD_DESTRUCT(this);
 339 
 340   // stack_base can be NULL if the thread is never started or exited before
 341   // record_stack_base_and_size called. Although, we would like to ensure
 342   // that all started threads do call record_stack_base_and_size(), there is
 343   // not proper way to enforce that.
 344 #if INCLUDE_NMT
 345   if (_stack_base != NULL) {
 346     MemTracker::release_thread_stack(stack_end(), stack_size());
 347 #ifdef ASSERT
 348     set_stack_base(NULL);
 349 #endif
 350   }
 351 #endif // INCLUDE_NMT
 352 
 353   // deallocate data structures
 354   delete resource_area();
 355   // since the handle marks are using the handle area, we have to deallocated the root
 356   // handle mark before deallocating the thread's handle area,
 357   assert(last_handle_mark() != NULL, "check we have an element");
 358   delete last_handle_mark();
 359   assert(last_handle_mark() == NULL, "check we have reached the end");
 360 
 361   // It's possible we can encounter a null _ParkEvent, etc., in stillborn threads.
 362   // We NULL out the fields for good hygiene.
 363   ParkEvent::Release(_ParkEvent); _ParkEvent   = NULL;
 364   ParkEvent::Release(_SleepEvent); _SleepEvent  = NULL;
 365   ParkEvent::Release(_MutexEvent); _MutexEvent  = NULL;
 366   ParkEvent::Release(_MuxEvent); _MuxEvent    = NULL;
 367 
 368   delete handle_area();
 369   delete metadata_handles();
 370 
 371   // SR_handler uses this as a termination indicator -
 372   // needs to happen before os::free_thread()
 373   delete _SR_lock;
 374   _SR_lock = NULL;
 375 
 376   // osthread() can be NULL, if creation of thread failed.
 377   if (osthread() != NULL) os::free_thread(osthread());
 378 
 379   // clear Thread::current if thread is deleting itself.
 380   // Needed to ensure JNI correctly detects non-attached threads.
 381   if (this == Thread::current()) {
 382     clear_thread_current();
 383   }
 384 
 385   CHECK_UNHANDLED_OOPS_ONLY(if (CheckUnhandledOops) delete unhandled_oops();)
 386 }
 387 
 388 // NOTE: dummy function for assertion purpose.
 389 void Thread::run() {
 390   ShouldNotReachHere();
 391 }
 392 
 393 #ifdef ASSERT
 394 // Private method to check for dangling thread pointer
 395 void check_for_dangling_thread_pointer(Thread *thread) {
 396   assert(!thread->is_Java_thread() || Thread::current() == thread || Threads_lock->owned_by_self(),
 397          "possibility of dangling Thread pointer");
 398 }
 399 #endif
 400 
 401 ThreadPriority Thread::get_priority(const Thread* const thread) {
 402   ThreadPriority priority;
 403   // Can return an error!
 404   (void)os::get_priority(thread, priority);
 405   assert(MinPriority <= priority && priority <= MaxPriority, "non-Java priority found");
 406   return priority;
 407 }
 408 
 409 void Thread::set_priority(Thread* thread, ThreadPriority priority) {
 410   debug_only(check_for_dangling_thread_pointer(thread);)
 411   // Can return an error!
 412   (void)os::set_priority(thread, priority);
 413 }
 414 
 415 
 416 void Thread::start(Thread* thread) {
 417   // Start is different from resume in that its safety is guaranteed by context or
 418   // being called from a Java method synchronized on the Thread object.
 419   if (!DisableStartThread) {
 420     if (thread->is_Java_thread()) {
 421       // Initialize the thread state to RUNNABLE before starting this thread.
 422       // Can not set it after the thread started because we do not know the
 423       // exact thread state at that time. It could be in MONITOR_WAIT or
 424       // in SLEEPING or some other state.
 425       java_lang_Thread::set_thread_status(((JavaThread*)thread)->threadObj(),
 426                                           java_lang_Thread::RUNNABLE);
 427     }
 428     os::start_thread(thread);
 429   }
 430 }
 431 
 432 // Enqueue a VM_Operation to do the job for us - sometime later
 433 void Thread::send_async_exception(oop java_thread, oop java_throwable) {
 434   VM_ThreadStop* vm_stop = new VM_ThreadStop(java_thread, java_throwable);
 435   VMThread::execute(vm_stop);
 436 }
 437 
 438 
 439 // Check if an external suspend request has completed (or has been
 440 // cancelled). Returns true if the thread is externally suspended and
 441 // false otherwise.
 442 //
 443 // The bits parameter returns information about the code path through
 444 // the routine. Useful for debugging:
 445 //
 446 // set in is_ext_suspend_completed():
 447 // 0x00000001 - routine was entered
 448 // 0x00000010 - routine return false at end
 449 // 0x00000100 - thread exited (return false)
 450 // 0x00000200 - suspend request cancelled (return false)
 451 // 0x00000400 - thread suspended (return true)
 452 // 0x00001000 - thread is in a suspend equivalent state (return true)
 453 // 0x00002000 - thread is native and walkable (return true)
 454 // 0x00004000 - thread is native_trans and walkable (needed retry)
 455 //
 456 // set in wait_for_ext_suspend_completion():
 457 // 0x00010000 - routine was entered
 458 // 0x00020000 - suspend request cancelled before loop (return false)
 459 // 0x00040000 - thread suspended before loop (return true)
 460 // 0x00080000 - suspend request cancelled in loop (return false)
 461 // 0x00100000 - thread suspended in loop (return true)
 462 // 0x00200000 - suspend not completed during retry loop (return false)
 463 
 464 // Helper class for tracing suspend wait debug bits.
 465 //
 466 // 0x00000100 indicates that the target thread exited before it could
 467 // self-suspend which is not a wait failure. 0x00000200, 0x00020000 and
 468 // 0x00080000 each indicate a cancelled suspend request so they don't
 469 // count as wait failures either.
 470 #define DEBUG_FALSE_BITS (0x00000010 | 0x00200000)
 471 
 472 class TraceSuspendDebugBits : public StackObj {
 473  private:
 474   JavaThread * jt;
 475   bool         is_wait;
 476   bool         called_by_wait;  // meaningful when !is_wait
 477   uint32_t *   bits;
 478 
 479  public:
 480   TraceSuspendDebugBits(JavaThread *_jt, bool _is_wait, bool _called_by_wait,
 481                         uint32_t *_bits) {
 482     jt             = _jt;
 483     is_wait        = _is_wait;
 484     called_by_wait = _called_by_wait;
 485     bits           = _bits;
 486   }
 487 
 488   ~TraceSuspendDebugBits() {
 489     if (!is_wait) {
 490 #if 1
 491       // By default, don't trace bits for is_ext_suspend_completed() calls.
 492       // That trace is very chatty.
 493       return;
 494 #else
 495       if (!called_by_wait) {
 496         // If tracing for is_ext_suspend_completed() is enabled, then only
 497         // trace calls to it from wait_for_ext_suspend_completion()
 498         return;
 499       }
 500 #endif
 501     }
 502 
 503     if (AssertOnSuspendWaitFailure || TraceSuspendWaitFailures) {
 504       if (bits != NULL && (*bits & DEBUG_FALSE_BITS) != 0) {
 505         MutexLocker ml(Threads_lock);  // needed for get_thread_name()
 506         ResourceMark rm;
 507 
 508         tty->print_cr(
 509                       "Failed wait_for_ext_suspend_completion(thread=%s, debug_bits=%x)",
 510                       jt->get_thread_name(), *bits);
 511 
 512         guarantee(!AssertOnSuspendWaitFailure, "external suspend wait failed");
 513       }
 514     }
 515   }
 516 };
 517 #undef DEBUG_FALSE_BITS
 518 
 519 
 520 bool JavaThread::is_ext_suspend_completed(bool called_by_wait, int delay,
 521                                           uint32_t *bits) {
 522   TraceSuspendDebugBits tsdb(this, false /* !is_wait */, called_by_wait, bits);
 523 
 524   bool did_trans_retry = false;  // only do thread_in_native_trans retry once
 525   bool do_trans_retry;           // flag to force the retry
 526 
 527   *bits |= 0x00000001;
 528 
 529   do {
 530     do_trans_retry = false;
 531 
 532     if (is_exiting()) {
 533       // Thread is in the process of exiting. This is always checked
 534       // first to reduce the risk of dereferencing a freed JavaThread.
 535       *bits |= 0x00000100;
 536       return false;
 537     }
 538 
 539     if (!is_external_suspend()) {
 540       // Suspend request is cancelled. This is always checked before
 541       // is_ext_suspended() to reduce the risk of a rogue resume
 542       // confusing the thread that made the suspend request.
 543       *bits |= 0x00000200;
 544       return false;
 545     }
 546 
 547     if (is_ext_suspended()) {
 548       // thread is suspended
 549       *bits |= 0x00000400;
 550       return true;
 551     }
 552 
 553     // Now that we no longer do hard suspends of threads running
 554     // native code, the target thread can be changing thread state
 555     // while we are in this routine:
 556     //
 557     //   _thread_in_native -> _thread_in_native_trans -> _thread_blocked
 558     //
 559     // We save a copy of the thread state as observed at this moment
 560     // and make our decision about suspend completeness based on the
 561     // copy. This closes the race where the thread state is seen as
 562     // _thread_in_native_trans in the if-thread_blocked check, but is
 563     // seen as _thread_blocked in if-thread_in_native_trans check.
 564     JavaThreadState save_state = thread_state();
 565 
 566     if (save_state == _thread_blocked && is_suspend_equivalent()) {
 567       // If the thread's state is _thread_blocked and this blocking
 568       // condition is known to be equivalent to a suspend, then we can
 569       // consider the thread to be externally suspended. This means that
 570       // the code that sets _thread_blocked has been modified to do
 571       // self-suspension if the blocking condition releases. We also
 572       // used to check for CONDVAR_WAIT here, but that is now covered by
 573       // the _thread_blocked with self-suspension check.
 574       //
 575       // Return true since we wouldn't be here unless there was still an
 576       // external suspend request.
 577       *bits |= 0x00001000;
 578       return true;
 579     } else if (save_state == _thread_in_native && frame_anchor()->walkable()) {
 580       // Threads running native code will self-suspend on native==>VM/Java
 581       // transitions. If its stack is walkable (should always be the case
 582       // unless this function is called before the actual java_suspend()
 583       // call), then the wait is done.
 584       *bits |= 0x00002000;
 585       return true;
 586     } else if (!called_by_wait && !did_trans_retry &&
 587                save_state == _thread_in_native_trans &&
 588                frame_anchor()->walkable()) {
 589       // The thread is transitioning from thread_in_native to another
 590       // thread state. check_safepoint_and_suspend_for_native_trans()
 591       // will force the thread to self-suspend. If it hasn't gotten
 592       // there yet we may have caught the thread in-between the native
 593       // code check above and the self-suspend. Lucky us. If we were
 594       // called by wait_for_ext_suspend_completion(), then it
 595       // will be doing the retries so we don't have to.
 596       //
 597       // Since we use the saved thread state in the if-statement above,
 598       // there is a chance that the thread has already transitioned to
 599       // _thread_blocked by the time we get here. In that case, we will
 600       // make a single unnecessary pass through the logic below. This
 601       // doesn't hurt anything since we still do the trans retry.
 602 
 603       *bits |= 0x00004000;
 604 
 605       // Once the thread leaves thread_in_native_trans for another
 606       // thread state, we break out of this retry loop. We shouldn't
 607       // need this flag to prevent us from getting back here, but
 608       // sometimes paranoia is good.
 609       did_trans_retry = true;
 610 
 611       // We wait for the thread to transition to a more usable state.
 612       for (int i = 1; i <= SuspendRetryCount; i++) {
 613         // We used to do an "os::yield_all(i)" call here with the intention
 614         // that yielding would increase on each retry. However, the parameter
 615         // is ignored on Linux which means the yield didn't scale up. Waiting
 616         // on the SR_lock below provides a much more predictable scale up for
 617         // the delay. It also provides a simple/direct point to check for any
 618         // safepoint requests from the VMThread
 619 
 620         // temporarily drops SR_lock while doing wait with safepoint check
 621         // (if we're a JavaThread - the WatcherThread can also call this)
 622         // and increase delay with each retry
 623         SR_lock()->wait(!Thread::current()->is_Java_thread(), i * delay);
 624 
 625         // check the actual thread state instead of what we saved above
 626         if (thread_state() != _thread_in_native_trans) {
 627           // the thread has transitioned to another thread state so
 628           // try all the checks (except this one) one more time.
 629           do_trans_retry = true;
 630           break;
 631         }
 632       } // end retry loop
 633 
 634 
 635     }
 636   } while (do_trans_retry);
 637 
 638   *bits |= 0x00000010;
 639   return false;
 640 }
 641 
 642 // Wait for an external suspend request to complete (or be cancelled).
 643 // Returns true if the thread is externally suspended and false otherwise.
 644 //
 645 bool JavaThread::wait_for_ext_suspend_completion(int retries, int delay,
 646                                                  uint32_t *bits) {
 647   TraceSuspendDebugBits tsdb(this, true /* is_wait */,
 648                              false /* !called_by_wait */, bits);
 649 
 650   // local flag copies to minimize SR_lock hold time
 651   bool is_suspended;
 652   bool pending;
 653   uint32_t reset_bits;
 654 
 655   // set a marker so is_ext_suspend_completed() knows we are the caller
 656   *bits |= 0x00010000;
 657 
 658   // We use reset_bits to reinitialize the bits value at the top of
 659   // each retry loop. This allows the caller to make use of any
 660   // unused bits for their own marking purposes.
 661   reset_bits = *bits;
 662 
 663   {
 664     MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
 665     is_suspended = is_ext_suspend_completed(true /* called_by_wait */,
 666                                             delay, bits);
 667     pending = is_external_suspend();
 668   }
 669   // must release SR_lock to allow suspension to complete
 670 
 671   if (!pending) {
 672     // A cancelled suspend request is the only false return from
 673     // is_ext_suspend_completed() that keeps us from entering the
 674     // retry loop.
 675     *bits |= 0x00020000;
 676     return false;
 677   }
 678 
 679   if (is_suspended) {
 680     *bits |= 0x00040000;
 681     return true;
 682   }
 683 
 684   for (int i = 1; i <= retries; i++) {
 685     *bits = reset_bits;  // reinit to only track last retry
 686 
 687     // We used to do an "os::yield_all(i)" call here with the intention
 688     // that yielding would increase on each retry. However, the parameter
 689     // is ignored on Linux which means the yield didn't scale up. Waiting
 690     // on the SR_lock below provides a much more predictable scale up for
 691     // the delay. It also provides a simple/direct point to check for any
 692     // safepoint requests from the VMThread
 693 
 694     {
 695       MutexLocker ml(SR_lock());
 696       // wait with safepoint check (if we're a JavaThread - the WatcherThread
 697       // can also call this)  and increase delay with each retry
 698       SR_lock()->wait(!Thread::current()->is_Java_thread(), i * delay);
 699 
 700       is_suspended = is_ext_suspend_completed(true /* called_by_wait */,
 701                                               delay, bits);
 702 
 703       // It is possible for the external suspend request to be cancelled
 704       // (by a resume) before the actual suspend operation is completed.
 705       // Refresh our local copy to see if we still need to wait.
 706       pending = is_external_suspend();
 707     }
 708 
 709     if (!pending) {
 710       // A cancelled suspend request is the only false return from
 711       // is_ext_suspend_completed() that keeps us from staying in the
 712       // retry loop.
 713       *bits |= 0x00080000;
 714       return false;
 715     }
 716 
 717     if (is_suspended) {
 718       *bits |= 0x00100000;
 719       return true;
 720     }
 721   } // end retry loop
 722 
 723   // thread did not suspend after all our retries
 724   *bits |= 0x00200000;
 725   return false;
 726 }
 727 
 728 #ifndef PRODUCT
 729 void JavaThread::record_jump(address target, address instr, const char* file,
 730                              int line) {
 731 
 732   // This should not need to be atomic as the only way for simultaneous
 733   // updates is via interrupts. Even then this should be rare or non-existent
 734   // and we don't care that much anyway.
 735 
 736   int index = _jmp_ring_index;
 737   _jmp_ring_index = (index + 1) & (jump_ring_buffer_size - 1);
 738   _jmp_ring[index]._target = (intptr_t) target;
 739   _jmp_ring[index]._instruction = (intptr_t) instr;
 740   _jmp_ring[index]._file = file;
 741   _jmp_ring[index]._line = line;
 742 }
 743 #endif // PRODUCT
 744 
 745 // Called by flat profiler
 746 // Callers have already called wait_for_ext_suspend_completion
 747 // The assertion for that is currently too complex to put here:
 748 bool JavaThread::profile_last_Java_frame(frame* _fr) {
 749   bool gotframe = false;
 750   // self suspension saves needed state.
 751   if (has_last_Java_frame() && _anchor.walkable()) {
 752     *_fr = pd_last_frame();
 753     gotframe = true;
 754   }
 755   return gotframe;
 756 }
 757 
 758 void Thread::interrupt(Thread* thread) {
 759   debug_only(check_for_dangling_thread_pointer(thread);)
 760   os::interrupt(thread);
 761 }
 762 
 763 bool Thread::is_interrupted(Thread* thread, bool clear_interrupted) {
 764   debug_only(check_for_dangling_thread_pointer(thread);)
 765   // Note:  If clear_interrupted==false, this simply fetches and
 766   // returns the value of the field osthread()->interrupted().
 767   return os::is_interrupted(thread, clear_interrupted);
 768 }
 769 
 770 
 771 // GC Support
 772 bool Thread::claim_oops_do_par_case(int strong_roots_parity) {
 773   jint thread_parity = _oops_do_parity;
 774   if (thread_parity != strong_roots_parity) {
 775     jint res = Atomic::cmpxchg(strong_roots_parity, &_oops_do_parity, thread_parity);
 776     if (res == thread_parity) {
 777       return true;
 778     } else {
 779       guarantee(res == strong_roots_parity, "Or else what?");
 780       return false;
 781     }
 782   }
 783   return false;
 784 }
 785 
 786 void Thread::oops_do(OopClosure* f, CodeBlobClosure* cf) {
 787   active_handles()->oops_do(f);
 788   // Do oop for ThreadShadow
 789   f->do_oop((oop*)&_pending_exception);
 790   handle_area()->oops_do(f);
 791 }
 792 
 793 void Thread::metadata_handles_do(void f(Metadata*)) {
 794   // Only walk the Handles in Thread.
 795   if (metadata_handles() != NULL) {
 796     for (int i = 0; i< metadata_handles()->length(); i++) {
 797       f(metadata_handles()->at(i));
 798     }
 799   }
 800 }
 801 
 802 void Thread::print_on(outputStream* st) const {
 803   // get_priority assumes osthread initialized
 804   if (osthread() != NULL) {
 805     int os_prio;
 806     if (os::get_native_priority(this, &os_prio) == OS_OK) {
 807       st->print("os_prio=%d ", os_prio);
 808     }
 809     st->print("tid=" INTPTR_FORMAT " ", p2i(this));
 810     ext().print_on(st);
 811     osthread()->print_on(st);
 812   }
 813   debug_only(if (WizardMode) print_owned_locks_on(st);)
 814 }
 815 
 816 // Thread::print_on_error() is called by fatal error handler. Don't use
 817 // any lock or allocate memory.
 818 void Thread::print_on_error(outputStream* st, char* buf, int buflen) const {
 819   assert(!(is_Compiler_thread() || is_Java_thread()), "Can't call name() here if it allocates");
 820 
 821   if (is_VM_thread())                 { st->print("VMThread"); }
 822   else if (is_GC_task_thread())       { st->print("GCTaskThread"); }
 823   else if (is_Watcher_thread())       { st->print("WatcherThread"); }
 824   else if (is_ConcurrentGC_thread())  { st->print("ConcurrentGCThread"); }
 825   else                                { st->print("Thread"); }
 826 
 827   if (is_Named_thread()) {
 828     st->print(" \"%s\"", name());
 829   }
 830 
 831   st->print(" [stack: " PTR_FORMAT "," PTR_FORMAT "]",
 832             p2i(stack_end()), p2i(stack_base()));
 833 
 834   if (osthread()) {
 835     st->print(" [id=%d]", osthread()->thread_id());
 836   }
 837 }
 838 
 839 #ifdef ASSERT
 840 void Thread::print_owned_locks_on(outputStream* st) const {
 841   Monitor *cur = _owned_locks;
 842   if (cur == NULL) {
 843     st->print(" (no locks) ");
 844   } else {
 845     st->print_cr(" Locks owned:");
 846     while (cur) {
 847       cur->print_on(st);
 848       cur = cur->next();
 849     }
 850   }
 851 }
 852 
 853 static int ref_use_count  = 0;
 854 
 855 bool Thread::owns_locks_but_compiled_lock() const {
 856   for (Monitor *cur = _owned_locks; cur; cur = cur->next()) {
 857     if (cur != Compile_lock) return true;
 858   }
 859   return false;
 860 }
 861 
 862 
 863 #endif
 864 
 865 #ifndef PRODUCT
 866 
 867 // The flag: potential_vm_operation notifies if this particular safepoint state could potential
 868 // invoke the vm-thread (i.e., and oop allocation). In that case, we also have to make sure that
 869 // no threads which allow_vm_block's are held
 870 void Thread::check_for_valid_safepoint_state(bool potential_vm_operation) {
 871   // Check if current thread is allowed to block at a safepoint
 872   if (!(_allow_safepoint_count == 0)) {
 873     fatal("Possible safepoint reached by thread that does not allow it");
 874   }
 875   if (is_Java_thread() && ((JavaThread*)this)->thread_state() != _thread_in_vm) {
 876     fatal("LEAF method calling lock?");
 877   }
 878 
 879 #ifdef ASSERT
 880   if (potential_vm_operation && is_Java_thread()
 881       && !Universe::is_bootstrapping()) {
 882     // Make sure we do not hold any locks that the VM thread also uses.
 883     // This could potentially lead to deadlocks
 884     for (Monitor *cur = _owned_locks; cur; cur = cur->next()) {
 885       // Threads_lock is special, since the safepoint synchronization will not start before this is
 886       // acquired. Hence, a JavaThread cannot be holding it at a safepoint. So is VMOperationRequest_lock,
 887       // since it is used to transfer control between JavaThreads and the VMThread
 888       // Do not *exclude* any locks unless you are absolutely sure it is correct. Ask someone else first!
 889       if ((cur->allow_vm_block() &&
 890            cur != Threads_lock &&
 891            cur != Compile_lock &&               // Temporary: should not be necessary when we get separate compilation
 892            cur != VMOperationRequest_lock &&
 893            cur != VMOperationQueue_lock) ||
 894            cur->rank() == Mutex::special) {
 895         fatal("Thread holding lock at safepoint that vm can block on: %s", cur->name());
 896       }
 897     }
 898   }
 899 
 900   if (GCALotAtAllSafepoints) {
 901     // We could enter a safepoint here and thus have a gc
 902     InterfaceSupport::check_gc_alot();
 903   }
 904 #endif
 905 }
 906 #endif
 907 
 908 bool Thread::is_in_stack(address adr) const {
 909   assert(Thread::current() == this, "is_in_stack can only be called from current thread");
 910   address end = os::current_stack_pointer();
 911   // Allow non Java threads to call this without stack_base
 912   if (_stack_base == NULL) return true;
 913   if (stack_base() >= adr && adr >= end) return true;
 914 
 915   return false;
 916 }
 917 
 918 bool Thread::is_in_usable_stack(address adr) const {
 919   size_t stack_guard_size = os::uses_stack_guard_pages() ? JavaThread::stack_guard_zone_size() : 0;
 920   size_t usable_stack_size = _stack_size - stack_guard_size;
 921 
 922   return ((adr < stack_base()) && (adr >= stack_base() - usable_stack_size));
 923 }
 924 
 925 
 926 // We had to move these methods here, because vm threads get into ObjectSynchronizer::enter
 927 // However, there is a note in JavaThread::is_lock_owned() about the VM threads not being
 928 // used for compilation in the future. If that change is made, the need for these methods
 929 // should be revisited, and they should be removed if possible.
 930 
 931 bool Thread::is_lock_owned(address adr) const {
 932   return on_local_stack(adr);
 933 }
 934 
 935 bool Thread::set_as_starting_thread() {
 936   // NOTE: this must be called inside the main thread.
 937   return os::create_main_thread((JavaThread*)this);
 938 }
 939 
 940 static void initialize_class(Symbol* class_name, TRAPS) {
 941   Klass* klass = SystemDictionary::resolve_or_fail(class_name, true, CHECK);
 942   InstanceKlass::cast(klass)->initialize(CHECK);
 943 }
 944 
 945 
 946 // Creates the initial ThreadGroup
 947 static Handle create_initial_thread_group(TRAPS) {
 948   Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_ThreadGroup(), true, CHECK_NH);
 949   instanceKlassHandle klass (THREAD, k);
 950 
 951   Handle system_instance = klass->allocate_instance_handle(CHECK_NH);
 952   {
 953     JavaValue result(T_VOID);
 954     JavaCalls::call_special(&result,
 955                             system_instance,
 956                             klass,
 957                             vmSymbols::object_initializer_name(),
 958                             vmSymbols::void_method_signature(),
 959                             CHECK_NH);
 960   }
 961   Universe::set_system_thread_group(system_instance());
 962 
 963   Handle main_instance = klass->allocate_instance_handle(CHECK_NH);
 964   {
 965     JavaValue result(T_VOID);
 966     Handle string = java_lang_String::create_from_str("main", CHECK_NH);
 967     JavaCalls::call_special(&result,
 968                             main_instance,
 969                             klass,
 970                             vmSymbols::object_initializer_name(),
 971                             vmSymbols::threadgroup_string_void_signature(),
 972                             system_instance,
 973                             string,
 974                             CHECK_NH);
 975   }
 976   return main_instance;
 977 }
 978 
 979 // Creates the initial Thread
 980 static oop create_initial_thread(Handle thread_group, JavaThread* thread,
 981                                  TRAPS) {
 982   Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_Thread(), true, CHECK_NULL);
 983   instanceKlassHandle klass (THREAD, k);
 984   instanceHandle thread_oop = klass->allocate_instance_handle(CHECK_NULL);
 985 
 986   java_lang_Thread::set_thread(thread_oop(), thread);
 987   java_lang_Thread::set_priority(thread_oop(), NormPriority);
 988   thread->set_threadObj(thread_oop());
 989 
 990   Handle string = java_lang_String::create_from_str("main", CHECK_NULL);
 991 
 992   JavaValue result(T_VOID);
 993   JavaCalls::call_special(&result, thread_oop,
 994                           klass,
 995                           vmSymbols::object_initializer_name(),
 996                           vmSymbols::threadgroup_string_void_signature(),
 997                           thread_group,
 998                           string,
 999                           CHECK_NULL);
1000   return thread_oop();
1001 }
1002 
1003 char java_runtime_name[128] = "";
1004 char java_runtime_version[128] = "";
1005 
1006 // extract the JRE name from java.lang.VersionProps.java_runtime_name
1007 static const char* get_java_runtime_name(TRAPS) {
1008   Klass* k = SystemDictionary::find(vmSymbols::java_lang_VersionProps(),
1009                                     Handle(), Handle(), CHECK_AND_CLEAR_NULL);
1010   fieldDescriptor fd;
1011   bool found = k != NULL &&
1012                InstanceKlass::cast(k)->find_local_field(vmSymbols::java_runtime_name_name(),
1013                                                         vmSymbols::string_signature(), &fd);
1014   if (found) {
1015     oop name_oop = k->java_mirror()->obj_field(fd.offset());
1016     if (name_oop == NULL) {
1017       return NULL;
1018     }
1019     const char* name = java_lang_String::as_utf8_string(name_oop,
1020                                                         java_runtime_name,
1021                                                         sizeof(java_runtime_name));
1022     return name;
1023   } else {
1024     return NULL;
1025   }
1026 }
1027 
1028 // extract the JRE version from java.lang.VersionProps.java_runtime_version
1029 static const char* get_java_runtime_version(TRAPS) {
1030   Klass* k = SystemDictionary::find(vmSymbols::java_lang_VersionProps(),
1031                                     Handle(), Handle(), CHECK_AND_CLEAR_NULL);
1032   fieldDescriptor fd;
1033   bool found = k != NULL &&
1034                InstanceKlass::cast(k)->find_local_field(vmSymbols::java_runtime_version_name(),
1035                                                         vmSymbols::string_signature(), &fd);
1036   if (found) {
1037     oop name_oop = k->java_mirror()->obj_field(fd.offset());
1038     if (name_oop == NULL) {
1039       return NULL;
1040     }
1041     const char* name = java_lang_String::as_utf8_string(name_oop,
1042                                                         java_runtime_version,
1043                                                         sizeof(java_runtime_version));
1044     return name;
1045   } else {
1046     return NULL;
1047   }
1048 }
1049 
1050 // General purpose hook into Java code, run once when the VM is initialized.
1051 // The Java library method itself may be changed independently from the VM.
1052 static void call_postVMInitHook(TRAPS) {
1053   Klass* k = SystemDictionary::resolve_or_null(vmSymbols::jdk_internal_vm_PostVMInitHook(), THREAD);
1054   instanceKlassHandle klass (THREAD, k);
1055   if (klass.not_null()) {
1056     JavaValue result(T_VOID);
1057     JavaCalls::call_static(&result, klass, vmSymbols::run_method_name(),
1058                            vmSymbols::void_method_signature(),
1059                            CHECK);
1060   }
1061 }
1062 
1063 static void reset_vm_info_property(TRAPS) {
1064   // the vm info string
1065   ResourceMark rm(THREAD);
1066   const char *vm_info = VM_Version::vm_info_string();
1067 
1068   // java.lang.System class
1069   Klass* k =  SystemDictionary::resolve_or_fail(vmSymbols::java_lang_System(), true, CHECK);
1070   instanceKlassHandle klass (THREAD, k);
1071 
1072   // setProperty arguments
1073   Handle key_str    = java_lang_String::create_from_str("java.vm.info", CHECK);
1074   Handle value_str  = java_lang_String::create_from_str(vm_info, CHECK);
1075 
1076   // return value
1077   JavaValue r(T_OBJECT);
1078 
1079   // public static String setProperty(String key, String value);
1080   JavaCalls::call_static(&r,
1081                          klass,
1082                          vmSymbols::setProperty_name(),
1083                          vmSymbols::string_string_string_signature(),
1084                          key_str,
1085                          value_str,
1086                          CHECK);
1087 }
1088 
1089 
1090 void JavaThread::allocate_threadObj(Handle thread_group, const char* thread_name,
1091                                     bool daemon, TRAPS) {
1092   assert(thread_group.not_null(), "thread group should be specified");
1093   assert(threadObj() == NULL, "should only create Java thread object once");
1094 
1095   Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_Thread(), true, CHECK);
1096   instanceKlassHandle klass (THREAD, k);
1097   instanceHandle thread_oop = klass->allocate_instance_handle(CHECK);
1098 
1099   java_lang_Thread::set_thread(thread_oop(), this);
1100   java_lang_Thread::set_priority(thread_oop(), NormPriority);
1101   set_threadObj(thread_oop());
1102 
1103   JavaValue result(T_VOID);
1104   if (thread_name != NULL) {
1105     Handle name = java_lang_String::create_from_str(thread_name, CHECK);
1106     // Thread gets assigned specified name and null target
1107     JavaCalls::call_special(&result,
1108                             thread_oop,
1109                             klass,
1110                             vmSymbols::object_initializer_name(),
1111                             vmSymbols::threadgroup_string_void_signature(),
1112                             thread_group, // Argument 1
1113                             name,         // Argument 2
1114                             THREAD);
1115   } else {
1116     // Thread gets assigned name "Thread-nnn" and null target
1117     // (java.lang.Thread doesn't have a constructor taking only a ThreadGroup argument)
1118     JavaCalls::call_special(&result,
1119                             thread_oop,
1120                             klass,
1121                             vmSymbols::object_initializer_name(),
1122                             vmSymbols::threadgroup_runnable_void_signature(),
1123                             thread_group, // Argument 1
1124                             Handle(),     // Argument 2
1125                             THREAD);
1126   }
1127 
1128 
1129   if (daemon) {
1130     java_lang_Thread::set_daemon(thread_oop());
1131   }
1132 
1133   if (HAS_PENDING_EXCEPTION) {
1134     return;
1135   }
1136 
1137   KlassHandle group(THREAD, SystemDictionary::ThreadGroup_klass());
1138   Handle threadObj(THREAD, this->threadObj());
1139 
1140   JavaCalls::call_special(&result,
1141                           thread_group,
1142                           group,
1143                           vmSymbols::add_method_name(),
1144                           vmSymbols::thread_void_signature(),
1145                           threadObj,          // Arg 1
1146                           THREAD);
1147 }
1148 
1149 // NamedThread --  non-JavaThread subclasses with multiple
1150 // uniquely named instances should derive from this.
1151 NamedThread::NamedThread() : Thread() {
1152   _name = NULL;
1153   _processed_thread = NULL;
1154   _gc_id = GCId::undefined();
1155 }
1156 
1157 NamedThread::~NamedThread() {
1158   if (_name != NULL) {
1159     FREE_C_HEAP_ARRAY(char, _name);
1160     _name = NULL;
1161   }
1162 }
1163 
1164 void NamedThread::set_name(const char* format, ...) {
1165   guarantee(_name == NULL, "Only get to set name once.");
1166   _name = NEW_C_HEAP_ARRAY(char, max_name_len, mtThread);
1167   guarantee(_name != NULL, "alloc failure");
1168   va_list ap;
1169   va_start(ap, format);
1170   jio_vsnprintf(_name, max_name_len, format, ap);
1171   va_end(ap);
1172 }
1173 
1174 void NamedThread::initialize_named_thread() {
1175   set_native_thread_name(name());
1176 }
1177 
1178 void NamedThread::print_on(outputStream* st) const {
1179   st->print("\"%s\" ", name());
1180   Thread::print_on(st);
1181   st->cr();
1182 }
1183 
1184 
1185 // ======= WatcherThread ========
1186 
1187 // The watcher thread exists to simulate timer interrupts.  It should
1188 // be replaced by an abstraction over whatever native support for
1189 // timer interrupts exists on the platform.
1190 
1191 WatcherThread* WatcherThread::_watcher_thread   = NULL;
1192 bool WatcherThread::_startable = false;
1193 volatile bool  WatcherThread::_should_terminate = false;
1194 
1195 WatcherThread::WatcherThread() : Thread(), _crash_protection(NULL) {
1196   assert(watcher_thread() == NULL, "we can only allocate one WatcherThread");
1197   if (os::create_thread(this, os::watcher_thread)) {
1198     _watcher_thread = this;
1199 
1200     // Set the watcher thread to the highest OS priority which should not be
1201     // used, unless a Java thread with priority java.lang.Thread.MAX_PRIORITY
1202     // is created. The only normal thread using this priority is the reference
1203     // handler thread, which runs for very short intervals only.
1204     // If the VMThread's priority is not lower than the WatcherThread profiling
1205     // will be inaccurate.
1206     os::set_priority(this, MaxPriority);
1207     if (!DisableStartThread) {
1208       os::start_thread(this);
1209     }
1210   }
1211 }
1212 
1213 int WatcherThread::sleep() const {
1214   // The WatcherThread does not participate in the safepoint protocol
1215   // for the PeriodicTask_lock because it is not a JavaThread.
1216   MutexLockerEx ml(PeriodicTask_lock, Mutex::_no_safepoint_check_flag);
1217 
1218   if (_should_terminate) {
1219     // check for termination before we do any housekeeping or wait
1220     return 0;  // we did not sleep.
1221   }
1222 
1223   // remaining will be zero if there are no tasks,
1224   // causing the WatcherThread to sleep until a task is
1225   // enrolled
1226   int remaining = PeriodicTask::time_to_wait();
1227   int time_slept = 0;
1228 
1229   // we expect this to timeout - we only ever get unparked when
1230   // we should terminate or when a new task has been enrolled
1231   OSThreadWaitState osts(this->osthread(), false /* not Object.wait() */);
1232 
1233   jlong time_before_loop = os::javaTimeNanos();
1234 
1235   while (true) {
1236     bool timedout = PeriodicTask_lock->wait(Mutex::_no_safepoint_check_flag,
1237                                             remaining);
1238     jlong now = os::javaTimeNanos();
1239 
1240     if (remaining == 0) {
1241       // if we didn't have any tasks we could have waited for a long time
1242       // consider the time_slept zero and reset time_before_loop
1243       time_slept = 0;
1244       time_before_loop = now;
1245     } else {
1246       // need to recalculate since we might have new tasks in _tasks
1247       time_slept = (int) ((now - time_before_loop) / 1000000);
1248     }
1249 
1250     // Change to task list or spurious wakeup of some kind
1251     if (timedout || _should_terminate) {
1252       break;
1253     }
1254 
1255     remaining = PeriodicTask::time_to_wait();
1256     if (remaining == 0) {
1257       // Last task was just disenrolled so loop around and wait until
1258       // another task gets enrolled
1259       continue;
1260     }
1261 
1262     remaining -= time_slept;
1263     if (remaining <= 0) {
1264       break;
1265     }
1266   }
1267 
1268   return time_slept;
1269 }
1270 
1271 void WatcherThread::run() {
1272   assert(this == watcher_thread(), "just checking");
1273 
1274   this->record_stack_base_and_size();
1275   this->set_native_thread_name(this->name());
1276   this->set_active_handles(JNIHandleBlock::allocate_block());
1277   while (true) {
1278     assert(watcher_thread() == Thread::current(), "thread consistency check");
1279     assert(watcher_thread() == this, "thread consistency check");
1280 
1281     // Calculate how long it'll be until the next PeriodicTask work
1282     // should be done, and sleep that amount of time.
1283     int time_waited = sleep();
1284 
1285     if (is_error_reported()) {
1286       // A fatal error has happened, the error handler(VMError::report_and_die)
1287       // should abort JVM after creating an error log file. However in some
1288       // rare cases, the error handler itself might deadlock. Here we try to
1289       // kill JVM if the fatal error handler fails to abort in 2 minutes.
1290       //
1291       // This code is in WatcherThread because WatcherThread wakes up
1292       // periodically so the fatal error handler doesn't need to do anything;
1293       // also because the WatcherThread is less likely to crash than other
1294       // threads.
1295 
1296       for (;;) {
1297         if (!ShowMessageBoxOnError
1298             && (OnError == NULL || OnError[0] == '\0')
1299             && Arguments::abort_hook() == NULL) {
1300           os::sleep(this, (jlong)ErrorLogTimeout * 1000, false); // in seconds
1301           fdStream err(defaultStream::output_fd());
1302           err.print_raw_cr("# [ timer expired, abort... ]");
1303           // skip atexit/vm_exit/vm_abort hooks
1304           os::die();
1305         }
1306 
1307         // Wake up 5 seconds later, the fatal handler may reset OnError or
1308         // ShowMessageBoxOnError when it is ready to abort.
1309         os::sleep(this, 5 * 1000, false);
1310       }
1311     }
1312 
1313     if (_should_terminate) {
1314       // check for termination before posting the next tick
1315       break;
1316     }
1317 
1318     PeriodicTask::real_time_tick(time_waited);
1319   }
1320 
1321   // Signal that it is terminated
1322   {
1323     MutexLockerEx mu(Terminator_lock, Mutex::_no_safepoint_check_flag);
1324     _watcher_thread = NULL;
1325     Terminator_lock->notify();
1326   }
1327 }
1328 
1329 void WatcherThread::start() {
1330   assert(PeriodicTask_lock->owned_by_self(), "PeriodicTask_lock required");
1331 
1332   if (watcher_thread() == NULL && _startable) {
1333     _should_terminate = false;
1334     // Create the single instance of WatcherThread
1335     new WatcherThread();
1336   }
1337 }
1338 
1339 void WatcherThread::make_startable() {
1340   assert(PeriodicTask_lock->owned_by_self(), "PeriodicTask_lock required");
1341   _startable = true;
1342 }
1343 
1344 void WatcherThread::stop() {
1345   {
1346     // Follow normal safepoint aware lock enter protocol since the
1347     // WatcherThread is stopped by another JavaThread.
1348     MutexLocker ml(PeriodicTask_lock);
1349     _should_terminate = true;
1350 
1351     WatcherThread* watcher = watcher_thread();
1352     if (watcher != NULL) {
1353       // unpark the WatcherThread so it can see that it should terminate
1354       watcher->unpark();
1355     }
1356   }
1357 
1358   MutexLocker mu(Terminator_lock);
1359 
1360   while (watcher_thread() != NULL) {
1361     // This wait should make safepoint checks, wait without a timeout,
1362     // and wait as a suspend-equivalent condition.
1363     //
1364     // Note: If the FlatProfiler is running, then this thread is waiting
1365     // for the WatcherThread to terminate and the WatcherThread, via the
1366     // FlatProfiler task, is waiting for the external suspend request on
1367     // this thread to complete. wait_for_ext_suspend_completion() will
1368     // eventually timeout, but that takes time. Making this wait a
1369     // suspend-equivalent condition solves that timeout problem.
1370     //
1371     Terminator_lock->wait(!Mutex::_no_safepoint_check_flag, 0,
1372                           Mutex::_as_suspend_equivalent_flag);
1373   }
1374 }
1375 
1376 void WatcherThread::unpark() {
1377   assert(PeriodicTask_lock->owned_by_self(), "PeriodicTask_lock required");
1378   PeriodicTask_lock->notify();
1379 }
1380 
1381 void WatcherThread::print_on(outputStream* st) const {
1382   st->print("\"%s\" ", name());
1383   Thread::print_on(st);
1384   st->cr();
1385 }
1386 
1387 // ======= JavaThread ========
1388 
1389 #if INCLUDE_JVMCI
1390 
1391 jlong* JavaThread::_jvmci_old_thread_counters;
1392 
1393 bool jvmci_counters_include(JavaThread* thread) {
1394   oop threadObj = thread->threadObj();
1395   return !JVMCICountersExcludeCompiler || !thread->is_Compiler_thread();
1396 }
1397 
1398 void JavaThread::collect_counters(typeArrayOop array) {
1399   if (JVMCICounterSize > 0) {
1400     MutexLocker tl(Threads_lock);
1401     for (int i = 0; i < array->length(); i++) {
1402       array->long_at_put(i, _jvmci_old_thread_counters[i]);
1403     }
1404     for (JavaThread* tp = Threads::first(); tp != NULL; tp = tp->next()) {
1405       if (jvmci_counters_include(tp)) {
1406         for (int i = 0; i < array->length(); i++) {
1407           array->long_at_put(i, array->long_at(i) + tp->_jvmci_counters[i]);
1408         }
1409       }
1410     }
1411   }
1412 }
1413 
1414 #endif // INCLUDE_JVMCI
1415 
1416 // A JavaThread is a normal Java thread
1417 
1418 void JavaThread::initialize() {
1419   // Initialize fields
1420 
1421   set_saved_exception_pc(NULL);
1422   set_threadObj(NULL);
1423   _anchor.clear();
1424   set_entry_point(NULL);
1425   set_jni_functions(jni_functions());
1426   set_callee_target(NULL);
1427   set_vm_result(NULL);
1428   set_vm_result_2(NULL);
1429   set_vframe_array_head(NULL);
1430   set_vframe_array_last(NULL);
1431   set_deferred_locals(NULL);
1432   set_deopt_mark(NULL);
1433   set_deopt_compiled_method(NULL);
1434   clear_must_deopt_id();
1435   set_monitor_chunks(NULL);
1436   set_next(NULL);
1437   set_thread_state(_thread_new);
1438   _terminated = _not_terminated;
1439   _privileged_stack_top = NULL;
1440   _array_for_gc = NULL;
1441   _suspend_equivalent = false;
1442   _in_deopt_handler = 0;
1443   _doing_unsafe_access = false;
1444   _stack_guard_state = stack_guard_unused;
1445 #if INCLUDE_JVMCI
1446   _pending_monitorenter = false;
1447   _pending_deoptimization = -1;
1448   _pending_failed_speculation = NULL;
1449   _pending_transfer_to_interpreter = false;
1450   _adjusting_comp_level = false;
1451   _jvmci._alternate_call_target = NULL;
1452   assert(_jvmci._implicit_exception_pc == NULL, "must be");
1453   if (JVMCICounterSize > 0) {
1454     _jvmci_counters = NEW_C_HEAP_ARRAY(jlong, JVMCICounterSize, mtInternal);
1455     memset(_jvmci_counters, 0, sizeof(jlong) * JVMCICounterSize);
1456   } else {
1457     _jvmci_counters = NULL;
1458   }
1459 #endif // INCLUDE_JVMCI
1460   _reserved_stack_activation = NULL;  // stack base not known yet
1461   (void)const_cast<oop&>(_exception_oop = oop(NULL));
1462   _exception_pc  = 0;
1463   _exception_handler_pc = 0;
1464   _is_method_handle_return = 0;
1465   _jvmti_thread_state= NULL;
1466   _should_post_on_exceptions_flag = JNI_FALSE;
1467   _jvmti_get_loaded_classes_closure = NULL;
1468   _interp_only_mode    = 0;
1469   _special_runtime_exit_condition = _no_async_condition;
1470   _pending_async_exception = NULL;
1471   _thread_stat = NULL;
1472   _thread_stat = new ThreadStatistics();
1473   _blocked_on_compilation = false;
1474   _jni_active_critical = 0;
1475   _pending_jni_exception_check_fn = NULL;
1476   _do_not_unlock_if_synchronized = false;
1477   _cached_monitor_info = NULL;
1478   _parker = Parker::Allocate(this);
1479 
1480 #ifndef PRODUCT
1481   _jmp_ring_index = 0;
1482   for (int ji = 0; ji < jump_ring_buffer_size; ji++) {
1483     record_jump(NULL, NULL, NULL, 0);
1484   }
1485 #endif // PRODUCT
1486 
1487   set_thread_profiler(NULL);
1488   if (FlatProfiler::is_active()) {
1489     // This is where we would decide to either give each thread it's own profiler
1490     // or use one global one from FlatProfiler,
1491     // or up to some count of the number of profiled threads, etc.
1492     ThreadProfiler* pp = new ThreadProfiler();
1493     pp->engage();
1494     set_thread_profiler(pp);
1495   }
1496 
1497   // Setup safepoint state info for this thread
1498   ThreadSafepointState::create(this);
1499 
1500   debug_only(_java_call_counter = 0);
1501 
1502   // JVMTI PopFrame support
1503   _popframe_condition = popframe_inactive;
1504   _popframe_preserved_args = NULL;
1505   _popframe_preserved_args_size = 0;
1506   _frames_to_pop_failed_realloc = 0;
1507 
1508   pd_initialize();
1509 }
1510 
1511 #if INCLUDE_ALL_GCS
1512 SATBMarkQueueSet JavaThread::_satb_mark_queue_set;
1513 DirtyCardQueueSet JavaThread::_dirty_card_queue_set;
1514 #endif // INCLUDE_ALL_GCS
1515 
1516 JavaThread::JavaThread(bool is_attaching_via_jni) :
1517                        Thread()
1518 #if INCLUDE_ALL_GCS
1519                        , _satb_mark_queue(&_satb_mark_queue_set),
1520                        _dirty_card_queue(&_dirty_card_queue_set)
1521 #endif // INCLUDE_ALL_GCS
1522 {
1523   initialize();
1524   if (is_attaching_via_jni) {
1525     _jni_attach_state = _attaching_via_jni;
1526   } else {
1527     _jni_attach_state = _not_attaching_via_jni;
1528   }
1529   assert(deferred_card_mark().is_empty(), "Default MemRegion ctor");
1530 }
1531 
1532 bool JavaThread::reguard_stack(address cur_sp) {
1533   if (_stack_guard_state != stack_guard_yellow_reserved_disabled
1534       && _stack_guard_state != stack_guard_reserved_disabled) {
1535     return true; // Stack already guarded or guard pages not needed.
1536   }
1537 
1538   if (register_stack_overflow()) {
1539     // For those architectures which have separate register and
1540     // memory stacks, we must check the register stack to see if
1541     // it has overflowed.
1542     return false;
1543   }
1544 
1545   // Java code never executes within the yellow zone: the latter is only
1546   // there to provoke an exception during stack banging.  If java code
1547   // is executing there, either StackShadowPages should be larger, or
1548   // some exception code in c1, c2 or the interpreter isn't unwinding
1549   // when it should.
1550   guarantee(cur_sp > stack_reserved_zone_base(),
1551             "not enough space to reguard - increase StackShadowPages");
1552   if (_stack_guard_state == stack_guard_yellow_reserved_disabled) {
1553     enable_stack_yellow_reserved_zone();
1554     if (reserved_stack_activation() != stack_base()) {
1555       set_reserved_stack_activation(stack_base());
1556     }
1557   } else if (_stack_guard_state == stack_guard_reserved_disabled) {
1558     set_reserved_stack_activation(stack_base());
1559     enable_stack_reserved_zone();
1560   }
1561   return true;
1562 }
1563 
1564 bool JavaThread::reguard_stack(void) {
1565   return reguard_stack(os::current_stack_pointer());
1566 }
1567 
1568 
1569 void JavaThread::block_if_vm_exited() {
1570   if (_terminated == _vm_exited) {
1571     // _vm_exited is set at safepoint, and Threads_lock is never released
1572     // we will block here forever
1573     Threads_lock->lock_without_safepoint_check();
1574     ShouldNotReachHere();
1575   }
1576 }
1577 
1578 
1579 // Remove this ifdef when C1 is ported to the compiler interface.
1580 static void compiler_thread_entry(JavaThread* thread, TRAPS);
1581 static void sweeper_thread_entry(JavaThread* thread, TRAPS);
1582 
1583 JavaThread::JavaThread(ThreadFunction entry_point, size_t stack_sz) :
1584                        Thread()
1585 #if INCLUDE_ALL_GCS
1586                        , _satb_mark_queue(&_satb_mark_queue_set),
1587                        _dirty_card_queue(&_dirty_card_queue_set)
1588 #endif // INCLUDE_ALL_GCS
1589 {
1590   initialize();
1591   _jni_attach_state = _not_attaching_via_jni;
1592   set_entry_point(entry_point);
1593   // Create the native thread itself.
1594   // %note runtime_23
1595   os::ThreadType thr_type = os::java_thread;
1596   thr_type = entry_point == &compiler_thread_entry ? os::compiler_thread :
1597                                                      os::java_thread;
1598   os::create_thread(this, thr_type, stack_sz);
1599   // The _osthread may be NULL here because we ran out of memory (too many threads active).
1600   // We need to throw and OutOfMemoryError - however we cannot do this here because the caller
1601   // may hold a lock and all locks must be unlocked before throwing the exception (throwing
1602   // the exception consists of creating the exception object & initializing it, initialization
1603   // will leave the VM via a JavaCall and then all locks must be unlocked).
1604   //
1605   // The thread is still suspended when we reach here. Thread must be explicit started
1606   // by creator! Furthermore, the thread must also explicitly be added to the Threads list
1607   // by calling Threads:add. The reason why this is not done here, is because the thread
1608   // object must be fully initialized (take a look at JVM_Start)
1609 }
1610 
1611 JavaThread::~JavaThread() {
1612 
1613   // JSR166 -- return the parker to the free list
1614   Parker::Release(_parker);
1615   _parker = NULL;
1616 
1617   // Free any remaining  previous UnrollBlock
1618   vframeArray* old_array = vframe_array_last();
1619 
1620   if (old_array != NULL) {
1621     Deoptimization::UnrollBlock* old_info = old_array->unroll_block();
1622     old_array->set_unroll_block(NULL);
1623     delete old_info;
1624     delete old_array;
1625   }
1626 
1627   GrowableArray<jvmtiDeferredLocalVariableSet*>* deferred = deferred_locals();
1628   if (deferred != NULL) {
1629     // This can only happen if thread is destroyed before deoptimization occurs.
1630     assert(deferred->length() != 0, "empty array!");
1631     do {
1632       jvmtiDeferredLocalVariableSet* dlv = deferred->at(0);
1633       deferred->remove_at(0);
1634       // individual jvmtiDeferredLocalVariableSet are CHeapObj's
1635       delete dlv;
1636     } while (deferred->length() != 0);
1637     delete deferred;
1638   }
1639 
1640   // All Java related clean up happens in exit
1641   ThreadSafepointState::destroy(this);
1642   if (_thread_profiler != NULL) delete _thread_profiler;
1643   if (_thread_stat != NULL) delete _thread_stat;
1644 
1645 #if INCLUDE_JVMCI
1646   if (JVMCICounterSize > 0) {
1647     if (jvmci_counters_include(this)) {
1648       for (int i = 0; i < JVMCICounterSize; i++) {
1649         _jvmci_old_thread_counters[i] += _jvmci_counters[i];
1650       }
1651     }
1652     FREE_C_HEAP_ARRAY(jlong, _jvmci_counters);
1653   }
1654 #endif // INCLUDE_JVMCI
1655 }
1656 
1657 
1658 // The first routine called by a new Java thread
1659 void JavaThread::run() {
1660   // initialize thread-local alloc buffer related fields
1661   this->initialize_tlab();
1662 
1663   // used to test validity of stack trace backs
1664   this->record_base_of_stack_pointer();
1665 
1666   // Record real stack base and size.
1667   this->record_stack_base_and_size();
1668 
1669   this->create_stack_guard_pages();
1670 
1671   this->cache_global_variables();
1672 
1673   // Thread is now sufficient initialized to be handled by the safepoint code as being
1674   // in the VM. Change thread state from _thread_new to _thread_in_vm
1675   ThreadStateTransition::transition_and_fence(this, _thread_new, _thread_in_vm);
1676 
1677   assert(JavaThread::current() == this, "sanity check");
1678   assert(!Thread::current()->owns_locks(), "sanity check");
1679 
1680   DTRACE_THREAD_PROBE(start, this);
1681 
1682   // This operation might block. We call that after all safepoint checks for a new thread has
1683   // been completed.
1684   this->set_active_handles(JNIHandleBlock::allocate_block());
1685 
1686   if (JvmtiExport::should_post_thread_life()) {
1687     JvmtiExport::post_thread_start(this);
1688   }
1689 
1690   EventThreadStart event;
1691   if (event.should_commit()) {
1692     event.set_thread(THREAD_TRACE_ID(this));
1693     event.commit();
1694   }
1695 
1696   // We call another function to do the rest so we are sure that the stack addresses used
1697   // from there will be lower than the stack base just computed
1698   thread_main_inner();
1699 
1700   // Note, thread is no longer valid at this point!
1701 }
1702 
1703 
1704 void JavaThread::thread_main_inner() {
1705   assert(JavaThread::current() == this, "sanity check");
1706   assert(this->threadObj() != NULL, "just checking");
1707 
1708   // Execute thread entry point unless this thread has a pending exception
1709   // or has been stopped before starting.
1710   // Note: Due to JVM_StopThread we can have pending exceptions already!
1711   if (!this->has_pending_exception() &&
1712       !java_lang_Thread::is_stillborn(this->threadObj())) {
1713     {
1714       ResourceMark rm(this);
1715       this->set_native_thread_name(this->get_thread_name());
1716     }
1717     HandleMark hm(this);
1718     this->entry_point()(this, this);
1719   }
1720 
1721   DTRACE_THREAD_PROBE(stop, this);
1722 
1723   this->exit(false);
1724   delete this;
1725 }
1726 
1727 
1728 static void ensure_join(JavaThread* thread) {
1729   // We do not need to grap the Threads_lock, since we are operating on ourself.
1730   Handle threadObj(thread, thread->threadObj());
1731   assert(threadObj.not_null(), "java thread object must exist");
1732   ObjectLocker lock(threadObj, thread);
1733   // Ignore pending exception (ThreadDeath), since we are exiting anyway
1734   thread->clear_pending_exception();
1735   // Thread is exiting. So set thread_status field in  java.lang.Thread class to TERMINATED.
1736   java_lang_Thread::set_thread_status(threadObj(), java_lang_Thread::TERMINATED);
1737   // Clear the native thread instance - this makes isAlive return false and allows the join()
1738   // to complete once we've done the notify_all below
1739   java_lang_Thread::set_thread(threadObj(), NULL);
1740   lock.notify_all(thread);
1741   // Ignore pending exception (ThreadDeath), since we are exiting anyway
1742   thread->clear_pending_exception();
1743 }
1744 
1745 
1746 // For any new cleanup additions, please check to see if they need to be applied to
1747 // cleanup_failed_attach_current_thread as well.
1748 void JavaThread::exit(bool destroy_vm, ExitType exit_type) {
1749   assert(this == JavaThread::current(), "thread consistency check");
1750 
1751   HandleMark hm(this);
1752   Handle uncaught_exception(this, this->pending_exception());
1753   this->clear_pending_exception();
1754   Handle threadObj(this, this->threadObj());
1755   assert(threadObj.not_null(), "Java thread object should be created");
1756 
1757   if (get_thread_profiler() != NULL) {
1758     get_thread_profiler()->disengage();
1759     ResourceMark rm;
1760     get_thread_profiler()->print(get_thread_name());
1761   }
1762 
1763 
1764   // FIXIT: This code should be moved into else part, when reliable 1.2/1.3 check is in place
1765   {
1766     EXCEPTION_MARK;
1767 
1768     CLEAR_PENDING_EXCEPTION;
1769   }
1770   if (!destroy_vm) {
1771     if (uncaught_exception.not_null()) {
1772       EXCEPTION_MARK;
1773       // Call method Thread.dispatchUncaughtException().
1774       KlassHandle thread_klass(THREAD, SystemDictionary::Thread_klass());
1775       JavaValue result(T_VOID);
1776       JavaCalls::call_virtual(&result,
1777                               threadObj, thread_klass,
1778                               vmSymbols::dispatchUncaughtException_name(),
1779                               vmSymbols::throwable_void_signature(),
1780                               uncaught_exception,
1781                               THREAD);
1782       if (HAS_PENDING_EXCEPTION) {
1783         ResourceMark rm(this);
1784         jio_fprintf(defaultStream::error_stream(),
1785                     "\nException: %s thrown from the UncaughtExceptionHandler"
1786                     " in thread \"%s\"\n",
1787                     pending_exception()->klass()->external_name(),
1788                     get_thread_name());
1789         CLEAR_PENDING_EXCEPTION;
1790       }
1791     }
1792 
1793     // Called before the java thread exit since we want to read info
1794     // from java_lang_Thread object
1795     EventThreadEnd event;
1796     if (event.should_commit()) {
1797       event.set_thread(THREAD_TRACE_ID(this));
1798       event.commit();
1799     }
1800 
1801     // Call after last event on thread
1802     EVENT_THREAD_EXIT(this);
1803 
1804     // Call Thread.exit(). We try 3 times in case we got another Thread.stop during
1805     // the execution of the method. If that is not enough, then we don't really care. Thread.stop
1806     // is deprecated anyhow.
1807     if (!is_Compiler_thread()) {
1808       int count = 3;
1809       while (java_lang_Thread::threadGroup(threadObj()) != NULL && (count-- > 0)) {
1810         EXCEPTION_MARK;
1811         JavaValue result(T_VOID);
1812         KlassHandle thread_klass(THREAD, SystemDictionary::Thread_klass());
1813         JavaCalls::call_virtual(&result,
1814                                 threadObj, thread_klass,
1815                                 vmSymbols::exit_method_name(),
1816                                 vmSymbols::void_method_signature(),
1817                                 THREAD);
1818         CLEAR_PENDING_EXCEPTION;
1819       }
1820     }
1821     // notify JVMTI
1822     if (JvmtiExport::should_post_thread_life()) {
1823       JvmtiExport::post_thread_end(this);
1824     }
1825 
1826     // We have notified the agents that we are exiting, before we go on,
1827     // we must check for a pending external suspend request and honor it
1828     // in order to not surprise the thread that made the suspend request.
1829     while (true) {
1830       {
1831         MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
1832         if (!is_external_suspend()) {
1833           set_terminated(_thread_exiting);
1834           ThreadService::current_thread_exiting(this);
1835           break;
1836         }
1837         // Implied else:
1838         // Things get a little tricky here. We have a pending external
1839         // suspend request, but we are holding the SR_lock so we
1840         // can't just self-suspend. So we temporarily drop the lock
1841         // and then self-suspend.
1842       }
1843 
1844       ThreadBlockInVM tbivm(this);
1845       java_suspend_self();
1846 
1847       // We're done with this suspend request, but we have to loop around
1848       // and check again. Eventually we will get SR_lock without a pending
1849       // external suspend request and will be able to mark ourselves as
1850       // exiting.
1851     }
1852     // no more external suspends are allowed at this point
1853   } else {
1854     // before_exit() has already posted JVMTI THREAD_END events
1855   }
1856 
1857   // Notify waiters on thread object. This has to be done after exit() is called
1858   // on the thread (if the thread is the last thread in a daemon ThreadGroup the
1859   // group should have the destroyed bit set before waiters are notified).
1860   ensure_join(this);
1861   assert(!this->has_pending_exception(), "ensure_join should have cleared");
1862 
1863   // 6282335 JNI DetachCurrentThread spec states that all Java monitors
1864   // held by this thread must be released. The spec does not distinguish
1865   // between JNI-acquired and regular Java monitors. We can only see
1866   // regular Java monitors here if monitor enter-exit matching is broken.
1867   //
1868   // Optionally release any monitors for regular JavaThread exits. This
1869   // is provided as a work around for any bugs in monitor enter-exit
1870   // matching. This can be expensive so it is not enabled by default.
1871   //
1872   // ensure_join() ignores IllegalThreadStateExceptions, and so does
1873   // ObjectSynchronizer::release_monitors_owned_by_thread().
1874   if (exit_type == jni_detach || ObjectMonitor::Knob_ExitRelease) {
1875     // Sanity check even though JNI DetachCurrentThread() would have
1876     // returned JNI_ERR if there was a Java frame. JavaThread exit
1877     // should be done executing Java code by the time we get here.
1878     assert(!this->has_last_Java_frame(),
1879            "should not have a Java frame when detaching or exiting");
1880     ObjectSynchronizer::release_monitors_owned_by_thread(this);
1881     assert(!this->has_pending_exception(), "release_monitors should have cleared");
1882   }
1883 
1884   // These things needs to be done while we are still a Java Thread. Make sure that thread
1885   // is in a consistent state, in case GC happens
1886   assert(_privileged_stack_top == NULL, "must be NULL when we get here");
1887 
1888   if (active_handles() != NULL) {
1889     JNIHandleBlock* block = active_handles();
1890     set_active_handles(NULL);
1891     JNIHandleBlock::release_block(block);
1892   }
1893 
1894   if (free_handle_block() != NULL) {
1895     JNIHandleBlock* block = free_handle_block();
1896     set_free_handle_block(NULL);
1897     JNIHandleBlock::release_block(block);
1898   }
1899 
1900   // These have to be removed while this is still a valid thread.
1901   remove_stack_guard_pages();
1902 
1903   if (UseTLAB) {
1904     tlab().make_parsable(true);  // retire TLAB
1905   }
1906 
1907   if (JvmtiEnv::environments_might_exist()) {
1908     JvmtiExport::cleanup_thread(this);
1909   }
1910 
1911   // We must flush any deferred card marks before removing a thread from
1912   // the list of active threads.
1913   GC::gc()->heap()->flush_deferred_store_barrier(this);
1914   assert(deferred_card_mark().is_empty(), "Should have been flushed");
1915 
1916 #if INCLUDE_ALL_GCS
1917   // We must flush the G1-related buffers before removing a thread
1918   // from the list of active threads. We must do this after any deferred
1919   // card marks have been flushed (above) so that any entries that are
1920   // added to the thread's dirty card queue as a result are not lost.
1921   if (UseG1GC) {
1922     flush_barrier_queues();
1923   }
1924 #endif // INCLUDE_ALL_GCS
1925 
1926   log_info(os, thread)("JavaThread %s (tid: " UINTX_FORMAT ").",
1927     exit_type == JavaThread::normal_exit ? "exiting" : "detaching",
1928     os::current_thread_id());
1929 
1930   // Remove from list of active threads list, and notify VM thread if we are the last non-daemon thread
1931   Threads::remove(this);
1932 }
1933 
1934 #if INCLUDE_ALL_GCS
1935 // Flush G1-related queues.
1936 void JavaThread::flush_barrier_queues() {
1937   satb_mark_queue().flush();
1938   dirty_card_queue().flush();
1939 }
1940 
1941 void JavaThread::initialize_queues() {
1942   assert(!SafepointSynchronize::is_at_safepoint(),
1943          "we should not be at a safepoint");
1944 
1945   SATBMarkQueue& satb_queue = satb_mark_queue();
1946   SATBMarkQueueSet& satb_queue_set = satb_mark_queue_set();
1947   // The SATB queue should have been constructed with its active
1948   // field set to false.
1949   assert(!satb_queue.is_active(), "SATB queue should not be active");
1950   assert(satb_queue.is_empty(), "SATB queue should be empty");
1951   // If we are creating the thread during a marking cycle, we should
1952   // set the active field of the SATB queue to true.
1953   if (satb_queue_set.is_active()) {
1954     satb_queue.set_active(true);
1955   }
1956 
1957   DirtyCardQueue& dirty_queue = dirty_card_queue();
1958   // The dirty card queue should have been constructed with its
1959   // active field set to true.
1960   assert(dirty_queue.is_active(), "dirty card queue should be active");
1961 }
1962 #endif // INCLUDE_ALL_GCS
1963 
1964 void JavaThread::cleanup_failed_attach_current_thread() {
1965   if (get_thread_profiler() != NULL) {
1966     get_thread_profiler()->disengage();
1967     ResourceMark rm;
1968     get_thread_profiler()->print(get_thread_name());
1969   }
1970 
1971   if (active_handles() != NULL) {
1972     JNIHandleBlock* block = active_handles();
1973     set_active_handles(NULL);
1974     JNIHandleBlock::release_block(block);
1975   }
1976 
1977   if (free_handle_block() != NULL) {
1978     JNIHandleBlock* block = free_handle_block();
1979     set_free_handle_block(NULL);
1980     JNIHandleBlock::release_block(block);
1981   }
1982 
1983   // These have to be removed while this is still a valid thread.
1984   remove_stack_guard_pages();
1985 
1986   if (UseTLAB) {
1987     tlab().make_parsable(true);  // retire TLAB, if any
1988   }
1989 
1990 #if INCLUDE_ALL_GCS
1991   if (UseG1GC) {
1992     flush_barrier_queues();
1993   }
1994 #endif // INCLUDE_ALL_GCS
1995 
1996   Threads::remove(this);
1997   delete this;
1998 }
1999 
2000 
2001 
2002 
2003 JavaThread* JavaThread::active() {
2004   Thread* thread = Thread::current();
2005   if (thread->is_Java_thread()) {
2006     return (JavaThread*) thread;
2007   } else {
2008     assert(thread->is_VM_thread(), "this must be a vm thread");
2009     VM_Operation* op = ((VMThread*) thread)->vm_operation();
2010     JavaThread *ret=op == NULL ? NULL : (JavaThread *)op->calling_thread();
2011     assert(ret->is_Java_thread(), "must be a Java thread");
2012     return ret;
2013   }
2014 }
2015 
2016 bool JavaThread::is_lock_owned(address adr) const {
2017   if (Thread::is_lock_owned(adr)) return true;
2018 
2019   for (MonitorChunk* chunk = monitor_chunks(); chunk != NULL; chunk = chunk->next()) {
2020     if (chunk->contains(adr)) return true;
2021   }
2022 
2023   return false;
2024 }
2025 
2026 
2027 void JavaThread::add_monitor_chunk(MonitorChunk* chunk) {
2028   chunk->set_next(monitor_chunks());
2029   set_monitor_chunks(chunk);
2030 }
2031 
2032 void JavaThread::remove_monitor_chunk(MonitorChunk* chunk) {
2033   guarantee(monitor_chunks() != NULL, "must be non empty");
2034   if (monitor_chunks() == chunk) {
2035     set_monitor_chunks(chunk->next());
2036   } else {
2037     MonitorChunk* prev = monitor_chunks();
2038     while (prev->next() != chunk) prev = prev->next();
2039     prev->set_next(chunk->next());
2040   }
2041 }
2042 
2043 // JVM support.
2044 
2045 // Note: this function shouldn't block if it's called in
2046 // _thread_in_native_trans state (such as from
2047 // check_special_condition_for_native_trans()).
2048 void JavaThread::check_and_handle_async_exceptions(bool check_unsafe_error) {
2049 
2050   if (has_last_Java_frame() && has_async_condition()) {
2051     // If we are at a polling page safepoint (not a poll return)
2052     // then we must defer async exception because live registers
2053     // will be clobbered by the exception path. Poll return is
2054     // ok because the call we a returning from already collides
2055     // with exception handling registers and so there is no issue.
2056     // (The exception handling path kills call result registers but
2057     //  this is ok since the exception kills the result anyway).
2058 
2059     if (is_at_poll_safepoint()) {
2060       // if the code we are returning to has deoptimized we must defer
2061       // the exception otherwise live registers get clobbered on the
2062       // exception path before deoptimization is able to retrieve them.
2063       //
2064       RegisterMap map(this, false);
2065       frame caller_fr = last_frame().sender(&map);
2066       assert(caller_fr.is_compiled_frame(), "what?");
2067       if (caller_fr.is_deoptimized_frame()) {
2068         log_info(exceptions)("deferred async exception at compiled safepoint");
2069         return;
2070       }
2071     }
2072   }
2073 
2074   JavaThread::AsyncRequests condition = clear_special_runtime_exit_condition();
2075   if (condition == _no_async_condition) {
2076     // Conditions have changed since has_special_runtime_exit_condition()
2077     // was called:
2078     // - if we were here only because of an external suspend request,
2079     //   then that was taken care of above (or cancelled) so we are done
2080     // - if we were here because of another async request, then it has
2081     //   been cleared between the has_special_runtime_exit_condition()
2082     //   and now so again we are done
2083     return;
2084   }
2085 
2086   // Check for pending async. exception
2087   if (_pending_async_exception != NULL) {
2088     // Only overwrite an already pending exception, if it is not a threadDeath.
2089     if (!has_pending_exception() || !pending_exception()->is_a(SystemDictionary::ThreadDeath_klass())) {
2090 
2091       // We cannot call Exceptions::_throw(...) here because we cannot block
2092       set_pending_exception(_pending_async_exception, __FILE__, __LINE__);
2093 
2094       if (log_is_enabled(Info, exceptions)) {
2095         ResourceMark rm;
2096         outputStream* logstream = Log(exceptions)::info_stream();
2097         logstream->print("Async. exception installed at runtime exit (" INTPTR_FORMAT ")", p2i(this));
2098           if (has_last_Java_frame()) {
2099             frame f = last_frame();
2100            logstream->print(" (pc: " INTPTR_FORMAT " sp: " INTPTR_FORMAT " )", p2i(f.pc()), p2i(f.sp()));
2101           }
2102         logstream->print_cr(" of type: %s", _pending_async_exception->klass()->external_name());
2103       }
2104       _pending_async_exception = NULL;
2105       clear_has_async_exception();
2106     }
2107   }
2108 
2109   if (check_unsafe_error &&
2110       condition == _async_unsafe_access_error && !has_pending_exception()) {
2111     condition = _no_async_condition;  // done
2112     switch (thread_state()) {
2113     case _thread_in_vm: {
2114       JavaThread* THREAD = this;
2115       THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in an unsafe memory access operation");
2116     }
2117     case _thread_in_native: {
2118       ThreadInVMfromNative tiv(this);
2119       JavaThread* THREAD = this;
2120       THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in an unsafe memory access operation");
2121     }
2122     case _thread_in_Java: {
2123       ThreadInVMfromJava tiv(this);
2124       JavaThread* THREAD = this;
2125       THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in a recent unsafe memory access operation in compiled Java code");
2126     }
2127     default:
2128       ShouldNotReachHere();
2129     }
2130   }
2131 
2132   assert(condition == _no_async_condition || has_pending_exception() ||
2133          (!check_unsafe_error && condition == _async_unsafe_access_error),
2134          "must have handled the async condition, if no exception");
2135 }
2136 
2137 void JavaThread::handle_special_runtime_exit_condition(bool check_asyncs) {
2138   //
2139   // Check for pending external suspend. Internal suspend requests do
2140   // not use handle_special_runtime_exit_condition().
2141   // If JNIEnv proxies are allowed, don't self-suspend if the target
2142   // thread is not the current thread. In older versions of jdbx, jdbx
2143   // threads could call into the VM with another thread's JNIEnv so we
2144   // can be here operating on behalf of a suspended thread (4432884).
2145   bool do_self_suspend = is_external_suspend_with_lock();
2146   if (do_self_suspend && (!AllowJNIEnvProxy || this == JavaThread::current())) {
2147     //
2148     // Because thread is external suspended the safepoint code will count
2149     // thread as at a safepoint. This can be odd because we can be here
2150     // as _thread_in_Java which would normally transition to _thread_blocked
2151     // at a safepoint. We would like to mark the thread as _thread_blocked
2152     // before calling java_suspend_self like all other callers of it but
2153     // we must then observe proper safepoint protocol. (We can't leave
2154     // _thread_blocked with a safepoint in progress). However we can be
2155     // here as _thread_in_native_trans so we can't use a normal transition
2156     // constructor/destructor pair because they assert on that type of
2157     // transition. We could do something like:
2158     //
2159     // JavaThreadState state = thread_state();
2160     // set_thread_state(_thread_in_vm);
2161     // {
2162     //   ThreadBlockInVM tbivm(this);
2163     //   java_suspend_self()
2164     // }
2165     // set_thread_state(_thread_in_vm_trans);
2166     // if (safepoint) block;
2167     // set_thread_state(state);
2168     //
2169     // but that is pretty messy. Instead we just go with the way the
2170     // code has worked before and note that this is the only path to
2171     // java_suspend_self that doesn't put the thread in _thread_blocked
2172     // mode.
2173 
2174     frame_anchor()->make_walkable(this);
2175     java_suspend_self();
2176 
2177     // We might be here for reasons in addition to the self-suspend request
2178     // so check for other async requests.
2179   }
2180 
2181   if (check_asyncs) {
2182     check_and_handle_async_exceptions();
2183   }
2184 }
2185 
2186 void JavaThread::send_thread_stop(oop java_throwable)  {
2187   assert(Thread::current()->is_VM_thread(), "should be in the vm thread");
2188   assert(Threads_lock->is_locked(), "Threads_lock should be locked by safepoint code");
2189   assert(SafepointSynchronize::is_at_safepoint(), "all threads are stopped");
2190 
2191   // Do not throw asynchronous exceptions against the compiler thread
2192   // (the compiler thread should not be a Java thread -- fix in 1.4.2)
2193   if (!can_call_java()) return;
2194 
2195   {
2196     // Actually throw the Throwable against the target Thread - however
2197     // only if there is no thread death exception installed already.
2198     if (_pending_async_exception == NULL || !_pending_async_exception->is_a(SystemDictionary::ThreadDeath_klass())) {
2199       // If the topmost frame is a runtime stub, then we are calling into
2200       // OptoRuntime from compiled code. Some runtime stubs (new, monitor_exit..)
2201       // must deoptimize the caller before continuing, as the compiled  exception handler table
2202       // may not be valid
2203       if (has_last_Java_frame()) {
2204         frame f = last_frame();
2205         if (f.is_runtime_frame() || f.is_safepoint_blob_frame()) {
2206           // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
2207           RegisterMap reg_map(this, UseBiasedLocking);
2208           frame compiled_frame = f.sender(&reg_map);
2209           if (!StressCompiledExceptionHandlers && compiled_frame.can_be_deoptimized()) {
2210             Deoptimization::deoptimize(this, compiled_frame, &reg_map);
2211           }
2212         }
2213       }
2214 
2215       // Set async. pending exception in thread.
2216       set_pending_async_exception(java_throwable);
2217 
2218       if (log_is_enabled(Info, exceptions)) {
2219          ResourceMark rm;
2220         log_info(exceptions)("Pending Async. exception installed of type: %s",
2221                              InstanceKlass::cast(_pending_async_exception->klass())->external_name());
2222       }
2223       // for AbortVMOnException flag
2224       Exceptions::debug_check_abort(_pending_async_exception->klass()->external_name());
2225     }
2226   }
2227 
2228 
2229   // Interrupt thread so it will wake up from a potential wait()
2230   Thread::interrupt(this);
2231 }
2232 
2233 // External suspension mechanism.
2234 //
2235 // Tell the VM to suspend a thread when ever it knows that it does not hold on
2236 // to any VM_locks and it is at a transition
2237 // Self-suspension will happen on the transition out of the vm.
2238 // Catch "this" coming in from JNIEnv pointers when the thread has been freed
2239 //
2240 // Guarantees on return:
2241 //   + Target thread will not execute any new bytecode (that's why we need to
2242 //     force a safepoint)
2243 //   + Target thread will not enter any new monitors
2244 //
2245 void JavaThread::java_suspend() {
2246   { MutexLocker mu(Threads_lock);
2247     if (!Threads::includes(this) || is_exiting() || this->threadObj() == NULL) {
2248       return;
2249     }
2250   }
2251 
2252   { MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2253     if (!is_external_suspend()) {
2254       // a racing resume has cancelled us; bail out now
2255       return;
2256     }
2257 
2258     // suspend is done
2259     uint32_t debug_bits = 0;
2260     // Warning: is_ext_suspend_completed() may temporarily drop the
2261     // SR_lock to allow the thread to reach a stable thread state if
2262     // it is currently in a transient thread state.
2263     if (is_ext_suspend_completed(false /* !called_by_wait */,
2264                                  SuspendRetryDelay, &debug_bits)) {
2265       return;
2266     }
2267   }
2268 
2269   VM_ForceSafepoint vm_suspend;
2270   VMThread::execute(&vm_suspend);
2271 }
2272 
2273 // Part II of external suspension.
2274 // A JavaThread self suspends when it detects a pending external suspend
2275 // request. This is usually on transitions. It is also done in places
2276 // where continuing to the next transition would surprise the caller,
2277 // e.g., monitor entry.
2278 //
2279 // Returns the number of times that the thread self-suspended.
2280 //
2281 // Note: DO NOT call java_suspend_self() when you just want to block current
2282 //       thread. java_suspend_self() is the second stage of cooperative
2283 //       suspension for external suspend requests and should only be used
2284 //       to complete an external suspend request.
2285 //
2286 int JavaThread::java_suspend_self() {
2287   int ret = 0;
2288 
2289   // we are in the process of exiting so don't suspend
2290   if (is_exiting()) {
2291     clear_external_suspend();
2292     return ret;
2293   }
2294 
2295   assert(_anchor.walkable() ||
2296          (is_Java_thread() && !((JavaThread*)this)->has_last_Java_frame()),
2297          "must have walkable stack");
2298 
2299   MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2300 
2301   assert(!this->is_ext_suspended(),
2302          "a thread trying to self-suspend should not already be suspended");
2303 
2304   if (this->is_suspend_equivalent()) {
2305     // If we are self-suspending as a result of the lifting of a
2306     // suspend equivalent condition, then the suspend_equivalent
2307     // flag is not cleared until we set the ext_suspended flag so
2308     // that wait_for_ext_suspend_completion() returns consistent
2309     // results.
2310     this->clear_suspend_equivalent();
2311   }
2312 
2313   // A racing resume may have cancelled us before we grabbed SR_lock
2314   // above. Or another external suspend request could be waiting for us
2315   // by the time we return from SR_lock()->wait(). The thread
2316   // that requested the suspension may already be trying to walk our
2317   // stack and if we return now, we can change the stack out from under
2318   // it. This would be a "bad thing (TM)" and cause the stack walker
2319   // to crash. We stay self-suspended until there are no more pending
2320   // external suspend requests.
2321   while (is_external_suspend()) {
2322     ret++;
2323     this->set_ext_suspended();
2324 
2325     // _ext_suspended flag is cleared by java_resume()
2326     while (is_ext_suspended()) {
2327       this->SR_lock()->wait(Mutex::_no_safepoint_check_flag);
2328     }
2329   }
2330 
2331   return ret;
2332 }
2333 
2334 #ifdef ASSERT
2335 // verify the JavaThread has not yet been published in the Threads::list, and
2336 // hence doesn't need protection from concurrent access at this stage
2337 void JavaThread::verify_not_published() {
2338   if (!Threads_lock->owned_by_self()) {
2339     MutexLockerEx ml(Threads_lock,  Mutex::_no_safepoint_check_flag);
2340     assert(!Threads::includes(this),
2341            "java thread shouldn't have been published yet!");
2342   } else {
2343     assert(!Threads::includes(this),
2344            "java thread shouldn't have been published yet!");
2345   }
2346 }
2347 #endif
2348 
2349 // Slow path when the native==>VM/Java barriers detect a safepoint is in
2350 // progress or when _suspend_flags is non-zero.
2351 // Current thread needs to self-suspend if there is a suspend request and/or
2352 // block if a safepoint is in progress.
2353 // Async exception ISN'T checked.
2354 // Note only the ThreadInVMfromNative transition can call this function
2355 // directly and when thread state is _thread_in_native_trans
2356 void JavaThread::check_safepoint_and_suspend_for_native_trans(JavaThread *thread) {
2357   assert(thread->thread_state() == _thread_in_native_trans, "wrong state");
2358 
2359   JavaThread *curJT = JavaThread::current();
2360   bool do_self_suspend = thread->is_external_suspend();
2361 
2362   assert(!curJT->has_last_Java_frame() || curJT->frame_anchor()->walkable(), "Unwalkable stack in native->vm transition");
2363 
2364   // If JNIEnv proxies are allowed, don't self-suspend if the target
2365   // thread is not the current thread. In older versions of jdbx, jdbx
2366   // threads could call into the VM with another thread's JNIEnv so we
2367   // can be here operating on behalf of a suspended thread (4432884).
2368   if (do_self_suspend && (!AllowJNIEnvProxy || curJT == thread)) {
2369     JavaThreadState state = thread->thread_state();
2370 
2371     // We mark this thread_blocked state as a suspend-equivalent so
2372     // that a caller to is_ext_suspend_completed() won't be confused.
2373     // The suspend-equivalent state is cleared by java_suspend_self().
2374     thread->set_suspend_equivalent();
2375 
2376     // If the safepoint code sees the _thread_in_native_trans state, it will
2377     // wait until the thread changes to other thread state. There is no
2378     // guarantee on how soon we can obtain the SR_lock and complete the
2379     // self-suspend request. It would be a bad idea to let safepoint wait for
2380     // too long. Temporarily change the state to _thread_blocked to
2381     // let the VM thread know that this thread is ready for GC. The problem
2382     // of changing thread state is that safepoint could happen just after
2383     // java_suspend_self() returns after being resumed, and VM thread will
2384     // see the _thread_blocked state. We must check for safepoint
2385     // after restoring the state and make sure we won't leave while a safepoint
2386     // is in progress.
2387     thread->set_thread_state(_thread_blocked);
2388     thread->java_suspend_self();
2389     thread->set_thread_state(state);
2390     // Make sure new state is seen by VM thread
2391     if (os::is_MP()) {
2392       if (UseMembar) {
2393         // Force a fence between the write above and read below
2394         OrderAccess::fence();
2395       } else {
2396         // Must use this rather than serialization page in particular on Windows
2397         InterfaceSupport::serialize_memory(thread);
2398       }
2399     }
2400   }
2401 
2402   if (SafepointSynchronize::do_call_back()) {
2403     // If we are safepointing, then block the caller which may not be
2404     // the same as the target thread (see above).
2405     SafepointSynchronize::block(curJT);
2406   }
2407 
2408   if (thread->is_deopt_suspend()) {
2409     thread->clear_deopt_suspend();
2410     RegisterMap map(thread, false);
2411     frame f = thread->last_frame();
2412     while (f.id() != thread->must_deopt_id() && ! f.is_first_frame()) {
2413       f = f.sender(&map);
2414     }
2415     if (f.id() == thread->must_deopt_id()) {
2416       thread->clear_must_deopt_id();
2417       f.deoptimize(thread);
2418     } else {
2419       fatal("missed deoptimization!");
2420     }
2421   }
2422 }
2423 
2424 // Slow path when the native==>VM/Java barriers detect a safepoint is in
2425 // progress or when _suspend_flags is non-zero.
2426 // Current thread needs to self-suspend if there is a suspend request and/or
2427 // block if a safepoint is in progress.
2428 // Also check for pending async exception (not including unsafe access error).
2429 // Note only the native==>VM/Java barriers can call this function and when
2430 // thread state is _thread_in_native_trans.
2431 void JavaThread::check_special_condition_for_native_trans(JavaThread *thread) {
2432   check_safepoint_and_suspend_for_native_trans(thread);
2433 
2434   if (thread->has_async_exception()) {
2435     // We are in _thread_in_native_trans state, don't handle unsafe
2436     // access error since that may block.
2437     thread->check_and_handle_async_exceptions(false);
2438   }
2439 }
2440 
2441 // This is a variant of the normal
2442 // check_special_condition_for_native_trans with slightly different
2443 // semantics for use by critical native wrappers.  It does all the
2444 // normal checks but also performs the transition back into
2445 // thread_in_Java state.  This is required so that critical natives
2446 // can potentially block and perform a GC if they are the last thread
2447 // exiting the GCLocker.
2448 void JavaThread::check_special_condition_for_native_trans_and_transition(JavaThread *thread) {
2449   check_special_condition_for_native_trans(thread);
2450 
2451   // Finish the transition
2452   thread->set_thread_state(_thread_in_Java);
2453 
2454   if (thread->do_critical_native_unlock()) {
2455     ThreadInVMfromJavaNoAsyncException tiv(thread);
2456     GCLocker::unlock_critical(thread);
2457     thread->clear_critical_native_unlock();
2458   }
2459 }
2460 
2461 // We need to guarantee the Threads_lock here, since resumes are not
2462 // allowed during safepoint synchronization
2463 // Can only resume from an external suspension
2464 void JavaThread::java_resume() {
2465   assert_locked_or_safepoint(Threads_lock);
2466 
2467   // Sanity check: thread is gone, has started exiting or the thread
2468   // was not externally suspended.
2469   if (!Threads::includes(this) || is_exiting() || !is_external_suspend()) {
2470     return;
2471   }
2472 
2473   MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2474 
2475   clear_external_suspend();
2476 
2477   if (is_ext_suspended()) {
2478     clear_ext_suspended();
2479     SR_lock()->notify_all();
2480   }
2481 }
2482 
2483 size_t JavaThread::_stack_red_zone_size = 0;
2484 size_t JavaThread::_stack_yellow_zone_size = 0;
2485 size_t JavaThread::_stack_reserved_zone_size = 0;
2486 size_t JavaThread::_stack_shadow_zone_size = 0;
2487 
2488 void JavaThread::create_stack_guard_pages() {
2489   if (!os::uses_stack_guard_pages() || _stack_guard_state != stack_guard_unused) { return; }
2490   address low_addr = stack_end();
2491   size_t len = stack_guard_zone_size();
2492 
2493   int must_commit = os::must_commit_stack_guard_pages();
2494   // warning("Guarding at " PTR_FORMAT " for len " SIZE_FORMAT "\n", low_addr, len);
2495 
2496   if (must_commit && !os::create_stack_guard_pages((char *) low_addr, len)) {
2497     log_warning(os, thread)("Attempt to allocate stack guard pages failed.");
2498     return;
2499   }
2500 
2501   if (os::guard_memory((char *) low_addr, len)) {
2502     _stack_guard_state = stack_guard_enabled;
2503   } else {
2504     log_warning(os, thread)("Attempt to protect stack guard pages failed ("
2505       PTR_FORMAT "-" PTR_FORMAT ").", p2i(low_addr), p2i(low_addr + len));
2506     if (os::uncommit_memory((char *) low_addr, len)) {
2507       log_warning(os, thread)("Attempt to deallocate stack guard pages failed.");
2508     }
2509     return;
2510   }
2511 
2512   log_debug(os, thread)("Thread " UINTX_FORMAT " stack guard pages activated: "
2513     PTR_FORMAT "-" PTR_FORMAT ".",
2514     os::current_thread_id(), p2i(low_addr), p2i(low_addr + len));
2515 }
2516 
2517 void JavaThread::remove_stack_guard_pages() {
2518   assert(Thread::current() == this, "from different thread");
2519   if (_stack_guard_state == stack_guard_unused) return;
2520   address low_addr = stack_end();
2521   size_t len = stack_guard_zone_size();
2522 
2523   if (os::must_commit_stack_guard_pages()) {
2524     if (os::remove_stack_guard_pages((char *) low_addr, len)) {
2525       _stack_guard_state = stack_guard_unused;
2526     } else {
2527       log_warning(os, thread)("Attempt to deallocate stack guard pages failed ("
2528         PTR_FORMAT "-" PTR_FORMAT ").", p2i(low_addr), p2i(low_addr + len));
2529       return;
2530     }
2531   } else {
2532     if (_stack_guard_state == stack_guard_unused) return;
2533     if (os::unguard_memory((char *) low_addr, len)) {
2534       _stack_guard_state = stack_guard_unused;
2535     } else {
2536       log_warning(os, thread)("Attempt to unprotect stack guard pages failed ("
2537         PTR_FORMAT "-" PTR_FORMAT ").", p2i(low_addr), p2i(low_addr + len));
2538       return;
2539     }
2540   }
2541 
2542   log_debug(os, thread)("Thread " UINTX_FORMAT " stack guard pages removed: "
2543     PTR_FORMAT "-" PTR_FORMAT ".",
2544     os::current_thread_id(), p2i(low_addr), p2i(low_addr + len));
2545 }
2546 
2547 void JavaThread::enable_stack_reserved_zone() {
2548   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2549   assert(_stack_guard_state != stack_guard_enabled, "already enabled");
2550 
2551   // The base notation is from the stack's point of view, growing downward.
2552   // We need to adjust it to work correctly with guard_memory()
2553   address base = stack_reserved_zone_base() - stack_reserved_zone_size();
2554 
2555   guarantee(base < stack_base(),"Error calculating stack reserved zone");
2556   guarantee(base < os::current_stack_pointer(),"Error calculating stack reserved zone");
2557 
2558   if (os::guard_memory((char *) base, stack_reserved_zone_size())) {
2559     _stack_guard_state = stack_guard_enabled;
2560   } else {
2561     warning("Attempt to guard stack reserved zone failed.");
2562   }
2563   enable_register_stack_guard();
2564 }
2565 
2566 void JavaThread::disable_stack_reserved_zone() {
2567   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2568   assert(_stack_guard_state != stack_guard_reserved_disabled, "already disabled");
2569 
2570   // Simply return if called for a thread that does not use guard pages.
2571   if (_stack_guard_state == stack_guard_unused) return;
2572 
2573   // The base notation is from the stack's point of view, growing downward.
2574   // We need to adjust it to work correctly with guard_memory()
2575   address base = stack_reserved_zone_base() - stack_reserved_zone_size();
2576 
2577   if (os::unguard_memory((char *)base, stack_reserved_zone_size())) {
2578     _stack_guard_state = stack_guard_reserved_disabled;
2579   } else {
2580     warning("Attempt to unguard stack reserved zone failed.");
2581   }
2582   disable_register_stack_guard();
2583 }
2584 
2585 void JavaThread::enable_stack_yellow_reserved_zone() {
2586   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2587   assert(_stack_guard_state != stack_guard_enabled, "already enabled");
2588 
2589   // The base notation is from the stacks point of view, growing downward.
2590   // We need to adjust it to work correctly with guard_memory()
2591   address base = stack_red_zone_base();
2592 
2593   guarantee(base < stack_base(), "Error calculating stack yellow zone");
2594   guarantee(base < os::current_stack_pointer(), "Error calculating stack yellow zone");
2595 
2596   if (os::guard_memory((char *) base, stack_yellow_reserved_zone_size())) {
2597     _stack_guard_state = stack_guard_enabled;
2598   } else {
2599     warning("Attempt to guard stack yellow zone failed.");
2600   }
2601   enable_register_stack_guard();
2602 }
2603 
2604 void JavaThread::disable_stack_yellow_reserved_zone() {
2605   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2606   assert(_stack_guard_state != stack_guard_yellow_reserved_disabled, "already disabled");
2607 
2608   // Simply return if called for a thread that does not use guard pages.
2609   if (_stack_guard_state == stack_guard_unused) return;
2610 
2611   // The base notation is from the stacks point of view, growing downward.
2612   // We need to adjust it to work correctly with guard_memory()
2613   address base = stack_red_zone_base();
2614 
2615   if (os::unguard_memory((char *)base, stack_yellow_reserved_zone_size())) {
2616     _stack_guard_state = stack_guard_yellow_reserved_disabled;
2617   } else {
2618     warning("Attempt to unguard stack yellow zone failed.");
2619   }
2620   disable_register_stack_guard();
2621 }
2622 
2623 void JavaThread::enable_stack_red_zone() {
2624   // The base notation is from the stacks point of view, growing downward.
2625   // We need to adjust it to work correctly with guard_memory()
2626   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2627   address base = stack_red_zone_base() - stack_red_zone_size();
2628 
2629   guarantee(base < stack_base(), "Error calculating stack red zone");
2630   guarantee(base < os::current_stack_pointer(), "Error calculating stack red zone");
2631 
2632   if (!os::guard_memory((char *) base, stack_red_zone_size())) {
2633     warning("Attempt to guard stack red zone failed.");
2634   }
2635 }
2636 
2637 void JavaThread::disable_stack_red_zone() {
2638   // The base notation is from the stacks point of view, growing downward.
2639   // We need to adjust it to work correctly with guard_memory()
2640   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2641   address base = stack_red_zone_base() - stack_red_zone_size();
2642   if (!os::unguard_memory((char *)base, stack_red_zone_size())) {
2643     warning("Attempt to unguard stack red zone failed.");
2644   }
2645 }
2646 
2647 void JavaThread::frames_do(void f(frame*, const RegisterMap* map)) {
2648   // ignore is there is no stack
2649   if (!has_last_Java_frame()) return;
2650   // traverse the stack frames. Starts from top frame.
2651   for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2652     frame* fr = fst.current();
2653     f(fr, fst.register_map());
2654   }
2655 }
2656 
2657 
2658 #ifndef PRODUCT
2659 // Deoptimization
2660 // Function for testing deoptimization
2661 void JavaThread::deoptimize() {
2662   // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
2663   StackFrameStream fst(this, UseBiasedLocking);
2664   bool deopt = false;           // Dump stack only if a deopt actually happens.
2665   bool only_at = strlen(DeoptimizeOnlyAt) > 0;
2666   // Iterate over all frames in the thread and deoptimize
2667   for (; !fst.is_done(); fst.next()) {
2668     if (fst.current()->can_be_deoptimized()) {
2669 
2670       if (only_at) {
2671         // Deoptimize only at particular bcis.  DeoptimizeOnlyAt
2672         // consists of comma or carriage return separated numbers so
2673         // search for the current bci in that string.
2674         address pc = fst.current()->pc();
2675         nmethod* nm =  (nmethod*) fst.current()->cb();
2676         ScopeDesc* sd = nm->scope_desc_at(pc);
2677         char buffer[8];
2678         jio_snprintf(buffer, sizeof(buffer), "%d", sd->bci());
2679         size_t len = strlen(buffer);
2680         const char * found = strstr(DeoptimizeOnlyAt, buffer);
2681         while (found != NULL) {
2682           if ((found[len] == ',' || found[len] == '\n' || found[len] == '\0') &&
2683               (found == DeoptimizeOnlyAt || found[-1] == ',' || found[-1] == '\n')) {
2684             // Check that the bci found is bracketed by terminators.
2685             break;
2686           }
2687           found = strstr(found + 1, buffer);
2688         }
2689         if (!found) {
2690           continue;
2691         }
2692       }
2693 
2694       if (DebugDeoptimization && !deopt) {
2695         deopt = true; // One-time only print before deopt
2696         tty->print_cr("[BEFORE Deoptimization]");
2697         trace_frames();
2698         trace_stack();
2699       }
2700       Deoptimization::deoptimize(this, *fst.current(), fst.register_map());
2701     }
2702   }
2703 
2704   if (DebugDeoptimization && deopt) {
2705     tty->print_cr("[AFTER Deoptimization]");
2706     trace_frames();
2707   }
2708 }
2709 
2710 
2711 // Make zombies
2712 void JavaThread::make_zombies() {
2713   for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2714     if (fst.current()->can_be_deoptimized()) {
2715       // it is a Java nmethod
2716       nmethod* nm = CodeCache::find_nmethod(fst.current()->pc());
2717       nm->make_not_entrant();
2718     }
2719   }
2720 }
2721 #endif // PRODUCT
2722 
2723 
2724 void JavaThread::deoptimized_wrt_marked_nmethods() {
2725   if (!has_last_Java_frame()) return;
2726   // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
2727   StackFrameStream fst(this, UseBiasedLocking);
2728   for (; !fst.is_done(); fst.next()) {
2729     if (fst.current()->should_be_deoptimized()) {
2730       Deoptimization::deoptimize(this, *fst.current(), fst.register_map());
2731     }
2732   }
2733 }
2734 
2735 
2736 // If the caller is a NamedThread, then remember, in the current scope,
2737 // the given JavaThread in its _processed_thread field.
2738 class RememberProcessedThread: public StackObj {
2739   NamedThread* _cur_thr;
2740  public:
2741   RememberProcessedThread(JavaThread* jthr) {
2742     Thread* thread = Thread::current();
2743     if (thread->is_Named_thread()) {
2744       _cur_thr = (NamedThread *)thread;
2745       _cur_thr->set_processed_thread(jthr);
2746     } else {
2747       _cur_thr = NULL;
2748     }
2749   }
2750 
2751   ~RememberProcessedThread() {
2752     if (_cur_thr) {
2753       _cur_thr->set_processed_thread(NULL);
2754     }
2755   }
2756 };
2757 
2758 void JavaThread::oops_do(OopClosure* f, CodeBlobClosure* cf) {
2759   // Verify that the deferred card marks have been flushed.
2760   assert(deferred_card_mark().is_empty(), "Should be empty during GC");
2761 
2762   // The ThreadProfiler oops_do is done from FlatProfiler::oops_do
2763   // since there may be more than one thread using each ThreadProfiler.
2764 
2765   // Traverse the GCHandles
2766   Thread::oops_do(f, cf);
2767 
2768   JVMCI_ONLY(f->do_oop((oop*)&_pending_failed_speculation);)
2769 
2770   assert((!has_last_Java_frame() && java_call_counter() == 0) ||
2771          (has_last_Java_frame() && java_call_counter() > 0), "wrong java_sp info!");
2772 
2773   if (has_last_Java_frame()) {
2774     // Record JavaThread to GC thread
2775     RememberProcessedThread rpt(this);
2776 
2777     // Traverse the privileged stack
2778     if (_privileged_stack_top != NULL) {
2779       _privileged_stack_top->oops_do(f);
2780     }
2781 
2782     // traverse the registered growable array
2783     if (_array_for_gc != NULL) {
2784       for (int index = 0; index < _array_for_gc->length(); index++) {
2785         f->do_oop(_array_for_gc->adr_at(index));
2786       }
2787     }
2788 
2789     // Traverse the monitor chunks
2790     for (MonitorChunk* chunk = monitor_chunks(); chunk != NULL; chunk = chunk->next()) {
2791       chunk->oops_do(f);
2792     }
2793 
2794     // Traverse the execution stack
2795     for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2796       fst.current()->oops_do(f, cf, fst.register_map());
2797     }
2798   }
2799 
2800   // callee_target is never live across a gc point so NULL it here should
2801   // it still contain a methdOop.
2802 
2803   set_callee_target(NULL);
2804 
2805   assert(vframe_array_head() == NULL, "deopt in progress at a safepoint!");
2806   // If we have deferred set_locals there might be oops waiting to be
2807   // written
2808   GrowableArray<jvmtiDeferredLocalVariableSet*>* list = deferred_locals();
2809   if (list != NULL) {
2810     for (int i = 0; i < list->length(); i++) {
2811       list->at(i)->oops_do(f);
2812     }
2813   }
2814 
2815   // Traverse instance variables at the end since the GC may be moving things
2816   // around using this function
2817   f->do_oop((oop*) &_threadObj);
2818   f->do_oop((oop*) &_vm_result);
2819   f->do_oop((oop*) &_exception_oop);
2820   f->do_oop((oop*) &_pending_async_exception);
2821 
2822   if (jvmti_thread_state() != NULL) {
2823     jvmti_thread_state()->oops_do(f);
2824   }
2825 }
2826 
2827 void JavaThread::nmethods_do(CodeBlobClosure* cf) {
2828   assert((!has_last_Java_frame() && java_call_counter() == 0) ||
2829          (has_last_Java_frame() && java_call_counter() > 0), "wrong java_sp info!");
2830 
2831   if (has_last_Java_frame()) {
2832     // Traverse the execution stack
2833     for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2834       fst.current()->nmethods_do(cf);
2835     }
2836   }
2837 }
2838 
2839 void JavaThread::metadata_do(void f(Metadata*)) {
2840   if (has_last_Java_frame()) {
2841     // Traverse the execution stack to call f() on the methods in the stack
2842     for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2843       fst.current()->metadata_do(f);
2844     }
2845   } else if (is_Compiler_thread()) {
2846     // need to walk ciMetadata in current compile tasks to keep alive.
2847     CompilerThread* ct = (CompilerThread*)this;
2848     if (ct->env() != NULL) {
2849       ct->env()->metadata_do(f);
2850     }
2851     if (ct->task() != NULL) {
2852       ct->task()->metadata_do(f);
2853     }
2854   }
2855 }
2856 
2857 // Printing
2858 const char* _get_thread_state_name(JavaThreadState _thread_state) {
2859   switch (_thread_state) {
2860   case _thread_uninitialized:     return "_thread_uninitialized";
2861   case _thread_new:               return "_thread_new";
2862   case _thread_new_trans:         return "_thread_new_trans";
2863   case _thread_in_native:         return "_thread_in_native";
2864   case _thread_in_native_trans:   return "_thread_in_native_trans";
2865   case _thread_in_vm:             return "_thread_in_vm";
2866   case _thread_in_vm_trans:       return "_thread_in_vm_trans";
2867   case _thread_in_Java:           return "_thread_in_Java";
2868   case _thread_in_Java_trans:     return "_thread_in_Java_trans";
2869   case _thread_blocked:           return "_thread_blocked";
2870   case _thread_blocked_trans:     return "_thread_blocked_trans";
2871   default:                        return "unknown thread state";
2872   }
2873 }
2874 
2875 #ifndef PRODUCT
2876 void JavaThread::print_thread_state_on(outputStream *st) const {
2877   st->print_cr("   JavaThread state: %s", _get_thread_state_name(_thread_state));
2878 };
2879 void JavaThread::print_thread_state() const {
2880   print_thread_state_on(tty);
2881 }
2882 #endif // PRODUCT
2883 
2884 // Called by Threads::print() for VM_PrintThreads operation
2885 void JavaThread::print_on(outputStream *st) const {
2886   st->print_raw("\"");
2887   st->print_raw(get_thread_name());
2888   st->print_raw("\" ");
2889   oop thread_oop = threadObj();
2890   if (thread_oop != NULL) {
2891     st->print("#" INT64_FORMAT " ", java_lang_Thread::thread_id(thread_oop));
2892     if (java_lang_Thread::is_daemon(thread_oop))  st->print("daemon ");
2893     st->print("prio=%d ", java_lang_Thread::priority(thread_oop));
2894   }
2895   Thread::print_on(st);
2896   // print guess for valid stack memory region (assume 4K pages); helps lock debugging
2897   st->print_cr("[" INTPTR_FORMAT "]", (intptr_t)last_Java_sp() & ~right_n_bits(12));
2898   if (thread_oop != NULL) {
2899     st->print_cr("   java.lang.Thread.State: %s", java_lang_Thread::thread_status_name(thread_oop));
2900   }
2901 #ifndef PRODUCT
2902   print_thread_state_on(st);
2903   _safepoint_state->print_on(st);
2904 #endif // PRODUCT
2905   if (is_Compiler_thread()) {
2906     CompilerThread* ct = (CompilerThread*)this;
2907     if (ct->task() != NULL) {
2908       st->print("   Compiling: ");
2909       ct->task()->print(st, NULL, true, false);
2910     } else {
2911       st->print("   No compile task");
2912     }
2913     st->cr();
2914   }
2915 }
2916 
2917 void JavaThread::print_name_on_error(outputStream* st, char *buf, int buflen) const {
2918   st->print("%s", get_thread_name_string(buf, buflen));
2919 }
2920 
2921 // Called by fatal error handler. The difference between this and
2922 // JavaThread::print() is that we can't grab lock or allocate memory.
2923 void JavaThread::print_on_error(outputStream* st, char *buf, int buflen) const {
2924   st->print("JavaThread \"%s\"", get_thread_name_string(buf, buflen));
2925   oop thread_obj = threadObj();
2926   if (thread_obj != NULL) {
2927     if (java_lang_Thread::is_daemon(thread_obj)) st->print(" daemon");
2928   }
2929   st->print(" [");
2930   st->print("%s", _get_thread_state_name(_thread_state));
2931   if (osthread()) {
2932     st->print(", id=%d", osthread()->thread_id());
2933   }
2934   st->print(", stack(" PTR_FORMAT "," PTR_FORMAT ")",
2935             p2i(stack_end()), p2i(stack_base()));
2936   st->print("]");
2937   return;
2938 }
2939 
2940 // Verification
2941 
2942 static void frame_verify(frame* f, const RegisterMap *map) { f->verify(map); }
2943 
2944 void JavaThread::verify() {
2945   // Verify oops in the thread.
2946   oops_do(&VerifyOopClosure::verify_oop, NULL);
2947 
2948   // Verify the stack frames.
2949   frames_do(frame_verify);
2950 }
2951 
2952 // CR 6300358 (sub-CR 2137150)
2953 // Most callers of this method assume that it can't return NULL but a
2954 // thread may not have a name whilst it is in the process of attaching to
2955 // the VM - see CR 6412693, and there are places where a JavaThread can be
2956 // seen prior to having it's threadObj set (eg JNI attaching threads and
2957 // if vm exit occurs during initialization). These cases can all be accounted
2958 // for such that this method never returns NULL.
2959 const char* JavaThread::get_thread_name() const {
2960 #ifdef ASSERT
2961   // early safepoints can hit while current thread does not yet have TLS
2962   if (!SafepointSynchronize::is_at_safepoint()) {
2963     Thread *cur = Thread::current();
2964     if (!(cur->is_Java_thread() && cur == this)) {
2965       // Current JavaThreads are allowed to get their own name without
2966       // the Threads_lock.
2967       assert_locked_or_safepoint(Threads_lock);
2968     }
2969   }
2970 #endif // ASSERT
2971   return get_thread_name_string();
2972 }
2973 
2974 // Returns a non-NULL representation of this thread's name, or a suitable
2975 // descriptive string if there is no set name
2976 const char* JavaThread::get_thread_name_string(char* buf, int buflen) const {
2977   const char* name_str;
2978   oop thread_obj = threadObj();
2979   if (thread_obj != NULL) {
2980     oop name = java_lang_Thread::name(thread_obj);
2981     if (name != NULL) {
2982       if (buf == NULL) {
2983         name_str = java_lang_String::as_utf8_string(name);
2984       } else {
2985         name_str = java_lang_String::as_utf8_string(name, buf, buflen);
2986       }
2987     } else if (is_attaching_via_jni()) { // workaround for 6412693 - see 6404306
2988       name_str = "<no-name - thread is attaching>";
2989     } else {
2990       name_str = Thread::name();
2991     }
2992   } else {
2993     name_str = Thread::name();
2994   }
2995   assert(name_str != NULL, "unexpected NULL thread name");
2996   return name_str;
2997 }
2998 
2999 
3000 const char* JavaThread::get_threadgroup_name() const {
3001   debug_only(if (JavaThread::current() != this) assert_locked_or_safepoint(Threads_lock);)
3002   oop thread_obj = threadObj();
3003   if (thread_obj != NULL) {
3004     oop thread_group = java_lang_Thread::threadGroup(thread_obj);
3005     if (thread_group != NULL) {
3006       // ThreadGroup.name can be null
3007       return java_lang_ThreadGroup::name(thread_group);
3008     }
3009   }
3010   return NULL;
3011 }
3012 
3013 const char* JavaThread::get_parent_name() const {
3014   debug_only(if (JavaThread::current() != this) assert_locked_or_safepoint(Threads_lock);)
3015   oop thread_obj = threadObj();
3016   if (thread_obj != NULL) {
3017     oop thread_group = java_lang_Thread::threadGroup(thread_obj);
3018     if (thread_group != NULL) {
3019       oop parent = java_lang_ThreadGroup::parent(thread_group);
3020       if (parent != NULL) {
3021         // ThreadGroup.name can be null
3022         return java_lang_ThreadGroup::name(parent);
3023       }
3024     }
3025   }
3026   return NULL;
3027 }
3028 
3029 ThreadPriority JavaThread::java_priority() const {
3030   oop thr_oop = threadObj();
3031   if (thr_oop == NULL) return NormPriority; // Bootstrapping
3032   ThreadPriority priority = java_lang_Thread::priority(thr_oop);
3033   assert(MinPriority <= priority && priority <= MaxPriority, "sanity check");
3034   return priority;
3035 }
3036 
3037 void JavaThread::prepare(jobject jni_thread, ThreadPriority prio) {
3038 
3039   assert(Threads_lock->owner() == Thread::current(), "must have threads lock");
3040   // Link Java Thread object <-> C++ Thread
3041 
3042   // Get the C++ thread object (an oop) from the JNI handle (a jthread)
3043   // and put it into a new Handle.  The Handle "thread_oop" can then
3044   // be used to pass the C++ thread object to other methods.
3045 
3046   // Set the Java level thread object (jthread) field of the
3047   // new thread (a JavaThread *) to C++ thread object using the
3048   // "thread_oop" handle.
3049 
3050   // Set the thread field (a JavaThread *) of the
3051   // oop representing the java_lang_Thread to the new thread (a JavaThread *).
3052 
3053   Handle thread_oop(Thread::current(),
3054                     JNIHandles::resolve_non_null(jni_thread));
3055   assert(InstanceKlass::cast(thread_oop->klass())->is_linked(),
3056          "must be initialized");
3057   set_threadObj(thread_oop());
3058   java_lang_Thread::set_thread(thread_oop(), this);
3059 
3060   if (prio == NoPriority) {
3061     prio = java_lang_Thread::priority(thread_oop());
3062     assert(prio != NoPriority, "A valid priority should be present");
3063   }
3064 
3065   // Push the Java priority down to the native thread; needs Threads_lock
3066   Thread::set_priority(this, prio);
3067 
3068   prepare_ext();
3069 
3070   // Add the new thread to the Threads list and set it in motion.
3071   // We must have threads lock in order to call Threads::add.
3072   // It is crucial that we do not block before the thread is
3073   // added to the Threads list for if a GC happens, then the java_thread oop
3074   // will not be visited by GC.
3075   Threads::add(this);
3076 }
3077 
3078 oop JavaThread::current_park_blocker() {
3079   // Support for JSR-166 locks
3080   oop thread_oop = threadObj();
3081   if (thread_oop != NULL &&
3082       JDK_Version::current().supports_thread_park_blocker()) {
3083     return java_lang_Thread::park_blocker(thread_oop);
3084   }
3085   return NULL;
3086 }
3087 
3088 
3089 void JavaThread::print_stack_on(outputStream* st) {
3090   if (!has_last_Java_frame()) return;
3091   ResourceMark rm;
3092   HandleMark   hm;
3093 
3094   RegisterMap reg_map(this);
3095   vframe* start_vf = last_java_vframe(&reg_map);
3096   int count = 0;
3097   for (vframe* f = start_vf; f; f = f->sender()) {
3098     if (f->is_java_frame()) {
3099       javaVFrame* jvf = javaVFrame::cast(f);
3100       java_lang_Throwable::print_stack_element(st, jvf->method(), jvf->bci());
3101 
3102       // Print out lock information
3103       if (JavaMonitorsInStackTrace) {
3104         jvf->print_lock_info_on(st, count);
3105       }
3106     } else {
3107       // Ignore non-Java frames
3108     }
3109 
3110     // Bail-out case for too deep stacks
3111     count++;
3112     if (MaxJavaStackTraceDepth == count) return;
3113   }
3114 }
3115 
3116 
3117 // JVMTI PopFrame support
3118 void JavaThread::popframe_preserve_args(ByteSize size_in_bytes, void* start) {
3119   assert(_popframe_preserved_args == NULL, "should not wipe out old PopFrame preserved arguments");
3120   if (in_bytes(size_in_bytes) != 0) {
3121     _popframe_preserved_args = NEW_C_HEAP_ARRAY(char, in_bytes(size_in_bytes), mtThread);
3122     _popframe_preserved_args_size = in_bytes(size_in_bytes);
3123     Copy::conjoint_jbytes(start, _popframe_preserved_args, _popframe_preserved_args_size);
3124   }
3125 }
3126 
3127 void* JavaThread::popframe_preserved_args() {
3128   return _popframe_preserved_args;
3129 }
3130 
3131 ByteSize JavaThread::popframe_preserved_args_size() {
3132   return in_ByteSize(_popframe_preserved_args_size);
3133 }
3134 
3135 WordSize JavaThread::popframe_preserved_args_size_in_words() {
3136   int sz = in_bytes(popframe_preserved_args_size());
3137   assert(sz % wordSize == 0, "argument size must be multiple of wordSize");
3138   return in_WordSize(sz / wordSize);
3139 }
3140 
3141 void JavaThread::popframe_free_preserved_args() {
3142   assert(_popframe_preserved_args != NULL, "should not free PopFrame preserved arguments twice");
3143   FREE_C_HEAP_ARRAY(char, (char*) _popframe_preserved_args);
3144   _popframe_preserved_args = NULL;
3145   _popframe_preserved_args_size = 0;
3146 }
3147 
3148 #ifndef PRODUCT
3149 
3150 void JavaThread::trace_frames() {
3151   tty->print_cr("[Describe stack]");
3152   int frame_no = 1;
3153   for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
3154     tty->print("  %d. ", frame_no++);
3155     fst.current()->print_value_on(tty, this);
3156     tty->cr();
3157   }
3158 }
3159 
3160 class PrintAndVerifyOopClosure: public OopClosure {
3161  protected:
3162   template <class T> inline void do_oop_work(T* p) {
3163     oop obj = oopDesc::load_decode_heap_oop(p);
3164     if (obj == NULL) return;
3165     tty->print(INTPTR_FORMAT ": ", p2i(p));
3166     if (obj->is_oop_or_null()) {
3167       if (obj->is_objArray()) {
3168         tty->print_cr("valid objArray: " INTPTR_FORMAT, p2i(obj));
3169       } else {
3170         obj->print();
3171       }
3172     } else {
3173       tty->print_cr("invalid oop: " INTPTR_FORMAT, p2i(obj));
3174     }
3175     tty->cr();
3176   }
3177  public:
3178   virtual void do_oop(oop* p) { do_oop_work(p); }
3179   virtual void do_oop(narrowOop* p)  { do_oop_work(p); }
3180 };
3181 
3182 
3183 static void oops_print(frame* f, const RegisterMap *map) {
3184   PrintAndVerifyOopClosure print;
3185   f->print_value();
3186   f->oops_do(&print, NULL, (RegisterMap*)map);
3187 }
3188 
3189 // Print our all the locations that contain oops and whether they are
3190 // valid or not.  This useful when trying to find the oldest frame
3191 // where an oop has gone bad since the frame walk is from youngest to
3192 // oldest.
3193 void JavaThread::trace_oops() {
3194   tty->print_cr("[Trace oops]");
3195   frames_do(oops_print);
3196 }
3197 
3198 
3199 #ifdef ASSERT
3200 // Print or validate the layout of stack frames
3201 void JavaThread::print_frame_layout(int depth, bool validate_only) {
3202   ResourceMark rm;
3203   PRESERVE_EXCEPTION_MARK;
3204   FrameValues values;
3205   int frame_no = 0;
3206   for (StackFrameStream fst(this, false); !fst.is_done(); fst.next()) {
3207     fst.current()->describe(values, ++frame_no);
3208     if (depth == frame_no) break;
3209   }
3210   if (validate_only) {
3211     values.validate();
3212   } else {
3213     tty->print_cr("[Describe stack layout]");
3214     values.print(this);
3215   }
3216 }
3217 #endif
3218 
3219 void JavaThread::trace_stack_from(vframe* start_vf) {
3220   ResourceMark rm;
3221   int vframe_no = 1;
3222   for (vframe* f = start_vf; f; f = f->sender()) {
3223     if (f->is_java_frame()) {
3224       javaVFrame::cast(f)->print_activation(vframe_no++);
3225     } else {
3226       f->print();
3227     }
3228     if (vframe_no > StackPrintLimit) {
3229       tty->print_cr("...<more frames>...");
3230       return;
3231     }
3232   }
3233 }
3234 
3235 
3236 void JavaThread::trace_stack() {
3237   if (!has_last_Java_frame()) return;
3238   ResourceMark rm;
3239   HandleMark   hm;
3240   RegisterMap reg_map(this);
3241   trace_stack_from(last_java_vframe(&reg_map));
3242 }
3243 
3244 
3245 #endif // PRODUCT
3246 
3247 
3248 javaVFrame* JavaThread::last_java_vframe(RegisterMap *reg_map) {
3249   assert(reg_map != NULL, "a map must be given");
3250   frame f = last_frame();
3251   for (vframe* vf = vframe::new_vframe(&f, reg_map, this); vf; vf = vf->sender()) {
3252     if (vf->is_java_frame()) return javaVFrame::cast(vf);
3253   }
3254   return NULL;
3255 }
3256 
3257 
3258 Klass* JavaThread::security_get_caller_class(int depth) {
3259   vframeStream vfst(this);
3260   vfst.security_get_caller_frame(depth);
3261   if (!vfst.at_end()) {
3262     return vfst.method()->method_holder();
3263   }
3264   return NULL;
3265 }
3266 
3267 static void compiler_thread_entry(JavaThread* thread, TRAPS) {
3268   assert(thread->is_Compiler_thread(), "must be compiler thread");
3269   CompileBroker::compiler_thread_loop();
3270 }
3271 
3272 static void sweeper_thread_entry(JavaThread* thread, TRAPS) {
3273   NMethodSweeper::sweeper_loop();
3274 }
3275 
3276 // Create a CompilerThread
3277 CompilerThread::CompilerThread(CompileQueue* queue,
3278                                CompilerCounters* counters)
3279                                : JavaThread(&compiler_thread_entry) {
3280   _env   = NULL;
3281   _log   = NULL;
3282   _task  = NULL;
3283   _queue = queue;
3284   _counters = counters;
3285   _buffer_blob = NULL;
3286   _compiler = NULL;
3287 
3288 #ifndef PRODUCT
3289   _ideal_graph_printer = NULL;
3290 #endif
3291 }
3292 
3293 bool CompilerThread::can_call_java() const {
3294   return _compiler != NULL && _compiler->is_jvmci();
3295 }
3296 
3297 // Create sweeper thread
3298 CodeCacheSweeperThread::CodeCacheSweeperThread()
3299 : JavaThread(&sweeper_thread_entry) {
3300   _scanned_compiled_method = NULL;
3301 }
3302 
3303 void CodeCacheSweeperThread::oops_do(OopClosure* f, CodeBlobClosure* cf) {
3304   JavaThread::oops_do(f, cf);
3305   if (_scanned_compiled_method != NULL && cf != NULL) {
3306     // Safepoints can occur when the sweeper is scanning an nmethod so
3307     // process it here to make sure it isn't unloaded in the middle of
3308     // a scan.
3309     cf->do_code_blob(_scanned_compiled_method);
3310   }
3311 }
3312 
3313 void CodeCacheSweeperThread::nmethods_do(CodeBlobClosure* cf) {
3314   JavaThread::nmethods_do(cf);
3315   if (_scanned_compiled_method != NULL && cf != NULL) {
3316     // Safepoints can occur when the sweeper is scanning an nmethod so
3317     // process it here to make sure it isn't unloaded in the middle of
3318     // a scan.
3319     cf->do_code_blob(_scanned_compiled_method);
3320   }
3321 }
3322 
3323 
3324 // ======= Threads ========
3325 
3326 // The Threads class links together all active threads, and provides
3327 // operations over all threads.  It is protected by its own Mutex
3328 // lock, which is also used in other contexts to protect thread
3329 // operations from having the thread being operated on from exiting
3330 // and going away unexpectedly (e.g., safepoint synchronization)
3331 
3332 JavaThread* Threads::_thread_list = NULL;
3333 int         Threads::_number_of_threads = 0;
3334 int         Threads::_number_of_non_daemon_threads = 0;
3335 int         Threads::_return_code = 0;
3336 int         Threads::_thread_claim_parity = 0;
3337 size_t      JavaThread::_stack_size_at_create = 0;
3338 #ifdef ASSERT
3339 bool        Threads::_vm_complete = false;
3340 #endif
3341 
3342 // All JavaThreads
3343 #define ALL_JAVA_THREADS(X) for (JavaThread* X = _thread_list; X; X = X->next())
3344 
3345 // All JavaThreads + all non-JavaThreads (i.e., every thread in the system)
3346 void Threads::threads_do(ThreadClosure* tc) {
3347   assert_locked_or_safepoint(Threads_lock);
3348   // ALL_JAVA_THREADS iterates through all JavaThreads
3349   ALL_JAVA_THREADS(p) {
3350     tc->do_thread(p);
3351   }
3352   // Someday we could have a table or list of all non-JavaThreads.
3353   // For now, just manually iterate through them.
3354   tc->do_thread(VMThread::vm_thread());
3355   GC::gc()->heap()->gc_threads_do(tc);
3356   WatcherThread *wt = WatcherThread::watcher_thread();
3357   // Strictly speaking, the following NULL check isn't sufficient to make sure
3358   // the data for WatcherThread is still valid upon being examined. However,
3359   // considering that WatchThread terminates when the VM is on the way to
3360   // exit at safepoint, the chance of the above is extremely small. The right
3361   // way to prevent termination of WatcherThread would be to acquire
3362   // Terminator_lock, but we can't do that without violating the lock rank
3363   // checking in some cases.
3364   if (wt != NULL) {
3365     tc->do_thread(wt);
3366   }
3367 
3368   // If CompilerThreads ever become non-JavaThreads, add them here
3369 }
3370 
3371 // The system initialization in the library has three phases.
3372 //
3373 // Phase 1: java.lang.System class initialization
3374 //     java.lang.System is a primordial class loaded and initialized
3375 //     by the VM early during startup.  java.lang.System.<clinit>
3376 //     only does registerNatives and keeps the rest of the class
3377 //     initialization work later until thread initialization completes.
3378 //
3379 //     System.initPhase1 initializes the system properties, the static
3380 //     fields in, out, and err. Set up java signal handlers, OS-specific
3381 //     system settings, and thread group of the main thread.
3382 static void call_initPhase1(TRAPS) {
3383   Klass* k =  SystemDictionary::resolve_or_fail(vmSymbols::java_lang_System(), true, CHECK);
3384   instanceKlassHandle klass (THREAD, k);
3385 
3386   JavaValue result(T_VOID);
3387   JavaCalls::call_static(&result, klass, vmSymbols::initPhase1_name(),
3388                                          vmSymbols::void_method_signature(), CHECK);
3389 }
3390 
3391 // Phase 2. Module system initialization
3392 //     This will initialize the module system.  Only java.base classes
3393 //     can be loaded until phase 2 completes.
3394 //
3395 //     Call System.initPhase2 after the compiler initialization and jsr292
3396 //     classes get initialized because module initialization runs a lot of java
3397 //     code, that for performance reasons, should be compiled.  Also, this will
3398 //     enable the startup code to use lambda and other language features in this
3399 //     phase and onward.
3400 //
3401 //     After phase 2, The VM will begin search classes from -Xbootclasspath/a.
3402 static void call_initPhase2(TRAPS) {
3403   TraceTime timer("Phase2 initialization", TRACETIME_LOG(Info, modules, startuptime));
3404 
3405   Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_System(), true, CHECK);
3406   instanceKlassHandle klass (THREAD, k);
3407 
3408   JavaValue result(T_VOID);
3409   JavaCalls::call_static(&result, klass, vmSymbols::initPhase2_name(),
3410                                          vmSymbols::void_method_signature(), CHECK);
3411   universe_post_module_init();
3412 }
3413 
3414 // Phase 3. final setup - set security manager, system class loader and TCCL
3415 //
3416 //     This will instantiate and set the security manager, set the system class
3417 //     loader as well as the thread context class loader.  The security manager
3418 //     and system class loader may be a custom class loaded from -Xbootclasspath/a,
3419 //     other modules or the application's classpath.
3420 static void call_initPhase3(TRAPS) {
3421   Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_System(), true, CHECK);
3422   instanceKlassHandle klass (THREAD, k);
3423 
3424   JavaValue result(T_VOID);
3425   JavaCalls::call_static(&result, klass, vmSymbols::initPhase3_name(),
3426                                          vmSymbols::void_method_signature(), CHECK);
3427 }
3428 
3429 void Threads::initialize_java_lang_classes(JavaThread* main_thread, TRAPS) {
3430   TraceTime timer("Initialize java.lang classes", TRACETIME_LOG(Info, startuptime));
3431 
3432   if (EagerXrunInit && Arguments::init_libraries_at_startup()) {
3433     create_vm_init_libraries();
3434   }
3435 
3436   initialize_class(vmSymbols::java_lang_String(), CHECK);
3437 
3438   // Inject CompactStrings value after the static initializers for String ran.
3439   java_lang_String::set_compact_strings(CompactStrings);
3440 
3441   // Initialize java_lang.System (needed before creating the thread)
3442   initialize_class(vmSymbols::java_lang_System(), CHECK);
3443   // The VM creates & returns objects of this class. Make sure it's initialized.
3444   initialize_class(vmSymbols::java_lang_Class(), CHECK);
3445   initialize_class(vmSymbols::java_lang_ThreadGroup(), CHECK);
3446   Handle thread_group = create_initial_thread_group(CHECK);
3447   Universe::set_main_thread_group(thread_group());
3448   initialize_class(vmSymbols::java_lang_Thread(), CHECK);
3449   oop thread_object = create_initial_thread(thread_group, main_thread, CHECK);
3450   main_thread->set_threadObj(thread_object);
3451   // Set thread status to running since main thread has
3452   // been started and running.
3453   java_lang_Thread::set_thread_status(thread_object,
3454                                       java_lang_Thread::RUNNABLE);
3455 
3456   // The VM creates objects of this class.
3457   initialize_class(vmSymbols::java_lang_reflect_Module(), CHECK);
3458 
3459   // The VM preresolves methods to these classes. Make sure that they get initialized
3460   initialize_class(vmSymbols::java_lang_reflect_Method(), CHECK);
3461   initialize_class(vmSymbols::java_lang_ref_Finalizer(), CHECK);
3462 
3463   // Phase 1 of the system initialization in the library, java.lang.System class initialization
3464   call_initPhase1(CHECK);
3465 
3466   // get the Java runtime name after java.lang.System is initialized
3467   JDK_Version::set_runtime_name(get_java_runtime_name(THREAD));
3468   JDK_Version::set_runtime_version(get_java_runtime_version(THREAD));
3469 
3470   // an instance of OutOfMemory exception has been allocated earlier
3471   initialize_class(vmSymbols::java_lang_OutOfMemoryError(), CHECK);
3472   initialize_class(vmSymbols::java_lang_NullPointerException(), CHECK);
3473   initialize_class(vmSymbols::java_lang_ClassCastException(), CHECK);
3474   initialize_class(vmSymbols::java_lang_ArrayStoreException(), CHECK);
3475   initialize_class(vmSymbols::java_lang_ArithmeticException(), CHECK);
3476   initialize_class(vmSymbols::java_lang_StackOverflowError(), CHECK);
3477   initialize_class(vmSymbols::java_lang_IllegalMonitorStateException(), CHECK);
3478   initialize_class(vmSymbols::java_lang_IllegalArgumentException(), CHECK);
3479 }
3480 
3481 void Threads::initialize_jsr292_core_classes(TRAPS) {
3482   TraceTime timer("Initialize java.lang.invoke classes", TRACETIME_LOG(Info, startuptime));
3483 
3484   initialize_class(vmSymbols::java_lang_invoke_MethodHandle(), CHECK);
3485   initialize_class(vmSymbols::java_lang_invoke_MemberName(), CHECK);
3486   initialize_class(vmSymbols::java_lang_invoke_MethodHandleNatives(), CHECK);
3487 }
3488 
3489 jint Threads::create_vm(JavaVMInitArgs* args, bool* canTryAgain) {
3490   extern void JDK_Version_init();
3491 
3492   // Preinitialize version info.
3493   VM_Version::early_initialize();
3494 
3495   // Check version
3496   if (!is_supported_jni_version(args->version)) return JNI_EVERSION;
3497 
3498   // Initialize library-based TLS
3499   ThreadLocalStorage::init();
3500 
3501   // Initialize the output stream module
3502   ostream_init();
3503 
3504   // Process java launcher properties.
3505   Arguments::process_sun_java_launcher_properties(args);
3506 
3507   // Initialize the os module
3508   os::init();
3509 
3510   // Record VM creation timing statistics
3511   TraceVmCreationTime create_vm_timer;
3512   create_vm_timer.start();
3513 
3514   // Initialize system properties.
3515   Arguments::init_system_properties();
3516 
3517   // So that JDK version can be used as a discriminator when parsing arguments
3518   JDK_Version_init();
3519 
3520   // Update/Initialize System properties after JDK version number is known
3521   Arguments::init_version_specific_system_properties();
3522 
3523   // Make sure to initialize log configuration *before* parsing arguments
3524   LogConfiguration::initialize(create_vm_timer.begin_time());
3525 
3526   // Parse arguments
3527   jint parse_result = Arguments::parse(args);
3528   if (parse_result != JNI_OK) return parse_result;
3529 
3530   os::init_before_ergo();
3531 
3532   Arguments::select_gc();
3533   jint gc_result = GC::initialize();
3534   if (gc_result != JNI_OK) {
3535     return gc_result;
3536   }
3537 
3538   jint ergo_result = Arguments::apply_ergo();
3539   if (ergo_result != JNI_OK) return ergo_result;
3540 
3541   // Final check of all ranges after ergonomics which may change values.
3542   if (!CommandLineFlagRangeList::check_ranges()) {
3543     return JNI_EINVAL;
3544   }
3545 
3546   // Final check of all 'AfterErgo' constraints after ergonomics which may change values.
3547   bool constraint_result = CommandLineFlagConstraintList::check_constraints(CommandLineFlagConstraint::AfterErgo);
3548   if (!constraint_result) {
3549     return JNI_EINVAL;
3550   }
3551 
3552   CommandLineFlagWriteableList::mark_startup();
3553 
3554   if (PauseAtStartup) {
3555     os::pause();
3556   }
3557 
3558   HOTSPOT_VM_INIT_BEGIN();
3559 
3560   // Timing (must come after argument parsing)
3561   TraceTime timer("Create VM", TRACETIME_LOG(Info, startuptime));
3562 
3563   // Initialize the os module after parsing the args
3564   jint os_init_2_result = os::init_2();
3565   if (os_init_2_result != JNI_OK) return os_init_2_result;
3566 
3567   jint adjust_after_os_result = Arguments::adjust_after_os();
3568   if (adjust_after_os_result != JNI_OK) return adjust_after_os_result;
3569 
3570   // Initialize output stream logging
3571   ostream_init_log();
3572 
3573   // Convert -Xrun to -agentlib: if there is no JVM_OnLoad
3574   // Must be before create_vm_init_agents()
3575   if (Arguments::init_libraries_at_startup()) {
3576     convert_vm_init_libraries_to_agents();
3577   }
3578 
3579   // Launch -agentlib/-agentpath and converted -Xrun agents
3580   if (Arguments::init_agents_at_startup()) {
3581     create_vm_init_agents();
3582   }
3583 
3584   // Initialize Threads state
3585   _thread_list = NULL;
3586   _number_of_threads = 0;
3587   _number_of_non_daemon_threads = 0;
3588 
3589   // Initialize global data structures and create system classes in heap
3590   vm_init_globals();
3591 
3592 #if INCLUDE_JVMCI
3593   if (JVMCICounterSize > 0) {
3594     JavaThread::_jvmci_old_thread_counters = NEW_C_HEAP_ARRAY(jlong, JVMCICounterSize, mtInternal);
3595     memset(JavaThread::_jvmci_old_thread_counters, 0, sizeof(jlong) * JVMCICounterSize);
3596   } else {
3597     JavaThread::_jvmci_old_thread_counters = NULL;
3598   }
3599 #endif // INCLUDE_JVMCI
3600 
3601   // Attach the main thread to this os thread
3602   JavaThread* main_thread = new JavaThread();
3603   main_thread->set_thread_state(_thread_in_vm);
3604   main_thread->initialize_thread_current();
3605   // must do this before set_active_handles
3606   main_thread->record_stack_base_and_size();
3607   main_thread->set_active_handles(JNIHandleBlock::allocate_block());
3608 
3609   if (!main_thread->set_as_starting_thread()) {
3610     vm_shutdown_during_initialization(
3611                                       "Failed necessary internal allocation. Out of swap space");
3612     delete main_thread;
3613     *canTryAgain = false; // don't let caller call JNI_CreateJavaVM again
3614     return JNI_ENOMEM;
3615   }
3616 
3617   // Enable guard page *after* os::create_main_thread(), otherwise it would
3618   // crash Linux VM, see notes in os_linux.cpp.
3619   main_thread->create_stack_guard_pages();
3620 
3621   // Initialize Java-Level synchronization subsystem
3622   ObjectMonitor::Initialize();
3623 
3624   // Initialize global modules
3625   jint status = init_globals();
3626   if (status != JNI_OK) {
3627     delete main_thread;
3628     *canTryAgain = false; // don't let caller call JNI_CreateJavaVM again
3629     return status;
3630   }
3631 
3632   if (TRACE_INITIALIZE() != JNI_OK) {
3633     vm_exit_during_initialization("Failed to initialize tracing backend");
3634   }
3635 
3636   // Should be done after the heap is fully created
3637   main_thread->cache_global_variables();
3638 
3639   HandleMark hm;
3640 
3641   { MutexLocker mu(Threads_lock);
3642     Threads::add(main_thread);
3643   }
3644 
3645   // Any JVMTI raw monitors entered in onload will transition into
3646   // real raw monitor. VM is setup enough here for raw monitor enter.
3647   JvmtiExport::transition_pending_onload_raw_monitors();
3648 
3649   // Create the VMThread
3650   { TraceTime timer("Start VMThread", TRACETIME_LOG(Info, startuptime));
3651 
3652   VMThread::create();
3653     Thread* vmthread = VMThread::vm_thread();
3654 
3655     if (!os::create_thread(vmthread, os::vm_thread)) {
3656       vm_exit_during_initialization("Cannot create VM thread. "
3657                                     "Out of system resources.");
3658     }
3659 
3660     // Wait for the VM thread to become ready, and VMThread::run to initialize
3661     // Monitors can have spurious returns, must always check another state flag
3662     {
3663       MutexLocker ml(Notify_lock);
3664       os::start_thread(vmthread);
3665       while (vmthread->active_handles() == NULL) {
3666         Notify_lock->wait();
3667       }
3668     }
3669   }
3670 
3671   assert(Universe::is_fully_initialized(), "not initialized");
3672   if (VerifyDuringStartup) {
3673     // Make sure we're starting with a clean slate.
3674     VM_Verify verify_op;
3675     VMThread::execute(&verify_op);
3676   }
3677 
3678   Thread* THREAD = Thread::current();
3679 
3680   // At this point, the Universe is initialized, but we have not executed
3681   // any byte code.  Now is a good time (the only time) to dump out the
3682   // internal state of the JVM for sharing.
3683   if (DumpSharedSpaces) {
3684     MetaspaceShared::preload_and_dump(CHECK_JNI_ERR);
3685     ShouldNotReachHere();
3686   }
3687 
3688   // Always call even when there are not JVMTI environments yet, since environments
3689   // may be attached late and JVMTI must track phases of VM execution
3690   JvmtiExport::enter_early_start_phase();
3691 
3692   // Notify JVMTI agents that VM has started (JNI is up) - nop if no agents.
3693   JvmtiExport::post_early_vm_start();
3694 
3695   initialize_java_lang_classes(main_thread, CHECK_JNI_ERR);
3696 
3697   // We need this for ClassDataSharing - the initial vm.info property is set
3698   // with the default value of CDS "sharing" which may be reset through
3699   // command line options.
3700   reset_vm_info_property(CHECK_JNI_ERR);
3701 
3702   quicken_jni_functions();
3703 
3704   // No more stub generation allowed after that point.
3705   StubCodeDesc::freeze();
3706 
3707   // Set flag that basic initialization has completed. Used by exceptions and various
3708   // debug stuff, that does not work until all basic classes have been initialized.
3709   set_init_completed();
3710 
3711   LogConfiguration::post_initialize();
3712   Metaspace::post_initialize();
3713 
3714   HOTSPOT_VM_INIT_END();
3715 
3716   // record VM initialization completion time
3717 #if INCLUDE_MANAGEMENT
3718   Management::record_vm_init_completed();
3719 #endif // INCLUDE_MANAGEMENT
3720 
3721   // Signal Dispatcher needs to be started before VMInit event is posted
3722   os::signal_init();
3723 
3724   // Start Attach Listener if +StartAttachListener or it can't be started lazily
3725   if (!DisableAttachMechanism) {
3726     AttachListener::vm_start();
3727     if (StartAttachListener || AttachListener::init_at_startup()) {
3728       AttachListener::init();
3729     }
3730   }
3731 
3732   // Launch -Xrun agents
3733   // Must be done in the JVMTI live phase so that for backward compatibility the JDWP
3734   // back-end can launch with -Xdebug -Xrunjdwp.
3735   if (!EagerXrunInit && Arguments::init_libraries_at_startup()) {
3736     create_vm_init_libraries();
3737   }
3738 
3739   if (CleanChunkPoolAsync) {
3740     Chunk::start_chunk_pool_cleaner_task();
3741   }
3742 
3743   // initialize compiler(s)
3744 #if defined(COMPILER1) || defined(COMPILER2) || defined(SHARK) || INCLUDE_JVMCI
3745   CompileBroker::compilation_init(CHECK_JNI_ERR);
3746 #endif
3747 
3748   // Pre-initialize some JSR292 core classes to avoid deadlock during class loading.
3749   // It is done after compilers are initialized, because otherwise compilations of
3750   // signature polymorphic MH intrinsics can be missed
3751   // (see SystemDictionary::find_method_handle_intrinsic).
3752   initialize_jsr292_core_classes(CHECK_JNI_ERR);
3753 
3754   // This will initialize the module system.  Only java.base classes can be
3755   // loaded until phase 2 completes
3756   call_initPhase2(CHECK_JNI_ERR);
3757 
3758   // Always call even when there are not JVMTI environments yet, since environments
3759   // may be attached late and JVMTI must track phases of VM execution
3760   JvmtiExport::enter_start_phase();
3761 
3762   // Notify JVMTI agents that VM has started (JNI is up) - nop if no agents.
3763   JvmtiExport::post_vm_start();
3764 
3765   // Final system initialization including security manager and system class loader
3766   call_initPhase3(CHECK_JNI_ERR);
3767 
3768   // cache the system class loader
3769   SystemDictionary::compute_java_system_loader(CHECK_(JNI_ERR));
3770 
3771 #if INCLUDE_JVMCI
3772   if (EnableJVMCI) {
3773     // Initialize JVMCI eagerly if JVMCIPrintProperties is enabled.
3774     // The JVMCI Java initialization code will read this flag and
3775     // do the printing if it's set.
3776     bool init = JVMCIPrintProperties;
3777 
3778     if (!init) {
3779       // 8145270: Force initialization of JVMCI runtime otherwise requests for blocking
3780       // compilations via JVMCI will not actually block until JVMCI is initialized.
3781       init = UseJVMCICompiler && (!UseInterpreter || !BackgroundCompilation);
3782     }
3783 
3784     if (init) {
3785       JVMCIRuntime::force_initialization(CHECK_JNI_ERR);
3786     }
3787   }
3788 #endif
3789 
3790   // Always call even when there are not JVMTI environments yet, since environments
3791   // may be attached late and JVMTI must track phases of VM execution
3792   JvmtiExport::enter_live_phase();
3793 
3794   // Notify JVMTI agents that VM initialization is complete - nop if no agents.
3795   JvmtiExport::post_vm_initialized();
3796 
3797   if (TRACE_START() != JNI_OK) {
3798     vm_exit_during_initialization("Failed to start tracing backend.");
3799   }
3800 
3801 #if INCLUDE_MANAGEMENT
3802   Management::initialize(THREAD);
3803 
3804   if (HAS_PENDING_EXCEPTION) {
3805     // management agent fails to start possibly due to
3806     // configuration problem and is responsible for printing
3807     // stack trace if appropriate. Simply exit VM.
3808     vm_exit(1);
3809   }
3810 #endif // INCLUDE_MANAGEMENT
3811 
3812   if (Arguments::has_profile())       FlatProfiler::engage(main_thread, true);
3813   if (MemProfiling)                   MemProfiler::engage();
3814   StatSampler::engage();
3815   if (CheckJNICalls)                  JniPeriodicChecker::engage();
3816 
3817   BiasedLocking::init();
3818 
3819 #if INCLUDE_RTM_OPT
3820   RTMLockingCounters::init();
3821 #endif
3822 
3823   if (JDK_Version::current().post_vm_init_hook_enabled()) {
3824     call_postVMInitHook(THREAD);
3825     // The Java side of PostVMInitHook.run must deal with all
3826     // exceptions and provide means of diagnosis.
3827     if (HAS_PENDING_EXCEPTION) {
3828       CLEAR_PENDING_EXCEPTION;
3829     }
3830   }
3831 
3832   {
3833     MutexLocker ml(PeriodicTask_lock);
3834     // Make sure the WatcherThread can be started by WatcherThread::start()
3835     // or by dynamic enrollment.
3836     WatcherThread::make_startable();
3837     // Start up the WatcherThread if there are any periodic tasks
3838     // NOTE:  All PeriodicTasks should be registered by now. If they
3839     //   aren't, late joiners might appear to start slowly (we might
3840     //   take a while to process their first tick).
3841     if (PeriodicTask::num_tasks() > 0) {
3842       WatcherThread::start();
3843     }
3844   }
3845 
3846   CodeCacheExtensions::complete_step(CodeCacheExtensionsSteps::CreateVM);
3847 
3848   create_vm_timer.end();
3849 #ifdef ASSERT
3850   _vm_complete = true;
3851 #endif
3852   return JNI_OK;
3853 }
3854 
3855 // type for the Agent_OnLoad and JVM_OnLoad entry points
3856 extern "C" {
3857   typedef jint (JNICALL *OnLoadEntry_t)(JavaVM *, char *, void *);
3858 }
3859 // Find a command line agent library and return its entry point for
3860 //         -agentlib:  -agentpath:   -Xrun
3861 // num_symbol_entries must be passed-in since only the caller knows the number of symbols in the array.
3862 static OnLoadEntry_t lookup_on_load(AgentLibrary* agent,
3863                                     const char *on_load_symbols[],
3864                                     size_t num_symbol_entries) {
3865   OnLoadEntry_t on_load_entry = NULL;
3866   void *library = NULL;
3867 
3868   if (!agent->valid()) {
3869     char buffer[JVM_MAXPATHLEN];
3870     char ebuf[1024] = "";
3871     const char *name = agent->name();
3872     const char *msg = "Could not find agent library ";
3873 
3874     // First check to see if agent is statically linked into executable
3875     if (os::find_builtin_agent(agent, on_load_symbols, num_symbol_entries)) {
3876       library = agent->os_lib();
3877     } else if (agent->is_absolute_path()) {
3878       library = os::dll_load(name, ebuf, sizeof ebuf);
3879       if (library == NULL) {
3880         const char *sub_msg = " in absolute path, with error: ";
3881         size_t len = strlen(msg) + strlen(name) + strlen(sub_msg) + strlen(ebuf) + 1;
3882         char *buf = NEW_C_HEAP_ARRAY(char, len, mtThread);
3883         jio_snprintf(buf, len, "%s%s%s%s", msg, name, sub_msg, ebuf);
3884         // If we can't find the agent, exit.
3885         vm_exit_during_initialization(buf, NULL);
3886         FREE_C_HEAP_ARRAY(char, buf);
3887       }
3888     } else {
3889       // Try to load the agent from the standard dll directory
3890       if (os::dll_build_name(buffer, sizeof(buffer), Arguments::get_dll_dir(),
3891                              name)) {
3892         library = os::dll_load(buffer, ebuf, sizeof ebuf);
3893       }
3894       if (library == NULL) { // Try the local directory
3895         char ns[1] = {0};
3896         if (os::dll_build_name(buffer, sizeof(buffer), ns, name)) {
3897           library = os::dll_load(buffer, ebuf, sizeof ebuf);
3898         }
3899         if (library == NULL) {
3900           const char *sub_msg = " on the library path, with error: ";
3901           size_t len = strlen(msg) + strlen(name) + strlen(sub_msg) + strlen(ebuf) + 1;
3902           char *buf = NEW_C_HEAP_ARRAY(char, len, mtThread);
3903           jio_snprintf(buf, len, "%s%s%s%s", msg, name, sub_msg, ebuf);
3904           // If we can't find the agent, exit.
3905           vm_exit_during_initialization(buf, NULL);
3906           FREE_C_HEAP_ARRAY(char, buf);
3907         }
3908       }
3909     }
3910     agent->set_os_lib(library);
3911     agent->set_valid();
3912   }
3913 
3914   // Find the OnLoad function.
3915   on_load_entry =
3916     CAST_TO_FN_PTR(OnLoadEntry_t, os::find_agent_function(agent,
3917                                                           false,
3918                                                           on_load_symbols,
3919                                                           num_symbol_entries));
3920   return on_load_entry;
3921 }
3922 
3923 // Find the JVM_OnLoad entry point
3924 static OnLoadEntry_t lookup_jvm_on_load(AgentLibrary* agent) {
3925   const char *on_load_symbols[] = JVM_ONLOAD_SYMBOLS;
3926   return lookup_on_load(agent, on_load_symbols, sizeof(on_load_symbols) / sizeof(char*));
3927 }
3928 
3929 // Find the Agent_OnLoad entry point
3930 static OnLoadEntry_t lookup_agent_on_load(AgentLibrary* agent) {
3931   const char *on_load_symbols[] = AGENT_ONLOAD_SYMBOLS;
3932   return lookup_on_load(agent, on_load_symbols, sizeof(on_load_symbols) / sizeof(char*));
3933 }
3934 
3935 // For backwards compatibility with -Xrun
3936 // Convert libraries with no JVM_OnLoad, but which have Agent_OnLoad to be
3937 // treated like -agentpath:
3938 // Must be called before agent libraries are created
3939 void Threads::convert_vm_init_libraries_to_agents() {
3940   AgentLibrary* agent;
3941   AgentLibrary* next;
3942 
3943   for (agent = Arguments::libraries(); agent != NULL; agent = next) {
3944     next = agent->next();  // cache the next agent now as this agent may get moved off this list
3945     OnLoadEntry_t on_load_entry = lookup_jvm_on_load(agent);
3946 
3947     // If there is an JVM_OnLoad function it will get called later,
3948     // otherwise see if there is an Agent_OnLoad
3949     if (on_load_entry == NULL) {
3950       on_load_entry = lookup_agent_on_load(agent);
3951       if (on_load_entry != NULL) {
3952         // switch it to the agent list -- so that Agent_OnLoad will be called,
3953         // JVM_OnLoad won't be attempted and Agent_OnUnload will
3954         Arguments::convert_library_to_agent(agent);
3955       } else {
3956         vm_exit_during_initialization("Could not find JVM_OnLoad or Agent_OnLoad function in the library", agent->name());
3957       }
3958     }
3959   }
3960 }
3961 
3962 // Create agents for -agentlib:  -agentpath:  and converted -Xrun
3963 // Invokes Agent_OnLoad
3964 // Called very early -- before JavaThreads exist
3965 void Threads::create_vm_init_agents() {
3966   extern struct JavaVM_ main_vm;
3967   AgentLibrary* agent;
3968 
3969   JvmtiExport::enter_onload_phase();
3970 
3971   for (agent = Arguments::agents(); agent != NULL; agent = agent->next()) {
3972     OnLoadEntry_t  on_load_entry = lookup_agent_on_load(agent);
3973 
3974     if (on_load_entry != NULL) {
3975       // Invoke the Agent_OnLoad function
3976       jint err = (*on_load_entry)(&main_vm, agent->options(), NULL);
3977       if (err != JNI_OK) {
3978         vm_exit_during_initialization("agent library failed to init", agent->name());
3979       }
3980     } else {
3981       vm_exit_during_initialization("Could not find Agent_OnLoad function in the agent library", agent->name());
3982     }
3983   }
3984   JvmtiExport::enter_primordial_phase();
3985 }
3986 
3987 extern "C" {
3988   typedef void (JNICALL *Agent_OnUnload_t)(JavaVM *);
3989 }
3990 
3991 void Threads::shutdown_vm_agents() {
3992   // Send any Agent_OnUnload notifications
3993   const char *on_unload_symbols[] = AGENT_ONUNLOAD_SYMBOLS;
3994   size_t num_symbol_entries = ARRAY_SIZE(on_unload_symbols);
3995   extern struct JavaVM_ main_vm;
3996   for (AgentLibrary* agent = Arguments::agents(); agent != NULL; agent = agent->next()) {
3997 
3998     // Find the Agent_OnUnload function.
3999     Agent_OnUnload_t unload_entry = CAST_TO_FN_PTR(Agent_OnUnload_t,
4000                                                    os::find_agent_function(agent,
4001                                                    false,
4002                                                    on_unload_symbols,
4003                                                    num_symbol_entries));
4004 
4005     // Invoke the Agent_OnUnload function
4006     if (unload_entry != NULL) {
4007       JavaThread* thread = JavaThread::current();
4008       ThreadToNativeFromVM ttn(thread);
4009       HandleMark hm(thread);
4010       (*unload_entry)(&main_vm);
4011     }
4012   }
4013 }
4014 
4015 // Called for after the VM is initialized for -Xrun libraries which have not been converted to agent libraries
4016 // Invokes JVM_OnLoad
4017 void Threads::create_vm_init_libraries() {
4018   extern struct JavaVM_ main_vm;
4019   AgentLibrary* agent;
4020 
4021   for (agent = Arguments::libraries(); agent != NULL; agent = agent->next()) {
4022     OnLoadEntry_t on_load_entry = lookup_jvm_on_load(agent);
4023 
4024     if (on_load_entry != NULL) {
4025       // Invoke the JVM_OnLoad function
4026       JavaThread* thread = JavaThread::current();
4027       ThreadToNativeFromVM ttn(thread);
4028       HandleMark hm(thread);
4029       jint err = (*on_load_entry)(&main_vm, agent->options(), NULL);
4030       if (err != JNI_OK) {
4031         vm_exit_during_initialization("-Xrun library failed to init", agent->name());
4032       }
4033     } else {
4034       vm_exit_during_initialization("Could not find JVM_OnLoad function in -Xrun library", agent->name());
4035     }
4036   }
4037 }
4038 
4039 JavaThread* Threads::find_java_thread_from_java_tid(jlong java_tid) {
4040   assert(Threads_lock->owned_by_self(), "Must hold Threads_lock");
4041 
4042   JavaThread* java_thread = NULL;
4043   // Sequential search for now.  Need to do better optimization later.
4044   for (JavaThread* thread = Threads::first(); thread != NULL; thread = thread->next()) {
4045     oop tobj = thread->threadObj();
4046     if (!thread->is_exiting() &&
4047         tobj != NULL &&
4048         java_tid == java_lang_Thread::thread_id(tobj)) {
4049       java_thread = thread;
4050       break;
4051     }
4052   }
4053   return java_thread;
4054 }
4055 
4056 
4057 // Last thread running calls java.lang.Shutdown.shutdown()
4058 void JavaThread::invoke_shutdown_hooks() {
4059   HandleMark hm(this);
4060 
4061   // We could get here with a pending exception, if so clear it now.
4062   if (this->has_pending_exception()) {
4063     this->clear_pending_exception();
4064   }
4065 
4066   EXCEPTION_MARK;
4067   Klass* k =
4068     SystemDictionary::resolve_or_null(vmSymbols::java_lang_Shutdown(),
4069                                       THREAD);
4070   if (k != NULL) {
4071     // SystemDictionary::resolve_or_null will return null if there was
4072     // an exception.  If we cannot load the Shutdown class, just don't
4073     // call Shutdown.shutdown() at all.  This will mean the shutdown hooks
4074     // and finalizers (if runFinalizersOnExit is set) won't be run.
4075     // Note that if a shutdown hook was registered or runFinalizersOnExit
4076     // was called, the Shutdown class would have already been loaded
4077     // (Runtime.addShutdownHook and runFinalizersOnExit will load it).
4078     instanceKlassHandle shutdown_klass (THREAD, k);
4079     JavaValue result(T_VOID);
4080     JavaCalls::call_static(&result,
4081                            shutdown_klass,
4082                            vmSymbols::shutdown_method_name(),
4083                            vmSymbols::void_method_signature(),
4084                            THREAD);
4085   }
4086   CLEAR_PENDING_EXCEPTION;
4087 }
4088 
4089 // Threads::destroy_vm() is normally called from jni_DestroyJavaVM() when
4090 // the program falls off the end of main(). Another VM exit path is through
4091 // vm_exit() when the program calls System.exit() to return a value or when
4092 // there is a serious error in VM. The two shutdown paths are not exactly
4093 // the same, but they share Shutdown.shutdown() at Java level and before_exit()
4094 // and VM_Exit op at VM level.
4095 //
4096 // Shutdown sequence:
4097 //   + Shutdown native memory tracking if it is on
4098 //   + Wait until we are the last non-daemon thread to execute
4099 //     <-- every thing is still working at this moment -->
4100 //   + Call java.lang.Shutdown.shutdown(), which will invoke Java level
4101 //        shutdown hooks, run finalizers if finalization-on-exit
4102 //   + Call before_exit(), prepare for VM exit
4103 //      > run VM level shutdown hooks (they are registered through JVM_OnExit(),
4104 //        currently the only user of this mechanism is File.deleteOnExit())
4105 //      > stop flat profiler, StatSampler, watcher thread, CMS threads,
4106 //        post thread end and vm death events to JVMTI,
4107 //        stop signal thread
4108 //   + Call JavaThread::exit(), it will:
4109 //      > release JNI handle blocks, remove stack guard pages
4110 //      > remove this thread from Threads list
4111 //     <-- no more Java code from this thread after this point -->
4112 //   + Stop VM thread, it will bring the remaining VM to a safepoint and stop
4113 //     the compiler threads at safepoint
4114 //     <-- do not use anything that could get blocked by Safepoint -->
4115 //   + Disable tracing at JNI/JVM barriers
4116 //   + Set _vm_exited flag for threads that are still running native code
4117 //   + Delete this thread
4118 //   + Call exit_globals()
4119 //      > deletes tty
4120 //      > deletes PerfMemory resources
4121 //   + Return to caller
4122 
4123 bool Threads::destroy_vm() {
4124   JavaThread* thread = JavaThread::current();
4125 
4126 #ifdef ASSERT
4127   _vm_complete = false;
4128 #endif
4129   // Wait until we are the last non-daemon thread to execute
4130   { MutexLocker nu(Threads_lock);
4131     while (Threads::number_of_non_daemon_threads() > 1)
4132       // This wait should make safepoint checks, wait without a timeout,
4133       // and wait as a suspend-equivalent condition.
4134       //
4135       // Note: If the FlatProfiler is running and this thread is waiting
4136       // for another non-daemon thread to finish, then the FlatProfiler
4137       // is waiting for the external suspend request on this thread to
4138       // complete. wait_for_ext_suspend_completion() will eventually
4139       // timeout, but that takes time. Making this wait a suspend-
4140       // equivalent condition solves that timeout problem.
4141       //
4142       Threads_lock->wait(!Mutex::_no_safepoint_check_flag, 0,
4143                          Mutex::_as_suspend_equivalent_flag);
4144   }
4145 
4146   // Hang forever on exit if we are reporting an error.
4147   if (ShowMessageBoxOnError && is_error_reported()) {
4148     os::infinite_sleep();
4149   }
4150   os::wait_for_keypress_at_exit();
4151 
4152   // run Java level shutdown hooks
4153   thread->invoke_shutdown_hooks();
4154 
4155   before_exit(thread);
4156 
4157   thread->exit(true);
4158 
4159   // Stop VM thread.
4160   {
4161     // 4945125 The vm thread comes to a safepoint during exit.
4162     // GC vm_operations can get caught at the safepoint, and the
4163     // heap is unparseable if they are caught. Grab the Heap_lock
4164     // to prevent this. The GC vm_operations will not be able to
4165     // queue until after the vm thread is dead. After this point,
4166     // we'll never emerge out of the safepoint before the VM exits.
4167 
4168     MutexLocker ml(Heap_lock);
4169 
4170     VMThread::wait_for_vm_thread_exit();
4171     assert(SafepointSynchronize::is_at_safepoint(), "VM thread should exit at Safepoint");
4172     VMThread::destroy();
4173   }
4174 
4175   // clean up ideal graph printers
4176 #if defined(COMPILER2) && !defined(PRODUCT)
4177   IdealGraphPrinter::clean_up();
4178 #endif
4179 
4180   // Now, all Java threads are gone except daemon threads. Daemon threads
4181   // running Java code or in VM are stopped by the Safepoint. However,
4182   // daemon threads executing native code are still running.  But they
4183   // will be stopped at native=>Java/VM barriers. Note that we can't
4184   // simply kill or suspend them, as it is inherently deadlock-prone.
4185 
4186   VM_Exit::set_vm_exited();
4187 
4188   notify_vm_shutdown();
4189 
4190   delete thread;
4191 
4192 #if INCLUDE_JVMCI
4193   if (JVMCICounterSize > 0) {
4194     FREE_C_HEAP_ARRAY(jlong, JavaThread::_jvmci_old_thread_counters);
4195   }
4196 #endif
4197 
4198   // exit_globals() will delete tty
4199   exit_globals();
4200 
4201   LogConfiguration::finalize();
4202 
4203   return true;
4204 }
4205 
4206 
4207 jboolean Threads::is_supported_jni_version_including_1_1(jint version) {
4208   if (version == JNI_VERSION_1_1) return JNI_TRUE;
4209   return is_supported_jni_version(version);
4210 }
4211 
4212 
4213 jboolean Threads::is_supported_jni_version(jint version) {
4214   if (version == JNI_VERSION_1_2) return JNI_TRUE;
4215   if (version == JNI_VERSION_1_4) return JNI_TRUE;
4216   if (version == JNI_VERSION_1_6) return JNI_TRUE;
4217   if (version == JNI_VERSION_1_8) return JNI_TRUE;
4218   if (version == JNI_VERSION_9) return JNI_TRUE;
4219   return JNI_FALSE;
4220 }
4221 
4222 
4223 void Threads::add(JavaThread* p, bool force_daemon) {
4224   // The threads lock must be owned at this point
4225   assert_locked_or_safepoint(Threads_lock);
4226 
4227   // See the comment for this method in thread.hpp for its purpose and
4228   // why it is called here.
4229   p->initialize_queues();
4230   p->set_next(_thread_list);
4231   _thread_list = p;
4232   _number_of_threads++;
4233   oop threadObj = p->threadObj();
4234   bool daemon = true;
4235   // Bootstrapping problem: threadObj can be null for initial
4236   // JavaThread (or for threads attached via JNI)
4237   if ((!force_daemon) && (threadObj == NULL || !java_lang_Thread::is_daemon(threadObj))) {
4238     _number_of_non_daemon_threads++;
4239     daemon = false;
4240   }
4241 
4242   ThreadService::add_thread(p, daemon);
4243 
4244   // Possible GC point.
4245   Events::log(p, "Thread added: " INTPTR_FORMAT, p2i(p));
4246 }
4247 
4248 void Threads::remove(JavaThread* p) {
4249   // Extra scope needed for Thread_lock, so we can check
4250   // that we do not remove thread without safepoint code notice
4251   { MutexLocker ml(Threads_lock);
4252 
4253     assert(includes(p), "p must be present");
4254 
4255     JavaThread* current = _thread_list;
4256     JavaThread* prev    = NULL;
4257 
4258     while (current != p) {
4259       prev    = current;
4260       current = current->next();
4261     }
4262 
4263     if (prev) {
4264       prev->set_next(current->next());
4265     } else {
4266       _thread_list = p->next();
4267     }
4268     _number_of_threads--;
4269     oop threadObj = p->threadObj();
4270     bool daemon = true;
4271     if (threadObj == NULL || !java_lang_Thread::is_daemon(threadObj)) {
4272       _number_of_non_daemon_threads--;
4273       daemon = false;
4274 
4275       // Only one thread left, do a notify on the Threads_lock so a thread waiting
4276       // on destroy_vm will wake up.
4277       if (number_of_non_daemon_threads() == 1) {
4278         Threads_lock->notify_all();
4279       }
4280     }
4281     ThreadService::remove_thread(p, daemon);
4282 
4283     // Make sure that safepoint code disregard this thread. This is needed since
4284     // the thread might mess around with locks after this point. This can cause it
4285     // to do callbacks into the safepoint code. However, the safepoint code is not aware
4286     // of this thread since it is removed from the queue.
4287     p->set_terminated_value();
4288   } // unlock Threads_lock
4289 
4290   // Since Events::log uses a lock, we grab it outside the Threads_lock
4291   Events::log(p, "Thread exited: " INTPTR_FORMAT, p2i(p));
4292 }
4293 
4294 // Threads_lock must be held when this is called (or must be called during a safepoint)
4295 bool Threads::includes(JavaThread* p) {
4296   assert(Threads_lock->is_locked(), "sanity check");
4297   ALL_JAVA_THREADS(q) {
4298     if (q == p) {
4299       return true;
4300     }
4301   }
4302   return false;
4303 }
4304 
4305 // Operations on the Threads list for GC.  These are not explicitly locked,
4306 // but the garbage collector must provide a safe context for them to run.
4307 // In particular, these things should never be called when the Threads_lock
4308 // is held by some other thread. (Note: the Safepoint abstraction also
4309 // uses the Threads_lock to guarantee this property. It also makes sure that
4310 // all threads gets blocked when exiting or starting).
4311 
4312 void Threads::oops_do(OopClosure* f, CodeBlobClosure* cf) {
4313   ALL_JAVA_THREADS(p) {
4314     p->oops_do(f, cf);
4315   }
4316   VMThread::vm_thread()->oops_do(f, cf);
4317 }
4318 
4319 void Threads::change_thread_claim_parity() {
4320   // Set the new claim parity.
4321   assert(_thread_claim_parity >= 0 && _thread_claim_parity <= 2,
4322          "Not in range.");
4323   _thread_claim_parity++;
4324   if (_thread_claim_parity == 3) _thread_claim_parity = 1;
4325   assert(_thread_claim_parity >= 1 && _thread_claim_parity <= 2,
4326          "Not in range.");
4327 }
4328 
4329 #ifdef ASSERT
4330 void Threads::assert_all_threads_claimed() {
4331   ALL_JAVA_THREADS(p) {
4332     const int thread_parity = p->oops_do_parity();
4333     assert((thread_parity == _thread_claim_parity),
4334            "Thread " PTR_FORMAT " has incorrect parity %d != %d", p2i(p), thread_parity, _thread_claim_parity);
4335   }
4336 }
4337 #endif // ASSERT
4338 
4339 void Threads::possibly_parallel_oops_do(bool is_par, OopClosure* f, CodeBlobClosure* cf) {
4340   int cp = Threads::thread_claim_parity();
4341   ALL_JAVA_THREADS(p) {
4342     if (p->claim_oops_do(is_par, cp)) {
4343       p->oops_do(f, cf);
4344     }
4345   }
4346   VMThread* vmt = VMThread::vm_thread();
4347   if (vmt->claim_oops_do(is_par, cp)) {
4348     vmt->oops_do(f, cf);
4349   }
4350 }
4351 
4352 void Threads::nmethods_do(CodeBlobClosure* cf) {
4353   ALL_JAVA_THREADS(p) {
4354     // This is used by the code cache sweeper to mark nmethods that are active
4355     // on the stack of a Java thread. Ignore the sweeper thread itself to avoid
4356     // marking CodeCacheSweeperThread::_scanned_compiled_method as active.
4357     if(!p->is_Code_cache_sweeper_thread()) {
4358       p->nmethods_do(cf);
4359     }
4360   }
4361 }
4362 
4363 void Threads::metadata_do(void f(Metadata*)) {
4364   ALL_JAVA_THREADS(p) {
4365     p->metadata_do(f);
4366   }
4367 }
4368 
4369 class ThreadHandlesClosure : public ThreadClosure {
4370   void (*_f)(Metadata*);
4371  public:
4372   ThreadHandlesClosure(void f(Metadata*)) : _f(f) {}
4373   virtual void do_thread(Thread* thread) {
4374     thread->metadata_handles_do(_f);
4375   }
4376 };
4377 
4378 void Threads::metadata_handles_do(void f(Metadata*)) {
4379   // Only walk the Handles in Thread.
4380   ThreadHandlesClosure handles_closure(f);
4381   threads_do(&handles_closure);
4382 }
4383 
4384 void Threads::deoptimized_wrt_marked_nmethods() {
4385   ALL_JAVA_THREADS(p) {
4386     p->deoptimized_wrt_marked_nmethods();
4387   }
4388 }
4389 
4390 
4391 // Get count Java threads that are waiting to enter the specified monitor.
4392 GrowableArray<JavaThread*>* Threads::get_pending_threads(int count,
4393                                                          address monitor,
4394                                                          bool doLock) {
4395   assert(doLock || SafepointSynchronize::is_at_safepoint(),
4396          "must grab Threads_lock or be at safepoint");
4397   GrowableArray<JavaThread*>* result = new GrowableArray<JavaThread*>(count);
4398 
4399   int i = 0;
4400   {
4401     MutexLockerEx ml(doLock ? Threads_lock : NULL);
4402     ALL_JAVA_THREADS(p) {
4403       if (!p->can_call_java()) continue;
4404 
4405       address pending = (address)p->current_pending_monitor();
4406       if (pending == monitor) {             // found a match
4407         if (i < count) result->append(p);   // save the first count matches
4408         i++;
4409       }
4410     }
4411   }
4412   return result;
4413 }
4414 
4415 
4416 JavaThread *Threads::owning_thread_from_monitor_owner(address owner,
4417                                                       bool doLock) {
4418   assert(doLock ||
4419          Threads_lock->owned_by_self() ||
4420          SafepointSynchronize::is_at_safepoint(),
4421          "must grab Threads_lock or be at safepoint");
4422 
4423   // NULL owner means not locked so we can skip the search
4424   if (owner == NULL) return NULL;
4425 
4426   {
4427     MutexLockerEx ml(doLock ? Threads_lock : NULL);
4428     ALL_JAVA_THREADS(p) {
4429       // first, see if owner is the address of a Java thread
4430       if (owner == (address)p) return p;
4431     }
4432   }
4433   // Cannot assert on lack of success here since this function may be
4434   // used by code that is trying to report useful problem information
4435   // like deadlock detection.
4436   if (UseHeavyMonitors) return NULL;
4437 
4438   // If we didn't find a matching Java thread and we didn't force use of
4439   // heavyweight monitors, then the owner is the stack address of the
4440   // Lock Word in the owning Java thread's stack.
4441   //
4442   JavaThread* the_owner = NULL;
4443   {
4444     MutexLockerEx ml(doLock ? Threads_lock : NULL);
4445     ALL_JAVA_THREADS(q) {
4446       if (q->is_lock_owned(owner)) {
4447         the_owner = q;
4448         break;
4449       }
4450     }
4451   }
4452   // cannot assert on lack of success here; see above comment
4453   return the_owner;
4454 }
4455 
4456 // Threads::print_on() is called at safepoint by VM_PrintThreads operation.
4457 void Threads::print_on(outputStream* st, bool print_stacks,
4458                        bool internal_format, bool print_concurrent_locks) {
4459   char buf[32];
4460   st->print_raw_cr(os::local_time_string(buf, sizeof(buf)));
4461 
4462   st->print_cr("Full thread dump %s (%s %s):",
4463                Abstract_VM_Version::vm_name(),
4464                Abstract_VM_Version::vm_release(),
4465                Abstract_VM_Version::vm_info_string());
4466   st->cr();
4467 
4468 #if INCLUDE_SERVICES
4469   // Dump concurrent locks
4470   ConcurrentLocksDump concurrent_locks;
4471   if (print_concurrent_locks) {
4472     concurrent_locks.dump_at_safepoint();
4473   }
4474 #endif // INCLUDE_SERVICES
4475 
4476   ALL_JAVA_THREADS(p) {
4477     ResourceMark rm;
4478     p->print_on(st);
4479     if (print_stacks) {
4480       if (internal_format) {
4481         p->trace_stack();
4482       } else {
4483         p->print_stack_on(st);
4484       }
4485     }
4486     st->cr();
4487 #if INCLUDE_SERVICES
4488     if (print_concurrent_locks) {
4489       concurrent_locks.print_locks_on(p, st);
4490     }
4491 #endif // INCLUDE_SERVICES
4492   }
4493 
4494   VMThread::vm_thread()->print_on(st);
4495   st->cr();
4496   GC::gc()->heap()->print_gc_threads_on(st);
4497   WatcherThread* wt = WatcherThread::watcher_thread();
4498   if (wt != NULL) {
4499     wt->print_on(st);
4500     st->cr();
4501   }
4502   st->flush();
4503 }
4504 
4505 void Threads::print_on_error(Thread* this_thread, outputStream* st, Thread* current, char* buf,
4506                              int buflen, bool* found_current) {
4507   if (this_thread != NULL) {
4508     bool is_current = (current == this_thread);
4509     *found_current = *found_current || is_current;
4510     st->print("%s", is_current ? "=>" : "  ");
4511 
4512     st->print(PTR_FORMAT, p2i(this_thread));
4513     st->print(" ");
4514     this_thread->print_on_error(st, buf, buflen);
4515     st->cr();
4516   }
4517 }
4518 
4519 class PrintOnErrorClosure : public ThreadClosure {
4520   outputStream* _st;
4521   Thread* _current;
4522   char* _buf;
4523   int _buflen;
4524   bool* _found_current;
4525  public:
4526   PrintOnErrorClosure(outputStream* st, Thread* current, char* buf,
4527                       int buflen, bool* found_current) :
4528    _st(st), _current(current), _buf(buf), _buflen(buflen), _found_current(found_current) {}
4529 
4530   virtual void do_thread(Thread* thread) {
4531     Threads::print_on_error(thread, _st, _current, _buf, _buflen, _found_current);
4532   }
4533 };
4534 
4535 // Threads::print_on_error() is called by fatal error handler. It's possible
4536 // that VM is not at safepoint and/or current thread is inside signal handler.
4537 // Don't print stack trace, as the stack may not be walkable. Don't allocate
4538 // memory (even in resource area), it might deadlock the error handler.
4539 void Threads::print_on_error(outputStream* st, Thread* current, char* buf,
4540                              int buflen) {
4541   bool found_current = false;
4542   st->print_cr("Java Threads: ( => current thread )");
4543   ALL_JAVA_THREADS(thread) {
4544     print_on_error(thread, st, current, buf, buflen, &found_current);
4545   }
4546   st->cr();
4547 
4548   st->print_cr("Other Threads:");
4549   print_on_error(VMThread::vm_thread(), st, current, buf, buflen, &found_current);
4550   print_on_error(WatcherThread::watcher_thread(), st, current, buf, buflen, &found_current);
4551 
4552   PrintOnErrorClosure print_closure(st, current, buf, buflen, &found_current);
4553   GC::gc()->heap()->gc_threads_do(&print_closure);
4554 
4555   if (!found_current) {
4556     st->cr();
4557     st->print("=>" PTR_FORMAT " (exited) ", p2i(current));
4558     current->print_on_error(st, buf, buflen);
4559     st->cr();
4560   }
4561   st->cr();
4562   st->print_cr("Threads with active compile tasks:");
4563   print_threads_compiling(st, buf, buflen);
4564 }
4565 
4566 void Threads::print_threads_compiling(outputStream* st, char* buf, int buflen) {
4567   ALL_JAVA_THREADS(thread) {
4568     if (thread->is_Compiler_thread()) {
4569       CompilerThread* ct = (CompilerThread*) thread;
4570       if (ct->task() != NULL) {
4571         thread->print_name_on_error(st, buf, buflen);
4572         ct->task()->print(st, NULL, true, true);
4573       }
4574     }
4575   }
4576 }
4577 
4578 
4579 // Internal SpinLock and Mutex
4580 // Based on ParkEvent
4581 
4582 // Ad-hoc mutual exclusion primitives: SpinLock and Mux
4583 //
4584 // We employ SpinLocks _only for low-contention, fixed-length
4585 // short-duration critical sections where we're concerned
4586 // about native mutex_t or HotSpot Mutex:: latency.
4587 // The mux construct provides a spin-then-block mutual exclusion
4588 // mechanism.
4589 //
4590 // Testing has shown that contention on the ListLock guarding gFreeList
4591 // is common.  If we implement ListLock as a simple SpinLock it's common
4592 // for the JVM to devolve to yielding with little progress.  This is true
4593 // despite the fact that the critical sections protected by ListLock are
4594 // extremely short.
4595 //
4596 // TODO-FIXME: ListLock should be of type SpinLock.
4597 // We should make this a 1st-class type, integrated into the lock
4598 // hierarchy as leaf-locks.  Critically, the SpinLock structure
4599 // should have sufficient padding to avoid false-sharing and excessive
4600 // cache-coherency traffic.
4601 
4602 
4603 typedef volatile int SpinLockT;
4604 
4605 void Thread::SpinAcquire(volatile int * adr, const char * LockName) {
4606   if (Atomic::cmpxchg (1, adr, 0) == 0) {
4607     return;   // normal fast-path return
4608   }
4609 
4610   // Slow-path : We've encountered contention -- Spin/Yield/Block strategy.
4611   TEVENT(SpinAcquire - ctx);
4612   int ctr = 0;
4613   int Yields = 0;
4614   for (;;) {
4615     while (*adr != 0) {
4616       ++ctr;
4617       if ((ctr & 0xFFF) == 0 || !os::is_MP()) {
4618         if (Yields > 5) {
4619           os::naked_short_sleep(1);
4620         } else {
4621           os::naked_yield();
4622           ++Yields;
4623         }
4624       } else {
4625         SpinPause();
4626       }
4627     }
4628     if (Atomic::cmpxchg(1, adr, 0) == 0) return;
4629   }
4630 }
4631 
4632 void Thread::SpinRelease(volatile int * adr) {
4633   assert(*adr != 0, "invariant");
4634   OrderAccess::fence();      // guarantee at least release consistency.
4635   // Roach-motel semantics.
4636   // It's safe if subsequent LDs and STs float "up" into the critical section,
4637   // but prior LDs and STs within the critical section can't be allowed
4638   // to reorder or float past the ST that releases the lock.
4639   // Loads and stores in the critical section - which appear in program
4640   // order before the store that releases the lock - must also appear
4641   // before the store that releases the lock in memory visibility order.
4642   // Conceptually we need a #loadstore|#storestore "release" MEMBAR before
4643   // the ST of 0 into the lock-word which releases the lock, so fence
4644   // more than covers this on all platforms.
4645   *adr = 0;
4646 }
4647 
4648 // muxAcquire and muxRelease:
4649 //
4650 // *  muxAcquire and muxRelease support a single-word lock-word construct.
4651 //    The LSB of the word is set IFF the lock is held.
4652 //    The remainder of the word points to the head of a singly-linked list
4653 //    of threads blocked on the lock.
4654 //
4655 // *  The current implementation of muxAcquire-muxRelease uses its own
4656 //    dedicated Thread._MuxEvent instance.  If we're interested in
4657 //    minimizing the peak number of extant ParkEvent instances then
4658 //    we could eliminate _MuxEvent and "borrow" _ParkEvent as long
4659 //    as certain invariants were satisfied.  Specifically, care would need
4660 //    to be taken with regards to consuming unpark() "permits".
4661 //    A safe rule of thumb is that a thread would never call muxAcquire()
4662 //    if it's enqueued (cxq, EntryList, WaitList, etc) and will subsequently
4663 //    park().  Otherwise the _ParkEvent park() operation in muxAcquire() could
4664 //    consume an unpark() permit intended for monitorenter, for instance.
4665 //    One way around this would be to widen the restricted-range semaphore
4666 //    implemented in park().  Another alternative would be to provide
4667 //    multiple instances of the PlatformEvent() for each thread.  One
4668 //    instance would be dedicated to muxAcquire-muxRelease, for instance.
4669 //
4670 // *  Usage:
4671 //    -- Only as leaf locks
4672 //    -- for short-term locking only as muxAcquire does not perform
4673 //       thread state transitions.
4674 //
4675 // Alternatives:
4676 // *  We could implement muxAcquire and muxRelease with MCS or CLH locks
4677 //    but with parking or spin-then-park instead of pure spinning.
4678 // *  Use Taura-Oyama-Yonenzawa locks.
4679 // *  It's possible to construct a 1-0 lock if we encode the lockword as
4680 //    (List,LockByte).  Acquire will CAS the full lockword while Release
4681 //    will STB 0 into the LockByte.  The 1-0 scheme admits stranding, so
4682 //    acquiring threads use timers (ParkTimed) to detect and recover from
4683 //    the stranding window.  Thread/Node structures must be aligned on 256-byte
4684 //    boundaries by using placement-new.
4685 // *  Augment MCS with advisory back-link fields maintained with CAS().
4686 //    Pictorially:  LockWord -> T1 <-> T2 <-> T3 <-> ... <-> Tn <-> Owner.
4687 //    The validity of the backlinks must be ratified before we trust the value.
4688 //    If the backlinks are invalid the exiting thread must back-track through the
4689 //    the forward links, which are always trustworthy.
4690 // *  Add a successor indication.  The LockWord is currently encoded as
4691 //    (List, LOCKBIT:1).  We could also add a SUCCBIT or an explicit _succ variable
4692 //    to provide the usual futile-wakeup optimization.
4693 //    See RTStt for details.
4694 // *  Consider schedctl.sc_nopreempt to cover the critical section.
4695 //
4696 
4697 
4698 typedef volatile intptr_t MutexT;      // Mux Lock-word
4699 enum MuxBits { LOCKBIT = 1 };
4700 
4701 void Thread::muxAcquire(volatile intptr_t * Lock, const char * LockName) {
4702   intptr_t w = Atomic::cmpxchg_ptr(LOCKBIT, Lock, 0);
4703   if (w == 0) return;
4704   if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4705     return;
4706   }
4707 
4708   TEVENT(muxAcquire - Contention);
4709   ParkEvent * const Self = Thread::current()->_MuxEvent;
4710   assert((intptr_t(Self) & LOCKBIT) == 0, "invariant");
4711   for (;;) {
4712     int its = (os::is_MP() ? 100 : 0) + 1;
4713 
4714     // Optional spin phase: spin-then-park strategy
4715     while (--its >= 0) {
4716       w = *Lock;
4717       if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4718         return;
4719       }
4720     }
4721 
4722     Self->reset();
4723     Self->OnList = intptr_t(Lock);
4724     // The following fence() isn't _strictly necessary as the subsequent
4725     // CAS() both serializes execution and ratifies the fetched *Lock value.
4726     OrderAccess::fence();
4727     for (;;) {
4728       w = *Lock;
4729       if ((w & LOCKBIT) == 0) {
4730         if (Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4731           Self->OnList = 0;   // hygiene - allows stronger asserts
4732           return;
4733         }
4734         continue;      // Interference -- *Lock changed -- Just retry
4735       }
4736       assert(w & LOCKBIT, "invariant");
4737       Self->ListNext = (ParkEvent *) (w & ~LOCKBIT);
4738       if (Atomic::cmpxchg_ptr(intptr_t(Self)|LOCKBIT, Lock, w) == w) break;
4739     }
4740 
4741     while (Self->OnList != 0) {
4742       Self->park();
4743     }
4744   }
4745 }
4746 
4747 void Thread::muxAcquireW(volatile intptr_t * Lock, ParkEvent * ev) {
4748   intptr_t w = Atomic::cmpxchg_ptr(LOCKBIT, Lock, 0);
4749   if (w == 0) return;
4750   if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4751     return;
4752   }
4753 
4754   TEVENT(muxAcquire - Contention);
4755   ParkEvent * ReleaseAfter = NULL;
4756   if (ev == NULL) {
4757     ev = ReleaseAfter = ParkEvent::Allocate(NULL);
4758   }
4759   assert((intptr_t(ev) & LOCKBIT) == 0, "invariant");
4760   for (;;) {
4761     guarantee(ev->OnList == 0, "invariant");
4762     int its = (os::is_MP() ? 100 : 0) + 1;
4763 
4764     // Optional spin phase: spin-then-park strategy
4765     while (--its >= 0) {
4766       w = *Lock;
4767       if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4768         if (ReleaseAfter != NULL) {
4769           ParkEvent::Release(ReleaseAfter);
4770         }
4771         return;
4772       }
4773     }
4774 
4775     ev->reset();
4776     ev->OnList = intptr_t(Lock);
4777     // The following fence() isn't _strictly necessary as the subsequent
4778     // CAS() both serializes execution and ratifies the fetched *Lock value.
4779     OrderAccess::fence();
4780     for (;;) {
4781       w = *Lock;
4782       if ((w & LOCKBIT) == 0) {
4783         if (Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4784           ev->OnList = 0;
4785           // We call ::Release while holding the outer lock, thus
4786           // artificially lengthening the critical section.
4787           // Consider deferring the ::Release() until the subsequent unlock(),
4788           // after we've dropped the outer lock.
4789           if (ReleaseAfter != NULL) {
4790             ParkEvent::Release(ReleaseAfter);
4791           }
4792           return;
4793         }
4794         continue;      // Interference -- *Lock changed -- Just retry
4795       }
4796       assert(w & LOCKBIT, "invariant");
4797       ev->ListNext = (ParkEvent *) (w & ~LOCKBIT);
4798       if (Atomic::cmpxchg_ptr(intptr_t(ev)|LOCKBIT, Lock, w) == w) break;
4799     }
4800 
4801     while (ev->OnList != 0) {
4802       ev->park();
4803     }
4804   }
4805 }
4806 
4807 // Release() must extract a successor from the list and then wake that thread.
4808 // It can "pop" the front of the list or use a detach-modify-reattach (DMR) scheme
4809 // similar to that used by ParkEvent::Allocate() and ::Release().  DMR-based
4810 // Release() would :
4811 // (A) CAS() or swap() null to *Lock, releasing the lock and detaching the list.
4812 // (B) Extract a successor from the private list "in-hand"
4813 // (C) attempt to CAS() the residual back into *Lock over null.
4814 //     If there were any newly arrived threads and the CAS() would fail.
4815 //     In that case Release() would detach the RATs, re-merge the list in-hand
4816 //     with the RATs and repeat as needed.  Alternately, Release() might
4817 //     detach and extract a successor, but then pass the residual list to the wakee.
4818 //     The wakee would be responsible for reattaching and remerging before it
4819 //     competed for the lock.
4820 //
4821 // Both "pop" and DMR are immune from ABA corruption -- there can be
4822 // multiple concurrent pushers, but only one popper or detacher.
4823 // This implementation pops from the head of the list.  This is unfair,
4824 // but tends to provide excellent throughput as hot threads remain hot.
4825 // (We wake recently run threads first).
4826 //
4827 // All paths through muxRelease() will execute a CAS.
4828 // Release consistency -- We depend on the CAS in muxRelease() to provide full
4829 // bidirectional fence/MEMBAR semantics, ensuring that all prior memory operations
4830 // executed within the critical section are complete and globally visible before the
4831 // store (CAS) to the lock-word that releases the lock becomes globally visible.
4832 void Thread::muxRelease(volatile intptr_t * Lock)  {
4833   for (;;) {
4834     const intptr_t w = Atomic::cmpxchg_ptr(0, Lock, LOCKBIT);
4835     assert(w & LOCKBIT, "invariant");
4836     if (w == LOCKBIT) return;
4837     ParkEvent * const List = (ParkEvent *) (w & ~LOCKBIT);
4838     assert(List != NULL, "invariant");
4839     assert(List->OnList == intptr_t(Lock), "invariant");
4840     ParkEvent * const nxt = List->ListNext;
4841     guarantee((intptr_t(nxt) & LOCKBIT) == 0, "invariant");
4842 
4843     // The following CAS() releases the lock and pops the head element.
4844     // The CAS() also ratifies the previously fetched lock-word value.
4845     if (Atomic::cmpxchg_ptr (intptr_t(nxt), Lock, w) != w) {
4846       continue;
4847     }
4848     List->OnList = 0;
4849     OrderAccess::fence();
4850     List->unpark();
4851     return;
4852   }
4853 }
4854 
4855 
4856 void Threads::verify() {
4857   ALL_JAVA_THREADS(p) {
4858     p->verify();
4859   }
4860   VMThread* thread = VMThread::vm_thread();
4861   if (thread != NULL) thread->verify();
4862 }