1 /*
   2  * Copyright (c) 2000, 2016, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/classFileStream.hpp"
  27 #include "classfile/vmSymbols.hpp"
  28 #include "memory/allocation.inline.hpp"
  29 #include "memory/resourceArea.hpp"
  30 #include "oops/objArrayOop.inline.hpp"
  31 #include "oops/oop.inline.hpp"
  32 #include "prims/jni.h"
  33 #include "prims/jvm.h"
  34 #include "prims/unsafe.hpp"
  35 #include "runtime/atomic.inline.hpp"
  36 #include "runtime/globals.hpp"
  37 #include "runtime/interfaceSupport.hpp"
  38 #include "runtime/orderAccess.inline.hpp"
  39 #include "runtime/reflection.hpp"
  40 #include "runtime/vm_version.hpp"
  41 #include "services/threadService.hpp"
  42 #include "trace/tracing.hpp"
  43 #include "utilities/copy.hpp"
  44 #include "utilities/dtrace.hpp"
  45 #include "utilities/macros.hpp"
  46 #if INCLUDE_ALL_GCS
  47 #include "gc/g1/g1SATBCardTableModRefBS.hpp"
  48 #endif // INCLUDE_ALL_GCS
  49 
  50 /**
  51  * Implementation of the jdk.internal.misc.Unsafe class
  52  */
  53 
  54 
  55 #define MAX_OBJECT_SIZE \
  56   ( arrayOopDesc::header_size(T_DOUBLE) * HeapWordSize \
  57     + ((julong)max_jint * sizeof(double)) )
  58 
  59 
  60 #define UNSAFE_ENTRY(result_type, header) \
  61   JVM_ENTRY(static result_type, header)
  62 
  63 #define UNSAFE_LEAF(result_type, header) \
  64   JVM_LEAF(static result_type, header)
  65 
  66 #define UNSAFE_END JVM_END
  67 
  68 
  69 static inline void* addr_from_java(jlong addr) {
  70   // This assert fails in a variety of ways on 32-bit systems.
  71   // It is impossible to predict whether native code that converts
  72   // pointers to longs will sign-extend or zero-extend the addresses.
  73   //assert(addr == (uintptr_t)addr, "must not be odd high bits");
  74   return (void*)(uintptr_t)addr;
  75 }
  76 
  77 static inline jlong addr_to_java(void* p) {
  78   assert(p == (void*)(uintptr_t)p, "must not be odd high bits");
  79   return (uintptr_t)p;
  80 }
  81 
  82 
  83 // Note: The VM's obj_field and related accessors use byte-scaled
  84 // ("unscaled") offsets, just as the unsafe methods do.
  85 
  86 // However, the method Unsafe.fieldOffset explicitly declines to
  87 // guarantee this.  The field offset values manipulated by the Java user
  88 // through the Unsafe API are opaque cookies that just happen to be byte
  89 // offsets.  We represent this state of affairs by passing the cookies
  90 // through conversion functions when going between the VM and the Unsafe API.
  91 // The conversion functions just happen to be no-ops at present.
  92 
  93 static inline jlong field_offset_to_byte_offset(jlong field_offset) {
  94   return field_offset;
  95 }
  96 
  97 static inline jlong field_offset_from_byte_offset(jlong byte_offset) {
  98   return byte_offset;
  99 }
 100 
 101 static inline void* index_oop_from_field_offset_long(oop p, jlong field_offset) {
 102   jlong byte_offset = field_offset_to_byte_offset(field_offset);
 103 
 104 #ifdef ASSERT
 105   if (p != NULL) {
 106     assert(byte_offset >= 0 && byte_offset <= (jlong)MAX_OBJECT_SIZE, "sane offset");
 107     if (byte_offset == (jint)byte_offset) {
 108       void* ptr_plus_disp = (address)p + byte_offset;
 109       assert((void*)p->obj_field_addr<oop>((jint)byte_offset) == ptr_plus_disp,
 110              "raw [ptr+disp] must be consistent with oop::field_base");
 111     }
 112     jlong p_size = HeapWordSize * (jlong)(p->size());
 113     assert(byte_offset < p_size, "Unsafe access: offset " INT64_FORMAT " > object's size " INT64_FORMAT, byte_offset, p_size);
 114   }
 115 #endif
 116 
 117   if (sizeof(char*) == sizeof(jint)) {   // (this constant folds!)
 118     return (address)p + (jint) byte_offset;
 119   } else {
 120     return (address)p +        byte_offset;
 121   }
 122 }
 123 
 124 // Externally callable versions:
 125 // (Use these in compiler intrinsics which emulate unsafe primitives.)
 126 jlong Unsafe_field_offset_to_byte_offset(jlong field_offset) {
 127   return field_offset;
 128 }
 129 jlong Unsafe_field_offset_from_byte_offset(jlong byte_offset) {
 130   return byte_offset;
 131 }
 132 
 133 
 134 ///// Data in the Java heap.
 135 
 136 #define GET_FIELD(obj, offset, type_name, v) \
 137   oop p = JNIHandles::resolve(obj); \
 138   type_name v = *(type_name*)index_oop_from_field_offset_long(p, offset)
 139 
 140 #define SET_FIELD(obj, offset, type_name, x) \
 141   oop p = JNIHandles::resolve(obj); \
 142   *(type_name*)index_oop_from_field_offset_long(p, offset) = x
 143 
 144 #define GET_FIELD_VOLATILE(obj, offset, type_name, v) \
 145   oop p = JNIHandles::resolve(obj); \
 146   if (support_IRIW_for_not_multiple_copy_atomic_cpu) { \
 147     OrderAccess::fence(); \
 148   } \
 149   volatile type_name v = OrderAccess::load_acquire((volatile type_name*)index_oop_from_field_offset_long(p, offset));
 150 
 151 #define SET_FIELD_VOLATILE(obj, offset, type_name, x) \
 152   oop p = JNIHandles::resolve(obj); \
 153   OrderAccess::release_store_fence((volatile type_name*)index_oop_from_field_offset_long(p, offset), x);
 154 
 155 
 156 // Get/SetObject must be special-cased, since it works with handles.
 157 
 158 // These functions allow a null base pointer with an arbitrary address.
 159 // But if the base pointer is non-null, the offset should make some sense.
 160 // That is, it should be in the range [0, MAX_OBJECT_SIZE].
 161 UNSAFE_ENTRY(jobject, Unsafe_GetObject(JNIEnv *env, jobject unsafe, jobject obj, jlong offset)) {
 162   oop p = JNIHandles::resolve(obj);
 163   oop v;
 164 
 165   if (UseCompressedOops) {
 166     narrowOop n = *(narrowOop*)index_oop_from_field_offset_long(p, offset);
 167     v = oopDesc::decode_heap_oop(n);
 168   } else {
 169     v = *(oop*)index_oop_from_field_offset_long(p, offset);
 170   }
 171 
 172   jobject ret = JNIHandles::make_local(env, v);
 173 
 174 #if INCLUDE_ALL_GCS
 175   // We could be accessing the referent field in a reference
 176   // object. If G1 is enabled then we need to register non-null
 177   // referent with the SATB barrier.
 178   if (UseG1GC) {
 179     bool needs_barrier = false;
 180 
 181     if (ret != NULL) {
 182       if (offset == java_lang_ref_Reference::referent_offset && obj != NULL) {
 183         oop o = JNIHandles::resolve(obj);
 184         Klass* k = o->klass();
 185         if (InstanceKlass::cast(k)->reference_type() != REF_NONE) {
 186           assert(InstanceKlass::cast(k)->is_subclass_of(SystemDictionary::Reference_klass()), "sanity");
 187           needs_barrier = true;
 188         }
 189       }
 190     }
 191 
 192     if (needs_barrier) {
 193       oop referent = JNIHandles::resolve(ret);
 194       G1SATBCardTableModRefBS::enqueue(referent);
 195     }
 196   }
 197 #endif // INCLUDE_ALL_GCS
 198 
 199   return ret;
 200 } UNSAFE_END
 201 
 202 UNSAFE_ENTRY(void, Unsafe_SetObject(JNIEnv *env, jobject unsafe, jobject obj, jlong offset, jobject x_h)) {
 203   oop x = JNIHandles::resolve(x_h);
 204   oop p = JNIHandles::resolve(obj);
 205 
 206   if (UseCompressedOops) {
 207     oop_store((narrowOop*)index_oop_from_field_offset_long(p, offset), x);
 208   } else {
 209     oop_store((oop*)index_oop_from_field_offset_long(p, offset), x);
 210   }
 211 } UNSAFE_END
 212 
 213 UNSAFE_ENTRY(jobject, Unsafe_GetObjectVolatile(JNIEnv *env, jobject unsafe, jobject obj, jlong offset)) {
 214   oop p = JNIHandles::resolve(obj);
 215   void* addr = index_oop_from_field_offset_long(p, offset);
 216 
 217   volatile oop v;
 218 
 219   if (UseCompressedOops) {
 220     volatile narrowOop n = *(volatile narrowOop*) addr;
 221     (void)const_cast<oop&>(v = oopDesc::decode_heap_oop(n));
 222   } else {
 223     (void)const_cast<oop&>(v = *(volatile oop*) addr);
 224   }
 225 
 226   OrderAccess::acquire();
 227   return JNIHandles::make_local(env, v);
 228 } UNSAFE_END
 229 
 230 UNSAFE_ENTRY(void, Unsafe_SetObjectVolatile(JNIEnv *env, jobject unsafe, jobject obj, jlong offset, jobject x_h)) {
 231   oop x = JNIHandles::resolve(x_h);
 232   oop p = JNIHandles::resolve(obj);
 233   void* addr = index_oop_from_field_offset_long(p, offset);
 234   OrderAccess::release();
 235 
 236   if (UseCompressedOops) {
 237     oop_store((narrowOop*)addr, x);
 238   } else {
 239     oop_store((oop*)addr, x);
 240   }
 241 
 242   OrderAccess::fence();
 243 } UNSAFE_END
 244 
 245 UNSAFE_ENTRY(jobject, Unsafe_GetUncompressedObject(JNIEnv *env, jobject unsafe, jlong addr)) {
 246   oop v = *(oop*) (address) addr;
 247 
 248   return JNIHandles::make_local(env, v);
 249 } UNSAFE_END
 250 
 251 UNSAFE_ENTRY(jclass, Unsafe_GetJavaMirror(JNIEnv *env, jobject unsafe, jlong metaspace_klass)) {
 252   Klass* klass = (Klass*) (address) metaspace_klass;
 253 
 254   return (jclass) JNIHandles::make_local(klass->java_mirror());
 255 } UNSAFE_END
 256 
 257 UNSAFE_ENTRY(jlong, Unsafe_GetKlassPointer(JNIEnv *env, jobject unsafe, jobject obj)) {
 258   oop o = JNIHandles::resolve(obj);
 259   jlong klass = (jlong) (address) o->klass();
 260 
 261   return klass;
 262 } UNSAFE_END
 263 
 264 #ifndef SUPPORTS_NATIVE_CX8
 265 
 266 // VM_Version::supports_cx8() is a surrogate for 'supports atomic long memory ops'.
 267 //
 268 // On platforms which do not support atomic compare-and-swap of jlong (8 byte)
 269 // values we have to use a lock-based scheme to enforce atomicity. This has to be
 270 // applied to all Unsafe operations that set the value of a jlong field. Even so
 271 // the compareAndSwapLong operation will not be atomic with respect to direct stores
 272 // to the field from Java code. It is important therefore that any Java code that
 273 // utilizes these Unsafe jlong operations does not perform direct stores. To permit
 274 // direct loads of the field from Java code we must also use Atomic::store within the
 275 // locked regions. And for good measure, in case there are direct stores, we also
 276 // employ Atomic::load within those regions. Note that the field in question must be
 277 // volatile and so must have atomic load/store accesses applied at the Java level.
 278 //
 279 // The locking scheme could utilize a range of strategies for controlling the locking
 280 // granularity: from a lock per-field through to a single global lock. The latter is
 281 // the simplest and is used for the current implementation. Note that the Java object
 282 // that contains the field, can not, in general, be used for locking. To do so can lead
 283 // to deadlocks as we may introduce locking into what appears to the Java code to be a
 284 // lock-free path.
 285 //
 286 // As all the locked-regions are very short and themselves non-blocking we can treat
 287 // them as leaf routines and elide safepoint checks (ie we don't perform any thread
 288 // state transitions even when blocking for the lock). Note that if we do choose to
 289 // add safepoint checks and thread state transitions, we must ensure that we calculate
 290 // the address of the field _after_ we have acquired the lock, else the object may have
 291 // been moved by the GC
 292 
 293 UNSAFE_ENTRY(jlong, Unsafe_GetLongVolatile(JNIEnv *env, jobject unsafe, jobject obj, jlong offset)) {
 294   if (VM_Version::supports_cx8()) {
 295     GET_FIELD_VOLATILE(obj, offset, jlong, v);
 296     return v;
 297   } else {
 298     Handle p (THREAD, JNIHandles::resolve(obj));
 299     jlong* addr = (jlong*)(index_oop_from_field_offset_long(p(), offset));
 300     MutexLockerEx mu(UnsafeJlong_lock, Mutex::_no_safepoint_check_flag);
 301     jlong value = Atomic::load(addr);
 302     return value;
 303   }
 304 } UNSAFE_END
 305 
 306 UNSAFE_ENTRY(void, Unsafe_SetLongVolatile(JNIEnv *env, jobject unsafe, jobject obj, jlong offset, jlong x)) {
 307   if (VM_Version::supports_cx8()) {
 308     SET_FIELD_VOLATILE(obj, offset, jlong, x);
 309   } else {
 310     Handle p (THREAD, JNIHandles::resolve(obj));
 311     jlong* addr = (jlong*)(index_oop_from_field_offset_long(p(), offset));
 312     MutexLockerEx mu(UnsafeJlong_lock, Mutex::_no_safepoint_check_flag);
 313     Atomic::store(x, addr);
 314   }
 315 } UNSAFE_END
 316 
 317 #endif // not SUPPORTS_NATIVE_CX8
 318 
 319 UNSAFE_LEAF(jboolean, Unsafe_isBigEndian0(JNIEnv *env, jobject unsafe)) {
 320 #ifdef VM_LITTLE_ENDIAN
 321   return false;
 322 #else
 323   return true;
 324 #endif
 325 } UNSAFE_END
 326 
 327 UNSAFE_LEAF(jint, Unsafe_unalignedAccess0(JNIEnv *env, jobject unsafe)) {
 328   return UseUnalignedAccesses;
 329 } UNSAFE_END
 330 
 331 #define DEFINE_GETSETOOP(java_type, Type)        \
 332  \
 333 UNSAFE_ENTRY(java_type, Unsafe_Get##Type(JNIEnv *env, jobject unsafe, jobject obj, jlong offset)) { \
 334   GET_FIELD(obj, offset, java_type, v); \
 335   return v; \
 336 } UNSAFE_END \
 337  \
 338 UNSAFE_ENTRY(void, Unsafe_Set##Type(JNIEnv *env, jobject unsafe, jobject obj, jlong offset, java_type x)) { \
 339   SET_FIELD(obj, offset, java_type, x); \
 340 } UNSAFE_END \
 341  \
 342 // END DEFINE_GETSETOOP.
 343 
 344 DEFINE_GETSETOOP(jboolean, Boolean)
 345 DEFINE_GETSETOOP(jbyte, Byte)
 346 DEFINE_GETSETOOP(jshort, Short);
 347 DEFINE_GETSETOOP(jchar, Char);
 348 DEFINE_GETSETOOP(jint, Int);
 349 DEFINE_GETSETOOP(jlong, Long);
 350 DEFINE_GETSETOOP(jfloat, Float);
 351 DEFINE_GETSETOOP(jdouble, Double);
 352 
 353 #undef DEFINE_GETSETOOP
 354 
 355 #define DEFINE_GETSETOOP_VOLATILE(java_type, Type) \
 356  \
 357 UNSAFE_ENTRY(java_type, Unsafe_Get##Type##Volatile(JNIEnv *env, jobject unsafe, jobject obj, jlong offset)) { \
 358   GET_FIELD_VOLATILE(obj, offset, java_type, v); \
 359   return v; \
 360 } UNSAFE_END \
 361  \
 362 UNSAFE_ENTRY(void, Unsafe_Set##Type##Volatile(JNIEnv *env, jobject unsafe, jobject obj, jlong offset, java_type x)) { \
 363   SET_FIELD_VOLATILE(obj, offset, java_type, x); \
 364 } UNSAFE_END \
 365  \
 366 // END DEFINE_GETSETOOP_VOLATILE.
 367 
 368 DEFINE_GETSETOOP_VOLATILE(jboolean, Boolean)
 369 DEFINE_GETSETOOP_VOLATILE(jbyte, Byte)
 370 DEFINE_GETSETOOP_VOLATILE(jshort, Short);
 371 DEFINE_GETSETOOP_VOLATILE(jchar, Char);
 372 DEFINE_GETSETOOP_VOLATILE(jint, Int);
 373 DEFINE_GETSETOOP_VOLATILE(jfloat, Float);
 374 DEFINE_GETSETOOP_VOLATILE(jdouble, Double);
 375 
 376 #ifdef SUPPORTS_NATIVE_CX8
 377 DEFINE_GETSETOOP_VOLATILE(jlong, Long);
 378 #endif
 379 
 380 #undef DEFINE_GETSETOOP_VOLATILE
 381 
 382 UNSAFE_LEAF(void, Unsafe_LoadFence(JNIEnv *env, jobject unsafe)) {
 383   OrderAccess::acquire();
 384 } UNSAFE_END
 385 
 386 UNSAFE_LEAF(void, Unsafe_StoreFence(JNIEnv *env, jobject unsafe)) {
 387   OrderAccess::release();
 388 } UNSAFE_END
 389 
 390 UNSAFE_LEAF(void, Unsafe_FullFence(JNIEnv *env, jobject unsafe)) {
 391   OrderAccess::fence();
 392 } UNSAFE_END
 393 
 394 ////// Data in the C heap.
 395 
 396 // Note:  These do not throw NullPointerException for bad pointers.
 397 // They just crash.  Only a oop base pointer can generate a NullPointerException.
 398 //
 399 #define DEFINE_GETSETNATIVE(java_type, Type, native_type) \
 400  \
 401 UNSAFE_ENTRY(java_type, Unsafe_GetNative##Type(JNIEnv *env, jobject unsafe, jlong addr)) { \
 402   void* p = addr_from_java(addr); \
 403   JavaThread* t = JavaThread::current(); \
 404   t->set_doing_unsafe_access(true); \
 405   java_type x = *(volatile native_type*)p; \
 406   t->set_doing_unsafe_access(false); \
 407   return x; \
 408 } UNSAFE_END \
 409  \
 410 UNSAFE_ENTRY(void, Unsafe_SetNative##Type(JNIEnv *env, jobject unsafe, jlong addr, java_type x)) { \
 411   JavaThread* t = JavaThread::current(); \
 412   t->set_doing_unsafe_access(true); \
 413   void* p = addr_from_java(addr); \
 414   *(volatile native_type*)p = x; \
 415   t->set_doing_unsafe_access(false); \
 416 } UNSAFE_END \
 417  \
 418 // END DEFINE_GETSETNATIVE.
 419 
 420 DEFINE_GETSETNATIVE(jbyte, Byte, signed char)
 421 DEFINE_GETSETNATIVE(jshort, Short, signed short);
 422 DEFINE_GETSETNATIVE(jchar, Char, unsigned short);
 423 DEFINE_GETSETNATIVE(jint, Int, jint);
 424 // no long -- handled specially
 425 DEFINE_GETSETNATIVE(jfloat, Float, float);
 426 DEFINE_GETSETNATIVE(jdouble, Double, double);
 427 
 428 #undef DEFINE_GETSETNATIVE
 429 
 430 UNSAFE_ENTRY(jlong, Unsafe_GetNativeLong(JNIEnv *env, jobject unsafe, jlong addr)) {
 431   JavaThread* t = JavaThread::current();
 432   // We do it this way to avoid problems with access to heap using 64
 433   // bit loads, as jlong in heap could be not 64-bit aligned, and on
 434   // some CPUs (SPARC) it leads to SIGBUS.
 435   t->set_doing_unsafe_access(true);
 436   void* p = addr_from_java(addr);
 437   jlong x;
 438 
 439   if (is_ptr_aligned(p, sizeof(jlong)) == 0) {
 440     // jlong is aligned, do a volatile access
 441     x = *(volatile jlong*)p;
 442   } else {
 443     jlong_accessor acc;
 444     acc.words[0] = ((volatile jint*)p)[0];
 445     acc.words[1] = ((volatile jint*)p)[1];
 446     x = acc.long_value;
 447   }
 448 
 449   t->set_doing_unsafe_access(false);
 450 
 451   return x;
 452 } UNSAFE_END
 453 
 454 UNSAFE_ENTRY(void, Unsafe_SetNativeLong(JNIEnv *env, jobject unsafe, jlong addr, jlong x)) {
 455   JavaThread* t = JavaThread::current();
 456   // see comment for Unsafe_GetNativeLong
 457   t->set_doing_unsafe_access(true);
 458   void* p = addr_from_java(addr);
 459 
 460   if (is_ptr_aligned(p, sizeof(jlong))) {
 461     // jlong is aligned, do a volatile access
 462     *(volatile jlong*)p = x;
 463   } else {
 464     jlong_accessor acc;
 465     acc.long_value = x;
 466     ((volatile jint*)p)[0] = acc.words[0];
 467     ((volatile jint*)p)[1] = acc.words[1];
 468   }
 469 
 470   t->set_doing_unsafe_access(false);
 471 } UNSAFE_END
 472 
 473 
 474 UNSAFE_LEAF(jlong, Unsafe_GetNativeAddress(JNIEnv *env, jobject unsafe, jlong addr)) {
 475   void* p = addr_from_java(addr);
 476 
 477   return addr_to_java(*(void**)p);
 478 } UNSAFE_END
 479 
 480 UNSAFE_LEAF(void, Unsafe_SetNativeAddress(JNIEnv *env, jobject unsafe, jlong addr, jlong x)) {
 481   void* p = addr_from_java(addr);
 482   *(void**)p = addr_from_java(x);
 483 } UNSAFE_END
 484 
 485 
 486 ////// Allocation requests
 487 
 488 UNSAFE_ENTRY(jobject, Unsafe_AllocateInstance(JNIEnv *env, jobject unsafe, jclass cls)) {
 489   ThreadToNativeFromVM ttnfv(thread);
 490   return env->AllocObject(cls);
 491 } UNSAFE_END
 492 
 493 UNSAFE_ENTRY(jlong, Unsafe_AllocateMemory0(JNIEnv *env, jobject unsafe, jlong size)) {
 494   size_t sz = (size_t)size;
 495 
 496   sz = round_to(sz, HeapWordSize);
 497   void* x = os::malloc(sz, mtInternal);
 498 
 499   return addr_to_java(x);
 500 } UNSAFE_END
 501 
 502 UNSAFE_ENTRY(jlong, Unsafe_ReallocateMemory0(JNIEnv *env, jobject unsafe, jlong addr, jlong size)) {
 503   void* p = addr_from_java(addr);
 504   size_t sz = (size_t)size;
 505   sz = round_to(sz, HeapWordSize);
 506 
 507   void* x = os::realloc(p, sz, mtInternal);
 508 
 509   return addr_to_java(x);
 510 } UNSAFE_END
 511 
 512 UNSAFE_ENTRY(void, Unsafe_FreeMemory0(JNIEnv *env, jobject unsafe, jlong addr)) {
 513   void* p = addr_from_java(addr);
 514 
 515   os::free(p);
 516 } UNSAFE_END
 517 
 518 UNSAFE_ENTRY(void, Unsafe_SetMemory0(JNIEnv *env, jobject unsafe, jobject obj, jlong offset, jlong size, jbyte value)) {
 519   size_t sz = (size_t)size;
 520 
 521   oop base = JNIHandles::resolve(obj);
 522   void* p = index_oop_from_field_offset_long(base, offset);
 523 
 524   Copy::fill_to_memory_atomic(p, sz, value);
 525 } UNSAFE_END
 526 
 527 UNSAFE_ENTRY(void, Unsafe_CopyMemory0(JNIEnv *env, jobject unsafe, jobject srcObj, jlong srcOffset, jobject dstObj, jlong dstOffset, jlong size)) {
 528   size_t sz = (size_t)size;
 529 
 530   oop srcp = JNIHandles::resolve(srcObj);
 531   oop dstp = JNIHandles::resolve(dstObj);
 532 
 533   void* src = index_oop_from_field_offset_long(srcp, srcOffset);
 534   void* dst = index_oop_from_field_offset_long(dstp, dstOffset);
 535 
 536   Copy::conjoint_memory_atomic(src, dst, sz);
 537 } UNSAFE_END
 538 
 539 // This function is a leaf since if the source and destination are both in native memory
 540 // the copy may potentially be very large, and we don't want to disable GC if we can avoid it.
 541 // If either source or destination (or both) are on the heap, the function will enter VM using
 542 // JVM_ENTRY_FROM_LEAF
 543 UNSAFE_LEAF(void, Unsafe_CopySwapMemory0(JNIEnv *env, jobject unsafe, jobject srcObj, jlong srcOffset, jobject dstObj, jlong dstOffset, jlong size, jlong elemSize)) {
 544   size_t sz = (size_t)size;
 545   size_t esz = (size_t)elemSize;
 546 
 547   if (srcObj == NULL && dstObj == NULL) {
 548     // Both src & dst are in native memory
 549     address src = (address)srcOffset;
 550     address dst = (address)dstOffset;
 551 
 552     Copy::conjoint_swap(src, dst, sz, esz);
 553   } else {
 554     // At least one of src/dst are on heap, transition to VM to access raw pointers
 555 
 556     JVM_ENTRY_FROM_LEAF(env, void, Unsafe_CopySwapMemory0) {
 557       oop srcp = JNIHandles::resolve(srcObj);
 558       oop dstp = JNIHandles::resolve(dstObj);
 559 
 560       address src = (address)index_oop_from_field_offset_long(srcp, srcOffset);
 561       address dst = (address)index_oop_from_field_offset_long(dstp, dstOffset);
 562 
 563       Copy::conjoint_swap(src, dst, sz, esz);
 564     } JVM_END
 565   }
 566 } UNSAFE_END
 567 
 568 ////// Random queries
 569 
 570 UNSAFE_LEAF(jint, Unsafe_AddressSize0(JNIEnv *env, jobject unsafe)) {
 571   return sizeof(void*);
 572 } UNSAFE_END
 573 
 574 UNSAFE_LEAF(jint, Unsafe_PageSize()) {
 575   return os::vm_page_size();
 576 } UNSAFE_END
 577 
 578 static jint find_field_offset(jobject field, int must_be_static, TRAPS) {
 579   assert(field != NULL, "field must not be NULL");
 580 
 581   oop reflected   = JNIHandles::resolve_non_null(field);
 582   oop mirror      = java_lang_reflect_Field::clazz(reflected);
 583   Klass* k        = java_lang_Class::as_Klass(mirror);
 584   int slot        = java_lang_reflect_Field::slot(reflected);
 585   int modifiers   = java_lang_reflect_Field::modifiers(reflected);
 586 
 587   if (must_be_static >= 0) {
 588     int really_is_static = ((modifiers & JVM_ACC_STATIC) != 0);
 589     if (must_be_static != really_is_static) {
 590       THROW_0(vmSymbols::java_lang_IllegalArgumentException());
 591     }
 592   }
 593 
 594   int offset = InstanceKlass::cast(k)->field_offset(slot);
 595   return field_offset_from_byte_offset(offset);
 596 }
 597 
 598 UNSAFE_ENTRY(jlong, Unsafe_ObjectFieldOffset0(JNIEnv *env, jobject unsafe, jobject field)) {
 599   return find_field_offset(field, 0, THREAD);
 600 } UNSAFE_END
 601 
 602 UNSAFE_ENTRY(jlong, Unsafe_StaticFieldOffset0(JNIEnv *env, jobject unsafe, jobject field)) {
 603   return find_field_offset(field, 1, THREAD);
 604 } UNSAFE_END
 605 
 606 UNSAFE_ENTRY(jobject, Unsafe_StaticFieldBase0(JNIEnv *env, jobject unsafe, jobject field)) {
 607   assert(field != NULL, "field must not be NULL");
 608 
 609   // Note:  In this VM implementation, a field address is always a short
 610   // offset from the base of a a klass metaobject.  Thus, the full dynamic
 611   // range of the return type is never used.  However, some implementations
 612   // might put the static field inside an array shared by many classes,
 613   // or even at a fixed address, in which case the address could be quite
 614   // large.  In that last case, this function would return NULL, since
 615   // the address would operate alone, without any base pointer.
 616 
 617   oop reflected   = JNIHandles::resolve_non_null(field);
 618   oop mirror      = java_lang_reflect_Field::clazz(reflected);
 619   int modifiers   = java_lang_reflect_Field::modifiers(reflected);
 620 
 621   if ((modifiers & JVM_ACC_STATIC) == 0) {
 622     THROW_0(vmSymbols::java_lang_IllegalArgumentException());
 623   }
 624 
 625   return JNIHandles::make_local(env, mirror);
 626 } UNSAFE_END
 627 
 628 UNSAFE_ENTRY(void, Unsafe_EnsureClassInitialized0(JNIEnv *env, jobject unsafe, jobject clazz)) {
 629   assert(clazz != NULL, "clazz must not be NULL");
 630 
 631   oop mirror = JNIHandles::resolve_non_null(clazz);
 632 
 633   Klass* klass = java_lang_Class::as_Klass(mirror);
 634   if (klass != NULL && klass->should_be_initialized()) {
 635     InstanceKlass* k = InstanceKlass::cast(klass);
 636     k->initialize(CHECK);
 637   }
 638 }
 639 UNSAFE_END
 640 
 641 UNSAFE_ENTRY(jboolean, Unsafe_ShouldBeInitialized0(JNIEnv *env, jobject unsafe, jobject clazz)) {
 642   assert(clazz != NULL, "clazz must not be NULL");
 643 
 644   oop mirror = JNIHandles::resolve_non_null(clazz);
 645   Klass* klass = java_lang_Class::as_Klass(mirror);
 646 
 647   if (klass != NULL && klass->should_be_initialized()) {
 648     return true;
 649   }
 650 
 651   return false;
 652 }
 653 UNSAFE_END
 654 
 655 static void getBaseAndScale(int& base, int& scale, jclass clazz, TRAPS) {
 656   assert(clazz != NULL, "clazz must not be NULL");
 657 
 658   oop mirror = JNIHandles::resolve_non_null(clazz);
 659   Klass* k = java_lang_Class::as_Klass(mirror);
 660 
 661   if (k == NULL || !k->is_array_klass()) {
 662     THROW(vmSymbols::java_lang_InvalidClassException());
 663   } else if (k->is_objArray_klass()) {
 664     base  = arrayOopDesc::base_offset_in_bytes(T_OBJECT);
 665     scale = heapOopSize;
 666   } else if (k->is_typeArray_klass()) {
 667     TypeArrayKlass* tak = TypeArrayKlass::cast(k);
 668     base  = tak->array_header_in_bytes();
 669     assert(base == arrayOopDesc::base_offset_in_bytes(tak->element_type()), "array_header_size semantics ok");
 670     scale = (1 << tak->log2_element_size());
 671   } else {
 672     ShouldNotReachHere();
 673   }
 674 }
 675 
 676 UNSAFE_ENTRY(jint, Unsafe_ArrayBaseOffset0(JNIEnv *env, jobject unsafe, jclass clazz)) {
 677   int base = 0, scale = 0;
 678   getBaseAndScale(base, scale, clazz, CHECK_0);
 679 
 680   return field_offset_from_byte_offset(base);
 681 } UNSAFE_END
 682 
 683 
 684 UNSAFE_ENTRY(jint, Unsafe_ArrayIndexScale0(JNIEnv *env, jobject unsafe, jclass clazz)) {
 685   int base = 0, scale = 0;
 686   getBaseAndScale(base, scale, clazz, CHECK_0);
 687 
 688   // This VM packs both fields and array elements down to the byte.
 689   // But watch out:  If this changes, so that array references for
 690   // a given primitive type (say, T_BOOLEAN) use different memory units
 691   // than fields, this method MUST return zero for such arrays.
 692   // For example, the VM used to store sub-word sized fields in full
 693   // words in the object layout, so that accessors like getByte(Object,int)
 694   // did not really do what one might expect for arrays.  Therefore,
 695   // this function used to report a zero scale factor, so that the user
 696   // would know not to attempt to access sub-word array elements.
 697   // // Code for unpacked fields:
 698   // if (scale < wordSize)  return 0;
 699 
 700   // The following allows for a pretty general fieldOffset cookie scheme,
 701   // but requires it to be linear in byte offset.
 702   return field_offset_from_byte_offset(scale) - field_offset_from_byte_offset(0);
 703 } UNSAFE_END
 704 
 705 
 706 static inline void throw_new(JNIEnv *env, const char *ename) {
 707   char buf[100];
 708 
 709   jio_snprintf(buf, 100, "%s%s", "java/lang/", ename);
 710 
 711   jclass cls = env->FindClass(buf);
 712   if (env->ExceptionCheck()) {
 713     env->ExceptionClear();
 714     tty->print_cr("Unsafe: cannot throw %s because FindClass has failed", buf);
 715     return;
 716   }
 717 
 718   env->ThrowNew(cls, NULL);
 719 }
 720 
 721 static jclass Unsafe_DefineClass_impl(JNIEnv *env, jstring name, jbyteArray data, int offset, int length, jobject loader, jobject pd) {
 722   // Code lifted from JDK 1.3 ClassLoader.c
 723 
 724   jbyte *body;
 725   char *utfName = NULL;
 726   jclass result = 0;
 727   char buf[128];
 728 
 729   assert(data != NULL, "Class bytes must not be NULL");
 730   assert(length >= 0, "length must not be negative: %d", length);
 731 
 732   if (UsePerfData) {
 733     ClassLoader::unsafe_defineClassCallCounter()->inc();
 734   }
 735 
 736   body = NEW_C_HEAP_ARRAY(jbyte, length, mtInternal);
 737   if (body == NULL) {
 738     throw_new(env, "OutOfMemoryError");
 739     return 0;
 740   }
 741 
 742   env->GetByteArrayRegion(data, offset, length, body);
 743   if (env->ExceptionOccurred()) {
 744     goto free_body;
 745   }
 746 
 747   if (name != NULL) {
 748     uint len = env->GetStringUTFLength(name);
 749     int unicode_len = env->GetStringLength(name);
 750 
 751     if (len >= sizeof(buf)) {
 752       utfName = NEW_C_HEAP_ARRAY(char, len + 1, mtInternal);
 753       if (utfName == NULL) {
 754         throw_new(env, "OutOfMemoryError");
 755         goto free_body;
 756       }
 757     } else {
 758       utfName = buf;
 759     }
 760 
 761     env->GetStringUTFRegion(name, 0, unicode_len, utfName);
 762 
 763     for (uint i = 0; i < len; i++) {
 764       if (utfName[i] == '.')   utfName[i] = '/';
 765     }
 766   }
 767 
 768   result = JVM_DefineClass(env, utfName, loader, body, length, pd);
 769 
 770   if (utfName && utfName != buf) {
 771     FREE_C_HEAP_ARRAY(char, utfName);
 772   }
 773 
 774  free_body:
 775   FREE_C_HEAP_ARRAY(jbyte, body);
 776   return result;
 777 }
 778 
 779 
 780 UNSAFE_ENTRY(jclass, Unsafe_DefineClass0(JNIEnv *env, jobject unsafe, jstring name, jbyteArray data, int offset, int length, jobject loader, jobject pd)) {
 781   ThreadToNativeFromVM ttnfv(thread);
 782 
 783   return Unsafe_DefineClass_impl(env, name, data, offset, length, loader, pd);
 784 } UNSAFE_END
 785 
 786 
 787 // define a class but do not make it known to the class loader or system dictionary
 788 // - host_class:  supplies context for linkage, access control, protection domain, and class loader
 789 // - data:  bytes of a class file, a raw memory address (length gives the number of bytes)
 790 // - cp_patches:  where non-null entries exist, they replace corresponding CP entries in data
 791 
 792 // When you load an anonymous class U, it works as if you changed its name just before loading,
 793 // to a name that you will never use again.  Since the name is lost, no other class can directly
 794 // link to any member of U.  Just after U is loaded, the only way to use it is reflectively,
 795 // through java.lang.Class methods like Class.newInstance.
 796 
 797 // Access checks for linkage sites within U continue to follow the same rules as for named classes.
 798 // The package of an anonymous class is given by the package qualifier on the name under which it was loaded.
 799 // An anonymous class also has special privileges to access any member of its host class.
 800 // This is the main reason why this loading operation is unsafe.  The purpose of this is to
 801 // allow language implementations to simulate "open classes"; a host class in effect gets
 802 // new code when an anonymous class is loaded alongside it.  A less convenient but more
 803 // standard way to do this is with reflection, which can also be set to ignore access
 804 // restrictions.
 805 
 806 // Access into an anonymous class is possible only through reflection.  Therefore, there
 807 // are no special access rules for calling into an anonymous class.  The relaxed access
 808 // rule for the host class is applied in the opposite direction:  A host class reflectively
 809 // access one of its anonymous classes.
 810 
 811 // If you load the same bytecodes twice, you get two different classes.  You can reload
 812 // the same bytecodes with or without varying CP patches.
 813 
 814 // By using the CP patching array, you can have a new anonymous class U2 refer to an older one U1.
 815 // The bytecodes for U2 should refer to U1 by a symbolic name (doesn't matter what the name is).
 816 // The CONSTANT_Class entry for that name can be patched to refer directly to U1.
 817 
 818 // This allows, for example, U2 to use U1 as a superclass or super-interface, or as
 819 // an outer class (so that U2 is an anonymous inner class of anonymous U1).
 820 // It is not possible for a named class, or an older anonymous class, to refer by
 821 // name (via its CP) to a newer anonymous class.
 822 
 823 // CP patching may also be used to modify (i.e., hack) the names of methods, classes,
 824 // or type descriptors used in the loaded anonymous class.
 825 
 826 // Finally, CP patching may be used to introduce "live" objects into the constant pool,
 827 // instead of "dead" strings.  A compiled statement like println((Object)"hello") can
 828 // be changed to println(greeting), where greeting is an arbitrary object created before
 829 // the anonymous class is loaded.  This is useful in dynamic languages, in which
 830 // various kinds of metaobjects must be introduced as constants into bytecode.
 831 // Note the cast (Object), which tells the verifier to expect an arbitrary object,
 832 // not just a literal string.  For such ldc instructions, the verifier uses the
 833 // type Object instead of String, if the loaded constant is not in fact a String.
 834 
 835 static instanceKlassHandle
 836 Unsafe_DefineAnonymousClass_impl(JNIEnv *env,
 837                                  jclass host_class, jbyteArray data, jobjectArray cp_patches_jh,
 838                                  u1** temp_alloc,
 839                                  TRAPS) {
 840   assert(host_class != NULL, "host_class must not be NULL");
 841   assert(data != NULL, "data must not be NULL");
 842 
 843   if (UsePerfData) {
 844     ClassLoader::unsafe_defineClassCallCounter()->inc();
 845   }
 846 
 847   jint length = typeArrayOop(JNIHandles::resolve_non_null(data))->length();
 848   assert(length >= 0, "class_bytes_length must not be negative: %d", length);
 849 
 850   int class_bytes_length = (int) length;
 851 
 852   u1* class_bytes = NEW_C_HEAP_ARRAY(u1, length, mtInternal);
 853   if (class_bytes == NULL) {
 854     THROW_0(vmSymbols::java_lang_OutOfMemoryError());
 855   }
 856 
 857   // caller responsible to free it:
 858   *temp_alloc = class_bytes;
 859 
 860   jbyte* array_base = typeArrayOop(JNIHandles::resolve_non_null(data))->byte_at_addr(0);
 861   Copy::conjoint_jbytes(array_base, class_bytes, length);
 862 
 863   objArrayHandle cp_patches_h;
 864   if (cp_patches_jh != NULL) {
 865     oop p = JNIHandles::resolve_non_null(cp_patches_jh);
 866     assert(p->is_objArray(), "cp_patches must be an object[]");
 867     cp_patches_h = objArrayHandle(THREAD, (objArrayOop)p);
 868   }
 869 
 870   const Klass* host_klass = java_lang_Class::as_Klass(JNIHandles::resolve_non_null(host_class));
 871   // Primitive types have NULL Klass* fields in their java.lang.Class instances.
 872   if (host_klass == NULL) {
 873     THROW_0(vmSymbols::java_lang_IllegalArgumentException());
 874   }
 875 
 876   const char* host_source = host_klass->external_name();
 877   Handle      host_loader(THREAD, host_klass->class_loader());
 878   Handle      host_domain(THREAD, host_klass->protection_domain());
 879 
 880   GrowableArray<Handle>* cp_patches = NULL;
 881 
 882   if (cp_patches_h.not_null()) {
 883     int alen = cp_patches_h->length();
 884 
 885     for (int i = alen-1; i >= 0; i--) {
 886       oop p = cp_patches_h->obj_at(i);
 887       if (p != NULL) {
 888         Handle patch(THREAD, p);
 889 
 890         if (cp_patches == NULL) {
 891           cp_patches = new GrowableArray<Handle>(i+1, i+1, Handle());
 892         }
 893 
 894         cp_patches->at_put(i, patch);
 895       }
 896     }
 897   }
 898 
 899   ClassFileStream st(class_bytes, class_bytes_length, host_source, ClassFileStream::verify);
 900 
 901   Symbol* no_class_name = NULL;
 902   Klass* anonk = SystemDictionary::parse_stream(no_class_name,
 903                                                 host_loader,
 904                                                 host_domain,
 905                                                 &st,
 906                                                 host_klass,
 907                                                 cp_patches,
 908                                                 CHECK_NULL);
 909   if (anonk == NULL) {
 910     return NULL;
 911   }
 912 
 913   return instanceKlassHandle(THREAD, anonk);
 914 }
 915 
 916 UNSAFE_ENTRY(jclass, Unsafe_DefineAnonymousClass0(JNIEnv *env, jobject unsafe, jclass host_class, jbyteArray data, jobjectArray cp_patches_jh)) {
 917   ResourceMark rm(THREAD);
 918 
 919   instanceKlassHandle anon_klass;
 920   jobject res_jh = NULL;
 921   u1* temp_alloc = NULL;
 922 
 923   anon_klass = Unsafe_DefineAnonymousClass_impl(env, host_class, data, cp_patches_jh, &temp_alloc, THREAD);
 924   if (anon_klass() != NULL) {
 925     res_jh = JNIHandles::make_local(env, anon_klass->java_mirror());
 926   }
 927 
 928   // try/finally clause:
 929   if (temp_alloc != NULL) {
 930     FREE_C_HEAP_ARRAY(u1, temp_alloc);
 931   }
 932 
 933   // The anonymous class loader data has been artificially been kept alive to
 934   // this point.   The mirror and any instances of this class have to keep
 935   // it alive afterwards.
 936   if (anon_klass() != NULL) {
 937     anon_klass->class_loader_data()->set_keep_alive(false);
 938   }
 939 
 940   // let caller initialize it as needed...
 941 
 942   return (jclass) res_jh;
 943 } UNSAFE_END
 944 
 945 
 946 
 947 UNSAFE_ENTRY(void, Unsafe_ThrowException(JNIEnv *env, jobject unsafe, jthrowable thr)) {
 948   ThreadToNativeFromVM ttnfv(thread);
 949   env->Throw(thr);
 950 } UNSAFE_END
 951 
 952 // JSR166 ------------------------------------------------------------------
 953 
 954 UNSAFE_ENTRY(jobject, Unsafe_CompareAndExchangeObject(JNIEnv *env, jobject unsafe, jobject obj, jlong offset, jobject e_h, jobject x_h)) {
 955   oop x = JNIHandles::resolve(x_h);
 956   oop e = JNIHandles::resolve(e_h);
 957   oop p = JNIHandles::resolve(obj);
 958   HeapWord* addr = (HeapWord *)index_oop_from_field_offset_long(p, offset);
 959   oop res = oopDesc::atomic_compare_exchange_oop(x, addr, e, true);
 960   if (res == e) {
 961     update_barrier_set((void*)addr, x);
 962   }
 963   return JNIHandles::make_local(env, res);
 964 } UNSAFE_END
 965 
 966 UNSAFE_ENTRY(jint, Unsafe_CompareAndExchangeInt(JNIEnv *env, jobject unsafe, jobject obj, jlong offset, jint e, jint x)) {
 967   oop p = JNIHandles::resolve(obj);
 968   jint* addr = (jint *) index_oop_from_field_offset_long(p, offset);
 969 
 970   return (jint)(Atomic::cmpxchg(x, addr, e));
 971 } UNSAFE_END
 972 
 973 UNSAFE_ENTRY(jlong, Unsafe_CompareAndExchangeLong(JNIEnv *env, jobject unsafe, jobject obj, jlong offset, jlong e, jlong x)) {
 974   Handle p (THREAD, JNIHandles::resolve(obj));
 975   jlong* addr = (jlong*)(index_oop_from_field_offset_long(p(), offset));
 976 
 977 #ifdef SUPPORTS_NATIVE_CX8
 978   return (jlong)(Atomic::cmpxchg(x, addr, e));
 979 #else
 980   if (VM_Version::supports_cx8()) {
 981     return (jlong)(Atomic::cmpxchg(x, addr, e));
 982   } else {
 983     MutexLockerEx mu(UnsafeJlong_lock, Mutex::_no_safepoint_check_flag);
 984 
 985     jlong val = Atomic::load(addr);
 986     if (val == e) {
 987       Atomic::store(x, addr);
 988     }
 989     return val;
 990   }
 991 #endif
 992 } UNSAFE_END
 993 
 994 UNSAFE_ENTRY(jboolean, Unsafe_CompareAndSwapObject(JNIEnv *env, jobject unsafe, jobject obj, jlong offset, jobject e_h, jobject x_h)) {
 995   oop x = JNIHandles::resolve(x_h);
 996   oop e = JNIHandles::resolve(e_h);
 997   oop p = JNIHandles::resolve(obj);
 998   HeapWord* addr = (HeapWord *)index_oop_from_field_offset_long(p, offset);
 999   oop res = oopDesc::atomic_compare_exchange_oop(x, addr, e, true);
1000   if (res != e) {
1001     return false;
1002   }
1003 
1004   update_barrier_set((void*)addr, x);
1005 
1006   return true;
1007 } UNSAFE_END
1008 
1009 UNSAFE_ENTRY(jboolean, Unsafe_CompareAndSwapInt(JNIEnv *env, jobject unsafe, jobject obj, jlong offset, jint e, jint x)) {
1010   oop p = JNIHandles::resolve(obj);
1011   jint* addr = (jint *) index_oop_from_field_offset_long(p, offset);
1012 
1013   return (jint)(Atomic::cmpxchg(x, addr, e)) == e;
1014 } UNSAFE_END
1015 
1016 UNSAFE_ENTRY(jboolean, Unsafe_CompareAndSwapLong(JNIEnv *env, jobject unsafe, jobject obj, jlong offset, jlong e, jlong x)) {
1017   Handle p(THREAD, JNIHandles::resolve(obj));
1018   jlong* addr = (jlong*)index_oop_from_field_offset_long(p(), offset);
1019 
1020 #ifdef SUPPORTS_NATIVE_CX8
1021   return (jlong)(Atomic::cmpxchg(x, addr, e)) == e;
1022 #else
1023   if (VM_Version::supports_cx8()) {
1024     return (jlong)(Atomic::cmpxchg(x, addr, e)) == e;
1025   } else {
1026     MutexLockerEx mu(UnsafeJlong_lock, Mutex::_no_safepoint_check_flag);
1027 
1028     jlong val = Atomic::load(addr);
1029     if (val != e) {
1030       return false;
1031     }
1032 
1033     Atomic::store(x, addr);
1034     return true;
1035   }
1036 #endif
1037 } UNSAFE_END
1038 
1039 UNSAFE_ENTRY(void, Unsafe_Park(JNIEnv *env, jobject unsafe, jboolean isAbsolute, jlong time)) {
1040   EventThreadPark event;
1041   HOTSPOT_THREAD_PARK_BEGIN((uintptr_t) thread->parker(), (int) isAbsolute, time);
1042 
1043   JavaThreadParkedState jtps(thread, time != 0);
1044   thread->parker()->park(isAbsolute != 0, time);
1045 
1046   HOTSPOT_THREAD_PARK_END((uintptr_t) thread->parker());
1047 
1048   if (event.should_commit()) {
1049     oop obj = thread->current_park_blocker();
1050     event.set_klass((obj != NULL) ? obj->klass() : NULL);
1051     event.set_timeout(time);
1052     event.set_address((obj != NULL) ? (TYPE_ADDRESS) cast_from_oop<uintptr_t>(obj) : 0);
1053     event.commit();
1054   }
1055 } UNSAFE_END
1056 
1057 UNSAFE_ENTRY(void, Unsafe_Unpark(JNIEnv *env, jobject unsafe, jobject jthread)) {
1058   Parker* p = NULL;
1059 
1060   if (jthread != NULL) {
1061     oop java_thread = JNIHandles::resolve_non_null(jthread);
1062     if (java_thread != NULL) {
1063       jlong lp = java_lang_Thread::park_event(java_thread);
1064       if (lp != 0) {
1065         // This cast is OK even though the jlong might have been read
1066         // non-atomically on 32bit systems, since there, one word will
1067         // always be zero anyway and the value set is always the same
1068         p = (Parker*)addr_from_java(lp);
1069       } else {
1070         // Grab lock if apparently null or using older version of library
1071         MutexLocker mu(Threads_lock);
1072         java_thread = JNIHandles::resolve_non_null(jthread);
1073 
1074         if (java_thread != NULL) {
1075           JavaThread* thr = java_lang_Thread::thread(java_thread);
1076           if (thr != NULL) {
1077             p = thr->parker();
1078             if (p != NULL) { // Bind to Java thread for next time.
1079               java_lang_Thread::set_park_event(java_thread, addr_to_java(p));
1080             }
1081           }
1082         }
1083       }
1084     }
1085   }
1086 
1087   if (p != NULL) {
1088     HOTSPOT_THREAD_UNPARK((uintptr_t) p);
1089     p->unpark();
1090   }
1091 } UNSAFE_END
1092 
1093 UNSAFE_ENTRY(jint, Unsafe_GetLoadAverage0(JNIEnv *env, jobject unsafe, jdoubleArray loadavg, jint nelem)) {
1094   const int max_nelem = 3;
1095   double la[max_nelem];
1096   jint ret;
1097 
1098   typeArrayOop a = typeArrayOop(JNIHandles::resolve_non_null(loadavg));
1099   assert(a->is_typeArray(), "must be type array");
1100 
1101   ret = os::loadavg(la, nelem);
1102   if (ret == -1) {
1103     return -1;
1104   }
1105 
1106   // if successful, ret is the number of samples actually retrieved.
1107   assert(ret >= 0 && ret <= max_nelem, "Unexpected loadavg return value");
1108   switch(ret) {
1109     case 3: a->double_at_put(2, (jdouble)la[2]); // fall through
1110     case 2: a->double_at_put(1, (jdouble)la[1]); // fall through
1111     case 1: a->double_at_put(0, (jdouble)la[0]); break;
1112   }
1113 
1114   return ret;
1115 } UNSAFE_END
1116 
1117 
1118 /// JVM_RegisterUnsafeMethods
1119 
1120 #define ADR "J"
1121 
1122 #define LANG "Ljava/lang/"
1123 
1124 #define OBJ LANG "Object;"
1125 #define CLS LANG "Class;"
1126 #define FLD LANG "reflect/Field;"
1127 #define THR LANG "Throwable;"
1128 
1129 #define DC_Args  LANG "String;[BII" LANG "ClassLoader;" "Ljava/security/ProtectionDomain;"
1130 #define DAC_Args CLS "[B[" OBJ
1131 
1132 #define CC (char*)  /*cast a literal from (const char*)*/
1133 #define FN_PTR(f) CAST_FROM_FN_PTR(void*, &f)
1134 
1135 #define DECLARE_GETPUTOOP(Type, Desc) \
1136     {CC "get" #Type,      CC "(" OBJ "J)" #Desc,       FN_PTR(Unsafe_Get##Type)}, \
1137     {CC "put" #Type,      CC "(" OBJ "J" #Desc ")V",   FN_PTR(Unsafe_Set##Type)}, \
1138     {CC "get" #Type "Volatile",      CC "(" OBJ "J)" #Desc,       FN_PTR(Unsafe_Get##Type##Volatile)}, \
1139     {CC "put" #Type "Volatile",      CC "(" OBJ "J" #Desc ")V",   FN_PTR(Unsafe_Set##Type##Volatile)}
1140 
1141 
1142 #define DECLARE_GETPUTNATIVE(Byte, B) \
1143     {CC "get" #Byte,         CC "(" ADR ")" #B,       FN_PTR(Unsafe_GetNative##Byte)}, \
1144     {CC "put" #Byte,         CC "(" ADR#B ")V",       FN_PTR(Unsafe_SetNative##Byte)}
1145 
1146 static JNINativeMethod jdk_internal_misc_Unsafe_methods[] = {
1147     {CC "getObject",        CC "(" OBJ "J)" OBJ "",   FN_PTR(Unsafe_GetObject)},
1148     {CC "putObject",        CC "(" OBJ "J" OBJ ")V",  FN_PTR(Unsafe_SetObject)},
1149     {CC "getObjectVolatile",CC "(" OBJ "J)" OBJ "",   FN_PTR(Unsafe_GetObjectVolatile)},
1150     {CC "putObjectVolatile",CC "(" OBJ "J" OBJ ")V",  FN_PTR(Unsafe_SetObjectVolatile)},
1151 
1152     {CC "getUncompressedObject", CC "(" ADR ")" OBJ,  FN_PTR(Unsafe_GetUncompressedObject)},
1153     {CC "getJavaMirror",         CC "(" ADR ")" CLS,  FN_PTR(Unsafe_GetJavaMirror)},
1154     {CC "getKlassPointer",       CC "(" OBJ ")" ADR,  FN_PTR(Unsafe_GetKlassPointer)},
1155 
1156     DECLARE_GETPUTOOP(Boolean, Z),
1157     DECLARE_GETPUTOOP(Byte, B),
1158     DECLARE_GETPUTOOP(Short, S),
1159     DECLARE_GETPUTOOP(Char, C),
1160     DECLARE_GETPUTOOP(Int, I),
1161     DECLARE_GETPUTOOP(Long, J),
1162     DECLARE_GETPUTOOP(Float, F),
1163     DECLARE_GETPUTOOP(Double, D),
1164 
1165     DECLARE_GETPUTNATIVE(Byte, B),
1166     DECLARE_GETPUTNATIVE(Short, S),
1167     DECLARE_GETPUTNATIVE(Char, C),
1168     DECLARE_GETPUTNATIVE(Int, I),
1169     DECLARE_GETPUTNATIVE(Long, J),
1170     DECLARE_GETPUTNATIVE(Float, F),
1171     DECLARE_GETPUTNATIVE(Double, D),
1172 
1173     {CC "getAddress",         CC "(" ADR ")" ADR,        FN_PTR(Unsafe_GetNativeAddress)},
1174     {CC "putAddress",         CC "(" ADR "" ADR ")V",    FN_PTR(Unsafe_SetNativeAddress)},
1175 
1176     {CC "allocateMemory0",    CC "(J)" ADR,              FN_PTR(Unsafe_AllocateMemory0)},
1177     {CC "reallocateMemory0",  CC "(" ADR "J)" ADR,       FN_PTR(Unsafe_ReallocateMemory0)},
1178     {CC "freeMemory0",        CC "(" ADR ")V",           FN_PTR(Unsafe_FreeMemory0)},
1179 
1180     {CC "objectFieldOffset0", CC "(" FLD ")J",           FN_PTR(Unsafe_ObjectFieldOffset0)},
1181     {CC "staticFieldOffset0", CC "(" FLD ")J",           FN_PTR(Unsafe_StaticFieldOffset0)},
1182     {CC "staticFieldBase0",   CC "(" FLD ")" OBJ,        FN_PTR(Unsafe_StaticFieldBase0)},
1183     {CC "ensureClassInitialized0", CC "(" CLS ")V",      FN_PTR(Unsafe_EnsureClassInitialized0)},
1184     {CC "arrayBaseOffset0",   CC "(" CLS ")I",           FN_PTR(Unsafe_ArrayBaseOffset0)},
1185     {CC "arrayIndexScale0",   CC "(" CLS ")I",           FN_PTR(Unsafe_ArrayIndexScale0)},
1186     {CC "addressSize0",       CC "()I",                  FN_PTR(Unsafe_AddressSize0)},
1187     {CC "pageSize",           CC "()I",                  FN_PTR(Unsafe_PageSize)},
1188 
1189     {CC "defineClass0",       CC "(" DC_Args ")" CLS,    FN_PTR(Unsafe_DefineClass0)},
1190     {CC "allocateInstance",   CC "(" CLS ")" OBJ,        FN_PTR(Unsafe_AllocateInstance)},
1191     {CC "throwException",     CC "(" THR ")V",           FN_PTR(Unsafe_ThrowException)},
1192     {CC "compareAndSwapObject", CC "(" OBJ "J" OBJ "" OBJ ")Z", FN_PTR(Unsafe_CompareAndSwapObject)},
1193     {CC "compareAndSwapInt",  CC "(" OBJ "J""I""I"")Z",  FN_PTR(Unsafe_CompareAndSwapInt)},
1194     {CC "compareAndSwapLong", CC "(" OBJ "J""J""J"")Z",  FN_PTR(Unsafe_CompareAndSwapLong)},
1195     {CC "compareAndExchangeObjectVolatile", CC "(" OBJ "J" OBJ "" OBJ ")" OBJ, FN_PTR(Unsafe_CompareAndExchangeObject)},
1196     {CC "compareAndExchangeIntVolatile",  CC "(" OBJ "J""I""I"")I", FN_PTR(Unsafe_CompareAndExchangeInt)},
1197     {CC "compareAndExchangeLongVolatile", CC "(" OBJ "J""J""J"")J", FN_PTR(Unsafe_CompareAndExchangeLong)},
1198 
1199     {CC "park",               CC "(ZJ)V",                FN_PTR(Unsafe_Park)},
1200     {CC "unpark",             CC "(" OBJ ")V",           FN_PTR(Unsafe_Unpark)},
1201 
1202     {CC "getLoadAverage0",    CC "([DI)I",               FN_PTR(Unsafe_GetLoadAverage0)},
1203 
1204     {CC "copyMemory0",        CC "(" OBJ "J" OBJ "JJ)V", FN_PTR(Unsafe_CopyMemory0)},
1205     {CC "copySwapMemory0",    CC "(" OBJ "J" OBJ "JJJ)V", FN_PTR(Unsafe_CopySwapMemory0)},
1206     {CC "setMemory0",         CC "(" OBJ "JJB)V",        FN_PTR(Unsafe_SetMemory0)},
1207 
1208     {CC "defineAnonymousClass0", CC "(" DAC_Args ")" CLS, FN_PTR(Unsafe_DefineAnonymousClass0)},
1209 
1210     {CC "shouldBeInitialized0", CC "(" CLS ")Z",         FN_PTR(Unsafe_ShouldBeInitialized0)},
1211 
1212     {CC "loadFence",          CC "()V",                  FN_PTR(Unsafe_LoadFence)},
1213     {CC "storeFence",         CC "()V",                  FN_PTR(Unsafe_StoreFence)},
1214     {CC "fullFence",          CC "()V",                  FN_PTR(Unsafe_FullFence)},
1215 
1216     {CC "isBigEndian0",       CC "()Z",                  FN_PTR(Unsafe_isBigEndian0)},
1217     {CC "unalignedAccess0",   CC "()Z",                  FN_PTR(Unsafe_unalignedAccess0)}
1218 };
1219 
1220 #undef CC
1221 #undef FN_PTR
1222 
1223 #undef ADR
1224 #undef LANG
1225 #undef OBJ
1226 #undef CLS
1227 #undef FLD
1228 #undef THR
1229 #undef DC_Args
1230 #undef DAC_Args
1231 
1232 #undef DECLARE_GETPUTOOP
1233 #undef DECLARE_GETPUTNATIVE
1234 
1235 
1236 // This function is exported, used by NativeLookup.
1237 // The Unsafe_xxx functions above are called only from the interpreter.
1238 // The optimizer looks at names and signatures to recognize
1239 // individual functions.
1240 
1241 JVM_ENTRY(void, JVM_RegisterJDKInternalMiscUnsafeMethods(JNIEnv *env, jclass unsafeclass)) {
1242   ThreadToNativeFromVM ttnfv(thread);
1243 
1244   int ok = env->RegisterNatives(unsafeclass, jdk_internal_misc_Unsafe_methods, sizeof(jdk_internal_misc_Unsafe_methods)/sizeof(JNINativeMethod));
1245   guarantee(ok == 0, "register jdk.internal.misc.Unsafe natives");
1246 } JVM_END