1 /*
   2  * Copyright (c) 1997, 2012, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/classLoader.hpp"
  27 #include "classfile/javaClasses.hpp"
  28 #include "classfile/systemDictionary.hpp"
  29 #include "classfile/vmSymbols.hpp"
  30 #include "code/scopeDesc.hpp"
  31 #include "compiler/compileBroker.hpp"
  32 #include "interpreter/interpreter.hpp"
  33 #include "interpreter/linkResolver.hpp"
  34 #include "interpreter/oopMapCache.hpp"
  35 #include "jvmtifiles/jvmtiEnv.hpp"
  36 #include "memory/gcLocker.inline.hpp"
  37 #include "memory/metaspaceShared.hpp"
  38 #include "memory/oopFactory.hpp"
  39 #include "memory/universe.inline.hpp"
  40 #include "oops/instanceKlass.hpp"
  41 #include "oops/objArrayOop.hpp"
  42 #include "oops/oop.inline.hpp"
  43 #include "oops/symbol.hpp"
  44 #include "prims/jvm_misc.hpp"
  45 #include "prims/jvmtiExport.hpp"
  46 #include "prims/jvmtiThreadState.hpp"
  47 #include "prims/privilegedStack.hpp"
  48 #include "runtime/aprofiler.hpp"
  49 #include "runtime/arguments.hpp"
  50 #include "runtime/biasedLocking.hpp"
  51 #include "runtime/deoptimization.hpp"
  52 #include "runtime/fprofiler.hpp"
  53 #include "runtime/frame.inline.hpp"
  54 #include "runtime/init.hpp"
  55 #include "runtime/interfaceSupport.hpp"
  56 #include "runtime/java.hpp"
  57 #include "runtime/javaCalls.hpp"
  58 #include "runtime/jniPeriodicChecker.hpp"
  59 #include "runtime/memprofiler.hpp"
  60 #include "runtime/mutexLocker.hpp"
  61 #include "runtime/objectMonitor.hpp"
  62 #include "runtime/osThread.hpp"
  63 #include "runtime/safepoint.hpp"
  64 #include "runtime/sharedRuntime.hpp"
  65 #include "runtime/statSampler.hpp"
  66 #include "runtime/stubRoutines.hpp"
  67 #include "runtime/task.hpp"
  68 #include "runtime/threadCritical.hpp"
  69 #include "runtime/threadLocalStorage.hpp"
  70 #include "runtime/vframe.hpp"
  71 #include "runtime/vframeArray.hpp"
  72 #include "runtime/vframe_hp.hpp"
  73 #include "runtime/vmThread.hpp"
  74 #include "runtime/vm_operations.hpp"
  75 #include "services/attachListener.hpp"
  76 #include "services/management.hpp"
  77 #include "services/memTracker.hpp"
  78 #include "services/threadService.hpp"
  79 #include "trace/traceEventTypes.hpp"
  80 #include "utilities/defaultStream.hpp"
  81 #include "utilities/dtrace.hpp"
  82 #include "utilities/events.hpp"
  83 #include "utilities/preserveException.hpp"
  84 #ifdef TARGET_OS_FAMILY_linux
  85 # include "os_linux.inline.hpp"
  86 # include "thread_linux.inline.hpp"
  87 #endif
  88 #ifdef TARGET_OS_FAMILY_solaris
  89 # include "os_solaris.inline.hpp"
  90 # include "thread_solaris.inline.hpp"
  91 #endif
  92 #ifdef TARGET_OS_FAMILY_windows
  93 # include "os_windows.inline.hpp"
  94 # include "thread_windows.inline.hpp"
  95 #endif
  96 #ifdef TARGET_OS_FAMILY_bsd
  97 # include "os_bsd.inline.hpp"
  98 # include "thread_bsd.inline.hpp"
  99 #endif
 100 #ifndef SERIALGC
 101 #include "gc_implementation/concurrentMarkSweep/concurrentMarkSweepThread.hpp"
 102 #include "gc_implementation/g1/concurrentMarkThread.inline.hpp"
 103 #include "gc_implementation/parallelScavenge/pcTasks.hpp"
 104 #endif
 105 #ifdef COMPILER1
 106 #include "c1/c1_Compiler.hpp"
 107 #endif
 108 #ifdef COMPILER2
 109 #include "opto/c2compiler.hpp"
 110 #include "opto/idealGraphPrinter.hpp"
 111 #endif
 112 
 113 #ifdef DTRACE_ENABLED
 114 
 115 // Only bother with this argument setup if dtrace is available
 116 
 117 #ifndef USDT2
 118 HS_DTRACE_PROBE_DECL(hotspot, vm__init__begin);
 119 HS_DTRACE_PROBE_DECL(hotspot, vm__init__end);
 120 HS_DTRACE_PROBE_DECL5(hotspot, thread__start, char*, intptr_t,
 121   intptr_t, intptr_t, bool);
 122 HS_DTRACE_PROBE_DECL5(hotspot, thread__stop, char*, intptr_t,
 123   intptr_t, intptr_t, bool);
 124 
 125 #define DTRACE_THREAD_PROBE(probe, javathread)                             \
 126   {                                                                        \
 127     ResourceMark rm(this);                                                 \
 128     int len = 0;                                                           \
 129     const char* name = (javathread)->get_thread_name();                    \
 130     len = strlen(name);                                                    \
 131     HS_DTRACE_PROBE5(hotspot, thread__##probe,                             \
 132       name, len,                                                           \
 133       java_lang_Thread::thread_id((javathread)->threadObj()),              \
 134       (javathread)->osthread()->thread_id(),                               \
 135       java_lang_Thread::is_daemon((javathread)->threadObj()));             \
 136   }
 137 
 138 #else /* USDT2 */
 139 
 140 #define HOTSPOT_THREAD_PROBE_start HOTSPOT_THREAD_PROBE_START
 141 #define HOTSPOT_THREAD_PROBE_stop HOTSPOT_THREAD_PROBE_STOP
 142 
 143 #define DTRACE_THREAD_PROBE(probe, javathread)                             \
 144   {                                                                        \
 145     ResourceMark rm(this);                                                 \
 146     int len = 0;                                                           \
 147     const char* name = (javathread)->get_thread_name();                    \
 148     len = strlen(name);                                                    \
 149     HOTSPOT_THREAD_PROBE_##probe(  /* probe = start, stop */               \
 150       (char *) name, len,                                                           \
 151       java_lang_Thread::thread_id((javathread)->threadObj()),              \
 152       (uintptr_t) (javathread)->osthread()->thread_id(),                               \
 153       java_lang_Thread::is_daemon((javathread)->threadObj()));             \
 154   }
 155 
 156 #endif /* USDT2 */
 157 
 158 #else //  ndef DTRACE_ENABLED
 159 
 160 #define DTRACE_THREAD_PROBE(probe, javathread)
 161 
 162 #endif // ndef DTRACE_ENABLED
 163 
 164 
 165 // Class hierarchy
 166 // - Thread
 167 //   - VMThread
 168 //   - WatcherThread
 169 //   - ConcurrentMarkSweepThread
 170 //   - JavaThread
 171 //     - CompilerThread
 172 
 173 // ======= Thread ========
 174 // Support for forcing alignment of thread objects for biased locking
 175 void* Thread::allocate(size_t size, bool throw_excpt, MEMFLAGS flags) {
 176   if (UseBiasedLocking) {
 177     const int alignment = markOopDesc::biased_lock_alignment;
 178     size_t aligned_size = size + (alignment - sizeof(intptr_t));
 179     void* real_malloc_addr = throw_excpt? AllocateHeap(aligned_size, flags, CURRENT_PC)
 180                                           : AllocateHeap(aligned_size, flags, CURRENT_PC,
 181                                               AllocFailStrategy::RETURN_NULL);
 182     void* aligned_addr     = (void*) align_size_up((intptr_t) real_malloc_addr, alignment);
 183     assert(((uintptr_t) aligned_addr + (uintptr_t) size) <=
 184            ((uintptr_t) real_malloc_addr + (uintptr_t) aligned_size),
 185            "JavaThread alignment code overflowed allocated storage");
 186     if (TraceBiasedLocking) {
 187       if (aligned_addr != real_malloc_addr)
 188         tty->print_cr("Aligned thread " INTPTR_FORMAT " to " INTPTR_FORMAT,
 189                       real_malloc_addr, aligned_addr);
 190     }
 191     ((Thread*) aligned_addr)->_real_malloc_address = real_malloc_addr;
 192     return aligned_addr;
 193   } else {
 194     return throw_excpt? AllocateHeap(size, flags, CURRENT_PC)
 195                        : AllocateHeap(size, flags, CURRENT_PC, AllocFailStrategy::RETURN_NULL);
 196   }
 197 }
 198 
 199 void Thread::operator delete(void* p) {
 200   if (UseBiasedLocking) {
 201     void* real_malloc_addr = ((Thread*) p)->_real_malloc_address;
 202     FreeHeap(real_malloc_addr, mtThread);
 203   } else {
 204     FreeHeap(p, mtThread);
 205   }
 206 }
 207 
 208 
 209 // Base class for all threads: VMThread, WatcherThread, ConcurrentMarkSweepThread,
 210 // JavaThread
 211 
 212 
 213 Thread::Thread() {
 214   // stack and get_thread
 215   set_stack_base(NULL);
 216   set_stack_size(0);
 217   set_self_raw_id(0);
 218   set_lgrp_id(-1);
 219 
 220   // allocated data structures
 221   set_osthread(NULL);
 222   set_resource_area(new (mtThread)ResourceArea());
 223   set_handle_area(new (mtThread) HandleArea(NULL));
 224   set_metadata_handles(new (ResourceObj::C_HEAP, mtClass) GrowableArray<Metadata*>(300, true));
 225   set_active_handles(NULL);
 226   set_free_handle_block(NULL);
 227   set_last_handle_mark(NULL);
 228 
 229   // This initial value ==> never claimed.
 230   _oops_do_parity = 0;
 231 
 232   // the handle mark links itself to last_handle_mark
 233   new HandleMark(this);
 234 
 235   // plain initialization
 236   debug_only(_owned_locks = NULL;)
 237   debug_only(_allow_allocation_count = 0;)
 238   NOT_PRODUCT(_allow_safepoint_count = 0;)
 239   NOT_PRODUCT(_skip_gcalot = false;)
 240   CHECK_UNHANDLED_OOPS_ONLY(_gc_locked_out_count = 0;)
 241   _jvmti_env_iteration_count = 0;
 242   set_allocated_bytes(0);
 243   set_trace_buffer(NULL);
 244   _vm_operation_started_count = 0;
 245   _vm_operation_completed_count = 0;
 246   _current_pending_monitor = NULL;
 247   _current_pending_monitor_is_from_java = true;
 248   _current_waiting_monitor = NULL;
 249   _num_nested_signal = 0;
 250   omFreeList = NULL ;
 251   omFreeCount = 0 ;
 252   omFreeProvision = 32 ;
 253   omInUseList = NULL ;
 254   omInUseCount = 0 ;
 255 
 256 #ifdef ASSERT
 257   _visited_for_critical_count = false;
 258 #endif
 259 
 260   _SR_lock = new Monitor(Mutex::suspend_resume, "SR_lock", true);
 261   _suspend_flags = 0;
 262 
 263   // thread-specific hashCode stream generator state - Marsaglia shift-xor form
 264   _hashStateX = os::random() ;
 265   _hashStateY = 842502087 ;
 266   _hashStateZ = 0x8767 ;    // (int)(3579807591LL & 0xffff) ;
 267   _hashStateW = 273326509 ;
 268 
 269   _OnTrap   = 0 ;
 270   _schedctl = NULL ;
 271   _Stalled  = 0 ;
 272   _TypeTag  = 0x2BAD ;
 273 
 274   // Many of the following fields are effectively final - immutable
 275   // Note that nascent threads can't use the Native Monitor-Mutex
 276   // construct until the _MutexEvent is initialized ...
 277   // CONSIDER: instead of using a fixed set of purpose-dedicated ParkEvents
 278   // we might instead use a stack of ParkEvents that we could provision on-demand.
 279   // The stack would act as a cache to avoid calls to ParkEvent::Allocate()
 280   // and ::Release()
 281   _ParkEvent   = ParkEvent::Allocate (this) ;
 282   _SleepEvent  = ParkEvent::Allocate (this) ;
 283   _MutexEvent  = ParkEvent::Allocate (this) ;
 284   _MuxEvent    = ParkEvent::Allocate (this) ;
 285 
 286 #ifdef CHECK_UNHANDLED_OOPS
 287   if (CheckUnhandledOops) {
 288     _unhandled_oops = new UnhandledOops(this);
 289   }
 290 #endif // CHECK_UNHANDLED_OOPS
 291 #ifdef ASSERT
 292   if (UseBiasedLocking) {
 293     assert((((uintptr_t) this) & (markOopDesc::biased_lock_alignment - 1)) == 0, "forced alignment of thread object failed");
 294     assert(this == _real_malloc_address ||
 295            this == (void*) align_size_up((intptr_t) _real_malloc_address, markOopDesc::biased_lock_alignment),
 296            "bug in forced alignment of thread objects");
 297   }
 298 #endif /* ASSERT */
 299 }
 300 
 301 void Thread::initialize_thread_local_storage() {
 302   // Note: Make sure this method only calls
 303   // non-blocking operations. Otherwise, it might not work
 304   // with the thread-startup/safepoint interaction.
 305 
 306   // During Java thread startup, safepoint code should allow this
 307   // method to complete because it may need to allocate memory to
 308   // store information for the new thread.
 309 
 310   // initialize structure dependent on thread local storage
 311   ThreadLocalStorage::set_thread(this);
 312 }
 313 
 314 void Thread::record_stack_base_and_size() {
 315   set_stack_base(os::current_stack_base());
 316   set_stack_size(os::current_stack_size());
 317   // CR 7190089: on Solaris, primordial thread's stack is adjusted
 318   // in initialize_thread(). Without the adjustment, stack size is
 319   // incorrect if stack is set to unlimited (ulimit -s unlimited).
 320   // So far, only Solaris has real implementation of initialize_thread().
 321   //
 322   // set up any platform-specific state.
 323   os::initialize_thread(this);
 324 
 325 #if INCLUDE_NMT
 326   // record thread's native stack, stack grows downward
 327   address stack_low_addr = stack_base() - stack_size();
 328   MemTracker::record_thread_stack(stack_low_addr, stack_size(), this,
 329       CURRENT_PC);
 330 #endif // INCLUDE_NMT
 331 }
 332 
 333 
 334 Thread::~Thread() {
 335   // Reclaim the objectmonitors from the omFreeList of the moribund thread.
 336   ObjectSynchronizer::omFlush (this) ;
 337 
 338   // stack_base can be NULL if the thread is never started or exited before
 339   // record_stack_base_and_size called. Although, we would like to ensure
 340   // that all started threads do call record_stack_base_and_size(), there is
 341   // not proper way to enforce that.
 342 #if INCLUDE_NMT
 343   if (_stack_base != NULL) {
 344     address low_stack_addr = stack_base() - stack_size();
 345     MemTracker::release_thread_stack(low_stack_addr, stack_size(), this);
 346 #ifdef ASSERT
 347     set_stack_base(NULL);
 348 #endif
 349   }
 350 #endif // INCLUDE_NMT
 351 
 352   // deallocate data structures
 353   delete resource_area();
 354   // since the handle marks are using the handle area, we have to deallocated the root
 355   // handle mark before deallocating the thread's handle area,
 356   assert(last_handle_mark() != NULL, "check we have an element");
 357   delete last_handle_mark();
 358   assert(last_handle_mark() == NULL, "check we have reached the end");
 359 
 360   // It's possible we can encounter a null _ParkEvent, etc., in stillborn threads.
 361   // We NULL out the fields for good hygiene.
 362   ParkEvent::Release (_ParkEvent)   ; _ParkEvent   = NULL ;
 363   ParkEvent::Release (_SleepEvent)  ; _SleepEvent  = NULL ;
 364   ParkEvent::Release (_MutexEvent)  ; _MutexEvent  = NULL ;
 365   ParkEvent::Release (_MuxEvent)    ; _MuxEvent    = NULL ;
 366 
 367   delete handle_area();
 368   delete metadata_handles();
 369 
 370   // osthread() can be NULL, if creation of thread failed.
 371   if (osthread() != NULL) os::free_thread(osthread());
 372 
 373   delete _SR_lock;
 374 
 375   // clear thread local storage if the Thread is deleting itself
 376   if (this == Thread::current()) {
 377     ThreadLocalStorage::set_thread(NULL);
 378   } else {
 379     // In the case where we're not the current thread, invalidate all the
 380     // caches in case some code tries to get the current thread or the
 381     // thread that was destroyed, and gets stale information.
 382     ThreadLocalStorage::invalidate_all();
 383   }
 384   CHECK_UNHANDLED_OOPS_ONLY(if (CheckUnhandledOops) delete unhandled_oops();)
 385 }
 386 
 387 // NOTE: dummy function for assertion purpose.
 388 void Thread::run() {
 389   ShouldNotReachHere();
 390 }
 391 
 392 #ifdef ASSERT
 393 // Private method to check for dangling thread pointer
 394 void check_for_dangling_thread_pointer(Thread *thread) {
 395  assert(!thread->is_Java_thread() || Thread::current() == thread || Threads_lock->owned_by_self(),
 396          "possibility of dangling Thread pointer");
 397 }
 398 #endif
 399 
 400 
 401 #ifndef PRODUCT
 402 // Tracing method for basic thread operations
 403 void Thread::trace(const char* msg, const Thread* const thread) {
 404   if (!TraceThreadEvents) return;
 405   ResourceMark rm;
 406   ThreadCritical tc;
 407   const char *name = "non-Java thread";
 408   int prio = -1;
 409   if (thread->is_Java_thread()
 410       && !thread->is_Compiler_thread()) {
 411     // The Threads_lock must be held to get information about
 412     // this thread but may not be in some situations when
 413     // tracing  thread events.
 414     bool release_Threads_lock = false;
 415     if (!Threads_lock->owned_by_self()) {
 416       Threads_lock->lock();
 417       release_Threads_lock = true;
 418     }
 419     JavaThread* jt = (JavaThread *)thread;
 420     name = (char *)jt->get_thread_name();
 421     oop thread_oop = jt->threadObj();
 422     if (thread_oop != NULL) {
 423       prio = java_lang_Thread::priority(thread_oop);
 424     }
 425     if (release_Threads_lock) {
 426       Threads_lock->unlock();
 427     }
 428   }
 429   tty->print_cr("Thread::%s " INTPTR_FORMAT " [%lx] %s (prio: %d)", msg, thread, thread->osthread()->thread_id(), name, prio);
 430 }
 431 #endif
 432 
 433 
 434 ThreadPriority Thread::get_priority(const Thread* const thread) {
 435   trace("get priority", thread);
 436   ThreadPriority priority;
 437   // Can return an error!
 438   (void)os::get_priority(thread, priority);
 439   assert(MinPriority <= priority && priority <= MaxPriority, "non-Java priority found");
 440   return priority;
 441 }
 442 
 443 void Thread::set_priority(Thread* thread, ThreadPriority priority) {
 444   trace("set priority", thread);
 445   debug_only(check_for_dangling_thread_pointer(thread);)
 446   // Can return an error!
 447   (void)os::set_priority(thread, priority);
 448 }
 449 
 450 
 451 void Thread::start(Thread* thread) {
 452   trace("start", thread);
 453   // Start is different from resume in that its safety is guaranteed by context or
 454   // being called from a Java method synchronized on the Thread object.
 455   if (!DisableStartThread) {
 456     if (thread->is_Java_thread()) {
 457       // Initialize the thread state to RUNNABLE before starting this thread.
 458       // Can not set it after the thread started because we do not know the
 459       // exact thread state at that time. It could be in MONITOR_WAIT or
 460       // in SLEEPING or some other state.
 461       java_lang_Thread::set_thread_status(((JavaThread*)thread)->threadObj(),
 462                                           java_lang_Thread::RUNNABLE);
 463     }
 464     os::start_thread(thread);
 465   }
 466 }
 467 
 468 // Enqueue a VM_Operation to do the job for us - sometime later
 469 void Thread::send_async_exception(oop java_thread, oop java_throwable) {
 470   VM_ThreadStop* vm_stop = new VM_ThreadStop(java_thread, java_throwable);
 471   VMThread::execute(vm_stop);
 472 }
 473 
 474 
 475 //
 476 // Check if an external suspend request has completed (or has been
 477 // cancelled). Returns true if the thread is externally suspended and
 478 // false otherwise.
 479 //
 480 // The bits parameter returns information about the code path through
 481 // the routine. Useful for debugging:
 482 //
 483 // set in is_ext_suspend_completed():
 484 // 0x00000001 - routine was entered
 485 // 0x00000010 - routine return false at end
 486 // 0x00000100 - thread exited (return false)
 487 // 0x00000200 - suspend request cancelled (return false)
 488 // 0x00000400 - thread suspended (return true)
 489 // 0x00001000 - thread is in a suspend equivalent state (return true)
 490 // 0x00002000 - thread is native and walkable (return true)
 491 // 0x00004000 - thread is native_trans and walkable (needed retry)
 492 //
 493 // set in wait_for_ext_suspend_completion():
 494 // 0x00010000 - routine was entered
 495 // 0x00020000 - suspend request cancelled before loop (return false)
 496 // 0x00040000 - thread suspended before loop (return true)
 497 // 0x00080000 - suspend request cancelled in loop (return false)
 498 // 0x00100000 - thread suspended in loop (return true)
 499 // 0x00200000 - suspend not completed during retry loop (return false)
 500 //
 501 
 502 // Helper class for tracing suspend wait debug bits.
 503 //
 504 // 0x00000100 indicates that the target thread exited before it could
 505 // self-suspend which is not a wait failure. 0x00000200, 0x00020000 and
 506 // 0x00080000 each indicate a cancelled suspend request so they don't
 507 // count as wait failures either.
 508 #define DEBUG_FALSE_BITS (0x00000010 | 0x00200000)
 509 
 510 class TraceSuspendDebugBits : public StackObj {
 511  private:
 512   JavaThread * jt;
 513   bool         is_wait;
 514   bool         called_by_wait;  // meaningful when !is_wait
 515   uint32_t *   bits;
 516 
 517  public:
 518   TraceSuspendDebugBits(JavaThread *_jt, bool _is_wait, bool _called_by_wait,
 519                         uint32_t *_bits) {
 520     jt             = _jt;
 521     is_wait        = _is_wait;
 522     called_by_wait = _called_by_wait;
 523     bits           = _bits;
 524   }
 525 
 526   ~TraceSuspendDebugBits() {
 527     if (!is_wait) {
 528 #if 1
 529       // By default, don't trace bits for is_ext_suspend_completed() calls.
 530       // That trace is very chatty.
 531       return;
 532 #else
 533       if (!called_by_wait) {
 534         // If tracing for is_ext_suspend_completed() is enabled, then only
 535         // trace calls to it from wait_for_ext_suspend_completion()
 536         return;
 537       }
 538 #endif
 539     }
 540 
 541     if (AssertOnSuspendWaitFailure || TraceSuspendWaitFailures) {
 542       if (bits != NULL && (*bits & DEBUG_FALSE_BITS) != 0) {
 543         MutexLocker ml(Threads_lock);  // needed for get_thread_name()
 544         ResourceMark rm;
 545 
 546         tty->print_cr(
 547             "Failed wait_for_ext_suspend_completion(thread=%s, debug_bits=%x)",
 548             jt->get_thread_name(), *bits);
 549 
 550         guarantee(!AssertOnSuspendWaitFailure, "external suspend wait failed");
 551       }
 552     }
 553   }
 554 };
 555 #undef DEBUG_FALSE_BITS
 556 
 557 
 558 bool JavaThread::is_ext_suspend_completed(bool called_by_wait, int delay, uint32_t *bits) {
 559   TraceSuspendDebugBits tsdb(this, false /* !is_wait */, called_by_wait, bits);
 560 
 561   bool did_trans_retry = false;  // only do thread_in_native_trans retry once
 562   bool do_trans_retry;           // flag to force the retry
 563 
 564   *bits |= 0x00000001;
 565 
 566   do {
 567     do_trans_retry = false;
 568 
 569     if (is_exiting()) {
 570       // Thread is in the process of exiting. This is always checked
 571       // first to reduce the risk of dereferencing a freed JavaThread.
 572       *bits |= 0x00000100;
 573       return false;
 574     }
 575 
 576     if (!is_external_suspend()) {
 577       // Suspend request is cancelled. This is always checked before
 578       // is_ext_suspended() to reduce the risk of a rogue resume
 579       // confusing the thread that made the suspend request.
 580       *bits |= 0x00000200;
 581       return false;
 582     }
 583 
 584     if (is_ext_suspended()) {
 585       // thread is suspended
 586       *bits |= 0x00000400;
 587       return true;
 588     }
 589 
 590     // Now that we no longer do hard suspends of threads running
 591     // native code, the target thread can be changing thread state
 592     // while we are in this routine:
 593     //
 594     //   _thread_in_native -> _thread_in_native_trans -> _thread_blocked
 595     //
 596     // We save a copy of the thread state as observed at this moment
 597     // and make our decision about suspend completeness based on the
 598     // copy. This closes the race where the thread state is seen as
 599     // _thread_in_native_trans in the if-thread_blocked check, but is
 600     // seen as _thread_blocked in if-thread_in_native_trans check.
 601     JavaThreadState save_state = thread_state();
 602 
 603     if (save_state == _thread_blocked && is_suspend_equivalent()) {
 604       // If the thread's state is _thread_blocked and this blocking
 605       // condition is known to be equivalent to a suspend, then we can
 606       // consider the thread to be externally suspended. This means that
 607       // the code that sets _thread_blocked has been modified to do
 608       // self-suspension if the blocking condition releases. We also
 609       // used to check for CONDVAR_WAIT here, but that is now covered by
 610       // the _thread_blocked with self-suspension check.
 611       //
 612       // Return true since we wouldn't be here unless there was still an
 613       // external suspend request.
 614       *bits |= 0x00001000;
 615       return true;
 616     } else if (save_state == _thread_in_native && frame_anchor()->walkable()) {
 617       // Threads running native code will self-suspend on native==>VM/Java
 618       // transitions. If its stack is walkable (should always be the case
 619       // unless this function is called before the actual java_suspend()
 620       // call), then the wait is done.
 621       *bits |= 0x00002000;
 622       return true;
 623     } else if (!called_by_wait && !did_trans_retry &&
 624                save_state == _thread_in_native_trans &&
 625                frame_anchor()->walkable()) {
 626       // The thread is transitioning from thread_in_native to another
 627       // thread state. check_safepoint_and_suspend_for_native_trans()
 628       // will force the thread to self-suspend. If it hasn't gotten
 629       // there yet we may have caught the thread in-between the native
 630       // code check above and the self-suspend. Lucky us. If we were
 631       // called by wait_for_ext_suspend_completion(), then it
 632       // will be doing the retries so we don't have to.
 633       //
 634       // Since we use the saved thread state in the if-statement above,
 635       // there is a chance that the thread has already transitioned to
 636       // _thread_blocked by the time we get here. In that case, we will
 637       // make a single unnecessary pass through the logic below. This
 638       // doesn't hurt anything since we still do the trans retry.
 639 
 640       *bits |= 0x00004000;
 641 
 642       // Once the thread leaves thread_in_native_trans for another
 643       // thread state, we break out of this retry loop. We shouldn't
 644       // need this flag to prevent us from getting back here, but
 645       // sometimes paranoia is good.
 646       did_trans_retry = true;
 647 
 648       // We wait for the thread to transition to a more usable state.
 649       for (int i = 1; i <= SuspendRetryCount; i++) {
 650         // We used to do an "os::yield_all(i)" call here with the intention
 651         // that yielding would increase on each retry. However, the parameter
 652         // is ignored on Linux which means the yield didn't scale up. Waiting
 653         // on the SR_lock below provides a much more predictable scale up for
 654         // the delay. It also provides a simple/direct point to check for any
 655         // safepoint requests from the VMThread
 656 
 657         // temporarily drops SR_lock while doing wait with safepoint check
 658         // (if we're a JavaThread - the WatcherThread can also call this)
 659         // and increase delay with each retry
 660         SR_lock()->wait(!Thread::current()->is_Java_thread(), i * delay);
 661 
 662         // check the actual thread state instead of what we saved above
 663         if (thread_state() != _thread_in_native_trans) {
 664           // the thread has transitioned to another thread state so
 665           // try all the checks (except this one) one more time.
 666           do_trans_retry = true;
 667           break;
 668         }
 669       } // end retry loop
 670 
 671 
 672     }
 673   } while (do_trans_retry);
 674 
 675   *bits |= 0x00000010;
 676   return false;
 677 }
 678 
 679 //
 680 // Wait for an external suspend request to complete (or be cancelled).
 681 // Returns true if the thread is externally suspended and false otherwise.
 682 //
 683 bool JavaThread::wait_for_ext_suspend_completion(int retries, int delay,
 684        uint32_t *bits) {
 685   TraceSuspendDebugBits tsdb(this, true /* is_wait */,
 686                              false /* !called_by_wait */, bits);
 687 
 688   // local flag copies to minimize SR_lock hold time
 689   bool is_suspended;
 690   bool pending;
 691   uint32_t reset_bits;
 692 
 693   // set a marker so is_ext_suspend_completed() knows we are the caller
 694   *bits |= 0x00010000;
 695 
 696   // We use reset_bits to reinitialize the bits value at the top of
 697   // each retry loop. This allows the caller to make use of any
 698   // unused bits for their own marking purposes.
 699   reset_bits = *bits;
 700 
 701   {
 702     MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
 703     is_suspended = is_ext_suspend_completed(true /* called_by_wait */,
 704                                             delay, bits);
 705     pending = is_external_suspend();
 706   }
 707   // must release SR_lock to allow suspension to complete
 708 
 709   if (!pending) {
 710     // A cancelled suspend request is the only false return from
 711     // is_ext_suspend_completed() that keeps us from entering the
 712     // retry loop.
 713     *bits |= 0x00020000;
 714     return false;
 715   }
 716 
 717   if (is_suspended) {
 718     *bits |= 0x00040000;
 719     return true;
 720   }
 721 
 722   for (int i = 1; i <= retries; i++) {
 723     *bits = reset_bits;  // reinit to only track last retry
 724 
 725     // We used to do an "os::yield_all(i)" call here with the intention
 726     // that yielding would increase on each retry. However, the parameter
 727     // is ignored on Linux which means the yield didn't scale up. Waiting
 728     // on the SR_lock below provides a much more predictable scale up for
 729     // the delay. It also provides a simple/direct point to check for any
 730     // safepoint requests from the VMThread
 731 
 732     {
 733       MutexLocker ml(SR_lock());
 734       // wait with safepoint check (if we're a JavaThread - the WatcherThread
 735       // can also call this)  and increase delay with each retry
 736       SR_lock()->wait(!Thread::current()->is_Java_thread(), i * delay);
 737 
 738       is_suspended = is_ext_suspend_completed(true /* called_by_wait */,
 739                                               delay, bits);
 740 
 741       // It is possible for the external suspend request to be cancelled
 742       // (by a resume) before the actual suspend operation is completed.
 743       // Refresh our local copy to see if we still need to wait.
 744       pending = is_external_suspend();
 745     }
 746 
 747     if (!pending) {
 748       // A cancelled suspend request is the only false return from
 749       // is_ext_suspend_completed() that keeps us from staying in the
 750       // retry loop.
 751       *bits |= 0x00080000;
 752       return false;
 753     }
 754 
 755     if (is_suspended) {
 756       *bits |= 0x00100000;
 757       return true;
 758     }
 759   } // end retry loop
 760 
 761   // thread did not suspend after all our retries
 762   *bits |= 0x00200000;
 763   return false;
 764 }
 765 
 766 #ifndef PRODUCT
 767 void JavaThread::record_jump(address target, address instr, const char* file, int line) {
 768 
 769   // This should not need to be atomic as the only way for simultaneous
 770   // updates is via interrupts. Even then this should be rare or non-existant
 771   // and we don't care that much anyway.
 772 
 773   int index = _jmp_ring_index;
 774   _jmp_ring_index = (index + 1 ) & (jump_ring_buffer_size - 1);
 775   _jmp_ring[index]._target = (intptr_t) target;
 776   _jmp_ring[index]._instruction = (intptr_t) instr;
 777   _jmp_ring[index]._file = file;
 778   _jmp_ring[index]._line = line;
 779 }
 780 #endif /* PRODUCT */
 781 
 782 // Called by flat profiler
 783 // Callers have already called wait_for_ext_suspend_completion
 784 // The assertion for that is currently too complex to put here:
 785 bool JavaThread::profile_last_Java_frame(frame* _fr) {
 786   bool gotframe = false;
 787   // self suspension saves needed state.
 788   if (has_last_Java_frame() && _anchor.walkable()) {
 789      *_fr = pd_last_frame();
 790      gotframe = true;
 791   }
 792   return gotframe;
 793 }
 794 
 795 void Thread::interrupt(Thread* thread) {
 796   trace("interrupt", thread);
 797   debug_only(check_for_dangling_thread_pointer(thread);)
 798   os::interrupt(thread);
 799 }
 800 
 801 bool Thread::is_interrupted(Thread* thread, bool clear_interrupted) {
 802   trace("is_interrupted", thread);
 803   debug_only(check_for_dangling_thread_pointer(thread);)
 804   // Note:  If clear_interrupted==false, this simply fetches and
 805   // returns the value of the field osthread()->interrupted().
 806   return os::is_interrupted(thread, clear_interrupted);
 807 }
 808 
 809 
 810 // GC Support
 811 bool Thread::claim_oops_do_par_case(int strong_roots_parity) {
 812   jint thread_parity = _oops_do_parity;
 813   if (thread_parity != strong_roots_parity) {
 814     jint res = Atomic::cmpxchg(strong_roots_parity, &_oops_do_parity, thread_parity);
 815     if (res == thread_parity) {
 816       return true;
 817     } else {
 818       guarantee(res == strong_roots_parity, "Or else what?");
 819       assert(SharedHeap::heap()->workers()->active_workers() > 0,
 820          "Should only fail when parallel.");
 821       return false;
 822     }
 823   }
 824   assert(SharedHeap::heap()->workers()->active_workers() > 0,
 825          "Should only fail when parallel.");
 826   return false;
 827 }
 828 
 829 void Thread::oops_do(OopClosure* f, CodeBlobClosure* cf) {
 830   active_handles()->oops_do(f);
 831   // Do oop for ThreadShadow
 832   f->do_oop((oop*)&_pending_exception);
 833   handle_area()->oops_do(f);
 834 }
 835 
 836 void Thread::nmethods_do(CodeBlobClosure* cf) {
 837   // no nmethods in a generic thread...
 838 }
 839 
 840 void Thread::metadata_do(void f(Metadata*)) {
 841   if (metadata_handles() != NULL) {
 842     for (int i = 0; i< metadata_handles()->length(); i++) {
 843       f(metadata_handles()->at(i));
 844     }
 845   }
 846 }
 847 
 848 void Thread::print_on(outputStream* st) const {
 849   // get_priority assumes osthread initialized
 850   if (osthread() != NULL) {
 851     int os_prio;
 852     if (os::get_native_priority(this, &os_prio) == OS_OK) {
 853       st->print("os_prio=%d ", os_prio);
 854     }
 855     st->print("tid=" INTPTR_FORMAT " ", this);
 856     osthread()->print_on(st);
 857   }
 858   debug_only(if (WizardMode) print_owned_locks_on(st);)
 859 }
 860 
 861 // Thread::print_on_error() is called by fatal error handler. Don't use
 862 // any lock or allocate memory.
 863 void Thread::print_on_error(outputStream* st, char* buf, int buflen) const {
 864   if      (is_VM_thread())                  st->print("VMThread");
 865   else if (is_Compiler_thread())            st->print("CompilerThread");
 866   else if (is_Java_thread())                st->print("JavaThread");
 867   else if (is_GC_task_thread())             st->print("GCTaskThread");
 868   else if (is_Watcher_thread())             st->print("WatcherThread");
 869   else if (is_ConcurrentGC_thread())        st->print("ConcurrentGCThread");
 870   else st->print("Thread");
 871 
 872   st->print(" [stack: " PTR_FORMAT "," PTR_FORMAT "]",
 873             _stack_base - _stack_size, _stack_base);
 874 
 875   if (osthread()) {
 876     st->print(" [id=%d]", osthread()->thread_id());
 877   }
 878 }
 879 
 880 #ifdef ASSERT
 881 void Thread::print_owned_locks_on(outputStream* st) const {
 882   Monitor *cur = _owned_locks;
 883   if (cur == NULL) {
 884     st->print(" (no locks) ");
 885   } else {
 886     st->print_cr(" Locks owned:");
 887     while(cur) {
 888       cur->print_on(st);
 889       cur = cur->next();
 890     }
 891   }
 892 }
 893 
 894 static int ref_use_count  = 0;
 895 
 896 bool Thread::owns_locks_but_compiled_lock() const {
 897   for(Monitor *cur = _owned_locks; cur; cur = cur->next()) {
 898     if (cur != Compile_lock) return true;
 899   }
 900   return false;
 901 }
 902 
 903 
 904 #endif
 905 
 906 #ifndef PRODUCT
 907 
 908 // The flag: potential_vm_operation notifies if this particular safepoint state could potential
 909 // invoke the vm-thread (i.e., and oop allocation). In that case, we also have to make sure that
 910 // no threads which allow_vm_block's are held
 911 void Thread::check_for_valid_safepoint_state(bool potential_vm_operation) {
 912     // Check if current thread is allowed to block at a safepoint
 913     if (!(_allow_safepoint_count == 0))
 914       fatal("Possible safepoint reached by thread that does not allow it");
 915     if (is_Java_thread() && ((JavaThread*)this)->thread_state() != _thread_in_vm) {
 916       fatal("LEAF method calling lock?");
 917     }
 918 
 919 #ifdef ASSERT
 920     if (potential_vm_operation && is_Java_thread()
 921         && !Universe::is_bootstrapping()) {
 922       // Make sure we do not hold any locks that the VM thread also uses.
 923       // This could potentially lead to deadlocks
 924       for(Monitor *cur = _owned_locks; cur; cur = cur->next()) {
 925         // Threads_lock is special, since the safepoint synchronization will not start before this is
 926         // acquired. Hence, a JavaThread cannot be holding it at a safepoint. So is VMOperationRequest_lock,
 927         // since it is used to transfer control between JavaThreads and the VMThread
 928         // Do not *exclude* any locks unless you are absolutly sure it is correct. Ask someone else first!
 929         if ( (cur->allow_vm_block() &&
 930               cur != Threads_lock &&
 931               cur != Compile_lock &&               // Temporary: should not be necessary when we get spearate compilation
 932               cur != VMOperationRequest_lock &&
 933               cur != VMOperationQueue_lock) ||
 934               cur->rank() == Mutex::special) {
 935           warning("Thread holding lock at safepoint that vm can block on: %s", cur->name());
 936         }
 937       }
 938     }
 939 
 940     if (GCALotAtAllSafepoints) {
 941       // We could enter a safepoint here and thus have a gc
 942       InterfaceSupport::check_gc_alot();
 943     }
 944 #endif
 945 }
 946 #endif
 947 
 948 bool Thread::is_in_stack(address adr) const {
 949   assert(Thread::current() == this, "is_in_stack can only be called from current thread");
 950   address end = os::current_stack_pointer();
 951   // Allow non Java threads to call this without stack_base
 952   if (_stack_base == NULL) return true;
 953   if (stack_base() >= adr && adr >= end) return true;
 954 
 955   return false;
 956 }
 957 
 958 
 959 // We had to move these methods here, because vm threads get into ObjectSynchronizer::enter
 960 // However, there is a note in JavaThread::is_lock_owned() about the VM threads not being
 961 // used for compilation in the future. If that change is made, the need for these methods
 962 // should be revisited, and they should be removed if possible.
 963 
 964 bool Thread::is_lock_owned(address adr) const {
 965   return on_local_stack(adr);
 966 }
 967 
 968 bool Thread::set_as_starting_thread() {
 969  // NOTE: this must be called inside the main thread.
 970   return os::create_main_thread((JavaThread*)this);
 971 }
 972 
 973 static void initialize_class(Symbol* class_name, TRAPS) {
 974   Klass* klass = SystemDictionary::resolve_or_fail(class_name, true, CHECK);
 975   InstanceKlass::cast(klass)->initialize(CHECK);
 976 }
 977 
 978 
 979 // Creates the initial ThreadGroup
 980 static Handle create_initial_thread_group(TRAPS) {
 981   Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_ThreadGroup(), true, CHECK_NH);
 982   instanceKlassHandle klass (THREAD, k);
 983 
 984   Handle system_instance = klass->allocate_instance_handle(CHECK_NH);
 985   {
 986     JavaValue result(T_VOID);
 987     JavaCalls::call_special(&result,
 988                             system_instance,
 989                             klass,
 990                             vmSymbols::object_initializer_name(),
 991                             vmSymbols::void_method_signature(),
 992                             CHECK_NH);
 993   }
 994   Universe::set_system_thread_group(system_instance());
 995 
 996   Handle main_instance = klass->allocate_instance_handle(CHECK_NH);
 997   {
 998     JavaValue result(T_VOID);
 999     Handle string = java_lang_String::create_from_str("main", CHECK_NH);
1000     JavaCalls::call_special(&result,
1001                             main_instance,
1002                             klass,
1003                             vmSymbols::object_initializer_name(),
1004                             vmSymbols::threadgroup_string_void_signature(),
1005                             system_instance,
1006                             string,
1007                             CHECK_NH);
1008   }
1009   return main_instance;
1010 }
1011 
1012 // Creates the initial Thread
1013 static oop create_initial_thread(Handle thread_group, JavaThread* thread, TRAPS) {
1014   Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_Thread(), true, CHECK_NULL);
1015   instanceKlassHandle klass (THREAD, k);
1016   instanceHandle thread_oop = klass->allocate_instance_handle(CHECK_NULL);
1017 
1018   java_lang_Thread::set_thread(thread_oop(), thread);
1019   java_lang_Thread::set_priority(thread_oop(), NormPriority);
1020   thread->set_threadObj(thread_oop());
1021 
1022   Handle string = java_lang_String::create_from_str("main", CHECK_NULL);
1023 
1024   JavaValue result(T_VOID);
1025   JavaCalls::call_special(&result, thread_oop,
1026                                    klass,
1027                                    vmSymbols::object_initializer_name(),
1028                                    vmSymbols::threadgroup_string_void_signature(),
1029                                    thread_group,
1030                                    string,
1031                                    CHECK_NULL);
1032   return thread_oop();
1033 }
1034 
1035 static void call_initializeSystemClass(TRAPS) {
1036   Klass* k =  SystemDictionary::resolve_or_fail(vmSymbols::java_lang_System(), true, CHECK);
1037   instanceKlassHandle klass (THREAD, k);
1038 
1039   JavaValue result(T_VOID);
1040   JavaCalls::call_static(&result, klass, vmSymbols::initializeSystemClass_name(),
1041                                          vmSymbols::void_method_signature(), CHECK);
1042 }
1043 
1044 char java_runtime_name[128] = "";
1045 char java_runtime_version[128] = "";
1046 
1047 // extract the JRE name from sun.misc.Version.java_runtime_name
1048 static const char* get_java_runtime_name(TRAPS) {
1049   Klass* k = SystemDictionary::find(vmSymbols::sun_misc_Version(),
1050                                       Handle(), Handle(), CHECK_AND_CLEAR_NULL);
1051   fieldDescriptor fd;
1052   bool found = k != NULL &&
1053                InstanceKlass::cast(k)->find_local_field(vmSymbols::java_runtime_name_name(),
1054                                                         vmSymbols::string_signature(), &fd);
1055   if (found) {
1056     oop name_oop = k->java_mirror()->obj_field(fd.offset());
1057     if (name_oop == NULL)
1058       return NULL;
1059     const char* name = java_lang_String::as_utf8_string(name_oop,
1060                                                         java_runtime_name,
1061                                                         sizeof(java_runtime_name));
1062     return name;
1063   } else {
1064     return NULL;
1065   }
1066 }
1067 
1068 // extract the JRE version from sun.misc.Version.java_runtime_version
1069 static const char* get_java_runtime_version(TRAPS) {
1070   Klass* k = SystemDictionary::find(vmSymbols::sun_misc_Version(),
1071                                       Handle(), Handle(), CHECK_AND_CLEAR_NULL);
1072   fieldDescriptor fd;
1073   bool found = k != NULL &&
1074                InstanceKlass::cast(k)->find_local_field(vmSymbols::java_runtime_version_name(),
1075                                                         vmSymbols::string_signature(), &fd);
1076   if (found) {
1077     oop name_oop = k->java_mirror()->obj_field(fd.offset());
1078     if (name_oop == NULL)
1079       return NULL;
1080     const char* name = java_lang_String::as_utf8_string(name_oop,
1081                                                         java_runtime_version,
1082                                                         sizeof(java_runtime_version));
1083     return name;
1084   } else {
1085     return NULL;
1086   }
1087 }
1088 
1089 // General purpose hook into Java code, run once when the VM is initialized.
1090 // The Java library method itself may be changed independently from the VM.
1091 static void call_postVMInitHook(TRAPS) {
1092   Klass* k = SystemDictionary::PostVMInitHook_klass();
1093   instanceKlassHandle klass (THREAD, k);
1094   if (klass.not_null()) {
1095     JavaValue result(T_VOID);
1096     JavaCalls::call_static(&result, klass, vmSymbols::run_method_name(),
1097                                            vmSymbols::void_method_signature(),
1098                                            CHECK);
1099   }
1100 }
1101 
1102 static void reset_vm_info_property(TRAPS) {
1103   // the vm info string
1104   ResourceMark rm(THREAD);
1105   const char *vm_info = VM_Version::vm_info_string();
1106 
1107   // java.lang.System class
1108   Klass* k =  SystemDictionary::resolve_or_fail(vmSymbols::java_lang_System(), true, CHECK);
1109   instanceKlassHandle klass (THREAD, k);
1110 
1111   // setProperty arguments
1112   Handle key_str    = java_lang_String::create_from_str("java.vm.info", CHECK);
1113   Handle value_str  = java_lang_String::create_from_str(vm_info, CHECK);
1114 
1115   // return value
1116   JavaValue r(T_OBJECT);
1117 
1118   // public static String setProperty(String key, String value);
1119   JavaCalls::call_static(&r,
1120                          klass,
1121                          vmSymbols::setProperty_name(),
1122                          vmSymbols::string_string_string_signature(),
1123                          key_str,
1124                          value_str,
1125                          CHECK);
1126 }
1127 
1128 
1129 void JavaThread::allocate_threadObj(Handle thread_group, char* thread_name, bool daemon, TRAPS) {
1130   assert(thread_group.not_null(), "thread group should be specified");
1131   assert(threadObj() == NULL, "should only create Java thread object once");
1132 
1133   Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_Thread(), true, CHECK);
1134   instanceKlassHandle klass (THREAD, k);
1135   instanceHandle thread_oop = klass->allocate_instance_handle(CHECK);
1136 
1137   java_lang_Thread::set_thread(thread_oop(), this);
1138   java_lang_Thread::set_priority(thread_oop(), NormPriority);
1139   set_threadObj(thread_oop());
1140 
1141   JavaValue result(T_VOID);
1142   if (thread_name != NULL) {
1143     Handle name = java_lang_String::create_from_str(thread_name, CHECK);
1144     // Thread gets assigned specified name and null target
1145     JavaCalls::call_special(&result,
1146                             thread_oop,
1147                             klass,
1148                             vmSymbols::object_initializer_name(),
1149                             vmSymbols::threadgroup_string_void_signature(),
1150                             thread_group, // Argument 1
1151                             name,         // Argument 2
1152                             THREAD);
1153   } else {
1154     // Thread gets assigned name "Thread-nnn" and null target
1155     // (java.lang.Thread doesn't have a constructor taking only a ThreadGroup argument)
1156     JavaCalls::call_special(&result,
1157                             thread_oop,
1158                             klass,
1159                             vmSymbols::object_initializer_name(),
1160                             vmSymbols::threadgroup_runnable_void_signature(),
1161                             thread_group, // Argument 1
1162                             Handle(),     // Argument 2
1163                             THREAD);
1164   }
1165 
1166 
1167   if (daemon) {
1168       java_lang_Thread::set_daemon(thread_oop());
1169   }
1170 
1171   if (HAS_PENDING_EXCEPTION) {
1172     return;
1173   }
1174 
1175   KlassHandle group(this, SystemDictionary::ThreadGroup_klass());
1176   Handle threadObj(this, this->threadObj());
1177 
1178   JavaCalls::call_special(&result,
1179                          thread_group,
1180                          group,
1181                          vmSymbols::add_method_name(),
1182                          vmSymbols::thread_void_signature(),
1183                          threadObj,          // Arg 1
1184                          THREAD);
1185 
1186 
1187 }
1188 
1189 // NamedThread --  non-JavaThread subclasses with multiple
1190 // uniquely named instances should derive from this.
1191 NamedThread::NamedThread() : Thread() {
1192   _name = NULL;
1193   _processed_thread = NULL;
1194 }
1195 
1196 NamedThread::~NamedThread() {
1197   if (_name != NULL) {
1198     FREE_C_HEAP_ARRAY(char, _name, mtThread);
1199     _name = NULL;
1200   }
1201 }
1202 
1203 void NamedThread::set_name(const char* format, ...) {
1204   guarantee(_name == NULL, "Only get to set name once.");
1205   _name = NEW_C_HEAP_ARRAY(char, max_name_len, mtThread);
1206   guarantee(_name != NULL, "alloc failure");
1207   va_list ap;
1208   va_start(ap, format);
1209   jio_vsnprintf(_name, max_name_len, format, ap);
1210   va_end(ap);
1211 }
1212 
1213 // ======= WatcherThread ========
1214 
1215 // The watcher thread exists to simulate timer interrupts.  It should
1216 // be replaced by an abstraction over whatever native support for
1217 // timer interrupts exists on the platform.
1218 
1219 WatcherThread* WatcherThread::_watcher_thread   = NULL;
1220 volatile bool  WatcherThread::_should_terminate = false;
1221 
1222 WatcherThread::WatcherThread() : Thread() {
1223   assert(watcher_thread() == NULL, "we can only allocate one WatcherThread");
1224   if (os::create_thread(this, os::watcher_thread)) {
1225     _watcher_thread = this;
1226 
1227     // Set the watcher thread to the highest OS priority which should not be
1228     // used, unless a Java thread with priority java.lang.Thread.MAX_PRIORITY
1229     // is created. The only normal thread using this priority is the reference
1230     // handler thread, which runs for very short intervals only.
1231     // If the VMThread's priority is not lower than the WatcherThread profiling
1232     // will be inaccurate.
1233     os::set_priority(this, MaxPriority);
1234     if (!DisableStartThread) {
1235       os::start_thread(this);
1236     }
1237   }
1238 }
1239 
1240 void WatcherThread::run() {
1241   assert(this == watcher_thread(), "just checking");
1242 
1243   this->record_stack_base_and_size();
1244   this->initialize_thread_local_storage();
1245   this->set_active_handles(JNIHandleBlock::allocate_block());
1246   while(!_should_terminate) {
1247     assert(watcher_thread() == Thread::current(),  "thread consistency check");
1248     assert(watcher_thread() == this,  "thread consistency check");
1249 
1250     // Calculate how long it'll be until the next PeriodicTask work
1251     // should be done, and sleep that amount of time.
1252     size_t time_to_wait = PeriodicTask::time_to_wait();
1253 
1254     // we expect this to timeout - we only ever get unparked when
1255     // we should terminate
1256     {
1257       OSThreadWaitState osts(this->osthread(), false /* not Object.wait() */);
1258 
1259       jlong prev_time = os::javaTimeNanos();
1260       for (;;) {
1261         int res= _SleepEvent->park(time_to_wait);
1262         if (res == OS_TIMEOUT || _should_terminate)
1263           break;
1264         // spurious wakeup of some kind
1265         jlong now = os::javaTimeNanos();
1266         time_to_wait -= (now - prev_time) / 1000000;
1267         if (time_to_wait <= 0)
1268           break;
1269         prev_time = now;
1270       }
1271     }
1272 
1273     if (is_error_reported()) {
1274       // A fatal error has happened, the error handler(VMError::report_and_die)
1275       // should abort JVM after creating an error log file. However in some
1276       // rare cases, the error handler itself might deadlock. Here we try to
1277       // kill JVM if the fatal error handler fails to abort in 2 minutes.
1278       //
1279       // This code is in WatcherThread because WatcherThread wakes up
1280       // periodically so the fatal error handler doesn't need to do anything;
1281       // also because the WatcherThread is less likely to crash than other
1282       // threads.
1283 
1284       for (;;) {
1285         if (!ShowMessageBoxOnError
1286          && (OnError == NULL || OnError[0] == '\0')
1287          && Arguments::abort_hook() == NULL) {
1288              os::sleep(this, 2 * 60 * 1000, false);
1289              fdStream err(defaultStream::output_fd());
1290              err.print_raw_cr("# [ timer expired, abort... ]");
1291              // skip atexit/vm_exit/vm_abort hooks
1292              os::die();
1293         }
1294 
1295         // Wake up 5 seconds later, the fatal handler may reset OnError or
1296         // ShowMessageBoxOnError when it is ready to abort.
1297         os::sleep(this, 5 * 1000, false);
1298       }
1299     }
1300 
1301     PeriodicTask::real_time_tick(time_to_wait);
1302 
1303     // If we have no more tasks left due to dynamic disenrollment,
1304     // shut down the thread since we don't currently support dynamic enrollment
1305     if (PeriodicTask::num_tasks() == 0) {
1306       _should_terminate = true;
1307     }
1308   }
1309 
1310   // Signal that it is terminated
1311   {
1312     MutexLockerEx mu(Terminator_lock, Mutex::_no_safepoint_check_flag);
1313     _watcher_thread = NULL;
1314     Terminator_lock->notify();
1315   }
1316 
1317   // Thread destructor usually does this..
1318   ThreadLocalStorage::set_thread(NULL);
1319 }
1320 
1321 void WatcherThread::start() {
1322   if (watcher_thread() == NULL) {
1323     _should_terminate = false;
1324     // Create the single instance of WatcherThread
1325     new WatcherThread();
1326   }
1327 }
1328 
1329 void WatcherThread::stop() {
1330   // it is ok to take late safepoints here, if needed
1331   MutexLocker mu(Terminator_lock);
1332   _should_terminate = true;
1333   OrderAccess::fence();  // ensure WatcherThread sees update in main loop
1334 
1335   Thread* watcher = watcher_thread();
1336   if (watcher != NULL)
1337     watcher->_SleepEvent->unpark();
1338 
1339   while(watcher_thread() != NULL) {
1340     // This wait should make safepoint checks, wait without a timeout,
1341     // and wait as a suspend-equivalent condition.
1342     //
1343     // Note: If the FlatProfiler is running, then this thread is waiting
1344     // for the WatcherThread to terminate and the WatcherThread, via the
1345     // FlatProfiler task, is waiting for the external suspend request on
1346     // this thread to complete. wait_for_ext_suspend_completion() will
1347     // eventually timeout, but that takes time. Making this wait a
1348     // suspend-equivalent condition solves that timeout problem.
1349     //
1350     Terminator_lock->wait(!Mutex::_no_safepoint_check_flag, 0,
1351                           Mutex::_as_suspend_equivalent_flag);
1352   }
1353 }
1354 
1355 void WatcherThread::print_on(outputStream* st) const {
1356   st->print("\"%s\" ", name());
1357   Thread::print_on(st);
1358   st->cr();
1359 }
1360 
1361 // ======= JavaThread ========
1362 
1363 // A JavaThread is a normal Java thread
1364 
1365 void JavaThread::initialize() {
1366   // Initialize fields
1367 
1368   // Set the claimed par_id to -1 (ie not claiming any par_ids)
1369   set_claimed_par_id(-1);
1370 
1371   set_saved_exception_pc(NULL);
1372   set_threadObj(NULL);
1373   _anchor.clear();
1374   set_entry_point(NULL);
1375   set_jni_functions(jni_functions());
1376   set_callee_target(NULL);
1377   set_vm_result(NULL);
1378   set_vm_result_2(NULL);
1379   set_vframe_array_head(NULL);
1380   set_vframe_array_last(NULL);
1381   set_deferred_locals(NULL);
1382   set_deopt_mark(NULL);
1383   set_deopt_nmethod(NULL);
1384   clear_must_deopt_id();
1385   set_monitor_chunks(NULL);
1386   set_next(NULL);
1387   set_thread_state(_thread_new);
1388 #if INCLUDE_NMT
1389   set_recorder(NULL);
1390 #endif
1391   _terminated = _not_terminated;
1392   _privileged_stack_top = NULL;
1393   _array_for_gc = NULL;
1394   _suspend_equivalent = false;
1395   _in_deopt_handler = 0;
1396   _doing_unsafe_access = false;
1397   _stack_guard_state = stack_guard_unused;
1398   _exception_oop = NULL;
1399   _exception_pc  = 0;
1400   _exception_handler_pc = 0;
1401   _is_method_handle_return = 0;
1402   _jvmti_thread_state= NULL;
1403   _should_post_on_exceptions_flag = JNI_FALSE;
1404   _jvmti_get_loaded_classes_closure = NULL;
1405   _interp_only_mode    = 0;
1406   _special_runtime_exit_condition = _no_async_condition;
1407   _pending_async_exception = NULL;
1408   _is_compiling = false;
1409   _thread_stat = NULL;
1410   _thread_stat = new ThreadStatistics();
1411   _blocked_on_compilation = false;
1412   _jni_active_critical = 0;
1413   _do_not_unlock_if_synchronized = false;
1414   _cached_monitor_info = NULL;
1415   _parker = Parker::Allocate(this) ;
1416 
1417 #ifndef PRODUCT
1418   _jmp_ring_index = 0;
1419   for (int ji = 0 ; ji < jump_ring_buffer_size ; ji++ ) {
1420     record_jump(NULL, NULL, NULL, 0);
1421   }
1422 #endif /* PRODUCT */
1423 
1424   set_thread_profiler(NULL);
1425   if (FlatProfiler::is_active()) {
1426     // This is where we would decide to either give each thread it's own profiler
1427     // or use one global one from FlatProfiler,
1428     // or up to some count of the number of profiled threads, etc.
1429     ThreadProfiler* pp = new ThreadProfiler();
1430     pp->engage();
1431     set_thread_profiler(pp);
1432   }
1433 
1434   // Setup safepoint state info for this thread
1435   ThreadSafepointState::create(this);
1436 
1437   debug_only(_java_call_counter = 0);
1438 
1439   // JVMTI PopFrame support
1440   _popframe_condition = popframe_inactive;
1441   _popframe_preserved_args = NULL;
1442   _popframe_preserved_args_size = 0;
1443 
1444   pd_initialize();
1445 }
1446 
1447 #ifndef SERIALGC
1448 SATBMarkQueueSet JavaThread::_satb_mark_queue_set;
1449 DirtyCardQueueSet JavaThread::_dirty_card_queue_set;
1450 #endif // !SERIALGC
1451 
1452 JavaThread::JavaThread(bool is_attaching_via_jni) :
1453   Thread()
1454 #ifndef SERIALGC
1455   , _satb_mark_queue(&_satb_mark_queue_set),
1456   _dirty_card_queue(&_dirty_card_queue_set)
1457 #endif // !SERIALGC
1458 {
1459   initialize();
1460   if (is_attaching_via_jni) {
1461     _jni_attach_state = _attaching_via_jni;
1462   } else {
1463     _jni_attach_state = _not_attaching_via_jni;
1464   }
1465   assert(_deferred_card_mark.is_empty(), "Default MemRegion ctor");
1466   _safepoint_visible = false;
1467 }
1468 
1469 bool JavaThread::reguard_stack(address cur_sp) {
1470   if (_stack_guard_state != stack_guard_yellow_disabled) {
1471     return true; // Stack already guarded or guard pages not needed.
1472   }
1473 
1474   if (register_stack_overflow()) {
1475     // For those architectures which have separate register and
1476     // memory stacks, we must check the register stack to see if
1477     // it has overflowed.
1478     return false;
1479   }
1480 
1481   // Java code never executes within the yellow zone: the latter is only
1482   // there to provoke an exception during stack banging.  If java code
1483   // is executing there, either StackShadowPages should be larger, or
1484   // some exception code in c1, c2 or the interpreter isn't unwinding
1485   // when it should.
1486   guarantee(cur_sp > stack_yellow_zone_base(), "not enough space to reguard - increase StackShadowPages");
1487 
1488   enable_stack_yellow_zone();
1489   return true;
1490 }
1491 
1492 bool JavaThread::reguard_stack(void) {
1493   return reguard_stack(os::current_stack_pointer());
1494 }
1495 
1496 
1497 void JavaThread::block_if_vm_exited() {
1498   if (_terminated == _vm_exited) {
1499     // _vm_exited is set at safepoint, and Threads_lock is never released
1500     // we will block here forever
1501     Threads_lock->lock_without_safepoint_check();
1502     ShouldNotReachHere();
1503   }
1504 }
1505 
1506 
1507 // Remove this ifdef when C1 is ported to the compiler interface.
1508 static void compiler_thread_entry(JavaThread* thread, TRAPS);
1509 
1510 JavaThread::JavaThread(ThreadFunction entry_point, size_t stack_sz) :
1511   Thread()
1512 #ifndef SERIALGC
1513   , _satb_mark_queue(&_satb_mark_queue_set),
1514   _dirty_card_queue(&_dirty_card_queue_set)
1515 #endif // !SERIALGC
1516 {
1517   if (TraceThreadEvents) {
1518     tty->print_cr("creating thread %p", this);
1519   }
1520   initialize();
1521   _jni_attach_state = _not_attaching_via_jni;
1522   set_entry_point(entry_point);
1523   // Create the native thread itself.
1524   // %note runtime_23
1525   os::ThreadType thr_type = os::java_thread;
1526   thr_type = entry_point == &compiler_thread_entry ? os::compiler_thread :
1527                                                      os::java_thread;
1528   os::create_thread(this, thr_type, stack_sz);
1529   _safepoint_visible = false;
1530   // The _osthread may be NULL here because we ran out of memory (too many threads active).
1531   // We need to throw and OutOfMemoryError - however we cannot do this here because the caller
1532   // may hold a lock and all locks must be unlocked before throwing the exception (throwing
1533   // the exception consists of creating the exception object & initializing it, initialization
1534   // will leave the VM via a JavaCall and then all locks must be unlocked).
1535   //
1536   // The thread is still suspended when we reach here. Thread must be explicit started
1537   // by creator! Furthermore, the thread must also explicitly be added to the Threads list
1538   // by calling Threads:add. The reason why this is not done here, is because the thread
1539   // object must be fully initialized (take a look at JVM_Start)
1540 }
1541 
1542 JavaThread::~JavaThread() {
1543   if (TraceThreadEvents) {
1544       tty->print_cr("terminate thread %p", this);
1545   }
1546 
1547   // By now, this thread should already be invisible to safepoint,
1548   // and its per-thread recorder also collected.
1549   assert(!is_safepoint_visible(), "wrong state");
1550 #if INCLUDE_NMT
1551   assert(get_recorder() == NULL, "Already collected");
1552 #endif // INCLUDE_NMT
1553 
1554   // JSR166 -- return the parker to the free list
1555   Parker::Release(_parker);
1556   _parker = NULL ;
1557 
1558   // Free any remaining  previous UnrollBlock
1559   vframeArray* old_array = vframe_array_last();
1560 
1561   if (old_array != NULL) {
1562     Deoptimization::UnrollBlock* old_info = old_array->unroll_block();
1563     old_array->set_unroll_block(NULL);
1564     delete old_info;
1565     delete old_array;
1566   }
1567 
1568   GrowableArray<jvmtiDeferredLocalVariableSet*>* deferred = deferred_locals();
1569   if (deferred != NULL) {
1570     // This can only happen if thread is destroyed before deoptimization occurs.
1571     assert(deferred->length() != 0, "empty array!");
1572     do {
1573       jvmtiDeferredLocalVariableSet* dlv = deferred->at(0);
1574       deferred->remove_at(0);
1575       // individual jvmtiDeferredLocalVariableSet are CHeapObj's
1576       delete dlv;
1577     } while (deferred->length() != 0);
1578     delete deferred;
1579   }
1580 
1581   // All Java related clean up happens in exit
1582   ThreadSafepointState::destroy(this);
1583   if (_thread_profiler != NULL) delete _thread_profiler;
1584   if (_thread_stat != NULL) delete _thread_stat;
1585 }
1586 
1587 
1588 // The first routine called by a new Java thread
1589 void JavaThread::run() {
1590   // initialize thread-local alloc buffer related fields
1591   this->initialize_tlab();
1592 
1593   // used to test validitity of stack trace backs
1594   this->record_base_of_stack_pointer();
1595 
1596   // Record real stack base and size.
1597   this->record_stack_base_and_size();
1598 
1599   // Initialize thread local storage; set before calling MutexLocker
1600   this->initialize_thread_local_storage();
1601 
1602   this->create_stack_guard_pages();
1603 
1604   this->cache_global_variables();
1605 
1606   // Thread is now sufficient initialized to be handled by the safepoint code as being
1607   // in the VM. Change thread state from _thread_new to _thread_in_vm
1608   ThreadStateTransition::transition_and_fence(this, _thread_new, _thread_in_vm);
1609 
1610   assert(JavaThread::current() == this, "sanity check");
1611   assert(!Thread::current()->owns_locks(), "sanity check");
1612 
1613   DTRACE_THREAD_PROBE(start, this);
1614 
1615   // This operation might block. We call that after all safepoint checks for a new thread has
1616   // been completed.
1617   this->set_active_handles(JNIHandleBlock::allocate_block());
1618 
1619   if (JvmtiExport::should_post_thread_life()) {
1620     JvmtiExport::post_thread_start(this);
1621   }
1622 
1623   EVENT_BEGIN(TraceEventThreadStart, event);
1624   EVENT_COMMIT(event,
1625      EVENT_SET(event, javalangthread, java_lang_Thread::thread_id(this->threadObj())));
1626 
1627   // We call another function to do the rest so we are sure that the stack addresses used
1628   // from there will be lower than the stack base just computed
1629   thread_main_inner();
1630 
1631   // Note, thread is no longer valid at this point!
1632 }
1633 
1634 
1635 void JavaThread::thread_main_inner() {
1636   assert(JavaThread::current() == this, "sanity check");
1637   assert(this->threadObj() != NULL, "just checking");
1638 
1639   // Execute thread entry point unless this thread has a pending exception
1640   // or has been stopped before starting.
1641   // Note: Due to JVM_StopThread we can have pending exceptions already!
1642   if (!this->has_pending_exception() &&
1643       !java_lang_Thread::is_stillborn(this->threadObj())) {
1644     {
1645       ResourceMark rm(this);
1646       this->set_native_thread_name(this->get_thread_name());
1647     }
1648     HandleMark hm(this);
1649     this->entry_point()(this, this);
1650   }
1651 
1652   DTRACE_THREAD_PROBE(stop, this);
1653 
1654   this->exit(false);
1655   delete this;
1656 }
1657 
1658 
1659 static void ensure_join(JavaThread* thread) {
1660   // We do not need to grap the Threads_lock, since we are operating on ourself.
1661   Handle threadObj(thread, thread->threadObj());
1662   assert(threadObj.not_null(), "java thread object must exist");
1663   ObjectLocker lock(threadObj, thread);
1664   // Ignore pending exception (ThreadDeath), since we are exiting anyway
1665   thread->clear_pending_exception();
1666   // Thread is exiting. So set thread_status field in  java.lang.Thread class to TERMINATED.
1667   java_lang_Thread::set_thread_status(threadObj(), java_lang_Thread::TERMINATED);
1668   // Clear the native thread instance - this makes isAlive return false and allows the join()
1669   // to complete once we've done the notify_all below
1670   java_lang_Thread::set_thread(threadObj(), NULL);
1671   lock.notify_all(thread);
1672   // Ignore pending exception (ThreadDeath), since we are exiting anyway
1673   thread->clear_pending_exception();
1674 }
1675 
1676 
1677 // For any new cleanup additions, please check to see if they need to be applied to
1678 // cleanup_failed_attach_current_thread as well.
1679 void JavaThread::exit(bool destroy_vm, ExitType exit_type) {
1680   assert(this == JavaThread::current(),  "thread consistency check");
1681   if (!InitializeJavaLangSystem) return;
1682 
1683   HandleMark hm(this);
1684   Handle uncaught_exception(this, this->pending_exception());
1685   this->clear_pending_exception();
1686   Handle threadObj(this, this->threadObj());
1687   assert(threadObj.not_null(), "Java thread object should be created");
1688 
1689   if (get_thread_profiler() != NULL) {
1690     get_thread_profiler()->disengage();
1691     ResourceMark rm;
1692     get_thread_profiler()->print(get_thread_name());
1693   }
1694 
1695 
1696   // FIXIT: This code should be moved into else part, when reliable 1.2/1.3 check is in place
1697   {
1698     EXCEPTION_MARK;
1699 
1700     CLEAR_PENDING_EXCEPTION;
1701   }
1702   // FIXIT: The is_null check is only so it works better on JDK1.2 VM's. This
1703   // has to be fixed by a runtime query method
1704   if (!destroy_vm || JDK_Version::is_jdk12x_version()) {
1705     // JSR-166: change call from from ThreadGroup.uncaughtException to
1706     // java.lang.Thread.dispatchUncaughtException
1707     if (uncaught_exception.not_null()) {
1708       Handle group(this, java_lang_Thread::threadGroup(threadObj()));
1709       {
1710         EXCEPTION_MARK;
1711         // Check if the method Thread.dispatchUncaughtException() exists. If so
1712         // call it.  Otherwise we have an older library without the JSR-166 changes,
1713         // so call ThreadGroup.uncaughtException()
1714         KlassHandle recvrKlass(THREAD, threadObj->klass());
1715         CallInfo callinfo;
1716         KlassHandle thread_klass(THREAD, SystemDictionary::Thread_klass());
1717         LinkResolver::resolve_virtual_call(callinfo, threadObj, recvrKlass, thread_klass,
1718                                            vmSymbols::dispatchUncaughtException_name(),
1719                                            vmSymbols::throwable_void_signature(),
1720                                            KlassHandle(), false, false, THREAD);
1721         CLEAR_PENDING_EXCEPTION;
1722         methodHandle method = callinfo.selected_method();
1723         if (method.not_null()) {
1724           JavaValue result(T_VOID);
1725           JavaCalls::call_virtual(&result,
1726                                   threadObj, thread_klass,
1727                                   vmSymbols::dispatchUncaughtException_name(),
1728                                   vmSymbols::throwable_void_signature(),
1729                                   uncaught_exception,
1730                                   THREAD);
1731         } else {
1732           KlassHandle thread_group(THREAD, SystemDictionary::ThreadGroup_klass());
1733           JavaValue result(T_VOID);
1734           JavaCalls::call_virtual(&result,
1735                                   group, thread_group,
1736                                   vmSymbols::uncaughtException_name(),
1737                                   vmSymbols::thread_throwable_void_signature(),
1738                                   threadObj,           // Arg 1
1739                                   uncaught_exception,  // Arg 2
1740                                   THREAD);
1741         }
1742         if (HAS_PENDING_EXCEPTION) {
1743           ResourceMark rm(this);
1744           jio_fprintf(defaultStream::error_stream(),
1745                 "\nException: %s thrown from the UncaughtExceptionHandler"
1746                 " in thread \"%s\"\n",
1747                 Klass::cast(pending_exception()->klass())->external_name(),
1748                 get_thread_name());
1749           CLEAR_PENDING_EXCEPTION;
1750         }
1751       }
1752     }
1753 
1754     // Called before the java thread exit since we want to read info
1755     // from java_lang_Thread object
1756     EVENT_BEGIN(TraceEventThreadEnd, event);
1757     EVENT_COMMIT(event,
1758         EVENT_SET(event, javalangthread, java_lang_Thread::thread_id(this->threadObj())));
1759 
1760     // Call after last event on thread
1761     EVENT_THREAD_EXIT(this);
1762 
1763     // Call Thread.exit(). We try 3 times in case we got another Thread.stop during
1764     // the execution of the method. If that is not enough, then we don't really care. Thread.stop
1765     // is deprecated anyhow.
1766     { int count = 3;
1767       while (java_lang_Thread::threadGroup(threadObj()) != NULL && (count-- > 0)) {
1768         EXCEPTION_MARK;
1769         JavaValue result(T_VOID);
1770         KlassHandle thread_klass(THREAD, SystemDictionary::Thread_klass());
1771         JavaCalls::call_virtual(&result,
1772                               threadObj, thread_klass,
1773                               vmSymbols::exit_method_name(),
1774                               vmSymbols::void_method_signature(),
1775                               THREAD);
1776         CLEAR_PENDING_EXCEPTION;
1777       }
1778     }
1779 
1780     // notify JVMTI
1781     if (JvmtiExport::should_post_thread_life()) {
1782       JvmtiExport::post_thread_end(this);
1783     }
1784 
1785     // We have notified the agents that we are exiting, before we go on,
1786     // we must check for a pending external suspend request and honor it
1787     // in order to not surprise the thread that made the suspend request.
1788     while (true) {
1789       {
1790         MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
1791         if (!is_external_suspend()) {
1792           set_terminated(_thread_exiting);
1793           ThreadService::current_thread_exiting(this);
1794           break;
1795         }
1796         // Implied else:
1797         // Things get a little tricky here. We have a pending external
1798         // suspend request, but we are holding the SR_lock so we
1799         // can't just self-suspend. So we temporarily drop the lock
1800         // and then self-suspend.
1801       }
1802 
1803       ThreadBlockInVM tbivm(this);
1804       java_suspend_self();
1805 
1806       // We're done with this suspend request, but we have to loop around
1807       // and check again. Eventually we will get SR_lock without a pending
1808       // external suspend request and will be able to mark ourselves as
1809       // exiting.
1810     }
1811     // no more external suspends are allowed at this point
1812   } else {
1813     // before_exit() has already posted JVMTI THREAD_END events
1814   }
1815 
1816   // Notify waiters on thread object. This has to be done after exit() is called
1817   // on the thread (if the thread is the last thread in a daemon ThreadGroup the
1818   // group should have the destroyed bit set before waiters are notified).
1819   ensure_join(this);
1820   assert(!this->has_pending_exception(), "ensure_join should have cleared");
1821 
1822   // 6282335 JNI DetachCurrentThread spec states that all Java monitors
1823   // held by this thread must be released.  A detach operation must only
1824   // get here if there are no Java frames on the stack.  Therefore, any
1825   // owned monitors at this point MUST be JNI-acquired monitors which are
1826   // pre-inflated and in the monitor cache.
1827   //
1828   // ensure_join() ignores IllegalThreadStateExceptions, and so does this.
1829   if (exit_type == jni_detach && JNIDetachReleasesMonitors) {
1830     assert(!this->has_last_Java_frame(), "detaching with Java frames?");
1831     ObjectSynchronizer::release_monitors_owned_by_thread(this);
1832     assert(!this->has_pending_exception(), "release_monitors should have cleared");
1833   }
1834 
1835   // These things needs to be done while we are still a Java Thread. Make sure that thread
1836   // is in a consistent state, in case GC happens
1837   assert(_privileged_stack_top == NULL, "must be NULL when we get here");
1838 
1839   if (active_handles() != NULL) {
1840     JNIHandleBlock* block = active_handles();
1841     set_active_handles(NULL);
1842     JNIHandleBlock::release_block(block);
1843   }
1844 
1845   if (free_handle_block() != NULL) {
1846     JNIHandleBlock* block = free_handle_block();
1847     set_free_handle_block(NULL);
1848     JNIHandleBlock::release_block(block);
1849   }
1850 
1851   // These have to be removed while this is still a valid thread.
1852   remove_stack_guard_pages();
1853 
1854   if (UseTLAB) {
1855     tlab().make_parsable(true);  // retire TLAB
1856   }
1857 
1858   if (JvmtiEnv::environments_might_exist()) {
1859     JvmtiExport::cleanup_thread(this);
1860   }
1861 
1862 #ifndef SERIALGC
1863   // We must flush G1-related buffers before removing a thread from
1864   // the list of active threads.
1865   if (UseG1GC) {
1866     flush_barrier_queues();
1867   }
1868 #endif
1869 
1870   // Remove from list of active threads list, and notify VM thread if we are the last non-daemon thread
1871   Threads::remove(this);
1872 }
1873 
1874 #ifndef SERIALGC
1875 // Flush G1-related queues.
1876 void JavaThread::flush_barrier_queues() {
1877   satb_mark_queue().flush();
1878   dirty_card_queue().flush();
1879 }
1880 
1881 void JavaThread::initialize_queues() {
1882   assert(!SafepointSynchronize::is_at_safepoint(),
1883          "we should not be at a safepoint");
1884 
1885   ObjPtrQueue& satb_queue = satb_mark_queue();
1886   SATBMarkQueueSet& satb_queue_set = satb_mark_queue_set();
1887   // The SATB queue should have been constructed with its active
1888   // field set to false.
1889   assert(!satb_queue.is_active(), "SATB queue should not be active");
1890   assert(satb_queue.is_empty(), "SATB queue should be empty");
1891   // If we are creating the thread during a marking cycle, we should
1892   // set the active field of the SATB queue to true.
1893   if (satb_queue_set.is_active()) {
1894     satb_queue.set_active(true);
1895   }
1896 
1897   DirtyCardQueue& dirty_queue = dirty_card_queue();
1898   // The dirty card queue should have been constructed with its
1899   // active field set to true.
1900   assert(dirty_queue.is_active(), "dirty card queue should be active");
1901 }
1902 #endif // !SERIALGC
1903 
1904 void JavaThread::cleanup_failed_attach_current_thread() {
1905   if (get_thread_profiler() != NULL) {
1906     get_thread_profiler()->disengage();
1907     ResourceMark rm;
1908     get_thread_profiler()->print(get_thread_name());
1909   }
1910 
1911   if (active_handles() != NULL) {
1912     JNIHandleBlock* block = active_handles();
1913     set_active_handles(NULL);
1914     JNIHandleBlock::release_block(block);
1915   }
1916 
1917   if (free_handle_block() != NULL) {
1918     JNIHandleBlock* block = free_handle_block();
1919     set_free_handle_block(NULL);
1920     JNIHandleBlock::release_block(block);
1921   }
1922 
1923   // These have to be removed while this is still a valid thread.
1924   remove_stack_guard_pages();
1925 
1926   if (UseTLAB) {
1927     tlab().make_parsable(true);  // retire TLAB, if any
1928   }
1929 
1930 #ifndef SERIALGC
1931   if (UseG1GC) {
1932     flush_barrier_queues();
1933   }
1934 #endif
1935 
1936   Threads::remove(this);
1937   delete this;
1938 }
1939 
1940 
1941 
1942 
1943 JavaThread* JavaThread::active() {
1944   Thread* thread = ThreadLocalStorage::thread();
1945   assert(thread != NULL, "just checking");
1946   if (thread->is_Java_thread()) {
1947     return (JavaThread*) thread;
1948   } else {
1949     assert(thread->is_VM_thread(), "this must be a vm thread");
1950     VM_Operation* op = ((VMThread*) thread)->vm_operation();
1951     JavaThread *ret=op == NULL ? NULL : (JavaThread *)op->calling_thread();
1952     assert(ret->is_Java_thread(), "must be a Java thread");
1953     return ret;
1954   }
1955 }
1956 
1957 bool JavaThread::is_lock_owned(address adr) const {
1958   if (Thread::is_lock_owned(adr)) return true;
1959 
1960   for (MonitorChunk* chunk = monitor_chunks(); chunk != NULL; chunk = chunk->next()) {
1961     if (chunk->contains(adr)) return true;
1962   }
1963 
1964   return false;
1965 }
1966 
1967 
1968 void JavaThread::add_monitor_chunk(MonitorChunk* chunk) {
1969   chunk->set_next(monitor_chunks());
1970   set_monitor_chunks(chunk);
1971 }
1972 
1973 void JavaThread::remove_monitor_chunk(MonitorChunk* chunk) {
1974   guarantee(monitor_chunks() != NULL, "must be non empty");
1975   if (monitor_chunks() == chunk) {
1976     set_monitor_chunks(chunk->next());
1977   } else {
1978     MonitorChunk* prev = monitor_chunks();
1979     while (prev->next() != chunk) prev = prev->next();
1980     prev->set_next(chunk->next());
1981   }
1982 }
1983 
1984 // JVM support.
1985 
1986 // Note: this function shouldn't block if it's called in
1987 // _thread_in_native_trans state (such as from
1988 // check_special_condition_for_native_trans()).
1989 void JavaThread::check_and_handle_async_exceptions(bool check_unsafe_error) {
1990 
1991   if (has_last_Java_frame() && has_async_condition()) {
1992     // If we are at a polling page safepoint (not a poll return)
1993     // then we must defer async exception because live registers
1994     // will be clobbered by the exception path. Poll return is
1995     // ok because the call we a returning from already collides
1996     // with exception handling registers and so there is no issue.
1997     // (The exception handling path kills call result registers but
1998     //  this is ok since the exception kills the result anyway).
1999 
2000     if (is_at_poll_safepoint()) {
2001       // if the code we are returning to has deoptimized we must defer
2002       // the exception otherwise live registers get clobbered on the
2003       // exception path before deoptimization is able to retrieve them.
2004       //
2005       RegisterMap map(this, false);
2006       frame caller_fr = last_frame().sender(&map);
2007       assert(caller_fr.is_compiled_frame(), "what?");
2008       if (caller_fr.is_deoptimized_frame()) {
2009         if (TraceExceptions) {
2010           ResourceMark rm;
2011           tty->print_cr("deferred async exception at compiled safepoint");
2012         }
2013         return;
2014       }
2015     }
2016   }
2017 
2018   JavaThread::AsyncRequests condition = clear_special_runtime_exit_condition();
2019   if (condition == _no_async_condition) {
2020     // Conditions have changed since has_special_runtime_exit_condition()
2021     // was called:
2022     // - if we were here only because of an external suspend request,
2023     //   then that was taken care of above (or cancelled) so we are done
2024     // - if we were here because of another async request, then it has
2025     //   been cleared between the has_special_runtime_exit_condition()
2026     //   and now so again we are done
2027     return;
2028   }
2029 
2030   // Check for pending async. exception
2031   if (_pending_async_exception != NULL) {
2032     // Only overwrite an already pending exception, if it is not a threadDeath.
2033     if (!has_pending_exception() || !pending_exception()->is_a(SystemDictionary::ThreadDeath_klass())) {
2034 
2035       // We cannot call Exceptions::_throw(...) here because we cannot block
2036       set_pending_exception(_pending_async_exception, __FILE__, __LINE__);
2037 
2038       if (TraceExceptions) {
2039         ResourceMark rm;
2040         tty->print("Async. exception installed at runtime exit (" INTPTR_FORMAT ")", this);
2041         if (has_last_Java_frame() ) {
2042           frame f = last_frame();
2043           tty->print(" (pc: " INTPTR_FORMAT " sp: " INTPTR_FORMAT " )", f.pc(), f.sp());
2044         }
2045         tty->print_cr(" of type: %s", InstanceKlass::cast(_pending_async_exception->klass())->external_name());
2046       }
2047       _pending_async_exception = NULL;
2048       clear_has_async_exception();
2049     }
2050   }
2051 
2052   if (check_unsafe_error &&
2053       condition == _async_unsafe_access_error && !has_pending_exception()) {
2054     condition = _no_async_condition;  // done
2055     switch (thread_state()) {
2056     case _thread_in_vm:
2057       {
2058         JavaThread* THREAD = this;
2059         THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in an unsafe memory access operation");
2060       }
2061     case _thread_in_native:
2062       {
2063         ThreadInVMfromNative tiv(this);
2064         JavaThread* THREAD = this;
2065         THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in an unsafe memory access operation");
2066       }
2067     case _thread_in_Java:
2068       {
2069         ThreadInVMfromJava tiv(this);
2070         JavaThread* THREAD = this;
2071         THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in a recent unsafe memory access operation in compiled Java code");
2072       }
2073     default:
2074       ShouldNotReachHere();
2075     }
2076   }
2077 
2078   assert(condition == _no_async_condition || has_pending_exception() ||
2079          (!check_unsafe_error && condition == _async_unsafe_access_error),
2080          "must have handled the async condition, if no exception");
2081 }
2082 
2083 void JavaThread::handle_special_runtime_exit_condition(bool check_asyncs) {
2084   //
2085   // Check for pending external suspend. Internal suspend requests do
2086   // not use handle_special_runtime_exit_condition().
2087   // If JNIEnv proxies are allowed, don't self-suspend if the target
2088   // thread is not the current thread. In older versions of jdbx, jdbx
2089   // threads could call into the VM with another thread's JNIEnv so we
2090   // can be here operating on behalf of a suspended thread (4432884).
2091   bool do_self_suspend = is_external_suspend_with_lock();
2092   if (do_self_suspend && (!AllowJNIEnvProxy || this == JavaThread::current())) {
2093     //
2094     // Because thread is external suspended the safepoint code will count
2095     // thread as at a safepoint. This can be odd because we can be here
2096     // as _thread_in_Java which would normally transition to _thread_blocked
2097     // at a safepoint. We would like to mark the thread as _thread_blocked
2098     // before calling java_suspend_self like all other callers of it but
2099     // we must then observe proper safepoint protocol. (We can't leave
2100     // _thread_blocked with a safepoint in progress). However we can be
2101     // here as _thread_in_native_trans so we can't use a normal transition
2102     // constructor/destructor pair because they assert on that type of
2103     // transition. We could do something like:
2104     //
2105     // JavaThreadState state = thread_state();
2106     // set_thread_state(_thread_in_vm);
2107     // {
2108     //   ThreadBlockInVM tbivm(this);
2109     //   java_suspend_self()
2110     // }
2111     // set_thread_state(_thread_in_vm_trans);
2112     // if (safepoint) block;
2113     // set_thread_state(state);
2114     //
2115     // but that is pretty messy. Instead we just go with the way the
2116     // code has worked before and note that this is the only path to
2117     // java_suspend_self that doesn't put the thread in _thread_blocked
2118     // mode.
2119 
2120     frame_anchor()->make_walkable(this);
2121     java_suspend_self();
2122 
2123     // We might be here for reasons in addition to the self-suspend request
2124     // so check for other async requests.
2125   }
2126 
2127   if (check_asyncs) {
2128     check_and_handle_async_exceptions();
2129   }
2130 }
2131 
2132 void JavaThread::send_thread_stop(oop java_throwable)  {
2133   assert(Thread::current()->is_VM_thread(), "should be in the vm thread");
2134   assert(Threads_lock->is_locked(), "Threads_lock should be locked by safepoint code");
2135   assert(SafepointSynchronize::is_at_safepoint(), "all threads are stopped");
2136 
2137   // Do not throw asynchronous exceptions against the compiler thread
2138   // (the compiler thread should not be a Java thread -- fix in 1.4.2)
2139   if (is_Compiler_thread()) return;
2140 
2141   {
2142     // Actually throw the Throwable against the target Thread - however
2143     // only if there is no thread death exception installed already.
2144     if (_pending_async_exception == NULL || !_pending_async_exception->is_a(SystemDictionary::ThreadDeath_klass())) {
2145       // If the topmost frame is a runtime stub, then we are calling into
2146       // OptoRuntime from compiled code. Some runtime stubs (new, monitor_exit..)
2147       // must deoptimize the caller before continuing, as the compiled  exception handler table
2148       // may not be valid
2149       if (has_last_Java_frame()) {
2150         frame f = last_frame();
2151         if (f.is_runtime_frame() || f.is_safepoint_blob_frame()) {
2152           // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
2153           RegisterMap reg_map(this, UseBiasedLocking);
2154           frame compiled_frame = f.sender(&reg_map);
2155           if (compiled_frame.can_be_deoptimized()) {
2156             Deoptimization::deoptimize(this, compiled_frame, &reg_map);
2157           }
2158         }
2159       }
2160 
2161       // Set async. pending exception in thread.
2162       set_pending_async_exception(java_throwable);
2163 
2164       if (TraceExceptions) {
2165        ResourceMark rm;
2166        tty->print_cr("Pending Async. exception installed of type: %s", InstanceKlass::cast(_pending_async_exception->klass())->external_name());
2167       }
2168       // for AbortVMOnException flag
2169       NOT_PRODUCT(Exceptions::debug_check_abort(InstanceKlass::cast(_pending_async_exception->klass())->external_name()));
2170     }
2171   }
2172 
2173 
2174   // Interrupt thread so it will wake up from a potential wait()
2175   Thread::interrupt(this);
2176 }
2177 
2178 // External suspension mechanism.
2179 //
2180 // Tell the VM to suspend a thread when ever it knows that it does not hold on
2181 // to any VM_locks and it is at a transition
2182 // Self-suspension will happen on the transition out of the vm.
2183 // Catch "this" coming in from JNIEnv pointers when the thread has been freed
2184 //
2185 // Guarantees on return:
2186 //   + Target thread will not execute any new bytecode (that's why we need to
2187 //     force a safepoint)
2188 //   + Target thread will not enter any new monitors
2189 //
2190 void JavaThread::java_suspend() {
2191   { MutexLocker mu(Threads_lock);
2192     if (!Threads::includes(this) || is_exiting() || this->threadObj() == NULL) {
2193        return;
2194     }
2195   }
2196 
2197   { MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2198     if (!is_external_suspend()) {
2199       // a racing resume has cancelled us; bail out now
2200       return;
2201     }
2202 
2203     // suspend is done
2204     uint32_t debug_bits = 0;
2205     // Warning: is_ext_suspend_completed() may temporarily drop the
2206     // SR_lock to allow the thread to reach a stable thread state if
2207     // it is currently in a transient thread state.
2208     if (is_ext_suspend_completed(false /* !called_by_wait */,
2209                                  SuspendRetryDelay, &debug_bits) ) {
2210       return;
2211     }
2212   }
2213 
2214   VM_ForceSafepoint vm_suspend;
2215   VMThread::execute(&vm_suspend);
2216 }
2217 
2218 // Part II of external suspension.
2219 // A JavaThread self suspends when it detects a pending external suspend
2220 // request. This is usually on transitions. It is also done in places
2221 // where continuing to the next transition would surprise the caller,
2222 // e.g., monitor entry.
2223 //
2224 // Returns the number of times that the thread self-suspended.
2225 //
2226 // Note: DO NOT call java_suspend_self() when you just want to block current
2227 //       thread. java_suspend_self() is the second stage of cooperative
2228 //       suspension for external suspend requests and should only be used
2229 //       to complete an external suspend request.
2230 //
2231 int JavaThread::java_suspend_self() {
2232   int ret = 0;
2233 
2234   // we are in the process of exiting so don't suspend
2235   if (is_exiting()) {
2236      clear_external_suspend();
2237      return ret;
2238   }
2239 
2240   assert(_anchor.walkable() ||
2241     (is_Java_thread() && !((JavaThread*)this)->has_last_Java_frame()),
2242     "must have walkable stack");
2243 
2244   MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2245 
2246   assert(!this->is_ext_suspended(),
2247     "a thread trying to self-suspend should not already be suspended");
2248 
2249   if (this->is_suspend_equivalent()) {
2250     // If we are self-suspending as a result of the lifting of a
2251     // suspend equivalent condition, then the suspend_equivalent
2252     // flag is not cleared until we set the ext_suspended flag so
2253     // that wait_for_ext_suspend_completion() returns consistent
2254     // results.
2255     this->clear_suspend_equivalent();
2256   }
2257 
2258   // A racing resume may have cancelled us before we grabbed SR_lock
2259   // above. Or another external suspend request could be waiting for us
2260   // by the time we return from SR_lock()->wait(). The thread
2261   // that requested the suspension may already be trying to walk our
2262   // stack and if we return now, we can change the stack out from under
2263   // it. This would be a "bad thing (TM)" and cause the stack walker
2264   // to crash. We stay self-suspended until there are no more pending
2265   // external suspend requests.
2266   while (is_external_suspend()) {
2267     ret++;
2268     this->set_ext_suspended();
2269 
2270     // _ext_suspended flag is cleared by java_resume()
2271     while (is_ext_suspended()) {
2272       this->SR_lock()->wait(Mutex::_no_safepoint_check_flag);
2273     }
2274   }
2275 
2276   return ret;
2277 }
2278 
2279 #ifdef ASSERT
2280 // verify the JavaThread has not yet been published in the Threads::list, and
2281 // hence doesn't need protection from concurrent access at this stage
2282 void JavaThread::verify_not_published() {
2283   if (!Threads_lock->owned_by_self()) {
2284    MutexLockerEx ml(Threads_lock,  Mutex::_no_safepoint_check_flag);
2285    assert( !Threads::includes(this),
2286            "java thread shouldn't have been published yet!");
2287   }
2288   else {
2289    assert( !Threads::includes(this),
2290            "java thread shouldn't have been published yet!");
2291   }
2292 }
2293 #endif
2294 
2295 // Slow path when the native==>VM/Java barriers detect a safepoint is in
2296 // progress or when _suspend_flags is non-zero.
2297 // Current thread needs to self-suspend if there is a suspend request and/or
2298 // block if a safepoint is in progress.
2299 // Async exception ISN'T checked.
2300 // Note only the ThreadInVMfromNative transition can call this function
2301 // directly and when thread state is _thread_in_native_trans
2302 void JavaThread::check_safepoint_and_suspend_for_native_trans(JavaThread *thread) {
2303   assert(thread->thread_state() == _thread_in_native_trans, "wrong state");
2304 
2305   JavaThread *curJT = JavaThread::current();
2306   bool do_self_suspend = thread->is_external_suspend();
2307 
2308   assert(!curJT->has_last_Java_frame() || curJT->frame_anchor()->walkable(), "Unwalkable stack in native->vm transition");
2309 
2310   // If JNIEnv proxies are allowed, don't self-suspend if the target
2311   // thread is not the current thread. In older versions of jdbx, jdbx
2312   // threads could call into the VM with another thread's JNIEnv so we
2313   // can be here operating on behalf of a suspended thread (4432884).
2314   if (do_self_suspend && (!AllowJNIEnvProxy || curJT == thread)) {
2315     JavaThreadState state = thread->thread_state();
2316 
2317     // We mark this thread_blocked state as a suspend-equivalent so
2318     // that a caller to is_ext_suspend_completed() won't be confused.
2319     // The suspend-equivalent state is cleared by java_suspend_self().
2320     thread->set_suspend_equivalent();
2321 
2322     // If the safepoint code sees the _thread_in_native_trans state, it will
2323     // wait until the thread changes to other thread state. There is no
2324     // guarantee on how soon we can obtain the SR_lock and complete the
2325     // self-suspend request. It would be a bad idea to let safepoint wait for
2326     // too long. Temporarily change the state to _thread_blocked to
2327     // let the VM thread know that this thread is ready for GC. The problem
2328     // of changing thread state is that safepoint could happen just after
2329     // java_suspend_self() returns after being resumed, and VM thread will
2330     // see the _thread_blocked state. We must check for safepoint
2331     // after restoring the state and make sure we won't leave while a safepoint
2332     // is in progress.
2333     thread->set_thread_state(_thread_blocked);
2334     thread->java_suspend_self();
2335     thread->set_thread_state(state);
2336     // Make sure new state is seen by VM thread
2337     if (os::is_MP()) {
2338       if (UseMembar) {
2339         // Force a fence between the write above and read below
2340         OrderAccess::fence();
2341       } else {
2342         // Must use this rather than serialization page in particular on Windows
2343         InterfaceSupport::serialize_memory(thread);
2344       }
2345     }
2346   }
2347 
2348   if (SafepointSynchronize::do_call_back()) {
2349     // If we are safepointing, then block the caller which may not be
2350     // the same as the target thread (see above).
2351     SafepointSynchronize::block(curJT);
2352   }
2353 
2354   if (thread->is_deopt_suspend()) {
2355     thread->clear_deopt_suspend();
2356     RegisterMap map(thread, false);
2357     frame f = thread->last_frame();
2358     while ( f.id() != thread->must_deopt_id() && ! f.is_first_frame()) {
2359       f = f.sender(&map);
2360     }
2361     if (f.id() == thread->must_deopt_id()) {
2362       thread->clear_must_deopt_id();
2363       f.deoptimize(thread);
2364     } else {
2365       fatal("missed deoptimization!");
2366     }
2367   }
2368 }
2369 
2370 // Slow path when the native==>VM/Java barriers detect a safepoint is in
2371 // progress or when _suspend_flags is non-zero.
2372 // Current thread needs to self-suspend if there is a suspend request and/or
2373 // block if a safepoint is in progress.
2374 // Also check for pending async exception (not including unsafe access error).
2375 // Note only the native==>VM/Java barriers can call this function and when
2376 // thread state is _thread_in_native_trans.
2377 void JavaThread::check_special_condition_for_native_trans(JavaThread *thread) {
2378   check_safepoint_and_suspend_for_native_trans(thread);
2379 
2380   if (thread->has_async_exception()) {
2381     // We are in _thread_in_native_trans state, don't handle unsafe
2382     // access error since that may block.
2383     thread->check_and_handle_async_exceptions(false);
2384   }
2385 }
2386 
2387 // This is a variant of the normal
2388 // check_special_condition_for_native_trans with slightly different
2389 // semantics for use by critical native wrappers.  It does all the
2390 // normal checks but also performs the transition back into
2391 // thread_in_Java state.  This is required so that critical natives
2392 // can potentially block and perform a GC if they are the last thread
2393 // exiting the GC_locker.
2394 void JavaThread::check_special_condition_for_native_trans_and_transition(JavaThread *thread) {
2395   check_special_condition_for_native_trans(thread);
2396 
2397   // Finish the transition
2398   thread->set_thread_state(_thread_in_Java);
2399 
2400   if (thread->do_critical_native_unlock()) {
2401     ThreadInVMfromJavaNoAsyncException tiv(thread);
2402     GC_locker::unlock_critical(thread);
2403     thread->clear_critical_native_unlock();
2404   }
2405 }
2406 
2407 // We need to guarantee the Threads_lock here, since resumes are not
2408 // allowed during safepoint synchronization
2409 // Can only resume from an external suspension
2410 void JavaThread::java_resume() {
2411   assert_locked_or_safepoint(Threads_lock);
2412 
2413   // Sanity check: thread is gone, has started exiting or the thread
2414   // was not externally suspended.
2415   if (!Threads::includes(this) || is_exiting() || !is_external_suspend()) {
2416     return;
2417   }
2418 
2419   MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2420 
2421   clear_external_suspend();
2422 
2423   if (is_ext_suspended()) {
2424     clear_ext_suspended();
2425     SR_lock()->notify_all();
2426   }
2427 }
2428 
2429 void JavaThread::create_stack_guard_pages() {
2430   if (! os::uses_stack_guard_pages() || _stack_guard_state != stack_guard_unused) return;
2431   address low_addr = stack_base() - stack_size();
2432   size_t len = (StackYellowPages + StackRedPages) * os::vm_page_size();
2433 
2434   int allocate = os::allocate_stack_guard_pages();
2435   // warning("Guarding at " PTR_FORMAT " for len " SIZE_FORMAT "\n", low_addr, len);
2436 
2437   if (allocate && !os::create_stack_guard_pages((char *) low_addr, len)) {
2438     warning("Attempt to allocate stack guard pages failed.");
2439     return;
2440   }
2441 
2442   if (os::guard_memory((char *) low_addr, len)) {
2443     _stack_guard_state = stack_guard_enabled;
2444   } else {
2445     warning("Attempt to protect stack guard pages failed.");
2446     if (os::uncommit_memory((char *) low_addr, len)) {
2447       warning("Attempt to deallocate stack guard pages failed.");
2448     }
2449   }
2450 }
2451 
2452 void JavaThread::remove_stack_guard_pages() {
2453   assert(Thread::current() == this, "from different thread");
2454   if (_stack_guard_state == stack_guard_unused) return;
2455   address low_addr = stack_base() - stack_size();
2456   size_t len = (StackYellowPages + StackRedPages) * os::vm_page_size();
2457 
2458   if (os::allocate_stack_guard_pages()) {
2459     if (os::remove_stack_guard_pages((char *) low_addr, len)) {
2460       _stack_guard_state = stack_guard_unused;
2461     } else {
2462       warning("Attempt to deallocate stack guard pages failed.");
2463     }
2464   } else {
2465     if (_stack_guard_state == stack_guard_unused) return;
2466     if (os::unguard_memory((char *) low_addr, len)) {
2467       _stack_guard_state = stack_guard_unused;
2468     } else {
2469         warning("Attempt to unprotect stack guard pages failed.");
2470     }
2471   }
2472 }
2473 
2474 void JavaThread::enable_stack_yellow_zone() {
2475   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2476   assert(_stack_guard_state != stack_guard_enabled, "already enabled");
2477 
2478   // The base notation is from the stacks point of view, growing downward.
2479   // We need to adjust it to work correctly with guard_memory()
2480   address base = stack_yellow_zone_base() - stack_yellow_zone_size();
2481 
2482   guarantee(base < stack_base(),"Error calculating stack yellow zone");
2483   guarantee(base < os::current_stack_pointer(),"Error calculating stack yellow zone");
2484 
2485   if (os::guard_memory((char *) base, stack_yellow_zone_size())) {
2486     _stack_guard_state = stack_guard_enabled;
2487   } else {
2488     warning("Attempt to guard stack yellow zone failed.");
2489   }
2490   enable_register_stack_guard();
2491 }
2492 
2493 void JavaThread::disable_stack_yellow_zone() {
2494   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2495   assert(_stack_guard_state != stack_guard_yellow_disabled, "already disabled");
2496 
2497   // Simply return if called for a thread that does not use guard pages.
2498   if (_stack_guard_state == stack_guard_unused) return;
2499 
2500   // The base notation is from the stacks point of view, growing downward.
2501   // We need to adjust it to work correctly with guard_memory()
2502   address base = stack_yellow_zone_base() - stack_yellow_zone_size();
2503 
2504   if (os::unguard_memory((char *)base, stack_yellow_zone_size())) {
2505     _stack_guard_state = stack_guard_yellow_disabled;
2506   } else {
2507     warning("Attempt to unguard stack yellow zone failed.");
2508   }
2509   disable_register_stack_guard();
2510 }
2511 
2512 void JavaThread::enable_stack_red_zone() {
2513   // The base notation is from the stacks point of view, growing downward.
2514   // We need to adjust it to work correctly with guard_memory()
2515   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2516   address base = stack_red_zone_base() - stack_red_zone_size();
2517 
2518   guarantee(base < stack_base(),"Error calculating stack red zone");
2519   guarantee(base < os::current_stack_pointer(),"Error calculating stack red zone");
2520 
2521   if(!os::guard_memory((char *) base, stack_red_zone_size())) {
2522     warning("Attempt to guard stack red zone failed.");
2523   }
2524 }
2525 
2526 void JavaThread::disable_stack_red_zone() {
2527   // The base notation is from the stacks point of view, growing downward.
2528   // We need to adjust it to work correctly with guard_memory()
2529   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2530   address base = stack_red_zone_base() - stack_red_zone_size();
2531   if (!os::unguard_memory((char *)base, stack_red_zone_size())) {
2532     warning("Attempt to unguard stack red zone failed.");
2533   }
2534 }
2535 
2536 void JavaThread::frames_do(void f(frame*, const RegisterMap* map)) {
2537   // ignore is there is no stack
2538   if (!has_last_Java_frame()) return;
2539   // traverse the stack frames. Starts from top frame.
2540   for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2541     frame* fr = fst.current();
2542     f(fr, fst.register_map());
2543   }
2544 }
2545 
2546 
2547 #ifndef PRODUCT
2548 // Deoptimization
2549 // Function for testing deoptimization
2550 void JavaThread::deoptimize() {
2551   // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
2552   StackFrameStream fst(this, UseBiasedLocking);
2553   bool deopt = false;           // Dump stack only if a deopt actually happens.
2554   bool only_at = strlen(DeoptimizeOnlyAt) > 0;
2555   // Iterate over all frames in the thread and deoptimize
2556   for(; !fst.is_done(); fst.next()) {
2557     if(fst.current()->can_be_deoptimized()) {
2558 
2559       if (only_at) {
2560         // Deoptimize only at particular bcis.  DeoptimizeOnlyAt
2561         // consists of comma or carriage return separated numbers so
2562         // search for the current bci in that string.
2563         address pc = fst.current()->pc();
2564         nmethod* nm =  (nmethod*) fst.current()->cb();
2565         ScopeDesc* sd = nm->scope_desc_at( pc);
2566         char buffer[8];
2567         jio_snprintf(buffer, sizeof(buffer), "%d", sd->bci());
2568         size_t len = strlen(buffer);
2569         const char * found = strstr(DeoptimizeOnlyAt, buffer);
2570         while (found != NULL) {
2571           if ((found[len] == ',' || found[len] == '\n' || found[len] == '\0') &&
2572               (found == DeoptimizeOnlyAt || found[-1] == ',' || found[-1] == '\n')) {
2573             // Check that the bci found is bracketed by terminators.
2574             break;
2575           }
2576           found = strstr(found + 1, buffer);
2577         }
2578         if (!found) {
2579           continue;
2580         }
2581       }
2582 
2583       if (DebugDeoptimization && !deopt) {
2584         deopt = true; // One-time only print before deopt
2585         tty->print_cr("[BEFORE Deoptimization]");
2586         trace_frames();
2587         trace_stack();
2588       }
2589       Deoptimization::deoptimize(this, *fst.current(), fst.register_map());
2590     }
2591   }
2592 
2593   if (DebugDeoptimization && deopt) {
2594     tty->print_cr("[AFTER Deoptimization]");
2595     trace_frames();
2596   }
2597 }
2598 
2599 
2600 // Make zombies
2601 void JavaThread::make_zombies() {
2602   for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2603     if (fst.current()->can_be_deoptimized()) {
2604       // it is a Java nmethod
2605       nmethod* nm = CodeCache::find_nmethod(fst.current()->pc());
2606       nm->make_not_entrant();
2607     }
2608   }
2609 }
2610 #endif // PRODUCT
2611 
2612 
2613 void JavaThread::deoptimized_wrt_marked_nmethods() {
2614   if (!has_last_Java_frame()) return;
2615   // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
2616   StackFrameStream fst(this, UseBiasedLocking);
2617   for(; !fst.is_done(); fst.next()) {
2618     if (fst.current()->should_be_deoptimized()) {
2619       if (LogCompilation && xtty != NULL) {
2620         nmethod* nm = fst.current()->cb()->as_nmethod_or_null();
2621         xtty->elem("deoptimized thread='" UINTX_FORMAT "' compile_id='%d'",
2622                    this->name(), nm != NULL ? nm->compile_id() : -1);
2623       }
2624 
2625       Deoptimization::deoptimize(this, *fst.current(), fst.register_map());
2626     }
2627   }
2628 }
2629 
2630 
2631 // GC support
2632 static void frame_gc_epilogue(frame* f, const RegisterMap* map) { f->gc_epilogue(); }
2633 
2634 void JavaThread::gc_epilogue() {
2635   frames_do(frame_gc_epilogue);
2636 }
2637 
2638 
2639 static void frame_gc_prologue(frame* f, const RegisterMap* map) { f->gc_prologue(); }
2640 
2641 void JavaThread::gc_prologue() {
2642   frames_do(frame_gc_prologue);
2643 }
2644 
2645 // If the caller is a NamedThread, then remember, in the current scope,
2646 // the given JavaThread in its _processed_thread field.
2647 class RememberProcessedThread: public StackObj {
2648   NamedThread* _cur_thr;
2649 public:
2650   RememberProcessedThread(JavaThread* jthr) {
2651     Thread* thread = Thread::current();
2652     if (thread->is_Named_thread()) {
2653       _cur_thr = (NamedThread *)thread;
2654       _cur_thr->set_processed_thread(jthr);
2655     } else {
2656       _cur_thr = NULL;
2657     }
2658   }
2659 
2660   ~RememberProcessedThread() {
2661     if (_cur_thr) {
2662       _cur_thr->set_processed_thread(NULL);
2663     }
2664   }
2665 };
2666 
2667 void JavaThread::oops_do(OopClosure* f, CodeBlobClosure* cf) {
2668   // Verify that the deferred card marks have been flushed.
2669   assert(deferred_card_mark().is_empty(), "Should be empty during GC");
2670 
2671   // The ThreadProfiler oops_do is done from FlatProfiler::oops_do
2672   // since there may be more than one thread using each ThreadProfiler.
2673 
2674   // Traverse the GCHandles
2675   Thread::oops_do(f, cf);
2676 
2677   assert( (!has_last_Java_frame() && java_call_counter() == 0) ||
2678           (has_last_Java_frame() && java_call_counter() > 0), "wrong java_sp info!");
2679 
2680   if (has_last_Java_frame()) {
2681     // Record JavaThread to GC thread
2682     RememberProcessedThread rpt(this);
2683 
2684     // Traverse the privileged stack
2685     if (_privileged_stack_top != NULL) {
2686       _privileged_stack_top->oops_do(f);
2687     }
2688 
2689     // traverse the registered growable array
2690     if (_array_for_gc != NULL) {
2691       for (int index = 0; index < _array_for_gc->length(); index++) {
2692         f->do_oop(_array_for_gc->adr_at(index));
2693       }
2694     }
2695 
2696     // Traverse the monitor chunks
2697     for (MonitorChunk* chunk = monitor_chunks(); chunk != NULL; chunk = chunk->next()) {
2698       chunk->oops_do(f);
2699     }
2700 
2701     // Traverse the execution stack
2702     for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2703       fst.current()->oops_do(f, cf, fst.register_map());
2704     }
2705   }
2706 
2707   // callee_target is never live across a gc point so NULL it here should
2708   // it still contain a methdOop.
2709 
2710   set_callee_target(NULL);
2711 
2712   assert(vframe_array_head() == NULL, "deopt in progress at a safepoint!");
2713   // If we have deferred set_locals there might be oops waiting to be
2714   // written
2715   GrowableArray<jvmtiDeferredLocalVariableSet*>* list = deferred_locals();
2716   if (list != NULL) {
2717     for (int i = 0; i < list->length(); i++) {
2718       list->at(i)->oops_do(f);
2719     }
2720   }
2721 
2722   // Traverse instance variables at the end since the GC may be moving things
2723   // around using this function
2724   f->do_oop((oop*) &_threadObj);
2725   f->do_oop((oop*) &_vm_result);
2726   f->do_oop((oop*) &_exception_oop);
2727   f->do_oop((oop*) &_pending_async_exception);
2728 
2729   if (jvmti_thread_state() != NULL) {
2730     jvmti_thread_state()->oops_do(f);
2731   }
2732 }
2733 
2734 void JavaThread::nmethods_do(CodeBlobClosure* cf) {
2735   Thread::nmethods_do(cf);  // (super method is a no-op)
2736 
2737   assert( (!has_last_Java_frame() && java_call_counter() == 0) ||
2738           (has_last_Java_frame() && java_call_counter() > 0), "wrong java_sp info!");
2739 
2740   if (has_last_Java_frame()) {
2741     // Traverse the execution stack
2742     for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2743       fst.current()->nmethods_do(cf);
2744     }
2745   }
2746 }
2747 
2748 void JavaThread::metadata_do(void f(Metadata*)) {
2749   Thread::metadata_do(f);
2750   if (has_last_Java_frame()) {
2751     // Traverse the execution stack to call f() on the methods in the stack
2752     for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2753       fst.current()->metadata_do(f);
2754     }
2755   } else if (is_Compiler_thread()) {
2756     // need to walk ciMetadata in current compile tasks to keep alive.
2757     CompilerThread* ct = (CompilerThread*)this;
2758     if (ct->env() != NULL) {
2759       ct->env()->metadata_do(f);
2760     }
2761   }
2762 }
2763 
2764 // Printing
2765 const char* _get_thread_state_name(JavaThreadState _thread_state) {
2766   switch (_thread_state) {
2767   case _thread_uninitialized:     return "_thread_uninitialized";
2768   case _thread_new:               return "_thread_new";
2769   case _thread_new_trans:         return "_thread_new_trans";
2770   case _thread_in_native:         return "_thread_in_native";
2771   case _thread_in_native_trans:   return "_thread_in_native_trans";
2772   case _thread_in_vm:             return "_thread_in_vm";
2773   case _thread_in_vm_trans:       return "_thread_in_vm_trans";
2774   case _thread_in_Java:           return "_thread_in_Java";
2775   case _thread_in_Java_trans:     return "_thread_in_Java_trans";
2776   case _thread_blocked:           return "_thread_blocked";
2777   case _thread_blocked_trans:     return "_thread_blocked_trans";
2778   default:                        return "unknown thread state";
2779   }
2780 }
2781 
2782 #ifndef PRODUCT
2783 void JavaThread::print_thread_state_on(outputStream *st) const {
2784   st->print_cr("   JavaThread state: %s", _get_thread_state_name(_thread_state));
2785 };
2786 void JavaThread::print_thread_state() const {
2787   print_thread_state_on(tty);
2788 };
2789 #endif // PRODUCT
2790 
2791 // Called by Threads::print() for VM_PrintThreads operation
2792 void JavaThread::print_on(outputStream *st) const {
2793   st->print("\"%s\" ", get_thread_name());
2794   oop thread_oop = threadObj();
2795   if (thread_oop != NULL) {
2796     st->print("#" INT64_FORMAT " ", java_lang_Thread::thread_id(thread_oop));
2797     if (java_lang_Thread::is_daemon(thread_oop))  st->print("daemon ");
2798     st->print("prio=%d ", java_lang_Thread::priority(thread_oop));
2799   }
2800   Thread::print_on(st);
2801   // print guess for valid stack memory region (assume 4K pages); helps lock debugging
2802   st->print_cr("[" INTPTR_FORMAT "]", (intptr_t)last_Java_sp() & ~right_n_bits(12));
2803   if (thread_oop != NULL && JDK_Version::is_gte_jdk15x_version()) {
2804     st->print_cr("   java.lang.Thread.State: %s", java_lang_Thread::thread_status_name(thread_oop));
2805   }
2806 #ifndef PRODUCT
2807   print_thread_state_on(st);
2808   _safepoint_state->print_on(st);
2809 #endif // PRODUCT
2810 }
2811 
2812 // Called by fatal error handler. The difference between this and
2813 // JavaThread::print() is that we can't grab lock or allocate memory.
2814 void JavaThread::print_on_error(outputStream* st, char *buf, int buflen) const {
2815   st->print("JavaThread \"%s\"",  get_thread_name_string(buf, buflen));
2816   oop thread_obj = threadObj();
2817   if (thread_obj != NULL) {
2818      if (java_lang_Thread::is_daemon(thread_obj)) st->print(" daemon");
2819   }
2820   st->print(" [");
2821   st->print("%s", _get_thread_state_name(_thread_state));
2822   if (osthread()) {
2823     st->print(", id=%d", osthread()->thread_id());
2824   }
2825   st->print(", stack(" PTR_FORMAT "," PTR_FORMAT ")",
2826             _stack_base - _stack_size, _stack_base);
2827   st->print("]");
2828   return;
2829 }
2830 
2831 // Verification
2832 
2833 static void frame_verify(frame* f, const RegisterMap *map) { f->verify(map); }
2834 
2835 void JavaThread::verify() {
2836   // Verify oops in the thread.
2837   oops_do(&VerifyOopClosure::verify_oop, NULL);
2838 
2839   // Verify the stack frames.
2840   frames_do(frame_verify);
2841 }
2842 
2843 // CR 6300358 (sub-CR 2137150)
2844 // Most callers of this method assume that it can't return NULL but a
2845 // thread may not have a name whilst it is in the process of attaching to
2846 // the VM - see CR 6412693, and there are places where a JavaThread can be
2847 // seen prior to having it's threadObj set (eg JNI attaching threads and
2848 // if vm exit occurs during initialization). These cases can all be accounted
2849 // for such that this method never returns NULL.
2850 const char* JavaThread::get_thread_name() const {
2851 #ifdef ASSERT
2852   // early safepoints can hit while current thread does not yet have TLS
2853   if (!SafepointSynchronize::is_at_safepoint()) {
2854     Thread *cur = Thread::current();
2855     if (!(cur->is_Java_thread() && cur == this)) {
2856       // Current JavaThreads are allowed to get their own name without
2857       // the Threads_lock.
2858       assert_locked_or_safepoint(Threads_lock);
2859     }
2860   }
2861 #endif // ASSERT
2862     return get_thread_name_string();
2863 }
2864 
2865 // Returns a non-NULL representation of this thread's name, or a suitable
2866 // descriptive string if there is no set name
2867 const char* JavaThread::get_thread_name_string(char* buf, int buflen) const {
2868   const char* name_str;
2869   oop thread_obj = threadObj();
2870   if (thread_obj != NULL) {
2871     typeArrayOop name = java_lang_Thread::name(thread_obj);
2872     if (name != NULL) {
2873       if (buf == NULL) {
2874         name_str = UNICODE::as_utf8((jchar*) name->base(T_CHAR), name->length());
2875       }
2876       else {
2877         name_str = UNICODE::as_utf8((jchar*) name->base(T_CHAR), name->length(), buf, buflen);
2878       }
2879     }
2880     else if (is_attaching_via_jni()) { // workaround for 6412693 - see 6404306
2881       name_str = "<no-name - thread is attaching>";
2882     }
2883     else {
2884       name_str = Thread::name();
2885     }
2886   }
2887   else {
2888     name_str = Thread::name();
2889   }
2890   assert(name_str != NULL, "unexpected NULL thread name");
2891   return name_str;
2892 }
2893 
2894 
2895 const char* JavaThread::get_threadgroup_name() const {
2896   debug_only(if (JavaThread::current() != this) assert_locked_or_safepoint(Threads_lock);)
2897   oop thread_obj = threadObj();
2898   if (thread_obj != NULL) {
2899     oop thread_group = java_lang_Thread::threadGroup(thread_obj);
2900     if (thread_group != NULL) {
2901       typeArrayOop name = java_lang_ThreadGroup::name(thread_group);
2902       // ThreadGroup.name can be null
2903       if (name != NULL) {
2904         const char* str = UNICODE::as_utf8((jchar*) name->base(T_CHAR), name->length());
2905         return str;
2906       }
2907     }
2908   }
2909   return NULL;
2910 }
2911 
2912 const char* JavaThread::get_parent_name() const {
2913   debug_only(if (JavaThread::current() != this) assert_locked_or_safepoint(Threads_lock);)
2914   oop thread_obj = threadObj();
2915   if (thread_obj != NULL) {
2916     oop thread_group = java_lang_Thread::threadGroup(thread_obj);
2917     if (thread_group != NULL) {
2918       oop parent = java_lang_ThreadGroup::parent(thread_group);
2919       if (parent != NULL) {
2920         typeArrayOop name = java_lang_ThreadGroup::name(parent);
2921         // ThreadGroup.name can be null
2922         if (name != NULL) {
2923           const char* str = UNICODE::as_utf8((jchar*) name->base(T_CHAR), name->length());
2924           return str;
2925         }
2926       }
2927     }
2928   }
2929   return NULL;
2930 }
2931 
2932 ThreadPriority JavaThread::java_priority() const {
2933   oop thr_oop = threadObj();
2934   if (thr_oop == NULL) return NormPriority; // Bootstrapping
2935   ThreadPriority priority = java_lang_Thread::priority(thr_oop);
2936   assert(MinPriority <= priority && priority <= MaxPriority, "sanity check");
2937   return priority;
2938 }
2939 
2940 void JavaThread::prepare(jobject jni_thread, ThreadPriority prio) {
2941 
2942   assert(Threads_lock->owner() == Thread::current(), "must have threads lock");
2943   // Link Java Thread object <-> C++ Thread
2944 
2945   // Get the C++ thread object (an oop) from the JNI handle (a jthread)
2946   // and put it into a new Handle.  The Handle "thread_oop" can then
2947   // be used to pass the C++ thread object to other methods.
2948 
2949   // Set the Java level thread object (jthread) field of the
2950   // new thread (a JavaThread *) to C++ thread object using the
2951   // "thread_oop" handle.
2952 
2953   // Set the thread field (a JavaThread *) of the
2954   // oop representing the java_lang_Thread to the new thread (a JavaThread *).
2955 
2956   Handle thread_oop(Thread::current(),
2957                     JNIHandles::resolve_non_null(jni_thread));
2958   assert(InstanceKlass::cast(thread_oop->klass())->is_linked(),
2959     "must be initialized");
2960   set_threadObj(thread_oop());
2961   java_lang_Thread::set_thread(thread_oop(), this);
2962 
2963   if (prio == NoPriority) {
2964     prio = java_lang_Thread::priority(thread_oop());
2965     assert(prio != NoPriority, "A valid priority should be present");
2966   }
2967 
2968   // Push the Java priority down to the native thread; needs Threads_lock
2969   Thread::set_priority(this, prio);
2970 
2971   // Add the new thread to the Threads list and set it in motion.
2972   // We must have threads lock in order to call Threads::add.
2973   // It is crucial that we do not block before the thread is
2974   // added to the Threads list for if a GC happens, then the java_thread oop
2975   // will not be visited by GC.
2976   Threads::add(this);
2977 }
2978 
2979 oop JavaThread::current_park_blocker() {
2980   // Support for JSR-166 locks
2981   oop thread_oop = threadObj();
2982   if (thread_oop != NULL &&
2983       JDK_Version::current().supports_thread_park_blocker()) {
2984     return java_lang_Thread::park_blocker(thread_oop);
2985   }
2986   return NULL;
2987 }
2988 
2989 
2990 void JavaThread::print_stack_on(outputStream* st) {
2991   if (!has_last_Java_frame()) return;
2992   ResourceMark rm;
2993   HandleMark   hm;
2994 
2995   RegisterMap reg_map(this);
2996   vframe* start_vf = last_java_vframe(&reg_map);
2997   int count = 0;
2998   for (vframe* f = start_vf; f; f = f->sender() ) {
2999     if (f->is_java_frame()) {
3000       javaVFrame* jvf = javaVFrame::cast(f);
3001       java_lang_Throwable::print_stack_element(st, jvf->method(), jvf->bci());
3002 
3003       // Print out lock information
3004       if (JavaMonitorsInStackTrace) {
3005         jvf->print_lock_info_on(st, count);
3006       }
3007     } else {
3008       // Ignore non-Java frames
3009     }
3010 
3011     // Bail-out case for too deep stacks
3012     count++;
3013     if (MaxJavaStackTraceDepth == count) return;
3014   }
3015 }
3016 
3017 
3018 // JVMTI PopFrame support
3019 void JavaThread::popframe_preserve_args(ByteSize size_in_bytes, void* start) {
3020   assert(_popframe_preserved_args == NULL, "should not wipe out old PopFrame preserved arguments");
3021   if (in_bytes(size_in_bytes) != 0) {
3022     _popframe_preserved_args = NEW_C_HEAP_ARRAY(char, in_bytes(size_in_bytes), mtThread);
3023     _popframe_preserved_args_size = in_bytes(size_in_bytes);
3024     Copy::conjoint_jbytes(start, _popframe_preserved_args, _popframe_preserved_args_size);
3025   }
3026 }
3027 
3028 void* JavaThread::popframe_preserved_args() {
3029   return _popframe_preserved_args;
3030 }
3031 
3032 ByteSize JavaThread::popframe_preserved_args_size() {
3033   return in_ByteSize(_popframe_preserved_args_size);
3034 }
3035 
3036 WordSize JavaThread::popframe_preserved_args_size_in_words() {
3037   int sz = in_bytes(popframe_preserved_args_size());
3038   assert(sz % wordSize == 0, "argument size must be multiple of wordSize");
3039   return in_WordSize(sz / wordSize);
3040 }
3041 
3042 void JavaThread::popframe_free_preserved_args() {
3043   assert(_popframe_preserved_args != NULL, "should not free PopFrame preserved arguments twice");
3044   FREE_C_HEAP_ARRAY(char, (char*) _popframe_preserved_args, mtThread);
3045   _popframe_preserved_args = NULL;
3046   _popframe_preserved_args_size = 0;
3047 }
3048 
3049 #ifndef PRODUCT
3050 
3051 void JavaThread::trace_frames() {
3052   tty->print_cr("[Describe stack]");
3053   int frame_no = 1;
3054   for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
3055     tty->print("  %d. ", frame_no++);
3056     fst.current()->print_value_on(tty,this);
3057     tty->cr();
3058   }
3059 }
3060 
3061 class PrintAndVerifyOopClosure: public OopClosure {
3062  protected:
3063   template <class T> inline void do_oop_work(T* p) {
3064     oop obj = oopDesc::load_decode_heap_oop(p);
3065     if (obj == NULL) return;
3066     tty->print(INTPTR_FORMAT ": ", p);
3067     if (obj->is_oop_or_null()) {
3068       if (obj->is_objArray()) {
3069         tty->print_cr("valid objArray: " INTPTR_FORMAT, (oopDesc*) obj);
3070       } else {
3071         obj->print();
3072       }
3073     } else {
3074       tty->print_cr("invalid oop: " INTPTR_FORMAT, (oopDesc*) obj);
3075     }
3076     tty->cr();
3077   }
3078  public:
3079   virtual void do_oop(oop* p) { do_oop_work(p); }
3080   virtual void do_oop(narrowOop* p)  { do_oop_work(p); }
3081 };
3082 
3083 
3084 static void oops_print(frame* f, const RegisterMap *map) {
3085   PrintAndVerifyOopClosure print;
3086   f->print_value();
3087   f->oops_do(&print, NULL, (RegisterMap*)map);
3088 }
3089 
3090 // Print our all the locations that contain oops and whether they are
3091 // valid or not.  This useful when trying to find the oldest frame
3092 // where an oop has gone bad since the frame walk is from youngest to
3093 // oldest.
3094 void JavaThread::trace_oops() {
3095   tty->print_cr("[Trace oops]");
3096   frames_do(oops_print);
3097 }
3098 
3099 
3100 #ifdef ASSERT
3101 // Print or validate the layout of stack frames
3102 void JavaThread::print_frame_layout(int depth, bool validate_only) {
3103   ResourceMark rm;
3104   PRESERVE_EXCEPTION_MARK;
3105   FrameValues values;
3106   int frame_no = 0;
3107   for(StackFrameStream fst(this, false); !fst.is_done(); fst.next()) {
3108     fst.current()->describe(values, ++frame_no);
3109     if (depth == frame_no) break;
3110   }
3111   if (validate_only) {
3112     values.validate();
3113   } else {
3114     tty->print_cr("[Describe stack layout]");
3115     values.print(this);
3116   }
3117 }
3118 #endif
3119 
3120 void JavaThread::trace_stack_from(vframe* start_vf) {
3121   ResourceMark rm;
3122   int vframe_no = 1;
3123   for (vframe* f = start_vf; f; f = f->sender() ) {
3124     if (f->is_java_frame()) {
3125       javaVFrame::cast(f)->print_activation(vframe_no++);
3126     } else {
3127       f->print();
3128     }
3129     if (vframe_no > StackPrintLimit) {
3130       tty->print_cr("...<more frames>...");
3131       return;
3132     }
3133   }
3134 }
3135 
3136 
3137 void JavaThread::trace_stack() {
3138   if (!has_last_Java_frame()) return;
3139   ResourceMark rm;
3140   HandleMark   hm;
3141   RegisterMap reg_map(this);
3142   trace_stack_from(last_java_vframe(&reg_map));
3143 }
3144 
3145 
3146 #endif // PRODUCT
3147 
3148 
3149 javaVFrame* JavaThread::last_java_vframe(RegisterMap *reg_map) {
3150   assert(reg_map != NULL, "a map must be given");
3151   frame f = last_frame();
3152   for (vframe* vf = vframe::new_vframe(&f, reg_map, this); vf; vf = vf->sender() ) {
3153     if (vf->is_java_frame()) return javaVFrame::cast(vf);
3154   }
3155   return NULL;
3156 }
3157 
3158 
3159 Klass* JavaThread::security_get_caller_class(int depth) {
3160   vframeStream vfst(this);
3161   vfst.security_get_caller_frame(depth);
3162   if (!vfst.at_end()) {
3163     return vfst.method()->method_holder();
3164   }
3165   return NULL;
3166 }
3167 
3168 static void compiler_thread_entry(JavaThread* thread, TRAPS) {
3169   assert(thread->is_Compiler_thread(), "must be compiler thread");
3170   CompileBroker::compiler_thread_loop();
3171 }
3172 
3173 // Create a CompilerThread
3174 CompilerThread::CompilerThread(CompileQueue* queue, CompilerCounters* counters)
3175 : JavaThread(&compiler_thread_entry) {
3176   _env   = NULL;
3177   _log   = NULL;
3178   _task  = NULL;
3179   _queue = queue;
3180   _counters = counters;
3181   _buffer_blob = NULL;
3182   _scanned_nmethod = NULL;
3183 
3184 #ifndef PRODUCT
3185   _ideal_graph_printer = NULL;
3186 #endif
3187 }
3188 
3189 void CompilerThread::oops_do(OopClosure* f, CodeBlobClosure* cf) {
3190   JavaThread::oops_do(f, cf);
3191   if (_scanned_nmethod != NULL && cf != NULL) {
3192     // Safepoints can occur when the sweeper is scanning an nmethod so
3193     // process it here to make sure it isn't unloaded in the middle of
3194     // a scan.
3195     cf->do_code_blob(_scanned_nmethod);
3196   }
3197 }
3198 
3199 // ======= Threads ========
3200 
3201 // The Threads class links together all active threads, and provides
3202 // operations over all threads.  It is protected by its own Mutex
3203 // lock, which is also used in other contexts to protect thread
3204 // operations from having the thread being operated on from exiting
3205 // and going away unexpectedly (e.g., safepoint synchronization)
3206 
3207 JavaThread* Threads::_thread_list = NULL;
3208 int         Threads::_number_of_threads = 0;
3209 int         Threads::_number_of_non_daemon_threads = 0;
3210 int         Threads::_return_code = 0;
3211 size_t      JavaThread::_stack_size_at_create = 0;
3212 #ifdef ASSERT
3213 bool        Threads::_vm_complete = false;
3214 #endif
3215 
3216 // All JavaThreads
3217 #define ALL_JAVA_THREADS(X) for (JavaThread* X = _thread_list; X; X = X->next())
3218 
3219 void os_stream();
3220 
3221 // All JavaThreads + all non-JavaThreads (i.e., every thread in the system)
3222 void Threads::threads_do(ThreadClosure* tc) {
3223   assert_locked_or_safepoint(Threads_lock);
3224   // ALL_JAVA_THREADS iterates through all JavaThreads
3225   ALL_JAVA_THREADS(p) {
3226     tc->do_thread(p);
3227   }
3228   // Someday we could have a table or list of all non-JavaThreads.
3229   // For now, just manually iterate through them.
3230   tc->do_thread(VMThread::vm_thread());
3231   Universe::heap()->gc_threads_do(tc);
3232   WatcherThread *wt = WatcherThread::watcher_thread();
3233   // Strictly speaking, the following NULL check isn't sufficient to make sure
3234   // the data for WatcherThread is still valid upon being examined. However,
3235   // considering that WatchThread terminates when the VM is on the way to
3236   // exit at safepoint, the chance of the above is extremely small. The right
3237   // way to prevent termination of WatcherThread would be to acquire
3238   // Terminator_lock, but we can't do that without violating the lock rank
3239   // checking in some cases.
3240   if (wt != NULL)
3241     tc->do_thread(wt);
3242 
3243   // If CompilerThreads ever become non-JavaThreads, add them here
3244 }
3245 
3246 jint Threads::create_vm(JavaVMInitArgs* args, bool* canTryAgain) {
3247 
3248   extern void JDK_Version_init();
3249 
3250   // Check version
3251   if (!is_supported_jni_version(args->version)) return JNI_EVERSION;
3252 
3253   // Initialize the output stream module
3254   ostream_init();
3255 
3256   // Process java launcher properties.
3257   Arguments::process_sun_java_launcher_properties(args);
3258 
3259   // Initialize the os module before using TLS
3260   os::init();
3261 
3262   // Initialize system properties.
3263   Arguments::init_system_properties();
3264 
3265   // So that JDK version can be used as a discrimintor when parsing arguments
3266   JDK_Version_init();
3267 
3268   // Update/Initialize System properties after JDK version number is known
3269   Arguments::init_version_specific_system_properties();
3270 
3271   // Parse arguments
3272   jint parse_result = Arguments::parse(args);
3273   if (parse_result != JNI_OK) return parse_result;
3274 
3275   if (PauseAtStartup) {
3276     os::pause();
3277   }
3278 
3279 #ifndef USDT2
3280   HS_DTRACE_PROBE(hotspot, vm__init__begin);
3281 #else /* USDT2 */
3282   HOTSPOT_VM_INIT_BEGIN();
3283 #endif /* USDT2 */
3284 
3285   // Record VM creation timing statistics
3286   TraceVmCreationTime create_vm_timer;
3287   create_vm_timer.start();
3288 
3289   // Timing (must come after argument parsing)
3290   TraceTime timer("Create VM", TraceStartupTime);
3291 
3292   // Initialize the os module after parsing the args
3293   jint os_init_2_result = os::init_2();
3294   if (os_init_2_result != JNI_OK) return os_init_2_result;
3295 
3296   // intialize TLS
3297   ThreadLocalStorage::init();
3298 
3299   // Bootstrap native memory tracking, so it can start recording memory
3300   // activities before worker thread is started. This is the first phase
3301   // of bootstrapping, VM is currently running in single-thread mode.
3302   MemTracker::bootstrap_single_thread();
3303 
3304   // Initialize output stream logging
3305   ostream_init_log();
3306 
3307   // Convert -Xrun to -agentlib: if there is no JVM_OnLoad
3308   // Must be before create_vm_init_agents()
3309   if (Arguments::init_libraries_at_startup()) {
3310     convert_vm_init_libraries_to_agents();
3311   }
3312 
3313   // Launch -agentlib/-agentpath and converted -Xrun agents
3314   if (Arguments::init_agents_at_startup()) {
3315     create_vm_init_agents();
3316   }
3317 
3318   // Initialize Threads state
3319   _thread_list = NULL;
3320   _number_of_threads = 0;
3321   _number_of_non_daemon_threads = 0;
3322 
3323   // Initialize global data structures and create system classes in heap
3324   vm_init_globals();
3325 
3326   // Attach the main thread to this os thread
3327   JavaThread* main_thread = new JavaThread();
3328   main_thread->set_thread_state(_thread_in_vm);
3329   // must do this before set_active_handles and initialize_thread_local_storage
3330   // Note: on solaris initialize_thread_local_storage() will (indirectly)
3331   // change the stack size recorded here to one based on the java thread
3332   // stacksize. This adjusted size is what is used to figure the placement
3333   // of the guard pages.
3334   main_thread->record_stack_base_and_size();
3335   main_thread->initialize_thread_local_storage();
3336 
3337   main_thread->set_active_handles(JNIHandleBlock::allocate_block());
3338 
3339   if (!main_thread->set_as_starting_thread()) {
3340     vm_shutdown_during_initialization(
3341       "Failed necessary internal allocation. Out of swap space");
3342     delete main_thread;
3343     *canTryAgain = false; // don't let caller call JNI_CreateJavaVM again
3344     return JNI_ENOMEM;
3345   }
3346 
3347   // Enable guard page *after* os::create_main_thread(), otherwise it would
3348   // crash Linux VM, see notes in os_linux.cpp.
3349   main_thread->create_stack_guard_pages();
3350 
3351   // Initialize Java-Level synchronization subsystem
3352   ObjectMonitor::Initialize() ;
3353 
3354   // Second phase of bootstrapping, VM is about entering multi-thread mode
3355   MemTracker::bootstrap_multi_thread();
3356 
3357   // Initialize global modules
3358   jint status = init_globals();
3359   if (status != JNI_OK) {
3360     delete main_thread;
3361     *canTryAgain = false; // don't let caller call JNI_CreateJavaVM again
3362     return status;
3363   }
3364 
3365   // Should be done after the heap is fully created
3366   main_thread->cache_global_variables();
3367 
3368   HandleMark hm;
3369 
3370   { MutexLocker mu(Threads_lock);
3371     Threads::add(main_thread);
3372   }
3373 
3374   // Any JVMTI raw monitors entered in onload will transition into
3375   // real raw monitor. VM is setup enough here for raw monitor enter.
3376   JvmtiExport::transition_pending_onload_raw_monitors();
3377 
3378   if (VerifyBeforeGC &&
3379       Universe::heap()->total_collections() >= VerifyGCStartAt) {
3380     Universe::heap()->prepare_for_verify();
3381     Universe::verify();   // make sure we're starting with a clean slate
3382   }
3383 
3384   // Fully start NMT
3385   MemTracker::start();
3386 
3387   // Create the VMThread
3388   { TraceTime timer("Start VMThread", TraceStartupTime);
3389     VMThread::create();
3390     Thread* vmthread = VMThread::vm_thread();
3391 
3392     if (!os::create_thread(vmthread, os::vm_thread))
3393       vm_exit_during_initialization("Cannot create VM thread. Out of system resources.");
3394 
3395     // Wait for the VM thread to become ready, and VMThread::run to initialize
3396     // Monitors can have spurious returns, must always check another state flag
3397     {
3398       MutexLocker ml(Notify_lock);
3399       os::start_thread(vmthread);
3400       while (vmthread->active_handles() == NULL) {
3401         Notify_lock->wait();
3402       }
3403     }
3404   }
3405 
3406   assert (Universe::is_fully_initialized(), "not initialized");
3407   EXCEPTION_MARK;
3408 
3409   // At this point, the Universe is initialized, but we have not executed
3410   // any byte code.  Now is a good time (the only time) to dump out the
3411   // internal state of the JVM for sharing.
3412   if (DumpSharedSpaces) {
3413     MetaspaceShared::preload_and_dump(CHECK_0);
3414     ShouldNotReachHere();
3415   }
3416 
3417   // Always call even when there are not JVMTI environments yet, since environments
3418   // may be attached late and JVMTI must track phases of VM execution
3419   JvmtiExport::enter_start_phase();
3420 
3421   // Notify JVMTI agents that VM has started (JNI is up) - nop if no agents.
3422   JvmtiExport::post_vm_start();
3423 
3424   {
3425     TraceTime timer("Initialize java.lang classes", TraceStartupTime);
3426 
3427     if (EagerXrunInit && Arguments::init_libraries_at_startup()) {
3428       create_vm_init_libraries();
3429     }
3430 
3431     if (InitializeJavaLangString) {
3432       initialize_class(vmSymbols::java_lang_String(), CHECK_0);
3433     } else {
3434       warning("java.lang.String not initialized");
3435     }
3436 
3437     if (AggressiveOpts) {
3438       {
3439         // Forcibly initialize java/util/HashMap and mutate the private
3440         // static final "frontCacheEnabled" field before we start creating instances
3441 #ifdef ASSERT
3442         Klass* tmp_k = SystemDictionary::find(vmSymbols::java_util_HashMap(), Handle(), Handle(), CHECK_0);
3443         assert(tmp_k == NULL, "java/util/HashMap should not be loaded yet");
3444 #endif
3445         Klass* k_o = SystemDictionary::resolve_or_null(vmSymbols::java_util_HashMap(), Handle(), Handle(), CHECK_0);
3446         KlassHandle k = KlassHandle(THREAD, k_o);
3447         guarantee(k.not_null(), "Must find java/util/HashMap");
3448         instanceKlassHandle ik = instanceKlassHandle(THREAD, k());
3449         ik->initialize(CHECK_0);
3450         fieldDescriptor fd;
3451         // Possible we might not find this field; if so, don't break
3452         if (ik->find_local_field(vmSymbols::frontCacheEnabled_name(), vmSymbols::bool_signature(), &fd)) {
3453           k()->java_mirror()->bool_field_put(fd.offset(), true);
3454         }
3455       }
3456 
3457       if (UseStringCache) {
3458         // Forcibly initialize java/lang/StringValue and mutate the private
3459         // static final "stringCacheEnabled" field before we start creating instances
3460         Klass* k_o = SystemDictionary::resolve_or_null(vmSymbols::java_lang_StringValue(), Handle(), Handle(), CHECK_0);
3461         // Possible that StringValue isn't present: if so, silently don't break
3462         if (k_o != NULL) {
3463           KlassHandle k = KlassHandle(THREAD, k_o);
3464           instanceKlassHandle ik = instanceKlassHandle(THREAD, k());
3465           ik->initialize(CHECK_0);
3466           fieldDescriptor fd;
3467           // Possible we might not find this field: if so, silently don't break
3468           if (ik->find_local_field(vmSymbols::stringCacheEnabled_name(), vmSymbols::bool_signature(), &fd)) {
3469             k()->java_mirror()->bool_field_put(fd.offset(), true);
3470           }
3471         }
3472       }
3473     }
3474 
3475     // Initialize java_lang.System (needed before creating the thread)
3476     if (InitializeJavaLangSystem) {
3477       initialize_class(vmSymbols::java_lang_System(), CHECK_0);
3478       initialize_class(vmSymbols::java_lang_ThreadGroup(), CHECK_0);
3479       Handle thread_group = create_initial_thread_group(CHECK_0);
3480       Universe::set_main_thread_group(thread_group());
3481       initialize_class(vmSymbols::java_lang_Thread(), CHECK_0);
3482       oop thread_object = create_initial_thread(thread_group, main_thread, CHECK_0);
3483       main_thread->set_threadObj(thread_object);
3484       // Set thread status to running since main thread has
3485       // been started and running.
3486       java_lang_Thread::set_thread_status(thread_object,
3487                                           java_lang_Thread::RUNNABLE);
3488 
3489       // The VM preresolve methods to these classes. Make sure that get initialized
3490       initialize_class(vmSymbols::java_lang_reflect_Method(), CHECK_0);
3491       initialize_class(vmSymbols::java_lang_ref_Finalizer(),  CHECK_0);
3492       // The VM creates & returns objects of this class. Make sure it's initialized.
3493       initialize_class(vmSymbols::java_lang_Class(), CHECK_0);
3494       call_initializeSystemClass(CHECK_0);
3495 
3496       // get the Java runtime name after java.lang.System is initialized
3497       JDK_Version::set_runtime_name(get_java_runtime_name(THREAD));
3498       JDK_Version::set_runtime_version(get_java_runtime_version(THREAD));
3499     } else {
3500       warning("java.lang.System not initialized");
3501     }
3502 
3503     // an instance of OutOfMemory exception has been allocated earlier
3504     if (InitializeJavaLangExceptionsErrors) {
3505       initialize_class(vmSymbols::java_lang_OutOfMemoryError(), CHECK_0);
3506       initialize_class(vmSymbols::java_lang_NullPointerException(), CHECK_0);
3507       initialize_class(vmSymbols::java_lang_ClassCastException(), CHECK_0);
3508       initialize_class(vmSymbols::java_lang_ArrayStoreException(), CHECK_0);
3509       initialize_class(vmSymbols::java_lang_ArithmeticException(), CHECK_0);
3510       initialize_class(vmSymbols::java_lang_StackOverflowError(), CHECK_0);
3511       initialize_class(vmSymbols::java_lang_IllegalMonitorStateException(), CHECK_0);
3512       initialize_class(vmSymbols::java_lang_IllegalArgumentException(), CHECK_0);
3513     } else {
3514       warning("java.lang.OutOfMemoryError has not been initialized");
3515       warning("java.lang.NullPointerException has not been initialized");
3516       warning("java.lang.ClassCastException has not been initialized");
3517       warning("java.lang.ArrayStoreException has not been initialized");
3518       warning("java.lang.ArithmeticException has not been initialized");
3519       warning("java.lang.StackOverflowError has not been initialized");
3520       warning("java.lang.IllegalArgumentException has not been initialized");
3521     }
3522   }
3523 
3524   // See        : bugid 4211085.
3525   // Background : the static initializer of java.lang.Compiler tries to read
3526   //              property"java.compiler" and read & write property "java.vm.info".
3527   //              When a security manager is installed through the command line
3528   //              option "-Djava.security.manager", the above properties are not
3529   //              readable and the static initializer for java.lang.Compiler fails
3530   //              resulting in a NoClassDefFoundError.  This can happen in any
3531   //              user code which calls methods in java.lang.Compiler.
3532   // Hack :       the hack is to pre-load and initialize this class, so that only
3533   //              system domains are on the stack when the properties are read.
3534   //              Currently even the AWT code has calls to methods in java.lang.Compiler.
3535   //              On the classic VM, java.lang.Compiler is loaded very early to load the JIT.
3536   // Future Fix : the best fix is to grant everyone permissions to read "java.compiler" and
3537   //              read and write"java.vm.info" in the default policy file. See bugid 4211383
3538   //              Once that is done, we should remove this hack.
3539   initialize_class(vmSymbols::java_lang_Compiler(), CHECK_0);
3540 
3541   // More hackery - the static initializer of java.lang.Compiler adds the string "nojit" to
3542   // the java.vm.info property if no jit gets loaded through java.lang.Compiler (the hotspot
3543   // compiler does not get loaded through java.lang.Compiler).  "java -version" with the
3544   // hotspot vm says "nojit" all the time which is confusing.  So, we reset it here.
3545   // This should also be taken out as soon as 4211383 gets fixed.
3546   reset_vm_info_property(CHECK_0);
3547 
3548   quicken_jni_functions();
3549 
3550   // Must be run after init_ft which initializes ft_enabled
3551   if (TRACE_INITIALIZE() != JNI_OK) {
3552     vm_exit_during_initialization("Failed to initialize tracing backend");
3553   }
3554 
3555   // Set flag that basic initialization has completed. Used by exceptions and various
3556   // debug stuff, that does not work until all basic classes have been initialized.
3557   set_init_completed();
3558 
3559 #ifndef USDT2
3560   HS_DTRACE_PROBE(hotspot, vm__init__end);
3561 #else /* USDT2 */
3562   HOTSPOT_VM_INIT_END();
3563 #endif /* USDT2 */
3564 
3565   // record VM initialization completion time
3566 #if INCLUDE_MANAGEMENT
3567   Management::record_vm_init_completed();
3568 #endif // INCLUDE_MANAGEMENT
3569 
3570   // Compute system loader. Note that this has to occur after set_init_completed, since
3571   // valid exceptions may be thrown in the process.
3572   // Note that we do not use CHECK_0 here since we are inside an EXCEPTION_MARK and
3573   // set_init_completed has just been called, causing exceptions not to be shortcut
3574   // anymore. We call vm_exit_during_initialization directly instead.
3575   SystemDictionary::compute_java_system_loader(THREAD);
3576   if (HAS_PENDING_EXCEPTION) {
3577     vm_exit_during_initialization(Handle(THREAD, PENDING_EXCEPTION));
3578   }
3579 
3580 #ifndef SERIALGC
3581   // Support for ConcurrentMarkSweep. This should be cleaned up
3582   // and better encapsulated. The ugly nested if test would go away
3583   // once things are properly refactored. XXX YSR
3584   if (UseConcMarkSweepGC || UseG1GC) {
3585     if (UseConcMarkSweepGC) {
3586       ConcurrentMarkSweepThread::makeSurrogateLockerThread(THREAD);
3587     } else {
3588       ConcurrentMarkThread::makeSurrogateLockerThread(THREAD);
3589     }
3590     if (HAS_PENDING_EXCEPTION) {
3591       vm_exit_during_initialization(Handle(THREAD, PENDING_EXCEPTION));
3592     }
3593   }
3594 #endif // SERIALGC
3595 
3596   // Always call even when there are not JVMTI environments yet, since environments
3597   // may be attached late and JVMTI must track phases of VM execution
3598   JvmtiExport::enter_live_phase();
3599 
3600   // Signal Dispatcher needs to be started before VMInit event is posted
3601   os::signal_init();
3602 
3603   // Start Attach Listener if +StartAttachListener or it can't be started lazily
3604   if (!DisableAttachMechanism) {
3605     if (StartAttachListener || AttachListener::init_at_startup()) {
3606       AttachListener::init();
3607     }
3608   }
3609 
3610   // Launch -Xrun agents
3611   // Must be done in the JVMTI live phase so that for backward compatibility the JDWP
3612   // back-end can launch with -Xdebug -Xrunjdwp.
3613   if (!EagerXrunInit && Arguments::init_libraries_at_startup()) {
3614     create_vm_init_libraries();
3615   }
3616 
3617   // Notify JVMTI agents that VM initialization is complete - nop if no agents.
3618   JvmtiExport::post_vm_initialized();
3619 
3620   if (!TRACE_START()) {
3621     vm_exit_during_initialization(Handle(THREAD, PENDING_EXCEPTION));
3622   }
3623 
3624   if (CleanChunkPoolAsync) {
3625     Chunk::start_chunk_pool_cleaner_task();
3626   }
3627 
3628   // initialize compiler(s)
3629 #if defined(COMPILER1) || defined(COMPILER2)
3630   CompileBroker::compilation_init();
3631 #endif
3632 
3633 #if INCLUDE_MANAGEMENT
3634   Management::initialize(THREAD);
3635 #endif // INCLUDE_MANAGEMENT
3636 
3637   if (HAS_PENDING_EXCEPTION) {
3638     // management agent fails to start possibly due to
3639     // configuration problem and is responsible for printing
3640     // stack trace if appropriate. Simply exit VM.
3641     vm_exit(1);
3642   }
3643 
3644   if (Arguments::has_profile())       FlatProfiler::engage(main_thread, true);
3645   if (Arguments::has_alloc_profile()) AllocationProfiler::engage();
3646   if (MemProfiling)                   MemProfiler::engage();
3647   StatSampler::engage();
3648   if (CheckJNICalls)                  JniPeriodicChecker::engage();
3649 
3650   BiasedLocking::init();
3651 
3652   if (JDK_Version::current().post_vm_init_hook_enabled()) {
3653     call_postVMInitHook(THREAD);
3654     // The Java side of PostVMInitHook.run must deal with all
3655     // exceptions and provide means of diagnosis.
3656     if (HAS_PENDING_EXCEPTION) {
3657       CLEAR_PENDING_EXCEPTION;
3658     }
3659   }
3660 
3661   // Start up the WatcherThread if there are any periodic tasks
3662   // NOTE:  All PeriodicTasks should be registered by now. If they
3663   //   aren't, late joiners might appear to start slowly (we might
3664   //   take a while to process their first tick).
3665   if (PeriodicTask::num_tasks() > 0) {
3666     WatcherThread::start();
3667   }
3668 
3669   // Give os specific code one last chance to start
3670   os::init_3();
3671 
3672   create_vm_timer.end();
3673 #ifdef ASSERT
3674   _vm_complete = true;
3675 #endif
3676   return JNI_OK;
3677 }
3678 
3679 // type for the Agent_OnLoad and JVM_OnLoad entry points
3680 extern "C" {
3681   typedef jint (JNICALL *OnLoadEntry_t)(JavaVM *, char *, void *);
3682 }
3683 // Find a command line agent library and return its entry point for
3684 //         -agentlib:  -agentpath:   -Xrun
3685 // num_symbol_entries must be passed-in since only the caller knows the number of symbols in the array.
3686 static OnLoadEntry_t lookup_on_load(AgentLibrary* agent, const char *on_load_symbols[], size_t num_symbol_entries) {
3687   OnLoadEntry_t on_load_entry = NULL;
3688   void *library = agent->os_lib();  // check if we have looked it up before
3689 
3690   if (library == NULL) {
3691     char buffer[JVM_MAXPATHLEN];
3692     char ebuf[1024];
3693     const char *name = agent->name();
3694     const char *msg = "Could not find agent library ";
3695 
3696     if (agent->is_absolute_path()) {
3697       library = os::dll_load(name, ebuf, sizeof ebuf);
3698       if (library == NULL) {
3699         const char *sub_msg = " in absolute path, with error: ";
3700         size_t len = strlen(msg) + strlen(name) + strlen(sub_msg) + strlen(ebuf) + 1;
3701         char *buf = NEW_C_HEAP_ARRAY(char, len, mtThread);
3702         jio_snprintf(buf, len, "%s%s%s%s", msg, name, sub_msg, ebuf);
3703         // If we can't find the agent, exit.
3704         vm_exit_during_initialization(buf, NULL);
3705         FREE_C_HEAP_ARRAY(char, buf, mtThread);
3706       }
3707     } else {
3708       // Try to load the agent from the standard dll directory
3709       os::dll_build_name(buffer, sizeof(buffer), Arguments::get_dll_dir(), name);
3710       library = os::dll_load(buffer, ebuf, sizeof ebuf);
3711 #ifdef KERNEL
3712       // Download instrument dll
3713       if (library == NULL && strcmp(name, "instrument") == 0) {
3714         char *props = Arguments::get_kernel_properties();
3715         char *home  = Arguments::get_java_home();
3716         const char *fmt   = "%s/bin/java %s -Dkernel.background.download=false"
3717                       " sun.jkernel.DownloadManager -download client_jvm";
3718         size_t length = strlen(props) + strlen(home) + strlen(fmt) + 1;
3719         char *cmd = NEW_C_HEAP_ARRAY(char, length, mtThread);
3720         jio_snprintf(cmd, length, fmt, home, props);
3721         int status = os::fork_and_exec(cmd);
3722         FreeHeap(props);
3723         if (status == -1) {
3724           warning(cmd);
3725           vm_exit_during_initialization("fork_and_exec failed: %s",
3726                                          strerror(errno));
3727         }
3728         FREE_C_HEAP_ARRAY(char, cmd, mtThread);
3729         // when this comes back the instrument.dll should be where it belongs.
3730         library = os::dll_load(buffer, ebuf, sizeof ebuf);
3731       }
3732 #endif // KERNEL
3733       if (library == NULL) { // Try the local directory
3734         char ns[1] = {0};
3735         os::dll_build_name(buffer, sizeof(buffer), ns, name);
3736         library = os::dll_load(buffer, ebuf, sizeof ebuf);
3737         if (library == NULL) {
3738           const char *sub_msg = " on the library path, with error: ";
3739           size_t len = strlen(msg) + strlen(name) + strlen(sub_msg) + strlen(ebuf) + 1;
3740           char *buf = NEW_C_HEAP_ARRAY(char, len, mtThread);
3741           jio_snprintf(buf, len, "%s%s%s%s", msg, name, sub_msg, ebuf);
3742           // If we can't find the agent, exit.
3743           vm_exit_during_initialization(buf, NULL);
3744           FREE_C_HEAP_ARRAY(char, buf, mtThread);
3745         }
3746       }
3747     }
3748     agent->set_os_lib(library);
3749   }
3750 
3751   // Find the OnLoad function.
3752   for (size_t symbol_index = 0; symbol_index < num_symbol_entries; symbol_index++) {
3753     on_load_entry = CAST_TO_FN_PTR(OnLoadEntry_t, os::dll_lookup(library, on_load_symbols[symbol_index]));
3754     if (on_load_entry != NULL) break;
3755   }
3756   return on_load_entry;
3757 }
3758 
3759 // Find the JVM_OnLoad entry point
3760 static OnLoadEntry_t lookup_jvm_on_load(AgentLibrary* agent) {
3761   const char *on_load_symbols[] = JVM_ONLOAD_SYMBOLS;
3762   return lookup_on_load(agent, on_load_symbols, sizeof(on_load_symbols) / sizeof(char*));
3763 }
3764 
3765 // Find the Agent_OnLoad entry point
3766 static OnLoadEntry_t lookup_agent_on_load(AgentLibrary* agent) {
3767   const char *on_load_symbols[] = AGENT_ONLOAD_SYMBOLS;
3768   return lookup_on_load(agent, on_load_symbols, sizeof(on_load_symbols) / sizeof(char*));
3769 }
3770 
3771 // For backwards compatibility with -Xrun
3772 // Convert libraries with no JVM_OnLoad, but which have Agent_OnLoad to be
3773 // treated like -agentpath:
3774 // Must be called before agent libraries are created
3775 void Threads::convert_vm_init_libraries_to_agents() {
3776   AgentLibrary* agent;
3777   AgentLibrary* next;
3778 
3779   for (agent = Arguments::libraries(); agent != NULL; agent = next) {
3780     next = agent->next();  // cache the next agent now as this agent may get moved off this list
3781     OnLoadEntry_t on_load_entry = lookup_jvm_on_load(agent);
3782 
3783     // If there is an JVM_OnLoad function it will get called later,
3784     // otherwise see if there is an Agent_OnLoad
3785     if (on_load_entry == NULL) {
3786       on_load_entry = lookup_agent_on_load(agent);
3787       if (on_load_entry != NULL) {
3788         // switch it to the agent list -- so that Agent_OnLoad will be called,
3789         // JVM_OnLoad won't be attempted and Agent_OnUnload will
3790         Arguments::convert_library_to_agent(agent);
3791       } else {
3792         vm_exit_during_initialization("Could not find JVM_OnLoad or Agent_OnLoad function in the library", agent->name());
3793       }
3794     }
3795   }
3796 }
3797 
3798 // Create agents for -agentlib:  -agentpath:  and converted -Xrun
3799 // Invokes Agent_OnLoad
3800 // Called very early -- before JavaThreads exist
3801 void Threads::create_vm_init_agents() {
3802   extern struct JavaVM_ main_vm;
3803   AgentLibrary* agent;
3804 
3805   JvmtiExport::enter_onload_phase();
3806 
3807   for (agent = Arguments::agents(); agent != NULL; agent = agent->next()) {
3808     OnLoadEntry_t  on_load_entry = lookup_agent_on_load(agent);
3809 
3810     if (on_load_entry != NULL) {
3811       // Invoke the Agent_OnLoad function
3812       jint err = (*on_load_entry)(&main_vm, agent->options(), NULL);
3813       if (err != JNI_OK) {
3814         vm_exit_during_initialization("agent library failed to init", agent->name());
3815       }
3816     } else {
3817       vm_exit_during_initialization("Could not find Agent_OnLoad function in the agent library", agent->name());
3818     }
3819   }
3820   JvmtiExport::enter_primordial_phase();
3821 }
3822 
3823 extern "C" {
3824   typedef void (JNICALL *Agent_OnUnload_t)(JavaVM *);
3825 }
3826 
3827 void Threads::shutdown_vm_agents() {
3828   // Send any Agent_OnUnload notifications
3829   const char *on_unload_symbols[] = AGENT_ONUNLOAD_SYMBOLS;
3830   extern struct JavaVM_ main_vm;
3831   for (AgentLibrary* agent = Arguments::agents(); agent != NULL; agent = agent->next()) {
3832 
3833     // Find the Agent_OnUnload function.
3834     for (uint symbol_index = 0; symbol_index < ARRAY_SIZE(on_unload_symbols); symbol_index++) {
3835       Agent_OnUnload_t unload_entry = CAST_TO_FN_PTR(Agent_OnUnload_t,
3836                os::dll_lookup(agent->os_lib(), on_unload_symbols[symbol_index]));
3837 
3838       // Invoke the Agent_OnUnload function
3839       if (unload_entry != NULL) {
3840         JavaThread* thread = JavaThread::current();
3841         ThreadToNativeFromVM ttn(thread);
3842         HandleMark hm(thread);
3843         (*unload_entry)(&main_vm);
3844         break;
3845       }
3846     }
3847   }
3848 }
3849 
3850 // Called for after the VM is initialized for -Xrun libraries which have not been converted to agent libraries
3851 // Invokes JVM_OnLoad
3852 void Threads::create_vm_init_libraries() {
3853   extern struct JavaVM_ main_vm;
3854   AgentLibrary* agent;
3855 
3856   for (agent = Arguments::libraries(); agent != NULL; agent = agent->next()) {
3857     OnLoadEntry_t on_load_entry = lookup_jvm_on_load(agent);
3858 
3859     if (on_load_entry != NULL) {
3860       // Invoke the JVM_OnLoad function
3861       JavaThread* thread = JavaThread::current();
3862       ThreadToNativeFromVM ttn(thread);
3863       HandleMark hm(thread);
3864       jint err = (*on_load_entry)(&main_vm, agent->options(), NULL);
3865       if (err != JNI_OK) {
3866         vm_exit_during_initialization("-Xrun library failed to init", agent->name());
3867       }
3868     } else {
3869       vm_exit_during_initialization("Could not find JVM_OnLoad function in -Xrun library", agent->name());
3870     }
3871   }
3872 }
3873 
3874 // Last thread running calls java.lang.Shutdown.shutdown()
3875 void JavaThread::invoke_shutdown_hooks() {
3876   HandleMark hm(this);
3877 
3878   // We could get here with a pending exception, if so clear it now.
3879   if (this->has_pending_exception()) {
3880     this->clear_pending_exception();
3881   }
3882 
3883   EXCEPTION_MARK;
3884   Klass* k =
3885     SystemDictionary::resolve_or_null(vmSymbols::java_lang_Shutdown(),
3886                                       THREAD);
3887   if (k != NULL) {
3888     // SystemDictionary::resolve_or_null will return null if there was
3889     // an exception.  If we cannot load the Shutdown class, just don't
3890     // call Shutdown.shutdown() at all.  This will mean the shutdown hooks
3891     // and finalizers (if runFinalizersOnExit is set) won't be run.
3892     // Note that if a shutdown hook was registered or runFinalizersOnExit
3893     // was called, the Shutdown class would have already been loaded
3894     // (Runtime.addShutdownHook and runFinalizersOnExit will load it).
3895     instanceKlassHandle shutdown_klass (THREAD, k);
3896     JavaValue result(T_VOID);
3897     JavaCalls::call_static(&result,
3898                            shutdown_klass,
3899                            vmSymbols::shutdown_method_name(),
3900                            vmSymbols::void_method_signature(),
3901                            THREAD);
3902   }
3903   CLEAR_PENDING_EXCEPTION;
3904 }
3905 
3906 // Threads::destroy_vm() is normally called from jni_DestroyJavaVM() when
3907 // the program falls off the end of main(). Another VM exit path is through
3908 // vm_exit() when the program calls System.exit() to return a value or when
3909 // there is a serious error in VM. The two shutdown paths are not exactly
3910 // the same, but they share Shutdown.shutdown() at Java level and before_exit()
3911 // and VM_Exit op at VM level.
3912 //
3913 // Shutdown sequence:
3914 //   + Shutdown native memory tracking if it is on
3915 //   + Wait until we are the last non-daemon thread to execute
3916 //     <-- every thing is still working at this moment -->
3917 //   + Call java.lang.Shutdown.shutdown(), which will invoke Java level
3918 //        shutdown hooks, run finalizers if finalization-on-exit
3919 //   + Call before_exit(), prepare for VM exit
3920 //      > run VM level shutdown hooks (they are registered through JVM_OnExit(),
3921 //        currently the only user of this mechanism is File.deleteOnExit())
3922 //      > stop flat profiler, StatSampler, watcher thread, CMS threads,
3923 //        post thread end and vm death events to JVMTI,
3924 //        stop signal thread
3925 //   + Call JavaThread::exit(), it will:
3926 //      > release JNI handle blocks, remove stack guard pages
3927 //      > remove this thread from Threads list
3928 //     <-- no more Java code from this thread after this point -->
3929 //   + Stop VM thread, it will bring the remaining VM to a safepoint and stop
3930 //     the compiler threads at safepoint
3931 //     <-- do not use anything that could get blocked by Safepoint -->
3932 //   + Disable tracing at JNI/JVM barriers
3933 //   + Set _vm_exited flag for threads that are still running native code
3934 //   + Delete this thread
3935 //   + Call exit_globals()
3936 //      > deletes tty
3937 //      > deletes PerfMemory resources
3938 //   + Return to caller
3939 
3940 bool Threads::destroy_vm() {
3941   JavaThread* thread = JavaThread::current();
3942 
3943 #ifdef ASSERT
3944   _vm_complete = false;
3945 #endif
3946   // Wait until we are the last non-daemon thread to execute
3947   { MutexLocker nu(Threads_lock);
3948     while (Threads::number_of_non_daemon_threads() > 1 )
3949       // This wait should make safepoint checks, wait without a timeout,
3950       // and wait as a suspend-equivalent condition.
3951       //
3952       // Note: If the FlatProfiler is running and this thread is waiting
3953       // for another non-daemon thread to finish, then the FlatProfiler
3954       // is waiting for the external suspend request on this thread to
3955       // complete. wait_for_ext_suspend_completion() will eventually
3956       // timeout, but that takes time. Making this wait a suspend-
3957       // equivalent condition solves that timeout problem.
3958       //
3959       Threads_lock->wait(!Mutex::_no_safepoint_check_flag, 0,
3960                          Mutex::_as_suspend_equivalent_flag);
3961   }
3962 
3963   // Shutdown NMT before exit. Otherwise,
3964   // it will run into trouble when system destroys static variables.
3965   MemTracker::shutdown(MemTracker::NMT_normal);
3966 
3967   // Hang forever on exit if we are reporting an error.
3968   if (ShowMessageBoxOnError && is_error_reported()) {
3969     os::infinite_sleep();
3970   }
3971   os::wait_for_keypress_at_exit();
3972 
3973   if (JDK_Version::is_jdk12x_version()) {
3974     // We are the last thread running, so check if finalizers should be run.
3975     // For 1.3 or later this is done in thread->invoke_shutdown_hooks()
3976     HandleMark rm(thread);
3977     Universe::run_finalizers_on_exit();
3978   } else {
3979     // run Java level shutdown hooks
3980     thread->invoke_shutdown_hooks();
3981   }
3982 
3983   before_exit(thread);
3984 
3985   thread->exit(true);
3986 
3987   // Stop VM thread.
3988   {
3989     // 4945125 The vm thread comes to a safepoint during exit.
3990     // GC vm_operations can get caught at the safepoint, and the
3991     // heap is unparseable if they are caught. Grab the Heap_lock
3992     // to prevent this. The GC vm_operations will not be able to
3993     // queue until after the vm thread is dead.
3994     // After this point, we'll never emerge out of the safepoint before
3995     // the VM exits, so concurrent GC threads do not need to be explicitly
3996     // stopped; they remain inactive until the process exits.
3997     // Note: some concurrent G1 threads may be running during a safepoint,
3998     // but these will not be accessing the heap, just some G1-specific side
3999     // data structures that are not accessed by any other threads but them
4000     // after this point in a terminal safepoint.
4001 
4002     MutexLocker ml(Heap_lock);
4003 
4004     VMThread::wait_for_vm_thread_exit();
4005     assert(SafepointSynchronize::is_at_safepoint(), "VM thread should exit at Safepoint");
4006     VMThread::destroy();
4007   }
4008 
4009   // clean up ideal graph printers
4010 #if defined(COMPILER2) && !defined(PRODUCT)
4011   IdealGraphPrinter::clean_up();
4012 #endif
4013 
4014   // Now, all Java threads are gone except daemon threads. Daemon threads
4015   // running Java code or in VM are stopped by the Safepoint. However,
4016   // daemon threads executing native code are still running.  But they
4017   // will be stopped at native=>Java/VM barriers. Note that we can't
4018   // simply kill or suspend them, as it is inherently deadlock-prone.
4019 
4020 #ifndef PRODUCT
4021   // disable function tracing at JNI/JVM barriers
4022   TraceJNICalls = false;
4023   TraceJVMCalls = false;
4024   TraceRuntimeCalls = false;
4025 #endif
4026 
4027   VM_Exit::set_vm_exited();
4028 
4029   notify_vm_shutdown();
4030 
4031   delete thread;
4032 
4033   // exit_globals() will delete tty
4034   exit_globals();
4035 
4036   return true;
4037 }
4038 
4039 
4040 jboolean Threads::is_supported_jni_version_including_1_1(jint version) {
4041   if (version == JNI_VERSION_1_1) return JNI_TRUE;
4042   return is_supported_jni_version(version);
4043 }
4044 
4045 
4046 jboolean Threads::is_supported_jni_version(jint version) {
4047   if (version == JNI_VERSION_1_2) return JNI_TRUE;
4048   if (version == JNI_VERSION_1_4) return JNI_TRUE;
4049   if (version == JNI_VERSION_1_6) return JNI_TRUE;
4050   return JNI_FALSE;
4051 }
4052 
4053 
4054 void Threads::add(JavaThread* p, bool force_daemon) {
4055   // The threads lock must be owned at this point
4056   assert_locked_or_safepoint(Threads_lock);
4057 
4058   // See the comment for this method in thread.hpp for its purpose and
4059   // why it is called here.
4060   p->initialize_queues();
4061   p->set_next(_thread_list);
4062   _thread_list = p;
4063   _number_of_threads++;
4064   oop threadObj = p->threadObj();
4065   bool daemon = true;
4066   // Bootstrapping problem: threadObj can be null for initial
4067   // JavaThread (or for threads attached via JNI)
4068   if ((!force_daemon) && (threadObj == NULL || !java_lang_Thread::is_daemon(threadObj))) {
4069     _number_of_non_daemon_threads++;
4070     daemon = false;
4071   }
4072 
4073   p->set_safepoint_visible(true);
4074 
4075   ThreadService::add_thread(p, daemon);
4076 
4077   // Possible GC point.
4078   Events::log(p, "Thread added: " INTPTR_FORMAT, p);
4079 }
4080 
4081 void Threads::remove(JavaThread* p) {
4082   // Extra scope needed for Thread_lock, so we can check
4083   // that we do not remove thread without safepoint code notice
4084   { MutexLocker ml(Threads_lock);
4085 
4086     assert(includes(p), "p must be present");
4087 
4088     JavaThread* current = _thread_list;
4089     JavaThread* prev    = NULL;
4090 
4091     while (current != p) {
4092       prev    = current;
4093       current = current->next();
4094     }
4095 
4096     if (prev) {
4097       prev->set_next(current->next());
4098     } else {
4099       _thread_list = p->next();
4100     }
4101     _number_of_threads--;
4102     oop threadObj = p->threadObj();
4103     bool daemon = true;
4104     if (threadObj == NULL || !java_lang_Thread::is_daemon(threadObj)) {
4105       _number_of_non_daemon_threads--;
4106       daemon = false;
4107 
4108       // Only one thread left, do a notify on the Threads_lock so a thread waiting
4109       // on destroy_vm will wake up.
4110       if (number_of_non_daemon_threads() == 1)
4111         Threads_lock->notify_all();
4112     }
4113     ThreadService::remove_thread(p, daemon);
4114 
4115     // Make sure that safepoint code disregard this thread. This is needed since
4116     // the thread might mess around with locks after this point. This can cause it
4117     // to do callbacks into the safepoint code. However, the safepoint code is not aware
4118     // of this thread since it is removed from the queue.
4119     p->set_terminated_value();
4120 
4121     // Now, this thread is not visible to safepoint
4122     p->set_safepoint_visible(false);
4123     // once the thread becomes safepoint invisible, we can not use its per-thread
4124     // recorder. And Threads::do_threads() no longer walks this thread, so we have
4125     // to release its per-thread recorder here.
4126     MemTracker::thread_exiting(p);
4127   } // unlock Threads_lock
4128 
4129   // Since Events::log uses a lock, we grab it outside the Threads_lock
4130   Events::log(p, "Thread exited: " INTPTR_FORMAT, p);
4131 }
4132 
4133 // Threads_lock must be held when this is called (or must be called during a safepoint)
4134 bool Threads::includes(JavaThread* p) {
4135   assert(Threads_lock->is_locked(), "sanity check");
4136   ALL_JAVA_THREADS(q) {
4137     if (q == p ) {
4138       return true;
4139     }
4140   }
4141   return false;
4142 }
4143 
4144 // Operations on the Threads list for GC.  These are not explicitly locked,
4145 // but the garbage collector must provide a safe context for them to run.
4146 // In particular, these things should never be called when the Threads_lock
4147 // is held by some other thread. (Note: the Safepoint abstraction also
4148 // uses the Threads_lock to gurantee this property. It also makes sure that
4149 // all threads gets blocked when exiting or starting).
4150 
4151 void Threads::oops_do(OopClosure* f, CodeBlobClosure* cf) {
4152   ALL_JAVA_THREADS(p) {
4153     p->oops_do(f, cf);
4154   }
4155   VMThread::vm_thread()->oops_do(f, cf);
4156 }
4157 
4158 void Threads::possibly_parallel_oops_do(OopClosure* f, CodeBlobClosure* cf) {
4159   // Introduce a mechanism allowing parallel threads to claim threads as
4160   // root groups.  Overhead should be small enough to use all the time,
4161   // even in sequential code.
4162   SharedHeap* sh = SharedHeap::heap();
4163   // Cannot yet substitute active_workers for n_par_threads
4164   // because of G1CollectedHeap::verify() use of
4165   // SharedHeap::process_strong_roots().  n_par_threads == 0 will
4166   // turn off parallelism in process_strong_roots while active_workers
4167   // is being used for parallelism elsewhere.
4168   bool is_par = sh->n_par_threads() > 0;
4169   assert(!is_par ||
4170          (SharedHeap::heap()->n_par_threads() ==
4171           SharedHeap::heap()->workers()->active_workers()), "Mismatch");
4172   int cp = SharedHeap::heap()->strong_roots_parity();
4173   ALL_JAVA_THREADS(p) {
4174     if (p->claim_oops_do(is_par, cp)) {
4175       p->oops_do(f, cf);
4176     }
4177   }
4178   VMThread* vmt = VMThread::vm_thread();
4179   if (vmt->claim_oops_do(is_par, cp)) {
4180     vmt->oops_do(f, cf);
4181   }
4182 }
4183 
4184 #ifndef SERIALGC
4185 // Used by ParallelScavenge
4186 void Threads::create_thread_roots_tasks(GCTaskQueue* q) {
4187   ALL_JAVA_THREADS(p) {
4188     q->enqueue(new ThreadRootsTask(p));
4189   }
4190   q->enqueue(new ThreadRootsTask(VMThread::vm_thread()));
4191 }
4192 
4193 // Used by Parallel Old
4194 void Threads::create_thread_roots_marking_tasks(GCTaskQueue* q) {
4195   ALL_JAVA_THREADS(p) {
4196     q->enqueue(new ThreadRootsMarkingTask(p));
4197   }
4198   q->enqueue(new ThreadRootsMarkingTask(VMThread::vm_thread()));
4199 }
4200 #endif // SERIALGC
4201 
4202 void Threads::nmethods_do(CodeBlobClosure* cf) {
4203   ALL_JAVA_THREADS(p) {
4204     p->nmethods_do(cf);
4205   }
4206   VMThread::vm_thread()->nmethods_do(cf);
4207 }
4208 
4209 void Threads::metadata_do(void f(Metadata*)) {
4210   ALL_JAVA_THREADS(p) {
4211     p->metadata_do(f);
4212   }
4213 }
4214 
4215 void Threads::gc_epilogue() {
4216   ALL_JAVA_THREADS(p) {
4217     p->gc_epilogue();
4218   }
4219 }
4220 
4221 void Threads::gc_prologue() {
4222   ALL_JAVA_THREADS(p) {
4223     p->gc_prologue();
4224   }
4225 }
4226 
4227 void Threads::deoptimized_wrt_marked_nmethods() {
4228   ALL_JAVA_THREADS(p) {
4229     p->deoptimized_wrt_marked_nmethods();
4230   }
4231 }
4232 
4233 
4234 // Get count Java threads that are waiting to enter the specified monitor.
4235 GrowableArray<JavaThread*>* Threads::get_pending_threads(int count,
4236   address monitor, bool doLock) {
4237   assert(doLock || SafepointSynchronize::is_at_safepoint(),
4238     "must grab Threads_lock or be at safepoint");
4239   GrowableArray<JavaThread*>* result = new GrowableArray<JavaThread*>(count);
4240 
4241   int i = 0;
4242   {
4243     MutexLockerEx ml(doLock ? Threads_lock : NULL);
4244     ALL_JAVA_THREADS(p) {
4245       if (p->is_Compiler_thread()) continue;
4246 
4247       address pending = (address)p->current_pending_monitor();
4248       if (pending == monitor) {             // found a match
4249         if (i < count) result->append(p);   // save the first count matches
4250         i++;
4251       }
4252     }
4253   }
4254   return result;
4255 }
4256 
4257 
4258 JavaThread *Threads::owning_thread_from_monitor_owner(address owner, bool doLock) {
4259   assert(doLock ||
4260          Threads_lock->owned_by_self() ||
4261          SafepointSynchronize::is_at_safepoint(),
4262          "must grab Threads_lock or be at safepoint");
4263 
4264   // NULL owner means not locked so we can skip the search
4265   if (owner == NULL) return NULL;
4266 
4267   {
4268     MutexLockerEx ml(doLock ? Threads_lock : NULL);
4269     ALL_JAVA_THREADS(p) {
4270       // first, see if owner is the address of a Java thread
4271       if (owner == (address)p) return p;
4272     }
4273   }
4274   assert(UseHeavyMonitors == false, "Did not find owning Java thread with UseHeavyMonitors enabled");
4275   if (UseHeavyMonitors) return NULL;
4276 
4277   //
4278   // If we didn't find a matching Java thread and we didn't force use of
4279   // heavyweight monitors, then the owner is the stack address of the
4280   // Lock Word in the owning Java thread's stack.
4281   //
4282   JavaThread* the_owner = NULL;
4283   {
4284     MutexLockerEx ml(doLock ? Threads_lock : NULL);
4285     ALL_JAVA_THREADS(q) {
4286       if (q->is_lock_owned(owner)) {
4287         the_owner = q;
4288         break;
4289       }
4290     }
4291   }
4292   assert(the_owner != NULL, "Did not find owning Java thread for lock word address");
4293   return the_owner;
4294 }
4295 
4296 // Threads::print_on() is called at safepoint by VM_PrintThreads operation.
4297 void Threads::print_on(outputStream* st, bool print_stacks, bool internal_format, bool print_concurrent_locks) {
4298   char buf[32];
4299   st->print_cr(os::local_time_string(buf, sizeof(buf)));
4300 
4301   st->print_cr("Full thread dump %s (%s %s):",
4302                 Abstract_VM_Version::vm_name(),
4303                 Abstract_VM_Version::vm_release(),
4304                 Abstract_VM_Version::vm_info_string()
4305                );
4306   st->cr();
4307 
4308 #ifndef SERIALGC
4309   // Dump concurrent locks
4310   ConcurrentLocksDump concurrent_locks;
4311   if (print_concurrent_locks) {
4312     concurrent_locks.dump_at_safepoint();
4313   }
4314 #endif // SERIALGC
4315 
4316   ALL_JAVA_THREADS(p) {
4317     ResourceMark rm;
4318     p->print_on(st);
4319     if (print_stacks) {
4320       if (internal_format) {
4321         p->trace_stack();
4322       } else {
4323         p->print_stack_on(st);
4324       }
4325     }
4326     st->cr();
4327 #ifndef SERIALGC
4328     if (print_concurrent_locks) {
4329       concurrent_locks.print_locks_on(p, st);
4330     }
4331 #endif // SERIALGC
4332   }
4333 
4334   VMThread::vm_thread()->print_on(st);
4335   st->cr();
4336   Universe::heap()->print_gc_threads_on(st);
4337   WatcherThread* wt = WatcherThread::watcher_thread();
4338   if (wt != NULL) {
4339     wt->print_on(st);
4340     st->cr();
4341   }
4342   CompileBroker::print_compiler_threads_on(st);
4343   st->flush();
4344 }
4345 
4346 // Threads::print_on_error() is called by fatal error handler. It's possible
4347 // that VM is not at safepoint and/or current thread is inside signal handler.
4348 // Don't print stack trace, as the stack may not be walkable. Don't allocate
4349 // memory (even in resource area), it might deadlock the error handler.
4350 void Threads::print_on_error(outputStream* st, Thread* current, char* buf, int buflen) {
4351   bool found_current = false;
4352   st->print_cr("Java Threads: ( => current thread )");
4353   ALL_JAVA_THREADS(thread) {
4354     bool is_current = (current == thread);
4355     found_current = found_current || is_current;
4356 
4357     st->print("%s", is_current ? "=>" : "  ");
4358 
4359     st->print(PTR_FORMAT, thread);
4360     st->print(" ");
4361     thread->print_on_error(st, buf, buflen);
4362     st->cr();
4363   }
4364   st->cr();
4365 
4366   st->print_cr("Other Threads:");
4367   if (VMThread::vm_thread()) {
4368     bool is_current = (current == VMThread::vm_thread());
4369     found_current = found_current || is_current;
4370     st->print("%s", current == VMThread::vm_thread() ? "=>" : "  ");
4371 
4372     st->print(PTR_FORMAT, VMThread::vm_thread());
4373     st->print(" ");
4374     VMThread::vm_thread()->print_on_error(st, buf, buflen);
4375     st->cr();
4376   }
4377   WatcherThread* wt = WatcherThread::watcher_thread();
4378   if (wt != NULL) {
4379     bool is_current = (current == wt);
4380     found_current = found_current || is_current;
4381     st->print("%s", is_current ? "=>" : "  ");
4382 
4383     st->print(PTR_FORMAT, wt);
4384     st->print(" ");
4385     wt->print_on_error(st, buf, buflen);
4386     st->cr();
4387   }
4388   if (!found_current) {
4389     st->cr();
4390     st->print("=>" PTR_FORMAT " (exited) ", current);
4391     current->print_on_error(st, buf, buflen);
4392     st->cr();
4393   }
4394 }
4395 
4396 // Internal SpinLock and Mutex
4397 // Based on ParkEvent
4398 
4399 // Ad-hoc mutual exclusion primitives: SpinLock and Mux
4400 //
4401 // We employ SpinLocks _only for low-contention, fixed-length
4402 // short-duration critical sections where we're concerned
4403 // about native mutex_t or HotSpot Mutex:: latency.
4404 // The mux construct provides a spin-then-block mutual exclusion
4405 // mechanism.
4406 //
4407 // Testing has shown that contention on the ListLock guarding gFreeList
4408 // is common.  If we implement ListLock as a simple SpinLock it's common
4409 // for the JVM to devolve to yielding with little progress.  This is true
4410 // despite the fact that the critical sections protected by ListLock are
4411 // extremely short.
4412 //
4413 // TODO-FIXME: ListLock should be of type SpinLock.
4414 // We should make this a 1st-class type, integrated into the lock
4415 // hierarchy as leaf-locks.  Critically, the SpinLock structure
4416 // should have sufficient padding to avoid false-sharing and excessive
4417 // cache-coherency traffic.
4418 
4419 
4420 typedef volatile int SpinLockT ;
4421 
4422 void Thread::SpinAcquire (volatile int * adr, const char * LockName) {
4423   if (Atomic::cmpxchg (1, adr, 0) == 0) {
4424      return ;   // normal fast-path return
4425   }
4426 
4427   // Slow-path : We've encountered contention -- Spin/Yield/Block strategy.
4428   TEVENT (SpinAcquire - ctx) ;
4429   int ctr = 0 ;
4430   int Yields = 0 ;
4431   for (;;) {
4432      while (*adr != 0) {
4433         ++ctr ;
4434         if ((ctr & 0xFFF) == 0 || !os::is_MP()) {
4435            if (Yields > 5) {
4436              // Consider using a simple NakedSleep() instead.
4437              // Then SpinAcquire could be called by non-JVM threads
4438              Thread::current()->_ParkEvent->park(1) ;
4439            } else {
4440              os::NakedYield() ;
4441              ++Yields ;
4442            }
4443         } else {
4444            SpinPause() ;
4445         }
4446      }
4447      if (Atomic::cmpxchg (1, adr, 0) == 0) return ;
4448   }
4449 }
4450 
4451 void Thread::SpinRelease (volatile int * adr) {
4452   assert (*adr != 0, "invariant") ;
4453   OrderAccess::fence() ;      // guarantee at least release consistency.
4454   // Roach-motel semantics.
4455   // It's safe if subsequent LDs and STs float "up" into the critical section,
4456   // but prior LDs and STs within the critical section can't be allowed
4457   // to reorder or float past the ST that releases the lock.
4458   *adr = 0 ;
4459 }
4460 
4461 // muxAcquire and muxRelease:
4462 //
4463 // *  muxAcquire and muxRelease support a single-word lock-word construct.
4464 //    The LSB of the word is set IFF the lock is held.
4465 //    The remainder of the word points to the head of a singly-linked list
4466 //    of threads blocked on the lock.
4467 //
4468 // *  The current implementation of muxAcquire-muxRelease uses its own
4469 //    dedicated Thread._MuxEvent instance.  If we're interested in
4470 //    minimizing the peak number of extant ParkEvent instances then
4471 //    we could eliminate _MuxEvent and "borrow" _ParkEvent as long
4472 //    as certain invariants were satisfied.  Specifically, care would need
4473 //    to be taken with regards to consuming unpark() "permits".
4474 //    A safe rule of thumb is that a thread would never call muxAcquire()
4475 //    if it's enqueued (cxq, EntryList, WaitList, etc) and will subsequently
4476 //    park().  Otherwise the _ParkEvent park() operation in muxAcquire() could
4477 //    consume an unpark() permit intended for monitorenter, for instance.
4478 //    One way around this would be to widen the restricted-range semaphore
4479 //    implemented in park().  Another alternative would be to provide
4480 //    multiple instances of the PlatformEvent() for each thread.  One
4481 //    instance would be dedicated to muxAcquire-muxRelease, for instance.
4482 //
4483 // *  Usage:
4484 //    -- Only as leaf locks
4485 //    -- for short-term locking only as muxAcquire does not perform
4486 //       thread state transitions.
4487 //
4488 // Alternatives:
4489 // *  We could implement muxAcquire and muxRelease with MCS or CLH locks
4490 //    but with parking or spin-then-park instead of pure spinning.
4491 // *  Use Taura-Oyama-Yonenzawa locks.
4492 // *  It's possible to construct a 1-0 lock if we encode the lockword as
4493 //    (List,LockByte).  Acquire will CAS the full lockword while Release
4494 //    will STB 0 into the LockByte.  The 1-0 scheme admits stranding, so
4495 //    acquiring threads use timers (ParkTimed) to detect and recover from
4496 //    the stranding window.  Thread/Node structures must be aligned on 256-byte
4497 //    boundaries by using placement-new.
4498 // *  Augment MCS with advisory back-link fields maintained with CAS().
4499 //    Pictorially:  LockWord -> T1 <-> T2 <-> T3 <-> ... <-> Tn <-> Owner.
4500 //    The validity of the backlinks must be ratified before we trust the value.
4501 //    If the backlinks are invalid the exiting thread must back-track through the
4502 //    the forward links, which are always trustworthy.
4503 // *  Add a successor indication.  The LockWord is currently encoded as
4504 //    (List, LOCKBIT:1).  We could also add a SUCCBIT or an explicit _succ variable
4505 //    to provide the usual futile-wakeup optimization.
4506 //    See RTStt for details.
4507 // *  Consider schedctl.sc_nopreempt to cover the critical section.
4508 //
4509 
4510 
4511 typedef volatile intptr_t MutexT ;      // Mux Lock-word
4512 enum MuxBits { LOCKBIT = 1 } ;
4513 
4514 void Thread::muxAcquire (volatile intptr_t * Lock, const char * LockName) {
4515   intptr_t w = Atomic::cmpxchg_ptr (LOCKBIT, Lock, 0) ;
4516   if (w == 0) return ;
4517   if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4518      return ;
4519   }
4520 
4521   TEVENT (muxAcquire - Contention) ;
4522   ParkEvent * const Self = Thread::current()->_MuxEvent ;
4523   assert ((intptr_t(Self) & LOCKBIT) == 0, "invariant") ;
4524   for (;;) {
4525      int its = (os::is_MP() ? 100 : 0) + 1 ;
4526 
4527      // Optional spin phase: spin-then-park strategy
4528      while (--its >= 0) {
4529        w = *Lock ;
4530        if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4531           return ;
4532        }
4533      }
4534 
4535      Self->reset() ;
4536      Self->OnList = intptr_t(Lock) ;
4537      // The following fence() isn't _strictly necessary as the subsequent
4538      // CAS() both serializes execution and ratifies the fetched *Lock value.
4539      OrderAccess::fence();
4540      for (;;) {
4541         w = *Lock ;
4542         if ((w & LOCKBIT) == 0) {
4543             if (Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4544                 Self->OnList = 0 ;   // hygiene - allows stronger asserts
4545                 return ;
4546             }
4547             continue ;      // Interference -- *Lock changed -- Just retry
4548         }
4549         assert (w & LOCKBIT, "invariant") ;
4550         Self->ListNext = (ParkEvent *) (w & ~LOCKBIT );
4551         if (Atomic::cmpxchg_ptr (intptr_t(Self)|LOCKBIT, Lock, w) == w) break ;
4552      }
4553 
4554      while (Self->OnList != 0) {
4555         Self->park() ;
4556      }
4557   }
4558 }
4559 
4560 void Thread::muxAcquireW (volatile intptr_t * Lock, ParkEvent * ev) {
4561   intptr_t w = Atomic::cmpxchg_ptr (LOCKBIT, Lock, 0) ;
4562   if (w == 0) return ;
4563   if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4564     return ;
4565   }
4566 
4567   TEVENT (muxAcquire - Contention) ;
4568   ParkEvent * ReleaseAfter = NULL ;
4569   if (ev == NULL) {
4570     ev = ReleaseAfter = ParkEvent::Allocate (NULL) ;
4571   }
4572   assert ((intptr_t(ev) & LOCKBIT) == 0, "invariant") ;
4573   for (;;) {
4574     guarantee (ev->OnList == 0, "invariant") ;
4575     int its = (os::is_MP() ? 100 : 0) + 1 ;
4576 
4577     // Optional spin phase: spin-then-park strategy
4578     while (--its >= 0) {
4579       w = *Lock ;
4580       if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4581         if (ReleaseAfter != NULL) {
4582           ParkEvent::Release (ReleaseAfter) ;
4583         }
4584         return ;
4585       }
4586     }
4587 
4588     ev->reset() ;
4589     ev->OnList = intptr_t(Lock) ;
4590     // The following fence() isn't _strictly necessary as the subsequent
4591     // CAS() both serializes execution and ratifies the fetched *Lock value.
4592     OrderAccess::fence();
4593     for (;;) {
4594       w = *Lock ;
4595       if ((w & LOCKBIT) == 0) {
4596         if (Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4597           ev->OnList = 0 ;
4598           // We call ::Release while holding the outer lock, thus
4599           // artificially lengthening the critical section.
4600           // Consider deferring the ::Release() until the subsequent unlock(),
4601           // after we've dropped the outer lock.
4602           if (ReleaseAfter != NULL) {
4603             ParkEvent::Release (ReleaseAfter) ;
4604           }
4605           return ;
4606         }
4607         continue ;      // Interference -- *Lock changed -- Just retry
4608       }
4609       assert (w & LOCKBIT, "invariant") ;
4610       ev->ListNext = (ParkEvent *) (w & ~LOCKBIT );
4611       if (Atomic::cmpxchg_ptr (intptr_t(ev)|LOCKBIT, Lock, w) == w) break ;
4612     }
4613 
4614     while (ev->OnList != 0) {
4615       ev->park() ;
4616     }
4617   }
4618 }
4619 
4620 // Release() must extract a successor from the list and then wake that thread.
4621 // It can "pop" the front of the list or use a detach-modify-reattach (DMR) scheme
4622 // similar to that used by ParkEvent::Allocate() and ::Release().  DMR-based
4623 // Release() would :
4624 // (A) CAS() or swap() null to *Lock, releasing the lock and detaching the list.
4625 // (B) Extract a successor from the private list "in-hand"
4626 // (C) attempt to CAS() the residual back into *Lock over null.
4627 //     If there were any newly arrived threads and the CAS() would fail.
4628 //     In that case Release() would detach the RATs, re-merge the list in-hand
4629 //     with the RATs and repeat as needed.  Alternately, Release() might
4630 //     detach and extract a successor, but then pass the residual list to the wakee.
4631 //     The wakee would be responsible for reattaching and remerging before it
4632 //     competed for the lock.
4633 //
4634 // Both "pop" and DMR are immune from ABA corruption -- there can be
4635 // multiple concurrent pushers, but only one popper or detacher.
4636 // This implementation pops from the head of the list.  This is unfair,
4637 // but tends to provide excellent throughput as hot threads remain hot.
4638 // (We wake recently run threads first).
4639 
4640 void Thread::muxRelease (volatile intptr_t * Lock)  {
4641   for (;;) {
4642     const intptr_t w = Atomic::cmpxchg_ptr (0, Lock, LOCKBIT) ;
4643     assert (w & LOCKBIT, "invariant") ;
4644     if (w == LOCKBIT) return ;
4645     ParkEvent * List = (ParkEvent *) (w & ~LOCKBIT) ;
4646     assert (List != NULL, "invariant") ;
4647     assert (List->OnList == intptr_t(Lock), "invariant") ;
4648     ParkEvent * nxt = List->ListNext ;
4649 
4650     // The following CAS() releases the lock and pops the head element.
4651     if (Atomic::cmpxchg_ptr (intptr_t(nxt), Lock, w) != w) {
4652       continue ;
4653     }
4654     List->OnList = 0 ;
4655     OrderAccess::fence() ;
4656     List->unpark () ;
4657     return ;
4658   }
4659 }
4660 
4661 
4662 void Threads::verify() {
4663   ALL_JAVA_THREADS(p) {
4664     p->verify();
4665   }
4666   VMThread* thread = VMThread::vm_thread();
4667   if (thread != NULL) thread->verify();
4668 }