/* * Copyright (c) 1999, 2012, Oracle and/or its affiliates. All rights reserved. * Copyright 2008, 2009, 2010 Red Hat, Inc. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. * */ #include "precompiled.hpp" #include "ci/ciField.hpp" #include "ci/ciInstance.hpp" #include "ci/ciObjArrayKlass.hpp" #include "ci/ciStreams.hpp" #include "ci/ciType.hpp" #include "ci/ciTypeFlow.hpp" #include "interpreter/bytecodes.hpp" #include "memory/allocation.hpp" #include "runtime/deoptimization.hpp" #include "shark/llvmHeaders.hpp" #include "shark/llvmValue.hpp" #include "shark/sharkBuilder.hpp" #include "shark/sharkCacheDecache.hpp" #include "shark/sharkConstant.hpp" #include "shark/sharkInliner.hpp" #include "shark/sharkState.hpp" #include "shark/sharkTopLevelBlock.hpp" #include "shark/sharkValue.hpp" #include "shark/shark_globals.hpp" #include "utilities/debug.hpp" using namespace llvm; void SharkTopLevelBlock::scan_for_traps() { // If typeflow found a trap then don't scan past it int limit_bci = ciblock()->has_trap() ? ciblock()->trap_bci() : limit(); // Scan the bytecode for traps that are always hit iter()->reset_to_bci(start()); while (iter()->next_bci() < limit_bci) { iter()->next(); ciField *field; ciMethod *method; ciInstanceKlass *klass; bool will_link; bool is_field; switch (bc()) { case Bytecodes::_ldc: case Bytecodes::_ldc_w: case Bytecodes::_ldc2_w: if (!SharkConstant::for_ldc(iter())->is_loaded()) { set_trap( Deoptimization::make_trap_request( Deoptimization::Reason_uninitialized, Deoptimization::Action_reinterpret), bci()); return; } break; case Bytecodes::_getfield: case Bytecodes::_getstatic: case Bytecodes::_putfield: case Bytecodes::_putstatic: field = iter()->get_field(will_link); assert(will_link, "typeflow responsibility"); is_field = (bc() == Bytecodes::_getfield || bc() == Bytecodes::_putfield); // If the bytecode does not match the field then bail out to // the interpreter to throw an IncompatibleClassChangeError if (is_field == field->is_static()) { set_trap( Deoptimization::make_trap_request( Deoptimization::Reason_unhandled, Deoptimization::Action_none), bci()); return; } // Bail out if we are trying to access a static variable // before the class initializer has completed. if (!is_field && !field->holder()->is_initialized()) { if (!static_field_ok_in_clinit(field)) { set_trap( Deoptimization::make_trap_request( Deoptimization::Reason_uninitialized, Deoptimization::Action_reinterpret), bci()); return; } } break; case Bytecodes::_invokestatic: case Bytecodes::_invokespecial: case Bytecodes::_invokevirtual: case Bytecodes::_invokeinterface: ciSignature* sig; method = iter()->get_method(will_link, &sig); assert(will_link, "typeflow responsibility"); if (!method->holder()->is_linked()) { set_trap( Deoptimization::make_trap_request( Deoptimization::Reason_uninitialized, Deoptimization::Action_reinterpret), bci()); return; } if (bc() == Bytecodes::_invokevirtual) { klass = ciEnv::get_instance_klass_for_declared_method_holder( iter()->get_declared_method_holder()); if (!klass->is_linked()) { set_trap( Deoptimization::make_trap_request( Deoptimization::Reason_uninitialized, Deoptimization::Action_reinterpret), bci()); return; } } break; case Bytecodes::_new: klass = iter()->get_klass(will_link)->as_instance_klass(); assert(will_link, "typeflow responsibility"); // Bail out if the class is unloaded if (iter()->is_unresolved_klass() || !klass->is_initialized()) { set_trap( Deoptimization::make_trap_request( Deoptimization::Reason_uninitialized, Deoptimization::Action_reinterpret), bci()); return; } // Bail out if the class cannot be instantiated if (klass->is_abstract() || klass->is_interface() || klass->name() == ciSymbol::java_lang_Class()) { set_trap( Deoptimization::make_trap_request( Deoptimization::Reason_unhandled, Deoptimization::Action_reinterpret), bci()); return; } break; } } // Trap if typeflow trapped (and we didn't before) if (ciblock()->has_trap()) { set_trap( Deoptimization::make_trap_request( Deoptimization::Reason_unloaded, Deoptimization::Action_reinterpret, ciblock()->trap_index()), ciblock()->trap_bci()); return; } } bool SharkTopLevelBlock::static_field_ok_in_clinit(ciField* field) { assert(field->is_static(), "should be"); // This code is lifted pretty much verbatim from C2's // Parse::static_field_ok_in_clinit() in parse3.cpp. bool access_OK = false; if (target()->holder()->is_subclass_of(field->holder())) { if (target()->is_static()) { if (target()->name() == ciSymbol::class_initializer_name()) { // It's OK to access static fields from the class initializer access_OK = true; } } else { if (target()->name() == ciSymbol::object_initializer_name()) { // It's also OK to access static fields inside a constructor, // because any thread calling the constructor must first have // synchronized on the class by executing a "new" bytecode. access_OK = true; } } } return access_OK; } SharkState* SharkTopLevelBlock::entry_state() { if (_entry_state == NULL) { assert(needs_phis(), "should do"); _entry_state = new SharkPHIState(this); } return _entry_state; } void SharkTopLevelBlock::add_incoming(SharkState* incoming_state) { if (needs_phis()) { ((SharkPHIState *) entry_state())->add_incoming(incoming_state); } else if (_entry_state == NULL) { _entry_state = incoming_state; } else { assert(entry_state()->equal_to(incoming_state), "should be"); } } void SharkTopLevelBlock::enter(SharkTopLevelBlock* predecessor, bool is_exception) { // This block requires phis: // - if it is entered more than once // - if it is an exception handler, because in which // case we assume it's entered more than once. // - if the predecessor will be compiled after this // block, in which case we can't simple propagate // the state forward. if (!needs_phis() && (entered() || is_exception || (predecessor && predecessor->index() >= index()))) _needs_phis = true; // Recurse into the tree if (!entered()) { _entered = true; scan_for_traps(); if (!has_trap()) { for (int i = 0; i < num_successors(); i++) { successor(i)->enter(this, false); } } compute_exceptions(); for (int i = 0; i < num_exceptions(); i++) { SharkTopLevelBlock *handler = exception(i); if (handler) handler->enter(this, true); } } } void SharkTopLevelBlock::initialize() { char name[28]; snprintf(name, sizeof(name), "bci_%d%s", start(), is_backedge_copy() ? "_backedge_copy" : ""); _entry_block = function()->CreateBlock(name); } void SharkTopLevelBlock::decache_for_Java_call(ciMethod *callee) { SharkJavaCallDecacher(function(), bci(), callee).scan(current_state()); for (int i = 0; i < callee->arg_size(); i++) xpop(); } void SharkTopLevelBlock::cache_after_Java_call(ciMethod *callee) { if (callee->return_type()->size()) { ciType *type; switch (callee->return_type()->basic_type()) { case T_BOOLEAN: case T_BYTE: case T_CHAR: case T_SHORT: type = ciType::make(T_INT); break; default: type = callee->return_type(); } push(SharkValue::create_generic(type, NULL, false)); } SharkJavaCallCacher(function(), callee).scan(current_state()); } void SharkTopLevelBlock::decache_for_VM_call() { SharkVMCallDecacher(function(), bci()).scan(current_state()); } void SharkTopLevelBlock::cache_after_VM_call() { SharkVMCallCacher(function()).scan(current_state()); } void SharkTopLevelBlock::decache_for_trap() { SharkTrapDecacher(function(), bci()).scan(current_state()); } void SharkTopLevelBlock::emit_IR() { builder()->SetInsertPoint(entry_block()); // Parse the bytecode parse_bytecode(start(), limit()); // If this block falls through to the next then it won't have been // terminated by a bytecode and we have to add the branch ourselves if (falls_through() && !has_trap()) do_branch(ciTypeFlow::FALL_THROUGH); } SharkTopLevelBlock* SharkTopLevelBlock::bci_successor(int bci) const { // XXX now with Linear Search Technology (tm) for (int i = 0; i < num_successors(); i++) { ciTypeFlow::Block *successor = ciblock()->successors()->at(i); if (successor->start() == bci) return function()->block(successor->pre_order()); } ShouldNotReachHere(); } void SharkTopLevelBlock::do_zero_check(SharkValue *value) { if (value->is_phi() && value->as_phi()->all_incomers_zero_checked()) { function()->add_deferred_zero_check(this, value); } else { BasicBlock *continue_block = function()->CreateBlock("not_zero"); SharkState *saved_state = current_state(); set_current_state(saved_state->copy()); zero_check_value(value, continue_block); builder()->SetInsertPoint(continue_block); set_current_state(saved_state); } value->set_zero_checked(true); } void SharkTopLevelBlock::do_deferred_zero_check(SharkValue* value, int bci, SharkState* saved_state, BasicBlock* continue_block) { if (value->as_phi()->all_incomers_zero_checked()) { builder()->CreateBr(continue_block); } else { iter()->force_bci(start()); set_current_state(saved_state); zero_check_value(value, continue_block); } } void SharkTopLevelBlock::zero_check_value(SharkValue* value, BasicBlock* continue_block) { BasicBlock *zero_block = builder()->CreateBlock(continue_block, "zero"); Value *a, *b; switch (value->basic_type()) { case T_BYTE: case T_CHAR: case T_SHORT: case T_INT: a = value->jint_value(); b = LLVMValue::jint_constant(0); break; case T_LONG: a = value->jlong_value(); b = LLVMValue::jlong_constant(0); break; case T_OBJECT: case T_ARRAY: a = value->jobject_value(); b = LLVMValue::LLVMValue::null(); break; default: tty->print_cr("Unhandled type %s", type2name(value->basic_type())); ShouldNotReachHere(); } builder()->CreateCondBr( builder()->CreateICmpNE(a, b), continue_block, zero_block); builder()->SetInsertPoint(zero_block); if (value->is_jobject()) { call_vm( builder()->throw_NullPointerException(), builder()->CreateIntToPtr( LLVMValue::intptr_constant((intptr_t) __FILE__), PointerType::getUnqual(SharkType::jbyte_type())), LLVMValue::jint_constant(__LINE__), EX_CHECK_NONE); } else { call_vm( builder()->throw_ArithmeticException(), builder()->CreateIntToPtr( LLVMValue::intptr_constant((intptr_t) __FILE__), PointerType::getUnqual(SharkType::jbyte_type())), LLVMValue::jint_constant(__LINE__), EX_CHECK_NONE); } Value *pending_exception = get_pending_exception(); clear_pending_exception(); handle_exception(pending_exception, EX_CHECK_FULL); } void SharkTopLevelBlock::check_bounds(SharkValue* array, SharkValue* index) { BasicBlock *out_of_bounds = function()->CreateBlock("out_of_bounds"); BasicBlock *in_bounds = function()->CreateBlock("in_bounds"); Value *length = builder()->CreateArrayLength(array->jarray_value()); // we use an unsigned comparison to catch negative values builder()->CreateCondBr( builder()->CreateICmpULT(index->jint_value(), length), in_bounds, out_of_bounds); builder()->SetInsertPoint(out_of_bounds); SharkState *saved_state = current_state()->copy(); call_vm( builder()->throw_ArrayIndexOutOfBoundsException(), builder()->CreateIntToPtr( LLVMValue::intptr_constant((intptr_t) __FILE__), PointerType::getUnqual(SharkType::jbyte_type())), LLVMValue::jint_constant(__LINE__), index->jint_value(), EX_CHECK_NONE); Value *pending_exception = get_pending_exception(); clear_pending_exception(); handle_exception(pending_exception, EX_CHECK_FULL); set_current_state(saved_state); builder()->SetInsertPoint(in_bounds); } void SharkTopLevelBlock::check_pending_exception(int action) { assert(action & EAM_CHECK, "should be"); BasicBlock *exception = function()->CreateBlock("exception"); BasicBlock *no_exception = function()->CreateBlock("no_exception"); Value *pending_exception = get_pending_exception(); builder()->CreateCondBr( builder()->CreateICmpEQ(pending_exception, LLVMValue::null()), no_exception, exception); builder()->SetInsertPoint(exception); SharkState *saved_state = current_state()->copy(); if (action & EAM_MONITOR_FUDGE) { // The top monitor is marked live, but the exception was thrown // while setting it up so we need to mark it dead before we enter // any exception handlers as they will not expect it to be there. set_num_monitors(num_monitors() - 1); action ^= EAM_MONITOR_FUDGE; } clear_pending_exception(); handle_exception(pending_exception, action); set_current_state(saved_state); builder()->SetInsertPoint(no_exception); } void SharkTopLevelBlock::compute_exceptions() { ciExceptionHandlerStream str(target(), start()); int exc_count = str.count(); _exc_handlers = new GrowableArray(exc_count); _exceptions = new GrowableArray(exc_count); int index = 0; for (; !str.is_done(); str.next()) { ciExceptionHandler *handler = str.handler(); if (handler->handler_bci() == -1) break; _exc_handlers->append(handler); // Try and get this exception's handler from typeflow. We should // do it this way always, really, except that typeflow sometimes // doesn't record exceptions, even loaded ones, and sometimes it // returns them with a different handler bci. Why??? SharkTopLevelBlock *block = NULL; ciInstanceKlass* klass; if (handler->is_catch_all()) { klass = java_lang_Throwable_klass(); } else { klass = handler->catch_klass(); } for (int i = 0; i < ciblock()->exceptions()->length(); i++) { if (klass == ciblock()->exc_klasses()->at(i)) { block = function()->block(ciblock()->exceptions()->at(i)->pre_order()); if (block->start() == handler->handler_bci()) break; else block = NULL; } } // If typeflow let us down then try and figure it out ourselves if (block == NULL) { for (int i = 0; i < function()->block_count(); i++) { SharkTopLevelBlock *candidate = function()->block(i); if (candidate->start() == handler->handler_bci()) { if (block != NULL) { NOT_PRODUCT(warning("there may be trouble ahead")); block = NULL; break; } block = candidate; } } } _exceptions->append(block); } } void SharkTopLevelBlock::handle_exception(Value* exception, int action) { if (action & EAM_HANDLE && num_exceptions() != 0) { // Clear the stack and push the exception onto it while (xstack_depth()) pop(); push(SharkValue::create_jobject(exception, true)); // Work out how many options we have to check bool has_catch_all = exc_handler(num_exceptions() - 1)->is_catch_all(); int num_options = num_exceptions(); if (has_catch_all) num_options--; // Marshal any non-catch-all handlers if (num_options > 0) { bool all_loaded = true; for (int i = 0; i < num_options; i++) { if (!exc_handler(i)->catch_klass()->is_loaded()) { all_loaded = false; break; } } if (all_loaded) marshal_exception_fast(num_options); else marshal_exception_slow(num_options); } // Install the catch-all handler, if present if (has_catch_all) { SharkTopLevelBlock* handler = this->exception(num_options); assert(handler != NULL, "catch-all handler cannot be unloaded"); builder()->CreateBr(handler->entry_block()); handler->add_incoming(current_state()); return; } } // No exception handler was found; unwind and return handle_return(T_VOID, exception); } void SharkTopLevelBlock::marshal_exception_fast(int num_options) { Value *exception_klass = builder()->CreateValueOfStructEntry( xstack(0)->jobject_value(), in_ByteSize(oopDesc::klass_offset_in_bytes()), SharkType::klass_type(), "exception_klass"); for (int i = 0; i < num_options; i++) { Value *check_klass = builder()->CreateInlineMetadata(exc_handler(i)->catch_klass(), SharkType::klass_type()); BasicBlock *not_exact = function()->CreateBlock("not_exact"); BasicBlock *not_subtype = function()->CreateBlock("not_subtype"); builder()->CreateCondBr( builder()->CreateICmpEQ(check_klass, exception_klass), handler_for_exception(i), not_exact); builder()->SetInsertPoint(not_exact); builder()->CreateCondBr( builder()->CreateICmpNE( builder()->CreateCall2( builder()->is_subtype_of(), check_klass, exception_klass), LLVMValue::jbyte_constant(0)), handler_for_exception(i), not_subtype); builder()->SetInsertPoint(not_subtype); } } void SharkTopLevelBlock::marshal_exception_slow(int num_options) { int *indexes = NEW_RESOURCE_ARRAY(int, num_options); for (int i = 0; i < num_options; i++) indexes[i] = exc_handler(i)->catch_klass_index(); Value *index = call_vm( builder()->find_exception_handler(), builder()->CreateInlineData( indexes, num_options * sizeof(int), PointerType::getUnqual(SharkType::jint_type())), LLVMValue::jint_constant(num_options), EX_CHECK_NO_CATCH); BasicBlock *no_handler = function()->CreateBlock("no_handler"); SwitchInst *switchinst = builder()->CreateSwitch( index, no_handler, num_options); for (int i = 0; i < num_options; i++) { switchinst->addCase( LLVMValue::jint_constant(i), handler_for_exception(i)); } builder()->SetInsertPoint(no_handler); } BasicBlock* SharkTopLevelBlock::handler_for_exception(int index) { SharkTopLevelBlock *successor = this->exception(index); if (successor) { successor->add_incoming(current_state()); return successor->entry_block(); } else { return make_trap( exc_handler(index)->handler_bci(), Deoptimization::make_trap_request( Deoptimization::Reason_unhandled, Deoptimization::Action_reinterpret)); } } void SharkTopLevelBlock::maybe_add_safepoint() { if (current_state()->has_safepointed()) return; BasicBlock *orig_block = builder()->GetInsertBlock(); SharkState *orig_state = current_state()->copy(); BasicBlock *do_safepoint = function()->CreateBlock("do_safepoint"); BasicBlock *safepointed = function()->CreateBlock("safepointed"); Value *state = builder()->CreateLoad( builder()->CreateIntToPtr( LLVMValue::intptr_constant( (intptr_t) SafepointSynchronize::address_of_state()), PointerType::getUnqual(SharkType::jint_type())), "state"); builder()->CreateCondBr( builder()->CreateICmpEQ( state, LLVMValue::jint_constant(SafepointSynchronize::_synchronizing)), do_safepoint, safepointed); builder()->SetInsertPoint(do_safepoint); call_vm(builder()->safepoint(), EX_CHECK_FULL); BasicBlock *safepointed_block = builder()->GetInsertBlock(); builder()->CreateBr(safepointed); builder()->SetInsertPoint(safepointed); current_state()->merge(orig_state, orig_block, safepointed_block); current_state()->set_has_safepointed(true); } void SharkTopLevelBlock::maybe_add_backedge_safepoint() { if (current_state()->has_safepointed()) return; for (int i = 0; i < num_successors(); i++) { if (successor(i)->can_reach(this)) { maybe_add_safepoint(); break; } } } bool SharkTopLevelBlock::can_reach(SharkTopLevelBlock* other) { for (int i = 0; i < function()->block_count(); i++) function()->block(i)->_can_reach_visited = false; return can_reach_helper(other); } bool SharkTopLevelBlock::can_reach_helper(SharkTopLevelBlock* other) { if (this == other) return true; if (_can_reach_visited) return false; _can_reach_visited = true; if (!has_trap()) { for (int i = 0; i < num_successors(); i++) { if (successor(i)->can_reach_helper(other)) return true; } } for (int i = 0; i < num_exceptions(); i++) { SharkTopLevelBlock *handler = exception(i); if (handler && handler->can_reach_helper(other)) return true; } return false; } BasicBlock* SharkTopLevelBlock::make_trap(int trap_bci, int trap_request) { BasicBlock *trap_block = function()->CreateBlock("trap"); BasicBlock *orig_block = builder()->GetInsertBlock(); builder()->SetInsertPoint(trap_block); int orig_bci = bci(); iter()->force_bci(trap_bci); do_trap(trap_request); builder()->SetInsertPoint(orig_block); iter()->force_bci(orig_bci); return trap_block; } void SharkTopLevelBlock::do_trap(int trap_request) { decache_for_trap(); builder()->CreateRet( builder()->CreateCall2( builder()->uncommon_trap(), thread(), LLVMValue::jint_constant(trap_request))); } void SharkTopLevelBlock::call_register_finalizer(Value *receiver) { BasicBlock *orig_block = builder()->GetInsertBlock(); SharkState *orig_state = current_state()->copy(); BasicBlock *do_call = function()->CreateBlock("has_finalizer"); BasicBlock *done = function()->CreateBlock("done"); Value *klass = builder()->CreateValueOfStructEntry( receiver, in_ByteSize(oopDesc::klass_offset_in_bytes()), SharkType::oop_type(), "klass"); Value *access_flags = builder()->CreateValueOfStructEntry( klass, Klass::access_flags_offset(), SharkType::jint_type(), "access_flags"); builder()->CreateCondBr( builder()->CreateICmpNE( builder()->CreateAnd( access_flags, LLVMValue::jint_constant(JVM_ACC_HAS_FINALIZER)), LLVMValue::jint_constant(0)), do_call, done); builder()->SetInsertPoint(do_call); call_vm(builder()->register_finalizer(), receiver, EX_CHECK_FULL); BasicBlock *branch_block = builder()->GetInsertBlock(); builder()->CreateBr(done); builder()->SetInsertPoint(done); current_state()->merge(orig_state, orig_block, branch_block); } void SharkTopLevelBlock::handle_return(BasicType type, Value* exception) { assert (exception == NULL || type == T_VOID, "exception OR result, please"); if (num_monitors()) { // Protect our exception across possible monitor release decaches if (exception) set_oop_tmp(exception); // We don't need to check for exceptions thrown here. If // we're returning a value then we just carry on as normal: // the caller will see the pending exception and handle it. // If we're returning with an exception then that exception // takes priority and the release_lock one will be ignored. while (num_monitors()) release_lock(EX_CHECK_NONE); // Reload the exception we're throwing if (exception) exception = get_oop_tmp(); } if (exception) { builder()->CreateStore(exception, pending_exception_address()); } Value *result_addr = stack()->CreatePopFrame(type2size[type]); if (type != T_VOID) { builder()->CreateStore( pop_result(type)->generic_value(), builder()->CreateIntToPtr( result_addr, PointerType::getUnqual(SharkType::to_stackType(type)))); } builder()->CreateRet(LLVMValue::jint_constant(0)); } void SharkTopLevelBlock::do_arraylength() { SharkValue *array = pop(); check_null(array); Value *length = builder()->CreateArrayLength(array->jarray_value()); push(SharkValue::create_jint(length, false)); } void SharkTopLevelBlock::do_aload(BasicType basic_type) { SharkValue *index = pop(); SharkValue *array = pop(); check_null(array); check_bounds(array, index); Value *value = builder()->CreateLoad( builder()->CreateArrayAddress( array->jarray_value(), basic_type, index->jint_value())); Type *stack_type = SharkType::to_stackType(basic_type); if (value->getType() != stack_type) value = builder()->CreateIntCast(value, stack_type, basic_type != T_CHAR); switch (basic_type) { case T_BYTE: case T_CHAR: case T_SHORT: case T_INT: push(SharkValue::create_jint(value, false)); break; case T_LONG: push(SharkValue::create_jlong(value, false)); break; case T_FLOAT: push(SharkValue::create_jfloat(value)); break; case T_DOUBLE: push(SharkValue::create_jdouble(value)); break; case T_OBJECT: // You might expect that array->type()->is_array_klass() would // always be true, but it isn't. If ciTypeFlow detects that a // value is always null then that value becomes an untyped null // object. Shark doesn't presently support this, so a generic // T_OBJECT is created. In this case we guess the type using // the BasicType we were supplied. In reality the generated // code will never be used, as the null value will be caught // by the above null pointer check. // http://icedtea.classpath.org/bugzilla/show_bug.cgi?id=324 push( SharkValue::create_generic( array->type()->is_array_klass() ? ((ciArrayKlass *) array->type())->element_type() : ciType::make(basic_type), value, false)); break; default: tty->print_cr("Unhandled type %s", type2name(basic_type)); ShouldNotReachHere(); } } void SharkTopLevelBlock::do_astore(BasicType basic_type) { SharkValue *svalue = pop(); SharkValue *index = pop(); SharkValue *array = pop(); check_null(array); check_bounds(array, index); Value *value; switch (basic_type) { case T_BYTE: case T_CHAR: case T_SHORT: case T_INT: value = svalue->jint_value(); break; case T_LONG: value = svalue->jlong_value(); break; case T_FLOAT: value = svalue->jfloat_value(); break; case T_DOUBLE: value = svalue->jdouble_value(); break; case T_OBJECT: value = svalue->jobject_value(); // XXX assignability check break; default: tty->print_cr("Unhandled type %s", type2name(basic_type)); ShouldNotReachHere(); } Type *array_type = SharkType::to_arrayType(basic_type); if (value->getType() != array_type) value = builder()->CreateIntCast(value, array_type, basic_type != T_CHAR); Value *addr = builder()->CreateArrayAddress( array->jarray_value(), basic_type, index->jint_value(), "addr"); builder()->CreateStore(value, addr); if (basic_type == T_OBJECT) // XXX or T_ARRAY? builder()->CreateUpdateBarrierSet(oopDesc::bs(), addr); } void SharkTopLevelBlock::do_return(BasicType type) { if (target()->intrinsic_id() == vmIntrinsics::_Object_init) call_register_finalizer(local(0)->jobject_value()); maybe_add_safepoint(); handle_return(type, NULL); } void SharkTopLevelBlock::do_athrow() { SharkValue *exception = pop(); check_null(exception); handle_exception(exception->jobject_value(), EX_CHECK_FULL); } void SharkTopLevelBlock::do_goto() { do_branch(ciTypeFlow::GOTO_TARGET); } void SharkTopLevelBlock::do_jsr() { push(SharkValue::address_constant(iter()->next_bci())); do_branch(ciTypeFlow::GOTO_TARGET); } void SharkTopLevelBlock::do_ret() { assert(local(iter()->get_index())->address_value() == successor(ciTypeFlow::GOTO_TARGET)->start(), "should be"); do_branch(ciTypeFlow::GOTO_TARGET); } // All propagation of state from one block to the next (via // dest->add_incoming) is handled by these methods: // do_branch // do_if_helper // do_switch // handle_exception void SharkTopLevelBlock::do_branch(int successor_index) { SharkTopLevelBlock *dest = successor(successor_index); builder()->CreateBr(dest->entry_block()); dest->add_incoming(current_state()); } void SharkTopLevelBlock::do_if(ICmpInst::Predicate p, SharkValue* b, SharkValue* a) { Value *llvm_a, *llvm_b; if (a->is_jobject()) { llvm_a = a->intptr_value(builder()); llvm_b = b->intptr_value(builder()); } else { llvm_a = a->jint_value(); llvm_b = b->jint_value(); } do_if_helper(p, llvm_b, llvm_a, current_state(), current_state()); } void SharkTopLevelBlock::do_if_helper(ICmpInst::Predicate p, Value* b, Value* a, SharkState* if_taken_state, SharkState* not_taken_state) { SharkTopLevelBlock *if_taken = successor(ciTypeFlow::IF_TAKEN); SharkTopLevelBlock *not_taken = successor(ciTypeFlow::IF_NOT_TAKEN); builder()->CreateCondBr( builder()->CreateICmp(p, a, b), if_taken->entry_block(), not_taken->entry_block()); if_taken->add_incoming(if_taken_state); not_taken->add_incoming(not_taken_state); } void SharkTopLevelBlock::do_switch() { int len = switch_table_length(); SharkTopLevelBlock *dest_block = successor(ciTypeFlow::SWITCH_DEFAULT); SwitchInst *switchinst = builder()->CreateSwitch( pop()->jint_value(), dest_block->entry_block(), len); dest_block->add_incoming(current_state()); for (int i = 0; i < len; i++) { int dest_bci = switch_dest(i); if (dest_bci != switch_default_dest()) { dest_block = bci_successor(dest_bci); switchinst->addCase( LLVMValue::jint_constant(switch_key(i)), dest_block->entry_block()); dest_block->add_incoming(current_state()); } } } ciMethod* SharkTopLevelBlock::improve_virtual_call(ciMethod* caller, ciInstanceKlass* klass, ciMethod* dest_method, ciType* receiver_type) { // If the method is obviously final then we are already done if (dest_method->can_be_statically_bound()) return dest_method; // Array methods are all inherited from Object and are monomorphic if (receiver_type->is_array_klass() && dest_method->holder() == java_lang_Object_klass()) return dest_method; #ifdef SHARK_CAN_DEOPTIMIZE_ANYWHERE // This code can replace a virtual call with a direct call if this // class is the only one in the entire set of loaded classes that // implements this method. This makes the compiled code dependent // on other classes that implement the method not being loaded, a // condition which is enforced by the dependency tracker. If the // dependency tracker determines a method has become invalid it // will mark it for recompilation, causing running copies to be // deoptimized. Shark currently can't deoptimize arbitrarily like // that, so this optimization cannot be used. // http://icedtea.classpath.org/bugzilla/show_bug.cgi?id=481 // All other interesting cases are instance classes if (!receiver_type->is_instance_klass()) return NULL; // Attempt to improve the receiver ciInstanceKlass* actual_receiver = klass; ciInstanceKlass *improved_receiver = receiver_type->as_instance_klass(); if (improved_receiver->is_loaded() && improved_receiver->is_initialized() && !improved_receiver->is_interface() && improved_receiver->is_subtype_of(actual_receiver)) { actual_receiver = improved_receiver; } // Attempt to find a monomorphic target for this call using // class heirachy analysis. ciInstanceKlass *calling_klass = caller->holder(); ciMethod* monomorphic_target = dest_method->find_monomorphic_target(calling_klass, klass, actual_receiver); if (monomorphic_target != NULL) { assert(!monomorphic_target->is_abstract(), "shouldn't be"); // Opto has a bunch of type checking here that I don't // understand. It's to inhibit casting in one direction, // possibly because objects in Opto can have inexact // types, but I can't even tell which direction it // doesn't like. For now I'm going to block *any* cast. if (monomorphic_target != dest_method) { if (SharkPerformanceWarnings) { warning("found monomorphic target, but inhibited cast:"); tty->print(" dest_method = "); dest_method->print_short_name(tty); tty->cr(); tty->print(" monomorphic_target = "); monomorphic_target->print_short_name(tty); tty->cr(); } monomorphic_target = NULL; } } // Replace the virtual call with a direct one. This makes // us dependent on that target method not getting overridden // by dynamic class loading. if (monomorphic_target != NULL) { dependencies()->assert_unique_concrete_method( actual_receiver, monomorphic_target); return monomorphic_target; } // Because Opto distinguishes exact types from inexact ones // it can perform a further optimization to replace calls // with non-monomorphic targets if the receiver has an exact // type. We don't mark types this way, so we can't do this. #endif // SHARK_CAN_DEOPTIMIZE_ANYWHERE return NULL; } Value *SharkTopLevelBlock::get_direct_callee(ciMethod* method) { return builder()->CreateBitCast( builder()->CreateInlineMetadata(method, SharkType::Method_type()), SharkType::Method_type(), "callee"); } Value *SharkTopLevelBlock::get_virtual_callee(SharkValue* receiver, int vtable_index) { Value *klass = builder()->CreateValueOfStructEntry( receiver->jobject_value(), in_ByteSize(oopDesc::klass_offset_in_bytes()), SharkType::oop_type(), "klass"); return builder()->CreateLoad( builder()->CreateArrayAddress( klass, SharkType::Method_type(), vtableEntry::size() * wordSize, in_ByteSize(InstanceKlass::vtable_start_offset() * wordSize), LLVMValue::intptr_constant(vtable_index)), "callee"); } Value* SharkTopLevelBlock::get_interface_callee(SharkValue *receiver, ciMethod* method) { BasicBlock *loop = function()->CreateBlock("loop"); BasicBlock *got_null = function()->CreateBlock("got_null"); BasicBlock *not_null = function()->CreateBlock("not_null"); BasicBlock *next = function()->CreateBlock("next"); BasicBlock *got_entry = function()->CreateBlock("got_entry"); // Locate the receiver's itable Value *object_klass = builder()->CreateValueOfStructEntry( receiver->jobject_value(), in_ByteSize(oopDesc::klass_offset_in_bytes()), SharkType::klass_type(), "object_klass"); Value *vtable_start = builder()->CreateAdd( builder()->CreatePtrToInt(object_klass, SharkType::intptr_type()), LLVMValue::intptr_constant( InstanceKlass::vtable_start_offset() * HeapWordSize), "vtable_start"); Value *vtable_length = builder()->CreateValueOfStructEntry( object_klass, in_ByteSize(InstanceKlass::vtable_length_offset() * HeapWordSize), SharkType::jint_type(), "vtable_length"); vtable_length = builder()->CreateIntCast(vtable_length, SharkType::intptr_type(), false); bool needs_aligning = HeapWordsPerLong > 1; Value *itable_start = builder()->CreateAdd( vtable_start, builder()->CreateShl( vtable_length, LLVMValue::intptr_constant(exact_log2(vtableEntry::size() * wordSize))), needs_aligning ? "" : "itable_start"); if (needs_aligning) { itable_start = builder()->CreateAnd( builder()->CreateAdd( itable_start, LLVMValue::intptr_constant(BytesPerLong - 1)), LLVMValue::intptr_constant(~(BytesPerLong - 1)), "itable_start"); } // Locate this interface's entry in the table Value *iklass = builder()->CreateInlineMetadata(method->holder(), SharkType::klass_type()); BasicBlock *loop_entry = builder()->GetInsertBlock(); builder()->CreateBr(loop); builder()->SetInsertPoint(loop); PHINode *itable_entry_addr = builder()->CreatePHI( SharkType::intptr_type(), 0, "itable_entry_addr"); itable_entry_addr->addIncoming(itable_start, loop_entry); Value *itable_entry = builder()->CreateIntToPtr( itable_entry_addr, SharkType::itableOffsetEntry_type(), "itable_entry"); Value *itable_iklass = builder()->CreateValueOfStructEntry( itable_entry, in_ByteSize(itableOffsetEntry::interface_offset_in_bytes()), SharkType::klass_type(), "itable_iklass"); builder()->CreateCondBr( builder()->CreateICmpEQ(itable_iklass, LLVMValue::nullKlass()), got_null, not_null); // A null entry means that the class doesn't implement the // interface, and wasn't the same as the class checked when // the interface was resolved. builder()->SetInsertPoint(got_null); builder()->CreateUnimplemented(__FILE__, __LINE__); builder()->CreateUnreachable(); builder()->SetInsertPoint(not_null); builder()->CreateCondBr( builder()->CreateICmpEQ(itable_iklass, iklass), got_entry, next); builder()->SetInsertPoint(next); Value *next_entry = builder()->CreateAdd( itable_entry_addr, LLVMValue::intptr_constant(itableOffsetEntry::size() * wordSize)); builder()->CreateBr(loop); itable_entry_addr->addIncoming(next_entry, next); // Locate the method pointer builder()->SetInsertPoint(got_entry); Value *offset = builder()->CreateValueOfStructEntry( itable_entry, in_ByteSize(itableOffsetEntry::offset_offset_in_bytes()), SharkType::jint_type(), "offset"); offset = builder()->CreateIntCast(offset, SharkType::intptr_type(), false); return builder()->CreateLoad( builder()->CreateIntToPtr( builder()->CreateAdd( builder()->CreateAdd( builder()->CreateAdd( builder()->CreatePtrToInt( object_klass, SharkType::intptr_type()), offset), LLVMValue::intptr_constant( method->itable_index() * itableMethodEntry::size() * wordSize)), LLVMValue::intptr_constant( itableMethodEntry::method_offset_in_bytes())), PointerType::getUnqual(SharkType::Method_type())), "callee"); } void SharkTopLevelBlock::do_call() { // Set frequently used booleans bool is_static = bc() == Bytecodes::_invokestatic; bool is_virtual = bc() == Bytecodes::_invokevirtual; bool is_interface = bc() == Bytecodes::_invokeinterface; // Find the method being called bool will_link; ciSignature* sig; ciMethod *dest_method = iter()->get_method(will_link, &sig); assert(will_link, "typeflow responsibility"); assert(dest_method->is_static() == is_static, "must match bc"); // Find the class of the method being called. Note // that the superclass check in the second assertion // is to cope with a hole in the spec that allows for // invokeinterface instructions where the resolved // method is a virtual method in java.lang.Object. // javac doesn't generate code like that, but there's // no reason a compliant Java compiler might not. ciInstanceKlass *holder_klass = dest_method->holder(); assert(holder_klass->is_loaded(), "scan_for_traps responsibility"); assert(holder_klass->is_interface() || holder_klass->super() == NULL || !is_interface, "must match bc"); bool is_forced_virtual = is_interface && holder_klass == java_lang_Object_klass(); ciKlass *holder = iter()->get_declared_method_holder(); ciInstanceKlass *klass = ciEnv::get_instance_klass_for_declared_method_holder(holder); if (is_forced_virtual) { klass = java_lang_Object_klass(); } // Find the receiver in the stack. We do this before // trying to inline because the inliner can only use // zero-checked values, not being able to perform the // check itself. SharkValue *receiver = NULL; if (!is_static) { receiver = xstack(dest_method->arg_size() - 1); check_null(receiver); } // Try to improve non-direct calls bool call_is_virtual = is_virtual || is_interface; ciMethod *call_method = dest_method; if (call_is_virtual) { ciMethod *optimized_method = improve_virtual_call( target(), klass, dest_method, receiver->type()); if (optimized_method) { call_method = optimized_method; call_is_virtual = false; } } // Try to inline the call if (!call_is_virtual) { if (SharkInliner::attempt_inline(call_method, current_state())) return; } // Find the method we are calling Value *callee; if (call_is_virtual) { if (is_virtual || is_forced_virtual) { assert(klass->is_linked(), "scan_for_traps responsibility"); int vtable_index = call_method->resolve_vtable_index( target()->holder(), klass); assert(vtable_index >= 0, "should be"); callee = get_virtual_callee(receiver, vtable_index); } else { assert(is_interface, "should be"); callee = get_interface_callee(receiver, call_method); } } else { callee = get_direct_callee(call_method); } // Load the SharkEntry from the callee Value *base_pc = builder()->CreateValueOfStructEntry( callee, Method::from_interpreted_offset(), SharkType::intptr_type(), "base_pc"); // Load the entry point from the SharkEntry Value *entry_point = builder()->CreateLoad( builder()->CreateIntToPtr( builder()->CreateAdd( base_pc, LLVMValue::intptr_constant(in_bytes(ZeroEntry::entry_point_offset()))), PointerType::getUnqual( PointerType::getUnqual(SharkType::entry_point_type()))), "entry_point"); // Make the call decache_for_Java_call(call_method); Value *deoptimized_frames = builder()->CreateCall3( entry_point, callee, base_pc, thread()); // If the callee got deoptimized then reexecute in the interpreter BasicBlock *reexecute = function()->CreateBlock("reexecute"); BasicBlock *call_completed = function()->CreateBlock("call_completed"); builder()->CreateCondBr( builder()->CreateICmpNE(deoptimized_frames, LLVMValue::jint_constant(0)), reexecute, call_completed); builder()->SetInsertPoint(reexecute); builder()->CreateCall2( builder()->deoptimized_entry_point(), builder()->CreateSub(deoptimized_frames, LLVMValue::jint_constant(1)), thread()); builder()->CreateBr(call_completed); // Cache after the call builder()->SetInsertPoint(call_completed); cache_after_Java_call(call_method); // Check for pending exceptions check_pending_exception(EX_CHECK_FULL); // Mark that a safepoint check has occurred current_state()->set_has_safepointed(true); } bool SharkTopLevelBlock::static_subtype_check(ciKlass* check_klass, ciKlass* object_klass) { // If the class we're checking against is java.lang.Object // then this is a no brainer. Apparently this can happen // in reflective code... if (check_klass == java_lang_Object_klass()) return true; // Perform a subtype check. NB in opto's code for this // (GraphKit::static_subtype_check) it says that static // interface types cannot be trusted, and if opto can't // trust them then I assume we can't either. if (object_klass->is_loaded() && !object_klass->is_interface()) { if (object_klass == check_klass) return true; if (check_klass->is_loaded() && object_klass->is_subtype_of(check_klass)) return true; } return false; } void SharkTopLevelBlock::do_instance_check() { // Get the class we're checking against bool will_link; ciKlass *check_klass = iter()->get_klass(will_link); // Get the class of the object we're checking ciKlass *object_klass = xstack(0)->type()->as_klass(); // Can we optimize this check away? if (static_subtype_check(check_klass, object_klass)) { if (bc() == Bytecodes::_instanceof) { pop(); push(SharkValue::jint_constant(1)); } return; } // Need to check this one at runtime if (will_link) do_full_instance_check(check_klass); else do_trapping_instance_check(check_klass); } bool SharkTopLevelBlock::maybe_do_instanceof_if() { // Get the class we're checking against bool will_link; ciKlass *check_klass = iter()->get_klass(will_link); // If the class is unloaded then the instanceof // cannot possibly succeed. if (!will_link) return false; // Keep a copy of the object we're checking SharkValue *old_object = xstack(0); // Get the class of the object we're checking ciKlass *object_klass = old_object->type()->as_klass(); // If the instanceof can be optimized away at compile time // then any subsequent checkcasts will be too so we handle // it normally. if (static_subtype_check(check_klass, object_klass)) return false; // Perform the instance check do_full_instance_check(check_klass); Value *result = pop()->jint_value(); // Create the casted object SharkValue *new_object = SharkValue::create_generic( check_klass, old_object->jobject_value(), old_object->zero_checked()); // Create two copies of the current state, one with the // original object and one with all instances of the // original object replaced with the new, casted object. SharkState *new_state = current_state(); SharkState *old_state = new_state->copy(); new_state->replace_all(old_object, new_object); // Perform the check-and-branch switch (iter()->next_bc()) { case Bytecodes::_ifeq: // branch if not an instance do_if_helper( ICmpInst::ICMP_EQ, LLVMValue::jint_constant(0), result, old_state, new_state); break; case Bytecodes::_ifne: // branch if an instance do_if_helper( ICmpInst::ICMP_NE, LLVMValue::jint_constant(0), result, new_state, old_state); break; default: ShouldNotReachHere(); } return true; } void SharkTopLevelBlock::do_full_instance_check(ciKlass* klass) { BasicBlock *not_null = function()->CreateBlock("not_null"); BasicBlock *subtype_check = function()->CreateBlock("subtype_check"); BasicBlock *is_instance = function()->CreateBlock("is_instance"); BasicBlock *not_instance = function()->CreateBlock("not_instance"); BasicBlock *merge1 = function()->CreateBlock("merge1"); BasicBlock *merge2 = function()->CreateBlock("merge2"); enum InstanceCheckStates { IC_IS_NULL, IC_IS_INSTANCE, IC_NOT_INSTANCE, }; // Pop the object off the stack Value *object = pop()->jobject_value(); // Null objects aren't instances of anything builder()->CreateCondBr( builder()->CreateICmpEQ(object, LLVMValue::null()), merge2, not_null); BasicBlock *null_block = builder()->GetInsertBlock(); // Get the class we're checking against builder()->SetInsertPoint(not_null); Value *check_klass = builder()->CreateInlineMetadata(klass, SharkType::klass_type()); // Get the class of the object being tested Value *object_klass = builder()->CreateValueOfStructEntry( object, in_ByteSize(oopDesc::klass_offset_in_bytes()), SharkType::klass_type(), "object_klass"); // Perform the check builder()->CreateCondBr( builder()->CreateICmpEQ(check_klass, object_klass), is_instance, subtype_check); builder()->SetInsertPoint(subtype_check); builder()->CreateCondBr( builder()->CreateICmpNE( builder()->CreateCall2( builder()->is_subtype_of(), check_klass, object_klass), LLVMValue::jbyte_constant(0)), is_instance, not_instance); builder()->SetInsertPoint(is_instance); builder()->CreateBr(merge1); builder()->SetInsertPoint(not_instance); builder()->CreateBr(merge1); // First merge builder()->SetInsertPoint(merge1); PHINode *nonnull_result = builder()->CreatePHI( SharkType::jint_type(), 0, "nonnull_result"); nonnull_result->addIncoming( LLVMValue::jint_constant(IC_IS_INSTANCE), is_instance); nonnull_result->addIncoming( LLVMValue::jint_constant(IC_NOT_INSTANCE), not_instance); BasicBlock *nonnull_block = builder()->GetInsertBlock(); builder()->CreateBr(merge2); // Second merge builder()->SetInsertPoint(merge2); PHINode *result = builder()->CreatePHI( SharkType::jint_type(), 0, "result"); result->addIncoming(LLVMValue::jint_constant(IC_IS_NULL), null_block); result->addIncoming(nonnull_result, nonnull_block); // Handle the result if (bc() == Bytecodes::_checkcast) { BasicBlock *failure = function()->CreateBlock("failure"); BasicBlock *success = function()->CreateBlock("success"); builder()->CreateCondBr( builder()->CreateICmpNE( result, LLVMValue::jint_constant(IC_NOT_INSTANCE)), success, failure); builder()->SetInsertPoint(failure); SharkState *saved_state = current_state()->copy(); call_vm( builder()->throw_ClassCastException(), builder()->CreateIntToPtr( LLVMValue::intptr_constant((intptr_t) __FILE__), PointerType::getUnqual(SharkType::jbyte_type())), LLVMValue::jint_constant(__LINE__), EX_CHECK_NONE); Value *pending_exception = get_pending_exception(); clear_pending_exception(); handle_exception(pending_exception, EX_CHECK_FULL); set_current_state(saved_state); builder()->SetInsertPoint(success); push(SharkValue::create_generic(klass, object, false)); } else { push( SharkValue::create_jint( builder()->CreateIntCast( builder()->CreateICmpEQ( result, LLVMValue::jint_constant(IC_IS_INSTANCE)), SharkType::jint_type(), false), false)); } } void SharkTopLevelBlock::do_trapping_instance_check(ciKlass* klass) { BasicBlock *not_null = function()->CreateBlock("not_null"); BasicBlock *is_null = function()->CreateBlock("null"); // Leave the object on the stack so it's there if we trap builder()->CreateCondBr( builder()->CreateICmpEQ(xstack(0)->jobject_value(), LLVMValue::null()), is_null, not_null); SharkState *saved_state = current_state()->copy(); // If it's not null then we need to trap builder()->SetInsertPoint(not_null); set_current_state(saved_state->copy()); do_trap( Deoptimization::make_trap_request( Deoptimization::Reason_uninitialized, Deoptimization::Action_reinterpret)); // If it's null then we're ok builder()->SetInsertPoint(is_null); set_current_state(saved_state); if (bc() == Bytecodes::_checkcast) { push(SharkValue::create_generic(klass, pop()->jobject_value(), false)); } else { pop(); push(SharkValue::jint_constant(0)); } } void SharkTopLevelBlock::do_new() { bool will_link; ciInstanceKlass* klass = iter()->get_klass(will_link)->as_instance_klass(); assert(will_link, "typeflow responsibility"); BasicBlock *got_tlab = NULL; BasicBlock *heap_alloc = NULL; BasicBlock *retry = NULL; BasicBlock *got_heap = NULL; BasicBlock *initialize = NULL; BasicBlock *got_fast = NULL; BasicBlock *slow_alloc_and_init = NULL; BasicBlock *got_slow = NULL; BasicBlock *push_object = NULL; SharkState *fast_state = NULL; Value *tlab_object = NULL; Value *heap_object = NULL; Value *fast_object = NULL; Value *slow_object = NULL; Value *object = NULL; // The fast path if (!Klass::layout_helper_needs_slow_path(klass->layout_helper())) { if (UseTLAB) { got_tlab = function()->CreateBlock("got_tlab"); heap_alloc = function()->CreateBlock("heap_alloc"); } retry = function()->CreateBlock("retry"); got_heap = function()->CreateBlock("got_heap"); initialize = function()->CreateBlock("initialize"); slow_alloc_and_init = function()->CreateBlock("slow_alloc_and_init"); push_object = function()->CreateBlock("push_object"); size_t size_in_bytes = klass->size_helper() << LogHeapWordSize; // Thread local allocation if (UseTLAB) { Value *top_addr = builder()->CreateAddressOfStructEntry( thread(), Thread::tlab_top_offset(), PointerType::getUnqual(SharkType::intptr_type()), "top_addr"); Value *end = builder()->CreateValueOfStructEntry( thread(), Thread::tlab_end_offset(), SharkType::intptr_type(), "end"); Value *old_top = builder()->CreateLoad(top_addr, "old_top"); Value *new_top = builder()->CreateAdd( old_top, LLVMValue::intptr_constant(size_in_bytes)); builder()->CreateCondBr( builder()->CreateICmpULE(new_top, end), got_tlab, heap_alloc); builder()->SetInsertPoint(got_tlab); tlab_object = builder()->CreateIntToPtr( old_top, SharkType::oop_type(), "tlab_object"); builder()->CreateStore(new_top, top_addr); builder()->CreateBr(initialize); builder()->SetInsertPoint(heap_alloc); } // Heap allocation Value *top_addr = builder()->CreateIntToPtr( LLVMValue::intptr_constant((intptr_t) Universe::heap()->top_addr()), PointerType::getUnqual(SharkType::intptr_type()), "top_addr"); Value *end = builder()->CreateLoad( builder()->CreateIntToPtr( LLVMValue::intptr_constant((intptr_t) Universe::heap()->end_addr()), PointerType::getUnqual(SharkType::intptr_type())), "end"); builder()->CreateBr(retry); builder()->SetInsertPoint(retry); Value *old_top = builder()->CreateLoad(top_addr, "top"); Value *new_top = builder()->CreateAdd( old_top, LLVMValue::intptr_constant(size_in_bytes)); builder()->CreateCondBr( builder()->CreateICmpULE(new_top, end), got_heap, slow_alloc_and_init); builder()->SetInsertPoint(got_heap); heap_object = builder()->CreateIntToPtr( old_top, SharkType::oop_type(), "heap_object"); Value *check = builder()->CreateAtomicCmpXchg(top_addr, old_top, new_top, llvm::SequentiallyConsistent); builder()->CreateCondBr( builder()->CreateICmpEQ(old_top, check), initialize, retry); // Initialize the object builder()->SetInsertPoint(initialize); if (tlab_object) { PHINode *phi = builder()->CreatePHI( SharkType::oop_type(), 0, "fast_object"); phi->addIncoming(tlab_object, got_tlab); phi->addIncoming(heap_object, got_heap); fast_object = phi; } else { fast_object = heap_object; } builder()->CreateMemset( builder()->CreateBitCast( fast_object, PointerType::getUnqual(SharkType::jbyte_type())), LLVMValue::jbyte_constant(0), LLVMValue::jint_constant(size_in_bytes), LLVMValue::jint_constant(HeapWordSize)); Value *mark_addr = builder()->CreateAddressOfStructEntry( fast_object, in_ByteSize(oopDesc::mark_offset_in_bytes()), PointerType::getUnqual(SharkType::intptr_type()), "mark_addr"); Value *klass_addr = builder()->CreateAddressOfStructEntry( fast_object, in_ByteSize(oopDesc::klass_offset_in_bytes()), PointerType::getUnqual(SharkType::klass_type()), "klass_addr"); // Set the mark intptr_t mark; if (UseBiasedLocking) { Unimplemented(); } else { mark = (intptr_t) markOopDesc::prototype(); } builder()->CreateStore(LLVMValue::intptr_constant(mark), mark_addr); // Set the class Value *rtklass = builder()->CreateInlineMetadata(klass, SharkType::klass_type()); builder()->CreateStore(rtklass, klass_addr); got_fast = builder()->GetInsertBlock(); builder()->CreateBr(push_object); builder()->SetInsertPoint(slow_alloc_and_init); fast_state = current_state()->copy(); } // The slow path call_vm( builder()->new_instance(), LLVMValue::jint_constant(iter()->get_klass_index()), EX_CHECK_FULL); slow_object = get_vm_result(); got_slow = builder()->GetInsertBlock(); // Push the object if (push_object) { builder()->CreateBr(push_object); builder()->SetInsertPoint(push_object); } if (fast_object) { PHINode *phi = builder()->CreatePHI(SharkType::oop_type(), 0, "object"); phi->addIncoming(fast_object, got_fast); phi->addIncoming(slow_object, got_slow); object = phi; current_state()->merge(fast_state, got_fast, got_slow); } else { object = slow_object; } push(SharkValue::create_jobject(object, true)); } void SharkTopLevelBlock::do_newarray() { BasicType type = (BasicType) iter()->get_index(); call_vm( builder()->newarray(), LLVMValue::jint_constant(type), pop()->jint_value(), EX_CHECK_FULL); ciArrayKlass *array_klass = ciArrayKlass::make(ciType::make(type)); push(SharkValue::create_generic(array_klass, get_vm_result(), true)); } void SharkTopLevelBlock::do_anewarray() { bool will_link; ciKlass *klass = iter()->get_klass(will_link); assert(will_link, "typeflow responsibility"); ciObjArrayKlass *array_klass = ciObjArrayKlass::make(klass); if (!array_klass->is_loaded()) { Unimplemented(); } call_vm( builder()->anewarray(), LLVMValue::jint_constant(iter()->get_klass_index()), pop()->jint_value(), EX_CHECK_FULL); push(SharkValue::create_generic(array_klass, get_vm_result(), true)); } void SharkTopLevelBlock::do_multianewarray() { bool will_link; ciArrayKlass *array_klass = iter()->get_klass(will_link)->as_array_klass(); assert(will_link, "typeflow responsibility"); // The dimensions are stack values, so we use their slots for the // dimensions array. Note that we are storing them in the reverse // of normal stack order. int ndims = iter()->get_dimensions(); Value *dimensions = stack()->slot_addr( stack()->stack_slots_offset() + max_stack() - xstack_depth(), ArrayType::get(SharkType::jint_type(), ndims), "dimensions"); for (int i = 0; i < ndims; i++) { builder()->CreateStore( xstack(ndims - 1 - i)->jint_value(), builder()->CreateStructGEP(dimensions, i)); } call_vm( builder()->multianewarray(), LLVMValue::jint_constant(iter()->get_klass_index()), LLVMValue::jint_constant(ndims), builder()->CreateStructGEP(dimensions, 0), EX_CHECK_FULL); // Now we can pop the dimensions off the stack for (int i = 0; i < ndims; i++) pop(); push(SharkValue::create_generic(array_klass, get_vm_result(), true)); } void SharkTopLevelBlock::acquire_method_lock() { Value *lockee; if (target()->is_static()) { lockee = builder()->CreateInlineOop(target()->holder()->java_mirror()); } else lockee = local(0)->jobject_value(); iter()->force_bci(start()); // for the decache in acquire_lock acquire_lock(lockee, EX_CHECK_NO_CATCH); } void SharkTopLevelBlock::do_monitorenter() { SharkValue *lockee = pop(); check_null(lockee); acquire_lock(lockee->jobject_value(), EX_CHECK_FULL); } void SharkTopLevelBlock::do_monitorexit() { pop(); // don't need this (monitors are block structured) release_lock(EX_CHECK_NO_CATCH); } void SharkTopLevelBlock::acquire_lock(Value *lockee, int exception_action) { BasicBlock *try_recursive = function()->CreateBlock("try_recursive"); BasicBlock *got_recursive = function()->CreateBlock("got_recursive"); BasicBlock *not_recursive = function()->CreateBlock("not_recursive"); BasicBlock *acquired_fast = function()->CreateBlock("acquired_fast"); BasicBlock *lock_acquired = function()->CreateBlock("lock_acquired"); int monitor = num_monitors(); Value *monitor_addr = stack()->monitor_addr(monitor); Value *monitor_object_addr = stack()->monitor_object_addr(monitor); Value *monitor_header_addr = stack()->monitor_header_addr(monitor); // Store the object and mark the slot as live builder()->CreateStore(lockee, monitor_object_addr); set_num_monitors(monitor + 1); // Try a simple lock Value *mark_addr = builder()->CreateAddressOfStructEntry( lockee, in_ByteSize(oopDesc::mark_offset_in_bytes()), PointerType::getUnqual(SharkType::intptr_type()), "mark_addr"); Value *mark = builder()->CreateLoad(mark_addr, "mark"); Value *disp = builder()->CreateOr( mark, LLVMValue::intptr_constant(markOopDesc::unlocked_value), "disp"); builder()->CreateStore(disp, monitor_header_addr); Value *lock = builder()->CreatePtrToInt( monitor_header_addr, SharkType::intptr_type()); Value *check = builder()->CreateAtomicCmpXchg(mark_addr, disp, lock, llvm::Acquire); builder()->CreateCondBr( builder()->CreateICmpEQ(disp, check), acquired_fast, try_recursive); // Locking failed, but maybe this thread already owns it builder()->SetInsertPoint(try_recursive); Value *addr = builder()->CreateAnd( disp, LLVMValue::intptr_constant(~markOopDesc::lock_mask_in_place)); // NB we use the entire stack, but JavaThread::is_lock_owned() // uses a more limited range. I don't think it hurts though... Value *stack_limit = builder()->CreateValueOfStructEntry( thread(), Thread::stack_base_offset(), SharkType::intptr_type(), "stack_limit"); assert(sizeof(size_t) == sizeof(intptr_t), "should be"); Value *stack_size = builder()->CreateValueOfStructEntry( thread(), Thread::stack_size_offset(), SharkType::intptr_type(), "stack_size"); Value *stack_start = builder()->CreateSub(stack_limit, stack_size, "stack_start"); builder()->CreateCondBr( builder()->CreateAnd( builder()->CreateICmpUGE(addr, stack_start), builder()->CreateICmpULT(addr, stack_limit)), got_recursive, not_recursive); builder()->SetInsertPoint(got_recursive); builder()->CreateStore(LLVMValue::intptr_constant(0), monitor_header_addr); builder()->CreateBr(acquired_fast); // Create an edge for the state merge builder()->SetInsertPoint(acquired_fast); SharkState *fast_state = current_state()->copy(); builder()->CreateBr(lock_acquired); // It's not a recursive case so we need to drop into the runtime builder()->SetInsertPoint(not_recursive); call_vm( builder()->monitorenter(), monitor_addr, exception_action | EAM_MONITOR_FUDGE); BasicBlock *acquired_slow = builder()->GetInsertBlock(); builder()->CreateBr(lock_acquired); // All done builder()->SetInsertPoint(lock_acquired); current_state()->merge(fast_state, acquired_fast, acquired_slow); } void SharkTopLevelBlock::release_lock(int exception_action) { BasicBlock *not_recursive = function()->CreateBlock("not_recursive"); BasicBlock *released_fast = function()->CreateBlock("released_fast"); BasicBlock *slow_path = function()->CreateBlock("slow_path"); BasicBlock *lock_released = function()->CreateBlock("lock_released"); int monitor = num_monitors() - 1; Value *monitor_addr = stack()->monitor_addr(monitor); Value *monitor_object_addr = stack()->monitor_object_addr(monitor); Value *monitor_header_addr = stack()->monitor_header_addr(monitor); // If it is recursive then we're already done Value *disp = builder()->CreateLoad(monitor_header_addr); builder()->CreateCondBr( builder()->CreateICmpEQ(disp, LLVMValue::intptr_constant(0)), released_fast, not_recursive); // Try a simple unlock builder()->SetInsertPoint(not_recursive); Value *lock = builder()->CreatePtrToInt( monitor_header_addr, SharkType::intptr_type()); Value *lockee = builder()->CreateLoad(monitor_object_addr); Value *mark_addr = builder()->CreateAddressOfStructEntry( lockee, in_ByteSize(oopDesc::mark_offset_in_bytes()), PointerType::getUnqual(SharkType::intptr_type()), "mark_addr"); Value *check = builder()->CreateAtomicCmpXchg(mark_addr, lock, disp, llvm::Release); builder()->CreateCondBr( builder()->CreateICmpEQ(lock, check), released_fast, slow_path); // Create an edge for the state merge builder()->SetInsertPoint(released_fast); SharkState *fast_state = current_state()->copy(); builder()->CreateBr(lock_released); // Need to drop into the runtime to release this one builder()->SetInsertPoint(slow_path); call_vm(builder()->monitorexit(), monitor_addr, exception_action); BasicBlock *released_slow = builder()->GetInsertBlock(); builder()->CreateBr(lock_released); // All done builder()->SetInsertPoint(lock_released); current_state()->merge(fast_state, released_fast, released_slow); // The object slot is now dead set_num_monitors(monitor); }