1 /*
   2  * Copyright (c) 1997, 2012, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/classLoader.hpp"
  27 #include "classfile/javaClasses.hpp"
  28 #include "classfile/systemDictionary.hpp"
  29 #include "classfile/vmSymbols.hpp"
  30 #include "code/scopeDesc.hpp"
  31 #include "compiler/compileBroker.hpp"
  32 #include "interpreter/interpreter.hpp"
  33 #include "interpreter/linkResolver.hpp"
  34 #include "interpreter/oopMapCache.hpp"
  35 #include "jvmtifiles/jvmtiEnv.hpp"
  36 #include "memory/gcLocker.inline.hpp"
  37 #include "memory/metaspaceShared.hpp"
  38 #include "memory/oopFactory.hpp"
  39 #include "memory/universe.inline.hpp"
  40 #include "oops/instanceKlass.hpp"
  41 #include "oops/objArrayOop.hpp"
  42 #include "oops/oop.inline.hpp"
  43 #include "oops/symbol.hpp"
  44 #include "prims/jvm_misc.hpp"
  45 #include "prims/jvmtiExport.hpp"
  46 #include "prims/jvmtiThreadState.hpp"
  47 #include "prims/privilegedStack.hpp"
  48 #include "runtime/aprofiler.hpp"
  49 #include "runtime/arguments.hpp"
  50 #include "runtime/biasedLocking.hpp"
  51 #include "runtime/deoptimization.hpp"
  52 #include "runtime/fprofiler.hpp"
  53 #include "runtime/frame.inline.hpp"
  54 #include "runtime/init.hpp"
  55 #include "runtime/interfaceSupport.hpp"
  56 #include "runtime/java.hpp"
  57 #include "runtime/javaCalls.hpp"
  58 #include "runtime/jniPeriodicChecker.hpp"
  59 #include "runtime/memprofiler.hpp"
  60 #include "runtime/mutexLocker.hpp"
  61 #include "runtime/objectMonitor.hpp"
  62 #include "runtime/osThread.hpp"
  63 #include "runtime/safepoint.hpp"
  64 #include "runtime/sharedRuntime.hpp"
  65 #include "runtime/statSampler.hpp"
  66 #include "runtime/stubRoutines.hpp"
  67 #include "runtime/task.hpp"
  68 #include "runtime/threadCritical.hpp"
  69 #include "runtime/threadLocalStorage.hpp"
  70 #include "runtime/vframe.hpp"
  71 #include "runtime/vframeArray.hpp"
  72 #include "runtime/vframe_hp.hpp"
  73 #include "runtime/vmThread.hpp"
  74 #include "runtime/vm_operations.hpp"
  75 #include "services/attachListener.hpp"
  76 #include "services/management.hpp"
  77 #include "services/memTracker.hpp"
  78 #include "services/threadService.hpp"
  79 #include "trace/traceEventTypes.hpp"
  80 #include "utilities/defaultStream.hpp"
  81 #include "utilities/dtrace.hpp"
  82 #include "utilities/events.hpp"
  83 #include "utilities/preserveException.hpp"
  84 #ifdef TARGET_OS_FAMILY_linux
  85 # include "os_linux.inline.hpp"
  86 # include "thread_linux.inline.hpp"
  87 #endif
  88 #ifdef TARGET_OS_FAMILY_solaris
  89 # include "os_solaris.inline.hpp"
  90 # include "thread_solaris.inline.hpp"
  91 #endif
  92 #ifdef TARGET_OS_FAMILY_windows
  93 # include "os_windows.inline.hpp"
  94 # include "thread_windows.inline.hpp"
  95 #endif
  96 #ifdef TARGET_OS_FAMILY_bsd
  97 # include "os_bsd.inline.hpp"
  98 # include "thread_bsd.inline.hpp"
  99 #endif
 100 #ifndef SERIALGC
 101 #include "gc_implementation/concurrentMarkSweep/concurrentMarkSweepThread.hpp"
 102 #include "gc_implementation/g1/concurrentMarkThread.inline.hpp"
 103 #include "gc_implementation/parallelScavenge/pcTasks.hpp"
 104 #endif
 105 #ifdef COMPILER1
 106 #include "c1/c1_Compiler.hpp"
 107 #endif
 108 #ifdef COMPILER2
 109 #include "opto/c2compiler.hpp"
 110 #include "opto/idealGraphPrinter.hpp"
 111 #endif
 112 
 113 #ifdef DTRACE_ENABLED
 114 
 115 // Only bother with this argument setup if dtrace is available
 116 
 117 #ifndef USDT2
 118 HS_DTRACE_PROBE_DECL(hotspot, vm__init__begin);
 119 HS_DTRACE_PROBE_DECL(hotspot, vm__init__end);
 120 HS_DTRACE_PROBE_DECL5(hotspot, thread__start, char*, intptr_t,
 121   intptr_t, intptr_t, bool);
 122 HS_DTRACE_PROBE_DECL5(hotspot, thread__stop, char*, intptr_t,
 123   intptr_t, intptr_t, bool);
 124 
 125 #define DTRACE_THREAD_PROBE(probe, javathread)                             \
 126   {                                                                        \
 127     ResourceMark rm(this);                                                 \
 128     int len = 0;                                                           \
 129     const char* name = (javathread)->get_thread_name();                    \
 130     len = strlen(name);                                                    \
 131     HS_DTRACE_PROBE5(hotspot, thread__##probe,                             \
 132       name, len,                                                           \
 133       java_lang_Thread::thread_id((javathread)->threadObj()),              \
 134       (javathread)->osthread()->thread_id(),                               \
 135       java_lang_Thread::is_daemon((javathread)->threadObj()));             \
 136   }
 137 
 138 #else /* USDT2 */
 139 
 140 #define HOTSPOT_THREAD_PROBE_start HOTSPOT_THREAD_PROBE_START
 141 #define HOTSPOT_THREAD_PROBE_stop HOTSPOT_THREAD_PROBE_STOP
 142 
 143 #define DTRACE_THREAD_PROBE(probe, javathread)                             \
 144   {                                                                        \
 145     ResourceMark rm(this);                                                 \
 146     int len = 0;                                                           \
 147     const char* name = (javathread)->get_thread_name();                    \
 148     len = strlen(name);                                                    \
 149     HOTSPOT_THREAD_PROBE_##probe(  /* probe = start, stop */               \
 150       (char *) name, len,                                                           \
 151       java_lang_Thread::thread_id((javathread)->threadObj()),              \
 152       (uintptr_t) (javathread)->osthread()->thread_id(),                               \
 153       java_lang_Thread::is_daemon((javathread)->threadObj()));             \
 154   }
 155 
 156 #endif /* USDT2 */
 157 
 158 #else //  ndef DTRACE_ENABLED
 159 
 160 #define DTRACE_THREAD_PROBE(probe, javathread)
 161 
 162 #endif // ndef DTRACE_ENABLED
 163 
 164 
 165 // Class hierarchy
 166 // - Thread
 167 //   - VMThread
 168 //   - WatcherThread
 169 //   - ConcurrentMarkSweepThread
 170 //   - JavaThread
 171 //     - CompilerThread
 172 
 173 // ======= Thread ========
 174 // Support for forcing alignment of thread objects for biased locking
 175 void* Thread::allocate(size_t size, bool throw_excpt, MEMFLAGS flags) {
 176   if (UseBiasedLocking) {
 177     const int alignment = markOopDesc::biased_lock_alignment;
 178     size_t aligned_size = size + (alignment - sizeof(intptr_t));
 179     void* real_malloc_addr = throw_excpt? AllocateHeap(aligned_size, flags, CURRENT_PC)
 180                                           : AllocateHeap(aligned_size, flags, CURRENT_PC,
 181                                               AllocFailStrategy::RETURN_NULL);
 182     void* aligned_addr     = (void*) align_size_up((intptr_t) real_malloc_addr, alignment);
 183     assert(((uintptr_t) aligned_addr + (uintptr_t) size) <=
 184            ((uintptr_t) real_malloc_addr + (uintptr_t) aligned_size),
 185            "JavaThread alignment code overflowed allocated storage");
 186     if (TraceBiasedLocking) {
 187       if (aligned_addr != real_malloc_addr)
 188         tty->print_cr("Aligned thread " INTPTR_FORMAT " to " INTPTR_FORMAT,
 189                       real_malloc_addr, aligned_addr);
 190     }
 191     ((Thread*) aligned_addr)->_real_malloc_address = real_malloc_addr;
 192     return aligned_addr;
 193   } else {
 194     return throw_excpt? AllocateHeap(size, flags, CURRENT_PC)
 195                        : AllocateHeap(size, flags, CURRENT_PC, AllocFailStrategy::RETURN_NULL);
 196   }
 197 }
 198 
 199 void Thread::operator delete(void* p) {
 200   if (UseBiasedLocking) {
 201     void* real_malloc_addr = ((Thread*) p)->_real_malloc_address;
 202     FreeHeap(real_malloc_addr, mtThread);
 203   } else {
 204     FreeHeap(p, mtThread);
 205   }
 206 }
 207 
 208 
 209 // Base class for all threads: VMThread, WatcherThread, ConcurrentMarkSweepThread,
 210 // JavaThread
 211 
 212 
 213 Thread::Thread() {
 214   // stack and get_thread
 215   set_stack_base(NULL);
 216   set_stack_size(0);
 217   set_self_raw_id(0);
 218   set_lgrp_id(-1);
 219 
 220   // allocated data structures
 221   set_osthread(NULL);
 222   set_resource_area(new (mtThread)ResourceArea());
 223   set_handle_area(new (mtThread) HandleArea(NULL));
 224   set_metadata_handles(new (ResourceObj::C_HEAP, mtClass) GrowableArray<Metadata*>(300, true));
 225   set_active_handles(NULL);
 226   set_free_handle_block(NULL);
 227   set_last_handle_mark(NULL);
 228 
 229   // This initial value ==> never claimed.
 230   _oops_do_parity = 0;
 231 
 232   // the handle mark links itself to last_handle_mark
 233   new HandleMark(this);
 234 
 235   // plain initialization
 236   debug_only(_owned_locks = NULL;)
 237   debug_only(_allow_allocation_count = 0;)
 238   NOT_PRODUCT(_allow_safepoint_count = 0;)
 239   NOT_PRODUCT(_skip_gcalot = false;)
 240   CHECK_UNHANDLED_OOPS_ONLY(_gc_locked_out_count = 0;)
 241   _jvmti_env_iteration_count = 0;
 242   set_allocated_bytes(0);
 243   set_trace_buffer(NULL);
 244   _vm_operation_started_count = 0;
 245   _vm_operation_completed_count = 0;
 246   _current_pending_monitor = NULL;
 247   _current_pending_monitor_is_from_java = true;
 248   _current_waiting_monitor = NULL;
 249   _num_nested_signal = 0;
 250   omFreeList = NULL ;
 251   omFreeCount = 0 ;
 252   omFreeProvision = 32 ;
 253   omInUseList = NULL ;
 254   omInUseCount = 0 ;
 255 
 256 #ifdef ASSERT
 257   _visited_for_critical_count = false;
 258 #endif
 259 
 260   _SR_lock = new Monitor(Mutex::suspend_resume, "SR_lock", true);
 261   _suspend_flags = 0;
 262 
 263   // thread-specific hashCode stream generator state - Marsaglia shift-xor form
 264   _hashStateX = os::random() ;
 265   _hashStateY = 842502087 ;
 266   _hashStateZ = 0x8767 ;    // (int)(3579807591LL & 0xffff) ;
 267   _hashStateW = 273326509 ;
 268 
 269   _OnTrap   = 0 ;
 270   _schedctl = NULL ;
 271   _Stalled  = 0 ;
 272   _TypeTag  = 0x2BAD ;
 273 
 274   // Many of the following fields are effectively final - immutable
 275   // Note that nascent threads can't use the Native Monitor-Mutex
 276   // construct until the _MutexEvent is initialized ...
 277   // CONSIDER: instead of using a fixed set of purpose-dedicated ParkEvents
 278   // we might instead use a stack of ParkEvents that we could provision on-demand.
 279   // The stack would act as a cache to avoid calls to ParkEvent::Allocate()
 280   // and ::Release()
 281   _ParkEvent   = ParkEvent::Allocate (this) ;
 282   _SleepEvent  = ParkEvent::Allocate (this) ;
 283   _MutexEvent  = ParkEvent::Allocate (this) ;
 284   _MuxEvent    = ParkEvent::Allocate (this) ;
 285 
 286 #ifdef CHECK_UNHANDLED_OOPS
 287   if (CheckUnhandledOops) {
 288     _unhandled_oops = new UnhandledOops(this);
 289   }
 290 #endif // CHECK_UNHANDLED_OOPS
 291 #ifdef ASSERT
 292   if (UseBiasedLocking) {
 293     assert((((uintptr_t) this) & (markOopDesc::biased_lock_alignment - 1)) == 0, "forced alignment of thread object failed");
 294     assert(this == _real_malloc_address ||
 295            this == (void*) align_size_up((intptr_t) _real_malloc_address, markOopDesc::biased_lock_alignment),
 296            "bug in forced alignment of thread objects");
 297   }
 298 #endif /* ASSERT */
 299 }
 300 
 301 void Thread::initialize_thread_local_storage() {
 302   // Note: Make sure this method only calls
 303   // non-blocking operations. Otherwise, it might not work
 304   // with the thread-startup/safepoint interaction.
 305 
 306   // During Java thread startup, safepoint code should allow this
 307   // method to complete because it may need to allocate memory to
 308   // store information for the new thread.
 309 
 310   // initialize structure dependent on thread local storage
 311   ThreadLocalStorage::set_thread(this);
 312 }
 313 
 314 void Thread::record_stack_base_and_size() {
 315   set_stack_base(os::current_stack_base());
 316   set_stack_size(os::current_stack_size());
 317   // CR 7190089: on Solaris, primordial thread's stack is adjusted
 318   // in initialize_thread(). Without the adjustment, stack size is
 319   // incorrect if stack is set to unlimited (ulimit -s unlimited).
 320   // So far, only Solaris has real implementation of initialize_thread().
 321   //
 322   // set up any platform-specific state.
 323   os::initialize_thread(this);
 324 
 325 #if INCLUDE_NMT
 326   // record thread's native stack, stack grows downward
 327   address stack_low_addr = stack_base() - stack_size();
 328   MemTracker::record_thread_stack(stack_low_addr, stack_size(), this,
 329       CURRENT_PC);
 330 #endif // INCLUDE_NMT
 331 }
 332 
 333 
 334 Thread::~Thread() {
 335   // Reclaim the objectmonitors from the omFreeList of the moribund thread.
 336   ObjectSynchronizer::omFlush (this) ;
 337 
 338   // stack_base can be NULL if the thread is never started or exited before
 339   // record_stack_base_and_size called. Although, we would like to ensure
 340   // that all started threads do call record_stack_base_and_size(), there is
 341   // not proper way to enforce that.
 342 #if INCLUDE_NMT
 343   if (_stack_base != NULL) {
 344     address low_stack_addr = stack_base() - stack_size();
 345     MemTracker::release_thread_stack(low_stack_addr, stack_size(), this);
 346 #ifdef ASSERT
 347     set_stack_base(NULL);
 348 #endif
 349   }
 350 #endif // INCLUDE_NMT
 351 
 352   // deallocate data structures
 353   delete resource_area();
 354   // since the handle marks are using the handle area, we have to deallocated the root
 355   // handle mark before deallocating the thread's handle area,
 356   assert(last_handle_mark() != NULL, "check we have an element");
 357   delete last_handle_mark();
 358   assert(last_handle_mark() == NULL, "check we have reached the end");
 359 
 360   // It's possible we can encounter a null _ParkEvent, etc., in stillborn threads.
 361   // We NULL out the fields for good hygiene.
 362   ParkEvent::Release (_ParkEvent)   ; _ParkEvent   = NULL ;
 363   ParkEvent::Release (_SleepEvent)  ; _SleepEvent  = NULL ;
 364   ParkEvent::Release (_MutexEvent)  ; _MutexEvent  = NULL ;
 365   ParkEvent::Release (_MuxEvent)    ; _MuxEvent    = NULL ;
 366 
 367   delete handle_area();
 368   delete metadata_handles();
 369 
 370   // osthread() can be NULL, if creation of thread failed.
 371   if (osthread() != NULL) os::free_thread(osthread());
 372 
 373   delete _SR_lock;
 374 
 375   // clear thread local storage if the Thread is deleting itself
 376   if (this == Thread::current()) {
 377     ThreadLocalStorage::set_thread(NULL);
 378   } else {
 379     // In the case where we're not the current thread, invalidate all the
 380     // caches in case some code tries to get the current thread or the
 381     // thread that was destroyed, and gets stale information.
 382     ThreadLocalStorage::invalidate_all();
 383   }
 384   CHECK_UNHANDLED_OOPS_ONLY(if (CheckUnhandledOops) delete unhandled_oops();)
 385 }
 386 
 387 // NOTE: dummy function for assertion purpose.
 388 void Thread::run() {
 389   ShouldNotReachHere();
 390 }
 391 
 392 #ifdef ASSERT
 393 // Private method to check for dangling thread pointer
 394 void check_for_dangling_thread_pointer(Thread *thread) {
 395  assert(!thread->is_Java_thread() || Thread::current() == thread || Threads_lock->owned_by_self(),
 396          "possibility of dangling Thread pointer");
 397 }
 398 #endif
 399 
 400 
 401 #ifndef PRODUCT
 402 // Tracing method for basic thread operations
 403 void Thread::trace(const char* msg, const Thread* const thread) {
 404   if (!TraceThreadEvents) return;
 405   ResourceMark rm;
 406   ThreadCritical tc;
 407   const char *name = "non-Java thread";
 408   int prio = -1;
 409   if (thread->is_Java_thread()
 410       && !thread->is_Compiler_thread()) {
 411     // The Threads_lock must be held to get information about
 412     // this thread but may not be in some situations when
 413     // tracing  thread events.
 414     bool release_Threads_lock = false;
 415     if (!Threads_lock->owned_by_self()) {
 416       Threads_lock->lock();
 417       release_Threads_lock = true;
 418     }
 419     JavaThread* jt = (JavaThread *)thread;
 420     name = (char *)jt->get_thread_name();
 421     oop thread_oop = jt->threadObj();
 422     if (thread_oop != NULL) {
 423       prio = java_lang_Thread::priority(thread_oop);
 424     }
 425     if (release_Threads_lock) {
 426       Threads_lock->unlock();
 427     }
 428   }
 429   tty->print_cr("Thread::%s " INTPTR_FORMAT " [%lx] %s (prio: %d)", msg, thread, thread->osthread()->thread_id(), name, prio);
 430 }
 431 #endif
 432 
 433 
 434 ThreadPriority Thread::get_priority(const Thread* const thread) {
 435   trace("get priority", thread);
 436   ThreadPriority priority;
 437   // Can return an error!
 438   (void)os::get_priority(thread, priority);
 439   assert(MinPriority <= priority && priority <= MaxPriority, "non-Java priority found");
 440   return priority;
 441 }
 442 
 443 void Thread::set_priority(Thread* thread, ThreadPriority priority) {
 444   trace("set priority", thread);
 445   debug_only(check_for_dangling_thread_pointer(thread);)
 446   // Can return an error!
 447   (void)os::set_priority(thread, priority);
 448 }
 449 
 450 
 451 void Thread::start(Thread* thread) {
 452   trace("start", thread);
 453   // Start is different from resume in that its safety is guaranteed by context or
 454   // being called from a Java method synchronized on the Thread object.
 455   if (!DisableStartThread) {
 456     if (thread->is_Java_thread()) {
 457       // Initialize the thread state to RUNNABLE before starting this thread.
 458       // Can not set it after the thread started because we do not know the
 459       // exact thread state at that time. It could be in MONITOR_WAIT or
 460       // in SLEEPING or some other state.
 461       java_lang_Thread::set_thread_status(((JavaThread*)thread)->threadObj(),
 462                                           java_lang_Thread::RUNNABLE);
 463     }
 464     os::start_thread(thread);
 465   }
 466 }
 467 
 468 // Enqueue a VM_Operation to do the job for us - sometime later
 469 void Thread::send_async_exception(oop java_thread, oop java_throwable) {
 470   VM_ThreadStop* vm_stop = new VM_ThreadStop(java_thread, java_throwable);
 471   VMThread::execute(vm_stop);
 472 }
 473 
 474 
 475 //
 476 // Check if an external suspend request has completed (or has been
 477 // cancelled). Returns true if the thread is externally suspended and
 478 // false otherwise.
 479 //
 480 // The bits parameter returns information about the code path through
 481 // the routine. Useful for debugging:
 482 //
 483 // set in is_ext_suspend_completed():
 484 // 0x00000001 - routine was entered
 485 // 0x00000010 - routine return false at end
 486 // 0x00000100 - thread exited (return false)
 487 // 0x00000200 - suspend request cancelled (return false)
 488 // 0x00000400 - thread suspended (return true)
 489 // 0x00001000 - thread is in a suspend equivalent state (return true)
 490 // 0x00002000 - thread is native and walkable (return true)
 491 // 0x00004000 - thread is native_trans and walkable (needed retry)
 492 //
 493 // set in wait_for_ext_suspend_completion():
 494 // 0x00010000 - routine was entered
 495 // 0x00020000 - suspend request cancelled before loop (return false)
 496 // 0x00040000 - thread suspended before loop (return true)
 497 // 0x00080000 - suspend request cancelled in loop (return false)
 498 // 0x00100000 - thread suspended in loop (return true)
 499 // 0x00200000 - suspend not completed during retry loop (return false)
 500 //
 501 
 502 // Helper class for tracing suspend wait debug bits.
 503 //
 504 // 0x00000100 indicates that the target thread exited before it could
 505 // self-suspend which is not a wait failure. 0x00000200, 0x00020000 and
 506 // 0x00080000 each indicate a cancelled suspend request so they don't
 507 // count as wait failures either.
 508 #define DEBUG_FALSE_BITS (0x00000010 | 0x00200000)
 509 
 510 class TraceSuspendDebugBits : public StackObj {
 511  private:
 512   JavaThread * jt;
 513   bool         is_wait;
 514   bool         called_by_wait;  // meaningful when !is_wait
 515   uint32_t *   bits;
 516 
 517  public:
 518   TraceSuspendDebugBits(JavaThread *_jt, bool _is_wait, bool _called_by_wait,
 519                         uint32_t *_bits) {
 520     jt             = _jt;
 521     is_wait        = _is_wait;
 522     called_by_wait = _called_by_wait;
 523     bits           = _bits;
 524   }
 525 
 526   ~TraceSuspendDebugBits() {
 527     if (!is_wait) {
 528 #if 1
 529       // By default, don't trace bits for is_ext_suspend_completed() calls.
 530       // That trace is very chatty.
 531       return;
 532 #else
 533       if (!called_by_wait) {
 534         // If tracing for is_ext_suspend_completed() is enabled, then only
 535         // trace calls to it from wait_for_ext_suspend_completion()
 536         return;
 537       }
 538 #endif
 539     }
 540 
 541     if (AssertOnSuspendWaitFailure || TraceSuspendWaitFailures) {
 542       if (bits != NULL && (*bits & DEBUG_FALSE_BITS) != 0) {
 543         MutexLocker ml(Threads_lock);  // needed for get_thread_name()
 544         ResourceMark rm;
 545 
 546         tty->print_cr(
 547             "Failed wait_for_ext_suspend_completion(thread=%s, debug_bits=%x)",
 548             jt->get_thread_name(), *bits);
 549 
 550         guarantee(!AssertOnSuspendWaitFailure, "external suspend wait failed");
 551       }
 552     }
 553   }
 554 };
 555 #undef DEBUG_FALSE_BITS
 556 
 557 
 558 bool JavaThread::is_ext_suspend_completed(bool called_by_wait, int delay, uint32_t *bits) {
 559   TraceSuspendDebugBits tsdb(this, false /* !is_wait */, called_by_wait, bits);
 560 
 561   bool did_trans_retry = false;  // only do thread_in_native_trans retry once
 562   bool do_trans_retry;           // flag to force the retry
 563 
 564   *bits |= 0x00000001;
 565 
 566   do {
 567     do_trans_retry = false;
 568 
 569     if (is_exiting()) {
 570       // Thread is in the process of exiting. This is always checked
 571       // first to reduce the risk of dereferencing a freed JavaThread.
 572       *bits |= 0x00000100;
 573       return false;
 574     }
 575 
 576     if (!is_external_suspend()) {
 577       // Suspend request is cancelled. This is always checked before
 578       // is_ext_suspended() to reduce the risk of a rogue resume
 579       // confusing the thread that made the suspend request.
 580       *bits |= 0x00000200;
 581       return false;
 582     }
 583 
 584     if (is_ext_suspended()) {
 585       // thread is suspended
 586       *bits |= 0x00000400;
 587       return true;
 588     }
 589 
 590     // Now that we no longer do hard suspends of threads running
 591     // native code, the target thread can be changing thread state
 592     // while we are in this routine:
 593     //
 594     //   _thread_in_native -> _thread_in_native_trans -> _thread_blocked
 595     //
 596     // We save a copy of the thread state as observed at this moment
 597     // and make our decision about suspend completeness based on the
 598     // copy. This closes the race where the thread state is seen as
 599     // _thread_in_native_trans in the if-thread_blocked check, but is
 600     // seen as _thread_blocked in if-thread_in_native_trans check.
 601     JavaThreadState save_state = thread_state();
 602 
 603     if (save_state == _thread_blocked && is_suspend_equivalent()) {
 604       // If the thread's state is _thread_blocked and this blocking
 605       // condition is known to be equivalent to a suspend, then we can
 606       // consider the thread to be externally suspended. This means that
 607       // the code that sets _thread_blocked has been modified to do
 608       // self-suspension if the blocking condition releases. We also
 609       // used to check for CONDVAR_WAIT here, but that is now covered by
 610       // the _thread_blocked with self-suspension check.
 611       //
 612       // Return true since we wouldn't be here unless there was still an
 613       // external suspend request.
 614       *bits |= 0x00001000;
 615       return true;
 616     } else if (save_state == _thread_in_native && frame_anchor()->walkable()) {
 617       // Threads running native code will self-suspend on native==>VM/Java
 618       // transitions. If its stack is walkable (should always be the case
 619       // unless this function is called before the actual java_suspend()
 620       // call), then the wait is done.
 621       *bits |= 0x00002000;
 622       return true;
 623     } else if (!called_by_wait && !did_trans_retry &&
 624                save_state == _thread_in_native_trans &&
 625                frame_anchor()->walkable()) {
 626       // The thread is transitioning from thread_in_native to another
 627       // thread state. check_safepoint_and_suspend_for_native_trans()
 628       // will force the thread to self-suspend. If it hasn't gotten
 629       // there yet we may have caught the thread in-between the native
 630       // code check above and the self-suspend. Lucky us. If we were
 631       // called by wait_for_ext_suspend_completion(), then it
 632       // will be doing the retries so we don't have to.
 633       //
 634       // Since we use the saved thread state in the if-statement above,
 635       // there is a chance that the thread has already transitioned to
 636       // _thread_blocked by the time we get here. In that case, we will
 637       // make a single unnecessary pass through the logic below. This
 638       // doesn't hurt anything since we still do the trans retry.
 639 
 640       *bits |= 0x00004000;
 641 
 642       // Once the thread leaves thread_in_native_trans for another
 643       // thread state, we break out of this retry loop. We shouldn't
 644       // need this flag to prevent us from getting back here, but
 645       // sometimes paranoia is good.
 646       did_trans_retry = true;
 647 
 648       // We wait for the thread to transition to a more usable state.
 649       for (int i = 1; i <= SuspendRetryCount; i++) {
 650         // We used to do an "os::yield_all(i)" call here with the intention
 651         // that yielding would increase on each retry. However, the parameter
 652         // is ignored on Linux which means the yield didn't scale up. Waiting
 653         // on the SR_lock below provides a much more predictable scale up for
 654         // the delay. It also provides a simple/direct point to check for any
 655         // safepoint requests from the VMThread
 656 
 657         // temporarily drops SR_lock while doing wait with safepoint check
 658         // (if we're a JavaThread - the WatcherThread can also call this)
 659         // and increase delay with each retry
 660         SR_lock()->wait(!Thread::current()->is_Java_thread(), i * delay);
 661 
 662         // check the actual thread state instead of what we saved above
 663         if (thread_state() != _thread_in_native_trans) {
 664           // the thread has transitioned to another thread state so
 665           // try all the checks (except this one) one more time.
 666           do_trans_retry = true;
 667           break;
 668         }
 669       } // end retry loop
 670 
 671 
 672     }
 673   } while (do_trans_retry);
 674 
 675   *bits |= 0x00000010;
 676   return false;
 677 }
 678 
 679 //
 680 // Wait for an external suspend request to complete (or be cancelled).
 681 // Returns true if the thread is externally suspended and false otherwise.
 682 //
 683 bool JavaThread::wait_for_ext_suspend_completion(int retries, int delay,
 684        uint32_t *bits) {
 685   TraceSuspendDebugBits tsdb(this, true /* is_wait */,
 686                              false /* !called_by_wait */, bits);
 687 
 688   // local flag copies to minimize SR_lock hold time
 689   bool is_suspended;
 690   bool pending;
 691   uint32_t reset_bits;
 692 
 693   // set a marker so is_ext_suspend_completed() knows we are the caller
 694   *bits |= 0x00010000;
 695 
 696   // We use reset_bits to reinitialize the bits value at the top of
 697   // each retry loop. This allows the caller to make use of any
 698   // unused bits for their own marking purposes.
 699   reset_bits = *bits;
 700 
 701   {
 702     MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
 703     is_suspended = is_ext_suspend_completed(true /* called_by_wait */,
 704                                             delay, bits);
 705     pending = is_external_suspend();
 706   }
 707   // must release SR_lock to allow suspension to complete
 708 
 709   if (!pending) {
 710     // A cancelled suspend request is the only false return from
 711     // is_ext_suspend_completed() that keeps us from entering the
 712     // retry loop.
 713     *bits |= 0x00020000;
 714     return false;
 715   }
 716 
 717   if (is_suspended) {
 718     *bits |= 0x00040000;
 719     return true;
 720   }
 721 
 722   for (int i = 1; i <= retries; i++) {
 723     *bits = reset_bits;  // reinit to only track last retry
 724 
 725     // We used to do an "os::yield_all(i)" call here with the intention
 726     // that yielding would increase on each retry. However, the parameter
 727     // is ignored on Linux which means the yield didn't scale up. Waiting
 728     // on the SR_lock below provides a much more predictable scale up for
 729     // the delay. It also provides a simple/direct point to check for any
 730     // safepoint requests from the VMThread
 731 
 732     {
 733       MutexLocker ml(SR_lock());
 734       // wait with safepoint check (if we're a JavaThread - the WatcherThread
 735       // can also call this)  and increase delay with each retry
 736       SR_lock()->wait(!Thread::current()->is_Java_thread(), i * delay);
 737 
 738       is_suspended = is_ext_suspend_completed(true /* called_by_wait */,
 739                                               delay, bits);
 740 
 741       // It is possible for the external suspend request to be cancelled
 742       // (by a resume) before the actual suspend operation is completed.
 743       // Refresh our local copy to see if we still need to wait.
 744       pending = is_external_suspend();
 745     }
 746 
 747     if (!pending) {
 748       // A cancelled suspend request is the only false return from
 749       // is_ext_suspend_completed() that keeps us from staying in the
 750       // retry loop.
 751       *bits |= 0x00080000;
 752       return false;
 753     }
 754 
 755     if (is_suspended) {
 756       *bits |= 0x00100000;
 757       return true;
 758     }
 759   } // end retry loop
 760 
 761   // thread did not suspend after all our retries
 762   *bits |= 0x00200000;
 763   return false;
 764 }
 765 
 766 #ifndef PRODUCT
 767 void JavaThread::record_jump(address target, address instr, const char* file, int line) {
 768 
 769   // This should not need to be atomic as the only way for simultaneous
 770   // updates is via interrupts. Even then this should be rare or non-existant
 771   // and we don't care that much anyway.
 772 
 773   int index = _jmp_ring_index;
 774   _jmp_ring_index = (index + 1 ) & (jump_ring_buffer_size - 1);
 775   _jmp_ring[index]._target = (intptr_t) target;
 776   _jmp_ring[index]._instruction = (intptr_t) instr;
 777   _jmp_ring[index]._file = file;
 778   _jmp_ring[index]._line = line;
 779 }
 780 #endif /* PRODUCT */
 781 
 782 // Called by flat profiler
 783 // Callers have already called wait_for_ext_suspend_completion
 784 // The assertion for that is currently too complex to put here:
 785 bool JavaThread::profile_last_Java_frame(frame* _fr) {
 786   bool gotframe = false;
 787   // self suspension saves needed state.
 788   if (has_last_Java_frame() && _anchor.walkable()) {
 789      *_fr = pd_last_frame();
 790      gotframe = true;
 791   }
 792   return gotframe;
 793 }
 794 
 795 void Thread::interrupt(Thread* thread) {
 796   trace("interrupt", thread);
 797   debug_only(check_for_dangling_thread_pointer(thread);)
 798   os::interrupt(thread);
 799 }
 800 
 801 bool Thread::is_interrupted(Thread* thread, bool clear_interrupted) {
 802   trace("is_interrupted", thread);
 803   debug_only(check_for_dangling_thread_pointer(thread);)
 804   // Note:  If clear_interrupted==false, this simply fetches and
 805   // returns the value of the field osthread()->interrupted().
 806   return os::is_interrupted(thread, clear_interrupted);
 807 }
 808 
 809 
 810 // GC Support
 811 bool Thread::claim_oops_do_par_case(int strong_roots_parity) {
 812   jint thread_parity = _oops_do_parity;
 813   if (thread_parity != strong_roots_parity) {
 814     jint res = Atomic::cmpxchg(strong_roots_parity, &_oops_do_parity, thread_parity);
 815     if (res == thread_parity) {
 816       return true;
 817     } else {
 818       guarantee(res == strong_roots_parity, "Or else what?");
 819       assert(SharedHeap::heap()->workers()->active_workers() > 0,
 820          "Should only fail when parallel.");
 821       return false;
 822     }
 823   }
 824   assert(SharedHeap::heap()->workers()->active_workers() > 0,
 825          "Should only fail when parallel.");
 826   return false;
 827 }
 828 
 829 void Thread::oops_do(OopClosure* f, CodeBlobClosure* cf) {
 830   active_handles()->oops_do(f);
 831   // Do oop for ThreadShadow
 832   f->do_oop((oop*)&_pending_exception);
 833   handle_area()->oops_do(f);
 834 }
 835 
 836 void Thread::nmethods_do(CodeBlobClosure* cf) {
 837   // no nmethods in a generic thread...
 838 }
 839 
 840 void Thread::metadata_do(void f(Metadata*)) {
 841   if (metadata_handles() != NULL) {
 842     for (int i = 0; i< metadata_handles()->length(); i++) {
 843       f(metadata_handles()->at(i));
 844     }
 845   }
 846 }
 847 
 848 void Thread::print_on(outputStream* st) const {
 849   // get_priority assumes osthread initialized
 850   if (osthread() != NULL) {
 851     int os_prio;
 852     if (os::get_native_priority(this, &os_prio) == OS_OK) {
 853       st->print("os_prio=%d ", os_prio);
 854     }
 855     st->print("tid=" INTPTR_FORMAT " ", this);
 856     osthread()->print_on(st);
 857   }
 858   debug_only(if (WizardMode) print_owned_locks_on(st);)
 859 }
 860 
 861 // Thread::print_on_error() is called by fatal error handler. Don't use
 862 // any lock or allocate memory.
 863 void Thread::print_on_error(outputStream* st, char* buf, int buflen) const {
 864   if      (is_VM_thread())                  st->print("VMThread");
 865   else if (is_Compiler_thread())            st->print("CompilerThread");
 866   else if (is_Java_thread())                st->print("JavaThread");
 867   else if (is_GC_task_thread())             st->print("GCTaskThread");
 868   else if (is_Watcher_thread())             st->print("WatcherThread");
 869   else if (is_ConcurrentGC_thread())        st->print("ConcurrentGCThread");
 870   else st->print("Thread");
 871 
 872   st->print(" [stack: " PTR_FORMAT "," PTR_FORMAT "]",
 873             _stack_base - _stack_size, _stack_base);
 874 
 875   if (osthread()) {
 876     st->print(" [id=%d]", osthread()->thread_id());
 877   }
 878 }
 879 
 880 #ifdef ASSERT
 881 void Thread::print_owned_locks_on(outputStream* st) const {
 882   Monitor *cur = _owned_locks;
 883   if (cur == NULL) {
 884     st->print(" (no locks) ");
 885   } else {
 886     st->print_cr(" Locks owned:");
 887     while(cur) {
 888       cur->print_on(st);
 889       cur = cur->next();
 890     }
 891   }
 892 }
 893 
 894 static int ref_use_count  = 0;
 895 
 896 bool Thread::owns_locks_but_compiled_lock() const {
 897   for(Monitor *cur = _owned_locks; cur; cur = cur->next()) {
 898     if (cur != Compile_lock) return true;
 899   }
 900   return false;
 901 }
 902 
 903 
 904 #endif
 905 
 906 #ifndef PRODUCT
 907 
 908 // The flag: potential_vm_operation notifies if this particular safepoint state could potential
 909 // invoke the vm-thread (i.e., and oop allocation). In that case, we also have to make sure that
 910 // no threads which allow_vm_block's are held
 911 void Thread::check_for_valid_safepoint_state(bool potential_vm_operation) {
 912     // Check if current thread is allowed to block at a safepoint
 913     if (!(_allow_safepoint_count == 0))
 914       fatal("Possible safepoint reached by thread that does not allow it");
 915     if (is_Java_thread() && ((JavaThread*)this)->thread_state() != _thread_in_vm) {
 916       fatal("LEAF method calling lock?");
 917     }
 918 
 919 #ifdef ASSERT
 920     if (potential_vm_operation && is_Java_thread()
 921         && !Universe::is_bootstrapping()) {
 922       // Make sure we do not hold any locks that the VM thread also uses.
 923       // This could potentially lead to deadlocks
 924       for(Monitor *cur = _owned_locks; cur; cur = cur->next()) {
 925         // Threads_lock is special, since the safepoint synchronization will not start before this is
 926         // acquired. Hence, a JavaThread cannot be holding it at a safepoint. So is VMOperationRequest_lock,
 927         // since it is used to transfer control between JavaThreads and the VMThread
 928         // Do not *exclude* any locks unless you are absolutly sure it is correct. Ask someone else first!
 929         if ( (cur->allow_vm_block() &&
 930               cur != Threads_lock &&
 931               cur != Compile_lock &&               // Temporary: should not be necessary when we get spearate compilation
 932               cur != VMOperationRequest_lock &&
 933               cur != VMOperationQueue_lock) ||
 934               cur->rank() == Mutex::special) {
 935           warning("Thread holding lock at safepoint that vm can block on: %s", cur->name());
 936         }
 937       }
 938     }
 939 
 940     if (GCALotAtAllSafepoints) {
 941       // We could enter a safepoint here and thus have a gc
 942       InterfaceSupport::check_gc_alot();
 943     }
 944 #endif
 945 }
 946 #endif
 947 
 948 bool Thread::is_in_stack(address adr) const {
 949   assert(Thread::current() == this, "is_in_stack can only be called from current thread");
 950   address end = os::current_stack_pointer();
 951   // Allow non Java threads to call this without stack_base
 952   if (_stack_base == NULL) return true;
 953   if (stack_base() >= adr && adr >= end) return true;
 954 
 955   return false;
 956 }
 957 
 958 
 959 // We had to move these methods here, because vm threads get into ObjectSynchronizer::enter
 960 // However, there is a note in JavaThread::is_lock_owned() about the VM threads not being
 961 // used for compilation in the future. If that change is made, the need for these methods
 962 // should be revisited, and they should be removed if possible.
 963 
 964 bool Thread::is_lock_owned(address adr) const {
 965   return on_local_stack(adr);
 966 }
 967 
 968 bool Thread::set_as_starting_thread() {
 969  // NOTE: this must be called inside the main thread.
 970   return os::create_main_thread((JavaThread*)this);
 971 }
 972 
 973 static void initialize_class(Symbol* class_name, TRAPS) {
 974   Klass* klass = SystemDictionary::resolve_or_fail(class_name, true, CHECK);
 975   InstanceKlass::cast(klass)->initialize(CHECK);
 976 }
 977 
 978 
 979 // Creates the initial ThreadGroup
 980 static Handle create_initial_thread_group(TRAPS) {
 981   Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_ThreadGroup(), true, CHECK_NH);
 982   instanceKlassHandle klass (THREAD, k);
 983 
 984   Handle system_instance = klass->allocate_instance_handle(CHECK_NH);
 985   {
 986     JavaValue result(T_VOID);
 987     JavaCalls::call_special(&result,
 988                             system_instance,
 989                             klass,
 990                             vmSymbols::object_initializer_name(),
 991                             vmSymbols::void_method_signature(),
 992                             CHECK_NH);
 993   }
 994   Universe::set_system_thread_group(system_instance());
 995 
 996   Handle main_instance = klass->allocate_instance_handle(CHECK_NH);
 997   {
 998     JavaValue result(T_VOID);
 999     Handle string = java_lang_String::create_from_str("main", CHECK_NH);
1000     JavaCalls::call_special(&result,
1001                             main_instance,
1002                             klass,
1003                             vmSymbols::object_initializer_name(),
1004                             vmSymbols::threadgroup_string_void_signature(),
1005                             system_instance,
1006                             string,
1007                             CHECK_NH);
1008   }
1009   return main_instance;
1010 }
1011 
1012 // Creates the initial Thread
1013 static oop create_initial_thread(Handle thread_group, JavaThread* thread, TRAPS) {
1014   Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_Thread(), true, CHECK_NULL);
1015   instanceKlassHandle klass (THREAD, k);
1016   instanceHandle thread_oop = klass->allocate_instance_handle(CHECK_NULL);
1017 
1018   java_lang_Thread::set_thread(thread_oop(), thread);
1019   java_lang_Thread::set_priority(thread_oop(), NormPriority);
1020   thread->set_threadObj(thread_oop());
1021 
1022   Handle string = java_lang_String::create_from_str("main", CHECK_NULL);
1023 
1024   JavaValue result(T_VOID);
1025   JavaCalls::call_special(&result, thread_oop,
1026                                    klass,
1027                                    vmSymbols::object_initializer_name(),
1028                                    vmSymbols::threadgroup_string_void_signature(),
1029                                    thread_group,
1030                                    string,
1031                                    CHECK_NULL);
1032   return thread_oop();
1033 }
1034 
1035 static void call_initializeSystemClass(TRAPS) {
1036   Klass* k =  SystemDictionary::resolve_or_fail(vmSymbols::java_lang_System(), true, CHECK);
1037   instanceKlassHandle klass (THREAD, k);
1038 
1039   JavaValue result(T_VOID);
1040   JavaCalls::call_static(&result, klass, vmSymbols::initializeSystemClass_name(),
1041                                          vmSymbols::void_method_signature(), CHECK);
1042 }
1043 
1044 char java_runtime_name[128] = "";
1045 char java_runtime_version[128] = "";
1046 
1047 // extract the JRE name from sun.misc.Version.java_runtime_name
1048 static const char* get_java_runtime_name(TRAPS) {
1049   Klass* k = SystemDictionary::find(vmSymbols::sun_misc_Version(),
1050                                       Handle(), Handle(), CHECK_AND_CLEAR_NULL);
1051   fieldDescriptor fd;
1052   bool found = k != NULL &&
1053                InstanceKlass::cast(k)->find_local_field(vmSymbols::java_runtime_name_name(),
1054                                                         vmSymbols::string_signature(), &fd);
1055   if (found) {
1056     oop name_oop = k->java_mirror()->obj_field(fd.offset());
1057     if (name_oop == NULL)
1058       return NULL;
1059     const char* name = java_lang_String::as_utf8_string(name_oop,
1060                                                         java_runtime_name,
1061                                                         sizeof(java_runtime_name));
1062     return name;
1063   } else {
1064     return NULL;
1065   }
1066 }
1067 
1068 // extract the JRE version from sun.misc.Version.java_runtime_version
1069 static const char* get_java_runtime_version(TRAPS) {
1070   Klass* k = SystemDictionary::find(vmSymbols::sun_misc_Version(),
1071                                       Handle(), Handle(), CHECK_AND_CLEAR_NULL);
1072   fieldDescriptor fd;
1073   bool found = k != NULL &&
1074                InstanceKlass::cast(k)->find_local_field(vmSymbols::java_runtime_version_name(),
1075                                                         vmSymbols::string_signature(), &fd);
1076   if (found) {
1077     oop name_oop = k->java_mirror()->obj_field(fd.offset());
1078     if (name_oop == NULL)
1079       return NULL;
1080     const char* name = java_lang_String::as_utf8_string(name_oop,
1081                                                         java_runtime_version,
1082                                                         sizeof(java_runtime_version));
1083     return name;
1084   } else {
1085     return NULL;
1086   }
1087 }
1088 
1089 // General purpose hook into Java code, run once when the VM is initialized.
1090 // The Java library method itself may be changed independently from the VM.
1091 static void call_postVMInitHook(TRAPS) {
1092   Klass* k = SystemDictionary::PostVMInitHook_klass();
1093   instanceKlassHandle klass (THREAD, k);
1094   if (klass.not_null()) {
1095     JavaValue result(T_VOID);
1096     JavaCalls::call_static(&result, klass, vmSymbols::run_method_name(),
1097                                            vmSymbols::void_method_signature(),
1098                                            CHECK);
1099   }
1100 }
1101 
1102 static void reset_vm_info_property(TRAPS) {
1103   // the vm info string
1104   ResourceMark rm(THREAD);
1105   const char *vm_info = VM_Version::vm_info_string();
1106 
1107   // java.lang.System class
1108   Klass* k =  SystemDictionary::resolve_or_fail(vmSymbols::java_lang_System(), true, CHECK);
1109   instanceKlassHandle klass (THREAD, k);
1110 
1111   // setProperty arguments
1112   Handle key_str    = java_lang_String::create_from_str("java.vm.info", CHECK);
1113   Handle value_str  = java_lang_String::create_from_str(vm_info, CHECK);
1114 
1115   // return value
1116   JavaValue r(T_OBJECT);
1117 
1118   // public static String setProperty(String key, String value);
1119   JavaCalls::call_static(&r,
1120                          klass,
1121                          vmSymbols::setProperty_name(),
1122                          vmSymbols::string_string_string_signature(),
1123                          key_str,
1124                          value_str,
1125                          CHECK);
1126 }
1127 
1128 
1129 void JavaThread::allocate_threadObj(Handle thread_group, char* thread_name, bool daemon, TRAPS) {
1130   assert(thread_group.not_null(), "thread group should be specified");
1131   assert(threadObj() == NULL, "should only create Java thread object once");
1132 
1133   Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_Thread(), true, CHECK);
1134   instanceKlassHandle klass (THREAD, k);
1135   instanceHandle thread_oop = klass->allocate_instance_handle(CHECK);
1136 
1137   java_lang_Thread::set_thread(thread_oop(), this);
1138   java_lang_Thread::set_priority(thread_oop(), NormPriority);
1139   set_threadObj(thread_oop());
1140 
1141   JavaValue result(T_VOID);
1142   if (thread_name != NULL) {
1143     Handle name = java_lang_String::create_from_str(thread_name, CHECK);
1144     // Thread gets assigned specified name and null target
1145     JavaCalls::call_special(&result,
1146                             thread_oop,
1147                             klass,
1148                             vmSymbols::object_initializer_name(),
1149                             vmSymbols::threadgroup_string_void_signature(),
1150                             thread_group, // Argument 1
1151                             name,         // Argument 2
1152                             THREAD);
1153   } else {
1154     // Thread gets assigned name "Thread-nnn" and null target
1155     // (java.lang.Thread doesn't have a constructor taking only a ThreadGroup argument)
1156     JavaCalls::call_special(&result,
1157                             thread_oop,
1158                             klass,
1159                             vmSymbols::object_initializer_name(),
1160                             vmSymbols::threadgroup_runnable_void_signature(),
1161                             thread_group, // Argument 1
1162                             Handle(),     // Argument 2
1163                             THREAD);
1164   }
1165 
1166 
1167   if (daemon) {
1168       java_lang_Thread::set_daemon(thread_oop());
1169   }
1170 
1171   if (HAS_PENDING_EXCEPTION) {
1172     return;
1173   }
1174 
1175   KlassHandle group(this, SystemDictionary::ThreadGroup_klass());
1176   Handle threadObj(this, this->threadObj());
1177 
1178   JavaCalls::call_special(&result,
1179                          thread_group,
1180                          group,
1181                          vmSymbols::add_method_name(),
1182                          vmSymbols::thread_void_signature(),
1183                          threadObj,          // Arg 1
1184                          THREAD);
1185 
1186 
1187 }
1188 
1189 // NamedThread --  non-JavaThread subclasses with multiple
1190 // uniquely named instances should derive from this.
1191 NamedThread::NamedThread() : Thread() {
1192   _name = NULL;
1193   _processed_thread = NULL;
1194 }
1195 
1196 NamedThread::~NamedThread() {
1197   if (_name != NULL) {
1198     FREE_C_HEAP_ARRAY(char, _name, mtThread);
1199     _name = NULL;
1200   }
1201 }
1202 
1203 void NamedThread::set_name(const char* format, ...) {
1204   guarantee(_name == NULL, "Only get to set name once.");
1205   _name = NEW_C_HEAP_ARRAY(char, max_name_len, mtThread);
1206   guarantee(_name != NULL, "alloc failure");
1207   va_list ap;
1208   va_start(ap, format);
1209   jio_vsnprintf(_name, max_name_len, format, ap);
1210   va_end(ap);
1211 }
1212 
1213 // ======= WatcherThread ========
1214 
1215 // The watcher thread exists to simulate timer interrupts.  It should
1216 // be replaced by an abstraction over whatever native support for
1217 // timer interrupts exists on the platform.
1218 
1219 WatcherThread* WatcherThread::_watcher_thread   = NULL;
1220 bool WatcherThread::_startable = false;
1221 volatile bool  WatcherThread::_should_terminate = false;
1222 
1223 WatcherThread::WatcherThread() : Thread() {
1224   assert(watcher_thread() == NULL, "we can only allocate one WatcherThread");
1225   if (os::create_thread(this, os::watcher_thread)) {
1226     _watcher_thread = this;
1227 
1228     // Set the watcher thread to the highest OS priority which should not be
1229     // used, unless a Java thread with priority java.lang.Thread.MAX_PRIORITY
1230     // is created. The only normal thread using this priority is the reference
1231     // handler thread, which runs for very short intervals only.
1232     // If the VMThread's priority is not lower than the WatcherThread profiling
1233     // will be inaccurate.
1234     os::set_priority(this, MaxPriority);
1235     if (!DisableStartThread) {
1236       os::start_thread(this);
1237     }
1238   }
1239 }
1240 
1241 int WatcherThread::sleep() const {
1242   MutexLockerEx ml(PeriodicTask_lock, Mutex::_no_safepoint_check_flag);
1243 
1244   // remaining will be zero if there are no tasks,
1245   // causing the WatcherThread to sleep until a task is
1246   // enrolled
1247   int remaining = PeriodicTask::time_to_wait();
1248   int time_slept = 0;
1249 
1250   // we expect this to timeout - we only ever get unparked when
1251   // we should terminate or when a new task has been enrolled
1252   OSThreadWaitState osts(this->osthread(), false /* not Object.wait() */);
1253 
1254   jlong time_before_loop = os::javaTimeNanos();
1255 
1256   for (;;) {
1257     bool timedout = PeriodicTask_lock->wait(Mutex::_no_safepoint_check_flag, remaining);
1258     jlong now = os::javaTimeNanos();
1259 
1260     if (remaining == 0) {
1261         // if we didn't have any tasks we could have waited for a long time
1262         // consider the time_slept zero and reset time_before_loop
1263         time_slept = 0;
1264         time_before_loop = now;
1265     } else {
1266         // need to recalulate since we might have new tasks in _tasks
1267         time_slept = (int) ((now - time_before_loop) / 1000000);
1268     }
1269 
1270     // Change to task list or spurious wakeup of some kind
1271     if (timedout || _should_terminate) {
1272         break;
1273     }
1274 
1275     remaining = PeriodicTask::time_to_wait();
1276     if (remaining == 0) {
1277         // Last task was just disenrolled so loop around and wait until
1278         // another task gets enrolled
1279         continue;
1280     }
1281 
1282     remaining -= time_slept;
1283     if (remaining <= 0)
1284       break;
1285   }
1286 
1287   return time_slept;
1288 }
1289 
1290 void WatcherThread::run() {
1291   assert(this == watcher_thread(), "just checking");
1292 
1293   this->record_stack_base_and_size();
1294   this->initialize_thread_local_storage();
1295   this->set_active_handles(JNIHandleBlock::allocate_block());
1296   while(!_should_terminate) {
1297     assert(watcher_thread() == Thread::current(),  "thread consistency check");
1298     assert(watcher_thread() == this,  "thread consistency check");
1299 
1300     // Calculate how long it'll be until the next PeriodicTask work
1301     // should be done, and sleep that amount of time.
1302     int time_waited = sleep();
1303 
1304     if (is_error_reported()) {
1305       // A fatal error has happened, the error handler(VMError::report_and_die)
1306       // should abort JVM after creating an error log file. However in some
1307       // rare cases, the error handler itself might deadlock. Here we try to
1308       // kill JVM if the fatal error handler fails to abort in 2 minutes.
1309       //
1310       // This code is in WatcherThread because WatcherThread wakes up
1311       // periodically so the fatal error handler doesn't need to do anything;
1312       // also because the WatcherThread is less likely to crash than other
1313       // threads.
1314 
1315       for (;;) {
1316         if (!ShowMessageBoxOnError
1317          && (OnError == NULL || OnError[0] == '\0')
1318          && Arguments::abort_hook() == NULL) {
1319              os::sleep(this, 2 * 60 * 1000, false);
1320              fdStream err(defaultStream::output_fd());
1321              err.print_raw_cr("# [ timer expired, abort... ]");
1322              // skip atexit/vm_exit/vm_abort hooks
1323              os::die();
1324         }
1325 
1326         // Wake up 5 seconds later, the fatal handler may reset OnError or
1327         // ShowMessageBoxOnError when it is ready to abort.
1328         os::sleep(this, 5 * 1000, false);
1329       }
1330     }
1331 
1332     PeriodicTask::real_time_tick(time_waited);
1333   }
1334 
1335   // Signal that it is terminated
1336   {
1337     MutexLockerEx mu(Terminator_lock, Mutex::_no_safepoint_check_flag);
1338     _watcher_thread = NULL;
1339     Terminator_lock->notify();
1340   }
1341 
1342   // Thread destructor usually does this..
1343   ThreadLocalStorage::set_thread(NULL);
1344 }
1345 
1346 void WatcherThread::start() {
1347   assert(PeriodicTask_lock->owned_by_self(), "PeriodicTask_lock required");
1348 
1349   if (watcher_thread() == NULL && _startable) {
1350     _should_terminate = false;
1351     // Create the single instance of WatcherThread
1352     new WatcherThread();
1353   }
1354 }
1355 
1356 void WatcherThread::make_startable() {
1357   assert(PeriodicTask_lock->owned_by_self(), "PeriodicTask_lock required");
1358   _startable = true;
1359 }
1360 
1361 void WatcherThread::stop() {
1362   {
1363     MutexLockerEx ml(PeriodicTask_lock, Mutex::_no_safepoint_check_flag);
1364     _should_terminate = true;
1365     OrderAccess::fence();  // ensure WatcherThread sees update in main loop
1366 
1367     WatcherThread* watcher = watcher_thread();
1368     if (watcher != NULL)
1369       watcher->unpark();
1370   }
1371 
1372   // it is ok to take late safepoints here, if needed
1373   MutexLocker mu(Terminator_lock);
1374 
1375   while(watcher_thread() != NULL) {
1376     // This wait should make safepoint checks, wait without a timeout,
1377     // and wait as a suspend-equivalent condition.
1378     //
1379     // Note: If the FlatProfiler is running, then this thread is waiting
1380     // for the WatcherThread to terminate and the WatcherThread, via the
1381     // FlatProfiler task, is waiting for the external suspend request on
1382     // this thread to complete. wait_for_ext_suspend_completion() will
1383     // eventually timeout, but that takes time. Making this wait a
1384     // suspend-equivalent condition solves that timeout problem.
1385     //
1386     Terminator_lock->wait(!Mutex::_no_safepoint_check_flag, 0,
1387                           Mutex::_as_suspend_equivalent_flag);
1388   }
1389 }
1390 
1391 void WatcherThread::unpark() {
1392   MutexLockerEx ml(PeriodicTask_lock->owned_by_self() ? NULL : PeriodicTask_lock, Mutex::_no_safepoint_check_flag);
1393   PeriodicTask_lock->notify();
1394 }
1395 
1396 void WatcherThread::print_on(outputStream* st) const {
1397   st->print("\"%s\" ", name());
1398   Thread::print_on(st);
1399   st->cr();
1400 }
1401 
1402 // ======= JavaThread ========
1403 
1404 // A JavaThread is a normal Java thread
1405 
1406 void JavaThread::initialize() {
1407   // Initialize fields
1408 
1409   // Set the claimed par_id to -1 (ie not claiming any par_ids)
1410   set_claimed_par_id(-1);
1411 
1412   set_saved_exception_pc(NULL);
1413   set_threadObj(NULL);
1414   _anchor.clear();
1415   set_entry_point(NULL);
1416   set_jni_functions(jni_functions());
1417   set_callee_target(NULL);
1418   set_vm_result(NULL);
1419   set_vm_result_2(NULL);
1420   set_vframe_array_head(NULL);
1421   set_vframe_array_last(NULL);
1422   set_deferred_locals(NULL);
1423   set_deopt_mark(NULL);
1424   set_deopt_nmethod(NULL);
1425   clear_must_deopt_id();
1426   set_monitor_chunks(NULL);
1427   set_next(NULL);
1428   set_thread_state(_thread_new);
1429 #if INCLUDE_NMT
1430   set_recorder(NULL);
1431 #endif
1432   _terminated = _not_terminated;
1433   _privileged_stack_top = NULL;
1434   _array_for_gc = NULL;
1435   _suspend_equivalent = false;
1436   _in_deopt_handler = 0;
1437   _doing_unsafe_access = false;
1438   _stack_guard_state = stack_guard_unused;
1439   _exception_oop = NULL;
1440   _exception_pc  = 0;
1441   _exception_handler_pc = 0;
1442   _is_method_handle_return = 0;
1443   _jvmti_thread_state= NULL;
1444   _should_post_on_exceptions_flag = JNI_FALSE;
1445   _jvmti_get_loaded_classes_closure = NULL;
1446   _interp_only_mode    = 0;
1447   _special_runtime_exit_condition = _no_async_condition;
1448   _pending_async_exception = NULL;
1449   _is_compiling = false;
1450   _thread_stat = NULL;
1451   _thread_stat = new ThreadStatistics();
1452   _blocked_on_compilation = false;
1453   _jni_active_critical = 0;
1454   _do_not_unlock_if_synchronized = false;
1455   _cached_monitor_info = NULL;
1456   _parker = Parker::Allocate(this) ;
1457 
1458 #ifndef PRODUCT
1459   _jmp_ring_index = 0;
1460   for (int ji = 0 ; ji < jump_ring_buffer_size ; ji++ ) {
1461     record_jump(NULL, NULL, NULL, 0);
1462   }
1463 #endif /* PRODUCT */
1464 
1465   set_thread_profiler(NULL);
1466   if (FlatProfiler::is_active()) {
1467     // This is where we would decide to either give each thread it's own profiler
1468     // or use one global one from FlatProfiler,
1469     // or up to some count of the number of profiled threads, etc.
1470     ThreadProfiler* pp = new ThreadProfiler();
1471     pp->engage();
1472     set_thread_profiler(pp);
1473   }
1474 
1475   // Setup safepoint state info for this thread
1476   ThreadSafepointState::create(this);
1477 
1478   debug_only(_java_call_counter = 0);
1479 
1480   // JVMTI PopFrame support
1481   _popframe_condition = popframe_inactive;
1482   _popframe_preserved_args = NULL;
1483   _popframe_preserved_args_size = 0;
1484 
1485   pd_initialize();
1486 }
1487 
1488 #ifndef SERIALGC
1489 SATBMarkQueueSet JavaThread::_satb_mark_queue_set;
1490 DirtyCardQueueSet JavaThread::_dirty_card_queue_set;
1491 #endif // !SERIALGC
1492 
1493 JavaThread::JavaThread(bool is_attaching_via_jni) :
1494   Thread()
1495 #ifndef SERIALGC
1496   , _satb_mark_queue(&_satb_mark_queue_set),
1497   _dirty_card_queue(&_dirty_card_queue_set)
1498 #endif // !SERIALGC
1499 {
1500   initialize();
1501   if (is_attaching_via_jni) {
1502     _jni_attach_state = _attaching_via_jni;
1503   } else {
1504     _jni_attach_state = _not_attaching_via_jni;
1505   }
1506   assert(_deferred_card_mark.is_empty(), "Default MemRegion ctor");
1507   _safepoint_visible = false;
1508 }
1509 
1510 bool JavaThread::reguard_stack(address cur_sp) {
1511   if (_stack_guard_state != stack_guard_yellow_disabled) {
1512     return true; // Stack already guarded or guard pages not needed.
1513   }
1514 
1515   if (register_stack_overflow()) {
1516     // For those architectures which have separate register and
1517     // memory stacks, we must check the register stack to see if
1518     // it has overflowed.
1519     return false;
1520   }
1521 
1522   // Java code never executes within the yellow zone: the latter is only
1523   // there to provoke an exception during stack banging.  If java code
1524   // is executing there, either StackShadowPages should be larger, or
1525   // some exception code in c1, c2 or the interpreter isn't unwinding
1526   // when it should.
1527   guarantee(cur_sp > stack_yellow_zone_base(), "not enough space to reguard - increase StackShadowPages");
1528 
1529   enable_stack_yellow_zone();
1530   return true;
1531 }
1532 
1533 bool JavaThread::reguard_stack(void) {
1534   return reguard_stack(os::current_stack_pointer());
1535 }
1536 
1537 
1538 void JavaThread::block_if_vm_exited() {
1539   if (_terminated == _vm_exited) {
1540     // _vm_exited is set at safepoint, and Threads_lock is never released
1541     // we will block here forever
1542     Threads_lock->lock_without_safepoint_check();
1543     ShouldNotReachHere();
1544   }
1545 }
1546 
1547 
1548 // Remove this ifdef when C1 is ported to the compiler interface.
1549 static void compiler_thread_entry(JavaThread* thread, TRAPS);
1550 
1551 JavaThread::JavaThread(ThreadFunction entry_point, size_t stack_sz) :
1552   Thread()
1553 #ifndef SERIALGC
1554   , _satb_mark_queue(&_satb_mark_queue_set),
1555   _dirty_card_queue(&_dirty_card_queue_set)
1556 #endif // !SERIALGC
1557 {
1558   if (TraceThreadEvents) {
1559     tty->print_cr("creating thread %p", this);
1560   }
1561   initialize();
1562   _jni_attach_state = _not_attaching_via_jni;
1563   set_entry_point(entry_point);
1564   // Create the native thread itself.
1565   // %note runtime_23
1566   os::ThreadType thr_type = os::java_thread;
1567   thr_type = entry_point == &compiler_thread_entry ? os::compiler_thread :
1568                                                      os::java_thread;
1569   os::create_thread(this, thr_type, stack_sz);
1570   _safepoint_visible = false;
1571   // The _osthread may be NULL here because we ran out of memory (too many threads active).
1572   // We need to throw and OutOfMemoryError - however we cannot do this here because the caller
1573   // may hold a lock and all locks must be unlocked before throwing the exception (throwing
1574   // the exception consists of creating the exception object & initializing it, initialization
1575   // will leave the VM via a JavaCall and then all locks must be unlocked).
1576   //
1577   // The thread is still suspended when we reach here. Thread must be explicit started
1578   // by creator! Furthermore, the thread must also explicitly be added to the Threads list
1579   // by calling Threads:add. The reason why this is not done here, is because the thread
1580   // object must be fully initialized (take a look at JVM_Start)
1581 }
1582 
1583 JavaThread::~JavaThread() {
1584   if (TraceThreadEvents) {
1585       tty->print_cr("terminate thread %p", this);
1586   }
1587 
1588   // By now, this thread should already be invisible to safepoint,
1589   // and its per-thread recorder also collected.
1590   assert(!is_safepoint_visible(), "wrong state");
1591 #if INCLUDE_NMT
1592   assert(get_recorder() == NULL, "Already collected");
1593 #endif // INCLUDE_NMT
1594 
1595   // JSR166 -- return the parker to the free list
1596   Parker::Release(_parker);
1597   _parker = NULL ;
1598 
1599   // Free any remaining  previous UnrollBlock
1600   vframeArray* old_array = vframe_array_last();
1601 
1602   if (old_array != NULL) {
1603     Deoptimization::UnrollBlock* old_info = old_array->unroll_block();
1604     old_array->set_unroll_block(NULL);
1605     delete old_info;
1606     delete old_array;
1607   }
1608 
1609   GrowableArray<jvmtiDeferredLocalVariableSet*>* deferred = deferred_locals();
1610   if (deferred != NULL) {
1611     // This can only happen if thread is destroyed before deoptimization occurs.
1612     assert(deferred->length() != 0, "empty array!");
1613     do {
1614       jvmtiDeferredLocalVariableSet* dlv = deferred->at(0);
1615       deferred->remove_at(0);
1616       // individual jvmtiDeferredLocalVariableSet are CHeapObj's
1617       delete dlv;
1618     } while (deferred->length() != 0);
1619     delete deferred;
1620   }
1621 
1622   // All Java related clean up happens in exit
1623   ThreadSafepointState::destroy(this);
1624   if (_thread_profiler != NULL) delete _thread_profiler;
1625   if (_thread_stat != NULL) delete _thread_stat;
1626 }
1627 
1628 
1629 // The first routine called by a new Java thread
1630 void JavaThread::run() {
1631   // initialize thread-local alloc buffer related fields
1632   this->initialize_tlab();
1633 
1634   // used to test validitity of stack trace backs
1635   this->record_base_of_stack_pointer();
1636 
1637   // Record real stack base and size.
1638   this->record_stack_base_and_size();
1639 
1640   // Initialize thread local storage; set before calling MutexLocker
1641   this->initialize_thread_local_storage();
1642 
1643   this->create_stack_guard_pages();
1644 
1645   this->cache_global_variables();
1646 
1647   // Thread is now sufficient initialized to be handled by the safepoint code as being
1648   // in the VM. Change thread state from _thread_new to _thread_in_vm
1649   ThreadStateTransition::transition_and_fence(this, _thread_new, _thread_in_vm);
1650 
1651   assert(JavaThread::current() == this, "sanity check");
1652   assert(!Thread::current()->owns_locks(), "sanity check");
1653 
1654   DTRACE_THREAD_PROBE(start, this);
1655 
1656   // This operation might block. We call that after all safepoint checks for a new thread has
1657   // been completed.
1658   this->set_active_handles(JNIHandleBlock::allocate_block());
1659 
1660   if (JvmtiExport::should_post_thread_life()) {
1661     JvmtiExport::post_thread_start(this);
1662   }
1663 
1664   EVENT_BEGIN(TraceEventThreadStart, event);
1665   EVENT_COMMIT(event,
1666      EVENT_SET(event, javalangthread, java_lang_Thread::thread_id(this->threadObj())));
1667 
1668   // We call another function to do the rest so we are sure that the stack addresses used
1669   // from there will be lower than the stack base just computed
1670   thread_main_inner();
1671 
1672   // Note, thread is no longer valid at this point!
1673 }
1674 
1675 
1676 void JavaThread::thread_main_inner() {
1677   assert(JavaThread::current() == this, "sanity check");
1678   assert(this->threadObj() != NULL, "just checking");
1679 
1680   // Execute thread entry point unless this thread has a pending exception
1681   // or has been stopped before starting.
1682   // Note: Due to JVM_StopThread we can have pending exceptions already!
1683   if (!this->has_pending_exception() &&
1684       !java_lang_Thread::is_stillborn(this->threadObj())) {
1685     {
1686       ResourceMark rm(this);
1687       this->set_native_thread_name(this->get_thread_name());
1688     }
1689     HandleMark hm(this);
1690     this->entry_point()(this, this);
1691   }
1692 
1693   DTRACE_THREAD_PROBE(stop, this);
1694 
1695   this->exit(false);
1696   delete this;
1697 }
1698 
1699 
1700 static void ensure_join(JavaThread* thread) {
1701   // We do not need to grap the Threads_lock, since we are operating on ourself.
1702   Handle threadObj(thread, thread->threadObj());
1703   assert(threadObj.not_null(), "java thread object must exist");
1704   ObjectLocker lock(threadObj, thread);
1705   // Ignore pending exception (ThreadDeath), since we are exiting anyway
1706   thread->clear_pending_exception();
1707   // Thread is exiting. So set thread_status field in  java.lang.Thread class to TERMINATED.
1708   java_lang_Thread::set_thread_status(threadObj(), java_lang_Thread::TERMINATED);
1709   // Clear the native thread instance - this makes isAlive return false and allows the join()
1710   // to complete once we've done the notify_all below
1711   java_lang_Thread::set_thread(threadObj(), NULL);
1712   lock.notify_all(thread);
1713   // Ignore pending exception (ThreadDeath), since we are exiting anyway
1714   thread->clear_pending_exception();
1715 }
1716 
1717 
1718 // For any new cleanup additions, please check to see if they need to be applied to
1719 // cleanup_failed_attach_current_thread as well.
1720 void JavaThread::exit(bool destroy_vm, ExitType exit_type) {
1721   assert(this == JavaThread::current(),  "thread consistency check");
1722   if (!InitializeJavaLangSystem) return;
1723 
1724   HandleMark hm(this);
1725   Handle uncaught_exception(this, this->pending_exception());
1726   this->clear_pending_exception();
1727   Handle threadObj(this, this->threadObj());
1728   assert(threadObj.not_null(), "Java thread object should be created");
1729 
1730   if (get_thread_profiler() != NULL) {
1731     get_thread_profiler()->disengage();
1732     ResourceMark rm;
1733     get_thread_profiler()->print(get_thread_name());
1734   }
1735 
1736 
1737   // FIXIT: This code should be moved into else part, when reliable 1.2/1.3 check is in place
1738   {
1739     EXCEPTION_MARK;
1740 
1741     CLEAR_PENDING_EXCEPTION;
1742   }
1743   // FIXIT: The is_null check is only so it works better on JDK1.2 VM's. This
1744   // has to be fixed by a runtime query method
1745   if (!destroy_vm || JDK_Version::is_jdk12x_version()) {
1746     // JSR-166: change call from from ThreadGroup.uncaughtException to
1747     // java.lang.Thread.dispatchUncaughtException
1748     if (uncaught_exception.not_null()) {
1749       Handle group(this, java_lang_Thread::threadGroup(threadObj()));
1750       {
1751         EXCEPTION_MARK;
1752         // Check if the method Thread.dispatchUncaughtException() exists. If so
1753         // call it.  Otherwise we have an older library without the JSR-166 changes,
1754         // so call ThreadGroup.uncaughtException()
1755         KlassHandle recvrKlass(THREAD, threadObj->klass());
1756         CallInfo callinfo;
1757         KlassHandle thread_klass(THREAD, SystemDictionary::Thread_klass());
1758         LinkResolver::resolve_virtual_call(callinfo, threadObj, recvrKlass, thread_klass,
1759                                            vmSymbols::dispatchUncaughtException_name(),
1760                                            vmSymbols::throwable_void_signature(),
1761                                            KlassHandle(), false, false, THREAD);
1762         CLEAR_PENDING_EXCEPTION;
1763         methodHandle method = callinfo.selected_method();
1764         if (method.not_null()) {
1765           JavaValue result(T_VOID);
1766           JavaCalls::call_virtual(&result,
1767                                   threadObj, thread_klass,
1768                                   vmSymbols::dispatchUncaughtException_name(),
1769                                   vmSymbols::throwable_void_signature(),
1770                                   uncaught_exception,
1771                                   THREAD);
1772         } else {
1773           KlassHandle thread_group(THREAD, SystemDictionary::ThreadGroup_klass());
1774           JavaValue result(T_VOID);
1775           JavaCalls::call_virtual(&result,
1776                                   group, thread_group,
1777                                   vmSymbols::uncaughtException_name(),
1778                                   vmSymbols::thread_throwable_void_signature(),
1779                                   threadObj,           // Arg 1
1780                                   uncaught_exception,  // Arg 2
1781                                   THREAD);
1782         }
1783         if (HAS_PENDING_EXCEPTION) {
1784           ResourceMark rm(this);
1785           jio_fprintf(defaultStream::error_stream(),
1786                 "\nException: %s thrown from the UncaughtExceptionHandler"
1787                 " in thread \"%s\"\n",
1788                 pending_exception()->klass()->external_name(),
1789                 get_thread_name());
1790           CLEAR_PENDING_EXCEPTION;
1791         }
1792       }
1793     }
1794 
1795     // Called before the java thread exit since we want to read info
1796     // from java_lang_Thread object
1797     EVENT_BEGIN(TraceEventThreadEnd, event);
1798     EVENT_COMMIT(event,
1799         EVENT_SET(event, javalangthread, java_lang_Thread::thread_id(this->threadObj())));
1800 
1801     // Call after last event on thread
1802     EVENT_THREAD_EXIT(this);
1803 
1804     // Call Thread.exit(). We try 3 times in case we got another Thread.stop during
1805     // the execution of the method. If that is not enough, then we don't really care. Thread.stop
1806     // is deprecated anyhow.
1807     { int count = 3;
1808       while (java_lang_Thread::threadGroup(threadObj()) != NULL && (count-- > 0)) {
1809         EXCEPTION_MARK;
1810         JavaValue result(T_VOID);
1811         KlassHandle thread_klass(THREAD, SystemDictionary::Thread_klass());
1812         JavaCalls::call_virtual(&result,
1813                               threadObj, thread_klass,
1814                               vmSymbols::exit_method_name(),
1815                               vmSymbols::void_method_signature(),
1816                               THREAD);
1817         CLEAR_PENDING_EXCEPTION;
1818       }
1819     }
1820 
1821     // notify JVMTI
1822     if (JvmtiExport::should_post_thread_life()) {
1823       JvmtiExport::post_thread_end(this);
1824     }
1825 
1826     // We have notified the agents that we are exiting, before we go on,
1827     // we must check for a pending external suspend request and honor it
1828     // in order to not surprise the thread that made the suspend request.
1829     while (true) {
1830       {
1831         MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
1832         if (!is_external_suspend()) {
1833           set_terminated(_thread_exiting);
1834           ThreadService::current_thread_exiting(this);
1835           break;
1836         }
1837         // Implied else:
1838         // Things get a little tricky here. We have a pending external
1839         // suspend request, but we are holding the SR_lock so we
1840         // can't just self-suspend. So we temporarily drop the lock
1841         // and then self-suspend.
1842       }
1843 
1844       ThreadBlockInVM tbivm(this);
1845       java_suspend_self();
1846 
1847       // We're done with this suspend request, but we have to loop around
1848       // and check again. Eventually we will get SR_lock without a pending
1849       // external suspend request and will be able to mark ourselves as
1850       // exiting.
1851     }
1852     // no more external suspends are allowed at this point
1853   } else {
1854     // before_exit() has already posted JVMTI THREAD_END events
1855   }
1856 
1857   // Notify waiters on thread object. This has to be done after exit() is called
1858   // on the thread (if the thread is the last thread in a daemon ThreadGroup the
1859   // group should have the destroyed bit set before waiters are notified).
1860   ensure_join(this);
1861   assert(!this->has_pending_exception(), "ensure_join should have cleared");
1862 
1863   // 6282335 JNI DetachCurrentThread spec states that all Java monitors
1864   // held by this thread must be released.  A detach operation must only
1865   // get here if there are no Java frames on the stack.  Therefore, any
1866   // owned monitors at this point MUST be JNI-acquired monitors which are
1867   // pre-inflated and in the monitor cache.
1868   //
1869   // ensure_join() ignores IllegalThreadStateExceptions, and so does this.
1870   if (exit_type == jni_detach && JNIDetachReleasesMonitors) {
1871     assert(!this->has_last_Java_frame(), "detaching with Java frames?");
1872     ObjectSynchronizer::release_monitors_owned_by_thread(this);
1873     assert(!this->has_pending_exception(), "release_monitors should have cleared");
1874   }
1875 
1876   // These things needs to be done while we are still a Java Thread. Make sure that thread
1877   // is in a consistent state, in case GC happens
1878   assert(_privileged_stack_top == NULL, "must be NULL when we get here");
1879 
1880   if (active_handles() != NULL) {
1881     JNIHandleBlock* block = active_handles();
1882     set_active_handles(NULL);
1883     JNIHandleBlock::release_block(block);
1884   }
1885 
1886   if (free_handle_block() != NULL) {
1887     JNIHandleBlock* block = free_handle_block();
1888     set_free_handle_block(NULL);
1889     JNIHandleBlock::release_block(block);
1890   }
1891 
1892   // These have to be removed while this is still a valid thread.
1893   remove_stack_guard_pages();
1894 
1895   if (UseTLAB) {
1896     tlab().make_parsable(true);  // retire TLAB
1897   }
1898 
1899   if (JvmtiEnv::environments_might_exist()) {
1900     JvmtiExport::cleanup_thread(this);
1901   }
1902 
1903 #ifndef SERIALGC
1904   // We must flush G1-related buffers before removing a thread from
1905   // the list of active threads.
1906   if (UseG1GC) {
1907     flush_barrier_queues();
1908   }
1909 #endif
1910 
1911   // Remove from list of active threads list, and notify VM thread if we are the last non-daemon thread
1912   Threads::remove(this);
1913 }
1914 
1915 #ifndef SERIALGC
1916 // Flush G1-related queues.
1917 void JavaThread::flush_barrier_queues() {
1918   satb_mark_queue().flush();
1919   dirty_card_queue().flush();
1920 }
1921 
1922 void JavaThread::initialize_queues() {
1923   assert(!SafepointSynchronize::is_at_safepoint(),
1924          "we should not be at a safepoint");
1925 
1926   ObjPtrQueue& satb_queue = satb_mark_queue();
1927   SATBMarkQueueSet& satb_queue_set = satb_mark_queue_set();
1928   // The SATB queue should have been constructed with its active
1929   // field set to false.
1930   assert(!satb_queue.is_active(), "SATB queue should not be active");
1931   assert(satb_queue.is_empty(), "SATB queue should be empty");
1932   // If we are creating the thread during a marking cycle, we should
1933   // set the active field of the SATB queue to true.
1934   if (satb_queue_set.is_active()) {
1935     satb_queue.set_active(true);
1936   }
1937 
1938   DirtyCardQueue& dirty_queue = dirty_card_queue();
1939   // The dirty card queue should have been constructed with its
1940   // active field set to true.
1941   assert(dirty_queue.is_active(), "dirty card queue should be active");
1942 }
1943 #endif // !SERIALGC
1944 
1945 void JavaThread::cleanup_failed_attach_current_thread() {
1946   if (get_thread_profiler() != NULL) {
1947     get_thread_profiler()->disengage();
1948     ResourceMark rm;
1949     get_thread_profiler()->print(get_thread_name());
1950   }
1951 
1952   if (active_handles() != NULL) {
1953     JNIHandleBlock* block = active_handles();
1954     set_active_handles(NULL);
1955     JNIHandleBlock::release_block(block);
1956   }
1957 
1958   if (free_handle_block() != NULL) {
1959     JNIHandleBlock* block = free_handle_block();
1960     set_free_handle_block(NULL);
1961     JNIHandleBlock::release_block(block);
1962   }
1963 
1964   // These have to be removed while this is still a valid thread.
1965   remove_stack_guard_pages();
1966 
1967   if (UseTLAB) {
1968     tlab().make_parsable(true);  // retire TLAB, if any
1969   }
1970 
1971 #ifndef SERIALGC
1972   if (UseG1GC) {
1973     flush_barrier_queues();
1974   }
1975 #endif
1976 
1977   Threads::remove(this);
1978   delete this;
1979 }
1980 
1981 
1982 
1983 
1984 JavaThread* JavaThread::active() {
1985   Thread* thread = ThreadLocalStorage::thread();
1986   assert(thread != NULL, "just checking");
1987   if (thread->is_Java_thread()) {
1988     return (JavaThread*) thread;
1989   } else {
1990     assert(thread->is_VM_thread(), "this must be a vm thread");
1991     VM_Operation* op = ((VMThread*) thread)->vm_operation();
1992     JavaThread *ret=op == NULL ? NULL : (JavaThread *)op->calling_thread();
1993     assert(ret->is_Java_thread(), "must be a Java thread");
1994     return ret;
1995   }
1996 }
1997 
1998 bool JavaThread::is_lock_owned(address adr) const {
1999   if (Thread::is_lock_owned(adr)) return true;
2000 
2001   for (MonitorChunk* chunk = monitor_chunks(); chunk != NULL; chunk = chunk->next()) {
2002     if (chunk->contains(adr)) return true;
2003   }
2004 
2005   return false;
2006 }
2007 
2008 
2009 void JavaThread::add_monitor_chunk(MonitorChunk* chunk) {
2010   chunk->set_next(monitor_chunks());
2011   set_monitor_chunks(chunk);
2012 }
2013 
2014 void JavaThread::remove_monitor_chunk(MonitorChunk* chunk) {
2015   guarantee(monitor_chunks() != NULL, "must be non empty");
2016   if (monitor_chunks() == chunk) {
2017     set_monitor_chunks(chunk->next());
2018   } else {
2019     MonitorChunk* prev = monitor_chunks();
2020     while (prev->next() != chunk) prev = prev->next();
2021     prev->set_next(chunk->next());
2022   }
2023 }
2024 
2025 // JVM support.
2026 
2027 // Note: this function shouldn't block if it's called in
2028 // _thread_in_native_trans state (such as from
2029 // check_special_condition_for_native_trans()).
2030 void JavaThread::check_and_handle_async_exceptions(bool check_unsafe_error) {
2031 
2032   if (has_last_Java_frame() && has_async_condition()) {
2033     // If we are at a polling page safepoint (not a poll return)
2034     // then we must defer async exception because live registers
2035     // will be clobbered by the exception path. Poll return is
2036     // ok because the call we a returning from already collides
2037     // with exception handling registers and so there is no issue.
2038     // (The exception handling path kills call result registers but
2039     //  this is ok since the exception kills the result anyway).
2040 
2041     if (is_at_poll_safepoint()) {
2042       // if the code we are returning to has deoptimized we must defer
2043       // the exception otherwise live registers get clobbered on the
2044       // exception path before deoptimization is able to retrieve them.
2045       //
2046       RegisterMap map(this, false);
2047       frame caller_fr = last_frame().sender(&map);
2048       assert(caller_fr.is_compiled_frame(), "what?");
2049       if (caller_fr.is_deoptimized_frame()) {
2050         if (TraceExceptions) {
2051           ResourceMark rm;
2052           tty->print_cr("deferred async exception at compiled safepoint");
2053         }
2054         return;
2055       }
2056     }
2057   }
2058 
2059   JavaThread::AsyncRequests condition = clear_special_runtime_exit_condition();
2060   if (condition == _no_async_condition) {
2061     // Conditions have changed since has_special_runtime_exit_condition()
2062     // was called:
2063     // - if we were here only because of an external suspend request,
2064     //   then that was taken care of above (or cancelled) so we are done
2065     // - if we were here because of another async request, then it has
2066     //   been cleared between the has_special_runtime_exit_condition()
2067     //   and now so again we are done
2068     return;
2069   }
2070 
2071   // Check for pending async. exception
2072   if (_pending_async_exception != NULL) {
2073     // Only overwrite an already pending exception, if it is not a threadDeath.
2074     if (!has_pending_exception() || !pending_exception()->is_a(SystemDictionary::ThreadDeath_klass())) {
2075 
2076       // We cannot call Exceptions::_throw(...) here because we cannot block
2077       set_pending_exception(_pending_async_exception, __FILE__, __LINE__);
2078 
2079       if (TraceExceptions) {
2080         ResourceMark rm;
2081         tty->print("Async. exception installed at runtime exit (" INTPTR_FORMAT ")", this);
2082         if (has_last_Java_frame() ) {
2083           frame f = last_frame();
2084           tty->print(" (pc: " INTPTR_FORMAT " sp: " INTPTR_FORMAT " )", f.pc(), f.sp());
2085         }
2086         tty->print_cr(" of type: %s", InstanceKlass::cast(_pending_async_exception->klass())->external_name());
2087       }
2088       _pending_async_exception = NULL;
2089       clear_has_async_exception();
2090     }
2091   }
2092 
2093   if (check_unsafe_error &&
2094       condition == _async_unsafe_access_error && !has_pending_exception()) {
2095     condition = _no_async_condition;  // done
2096     switch (thread_state()) {
2097     case _thread_in_vm:
2098       {
2099         JavaThread* THREAD = this;
2100         THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in an unsafe memory access operation");
2101       }
2102     case _thread_in_native:
2103       {
2104         ThreadInVMfromNative tiv(this);
2105         JavaThread* THREAD = this;
2106         THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in an unsafe memory access operation");
2107       }
2108     case _thread_in_Java:
2109       {
2110         ThreadInVMfromJava tiv(this);
2111         JavaThread* THREAD = this;
2112         THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in a recent unsafe memory access operation in compiled Java code");
2113       }
2114     default:
2115       ShouldNotReachHere();
2116     }
2117   }
2118 
2119   assert(condition == _no_async_condition || has_pending_exception() ||
2120          (!check_unsafe_error && condition == _async_unsafe_access_error),
2121          "must have handled the async condition, if no exception");
2122 }
2123 
2124 void JavaThread::handle_special_runtime_exit_condition(bool check_asyncs) {
2125   //
2126   // Check for pending external suspend. Internal suspend requests do
2127   // not use handle_special_runtime_exit_condition().
2128   // If JNIEnv proxies are allowed, don't self-suspend if the target
2129   // thread is not the current thread. In older versions of jdbx, jdbx
2130   // threads could call into the VM with another thread's JNIEnv so we
2131   // can be here operating on behalf of a suspended thread (4432884).
2132   bool do_self_suspend = is_external_suspend_with_lock();
2133   if (do_self_suspend && (!AllowJNIEnvProxy || this == JavaThread::current())) {
2134     //
2135     // Because thread is external suspended the safepoint code will count
2136     // thread as at a safepoint. This can be odd because we can be here
2137     // as _thread_in_Java which would normally transition to _thread_blocked
2138     // at a safepoint. We would like to mark the thread as _thread_blocked
2139     // before calling java_suspend_self like all other callers of it but
2140     // we must then observe proper safepoint protocol. (We can't leave
2141     // _thread_blocked with a safepoint in progress). However we can be
2142     // here as _thread_in_native_trans so we can't use a normal transition
2143     // constructor/destructor pair because they assert on that type of
2144     // transition. We could do something like:
2145     //
2146     // JavaThreadState state = thread_state();
2147     // set_thread_state(_thread_in_vm);
2148     // {
2149     //   ThreadBlockInVM tbivm(this);
2150     //   java_suspend_self()
2151     // }
2152     // set_thread_state(_thread_in_vm_trans);
2153     // if (safepoint) block;
2154     // set_thread_state(state);
2155     //
2156     // but that is pretty messy. Instead we just go with the way the
2157     // code has worked before and note that this is the only path to
2158     // java_suspend_self that doesn't put the thread in _thread_blocked
2159     // mode.
2160 
2161     frame_anchor()->make_walkable(this);
2162     java_suspend_self();
2163 
2164     // We might be here for reasons in addition to the self-suspend request
2165     // so check for other async requests.
2166   }
2167 
2168   if (check_asyncs) {
2169     check_and_handle_async_exceptions();
2170   }
2171 }
2172 
2173 void JavaThread::send_thread_stop(oop java_throwable)  {
2174   assert(Thread::current()->is_VM_thread(), "should be in the vm thread");
2175   assert(Threads_lock->is_locked(), "Threads_lock should be locked by safepoint code");
2176   assert(SafepointSynchronize::is_at_safepoint(), "all threads are stopped");
2177 
2178   // Do not throw asynchronous exceptions against the compiler thread
2179   // (the compiler thread should not be a Java thread -- fix in 1.4.2)
2180   if (is_Compiler_thread()) return;
2181 
2182   {
2183     // Actually throw the Throwable against the target Thread - however
2184     // only if there is no thread death exception installed already.
2185     if (_pending_async_exception == NULL || !_pending_async_exception->is_a(SystemDictionary::ThreadDeath_klass())) {
2186       // If the topmost frame is a runtime stub, then we are calling into
2187       // OptoRuntime from compiled code. Some runtime stubs (new, monitor_exit..)
2188       // must deoptimize the caller before continuing, as the compiled  exception handler table
2189       // may not be valid
2190       if (has_last_Java_frame()) {
2191         frame f = last_frame();
2192         if (f.is_runtime_frame() || f.is_safepoint_blob_frame()) {
2193           // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
2194           RegisterMap reg_map(this, UseBiasedLocking);
2195           frame compiled_frame = f.sender(&reg_map);
2196           if (compiled_frame.can_be_deoptimized()) {
2197             Deoptimization::deoptimize(this, compiled_frame, &reg_map);
2198           }
2199         }
2200       }
2201 
2202       // Set async. pending exception in thread.
2203       set_pending_async_exception(java_throwable);
2204 
2205       if (TraceExceptions) {
2206        ResourceMark rm;
2207        tty->print_cr("Pending Async. exception installed of type: %s", InstanceKlass::cast(_pending_async_exception->klass())->external_name());
2208       }
2209       // for AbortVMOnException flag
2210       NOT_PRODUCT(Exceptions::debug_check_abort(InstanceKlass::cast(_pending_async_exception->klass())->external_name()));
2211     }
2212   }
2213 
2214 
2215   // Interrupt thread so it will wake up from a potential wait()
2216   Thread::interrupt(this);
2217 }
2218 
2219 // External suspension mechanism.
2220 //
2221 // Tell the VM to suspend a thread when ever it knows that it does not hold on
2222 // to any VM_locks and it is at a transition
2223 // Self-suspension will happen on the transition out of the vm.
2224 // Catch "this" coming in from JNIEnv pointers when the thread has been freed
2225 //
2226 // Guarantees on return:
2227 //   + Target thread will not execute any new bytecode (that's why we need to
2228 //     force a safepoint)
2229 //   + Target thread will not enter any new monitors
2230 //
2231 void JavaThread::java_suspend() {
2232   { MutexLocker mu(Threads_lock);
2233     if (!Threads::includes(this) || is_exiting() || this->threadObj() == NULL) {
2234        return;
2235     }
2236   }
2237 
2238   { MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2239     if (!is_external_suspend()) {
2240       // a racing resume has cancelled us; bail out now
2241       return;
2242     }
2243 
2244     // suspend is done
2245     uint32_t debug_bits = 0;
2246     // Warning: is_ext_suspend_completed() may temporarily drop the
2247     // SR_lock to allow the thread to reach a stable thread state if
2248     // it is currently in a transient thread state.
2249     if (is_ext_suspend_completed(false /* !called_by_wait */,
2250                                  SuspendRetryDelay, &debug_bits) ) {
2251       return;
2252     }
2253   }
2254 
2255   VM_ForceSafepoint vm_suspend;
2256   VMThread::execute(&vm_suspend);
2257 }
2258 
2259 // Part II of external suspension.
2260 // A JavaThread self suspends when it detects a pending external suspend
2261 // request. This is usually on transitions. It is also done in places
2262 // where continuing to the next transition would surprise the caller,
2263 // e.g., monitor entry.
2264 //
2265 // Returns the number of times that the thread self-suspended.
2266 //
2267 // Note: DO NOT call java_suspend_self() when you just want to block current
2268 //       thread. java_suspend_self() is the second stage of cooperative
2269 //       suspension for external suspend requests and should only be used
2270 //       to complete an external suspend request.
2271 //
2272 int JavaThread::java_suspend_self() {
2273   int ret = 0;
2274 
2275   // we are in the process of exiting so don't suspend
2276   if (is_exiting()) {
2277      clear_external_suspend();
2278      return ret;
2279   }
2280 
2281   assert(_anchor.walkable() ||
2282     (is_Java_thread() && !((JavaThread*)this)->has_last_Java_frame()),
2283     "must have walkable stack");
2284 
2285   MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2286 
2287   assert(!this->is_ext_suspended(),
2288     "a thread trying to self-suspend should not already be suspended");
2289 
2290   if (this->is_suspend_equivalent()) {
2291     // If we are self-suspending as a result of the lifting of a
2292     // suspend equivalent condition, then the suspend_equivalent
2293     // flag is not cleared until we set the ext_suspended flag so
2294     // that wait_for_ext_suspend_completion() returns consistent
2295     // results.
2296     this->clear_suspend_equivalent();
2297   }
2298 
2299   // A racing resume may have cancelled us before we grabbed SR_lock
2300   // above. Or another external suspend request could be waiting for us
2301   // by the time we return from SR_lock()->wait(). The thread
2302   // that requested the suspension may already be trying to walk our
2303   // stack and if we return now, we can change the stack out from under
2304   // it. This would be a "bad thing (TM)" and cause the stack walker
2305   // to crash. We stay self-suspended until there are no more pending
2306   // external suspend requests.
2307   while (is_external_suspend()) {
2308     ret++;
2309     this->set_ext_suspended();
2310 
2311     // _ext_suspended flag is cleared by java_resume()
2312     while (is_ext_suspended()) {
2313       this->SR_lock()->wait(Mutex::_no_safepoint_check_flag);
2314     }
2315   }
2316 
2317   return ret;
2318 }
2319 
2320 #ifdef ASSERT
2321 // verify the JavaThread has not yet been published in the Threads::list, and
2322 // hence doesn't need protection from concurrent access at this stage
2323 void JavaThread::verify_not_published() {
2324   if (!Threads_lock->owned_by_self()) {
2325    MutexLockerEx ml(Threads_lock,  Mutex::_no_safepoint_check_flag);
2326    assert( !Threads::includes(this),
2327            "java thread shouldn't have been published yet!");
2328   }
2329   else {
2330    assert( !Threads::includes(this),
2331            "java thread shouldn't have been published yet!");
2332   }
2333 }
2334 #endif
2335 
2336 // Slow path when the native==>VM/Java barriers detect a safepoint is in
2337 // progress or when _suspend_flags is non-zero.
2338 // Current thread needs to self-suspend if there is a suspend request and/or
2339 // block if a safepoint is in progress.
2340 // Async exception ISN'T checked.
2341 // Note only the ThreadInVMfromNative transition can call this function
2342 // directly and when thread state is _thread_in_native_trans
2343 void JavaThread::check_safepoint_and_suspend_for_native_trans(JavaThread *thread) {
2344   assert(thread->thread_state() == _thread_in_native_trans, "wrong state");
2345 
2346   JavaThread *curJT = JavaThread::current();
2347   bool do_self_suspend = thread->is_external_suspend();
2348 
2349   assert(!curJT->has_last_Java_frame() || curJT->frame_anchor()->walkable(), "Unwalkable stack in native->vm transition");
2350 
2351   // If JNIEnv proxies are allowed, don't self-suspend if the target
2352   // thread is not the current thread. In older versions of jdbx, jdbx
2353   // threads could call into the VM with another thread's JNIEnv so we
2354   // can be here operating on behalf of a suspended thread (4432884).
2355   if (do_self_suspend && (!AllowJNIEnvProxy || curJT == thread)) {
2356     JavaThreadState state = thread->thread_state();
2357 
2358     // We mark this thread_blocked state as a suspend-equivalent so
2359     // that a caller to is_ext_suspend_completed() won't be confused.
2360     // The suspend-equivalent state is cleared by java_suspend_self().
2361     thread->set_suspend_equivalent();
2362 
2363     // If the safepoint code sees the _thread_in_native_trans state, it will
2364     // wait until the thread changes to other thread state. There is no
2365     // guarantee on how soon we can obtain the SR_lock and complete the
2366     // self-suspend request. It would be a bad idea to let safepoint wait for
2367     // too long. Temporarily change the state to _thread_blocked to
2368     // let the VM thread know that this thread is ready for GC. The problem
2369     // of changing thread state is that safepoint could happen just after
2370     // java_suspend_self() returns after being resumed, and VM thread will
2371     // see the _thread_blocked state. We must check for safepoint
2372     // after restoring the state and make sure we won't leave while a safepoint
2373     // is in progress.
2374     thread->set_thread_state(_thread_blocked);
2375     thread->java_suspend_self();
2376     thread->set_thread_state(state);
2377     // Make sure new state is seen by VM thread
2378     if (os::is_MP()) {
2379       if (UseMembar) {
2380         // Force a fence between the write above and read below
2381         OrderAccess::fence();
2382       } else {
2383         // Must use this rather than serialization page in particular on Windows
2384         InterfaceSupport::serialize_memory(thread);
2385       }
2386     }
2387   }
2388 
2389   if (SafepointSynchronize::do_call_back()) {
2390     // If we are safepointing, then block the caller which may not be
2391     // the same as the target thread (see above).
2392     SafepointSynchronize::block(curJT);
2393   }
2394 
2395   if (thread->is_deopt_suspend()) {
2396     thread->clear_deopt_suspend();
2397     RegisterMap map(thread, false);
2398     frame f = thread->last_frame();
2399     while ( f.id() != thread->must_deopt_id() && ! f.is_first_frame()) {
2400       f = f.sender(&map);
2401     }
2402     if (f.id() == thread->must_deopt_id()) {
2403       thread->clear_must_deopt_id();
2404       f.deoptimize(thread);
2405     } else {
2406       fatal("missed deoptimization!");
2407     }
2408   }
2409 }
2410 
2411 // Slow path when the native==>VM/Java barriers detect a safepoint is in
2412 // progress or when _suspend_flags is non-zero.
2413 // Current thread needs to self-suspend if there is a suspend request and/or
2414 // block if a safepoint is in progress.
2415 // Also check for pending async exception (not including unsafe access error).
2416 // Note only the native==>VM/Java barriers can call this function and when
2417 // thread state is _thread_in_native_trans.
2418 void JavaThread::check_special_condition_for_native_trans(JavaThread *thread) {
2419   check_safepoint_and_suspend_for_native_trans(thread);
2420 
2421   if (thread->has_async_exception()) {
2422     // We are in _thread_in_native_trans state, don't handle unsafe
2423     // access error since that may block.
2424     thread->check_and_handle_async_exceptions(false);
2425   }
2426 }
2427 
2428 // This is a variant of the normal
2429 // check_special_condition_for_native_trans with slightly different
2430 // semantics for use by critical native wrappers.  It does all the
2431 // normal checks but also performs the transition back into
2432 // thread_in_Java state.  This is required so that critical natives
2433 // can potentially block and perform a GC if they are the last thread
2434 // exiting the GC_locker.
2435 void JavaThread::check_special_condition_for_native_trans_and_transition(JavaThread *thread) {
2436   check_special_condition_for_native_trans(thread);
2437 
2438   // Finish the transition
2439   thread->set_thread_state(_thread_in_Java);
2440 
2441   if (thread->do_critical_native_unlock()) {
2442     ThreadInVMfromJavaNoAsyncException tiv(thread);
2443     GC_locker::unlock_critical(thread);
2444     thread->clear_critical_native_unlock();
2445   }
2446 }
2447 
2448 // We need to guarantee the Threads_lock here, since resumes are not
2449 // allowed during safepoint synchronization
2450 // Can only resume from an external suspension
2451 void JavaThread::java_resume() {
2452   assert_locked_or_safepoint(Threads_lock);
2453 
2454   // Sanity check: thread is gone, has started exiting or the thread
2455   // was not externally suspended.
2456   if (!Threads::includes(this) || is_exiting() || !is_external_suspend()) {
2457     return;
2458   }
2459 
2460   MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2461 
2462   clear_external_suspend();
2463 
2464   if (is_ext_suspended()) {
2465     clear_ext_suspended();
2466     SR_lock()->notify_all();
2467   }
2468 }
2469 
2470 void JavaThread::create_stack_guard_pages() {
2471   if (! os::uses_stack_guard_pages() || _stack_guard_state != stack_guard_unused) return;
2472   address low_addr = stack_base() - stack_size();
2473   size_t len = (StackYellowPages + StackRedPages) * os::vm_page_size();
2474 
2475   int allocate = os::allocate_stack_guard_pages();
2476   // warning("Guarding at " PTR_FORMAT " for len " SIZE_FORMAT "\n", low_addr, len);
2477 
2478   if (allocate && !os::create_stack_guard_pages((char *) low_addr, len)) {
2479     warning("Attempt to allocate stack guard pages failed.");
2480     return;
2481   }
2482 
2483   if (os::guard_memory((char *) low_addr, len)) {
2484     _stack_guard_state = stack_guard_enabled;
2485   } else {
2486     warning("Attempt to protect stack guard pages failed.");
2487     if (os::uncommit_memory((char *) low_addr, len)) {
2488       warning("Attempt to deallocate stack guard pages failed.");
2489     }
2490   }
2491 }
2492 
2493 void JavaThread::remove_stack_guard_pages() {
2494   assert(Thread::current() == this, "from different thread");
2495   if (_stack_guard_state == stack_guard_unused) return;
2496   address low_addr = stack_base() - stack_size();
2497   size_t len = (StackYellowPages + StackRedPages) * os::vm_page_size();
2498 
2499   if (os::allocate_stack_guard_pages()) {
2500     if (os::remove_stack_guard_pages((char *) low_addr, len)) {
2501       _stack_guard_state = stack_guard_unused;
2502     } else {
2503       warning("Attempt to deallocate stack guard pages failed.");
2504     }
2505   } else {
2506     if (_stack_guard_state == stack_guard_unused) return;
2507     if (os::unguard_memory((char *) low_addr, len)) {
2508       _stack_guard_state = stack_guard_unused;
2509     } else {
2510         warning("Attempt to unprotect stack guard pages failed.");
2511     }
2512   }
2513 }
2514 
2515 void JavaThread::enable_stack_yellow_zone() {
2516   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2517   assert(_stack_guard_state != stack_guard_enabled, "already enabled");
2518 
2519   // The base notation is from the stacks point of view, growing downward.
2520   // We need to adjust it to work correctly with guard_memory()
2521   address base = stack_yellow_zone_base() - stack_yellow_zone_size();
2522 
2523   guarantee(base < stack_base(),"Error calculating stack yellow zone");
2524   guarantee(base < os::current_stack_pointer(),"Error calculating stack yellow zone");
2525 
2526   if (os::guard_memory((char *) base, stack_yellow_zone_size())) {
2527     _stack_guard_state = stack_guard_enabled;
2528   } else {
2529     warning("Attempt to guard stack yellow zone failed.");
2530   }
2531   enable_register_stack_guard();
2532 }
2533 
2534 void JavaThread::disable_stack_yellow_zone() {
2535   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2536   assert(_stack_guard_state != stack_guard_yellow_disabled, "already disabled");
2537 
2538   // Simply return if called for a thread that does not use guard pages.
2539   if (_stack_guard_state == stack_guard_unused) return;
2540 
2541   // The base notation is from the stacks point of view, growing downward.
2542   // We need to adjust it to work correctly with guard_memory()
2543   address base = stack_yellow_zone_base() - stack_yellow_zone_size();
2544 
2545   if (os::unguard_memory((char *)base, stack_yellow_zone_size())) {
2546     _stack_guard_state = stack_guard_yellow_disabled;
2547   } else {
2548     warning("Attempt to unguard stack yellow zone failed.");
2549   }
2550   disable_register_stack_guard();
2551 }
2552 
2553 void JavaThread::enable_stack_red_zone() {
2554   // The base notation is from the stacks point of view, growing downward.
2555   // We need to adjust it to work correctly with guard_memory()
2556   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2557   address base = stack_red_zone_base() - stack_red_zone_size();
2558 
2559   guarantee(base < stack_base(),"Error calculating stack red zone");
2560   guarantee(base < os::current_stack_pointer(),"Error calculating stack red zone");
2561 
2562   if(!os::guard_memory((char *) base, stack_red_zone_size())) {
2563     warning("Attempt to guard stack red zone failed.");
2564   }
2565 }
2566 
2567 void JavaThread::disable_stack_red_zone() {
2568   // The base notation is from the stacks point of view, growing downward.
2569   // We need to adjust it to work correctly with guard_memory()
2570   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2571   address base = stack_red_zone_base() - stack_red_zone_size();
2572   if (!os::unguard_memory((char *)base, stack_red_zone_size())) {
2573     warning("Attempt to unguard stack red zone failed.");
2574   }
2575 }
2576 
2577 void JavaThread::frames_do(void f(frame*, const RegisterMap* map)) {
2578   // ignore is there is no stack
2579   if (!has_last_Java_frame()) return;
2580   // traverse the stack frames. Starts from top frame.
2581   for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2582     frame* fr = fst.current();
2583     f(fr, fst.register_map());
2584   }
2585 }
2586 
2587 
2588 #ifndef PRODUCT
2589 // Deoptimization
2590 // Function for testing deoptimization
2591 void JavaThread::deoptimize() {
2592   // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
2593   StackFrameStream fst(this, UseBiasedLocking);
2594   bool deopt = false;           // Dump stack only if a deopt actually happens.
2595   bool only_at = strlen(DeoptimizeOnlyAt) > 0;
2596   // Iterate over all frames in the thread and deoptimize
2597   for(; !fst.is_done(); fst.next()) {
2598     if(fst.current()->can_be_deoptimized()) {
2599 
2600       if (only_at) {
2601         // Deoptimize only at particular bcis.  DeoptimizeOnlyAt
2602         // consists of comma or carriage return separated numbers so
2603         // search for the current bci in that string.
2604         address pc = fst.current()->pc();
2605         nmethod* nm =  (nmethod*) fst.current()->cb();
2606         ScopeDesc* sd = nm->scope_desc_at( pc);
2607         char buffer[8];
2608         jio_snprintf(buffer, sizeof(buffer), "%d", sd->bci());
2609         size_t len = strlen(buffer);
2610         const char * found = strstr(DeoptimizeOnlyAt, buffer);
2611         while (found != NULL) {
2612           if ((found[len] == ',' || found[len] == '\n' || found[len] == '\0') &&
2613               (found == DeoptimizeOnlyAt || found[-1] == ',' || found[-1] == '\n')) {
2614             // Check that the bci found is bracketed by terminators.
2615             break;
2616           }
2617           found = strstr(found + 1, buffer);
2618         }
2619         if (!found) {
2620           continue;
2621         }
2622       }
2623 
2624       if (DebugDeoptimization && !deopt) {
2625         deopt = true; // One-time only print before deopt
2626         tty->print_cr("[BEFORE Deoptimization]");
2627         trace_frames();
2628         trace_stack();
2629       }
2630       Deoptimization::deoptimize(this, *fst.current(), fst.register_map());
2631     }
2632   }
2633 
2634   if (DebugDeoptimization && deopt) {
2635     tty->print_cr("[AFTER Deoptimization]");
2636     trace_frames();
2637   }
2638 }
2639 
2640 
2641 // Make zombies
2642 void JavaThread::make_zombies() {
2643   for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2644     if (fst.current()->can_be_deoptimized()) {
2645       // it is a Java nmethod
2646       nmethod* nm = CodeCache::find_nmethod(fst.current()->pc());
2647       nm->make_not_entrant();
2648     }
2649   }
2650 }
2651 #endif // PRODUCT
2652 
2653 
2654 void JavaThread::deoptimized_wrt_marked_nmethods() {
2655   if (!has_last_Java_frame()) return;
2656   // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
2657   StackFrameStream fst(this, UseBiasedLocking);
2658   for(; !fst.is_done(); fst.next()) {
2659     if (fst.current()->should_be_deoptimized()) {
2660       if (LogCompilation && xtty != NULL) {
2661         nmethod* nm = fst.current()->cb()->as_nmethod_or_null();
2662         xtty->elem("deoptimized thread='" UINTX_FORMAT "' compile_id='%d'",
2663                    this->name(), nm != NULL ? nm->compile_id() : -1);
2664       }
2665 
2666       Deoptimization::deoptimize(this, *fst.current(), fst.register_map());
2667     }
2668   }
2669 }
2670 
2671 
2672 // GC support
2673 static void frame_gc_epilogue(frame* f, const RegisterMap* map) { f->gc_epilogue(); }
2674 
2675 void JavaThread::gc_epilogue() {
2676   frames_do(frame_gc_epilogue);
2677 }
2678 
2679 
2680 static void frame_gc_prologue(frame* f, const RegisterMap* map) { f->gc_prologue(); }
2681 
2682 void JavaThread::gc_prologue() {
2683   frames_do(frame_gc_prologue);
2684 }
2685 
2686 // If the caller is a NamedThread, then remember, in the current scope,
2687 // the given JavaThread in its _processed_thread field.
2688 class RememberProcessedThread: public StackObj {
2689   NamedThread* _cur_thr;
2690 public:
2691   RememberProcessedThread(JavaThread* jthr) {
2692     Thread* thread = Thread::current();
2693     if (thread->is_Named_thread()) {
2694       _cur_thr = (NamedThread *)thread;
2695       _cur_thr->set_processed_thread(jthr);
2696     } else {
2697       _cur_thr = NULL;
2698     }
2699   }
2700 
2701   ~RememberProcessedThread() {
2702     if (_cur_thr) {
2703       _cur_thr->set_processed_thread(NULL);
2704     }
2705   }
2706 };
2707 
2708 void JavaThread::oops_do(OopClosure* f, CodeBlobClosure* cf) {
2709   // Verify that the deferred card marks have been flushed.
2710   assert(deferred_card_mark().is_empty(), "Should be empty during GC");
2711 
2712   // The ThreadProfiler oops_do is done from FlatProfiler::oops_do
2713   // since there may be more than one thread using each ThreadProfiler.
2714 
2715   // Traverse the GCHandles
2716   Thread::oops_do(f, cf);
2717 
2718   assert( (!has_last_Java_frame() && java_call_counter() == 0) ||
2719           (has_last_Java_frame() && java_call_counter() > 0), "wrong java_sp info!");
2720 
2721   if (has_last_Java_frame()) {
2722     // Record JavaThread to GC thread
2723     RememberProcessedThread rpt(this);
2724 
2725     // Traverse the privileged stack
2726     if (_privileged_stack_top != NULL) {
2727       _privileged_stack_top->oops_do(f);
2728     }
2729 
2730     // traverse the registered growable array
2731     if (_array_for_gc != NULL) {
2732       for (int index = 0; index < _array_for_gc->length(); index++) {
2733         f->do_oop(_array_for_gc->adr_at(index));
2734       }
2735     }
2736 
2737     // Traverse the monitor chunks
2738     for (MonitorChunk* chunk = monitor_chunks(); chunk != NULL; chunk = chunk->next()) {
2739       chunk->oops_do(f);
2740     }
2741 
2742     // Traverse the execution stack
2743     for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2744       fst.current()->oops_do(f, cf, fst.register_map());
2745     }
2746   }
2747 
2748   // callee_target is never live across a gc point so NULL it here should
2749   // it still contain a methdOop.
2750 
2751   set_callee_target(NULL);
2752 
2753   assert(vframe_array_head() == NULL, "deopt in progress at a safepoint!");
2754   // If we have deferred set_locals there might be oops waiting to be
2755   // written
2756   GrowableArray<jvmtiDeferredLocalVariableSet*>* list = deferred_locals();
2757   if (list != NULL) {
2758     for (int i = 0; i < list->length(); i++) {
2759       list->at(i)->oops_do(f);
2760     }
2761   }
2762 
2763   // Traverse instance variables at the end since the GC may be moving things
2764   // around using this function
2765   f->do_oop((oop*) &_threadObj);
2766   f->do_oop((oop*) &_vm_result);
2767   f->do_oop((oop*) &_exception_oop);
2768   f->do_oop((oop*) &_pending_async_exception);
2769 
2770   if (jvmti_thread_state() != NULL) {
2771     jvmti_thread_state()->oops_do(f);
2772   }
2773 }
2774 
2775 void JavaThread::nmethods_do(CodeBlobClosure* cf) {
2776   Thread::nmethods_do(cf);  // (super method is a no-op)
2777 
2778   assert( (!has_last_Java_frame() && java_call_counter() == 0) ||
2779           (has_last_Java_frame() && java_call_counter() > 0), "wrong java_sp info!");
2780 
2781   if (has_last_Java_frame()) {
2782     // Traverse the execution stack
2783     for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2784       fst.current()->nmethods_do(cf);
2785     }
2786   }
2787 }
2788 
2789 void JavaThread::metadata_do(void f(Metadata*)) {
2790   Thread::metadata_do(f);
2791   if (has_last_Java_frame()) {
2792     // Traverse the execution stack to call f() on the methods in the stack
2793     for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2794       fst.current()->metadata_do(f);
2795     }
2796   } else if (is_Compiler_thread()) {
2797     // need to walk ciMetadata in current compile tasks to keep alive.
2798     CompilerThread* ct = (CompilerThread*)this;
2799     if (ct->env() != NULL) {
2800       ct->env()->metadata_do(f);
2801     }
2802   }
2803 }
2804 
2805 // Printing
2806 const char* _get_thread_state_name(JavaThreadState _thread_state) {
2807   switch (_thread_state) {
2808   case _thread_uninitialized:     return "_thread_uninitialized";
2809   case _thread_new:               return "_thread_new";
2810   case _thread_new_trans:         return "_thread_new_trans";
2811   case _thread_in_native:         return "_thread_in_native";
2812   case _thread_in_native_trans:   return "_thread_in_native_trans";
2813   case _thread_in_vm:             return "_thread_in_vm";
2814   case _thread_in_vm_trans:       return "_thread_in_vm_trans";
2815   case _thread_in_Java:           return "_thread_in_Java";
2816   case _thread_in_Java_trans:     return "_thread_in_Java_trans";
2817   case _thread_blocked:           return "_thread_blocked";
2818   case _thread_blocked_trans:     return "_thread_blocked_trans";
2819   default:                        return "unknown thread state";
2820   }
2821 }
2822 
2823 #ifndef PRODUCT
2824 void JavaThread::print_thread_state_on(outputStream *st) const {
2825   st->print_cr("   JavaThread state: %s", _get_thread_state_name(_thread_state));
2826 };
2827 void JavaThread::print_thread_state() const {
2828   print_thread_state_on(tty);
2829 };
2830 #endif // PRODUCT
2831 
2832 // Called by Threads::print() for VM_PrintThreads operation
2833 void JavaThread::print_on(outputStream *st) const {
2834   st->print("\"%s\" ", get_thread_name());
2835   oop thread_oop = threadObj();
2836   if (thread_oop != NULL) {
2837     st->print("#" INT64_FORMAT " ", java_lang_Thread::thread_id(thread_oop));
2838     if (java_lang_Thread::is_daemon(thread_oop))  st->print("daemon ");
2839     st->print("prio=%d ", java_lang_Thread::priority(thread_oop));
2840   }
2841   Thread::print_on(st);
2842   // print guess for valid stack memory region (assume 4K pages); helps lock debugging
2843   st->print_cr("[" INTPTR_FORMAT "]", (intptr_t)last_Java_sp() & ~right_n_bits(12));
2844   if (thread_oop != NULL && JDK_Version::is_gte_jdk15x_version()) {
2845     st->print_cr("   java.lang.Thread.State: %s", java_lang_Thread::thread_status_name(thread_oop));
2846   }
2847 #ifndef PRODUCT
2848   print_thread_state_on(st);
2849   _safepoint_state->print_on(st);
2850 #endif // PRODUCT
2851 }
2852 
2853 // Called by fatal error handler. The difference between this and
2854 // JavaThread::print() is that we can't grab lock or allocate memory.
2855 void JavaThread::print_on_error(outputStream* st, char *buf, int buflen) const {
2856   st->print("JavaThread \"%s\"",  get_thread_name_string(buf, buflen));
2857   oop thread_obj = threadObj();
2858   if (thread_obj != NULL) {
2859      if (java_lang_Thread::is_daemon(thread_obj)) st->print(" daemon");
2860   }
2861   st->print(" [");
2862   st->print("%s", _get_thread_state_name(_thread_state));
2863   if (osthread()) {
2864     st->print(", id=%d", osthread()->thread_id());
2865   }
2866   st->print(", stack(" PTR_FORMAT "," PTR_FORMAT ")",
2867             _stack_base - _stack_size, _stack_base);
2868   st->print("]");
2869   return;
2870 }
2871 
2872 // Verification
2873 
2874 static void frame_verify(frame* f, const RegisterMap *map) { f->verify(map); }
2875 
2876 void JavaThread::verify() {
2877   // Verify oops in the thread.
2878   oops_do(&VerifyOopClosure::verify_oop, NULL);
2879 
2880   // Verify the stack frames.
2881   frames_do(frame_verify);
2882 }
2883 
2884 // CR 6300358 (sub-CR 2137150)
2885 // Most callers of this method assume that it can't return NULL but a
2886 // thread may not have a name whilst it is in the process of attaching to
2887 // the VM - see CR 6412693, and there are places where a JavaThread can be
2888 // seen prior to having it's threadObj set (eg JNI attaching threads and
2889 // if vm exit occurs during initialization). These cases can all be accounted
2890 // for such that this method never returns NULL.
2891 const char* JavaThread::get_thread_name() const {
2892 #ifdef ASSERT
2893   // early safepoints can hit while current thread does not yet have TLS
2894   if (!SafepointSynchronize::is_at_safepoint()) {
2895     Thread *cur = Thread::current();
2896     if (!(cur->is_Java_thread() && cur == this)) {
2897       // Current JavaThreads are allowed to get their own name without
2898       // the Threads_lock.
2899       assert_locked_or_safepoint(Threads_lock);
2900     }
2901   }
2902 #endif // ASSERT
2903     return get_thread_name_string();
2904 }
2905 
2906 // Returns a non-NULL representation of this thread's name, or a suitable
2907 // descriptive string if there is no set name
2908 const char* JavaThread::get_thread_name_string(char* buf, int buflen) const {
2909   const char* name_str;
2910   oop thread_obj = threadObj();
2911   if (thread_obj != NULL) {
2912     typeArrayOop name = java_lang_Thread::name(thread_obj);
2913     if (name != NULL) {
2914       if (buf == NULL) {
2915         name_str = UNICODE::as_utf8((jchar*) name->base(T_CHAR), name->length());
2916       }
2917       else {
2918         name_str = UNICODE::as_utf8((jchar*) name->base(T_CHAR), name->length(), buf, buflen);
2919       }
2920     }
2921     else if (is_attaching_via_jni()) { // workaround for 6412693 - see 6404306
2922       name_str = "<no-name - thread is attaching>";
2923     }
2924     else {
2925       name_str = Thread::name();
2926     }
2927   }
2928   else {
2929     name_str = Thread::name();
2930   }
2931   assert(name_str != NULL, "unexpected NULL thread name");
2932   return name_str;
2933 }
2934 
2935 
2936 const char* JavaThread::get_threadgroup_name() const {
2937   debug_only(if (JavaThread::current() != this) assert_locked_or_safepoint(Threads_lock);)
2938   oop thread_obj = threadObj();
2939   if (thread_obj != NULL) {
2940     oop thread_group = java_lang_Thread::threadGroup(thread_obj);
2941     if (thread_group != NULL) {
2942       typeArrayOop name = java_lang_ThreadGroup::name(thread_group);
2943       // ThreadGroup.name can be null
2944       if (name != NULL) {
2945         const char* str = UNICODE::as_utf8((jchar*) name->base(T_CHAR), name->length());
2946         return str;
2947       }
2948     }
2949   }
2950   return NULL;
2951 }
2952 
2953 const char* JavaThread::get_parent_name() const {
2954   debug_only(if (JavaThread::current() != this) assert_locked_or_safepoint(Threads_lock);)
2955   oop thread_obj = threadObj();
2956   if (thread_obj != NULL) {
2957     oop thread_group = java_lang_Thread::threadGroup(thread_obj);
2958     if (thread_group != NULL) {
2959       oop parent = java_lang_ThreadGroup::parent(thread_group);
2960       if (parent != NULL) {
2961         typeArrayOop name = java_lang_ThreadGroup::name(parent);
2962         // ThreadGroup.name can be null
2963         if (name != NULL) {
2964           const char* str = UNICODE::as_utf8((jchar*) name->base(T_CHAR), name->length());
2965           return str;
2966         }
2967       }
2968     }
2969   }
2970   return NULL;
2971 }
2972 
2973 ThreadPriority JavaThread::java_priority() const {
2974   oop thr_oop = threadObj();
2975   if (thr_oop == NULL) return NormPriority; // Bootstrapping
2976   ThreadPriority priority = java_lang_Thread::priority(thr_oop);
2977   assert(MinPriority <= priority && priority <= MaxPriority, "sanity check");
2978   return priority;
2979 }
2980 
2981 void JavaThread::prepare(jobject jni_thread, ThreadPriority prio) {
2982 
2983   assert(Threads_lock->owner() == Thread::current(), "must have threads lock");
2984   // Link Java Thread object <-> C++ Thread
2985 
2986   // Get the C++ thread object (an oop) from the JNI handle (a jthread)
2987   // and put it into a new Handle.  The Handle "thread_oop" can then
2988   // be used to pass the C++ thread object to other methods.
2989 
2990   // Set the Java level thread object (jthread) field of the
2991   // new thread (a JavaThread *) to C++ thread object using the
2992   // "thread_oop" handle.
2993 
2994   // Set the thread field (a JavaThread *) of the
2995   // oop representing the java_lang_Thread to the new thread (a JavaThread *).
2996 
2997   Handle thread_oop(Thread::current(),
2998                     JNIHandles::resolve_non_null(jni_thread));
2999   assert(InstanceKlass::cast(thread_oop->klass())->is_linked(),
3000     "must be initialized");
3001   set_threadObj(thread_oop());
3002   java_lang_Thread::set_thread(thread_oop(), this);
3003 
3004   if (prio == NoPriority) {
3005     prio = java_lang_Thread::priority(thread_oop());
3006     assert(prio != NoPriority, "A valid priority should be present");
3007   }
3008 
3009   // Push the Java priority down to the native thread; needs Threads_lock
3010   Thread::set_priority(this, prio);
3011 
3012   // Add the new thread to the Threads list and set it in motion.
3013   // We must have threads lock in order to call Threads::add.
3014   // It is crucial that we do not block before the thread is
3015   // added to the Threads list for if a GC happens, then the java_thread oop
3016   // will not be visited by GC.
3017   Threads::add(this);
3018 }
3019 
3020 oop JavaThread::current_park_blocker() {
3021   // Support for JSR-166 locks
3022   oop thread_oop = threadObj();
3023   if (thread_oop != NULL &&
3024       JDK_Version::current().supports_thread_park_blocker()) {
3025     return java_lang_Thread::park_blocker(thread_oop);
3026   }
3027   return NULL;
3028 }
3029 
3030 
3031 void JavaThread::print_stack_on(outputStream* st) {
3032   if (!has_last_Java_frame()) return;
3033   ResourceMark rm;
3034   HandleMark   hm;
3035 
3036   RegisterMap reg_map(this);
3037   vframe* start_vf = last_java_vframe(&reg_map);
3038   int count = 0;
3039   for (vframe* f = start_vf; f; f = f->sender() ) {
3040     if (f->is_java_frame()) {
3041       javaVFrame* jvf = javaVFrame::cast(f);
3042       java_lang_Throwable::print_stack_element(st, jvf->method(), jvf->bci());
3043 
3044       // Print out lock information
3045       if (JavaMonitorsInStackTrace) {
3046         jvf->print_lock_info_on(st, count);
3047       }
3048     } else {
3049       // Ignore non-Java frames
3050     }
3051 
3052     // Bail-out case for too deep stacks
3053     count++;
3054     if (MaxJavaStackTraceDepth == count) return;
3055   }
3056 }
3057 
3058 
3059 // JVMTI PopFrame support
3060 void JavaThread::popframe_preserve_args(ByteSize size_in_bytes, void* start) {
3061   assert(_popframe_preserved_args == NULL, "should not wipe out old PopFrame preserved arguments");
3062   if (in_bytes(size_in_bytes) != 0) {
3063     _popframe_preserved_args = NEW_C_HEAP_ARRAY(char, in_bytes(size_in_bytes), mtThread);
3064     _popframe_preserved_args_size = in_bytes(size_in_bytes);
3065     Copy::conjoint_jbytes(start, _popframe_preserved_args, _popframe_preserved_args_size);
3066   }
3067 }
3068 
3069 void* JavaThread::popframe_preserved_args() {
3070   return _popframe_preserved_args;
3071 }
3072 
3073 ByteSize JavaThread::popframe_preserved_args_size() {
3074   return in_ByteSize(_popframe_preserved_args_size);
3075 }
3076 
3077 WordSize JavaThread::popframe_preserved_args_size_in_words() {
3078   int sz = in_bytes(popframe_preserved_args_size());
3079   assert(sz % wordSize == 0, "argument size must be multiple of wordSize");
3080   return in_WordSize(sz / wordSize);
3081 }
3082 
3083 void JavaThread::popframe_free_preserved_args() {
3084   assert(_popframe_preserved_args != NULL, "should not free PopFrame preserved arguments twice");
3085   FREE_C_HEAP_ARRAY(char, (char*) _popframe_preserved_args, mtThread);
3086   _popframe_preserved_args = NULL;
3087   _popframe_preserved_args_size = 0;
3088 }
3089 
3090 #ifndef PRODUCT
3091 
3092 void JavaThread::trace_frames() {
3093   tty->print_cr("[Describe stack]");
3094   int frame_no = 1;
3095   for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
3096     tty->print("  %d. ", frame_no++);
3097     fst.current()->print_value_on(tty,this);
3098     tty->cr();
3099   }
3100 }
3101 
3102 class PrintAndVerifyOopClosure: public OopClosure {
3103  protected:
3104   template <class T> inline void do_oop_work(T* p) {
3105     oop obj = oopDesc::load_decode_heap_oop(p);
3106     if (obj == NULL) return;
3107     tty->print(INTPTR_FORMAT ": ", p);
3108     if (obj->is_oop_or_null()) {
3109       if (obj->is_objArray()) {
3110         tty->print_cr("valid objArray: " INTPTR_FORMAT, (oopDesc*) obj);
3111       } else {
3112         obj->print();
3113       }
3114     } else {
3115       tty->print_cr("invalid oop: " INTPTR_FORMAT, (oopDesc*) obj);
3116     }
3117     tty->cr();
3118   }
3119  public:
3120   virtual void do_oop(oop* p) { do_oop_work(p); }
3121   virtual void do_oop(narrowOop* p)  { do_oop_work(p); }
3122 };
3123 
3124 
3125 static void oops_print(frame* f, const RegisterMap *map) {
3126   PrintAndVerifyOopClosure print;
3127   f->print_value();
3128   f->oops_do(&print, NULL, (RegisterMap*)map);
3129 }
3130 
3131 // Print our all the locations that contain oops and whether they are
3132 // valid or not.  This useful when trying to find the oldest frame
3133 // where an oop has gone bad since the frame walk is from youngest to
3134 // oldest.
3135 void JavaThread::trace_oops() {
3136   tty->print_cr("[Trace oops]");
3137   frames_do(oops_print);
3138 }
3139 
3140 
3141 #ifdef ASSERT
3142 // Print or validate the layout of stack frames
3143 void JavaThread::print_frame_layout(int depth, bool validate_only) {
3144   ResourceMark rm;
3145   PRESERVE_EXCEPTION_MARK;
3146   FrameValues values;
3147   int frame_no = 0;
3148   for(StackFrameStream fst(this, false); !fst.is_done(); fst.next()) {
3149     fst.current()->describe(values, ++frame_no);
3150     if (depth == frame_no) break;
3151   }
3152   if (validate_only) {
3153     values.validate();
3154   } else {
3155     tty->print_cr("[Describe stack layout]");
3156     values.print(this);
3157   }
3158 }
3159 #endif
3160 
3161 void JavaThread::trace_stack_from(vframe* start_vf) {
3162   ResourceMark rm;
3163   int vframe_no = 1;
3164   for (vframe* f = start_vf; f; f = f->sender() ) {
3165     if (f->is_java_frame()) {
3166       javaVFrame::cast(f)->print_activation(vframe_no++);
3167     } else {
3168       f->print();
3169     }
3170     if (vframe_no > StackPrintLimit) {
3171       tty->print_cr("...<more frames>...");
3172       return;
3173     }
3174   }
3175 }
3176 
3177 
3178 void JavaThread::trace_stack() {
3179   if (!has_last_Java_frame()) return;
3180   ResourceMark rm;
3181   HandleMark   hm;
3182   RegisterMap reg_map(this);
3183   trace_stack_from(last_java_vframe(&reg_map));
3184 }
3185 
3186 
3187 #endif // PRODUCT
3188 
3189 
3190 javaVFrame* JavaThread::last_java_vframe(RegisterMap *reg_map) {
3191   assert(reg_map != NULL, "a map must be given");
3192   frame f = last_frame();
3193   for (vframe* vf = vframe::new_vframe(&f, reg_map, this); vf; vf = vf->sender() ) {
3194     if (vf->is_java_frame()) return javaVFrame::cast(vf);
3195   }
3196   return NULL;
3197 }
3198 
3199 
3200 Klass* JavaThread::security_get_caller_class(int depth) {
3201   vframeStream vfst(this);
3202   vfst.security_get_caller_frame(depth);
3203   if (!vfst.at_end()) {
3204     return vfst.method()->method_holder();
3205   }
3206   return NULL;
3207 }
3208 
3209 static void compiler_thread_entry(JavaThread* thread, TRAPS) {
3210   assert(thread->is_Compiler_thread(), "must be compiler thread");
3211   CompileBroker::compiler_thread_loop();
3212 }
3213 
3214 // Create a CompilerThread
3215 CompilerThread::CompilerThread(CompileQueue* queue, CompilerCounters* counters)
3216 : JavaThread(&compiler_thread_entry) {
3217   _env   = NULL;
3218   _log   = NULL;
3219   _task  = NULL;
3220   _queue = queue;
3221   _counters = counters;
3222   _buffer_blob = NULL;
3223   _scanned_nmethod = NULL;
3224 
3225 #ifndef PRODUCT
3226   _ideal_graph_printer = NULL;
3227 #endif
3228 }
3229 
3230 void CompilerThread::oops_do(OopClosure* f, CodeBlobClosure* cf) {
3231   JavaThread::oops_do(f, cf);
3232   if (_scanned_nmethod != NULL && cf != NULL) {
3233     // Safepoints can occur when the sweeper is scanning an nmethod so
3234     // process it here to make sure it isn't unloaded in the middle of
3235     // a scan.
3236     cf->do_code_blob(_scanned_nmethod);
3237   }
3238 }
3239 
3240 // ======= Threads ========
3241 
3242 // The Threads class links together all active threads, and provides
3243 // operations over all threads.  It is protected by its own Mutex
3244 // lock, which is also used in other contexts to protect thread
3245 // operations from having the thread being operated on from exiting
3246 // and going away unexpectedly (e.g., safepoint synchronization)
3247 
3248 JavaThread* Threads::_thread_list = NULL;
3249 int         Threads::_number_of_threads = 0;
3250 int         Threads::_number_of_non_daemon_threads = 0;
3251 int         Threads::_return_code = 0;
3252 size_t      JavaThread::_stack_size_at_create = 0;
3253 #ifdef ASSERT
3254 bool        Threads::_vm_complete = false;
3255 #endif
3256 
3257 // All JavaThreads
3258 #define ALL_JAVA_THREADS(X) for (JavaThread* X = _thread_list; X; X = X->next())
3259 
3260 void os_stream();
3261 
3262 // All JavaThreads + all non-JavaThreads (i.e., every thread in the system)
3263 void Threads::threads_do(ThreadClosure* tc) {
3264   assert_locked_or_safepoint(Threads_lock);
3265   // ALL_JAVA_THREADS iterates through all JavaThreads
3266   ALL_JAVA_THREADS(p) {
3267     tc->do_thread(p);
3268   }
3269   // Someday we could have a table or list of all non-JavaThreads.
3270   // For now, just manually iterate through them.
3271   tc->do_thread(VMThread::vm_thread());
3272   Universe::heap()->gc_threads_do(tc);
3273   WatcherThread *wt = WatcherThread::watcher_thread();
3274   // Strictly speaking, the following NULL check isn't sufficient to make sure
3275   // the data for WatcherThread is still valid upon being examined. However,
3276   // considering that WatchThread terminates when the VM is on the way to
3277   // exit at safepoint, the chance of the above is extremely small. The right
3278   // way to prevent termination of WatcherThread would be to acquire
3279   // Terminator_lock, but we can't do that without violating the lock rank
3280   // checking in some cases.
3281   if (wt != NULL)
3282     tc->do_thread(wt);
3283 
3284   // If CompilerThreads ever become non-JavaThreads, add them here
3285 }
3286 
3287 jint Threads::create_vm(JavaVMInitArgs* args, bool* canTryAgain) {
3288 
3289   extern void JDK_Version_init();
3290 
3291   // Check version
3292   if (!is_supported_jni_version(args->version)) return JNI_EVERSION;
3293 
3294   // Initialize the output stream module
3295   ostream_init();
3296 
3297   // Process java launcher properties.
3298   Arguments::process_sun_java_launcher_properties(args);
3299 
3300   // Initialize the os module before using TLS
3301   os::init();
3302 
3303   // Initialize system properties.
3304   Arguments::init_system_properties();
3305 
3306   // So that JDK version can be used as a discrimintor when parsing arguments
3307   JDK_Version_init();
3308 
3309   // Update/Initialize System properties after JDK version number is known
3310   Arguments::init_version_specific_system_properties();
3311 
3312   // Parse arguments
3313   jint parse_result = Arguments::parse(args);
3314   if (parse_result != JNI_OK) return parse_result;
3315 
3316   if (PauseAtStartup) {
3317     os::pause();
3318   }
3319 
3320 #ifndef USDT2
3321   HS_DTRACE_PROBE(hotspot, vm__init__begin);
3322 #else /* USDT2 */
3323   HOTSPOT_VM_INIT_BEGIN();
3324 #endif /* USDT2 */
3325 
3326   // Record VM creation timing statistics
3327   TraceVmCreationTime create_vm_timer;
3328   create_vm_timer.start();
3329 
3330   // Timing (must come after argument parsing)
3331   TraceTime timer("Create VM", TraceStartupTime);
3332 
3333   // Initialize the os module after parsing the args
3334   jint os_init_2_result = os::init_2();
3335   if (os_init_2_result != JNI_OK) return os_init_2_result;
3336 
3337   // intialize TLS
3338   ThreadLocalStorage::init();
3339 
3340   // Bootstrap native memory tracking, so it can start recording memory
3341   // activities before worker thread is started. This is the first phase
3342   // of bootstrapping, VM is currently running in single-thread mode.
3343   MemTracker::bootstrap_single_thread();
3344 
3345   // Initialize output stream logging
3346   ostream_init_log();
3347 
3348   // Convert -Xrun to -agentlib: if there is no JVM_OnLoad
3349   // Must be before create_vm_init_agents()
3350   if (Arguments::init_libraries_at_startup()) {
3351     convert_vm_init_libraries_to_agents();
3352   }
3353 
3354   // Launch -agentlib/-agentpath and converted -Xrun agents
3355   if (Arguments::init_agents_at_startup()) {
3356     create_vm_init_agents();
3357   }
3358 
3359   // Initialize Threads state
3360   _thread_list = NULL;
3361   _number_of_threads = 0;
3362   _number_of_non_daemon_threads = 0;
3363 
3364   // Initialize global data structures and create system classes in heap
3365   vm_init_globals();
3366 
3367   // Attach the main thread to this os thread
3368   JavaThread* main_thread = new JavaThread();
3369   main_thread->set_thread_state(_thread_in_vm);
3370   // must do this before set_active_handles and initialize_thread_local_storage
3371   // Note: on solaris initialize_thread_local_storage() will (indirectly)
3372   // change the stack size recorded here to one based on the java thread
3373   // stacksize. This adjusted size is what is used to figure the placement
3374   // of the guard pages.
3375   main_thread->record_stack_base_and_size();
3376   main_thread->initialize_thread_local_storage();
3377 
3378   main_thread->set_active_handles(JNIHandleBlock::allocate_block());
3379 
3380   if (!main_thread->set_as_starting_thread()) {
3381     vm_shutdown_during_initialization(
3382       "Failed necessary internal allocation. Out of swap space");
3383     delete main_thread;
3384     *canTryAgain = false; // don't let caller call JNI_CreateJavaVM again
3385     return JNI_ENOMEM;
3386   }
3387 
3388   // Enable guard page *after* os::create_main_thread(), otherwise it would
3389   // crash Linux VM, see notes in os_linux.cpp.
3390   main_thread->create_stack_guard_pages();
3391 
3392   // Initialize Java-Level synchronization subsystem
3393   ObjectMonitor::Initialize() ;
3394 
3395   // Second phase of bootstrapping, VM is about entering multi-thread mode
3396   MemTracker::bootstrap_multi_thread();
3397 
3398   // Initialize global modules
3399   jint status = init_globals();
3400   if (status != JNI_OK) {
3401     delete main_thread;
3402     *canTryAgain = false; // don't let caller call JNI_CreateJavaVM again
3403     return status;
3404   }
3405 
3406   // Should be done after the heap is fully created
3407   main_thread->cache_global_variables();
3408 
3409   HandleMark hm;
3410 
3411   { MutexLocker mu(Threads_lock);
3412     Threads::add(main_thread);
3413   }
3414 
3415   // Any JVMTI raw monitors entered in onload will transition into
3416   // real raw monitor. VM is setup enough here for raw monitor enter.
3417   JvmtiExport::transition_pending_onload_raw_monitors();
3418 
3419   if (VerifyBeforeGC &&
3420       Universe::heap()->total_collections() >= VerifyGCStartAt) {
3421     Universe::heap()->prepare_for_verify();
3422     Universe::verify();   // make sure we're starting with a clean slate
3423   }
3424 
3425   // Fully start NMT
3426   MemTracker::start();
3427 
3428   // Create the VMThread
3429   { TraceTime timer("Start VMThread", TraceStartupTime);
3430     VMThread::create();
3431     Thread* vmthread = VMThread::vm_thread();
3432 
3433     if (!os::create_thread(vmthread, os::vm_thread))
3434       vm_exit_during_initialization("Cannot create VM thread. Out of system resources.");
3435 
3436     // Wait for the VM thread to become ready, and VMThread::run to initialize
3437     // Monitors can have spurious returns, must always check another state flag
3438     {
3439       MutexLocker ml(Notify_lock);
3440       os::start_thread(vmthread);
3441       while (vmthread->active_handles() == NULL) {
3442         Notify_lock->wait();
3443       }
3444     }
3445   }
3446 
3447   assert (Universe::is_fully_initialized(), "not initialized");
3448   EXCEPTION_MARK;
3449 
3450   // At this point, the Universe is initialized, but we have not executed
3451   // any byte code.  Now is a good time (the only time) to dump out the
3452   // internal state of the JVM for sharing.
3453   if (DumpSharedSpaces) {
3454     MetaspaceShared::preload_and_dump(CHECK_0);
3455     ShouldNotReachHere();
3456   }
3457 
3458   // Always call even when there are not JVMTI environments yet, since environments
3459   // may be attached late and JVMTI must track phases of VM execution
3460   JvmtiExport::enter_start_phase();
3461 
3462   // Notify JVMTI agents that VM has started (JNI is up) - nop if no agents.
3463   JvmtiExport::post_vm_start();
3464 
3465   {
3466     TraceTime timer("Initialize java.lang classes", TraceStartupTime);
3467 
3468     if (EagerXrunInit && Arguments::init_libraries_at_startup()) {
3469       create_vm_init_libraries();
3470     }
3471 
3472     if (InitializeJavaLangString) {
3473       initialize_class(vmSymbols::java_lang_String(), CHECK_0);
3474     } else {
3475       warning("java.lang.String not initialized");
3476     }
3477 
3478     if (AggressiveOpts) {
3479       {
3480         // Forcibly initialize java/util/HashMap and mutate the private
3481         // static final "frontCacheEnabled" field before we start creating instances
3482 #ifdef ASSERT
3483         Klass* tmp_k = SystemDictionary::find(vmSymbols::java_util_HashMap(), Handle(), Handle(), CHECK_0);
3484         assert(tmp_k == NULL, "java/util/HashMap should not be loaded yet");
3485 #endif
3486         Klass* k_o = SystemDictionary::resolve_or_null(vmSymbols::java_util_HashMap(), Handle(), Handle(), CHECK_0);
3487         KlassHandle k = KlassHandle(THREAD, k_o);
3488         guarantee(k.not_null(), "Must find java/util/HashMap");
3489         instanceKlassHandle ik = instanceKlassHandle(THREAD, k());
3490         ik->initialize(CHECK_0);
3491         fieldDescriptor fd;
3492         // Possible we might not find this field; if so, don't break
3493         if (ik->find_local_field(vmSymbols::frontCacheEnabled_name(), vmSymbols::bool_signature(), &fd)) {
3494           k()->java_mirror()->bool_field_put(fd.offset(), true);
3495         }
3496       }
3497 
3498       if (UseStringCache) {
3499         // Forcibly initialize java/lang/StringValue and mutate the private
3500         // static final "stringCacheEnabled" field before we start creating instances
3501         Klass* k_o = SystemDictionary::resolve_or_null(vmSymbols::java_lang_StringValue(), Handle(), Handle(), CHECK_0);
3502         // Possible that StringValue isn't present: if so, silently don't break
3503         if (k_o != NULL) {
3504           KlassHandle k = KlassHandle(THREAD, k_o);
3505           instanceKlassHandle ik = instanceKlassHandle(THREAD, k());
3506           ik->initialize(CHECK_0);
3507           fieldDescriptor fd;
3508           // Possible we might not find this field: if so, silently don't break
3509           if (ik->find_local_field(vmSymbols::stringCacheEnabled_name(), vmSymbols::bool_signature(), &fd)) {
3510             k()->java_mirror()->bool_field_put(fd.offset(), true);
3511           }
3512         }
3513       }
3514     }
3515 
3516     // Initialize java_lang.System (needed before creating the thread)
3517     if (InitializeJavaLangSystem) {
3518       initialize_class(vmSymbols::java_lang_System(), CHECK_0);
3519       initialize_class(vmSymbols::java_lang_ThreadGroup(), CHECK_0);
3520       Handle thread_group = create_initial_thread_group(CHECK_0);
3521       Universe::set_main_thread_group(thread_group());
3522       initialize_class(vmSymbols::java_lang_Thread(), CHECK_0);
3523       oop thread_object = create_initial_thread(thread_group, main_thread, CHECK_0);
3524       main_thread->set_threadObj(thread_object);
3525       // Set thread status to running since main thread has
3526       // been started and running.
3527       java_lang_Thread::set_thread_status(thread_object,
3528                                           java_lang_Thread::RUNNABLE);
3529 
3530       // The VM preresolve methods to these classes. Make sure that get initialized
3531       initialize_class(vmSymbols::java_lang_reflect_Method(), CHECK_0);
3532       initialize_class(vmSymbols::java_lang_ref_Finalizer(),  CHECK_0);
3533       // The VM creates & returns objects of this class. Make sure it's initialized.
3534       initialize_class(vmSymbols::java_lang_Class(), CHECK_0);
3535       call_initializeSystemClass(CHECK_0);
3536 
3537       // get the Java runtime name after java.lang.System is initialized
3538       JDK_Version::set_runtime_name(get_java_runtime_name(THREAD));
3539       JDK_Version::set_runtime_version(get_java_runtime_version(THREAD));
3540     } else {
3541       warning("java.lang.System not initialized");
3542     }
3543 
3544     // an instance of OutOfMemory exception has been allocated earlier
3545     if (InitializeJavaLangExceptionsErrors) {
3546       initialize_class(vmSymbols::java_lang_OutOfMemoryError(), CHECK_0);
3547       initialize_class(vmSymbols::java_lang_NullPointerException(), CHECK_0);
3548       initialize_class(vmSymbols::java_lang_ClassCastException(), CHECK_0);
3549       initialize_class(vmSymbols::java_lang_ArrayStoreException(), CHECK_0);
3550       initialize_class(vmSymbols::java_lang_ArithmeticException(), CHECK_0);
3551       initialize_class(vmSymbols::java_lang_StackOverflowError(), CHECK_0);
3552       initialize_class(vmSymbols::java_lang_IllegalMonitorStateException(), CHECK_0);
3553       initialize_class(vmSymbols::java_lang_IllegalArgumentException(), CHECK_0);
3554     } else {
3555       warning("java.lang.OutOfMemoryError has not been initialized");
3556       warning("java.lang.NullPointerException has not been initialized");
3557       warning("java.lang.ClassCastException has not been initialized");
3558       warning("java.lang.ArrayStoreException has not been initialized");
3559       warning("java.lang.ArithmeticException has not been initialized");
3560       warning("java.lang.StackOverflowError has not been initialized");
3561       warning("java.lang.IllegalArgumentException has not been initialized");
3562     }
3563   }
3564 
3565   // See        : bugid 4211085.
3566   // Background : the static initializer of java.lang.Compiler tries to read
3567   //              property"java.compiler" and read & write property "java.vm.info".
3568   //              When a security manager is installed through the command line
3569   //              option "-Djava.security.manager", the above properties are not
3570   //              readable and the static initializer for java.lang.Compiler fails
3571   //              resulting in a NoClassDefFoundError.  This can happen in any
3572   //              user code which calls methods in java.lang.Compiler.
3573   // Hack :       the hack is to pre-load and initialize this class, so that only
3574   //              system domains are on the stack when the properties are read.
3575   //              Currently even the AWT code has calls to methods in java.lang.Compiler.
3576   //              On the classic VM, java.lang.Compiler is loaded very early to load the JIT.
3577   // Future Fix : the best fix is to grant everyone permissions to read "java.compiler" and
3578   //              read and write"java.vm.info" in the default policy file. See bugid 4211383
3579   //              Once that is done, we should remove this hack.
3580   initialize_class(vmSymbols::java_lang_Compiler(), CHECK_0);
3581 
3582   // More hackery - the static initializer of java.lang.Compiler adds the string "nojit" to
3583   // the java.vm.info property if no jit gets loaded through java.lang.Compiler (the hotspot
3584   // compiler does not get loaded through java.lang.Compiler).  "java -version" with the
3585   // hotspot vm says "nojit" all the time which is confusing.  So, we reset it here.
3586   // This should also be taken out as soon as 4211383 gets fixed.
3587   reset_vm_info_property(CHECK_0);
3588 
3589   quicken_jni_functions();
3590 
3591   // Must be run after init_ft which initializes ft_enabled
3592   if (TRACE_INITIALIZE() != JNI_OK) {
3593     vm_exit_during_initialization("Failed to initialize tracing backend");
3594   }
3595 
3596   // Set flag that basic initialization has completed. Used by exceptions and various
3597   // debug stuff, that does not work until all basic classes have been initialized.
3598   set_init_completed();
3599 
3600 #ifndef USDT2
3601   HS_DTRACE_PROBE(hotspot, vm__init__end);
3602 #else /* USDT2 */
3603   HOTSPOT_VM_INIT_END();
3604 #endif /* USDT2 */
3605 
3606   // record VM initialization completion time
3607 #if INCLUDE_MANAGEMENT
3608   Management::record_vm_init_completed();
3609 #endif // INCLUDE_MANAGEMENT
3610 
3611   // Compute system loader. Note that this has to occur after set_init_completed, since
3612   // valid exceptions may be thrown in the process.
3613   // Note that we do not use CHECK_0 here since we are inside an EXCEPTION_MARK and
3614   // set_init_completed has just been called, causing exceptions not to be shortcut
3615   // anymore. We call vm_exit_during_initialization directly instead.
3616   SystemDictionary::compute_java_system_loader(THREAD);
3617   if (HAS_PENDING_EXCEPTION) {
3618     vm_exit_during_initialization(Handle(THREAD, PENDING_EXCEPTION));
3619   }
3620 
3621 #ifndef SERIALGC
3622   // Support for ConcurrentMarkSweep. This should be cleaned up
3623   // and better encapsulated. The ugly nested if test would go away
3624   // once things are properly refactored. XXX YSR
3625   if (UseConcMarkSweepGC || UseG1GC) {
3626     if (UseConcMarkSweepGC) {
3627       ConcurrentMarkSweepThread::makeSurrogateLockerThread(THREAD);
3628     } else {
3629       ConcurrentMarkThread::makeSurrogateLockerThread(THREAD);
3630     }
3631     if (HAS_PENDING_EXCEPTION) {
3632       vm_exit_during_initialization(Handle(THREAD, PENDING_EXCEPTION));
3633     }
3634   }
3635 #endif // SERIALGC
3636 
3637   // Always call even when there are not JVMTI environments yet, since environments
3638   // may be attached late and JVMTI must track phases of VM execution
3639   JvmtiExport::enter_live_phase();
3640 
3641   // Signal Dispatcher needs to be started before VMInit event is posted
3642   os::signal_init();
3643 
3644   // Start Attach Listener if +StartAttachListener or it can't be started lazily
3645   if (!DisableAttachMechanism) {
3646     if (StartAttachListener || AttachListener::init_at_startup()) {
3647       AttachListener::init();
3648     }
3649   }
3650 
3651   // Launch -Xrun agents
3652   // Must be done in the JVMTI live phase so that for backward compatibility the JDWP
3653   // back-end can launch with -Xdebug -Xrunjdwp.
3654   if (!EagerXrunInit && Arguments::init_libraries_at_startup()) {
3655     create_vm_init_libraries();
3656   }
3657 
3658   // Notify JVMTI agents that VM initialization is complete - nop if no agents.
3659   JvmtiExport::post_vm_initialized();
3660 
3661   if (!TRACE_START()) {
3662     vm_exit_during_initialization(Handle(THREAD, PENDING_EXCEPTION));
3663   }
3664 
3665   if (CleanChunkPoolAsync) {
3666     Chunk::start_chunk_pool_cleaner_task();
3667   }
3668 
3669   // initialize compiler(s)
3670 #if defined(COMPILER1) || defined(COMPILER2) || defined(SHARK)
3671   CompileBroker::compilation_init();
3672 #endif
3673 
3674 #if INCLUDE_MANAGEMENT
3675   Management::initialize(THREAD);
3676 #endif // INCLUDE_MANAGEMENT
3677 
3678   if (HAS_PENDING_EXCEPTION) {
3679     // management agent fails to start possibly due to
3680     // configuration problem and is responsible for printing
3681     // stack trace if appropriate. Simply exit VM.
3682     vm_exit(1);
3683   }
3684 
3685   if (Arguments::has_profile())       FlatProfiler::engage(main_thread, true);
3686   if (Arguments::has_alloc_profile()) AllocationProfiler::engage();
3687   if (MemProfiling)                   MemProfiler::engage();
3688   StatSampler::engage();
3689   if (CheckJNICalls)                  JniPeriodicChecker::engage();
3690 
3691   BiasedLocking::init();
3692 
3693   if (JDK_Version::current().post_vm_init_hook_enabled()) {
3694     call_postVMInitHook(THREAD);
3695     // The Java side of PostVMInitHook.run must deal with all
3696     // exceptions and provide means of diagnosis.
3697     if (HAS_PENDING_EXCEPTION) {
3698       CLEAR_PENDING_EXCEPTION;
3699     }
3700   }
3701 
3702   {
3703       MutexLockerEx ml(PeriodicTask_lock, Mutex::_no_safepoint_check_flag);
3704       // Make sure the watcher thread can be started by WatcherThread::start()
3705       // or by dynamic enrollment.
3706       WatcherThread::make_startable();
3707       // Start up the WatcherThread if there are any periodic tasks
3708       // NOTE:  All PeriodicTasks should be registered by now. If they
3709       //   aren't, late joiners might appear to start slowly (we might
3710       //   take a while to process their first tick).
3711       if (PeriodicTask::num_tasks() > 0) {
3712           WatcherThread::start();
3713       }
3714   }
3715 
3716   // Give os specific code one last chance to start
3717   os::init_3();
3718 
3719   create_vm_timer.end();
3720 #ifdef ASSERT
3721   _vm_complete = true;
3722 #endif
3723   return JNI_OK;
3724 }
3725 
3726 // type for the Agent_OnLoad and JVM_OnLoad entry points
3727 extern "C" {
3728   typedef jint (JNICALL *OnLoadEntry_t)(JavaVM *, char *, void *);
3729 }
3730 // Find a command line agent library and return its entry point for
3731 //         -agentlib:  -agentpath:   -Xrun
3732 // num_symbol_entries must be passed-in since only the caller knows the number of symbols in the array.
3733 static OnLoadEntry_t lookup_on_load(AgentLibrary* agent, const char *on_load_symbols[], size_t num_symbol_entries) {
3734   OnLoadEntry_t on_load_entry = NULL;
3735   void *library = agent->os_lib();  // check if we have looked it up before
3736 
3737   if (library == NULL) {
3738     char buffer[JVM_MAXPATHLEN];
3739     char ebuf[1024];
3740     const char *name = agent->name();
3741     const char *msg = "Could not find agent library ";
3742 
3743     if (agent->is_absolute_path()) {
3744       library = os::dll_load(name, ebuf, sizeof ebuf);
3745       if (library == NULL) {
3746         const char *sub_msg = " in absolute path, with error: ";
3747         size_t len = strlen(msg) + strlen(name) + strlen(sub_msg) + strlen(ebuf) + 1;
3748         char *buf = NEW_C_HEAP_ARRAY(char, len, mtThread);
3749         jio_snprintf(buf, len, "%s%s%s%s", msg, name, sub_msg, ebuf);
3750         // If we can't find the agent, exit.
3751         vm_exit_during_initialization(buf, NULL);
3752         FREE_C_HEAP_ARRAY(char, buf, mtThread);
3753       }
3754     } else {
3755       // Try to load the agent from the standard dll directory
3756       if (os::dll_build_name(buffer, sizeof(buffer), Arguments::get_dll_dir(),
3757                              name)) {
3758         library = os::dll_load(buffer, ebuf, sizeof ebuf);
3759       }
3760 #ifdef KERNEL
3761       // Download instrument dll
3762       if (library == NULL && strcmp(name, "instrument") == 0) {
3763         char *props = Arguments::get_kernel_properties();
3764         char *home  = Arguments::get_java_home();
3765         const char *fmt   = "%s/bin/java %s -Dkernel.background.download=false"
3766                       " sun.jkernel.DownloadManager -download client_jvm";
3767         size_t length = strlen(props) + strlen(home) + strlen(fmt) + 1;
3768         char *cmd = NEW_C_HEAP_ARRAY(char, length, mtThread);
3769         jio_snprintf(cmd, length, fmt, home, props);
3770         int status = os::fork_and_exec(cmd);
3771         FreeHeap(props);
3772         if (status == -1) {
3773           warning(cmd);
3774           vm_exit_during_initialization("fork_and_exec failed: %s",
3775                                          strerror(errno));
3776         }
3777         FREE_C_HEAP_ARRAY(char, cmd, mtThread);
3778         // when this comes back the instrument.dll should be where it belongs.
3779         library = os::dll_load(buffer, ebuf, sizeof ebuf);
3780       }
3781 #endif // KERNEL
3782       if (library == NULL) { // Try the local directory
3783         char ns[1] = {0};
3784         if (os::dll_build_name(buffer, sizeof(buffer), ns, name)) {
3785           library = os::dll_load(buffer, ebuf, sizeof ebuf);
3786         }
3787         if (library == NULL) {
3788           const char *sub_msg = " on the library path, with error: ";
3789           size_t len = strlen(msg) + strlen(name) + strlen(sub_msg) + strlen(ebuf) + 1;
3790           char *buf = NEW_C_HEAP_ARRAY(char, len, mtThread);
3791           jio_snprintf(buf, len, "%s%s%s%s", msg, name, sub_msg, ebuf);
3792           // If we can't find the agent, exit.
3793           vm_exit_during_initialization(buf, NULL);
3794           FREE_C_HEAP_ARRAY(char, buf, mtThread);
3795         }
3796       }
3797     }
3798     agent->set_os_lib(library);
3799   }
3800 
3801   // Find the OnLoad function.
3802   for (size_t symbol_index = 0; symbol_index < num_symbol_entries; symbol_index++) {
3803     on_load_entry = CAST_TO_FN_PTR(OnLoadEntry_t, os::dll_lookup(library, on_load_symbols[symbol_index]));
3804     if (on_load_entry != NULL) break;
3805   }
3806   return on_load_entry;
3807 }
3808 
3809 // Find the JVM_OnLoad entry point
3810 static OnLoadEntry_t lookup_jvm_on_load(AgentLibrary* agent) {
3811   const char *on_load_symbols[] = JVM_ONLOAD_SYMBOLS;
3812   return lookup_on_load(agent, on_load_symbols, sizeof(on_load_symbols) / sizeof(char*));
3813 }
3814 
3815 // Find the Agent_OnLoad entry point
3816 static OnLoadEntry_t lookup_agent_on_load(AgentLibrary* agent) {
3817   const char *on_load_symbols[] = AGENT_ONLOAD_SYMBOLS;
3818   return lookup_on_load(agent, on_load_symbols, sizeof(on_load_symbols) / sizeof(char*));
3819 }
3820 
3821 // For backwards compatibility with -Xrun
3822 // Convert libraries with no JVM_OnLoad, but which have Agent_OnLoad to be
3823 // treated like -agentpath:
3824 // Must be called before agent libraries are created
3825 void Threads::convert_vm_init_libraries_to_agents() {
3826   AgentLibrary* agent;
3827   AgentLibrary* next;
3828 
3829   for (agent = Arguments::libraries(); agent != NULL; agent = next) {
3830     next = agent->next();  // cache the next agent now as this agent may get moved off this list
3831     OnLoadEntry_t on_load_entry = lookup_jvm_on_load(agent);
3832 
3833     // If there is an JVM_OnLoad function it will get called later,
3834     // otherwise see if there is an Agent_OnLoad
3835     if (on_load_entry == NULL) {
3836       on_load_entry = lookup_agent_on_load(agent);
3837       if (on_load_entry != NULL) {
3838         // switch it to the agent list -- so that Agent_OnLoad will be called,
3839         // JVM_OnLoad won't be attempted and Agent_OnUnload will
3840         Arguments::convert_library_to_agent(agent);
3841       } else {
3842         vm_exit_during_initialization("Could not find JVM_OnLoad or Agent_OnLoad function in the library", agent->name());
3843       }
3844     }
3845   }
3846 }
3847 
3848 // Create agents for -agentlib:  -agentpath:  and converted -Xrun
3849 // Invokes Agent_OnLoad
3850 // Called very early -- before JavaThreads exist
3851 void Threads::create_vm_init_agents() {
3852   extern struct JavaVM_ main_vm;
3853   AgentLibrary* agent;
3854 
3855   JvmtiExport::enter_onload_phase();
3856 
3857   for (agent = Arguments::agents(); agent != NULL; agent = agent->next()) {
3858     OnLoadEntry_t  on_load_entry = lookup_agent_on_load(agent);
3859 
3860     if (on_load_entry != NULL) {
3861       // Invoke the Agent_OnLoad function
3862       jint err = (*on_load_entry)(&main_vm, agent->options(), NULL);
3863       if (err != JNI_OK) {
3864         vm_exit_during_initialization("agent library failed to init", agent->name());
3865       }
3866     } else {
3867       vm_exit_during_initialization("Could not find Agent_OnLoad function in the agent library", agent->name());
3868     }
3869   }
3870   JvmtiExport::enter_primordial_phase();
3871 }
3872 
3873 extern "C" {
3874   typedef void (JNICALL *Agent_OnUnload_t)(JavaVM *);
3875 }
3876 
3877 void Threads::shutdown_vm_agents() {
3878   // Send any Agent_OnUnload notifications
3879   const char *on_unload_symbols[] = AGENT_ONUNLOAD_SYMBOLS;
3880   extern struct JavaVM_ main_vm;
3881   for (AgentLibrary* agent = Arguments::agents(); agent != NULL; agent = agent->next()) {
3882 
3883     // Find the Agent_OnUnload function.
3884     for (uint symbol_index = 0; symbol_index < ARRAY_SIZE(on_unload_symbols); symbol_index++) {
3885       Agent_OnUnload_t unload_entry = CAST_TO_FN_PTR(Agent_OnUnload_t,
3886                os::dll_lookup(agent->os_lib(), on_unload_symbols[symbol_index]));
3887 
3888       // Invoke the Agent_OnUnload function
3889       if (unload_entry != NULL) {
3890         JavaThread* thread = JavaThread::current();
3891         ThreadToNativeFromVM ttn(thread);
3892         HandleMark hm(thread);
3893         (*unload_entry)(&main_vm);
3894         break;
3895       }
3896     }
3897   }
3898 }
3899 
3900 // Called for after the VM is initialized for -Xrun libraries which have not been converted to agent libraries
3901 // Invokes JVM_OnLoad
3902 void Threads::create_vm_init_libraries() {
3903   extern struct JavaVM_ main_vm;
3904   AgentLibrary* agent;
3905 
3906   for (agent = Arguments::libraries(); agent != NULL; agent = agent->next()) {
3907     OnLoadEntry_t on_load_entry = lookup_jvm_on_load(agent);
3908 
3909     if (on_load_entry != NULL) {
3910       // Invoke the JVM_OnLoad function
3911       JavaThread* thread = JavaThread::current();
3912       ThreadToNativeFromVM ttn(thread);
3913       HandleMark hm(thread);
3914       jint err = (*on_load_entry)(&main_vm, agent->options(), NULL);
3915       if (err != JNI_OK) {
3916         vm_exit_during_initialization("-Xrun library failed to init", agent->name());
3917       }
3918     } else {
3919       vm_exit_during_initialization("Could not find JVM_OnLoad function in -Xrun library", agent->name());
3920     }
3921   }
3922 }
3923 
3924 // Last thread running calls java.lang.Shutdown.shutdown()
3925 void JavaThread::invoke_shutdown_hooks() {
3926   HandleMark hm(this);
3927 
3928   // We could get here with a pending exception, if so clear it now.
3929   if (this->has_pending_exception()) {
3930     this->clear_pending_exception();
3931   }
3932 
3933   EXCEPTION_MARK;
3934   Klass* k =
3935     SystemDictionary::resolve_or_null(vmSymbols::java_lang_Shutdown(),
3936                                       THREAD);
3937   if (k != NULL) {
3938     // SystemDictionary::resolve_or_null will return null if there was
3939     // an exception.  If we cannot load the Shutdown class, just don't
3940     // call Shutdown.shutdown() at all.  This will mean the shutdown hooks
3941     // and finalizers (if runFinalizersOnExit is set) won't be run.
3942     // Note that if a shutdown hook was registered or runFinalizersOnExit
3943     // was called, the Shutdown class would have already been loaded
3944     // (Runtime.addShutdownHook and runFinalizersOnExit will load it).
3945     instanceKlassHandle shutdown_klass (THREAD, k);
3946     JavaValue result(T_VOID);
3947     JavaCalls::call_static(&result,
3948                            shutdown_klass,
3949                            vmSymbols::shutdown_method_name(),
3950                            vmSymbols::void_method_signature(),
3951                            THREAD);
3952   }
3953   CLEAR_PENDING_EXCEPTION;
3954 }
3955 
3956 // Threads::destroy_vm() is normally called from jni_DestroyJavaVM() when
3957 // the program falls off the end of main(). Another VM exit path is through
3958 // vm_exit() when the program calls System.exit() to return a value or when
3959 // there is a serious error in VM. The two shutdown paths are not exactly
3960 // the same, but they share Shutdown.shutdown() at Java level and before_exit()
3961 // and VM_Exit op at VM level.
3962 //
3963 // Shutdown sequence:
3964 //   + Shutdown native memory tracking if it is on
3965 //   + Wait until we are the last non-daemon thread to execute
3966 //     <-- every thing is still working at this moment -->
3967 //   + Call java.lang.Shutdown.shutdown(), which will invoke Java level
3968 //        shutdown hooks, run finalizers if finalization-on-exit
3969 //   + Call before_exit(), prepare for VM exit
3970 //      > run VM level shutdown hooks (they are registered through JVM_OnExit(),
3971 //        currently the only user of this mechanism is File.deleteOnExit())
3972 //      > stop flat profiler, StatSampler, watcher thread, CMS threads,
3973 //        post thread end and vm death events to JVMTI,
3974 //        stop signal thread
3975 //   + Call JavaThread::exit(), it will:
3976 //      > release JNI handle blocks, remove stack guard pages
3977 //      > remove this thread from Threads list
3978 //     <-- no more Java code from this thread after this point -->
3979 //   + Stop VM thread, it will bring the remaining VM to a safepoint and stop
3980 //     the compiler threads at safepoint
3981 //     <-- do not use anything that could get blocked by Safepoint -->
3982 //   + Disable tracing at JNI/JVM barriers
3983 //   + Set _vm_exited flag for threads that are still running native code
3984 //   + Delete this thread
3985 //   + Call exit_globals()
3986 //      > deletes tty
3987 //      > deletes PerfMemory resources
3988 //   + Return to caller
3989 
3990 bool Threads::destroy_vm() {
3991   JavaThread* thread = JavaThread::current();
3992 
3993 #ifdef ASSERT
3994   _vm_complete = false;
3995 #endif
3996   // Wait until we are the last non-daemon thread to execute
3997   { MutexLocker nu(Threads_lock);
3998     while (Threads::number_of_non_daemon_threads() > 1 )
3999       // This wait should make safepoint checks, wait without a timeout,
4000       // and wait as a suspend-equivalent condition.
4001       //
4002       // Note: If the FlatProfiler is running and this thread is waiting
4003       // for another non-daemon thread to finish, then the FlatProfiler
4004       // is waiting for the external suspend request on this thread to
4005       // complete. wait_for_ext_suspend_completion() will eventually
4006       // timeout, but that takes time. Making this wait a suspend-
4007       // equivalent condition solves that timeout problem.
4008       //
4009       Threads_lock->wait(!Mutex::_no_safepoint_check_flag, 0,
4010                          Mutex::_as_suspend_equivalent_flag);
4011   }
4012 
4013   // Shutdown NMT before exit. Otherwise,
4014   // it will run into trouble when system destroys static variables.
4015   MemTracker::shutdown(MemTracker::NMT_normal);
4016 
4017   // Hang forever on exit if we are reporting an error.
4018   if (ShowMessageBoxOnError && is_error_reported()) {
4019     os::infinite_sleep();
4020   }
4021   os::wait_for_keypress_at_exit();
4022 
4023   if (JDK_Version::is_jdk12x_version()) {
4024     // We are the last thread running, so check if finalizers should be run.
4025     // For 1.3 or later this is done in thread->invoke_shutdown_hooks()
4026     HandleMark rm(thread);
4027     Universe::run_finalizers_on_exit();
4028   } else {
4029     // run Java level shutdown hooks
4030     thread->invoke_shutdown_hooks();
4031   }
4032 
4033   before_exit(thread);
4034 
4035   thread->exit(true);
4036 
4037   // Stop VM thread.
4038   {
4039     // 4945125 The vm thread comes to a safepoint during exit.
4040     // GC vm_operations can get caught at the safepoint, and the
4041     // heap is unparseable if they are caught. Grab the Heap_lock
4042     // to prevent this. The GC vm_operations will not be able to
4043     // queue until after the vm thread is dead.
4044     // After this point, we'll never emerge out of the safepoint before
4045     // the VM exits, so concurrent GC threads do not need to be explicitly
4046     // stopped; they remain inactive until the process exits.
4047     // Note: some concurrent G1 threads may be running during a safepoint,
4048     // but these will not be accessing the heap, just some G1-specific side
4049     // data structures that are not accessed by any other threads but them
4050     // after this point in a terminal safepoint.
4051 
4052     MutexLocker ml(Heap_lock);
4053 
4054     VMThread::wait_for_vm_thread_exit();
4055     assert(SafepointSynchronize::is_at_safepoint(), "VM thread should exit at Safepoint");
4056     VMThread::destroy();
4057   }
4058 
4059   // clean up ideal graph printers
4060 #if defined(COMPILER2) && !defined(PRODUCT)
4061   IdealGraphPrinter::clean_up();
4062 #endif
4063 
4064   // Now, all Java threads are gone except daemon threads. Daemon threads
4065   // running Java code or in VM are stopped by the Safepoint. However,
4066   // daemon threads executing native code are still running.  But they
4067   // will be stopped at native=>Java/VM barriers. Note that we can't
4068   // simply kill or suspend them, as it is inherently deadlock-prone.
4069 
4070 #ifndef PRODUCT
4071   // disable function tracing at JNI/JVM barriers
4072   TraceJNICalls = false;
4073   TraceJVMCalls = false;
4074   TraceRuntimeCalls = false;
4075 #endif
4076 
4077   VM_Exit::set_vm_exited();
4078 
4079   notify_vm_shutdown();
4080 
4081   delete thread;
4082 
4083   // exit_globals() will delete tty
4084   exit_globals();
4085 
4086   return true;
4087 }
4088 
4089 
4090 jboolean Threads::is_supported_jni_version_including_1_1(jint version) {
4091   if (version == JNI_VERSION_1_1) return JNI_TRUE;
4092   return is_supported_jni_version(version);
4093 }
4094 
4095 
4096 jboolean Threads::is_supported_jni_version(jint version) {
4097   if (version == JNI_VERSION_1_2) return JNI_TRUE;
4098   if (version == JNI_VERSION_1_4) return JNI_TRUE;
4099   if (version == JNI_VERSION_1_6) return JNI_TRUE;
4100   return JNI_FALSE;
4101 }
4102 
4103 
4104 void Threads::add(JavaThread* p, bool force_daemon) {
4105   // The threads lock must be owned at this point
4106   assert_locked_or_safepoint(Threads_lock);
4107 
4108   // See the comment for this method in thread.hpp for its purpose and
4109   // why it is called here.
4110   p->initialize_queues();
4111   p->set_next(_thread_list);
4112   _thread_list = p;
4113   _number_of_threads++;
4114   oop threadObj = p->threadObj();
4115   bool daemon = true;
4116   // Bootstrapping problem: threadObj can be null for initial
4117   // JavaThread (or for threads attached via JNI)
4118   if ((!force_daemon) && (threadObj == NULL || !java_lang_Thread::is_daemon(threadObj))) {
4119     _number_of_non_daemon_threads++;
4120     daemon = false;
4121   }
4122 
4123   p->set_safepoint_visible(true);
4124 
4125   ThreadService::add_thread(p, daemon);
4126 
4127   // Possible GC point.
4128   Events::log(p, "Thread added: " INTPTR_FORMAT, p);
4129 }
4130 
4131 void Threads::remove(JavaThread* p) {
4132   // Extra scope needed for Thread_lock, so we can check
4133   // that we do not remove thread without safepoint code notice
4134   { MutexLocker ml(Threads_lock);
4135 
4136     assert(includes(p), "p must be present");
4137 
4138     JavaThread* current = _thread_list;
4139     JavaThread* prev    = NULL;
4140 
4141     while (current != p) {
4142       prev    = current;
4143       current = current->next();
4144     }
4145 
4146     if (prev) {
4147       prev->set_next(current->next());
4148     } else {
4149       _thread_list = p->next();
4150     }
4151     _number_of_threads--;
4152     oop threadObj = p->threadObj();
4153     bool daemon = true;
4154     if (threadObj == NULL || !java_lang_Thread::is_daemon(threadObj)) {
4155       _number_of_non_daemon_threads--;
4156       daemon = false;
4157 
4158       // Only one thread left, do a notify on the Threads_lock so a thread waiting
4159       // on destroy_vm will wake up.
4160       if (number_of_non_daemon_threads() == 1)
4161         Threads_lock->notify_all();
4162     }
4163     ThreadService::remove_thread(p, daemon);
4164 
4165     // Make sure that safepoint code disregard this thread. This is needed since
4166     // the thread might mess around with locks after this point. This can cause it
4167     // to do callbacks into the safepoint code. However, the safepoint code is not aware
4168     // of this thread since it is removed from the queue.
4169     p->set_terminated_value();
4170 
4171     // Now, this thread is not visible to safepoint
4172     p->set_safepoint_visible(false);
4173     // once the thread becomes safepoint invisible, we can not use its per-thread
4174     // recorder. And Threads::do_threads() no longer walks this thread, so we have
4175     // to release its per-thread recorder here.
4176     MemTracker::thread_exiting(p);
4177   } // unlock Threads_lock
4178 
4179   // Since Events::log uses a lock, we grab it outside the Threads_lock
4180   Events::log(p, "Thread exited: " INTPTR_FORMAT, p);
4181 }
4182 
4183 // Threads_lock must be held when this is called (or must be called during a safepoint)
4184 bool Threads::includes(JavaThread* p) {
4185   assert(Threads_lock->is_locked(), "sanity check");
4186   ALL_JAVA_THREADS(q) {
4187     if (q == p ) {
4188       return true;
4189     }
4190   }
4191   return false;
4192 }
4193 
4194 // Operations on the Threads list for GC.  These are not explicitly locked,
4195 // but the garbage collector must provide a safe context for them to run.
4196 // In particular, these things should never be called when the Threads_lock
4197 // is held by some other thread. (Note: the Safepoint abstraction also
4198 // uses the Threads_lock to gurantee this property. It also makes sure that
4199 // all threads gets blocked when exiting or starting).
4200 
4201 void Threads::oops_do(OopClosure* f, CodeBlobClosure* cf) {
4202   ALL_JAVA_THREADS(p) {
4203     p->oops_do(f, cf);
4204   }
4205   VMThread::vm_thread()->oops_do(f, cf);
4206 }
4207 
4208 void Threads::possibly_parallel_oops_do(OopClosure* f, CodeBlobClosure* cf) {
4209   // Introduce a mechanism allowing parallel threads to claim threads as
4210   // root groups.  Overhead should be small enough to use all the time,
4211   // even in sequential code.
4212   SharedHeap* sh = SharedHeap::heap();
4213   // Cannot yet substitute active_workers for n_par_threads
4214   // because of G1CollectedHeap::verify() use of
4215   // SharedHeap::process_strong_roots().  n_par_threads == 0 will
4216   // turn off parallelism in process_strong_roots while active_workers
4217   // is being used for parallelism elsewhere.
4218   bool is_par = sh->n_par_threads() > 0;
4219   assert(!is_par ||
4220          (SharedHeap::heap()->n_par_threads() ==
4221           SharedHeap::heap()->workers()->active_workers()), "Mismatch");
4222   int cp = SharedHeap::heap()->strong_roots_parity();
4223   ALL_JAVA_THREADS(p) {
4224     if (p->claim_oops_do(is_par, cp)) {
4225       p->oops_do(f, cf);
4226     }
4227   }
4228   VMThread* vmt = VMThread::vm_thread();
4229   if (vmt->claim_oops_do(is_par, cp)) {
4230     vmt->oops_do(f, cf);
4231   }
4232 }
4233 
4234 #ifndef SERIALGC
4235 // Used by ParallelScavenge
4236 void Threads::create_thread_roots_tasks(GCTaskQueue* q) {
4237   ALL_JAVA_THREADS(p) {
4238     q->enqueue(new ThreadRootsTask(p));
4239   }
4240   q->enqueue(new ThreadRootsTask(VMThread::vm_thread()));
4241 }
4242 
4243 // Used by Parallel Old
4244 void Threads::create_thread_roots_marking_tasks(GCTaskQueue* q) {
4245   ALL_JAVA_THREADS(p) {
4246     q->enqueue(new ThreadRootsMarkingTask(p));
4247   }
4248   q->enqueue(new ThreadRootsMarkingTask(VMThread::vm_thread()));
4249 }
4250 #endif // SERIALGC
4251 
4252 void Threads::nmethods_do(CodeBlobClosure* cf) {
4253   ALL_JAVA_THREADS(p) {
4254     p->nmethods_do(cf);
4255   }
4256   VMThread::vm_thread()->nmethods_do(cf);
4257 }
4258 
4259 void Threads::metadata_do(void f(Metadata*)) {
4260   ALL_JAVA_THREADS(p) {
4261     p->metadata_do(f);
4262   }
4263 }
4264 
4265 void Threads::gc_epilogue() {
4266   ALL_JAVA_THREADS(p) {
4267     p->gc_epilogue();
4268   }
4269 }
4270 
4271 void Threads::gc_prologue() {
4272   ALL_JAVA_THREADS(p) {
4273     p->gc_prologue();
4274   }
4275 }
4276 
4277 void Threads::deoptimized_wrt_marked_nmethods() {
4278   ALL_JAVA_THREADS(p) {
4279     p->deoptimized_wrt_marked_nmethods();
4280   }
4281 }
4282 
4283 
4284 // Get count Java threads that are waiting to enter the specified monitor.
4285 GrowableArray<JavaThread*>* Threads::get_pending_threads(int count,
4286   address monitor, bool doLock) {
4287   assert(doLock || SafepointSynchronize::is_at_safepoint(),
4288     "must grab Threads_lock or be at safepoint");
4289   GrowableArray<JavaThread*>* result = new GrowableArray<JavaThread*>(count);
4290 
4291   int i = 0;
4292   {
4293     MutexLockerEx ml(doLock ? Threads_lock : NULL);
4294     ALL_JAVA_THREADS(p) {
4295       if (p->is_Compiler_thread()) continue;
4296 
4297       address pending = (address)p->current_pending_monitor();
4298       if (pending == monitor) {             // found a match
4299         if (i < count) result->append(p);   // save the first count matches
4300         i++;
4301       }
4302     }
4303   }
4304   return result;
4305 }
4306 
4307 
4308 JavaThread *Threads::owning_thread_from_monitor_owner(address owner, bool doLock) {
4309   assert(doLock ||
4310          Threads_lock->owned_by_self() ||
4311          SafepointSynchronize::is_at_safepoint(),
4312          "must grab Threads_lock or be at safepoint");
4313 
4314   // NULL owner means not locked so we can skip the search
4315   if (owner == NULL) return NULL;
4316 
4317   {
4318     MutexLockerEx ml(doLock ? Threads_lock : NULL);
4319     ALL_JAVA_THREADS(p) {
4320       // first, see if owner is the address of a Java thread
4321       if (owner == (address)p) return p;
4322     }
4323   }
4324   assert(UseHeavyMonitors == false, "Did not find owning Java thread with UseHeavyMonitors enabled");
4325   if (UseHeavyMonitors) return NULL;
4326 
4327   //
4328   // If we didn't find a matching Java thread and we didn't force use of
4329   // heavyweight monitors, then the owner is the stack address of the
4330   // Lock Word in the owning Java thread's stack.
4331   //
4332   JavaThread* the_owner = NULL;
4333   {
4334     MutexLockerEx ml(doLock ? Threads_lock : NULL);
4335     ALL_JAVA_THREADS(q) {
4336       if (q->is_lock_owned(owner)) {
4337         the_owner = q;
4338         break;
4339       }
4340     }
4341   }
4342   assert(the_owner != NULL, "Did not find owning Java thread for lock word address");
4343   return the_owner;
4344 }
4345 
4346 // Threads::print_on() is called at safepoint by VM_PrintThreads operation.
4347 void Threads::print_on(outputStream* st, bool print_stacks, bool internal_format, bool print_concurrent_locks) {
4348   char buf[32];
4349   st->print_cr(os::local_time_string(buf, sizeof(buf)));
4350 
4351   st->print_cr("Full thread dump %s (%s %s):",
4352                 Abstract_VM_Version::vm_name(),
4353                 Abstract_VM_Version::vm_release(),
4354                 Abstract_VM_Version::vm_info_string()
4355                );
4356   st->cr();
4357 
4358 #ifndef SERIALGC
4359   // Dump concurrent locks
4360   ConcurrentLocksDump concurrent_locks;
4361   if (print_concurrent_locks) {
4362     concurrent_locks.dump_at_safepoint();
4363   }
4364 #endif // SERIALGC
4365 
4366   ALL_JAVA_THREADS(p) {
4367     ResourceMark rm;
4368     p->print_on(st);
4369     if (print_stacks) {
4370       if (internal_format) {
4371         p->trace_stack();
4372       } else {
4373         p->print_stack_on(st);
4374       }
4375     }
4376     st->cr();
4377 #ifndef SERIALGC
4378     if (print_concurrent_locks) {
4379       concurrent_locks.print_locks_on(p, st);
4380     }
4381 #endif // SERIALGC
4382   }
4383 
4384   VMThread::vm_thread()->print_on(st);
4385   st->cr();
4386   Universe::heap()->print_gc_threads_on(st);
4387   WatcherThread* wt = WatcherThread::watcher_thread();
4388   if (wt != NULL) {
4389     wt->print_on(st);
4390     st->cr();
4391   }
4392   CompileBroker::print_compiler_threads_on(st);
4393   st->flush();
4394 }
4395 
4396 // Threads::print_on_error() is called by fatal error handler. It's possible
4397 // that VM is not at safepoint and/or current thread is inside signal handler.
4398 // Don't print stack trace, as the stack may not be walkable. Don't allocate
4399 // memory (even in resource area), it might deadlock the error handler.
4400 void Threads::print_on_error(outputStream* st, Thread* current, char* buf, int buflen) {
4401   bool found_current = false;
4402   st->print_cr("Java Threads: ( => current thread )");
4403   ALL_JAVA_THREADS(thread) {
4404     bool is_current = (current == thread);
4405     found_current = found_current || is_current;
4406 
4407     st->print("%s", is_current ? "=>" : "  ");
4408 
4409     st->print(PTR_FORMAT, thread);
4410     st->print(" ");
4411     thread->print_on_error(st, buf, buflen);
4412     st->cr();
4413   }
4414   st->cr();
4415 
4416   st->print_cr("Other Threads:");
4417   if (VMThread::vm_thread()) {
4418     bool is_current = (current == VMThread::vm_thread());
4419     found_current = found_current || is_current;
4420     st->print("%s", current == VMThread::vm_thread() ? "=>" : "  ");
4421 
4422     st->print(PTR_FORMAT, VMThread::vm_thread());
4423     st->print(" ");
4424     VMThread::vm_thread()->print_on_error(st, buf, buflen);
4425     st->cr();
4426   }
4427   WatcherThread* wt = WatcherThread::watcher_thread();
4428   if (wt != NULL) {
4429     bool is_current = (current == wt);
4430     found_current = found_current || is_current;
4431     st->print("%s", is_current ? "=>" : "  ");
4432 
4433     st->print(PTR_FORMAT, wt);
4434     st->print(" ");
4435     wt->print_on_error(st, buf, buflen);
4436     st->cr();
4437   }
4438   if (!found_current) {
4439     st->cr();
4440     st->print("=>" PTR_FORMAT " (exited) ", current);
4441     current->print_on_error(st, buf, buflen);
4442     st->cr();
4443   }
4444 }
4445 
4446 // Internal SpinLock and Mutex
4447 // Based on ParkEvent
4448 
4449 // Ad-hoc mutual exclusion primitives: SpinLock and Mux
4450 //
4451 // We employ SpinLocks _only for low-contention, fixed-length
4452 // short-duration critical sections where we're concerned
4453 // about native mutex_t or HotSpot Mutex:: latency.
4454 // The mux construct provides a spin-then-block mutual exclusion
4455 // mechanism.
4456 //
4457 // Testing has shown that contention on the ListLock guarding gFreeList
4458 // is common.  If we implement ListLock as a simple SpinLock it's common
4459 // for the JVM to devolve to yielding with little progress.  This is true
4460 // despite the fact that the critical sections protected by ListLock are
4461 // extremely short.
4462 //
4463 // TODO-FIXME: ListLock should be of type SpinLock.
4464 // We should make this a 1st-class type, integrated into the lock
4465 // hierarchy as leaf-locks.  Critically, the SpinLock structure
4466 // should have sufficient padding to avoid false-sharing and excessive
4467 // cache-coherency traffic.
4468 
4469 
4470 typedef volatile int SpinLockT ;
4471 
4472 void Thread::SpinAcquire (volatile int * adr, const char * LockName) {
4473   if (Atomic::cmpxchg (1, adr, 0) == 0) {
4474      return ;   // normal fast-path return
4475   }
4476 
4477   // Slow-path : We've encountered contention -- Spin/Yield/Block strategy.
4478   TEVENT (SpinAcquire - ctx) ;
4479   int ctr = 0 ;
4480   int Yields = 0 ;
4481   for (;;) {
4482      while (*adr != 0) {
4483         ++ctr ;
4484         if ((ctr & 0xFFF) == 0 || !os::is_MP()) {
4485            if (Yields > 5) {
4486              // Consider using a simple NakedSleep() instead.
4487              // Then SpinAcquire could be called by non-JVM threads
4488              Thread::current()->_ParkEvent->park(1) ;
4489            } else {
4490              os::NakedYield() ;
4491              ++Yields ;
4492            }
4493         } else {
4494            SpinPause() ;
4495         }
4496      }
4497      if (Atomic::cmpxchg (1, adr, 0) == 0) return ;
4498   }
4499 }
4500 
4501 void Thread::SpinRelease (volatile int * adr) {
4502   assert (*adr != 0, "invariant") ;
4503   OrderAccess::fence() ;      // guarantee at least release consistency.
4504   // Roach-motel semantics.
4505   // It's safe if subsequent LDs and STs float "up" into the critical section,
4506   // but prior LDs and STs within the critical section can't be allowed
4507   // to reorder or float past the ST that releases the lock.
4508   *adr = 0 ;
4509 }
4510 
4511 // muxAcquire and muxRelease:
4512 //
4513 // *  muxAcquire and muxRelease support a single-word lock-word construct.
4514 //    The LSB of the word is set IFF the lock is held.
4515 //    The remainder of the word points to the head of a singly-linked list
4516 //    of threads blocked on the lock.
4517 //
4518 // *  The current implementation of muxAcquire-muxRelease uses its own
4519 //    dedicated Thread._MuxEvent instance.  If we're interested in
4520 //    minimizing the peak number of extant ParkEvent instances then
4521 //    we could eliminate _MuxEvent and "borrow" _ParkEvent as long
4522 //    as certain invariants were satisfied.  Specifically, care would need
4523 //    to be taken with regards to consuming unpark() "permits".
4524 //    A safe rule of thumb is that a thread would never call muxAcquire()
4525 //    if it's enqueued (cxq, EntryList, WaitList, etc) and will subsequently
4526 //    park().  Otherwise the _ParkEvent park() operation in muxAcquire() could
4527 //    consume an unpark() permit intended for monitorenter, for instance.
4528 //    One way around this would be to widen the restricted-range semaphore
4529 //    implemented in park().  Another alternative would be to provide
4530 //    multiple instances of the PlatformEvent() for each thread.  One
4531 //    instance would be dedicated to muxAcquire-muxRelease, for instance.
4532 //
4533 // *  Usage:
4534 //    -- Only as leaf locks
4535 //    -- for short-term locking only as muxAcquire does not perform
4536 //       thread state transitions.
4537 //
4538 // Alternatives:
4539 // *  We could implement muxAcquire and muxRelease with MCS or CLH locks
4540 //    but with parking or spin-then-park instead of pure spinning.
4541 // *  Use Taura-Oyama-Yonenzawa locks.
4542 // *  It's possible to construct a 1-0 lock if we encode the lockword as
4543 //    (List,LockByte).  Acquire will CAS the full lockword while Release
4544 //    will STB 0 into the LockByte.  The 1-0 scheme admits stranding, so
4545 //    acquiring threads use timers (ParkTimed) to detect and recover from
4546 //    the stranding window.  Thread/Node structures must be aligned on 256-byte
4547 //    boundaries by using placement-new.
4548 // *  Augment MCS with advisory back-link fields maintained with CAS().
4549 //    Pictorially:  LockWord -> T1 <-> T2 <-> T3 <-> ... <-> Tn <-> Owner.
4550 //    The validity of the backlinks must be ratified before we trust the value.
4551 //    If the backlinks are invalid the exiting thread must back-track through the
4552 //    the forward links, which are always trustworthy.
4553 // *  Add a successor indication.  The LockWord is currently encoded as
4554 //    (List, LOCKBIT:1).  We could also add a SUCCBIT or an explicit _succ variable
4555 //    to provide the usual futile-wakeup optimization.
4556 //    See RTStt for details.
4557 // *  Consider schedctl.sc_nopreempt to cover the critical section.
4558 //
4559 
4560 
4561 typedef volatile intptr_t MutexT ;      // Mux Lock-word
4562 enum MuxBits { LOCKBIT = 1 } ;
4563 
4564 void Thread::muxAcquire (volatile intptr_t * Lock, const char * LockName) {
4565   intptr_t w = Atomic::cmpxchg_ptr (LOCKBIT, Lock, 0) ;
4566   if (w == 0) return ;
4567   if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4568      return ;
4569   }
4570 
4571   TEVENT (muxAcquire - Contention) ;
4572   ParkEvent * const Self = Thread::current()->_MuxEvent ;
4573   assert ((intptr_t(Self) & LOCKBIT) == 0, "invariant") ;
4574   for (;;) {
4575      int its = (os::is_MP() ? 100 : 0) + 1 ;
4576 
4577      // Optional spin phase: spin-then-park strategy
4578      while (--its >= 0) {
4579        w = *Lock ;
4580        if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4581           return ;
4582        }
4583      }
4584 
4585      Self->reset() ;
4586      Self->OnList = intptr_t(Lock) ;
4587      // The following fence() isn't _strictly necessary as the subsequent
4588      // CAS() both serializes execution and ratifies the fetched *Lock value.
4589      OrderAccess::fence();
4590      for (;;) {
4591         w = *Lock ;
4592         if ((w & LOCKBIT) == 0) {
4593             if (Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4594                 Self->OnList = 0 ;   // hygiene - allows stronger asserts
4595                 return ;
4596             }
4597             continue ;      // Interference -- *Lock changed -- Just retry
4598         }
4599         assert (w & LOCKBIT, "invariant") ;
4600         Self->ListNext = (ParkEvent *) (w & ~LOCKBIT );
4601         if (Atomic::cmpxchg_ptr (intptr_t(Self)|LOCKBIT, Lock, w) == w) break ;
4602      }
4603 
4604      while (Self->OnList != 0) {
4605         Self->park() ;
4606      }
4607   }
4608 }
4609 
4610 void Thread::muxAcquireW (volatile intptr_t * Lock, ParkEvent * ev) {
4611   intptr_t w = Atomic::cmpxchg_ptr (LOCKBIT, Lock, 0) ;
4612   if (w == 0) return ;
4613   if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4614     return ;
4615   }
4616 
4617   TEVENT (muxAcquire - Contention) ;
4618   ParkEvent * ReleaseAfter = NULL ;
4619   if (ev == NULL) {
4620     ev = ReleaseAfter = ParkEvent::Allocate (NULL) ;
4621   }
4622   assert ((intptr_t(ev) & LOCKBIT) == 0, "invariant") ;
4623   for (;;) {
4624     guarantee (ev->OnList == 0, "invariant") ;
4625     int its = (os::is_MP() ? 100 : 0) + 1 ;
4626 
4627     // Optional spin phase: spin-then-park strategy
4628     while (--its >= 0) {
4629       w = *Lock ;
4630       if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4631         if (ReleaseAfter != NULL) {
4632           ParkEvent::Release (ReleaseAfter) ;
4633         }
4634         return ;
4635       }
4636     }
4637 
4638     ev->reset() ;
4639     ev->OnList = intptr_t(Lock) ;
4640     // The following fence() isn't _strictly necessary as the subsequent
4641     // CAS() both serializes execution and ratifies the fetched *Lock value.
4642     OrderAccess::fence();
4643     for (;;) {
4644       w = *Lock ;
4645       if ((w & LOCKBIT) == 0) {
4646         if (Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4647           ev->OnList = 0 ;
4648           // We call ::Release while holding the outer lock, thus
4649           // artificially lengthening the critical section.
4650           // Consider deferring the ::Release() until the subsequent unlock(),
4651           // after we've dropped the outer lock.
4652           if (ReleaseAfter != NULL) {
4653             ParkEvent::Release (ReleaseAfter) ;
4654           }
4655           return ;
4656         }
4657         continue ;      // Interference -- *Lock changed -- Just retry
4658       }
4659       assert (w & LOCKBIT, "invariant") ;
4660       ev->ListNext = (ParkEvent *) (w & ~LOCKBIT );
4661       if (Atomic::cmpxchg_ptr (intptr_t(ev)|LOCKBIT, Lock, w) == w) break ;
4662     }
4663 
4664     while (ev->OnList != 0) {
4665       ev->park() ;
4666     }
4667   }
4668 }
4669 
4670 // Release() must extract a successor from the list and then wake that thread.
4671 // It can "pop" the front of the list or use a detach-modify-reattach (DMR) scheme
4672 // similar to that used by ParkEvent::Allocate() and ::Release().  DMR-based
4673 // Release() would :
4674 // (A) CAS() or swap() null to *Lock, releasing the lock and detaching the list.
4675 // (B) Extract a successor from the private list "in-hand"
4676 // (C) attempt to CAS() the residual back into *Lock over null.
4677 //     If there were any newly arrived threads and the CAS() would fail.
4678 //     In that case Release() would detach the RATs, re-merge the list in-hand
4679 //     with the RATs and repeat as needed.  Alternately, Release() might
4680 //     detach and extract a successor, but then pass the residual list to the wakee.
4681 //     The wakee would be responsible for reattaching and remerging before it
4682 //     competed for the lock.
4683 //
4684 // Both "pop" and DMR are immune from ABA corruption -- there can be
4685 // multiple concurrent pushers, but only one popper or detacher.
4686 // This implementation pops from the head of the list.  This is unfair,
4687 // but tends to provide excellent throughput as hot threads remain hot.
4688 // (We wake recently run threads first).
4689 
4690 void Thread::muxRelease (volatile intptr_t * Lock)  {
4691   for (;;) {
4692     const intptr_t w = Atomic::cmpxchg_ptr (0, Lock, LOCKBIT) ;
4693     assert (w & LOCKBIT, "invariant") ;
4694     if (w == LOCKBIT) return ;
4695     ParkEvent * List = (ParkEvent *) (w & ~LOCKBIT) ;
4696     assert (List != NULL, "invariant") ;
4697     assert (List->OnList == intptr_t(Lock), "invariant") ;
4698     ParkEvent * nxt = List->ListNext ;
4699 
4700     // The following CAS() releases the lock and pops the head element.
4701     if (Atomic::cmpxchg_ptr (intptr_t(nxt), Lock, w) != w) {
4702       continue ;
4703     }
4704     List->OnList = 0 ;
4705     OrderAccess::fence() ;
4706     List->unpark () ;
4707     return ;
4708   }
4709 }
4710 
4711 
4712 void Threads::verify() {
4713   ALL_JAVA_THREADS(p) {
4714     p->verify();
4715   }
4716   VMThread* thread = VMThread::vm_thread();
4717   if (thread != NULL) thread->verify();
4718 }