/* * Copyright (c) 2005, 2018, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. * */ #include "precompiled.hpp" #include "c1/c1_Compilation.hpp" #include "c1/c1_FrameMap.hpp" #include "c1/c1_Instruction.hpp" #include "c1/c1_LIRAssembler.hpp" #include "c1/c1_LIRGenerator.hpp" #include "c1/c1_Runtime1.hpp" #include "c1/c1_ValueStack.hpp" #include "ci/ciArray.hpp" #include "ci/ciObjArrayKlass.hpp" #include "ci/ciTypeArrayKlass.hpp" #include "gc/shared/c1/barrierSetC1.hpp" #include "runtime/sharedRuntime.hpp" #include "runtime/stubRoutines.hpp" #include "utilities/macros.hpp" #include "vmreg_x86.inline.hpp" #ifdef ASSERT #define __ gen()->lir(__FILE__, __LINE__)-> #else #define __ gen()->lir()-> #endif // Item will be loaded into a byte register; Intel only void LIRItem::load_byte_item() { load_item(); LIR_Opr res = result(); if (!res->is_virtual() || !_gen->is_vreg_flag_set(res, LIRGenerator::byte_reg)) { // make sure that it is a byte register assert(!value()->type()->is_float() && !value()->type()->is_double(), "can't load floats in byte register"); LIR_Opr reg = _gen->rlock_byte(T_BYTE); __ move(res, reg); _result = reg; } } void LIRItem::load_nonconstant() { LIR_Opr r = value()->operand(); if (r->is_constant()) { _result = r; } else { load_item(); } } //-------------------------------------------------------------- // LIRGenerator //-------------------------------------------------------------- LIR_Opr LIRGenerator::exceptionOopOpr() { return FrameMap::rax_oop_opr; } LIR_Opr LIRGenerator::exceptionPcOpr() { return FrameMap::rdx_opr; } LIR_Opr LIRGenerator::divInOpr() { return FrameMap::rax_opr; } LIR_Opr LIRGenerator::divOutOpr() { return FrameMap::rax_opr; } LIR_Opr LIRGenerator::remOutOpr() { return FrameMap::rdx_opr; } LIR_Opr LIRGenerator::shiftCountOpr() { return FrameMap::rcx_opr; } LIR_Opr LIRGenerator::syncLockOpr() { return new_register(T_INT); } LIR_Opr LIRGenerator::syncTempOpr() { return FrameMap::rax_opr; } LIR_Opr LIRGenerator::getThreadTemp() { return LIR_OprFact::illegalOpr; } LIR_Opr LIRGenerator::result_register_for(ValueType* type, bool callee) { LIR_Opr opr; switch (type->tag()) { case intTag: opr = FrameMap::rax_opr; break; case objectTag: opr = FrameMap::rax_oop_opr; break; case longTag: opr = FrameMap::long0_opr; break; case floatTag: opr = UseSSE >= 1 ? FrameMap::xmm0_float_opr : FrameMap::fpu0_float_opr; break; case doubleTag: opr = UseSSE >= 2 ? FrameMap::xmm0_double_opr : FrameMap::fpu0_double_opr; break; case addressTag: default: ShouldNotReachHere(); return LIR_OprFact::illegalOpr; } assert(opr->type_field() == as_OprType(as_BasicType(type)), "type mismatch"); return opr; } LIR_Opr LIRGenerator::rlock_byte(BasicType type) { LIR_Opr reg = new_register(T_INT); set_vreg_flag(reg, LIRGenerator::byte_reg); return reg; } //--------- loading items into registers -------------------------------- // i486 instructions can inline constants bool LIRGenerator::can_store_as_constant(Value v, BasicType type) const { if (type == T_SHORT || type == T_CHAR) { // there is no immediate move of word values in asembler_i486.?pp return false; } Constant* c = v->as_Constant(); if (c && c->state_before() == NULL) { // constants of any type can be stored directly, except for // unloaded object constants. return true; } return false; } bool LIRGenerator::can_inline_as_constant(Value v) const { if (v->type()->tag() == longTag) return false; return v->type()->tag() != objectTag || (v->type()->is_constant() && v->type()->as_ObjectType()->constant_value()->is_null_object()); } bool LIRGenerator::can_inline_as_constant(LIR_Const* c) const { if (c->type() == T_LONG) return false; return c->type() != T_OBJECT || c->as_jobject() == NULL; } LIR_Opr LIRGenerator::safepoint_poll_register() { NOT_LP64( if (SafepointMechanism::uses_thread_local_poll()) { return new_register(T_ADDRESS); } ) return LIR_OprFact::illegalOpr; } LIR_Address* LIRGenerator::generate_address(LIR_Opr base, LIR_Opr index, int shift, int disp, BasicType type) { assert(base->is_register(), "must be"); if (index->is_constant()) { LIR_Const *constant = index->as_constant_ptr(); #ifdef _LP64 jlong c; if (constant->type() == T_INT) { c = (jlong(index->as_jint()) << shift) + disp; } else { assert(constant->type() == T_LONG, "should be"); c = (index->as_jlong() << shift) + disp; } if ((jlong)((jint)c) == c) { return new LIR_Address(base, (jint)c, type); } else { LIR_Opr tmp = new_register(T_LONG); __ move(index, tmp); return new LIR_Address(base, tmp, type); } #else return new LIR_Address(base, ((intx)(constant->as_jint()) << shift) + disp, type); #endif } else { return new LIR_Address(base, index, (LIR_Address::Scale)shift, disp, type); } } LIR_Address* LIRGenerator::emit_array_address(LIR_Opr array_opr, LIR_Opr index_opr, BasicType type) { int offset_in_bytes = arrayOopDesc::base_offset_in_bytes(type); LIR_Address* addr; if (index_opr->is_constant()) { int elem_size = type2aelembytes(type); addr = new LIR_Address(array_opr, offset_in_bytes + (intx)(index_opr->as_jint()) * elem_size, type); } else { #ifdef _LP64 if (index_opr->type() == T_INT) { LIR_Opr tmp = new_register(T_LONG); __ convert(Bytecodes::_i2l, index_opr, tmp); index_opr = tmp; } #endif // _LP64 addr = new LIR_Address(array_opr, index_opr, LIR_Address::scale(type), offset_in_bytes, type); } return addr; } LIR_Opr LIRGenerator::load_immediate(int x, BasicType type) { LIR_Opr r = NULL; if (type == T_LONG) { r = LIR_OprFact::longConst(x); } else if (type == T_INT) { r = LIR_OprFact::intConst(x); } else { ShouldNotReachHere(); } return r; } void LIRGenerator::increment_counter(address counter, BasicType type, int step) { LIR_Opr pointer = new_pointer_register(); __ move(LIR_OprFact::intptrConst(counter), pointer); LIR_Address* addr = new LIR_Address(pointer, type); increment_counter(addr, step); } void LIRGenerator::increment_counter(LIR_Address* addr, int step) { __ add((LIR_Opr)addr, LIR_OprFact::intConst(step), (LIR_Opr)addr); } void LIRGenerator::cmp_mem_int(LIR_Condition condition, LIR_Opr base, int disp, int c, CodeEmitInfo* info) { __ cmp_mem_int(condition, base, disp, c, info); } void LIRGenerator::cmp_reg_mem(LIR_Condition condition, LIR_Opr reg, LIR_Opr base, int disp, BasicType type, CodeEmitInfo* info) { __ cmp_reg_mem(condition, reg, new LIR_Address(base, disp, type), info); } bool LIRGenerator::strength_reduce_multiply(LIR_Opr left, jint c, LIR_Opr result, LIR_Opr tmp) { if (tmp->is_valid() && c > 0 && c < max_jint) { if (is_power_of_2(c + 1)) { __ move(left, tmp); __ shift_left(left, log2_jint(c + 1), left); __ sub(left, tmp, result); return true; } else if (is_power_of_2(c - 1)) { __ move(left, tmp); __ shift_left(left, log2_jint(c - 1), left); __ add(left, tmp, result); return true; } } return false; } void LIRGenerator::store_stack_parameter (LIR_Opr item, ByteSize offset_from_sp) { BasicType type = item->type(); __ store(item, new LIR_Address(FrameMap::rsp_opr, in_bytes(offset_from_sp), type)); } void LIRGenerator::array_store_check(LIR_Opr value, LIR_Opr array, CodeEmitInfo* store_check_info, ciMethod* profiled_method, int profiled_bci) { LIR_Opr tmp1 = new_register(objectType); LIR_Opr tmp2 = new_register(objectType); LIR_Opr tmp3 = new_register(objectType); __ store_check(value, array, tmp1, tmp2, tmp3, store_check_info, profiled_method, profiled_bci); } //---------------------------------------------------------------------- // visitor functions //---------------------------------------------------------------------- void LIRGenerator::do_MonitorEnter(MonitorEnter* x) { assert(x->is_pinned(),""); LIRItem obj(x->obj(), this); obj.load_item(); set_no_result(x); // "lock" stores the address of the monitor stack slot, so this is not an oop LIR_Opr lock = new_register(T_INT); // Need a scratch register for biased locking on x86 LIR_Opr scratch = LIR_OprFact::illegalOpr; if (UseBiasedLocking) { scratch = new_register(T_INT); } CodeEmitInfo* info_for_exception = NULL; if (x->needs_null_check()) { info_for_exception = state_for(x); } // this CodeEmitInfo must not have the xhandlers because here the // object is already locked (xhandlers expect object to be unlocked) CodeEmitInfo* info = state_for(x, x->state(), true); monitor_enter(obj.result(), lock, syncTempOpr(), scratch, x->monitor_no(), info_for_exception, info); } void LIRGenerator::do_MonitorExit(MonitorExit* x) { assert(x->is_pinned(),""); LIRItem obj(x->obj(), this); obj.dont_load_item(); LIR_Opr lock = new_register(T_INT); LIR_Opr obj_temp = new_register(T_INT); set_no_result(x); monitor_exit(obj_temp, lock, syncTempOpr(), LIR_OprFact::illegalOpr, x->monitor_no()); } // _ineg, _lneg, _fneg, _dneg void LIRGenerator::do_NegateOp(NegateOp* x) { LIRItem value(x->x(), this); value.set_destroys_register(); value.load_item(); LIR_Opr reg = rlock(x); LIR_Opr tmp = LIR_OprFact::illegalOpr; #ifdef _LP64 if (UseAVX > 2 && !VM_Version::supports_avx512vl()) { if (x->type()->tag() == doubleTag) { tmp = new_register(T_DOUBLE); __ move(LIR_OprFact::doubleConst(-0.0), tmp); } else if (x->type()->tag() == floatTag) { tmp = new_register(T_FLOAT); __ move(LIR_OprFact::floatConst(-0.0), tmp); } } #endif __ negate(value.result(), reg, tmp); set_result(x, round_item(reg)); } // for _fadd, _fmul, _fsub, _fdiv, _frem // _dadd, _dmul, _dsub, _ddiv, _drem void LIRGenerator::do_ArithmeticOp_FPU(ArithmeticOp* x) { LIRItem left(x->x(), this); LIRItem right(x->y(), this); LIRItem* left_arg = &left; LIRItem* right_arg = &right; assert(!left.is_stack() || !right.is_stack(), "can't both be memory operands"); bool must_load_both = (x->op() == Bytecodes::_frem || x->op() == Bytecodes::_drem); if (left.is_register() || x->x()->type()->is_constant() || must_load_both) { left.load_item(); } else { left.dont_load_item(); } // do not load right operand if it is a constant. only 0 and 1 are // loaded because there are special instructions for loading them // without memory access (not needed for SSE2 instructions) bool must_load_right = false; if (right.is_constant()) { LIR_Const* c = right.result()->as_constant_ptr(); assert(c != NULL, "invalid constant"); assert(c->type() == T_FLOAT || c->type() == T_DOUBLE, "invalid type"); if (c->type() == T_FLOAT) { must_load_right = UseSSE < 1 && (c->is_one_float() || c->is_zero_float()); } else { must_load_right = UseSSE < 2 && (c->is_one_double() || c->is_zero_double()); } } if (must_load_both) { // frem and drem destroy also right operand, so move it to a new register right.set_destroys_register(); right.load_item(); } else if (right.is_register() || must_load_right) { right.load_item(); } else { right.dont_load_item(); } LIR_Opr reg = rlock(x); LIR_Opr tmp = LIR_OprFact::illegalOpr; if (x->is_strictfp() && (x->op() == Bytecodes::_dmul || x->op() == Bytecodes::_ddiv)) { tmp = new_register(T_DOUBLE); } if ((UseSSE >= 1 && x->op() == Bytecodes::_frem) || (UseSSE >= 2 && x->op() == Bytecodes::_drem)) { // special handling for frem and drem: no SSE instruction, so must use FPU with temporary fpu stack slots LIR_Opr fpu0, fpu1; if (x->op() == Bytecodes::_frem) { fpu0 = LIR_OprFact::single_fpu(0); fpu1 = LIR_OprFact::single_fpu(1); } else { fpu0 = LIR_OprFact::double_fpu(0); fpu1 = LIR_OprFact::double_fpu(1); } __ move(right.result(), fpu1); // order of left and right operand is important! __ move(left.result(), fpu0); __ rem (fpu0, fpu1, fpu0); __ move(fpu0, reg); } else { arithmetic_op_fpu(x->op(), reg, left.result(), right.result(), x->is_strictfp(), tmp); } set_result(x, round_item(reg)); } // for _ladd, _lmul, _lsub, _ldiv, _lrem void LIRGenerator::do_ArithmeticOp_Long(ArithmeticOp* x) { if (x->op() == Bytecodes::_ldiv || x->op() == Bytecodes::_lrem ) { // long division is implemented as a direct call into the runtime LIRItem left(x->x(), this); LIRItem right(x->y(), this); // the check for division by zero destroys the right operand right.set_destroys_register(); BasicTypeList signature(2); signature.append(T_LONG); signature.append(T_LONG); CallingConvention* cc = frame_map()->c_calling_convention(&signature); // check for division by zero (destroys registers of right operand!) CodeEmitInfo* info = state_for(x); const LIR_Opr result_reg = result_register_for(x->type()); left.load_item_force(cc->at(1)); right.load_item(); __ move(right.result(), cc->at(0)); __ cmp(lir_cond_equal, right.result(), LIR_OprFact::longConst(0)); __ branch(lir_cond_equal, T_LONG, new DivByZeroStub(info)); address entry = NULL; switch (x->op()) { case Bytecodes::_lrem: entry = CAST_FROM_FN_PTR(address, SharedRuntime::lrem); break; // check if dividend is 0 is done elsewhere case Bytecodes::_ldiv: entry = CAST_FROM_FN_PTR(address, SharedRuntime::ldiv); break; // check if dividend is 0 is done elsewhere case Bytecodes::_lmul: entry = CAST_FROM_FN_PTR(address, SharedRuntime::lmul); break; default: ShouldNotReachHere(); } LIR_Opr result = rlock_result(x); __ call_runtime_leaf(entry, getThreadTemp(), result_reg, cc->args()); __ move(result_reg, result); } else if (x->op() == Bytecodes::_lmul) { // missing test if instr is commutative and if we should swap LIRItem left(x->x(), this); LIRItem right(x->y(), this); // right register is destroyed by the long mul, so it must be // copied to a new register. right.set_destroys_register(); left.load_item(); right.load_item(); LIR_Opr reg = FrameMap::long0_opr; arithmetic_op_long(x->op(), reg, left.result(), right.result(), NULL); LIR_Opr result = rlock_result(x); __ move(reg, result); } else { // missing test if instr is commutative and if we should swap LIRItem left(x->x(), this); LIRItem right(x->y(), this); left.load_item(); // don't load constants to save register right.load_nonconstant(); rlock_result(x); arithmetic_op_long(x->op(), x->operand(), left.result(), right.result(), NULL); } } // for: _iadd, _imul, _isub, _idiv, _irem void LIRGenerator::do_ArithmeticOp_Int(ArithmeticOp* x) { if (x->op() == Bytecodes::_idiv || x->op() == Bytecodes::_irem) { // The requirements for division and modulo // input : rax,: dividend min_int // reg: divisor (may not be rax,/rdx) -1 // // output: rax,: quotient (= rax, idiv reg) min_int // rdx: remainder (= rax, irem reg) 0 // rax, and rdx will be destroyed // Note: does this invalidate the spec ??? LIRItem right(x->y(), this); LIRItem left(x->x() , this); // visit left second, so that the is_register test is valid // call state_for before load_item_force because state_for may // force the evaluation of other instructions that are needed for // correct debug info. Otherwise the live range of the fix // register might be too long. CodeEmitInfo* info = state_for(x); left.load_item_force(divInOpr()); right.load_item(); LIR_Opr result = rlock_result(x); LIR_Opr result_reg; if (x->op() == Bytecodes::_idiv) { result_reg = divOutOpr(); } else { result_reg = remOutOpr(); } if (!ImplicitDiv0Checks) { __ cmp(lir_cond_equal, right.result(), LIR_OprFact::intConst(0)); __ branch(lir_cond_equal, T_INT, new DivByZeroStub(info)); // Idiv/irem cannot trap (passing info would generate an assertion). info = NULL; } LIR_Opr tmp = FrameMap::rdx_opr; // idiv and irem use rdx in their implementation if (x->op() == Bytecodes::_irem) { __ irem(left.result(), right.result(), result_reg, tmp, info); } else if (x->op() == Bytecodes::_idiv) { __ idiv(left.result(), right.result(), result_reg, tmp, info); } else { ShouldNotReachHere(); } __ move(result_reg, result); } else { // missing test if instr is commutative and if we should swap LIRItem left(x->x(), this); LIRItem right(x->y(), this); LIRItem* left_arg = &left; LIRItem* right_arg = &right; if (x->is_commutative() && left.is_stack() && right.is_register()) { // swap them if left is real stack (or cached) and right is real register(not cached) left_arg = &right; right_arg = &left; } left_arg->load_item(); // do not need to load right, as we can handle stack and constants if (x->op() == Bytecodes::_imul ) { // check if we can use shift instead bool use_constant = false; bool use_tmp = false; if (right_arg->is_constant()) { jint iconst = right_arg->get_jint_constant(); if (iconst > 0 && iconst < max_jint) { if (is_power_of_2(iconst)) { use_constant = true; } else if (is_power_of_2(iconst - 1) || is_power_of_2(iconst + 1)) { use_constant = true; use_tmp = true; } } } if (use_constant) { right_arg->dont_load_item(); } else { right_arg->load_item(); } LIR_Opr tmp = LIR_OprFact::illegalOpr; if (use_tmp) { tmp = new_register(T_INT); } rlock_result(x); arithmetic_op_int(x->op(), x->operand(), left_arg->result(), right_arg->result(), tmp); } else { right_arg->dont_load_item(); rlock_result(x); LIR_Opr tmp = LIR_OprFact::illegalOpr; arithmetic_op_int(x->op(), x->operand(), left_arg->result(), right_arg->result(), tmp); } } } void LIRGenerator::do_ArithmeticOp(ArithmeticOp* x) { // when an operand with use count 1 is the left operand, then it is // likely that no move for 2-operand-LIR-form is necessary if (x->is_commutative() && x->y()->as_Constant() == NULL && x->x()->use_count() > x->y()->use_count()) { x->swap_operands(); } ValueTag tag = x->type()->tag(); assert(x->x()->type()->tag() == tag && x->y()->type()->tag() == tag, "wrong parameters"); switch (tag) { case floatTag: case doubleTag: do_ArithmeticOp_FPU(x); return; case longTag: do_ArithmeticOp_Long(x); return; case intTag: do_ArithmeticOp_Int(x); return; default: ShouldNotReachHere(); return; } } // _ishl, _lshl, _ishr, _lshr, _iushr, _lushr void LIRGenerator::do_ShiftOp(ShiftOp* x) { // count must always be in rcx LIRItem value(x->x(), this); LIRItem count(x->y(), this); ValueTag elemType = x->type()->tag(); bool must_load_count = !count.is_constant() || elemType == longTag; if (must_load_count) { // count for long must be in register count.load_item_force(shiftCountOpr()); } else { count.dont_load_item(); } value.load_item(); LIR_Opr reg = rlock_result(x); shift_op(x->op(), reg, value.result(), count.result(), LIR_OprFact::illegalOpr); } // _iand, _land, _ior, _lor, _ixor, _lxor void LIRGenerator::do_LogicOp(LogicOp* x) { // when an operand with use count 1 is the left operand, then it is // likely that no move for 2-operand-LIR-form is necessary if (x->is_commutative() && x->y()->as_Constant() == NULL && x->x()->use_count() > x->y()->use_count()) { x->swap_operands(); } LIRItem left(x->x(), this); LIRItem right(x->y(), this); left.load_item(); right.load_nonconstant(); LIR_Opr reg = rlock_result(x); logic_op(x->op(), reg, left.result(), right.result()); } // _lcmp, _fcmpl, _fcmpg, _dcmpl, _dcmpg void LIRGenerator::do_CompareOp(CompareOp* x) { LIRItem left(x->x(), this); LIRItem right(x->y(), this); ValueTag tag = x->x()->type()->tag(); if (tag == longTag) { left.set_destroys_register(); } left.load_item(); right.load_item(); LIR_Opr reg = rlock_result(x); if (x->x()->type()->is_float_kind()) { Bytecodes::Code code = x->op(); __ fcmp2int(left.result(), right.result(), reg, (code == Bytecodes::_fcmpl || code == Bytecodes::_dcmpl)); } else if (x->x()->type()->tag() == longTag) { __ lcmp2int(left.result(), right.result(), reg); } else { Unimplemented(); } } LIR_Opr LIRGenerator::atomic_cmpxchg(BasicType type, LIR_Opr addr, LIRItem& cmp_value, LIRItem& new_value) { LIR_Opr ill = LIR_OprFact::illegalOpr; // for convenience if (type == T_OBJECT || type == T_ARRAY) { cmp_value.load_item_force(FrameMap::rax_oop_opr); new_value.load_item(); #if INCLUDE_SHENANDOAHGC if (UseShenandoahGC) { __ cas_obj(addr->as_address_ptr()->base(), cmp_value.result(), new_value.result(), new_register(T_OBJECT), new_register(T_OBJECT)); } else #endif __ cas_obj(addr->as_address_ptr()->base(), cmp_value.result(), new_value.result(), ill, ill); } else if (type == T_INT) { cmp_value.load_item_force(FrameMap::rax_opr); new_value.load_item(); __ cas_int(addr->as_address_ptr()->base(), cmp_value.result(), new_value.result(), ill, ill); } else if (type == T_LONG) { cmp_value.load_item_force(FrameMap::long0_opr); new_value.load_item_force(FrameMap::long1_opr); __ cas_long(addr->as_address_ptr()->base(), cmp_value.result(), new_value.result(), ill, ill); } else { Unimplemented(); } LIR_Opr result = new_register(T_INT); __ cmove(lir_cond_equal, LIR_OprFact::intConst(1), LIR_OprFact::intConst(0), result, type); return result; } LIR_Opr LIRGenerator::atomic_xchg(BasicType type, LIR_Opr addr, LIRItem& value) { bool is_oop = type == T_OBJECT || type == T_ARRAY; LIR_Opr result = new_register(type); value.load_item(); // Because we want a 2-arg form of xchg and xadd __ move(value.result(), result); assert(type == T_INT || is_oop LP64_ONLY( || type == T_LONG ), "unexpected type"); #if INCLUDE_SHENANDOAHGC if (UseShenandoahGC) { LIR_Opr tmp = is_oop ? new_register(type) : LIR_OprFact::illegalOpr; __ xchg(addr, result, result, tmp); } else #endif __ xchg(addr, result, result, LIR_OprFact::illegalOpr); return result; } LIR_Opr LIRGenerator::atomic_add(BasicType type, LIR_Opr addr, LIRItem& value) { LIR_Opr result = new_register(type); value.load_item(); // Because we want a 2-arg form of xchg and xadd __ move(value.result(), result); assert(type == T_INT LP64_ONLY( || type == T_LONG ), "unexpected type"); __ xadd(addr, result, result, LIR_OprFact::illegalOpr); return result; } void LIRGenerator::do_FmaIntrinsic(Intrinsic* x) { assert(x->number_of_arguments() == 3, "wrong type"); assert(UseFMA, "Needs FMA instructions support."); LIRItem value(x->argument_at(0), this); LIRItem value1(x->argument_at(1), this); LIRItem value2(x->argument_at(2), this); value2.set_destroys_register(); value.load_item(); value1.load_item(); value2.load_item(); LIR_Opr calc_input = value.result(); LIR_Opr calc_input1 = value1.result(); LIR_Opr calc_input2 = value2.result(); LIR_Opr calc_result = rlock_result(x); switch (x->id()) { case vmIntrinsics::_fmaD: __ fmad(calc_input, calc_input1, calc_input2, calc_result); break; case vmIntrinsics::_fmaF: __ fmaf(calc_input, calc_input1, calc_input2, calc_result); break; default: ShouldNotReachHere(); } } void LIRGenerator::do_MathIntrinsic(Intrinsic* x) { assert(x->number_of_arguments() == 1 || (x->number_of_arguments() == 2 && x->id() == vmIntrinsics::_dpow), "wrong type"); if (x->id() == vmIntrinsics::_dexp || x->id() == vmIntrinsics::_dlog || x->id() == vmIntrinsics::_dpow || x->id() == vmIntrinsics::_dcos || x->id() == vmIntrinsics::_dsin || x->id() == vmIntrinsics::_dtan || x->id() == vmIntrinsics::_dlog10) { do_LibmIntrinsic(x); return; } LIRItem value(x->argument_at(0), this); bool use_fpu = false; if (UseSSE < 2) { value.set_destroys_register(); } value.load_item(); LIR_Opr calc_input = value.result(); LIR_Opr calc_result = rlock_result(x); LIR_Opr tmp = LIR_OprFact::illegalOpr; #ifdef _LP64 if (UseAVX > 2 && (!VM_Version::supports_avx512vl()) && (x->id() == vmIntrinsics::_dabs)) { tmp = new_register(T_DOUBLE); __ move(LIR_OprFact::doubleConst(-0.0), tmp); } #endif switch(x->id()) { case vmIntrinsics::_dabs: __ abs (calc_input, calc_result, tmp); break; case vmIntrinsics::_dsqrt: __ sqrt (calc_input, calc_result, LIR_OprFact::illegalOpr); break; default: ShouldNotReachHere(); } if (use_fpu) { __ move(calc_result, x->operand()); } } void LIRGenerator::do_LibmIntrinsic(Intrinsic* x) { LIRItem value(x->argument_at(0), this); value.set_destroys_register(); LIR_Opr calc_result = rlock_result(x); LIR_Opr result_reg = result_register_for(x->type()); CallingConvention* cc = NULL; if (x->id() == vmIntrinsics::_dpow) { LIRItem value1(x->argument_at(1), this); value1.set_destroys_register(); BasicTypeList signature(2); signature.append(T_DOUBLE); signature.append(T_DOUBLE); cc = frame_map()->c_calling_convention(&signature); value.load_item_force(cc->at(0)); value1.load_item_force(cc->at(1)); } else { BasicTypeList signature(1); signature.append(T_DOUBLE); cc = frame_map()->c_calling_convention(&signature); value.load_item_force(cc->at(0)); } #ifndef _LP64 LIR_Opr tmp = FrameMap::fpu0_double_opr; result_reg = tmp; switch(x->id()) { case vmIntrinsics::_dexp: if (StubRoutines::dexp() != NULL) { __ call_runtime_leaf(StubRoutines::dexp(), getThreadTemp(), result_reg, cc->args()); } else { __ call_runtime_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dexp), getThreadTemp(), result_reg, cc->args()); } break; case vmIntrinsics::_dlog: if (StubRoutines::dlog() != NULL) { __ call_runtime_leaf(StubRoutines::dlog(), getThreadTemp(), result_reg, cc->args()); } else { __ call_runtime_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dlog), getThreadTemp(), result_reg, cc->args()); } break; case vmIntrinsics::_dlog10: if (StubRoutines::dlog10() != NULL) { __ call_runtime_leaf(StubRoutines::dlog10(), getThreadTemp(), result_reg, cc->args()); } else { __ call_runtime_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dlog10), getThreadTemp(), result_reg, cc->args()); } break; case vmIntrinsics::_dpow: if (StubRoutines::dpow() != NULL) { __ call_runtime_leaf(StubRoutines::dpow(), getThreadTemp(), result_reg, cc->args()); } else { __ call_runtime_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dpow), getThreadTemp(), result_reg, cc->args()); } break; case vmIntrinsics::_dsin: if (VM_Version::supports_sse2() && StubRoutines::dsin() != NULL) { __ call_runtime_leaf(StubRoutines::dsin(), getThreadTemp(), result_reg, cc->args()); } else { __ call_runtime_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dsin), getThreadTemp(), result_reg, cc->args()); } break; case vmIntrinsics::_dcos: if (VM_Version::supports_sse2() && StubRoutines::dcos() != NULL) { __ call_runtime_leaf(StubRoutines::dcos(), getThreadTemp(), result_reg, cc->args()); } else { __ call_runtime_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dcos), getThreadTemp(), result_reg, cc->args()); } break; case vmIntrinsics::_dtan: if (StubRoutines::dtan() != NULL) { __ call_runtime_leaf(StubRoutines::dtan(), getThreadTemp(), result_reg, cc->args()); } else { __ call_runtime_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dtan), getThreadTemp(), result_reg, cc->args()); } break; default: ShouldNotReachHere(); } #else switch (x->id()) { case vmIntrinsics::_dexp: if (StubRoutines::dexp() != NULL) { __ call_runtime_leaf(StubRoutines::dexp(), getThreadTemp(), result_reg, cc->args()); } else { __ call_runtime_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dexp), getThreadTemp(), result_reg, cc->args()); } break; case vmIntrinsics::_dlog: if (StubRoutines::dlog() != NULL) { __ call_runtime_leaf(StubRoutines::dlog(), getThreadTemp(), result_reg, cc->args()); } else { __ call_runtime_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dlog), getThreadTemp(), result_reg, cc->args()); } break; case vmIntrinsics::_dlog10: if (StubRoutines::dlog10() != NULL) { __ call_runtime_leaf(StubRoutines::dlog10(), getThreadTemp(), result_reg, cc->args()); } else { __ call_runtime_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dlog10), getThreadTemp(), result_reg, cc->args()); } break; case vmIntrinsics::_dpow: if (StubRoutines::dpow() != NULL) { __ call_runtime_leaf(StubRoutines::dpow(), getThreadTemp(), result_reg, cc->args()); } else { __ call_runtime_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dpow), getThreadTemp(), result_reg, cc->args()); } break; case vmIntrinsics::_dsin: if (StubRoutines::dsin() != NULL) { __ call_runtime_leaf(StubRoutines::dsin(), getThreadTemp(), result_reg, cc->args()); } else { __ call_runtime_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dsin), getThreadTemp(), result_reg, cc->args()); } break; case vmIntrinsics::_dcos: if (StubRoutines::dcos() != NULL) { __ call_runtime_leaf(StubRoutines::dcos(), getThreadTemp(), result_reg, cc->args()); } else { __ call_runtime_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dcos), getThreadTemp(), result_reg, cc->args()); } break; case vmIntrinsics::_dtan: if (StubRoutines::dtan() != NULL) { __ call_runtime_leaf(StubRoutines::dtan(), getThreadTemp(), result_reg, cc->args()); } else { __ call_runtime_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dtan), getThreadTemp(), result_reg, cc->args()); } break; default: ShouldNotReachHere(); } #endif // _LP64 __ move(result_reg, calc_result); } void LIRGenerator::do_ArrayCopy(Intrinsic* x) { assert(x->number_of_arguments() == 5, "wrong type"); // Make all state_for calls early since they can emit code CodeEmitInfo* info = state_for(x, x->state()); LIRItem src(x->argument_at(0), this); LIRItem src_pos(x->argument_at(1), this); LIRItem dst(x->argument_at(2), this); LIRItem dst_pos(x->argument_at(3), this); LIRItem length(x->argument_at(4), this); // operands for arraycopy must use fixed registers, otherwise // LinearScan will fail allocation (because arraycopy always needs a // call) #ifndef _LP64 src.load_item_force (FrameMap::rcx_oop_opr); src_pos.load_item_force (FrameMap::rdx_opr); dst.load_item_force (FrameMap::rax_oop_opr); dst_pos.load_item_force (FrameMap::rbx_opr); length.load_item_force (FrameMap::rdi_opr); LIR_Opr tmp = (FrameMap::rsi_opr); #else // The java calling convention will give us enough registers // so that on the stub side the args will be perfect already. // On the other slow/special case side we call C and the arg // positions are not similar enough to pick one as the best. // Also because the java calling convention is a "shifted" version // of the C convention we can process the java args trivially into C // args without worry of overwriting during the xfer src.load_item_force (FrameMap::as_oop_opr(j_rarg0)); src_pos.load_item_force (FrameMap::as_opr(j_rarg1)); dst.load_item_force (FrameMap::as_oop_opr(j_rarg2)); dst_pos.load_item_force (FrameMap::as_opr(j_rarg3)); length.load_item_force (FrameMap::as_opr(j_rarg4)); LIR_Opr tmp = FrameMap::as_opr(j_rarg5); #endif // LP64 set_no_result(x); int flags; ciArrayKlass* expected_type; arraycopy_helper(x, &flags, &expected_type); __ arraycopy(src.result(), src_pos.result(), dst.result(), dst_pos.result(), length.result(), tmp, expected_type, flags, info); // does add_safepoint } void LIRGenerator::do_update_CRC32(Intrinsic* x) { assert(UseCRC32Intrinsics, "need AVX and LCMUL instructions support"); // Make all state_for calls early since they can emit code LIR_Opr result = rlock_result(x); int flags = 0; switch (x->id()) { case vmIntrinsics::_updateCRC32: { LIRItem crc(x->argument_at(0), this); LIRItem val(x->argument_at(1), this); // val is destroyed by update_crc32 val.set_destroys_register(); crc.load_item(); val.load_item(); __ update_crc32(crc.result(), val.result(), result); break; } case vmIntrinsics::_updateBytesCRC32: case vmIntrinsics::_updateByteBufferCRC32: { bool is_updateBytes = (x->id() == vmIntrinsics::_updateBytesCRC32); LIRItem crc(x->argument_at(0), this); LIRItem buf(x->argument_at(1), this); LIRItem off(x->argument_at(2), this); LIRItem len(x->argument_at(3), this); buf.load_item(); off.load_nonconstant(); LIR_Opr index = off.result(); int offset = is_updateBytes ? arrayOopDesc::base_offset_in_bytes(T_BYTE) : 0; if(off.result()->is_constant()) { index = LIR_OprFact::illegalOpr; offset += off.result()->as_jint(); } LIR_Opr base_op = buf.result(); #ifndef _LP64 if (!is_updateBytes) { // long b raw address base_op = new_register(T_INT); __ convert(Bytecodes::_l2i, buf.result(), base_op); } #else if (index->is_valid()) { LIR_Opr tmp = new_register(T_LONG); __ convert(Bytecodes::_i2l, index, tmp); index = tmp; } #endif LIR_Address* a = new LIR_Address(base_op, index, offset, T_BYTE); BasicTypeList signature(3); signature.append(T_INT); signature.append(T_ADDRESS); signature.append(T_INT); CallingConvention* cc = frame_map()->c_calling_convention(&signature); const LIR_Opr result_reg = result_register_for(x->type()); LIR_Opr addr = new_pointer_register(); __ leal(LIR_OprFact::address(a), addr); crc.load_item_force(cc->at(0)); __ move(addr, cc->at(1)); len.load_item_force(cc->at(2)); __ call_runtime_leaf(StubRoutines::updateBytesCRC32(), getThreadTemp(), result_reg, cc->args()); __ move(result_reg, result); break; } default: { ShouldNotReachHere(); } } } void LIRGenerator::do_update_CRC32C(Intrinsic* x) { Unimplemented(); } void LIRGenerator::do_vectorizedMismatch(Intrinsic* x) { assert(UseVectorizedMismatchIntrinsic, "need AVX instruction support"); // Make all state_for calls early since they can emit code LIR_Opr result = rlock_result(x); LIRItem a(x->argument_at(0), this); // Object LIRItem aOffset(x->argument_at(1), this); // long LIRItem b(x->argument_at(2), this); // Object LIRItem bOffset(x->argument_at(3), this); // long LIRItem length(x->argument_at(4), this); // int LIRItem log2ArrayIndexScale(x->argument_at(5), this); // int a.load_item(); aOffset.load_nonconstant(); b.load_item(); bOffset.load_nonconstant(); long constant_aOffset = 0; LIR_Opr result_aOffset = aOffset.result(); if (result_aOffset->is_constant()) { constant_aOffset = result_aOffset->as_jlong(); result_aOffset = LIR_OprFact::illegalOpr; } LIR_Opr result_a = a.result(); long constant_bOffset = 0; LIR_Opr result_bOffset = bOffset.result(); if (result_bOffset->is_constant()) { constant_bOffset = result_bOffset->as_jlong(); result_bOffset = LIR_OprFact::illegalOpr; } LIR_Opr result_b = b.result(); #ifndef _LP64 result_a = new_register(T_INT); __ convert(Bytecodes::_l2i, a.result(), result_a); result_b = new_register(T_INT); __ convert(Bytecodes::_l2i, b.result(), result_b); #endif LIR_Address* addr_a = new LIR_Address(result_a, result_aOffset, constant_aOffset, T_BYTE); LIR_Address* addr_b = new LIR_Address(result_b, result_bOffset, constant_bOffset, T_BYTE); BasicTypeList signature(4); signature.append(T_ADDRESS); signature.append(T_ADDRESS); signature.append(T_INT); signature.append(T_INT); CallingConvention* cc = frame_map()->c_calling_convention(&signature); const LIR_Opr result_reg = result_register_for(x->type()); LIR_Opr ptr_addr_a = new_pointer_register(); __ leal(LIR_OprFact::address(addr_a), ptr_addr_a); LIR_Opr ptr_addr_b = new_pointer_register(); __ leal(LIR_OprFact::address(addr_b), ptr_addr_b); __ move(ptr_addr_a, cc->at(0)); __ move(ptr_addr_b, cc->at(1)); length.load_item_force(cc->at(2)); log2ArrayIndexScale.load_item_force(cc->at(3)); __ call_runtime_leaf(StubRoutines::vectorizedMismatch(), getThreadTemp(), result_reg, cc->args()); __ move(result_reg, result); } // _i2l, _i2f, _i2d, _l2i, _l2f, _l2d, _f2i, _f2l, _f2d, _d2i, _d2l, _d2f // _i2b, _i2c, _i2s LIR_Opr fixed_register_for(BasicType type) { switch (type) { case T_FLOAT: return FrameMap::fpu0_float_opr; case T_DOUBLE: return FrameMap::fpu0_double_opr; case T_INT: return FrameMap::rax_opr; case T_LONG: return FrameMap::long0_opr; default: ShouldNotReachHere(); return LIR_OprFact::illegalOpr; } } void LIRGenerator::do_Convert(Convert* x) { // flags that vary for the different operations and different SSE-settings bool fixed_input = false, fixed_result = false, round_result = false, needs_stub = false; switch (x->op()) { case Bytecodes::_i2l: // fall through case Bytecodes::_l2i: // fall through case Bytecodes::_i2b: // fall through case Bytecodes::_i2c: // fall through case Bytecodes::_i2s: fixed_input = false; fixed_result = false; round_result = false; needs_stub = false; break; case Bytecodes::_f2d: fixed_input = UseSSE == 1; fixed_result = false; round_result = false; needs_stub = false; break; case Bytecodes::_d2f: fixed_input = false; fixed_result = UseSSE == 1; round_result = UseSSE < 1; needs_stub = false; break; case Bytecodes::_i2f: fixed_input = false; fixed_result = false; round_result = UseSSE < 1; needs_stub = false; break; case Bytecodes::_i2d: fixed_input = false; fixed_result = false; round_result = false; needs_stub = false; break; case Bytecodes::_f2i: fixed_input = false; fixed_result = false; round_result = false; needs_stub = true; break; case Bytecodes::_d2i: fixed_input = false; fixed_result = false; round_result = false; needs_stub = true; break; case Bytecodes::_l2f: fixed_input = false; fixed_result = UseSSE >= 1; round_result = UseSSE < 1; needs_stub = false; break; case Bytecodes::_l2d: fixed_input = false; fixed_result = UseSSE >= 2; round_result = UseSSE < 2; needs_stub = false; break; case Bytecodes::_f2l: fixed_input = true; fixed_result = true; round_result = false; needs_stub = false; break; case Bytecodes::_d2l: fixed_input = true; fixed_result = true; round_result = false; needs_stub = false; break; default: ShouldNotReachHere(); } LIRItem value(x->value(), this); value.load_item(); LIR_Opr input = value.result(); LIR_Opr result = rlock(x); // arguments of lir_convert LIR_Opr conv_input = input; LIR_Opr conv_result = result; ConversionStub* stub = NULL; if (fixed_input) { conv_input = fixed_register_for(input->type()); __ move(input, conv_input); } assert(fixed_result == false || round_result == false, "cannot set both"); if (fixed_result) { conv_result = fixed_register_for(result->type()); } else if (round_result) { result = new_register(result->type()); set_vreg_flag(result, must_start_in_memory); } if (needs_stub) { stub = new ConversionStub(x->op(), conv_input, conv_result); } __ convert(x->op(), conv_input, conv_result, stub); if (result != conv_result) { __ move(conv_result, result); } assert(result->is_virtual(), "result must be virtual register"); set_result(x, result); } void LIRGenerator::do_NewInstance(NewInstance* x) { print_if_not_loaded(x); CodeEmitInfo* info = state_for(x, x->state()); LIR_Opr reg = result_register_for(x->type()); new_instance(reg, x->klass(), x->is_unresolved(), FrameMap::rcx_oop_opr, FrameMap::rdi_oop_opr, FrameMap::rsi_oop_opr, LIR_OprFact::illegalOpr, FrameMap::rdx_metadata_opr, info); LIR_Opr result = rlock_result(x); __ move(reg, result); } void LIRGenerator::do_NewTypeArray(NewTypeArray* x) { CodeEmitInfo* info = state_for(x, x->state()); LIRItem length(x->length(), this); length.load_item_force(FrameMap::rbx_opr); LIR_Opr reg = result_register_for(x->type()); LIR_Opr tmp1 = FrameMap::rcx_oop_opr; LIR_Opr tmp2 = FrameMap::rsi_oop_opr; LIR_Opr tmp3 = FrameMap::rdi_oop_opr; LIR_Opr tmp4 = reg; LIR_Opr klass_reg = FrameMap::rdx_metadata_opr; LIR_Opr len = length.result(); BasicType elem_type = x->elt_type(); __ metadata2reg(ciTypeArrayKlass::make(elem_type)->constant_encoding(), klass_reg); CodeStub* slow_path = new NewTypeArrayStub(klass_reg, len, reg, info); __ allocate_array(reg, len, tmp1, tmp2, tmp3, tmp4, elem_type, klass_reg, slow_path); LIR_Opr result = rlock_result(x); __ move(reg, result); } void LIRGenerator::do_NewObjectArray(NewObjectArray* x) { LIRItem length(x->length(), this); // in case of patching (i.e., object class is not yet loaded), we need to reexecute the instruction // and therefore provide the state before the parameters have been consumed CodeEmitInfo* patching_info = NULL; if (!x->klass()->is_loaded() || PatchALot) { patching_info = state_for(x, x->state_before()); } CodeEmitInfo* info = state_for(x, x->state()); const LIR_Opr reg = result_register_for(x->type()); LIR_Opr tmp1 = FrameMap::rcx_oop_opr; LIR_Opr tmp2 = FrameMap::rsi_oop_opr; LIR_Opr tmp3 = FrameMap::rdi_oop_opr; LIR_Opr tmp4 = reg; LIR_Opr klass_reg = FrameMap::rdx_metadata_opr; length.load_item_force(FrameMap::rbx_opr); LIR_Opr len = length.result(); CodeStub* slow_path = new NewObjectArrayStub(klass_reg, len, reg, info); ciKlass* obj = (ciKlass*) ciObjArrayKlass::make(x->klass()); if (obj == ciEnv::unloaded_ciobjarrayklass()) { BAILOUT("encountered unloaded_ciobjarrayklass due to out of memory error"); } klass2reg_with_patching(klass_reg, obj, patching_info); __ allocate_array(reg, len, tmp1, tmp2, tmp3, tmp4, T_OBJECT, klass_reg, slow_path); LIR_Opr result = rlock_result(x); __ move(reg, result); } void LIRGenerator::do_NewMultiArray(NewMultiArray* x) { Values* dims = x->dims(); int i = dims->length(); LIRItemList* items = new LIRItemList(i, i, NULL); while (i-- > 0) { LIRItem* size = new LIRItem(dims->at(i), this); items->at_put(i, size); } // Evaluate state_for early since it may emit code. CodeEmitInfo* patching_info = NULL; if (!x->klass()->is_loaded() || PatchALot) { patching_info = state_for(x, x->state_before()); // Cannot re-use same xhandlers for multiple CodeEmitInfos, so // clone all handlers (NOTE: Usually this is handled transparently // by the CodeEmitInfo cloning logic in CodeStub constructors but // is done explicitly here because a stub isn't being used). x->set_exception_handlers(new XHandlers(x->exception_handlers())); } CodeEmitInfo* info = state_for(x, x->state()); i = dims->length(); while (i-- > 0) { LIRItem* size = items->at(i); size->load_nonconstant(); store_stack_parameter(size->result(), in_ByteSize(i*4)); } LIR_Opr klass_reg = FrameMap::rax_metadata_opr; klass2reg_with_patching(klass_reg, x->klass(), patching_info); LIR_Opr rank = FrameMap::rbx_opr; __ move(LIR_OprFact::intConst(x->rank()), rank); LIR_Opr varargs = FrameMap::rcx_opr; __ move(FrameMap::rsp_opr, varargs); LIR_OprList* args = new LIR_OprList(3); args->append(klass_reg); args->append(rank); args->append(varargs); LIR_Opr reg = result_register_for(x->type()); __ call_runtime(Runtime1::entry_for(Runtime1::new_multi_array_id), LIR_OprFact::illegalOpr, reg, args, info); LIR_Opr result = rlock_result(x); __ move(reg, result); } void LIRGenerator::do_BlockBegin(BlockBegin* x) { // nothing to do for now } void LIRGenerator::do_CheckCast(CheckCast* x) { LIRItem obj(x->obj(), this); CodeEmitInfo* patching_info = NULL; if (!x->klass()->is_loaded() || (PatchALot && !x->is_incompatible_class_change_check() && !x->is_invokespecial_receiver_check())) { // must do this before locking the destination register as an oop register, // and before the obj is loaded (the latter is for deoptimization) patching_info = state_for(x, x->state_before()); } obj.load_item(); // info for exceptions CodeEmitInfo* info_for_exception = (x->needs_exception_state() ? state_for(x) : state_for(x, x->state_before(), true /*ignore_xhandler*/)); CodeStub* stub; if (x->is_incompatible_class_change_check()) { assert(patching_info == NULL, "can't patch this"); stub = new SimpleExceptionStub(Runtime1::throw_incompatible_class_change_error_id, LIR_OprFact::illegalOpr, info_for_exception); } else if (x->is_invokespecial_receiver_check()) { assert(patching_info == NULL, "can't patch this"); stub = new DeoptimizeStub(info_for_exception, Deoptimization::Reason_class_check, Deoptimization::Action_none); } else { stub = new SimpleExceptionStub(Runtime1::throw_class_cast_exception_id, obj.result(), info_for_exception); } LIR_Opr reg = rlock_result(x); LIR_Opr tmp3 = LIR_OprFact::illegalOpr; if (!x->klass()->is_loaded() || UseCompressedClassPointers) { tmp3 = new_register(objectType); } __ checkcast(reg, obj.result(), x->klass(), new_register(objectType), new_register(objectType), tmp3, x->direct_compare(), info_for_exception, patching_info, stub, x->profiled_method(), x->profiled_bci()); } void LIRGenerator::do_InstanceOf(InstanceOf* x) { LIRItem obj(x->obj(), this); // result and test object may not be in same register LIR_Opr reg = rlock_result(x); CodeEmitInfo* patching_info = NULL; if ((!x->klass()->is_loaded() || PatchALot)) { // must do this before locking the destination register as an oop register patching_info = state_for(x, x->state_before()); } obj.load_item(); LIR_Opr tmp3 = LIR_OprFact::illegalOpr; if (!x->klass()->is_loaded() || UseCompressedClassPointers) { tmp3 = new_register(objectType); } __ instanceof(reg, obj.result(), x->klass(), new_register(objectType), new_register(objectType), tmp3, x->direct_compare(), patching_info, x->profiled_method(), x->profiled_bci()); } void LIRGenerator::do_If(If* x) { assert(x->number_of_sux() == 2, "inconsistency"); ValueTag tag = x->x()->type()->tag(); bool is_safepoint = x->is_safepoint(); If::Condition cond = x->cond(); LIRItem xitem(x->x(), this); LIRItem yitem(x->y(), this); LIRItem* xin = &xitem; LIRItem* yin = &yitem; if (tag == longTag) { // for longs, only conditions "eql", "neq", "lss", "geq" are valid; // mirror for other conditions if (cond == If::gtr || cond == If::leq) { cond = Instruction::mirror(cond); xin = &yitem; yin = &xitem; } xin->set_destroys_register(); } xin->load_item(); if (tag == longTag && yin->is_constant() && yin->get_jlong_constant() == 0 && (cond == If::eql || cond == If::neq)) { // inline long zero yin->dont_load_item(); } else if (tag == longTag || tag == floatTag || tag == doubleTag) { // longs cannot handle constants at right side yin->load_item(); } else { yin->dont_load_item(); } LIR_Opr left = xin->result(); LIR_Opr right = yin->result(); set_no_result(x); // add safepoint before generating condition code so it can be recomputed if (x->is_safepoint()) { // increment backedge counter if needed increment_backedge_counter_conditionally(lir_cond(cond), left, right, state_for(x, x->state_before()), x->tsux()->bci(), x->fsux()->bci(), x->profiled_bci()); __ safepoint(safepoint_poll_register(), state_for(x, x->state_before())); } __ cmp(lir_cond(cond), left, right); // Generate branch profiling. Profiling code doesn't kill flags. profile_branch(x, cond); move_to_phi(x->state()); if (x->x()->type()->is_float_kind()) { __ branch(lir_cond(cond), right->type(), x->tsux(), x->usux()); } else { __ branch(lir_cond(cond), right->type(), x->tsux()); } assert(x->default_sux() == x->fsux(), "wrong destination above"); __ jump(x->default_sux()); } LIR_Opr LIRGenerator::getThreadPointer() { #ifdef _LP64 return FrameMap::as_pointer_opr(r15_thread); #else LIR_Opr result = new_register(T_INT); __ get_thread(result); return result; #endif // } void LIRGenerator::trace_block_entry(BlockBegin* block) { store_stack_parameter(LIR_OprFact::intConst(block->block_id()), in_ByteSize(0)); LIR_OprList* args = new LIR_OprList(); address func = CAST_FROM_FN_PTR(address, Runtime1::trace_block_entry); __ call_runtime_leaf(func, LIR_OprFact::illegalOpr, LIR_OprFact::illegalOpr, args); } void LIRGenerator::volatile_field_store(LIR_Opr value, LIR_Address* address, CodeEmitInfo* info) { if (address->type() == T_LONG) { address = new LIR_Address(address->base(), address->index(), address->scale(), address->disp(), T_DOUBLE); // Transfer the value atomically by using FP moves. This means // the value has to be moved between CPU and FPU registers. It // always has to be moved through spill slot since there's no // quick way to pack the value into an SSE register. LIR_Opr temp_double = new_register(T_DOUBLE); LIR_Opr spill = new_register(T_LONG); set_vreg_flag(spill, must_start_in_memory); __ move(value, spill); __ volatile_move(spill, temp_double, T_LONG); __ volatile_move(temp_double, LIR_OprFact::address(address), T_LONG, info); } else { __ store(value, address, info); } } void LIRGenerator::volatile_field_load(LIR_Address* address, LIR_Opr result, CodeEmitInfo* info) { if (address->type() == T_LONG) { address = new LIR_Address(address->base(), address->index(), address->scale(), address->disp(), T_DOUBLE); // Transfer the value atomically by using FP moves. This means // the value has to be moved between CPU and FPU registers. In // SSE0 and SSE1 mode it has to be moved through spill slot but in // SSE2+ mode it can be moved directly. LIR_Opr temp_double = new_register(T_DOUBLE); __ volatile_move(LIR_OprFact::address(address), temp_double, T_LONG, info); __ volatile_move(temp_double, result, T_LONG); if (UseSSE < 2) { // no spill slot needed in SSE2 mode because xmm->cpu register move is possible set_vreg_flag(result, must_start_in_memory); } } else { __ load(address, result, info); } }