1 /*
   2  * Copyright (c) 2018, 2019, Red Hat, Inc. All rights reserved.
   3  *
   4  * This code is free software; you can redistribute it and/or modify it
   5  * under the terms of the GNU General Public License version 2 only, as
   6  * published by the Free Software Foundation.
   7  *
   8  * This code is distributed in the hope that it will be useful, but WITHOUT
   9  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  10  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  11  * version 2 for more details (a copy is included in the LICENSE file that
  12  * accompanied this code).
  13  *
  14  * You should have received a copy of the GNU General Public License version
  15  * 2 along with this work; if not, write to the Free Software Foundation,
  16  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  17  *
  18  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  19  * or visit www.oracle.com if you need additional information or have any
  20  * questions.
  21  *
  22  */
  23 
  24 #include "precompiled.hpp"
  25 #include "gc/shared/barrierSet.hpp"
  26 #include "gc/shenandoah/shenandoahForwarding.hpp"
  27 #include "gc/shenandoah/shenandoahHeap.hpp"
  28 #include "gc/shenandoah/shenandoahHeuristics.hpp"
  29 #include "gc/shenandoah/shenandoahRuntime.hpp"
  30 #include "gc/shenandoah/shenandoahThreadLocalData.hpp"
  31 #include "gc/shenandoah/c2/shenandoahBarrierSetC2.hpp"
  32 #include "gc/shenandoah/c2/shenandoahSupport.hpp"
  33 #include "opto/arraycopynode.hpp"
  34 #include "opto/escape.hpp"
  35 #include "opto/graphKit.hpp"
  36 #include "opto/idealKit.hpp"
  37 #include "opto/macro.hpp"
  38 #include "opto/movenode.hpp"
  39 #include "opto/narrowptrnode.hpp"
  40 #include "opto/rootnode.hpp"
  41 #include "opto/runtime.hpp"
  42 
  43 ShenandoahBarrierSetC2* ShenandoahBarrierSetC2::bsc2() {
  44   return reinterpret_cast<ShenandoahBarrierSetC2*>(BarrierSet::barrier_set()->barrier_set_c2());
  45 }
  46 
  47 ShenandoahBarrierSetC2State::ShenandoahBarrierSetC2State(Arena* comp_arena)
  48   : _enqueue_barriers(new (comp_arena) GrowableArray<ShenandoahEnqueueBarrierNode*>(comp_arena, 8,  0, NULL)),
  49     _load_reference_barriers(new (comp_arena) GrowableArray<ShenandoahLoadReferenceBarrierNode*>(comp_arena, 8,  0, NULL)) {
  50 }
  51 
  52 int ShenandoahBarrierSetC2State::enqueue_barriers_count() const {
  53   return _enqueue_barriers->length();
  54 }
  55 
  56 ShenandoahEnqueueBarrierNode* ShenandoahBarrierSetC2State::enqueue_barrier(int idx) const {
  57   return _enqueue_barriers->at(idx);
  58 }
  59 
  60 void ShenandoahBarrierSetC2State::add_enqueue_barrier(ShenandoahEnqueueBarrierNode * n) {
  61   assert(!_enqueue_barriers->contains(n), "duplicate entry in barrier list");
  62   _enqueue_barriers->append(n);
  63 }
  64 
  65 void ShenandoahBarrierSetC2State::remove_enqueue_barrier(ShenandoahEnqueueBarrierNode * n) {
  66   if (_enqueue_barriers->contains(n)) {
  67     _enqueue_barriers->remove(n);
  68   }
  69 }
  70 
  71 int ShenandoahBarrierSetC2State::load_reference_barriers_count() const {
  72   return _load_reference_barriers->length();
  73 }
  74 
  75 ShenandoahLoadReferenceBarrierNode* ShenandoahBarrierSetC2State::load_reference_barrier(int idx) const {
  76   return _load_reference_barriers->at(idx);
  77 }
  78 
  79 void ShenandoahBarrierSetC2State::add_load_reference_barrier(ShenandoahLoadReferenceBarrierNode * n) {
  80   assert(!_load_reference_barriers->contains(n), "duplicate entry in barrier list");
  81   _load_reference_barriers->append(n);
  82 }
  83 
  84 void ShenandoahBarrierSetC2State::remove_load_reference_barrier(ShenandoahLoadReferenceBarrierNode * n) {
  85   if (_load_reference_barriers->contains(n)) {
  86     _load_reference_barriers->remove(n);
  87   }
  88 }
  89 
  90 Node* ShenandoahBarrierSetC2::shenandoah_storeval_barrier(GraphKit* kit, Node* obj) const {
  91   if (ShenandoahStoreValEnqueueBarrier) {
  92     obj = shenandoah_enqueue_barrier(kit, obj);
  93   }
  94   return obj;
  95 }
  96 
  97 #define __ kit->
  98 
  99 bool ShenandoahBarrierSetC2::satb_can_remove_pre_barrier(GraphKit* kit, PhaseTransform* phase, Node* adr,
 100                                                          BasicType bt, uint adr_idx) const {
 101   intptr_t offset = 0;
 102   Node* base = AddPNode::Ideal_base_and_offset(adr, phase, offset);
 103   AllocateNode* alloc = AllocateNode::Ideal_allocation(base, phase);
 104 
 105   if (offset == Type::OffsetBot) {
 106     return false; // cannot unalias unless there are precise offsets
 107   }
 108 
 109   if (alloc == NULL) {
 110     return false; // No allocation found
 111   }
 112 
 113   intptr_t size_in_bytes = type2aelembytes(bt);
 114 
 115   Node* mem = __ memory(adr_idx); // start searching here...
 116 
 117   for (int cnt = 0; cnt < 50; cnt++) {
 118 
 119     if (mem->is_Store()) {
 120 
 121       Node* st_adr = mem->in(MemNode::Address);
 122       intptr_t st_offset = 0;
 123       Node* st_base = AddPNode::Ideal_base_and_offset(st_adr, phase, st_offset);
 124 
 125       if (st_base == NULL) {
 126         break; // inscrutable pointer
 127       }
 128 
 129       // Break we have found a store with same base and offset as ours so break
 130       if (st_base == base && st_offset == offset) {
 131         break;
 132       }
 133 
 134       if (st_offset != offset && st_offset != Type::OffsetBot) {
 135         const int MAX_STORE = BytesPerLong;
 136         if (st_offset >= offset + size_in_bytes ||
 137             st_offset <= offset - MAX_STORE ||
 138             st_offset <= offset - mem->as_Store()->memory_size()) {
 139           // Success:  The offsets are provably independent.
 140           // (You may ask, why not just test st_offset != offset and be done?
 141           // The answer is that stores of different sizes can co-exist
 142           // in the same sequence of RawMem effects.  We sometimes initialize
 143           // a whole 'tile' of array elements with a single jint or jlong.)
 144           mem = mem->in(MemNode::Memory);
 145           continue; // advance through independent store memory
 146         }
 147       }
 148 
 149       if (st_base != base
 150           && MemNode::detect_ptr_independence(base, alloc, st_base,
 151                                               AllocateNode::Ideal_allocation(st_base, phase),
 152                                               phase)) {
 153         // Success:  The bases are provably independent.
 154         mem = mem->in(MemNode::Memory);
 155         continue; // advance through independent store memory
 156       }
 157     } else if (mem->is_Proj() && mem->in(0)->is_Initialize()) {
 158 
 159       InitializeNode* st_init = mem->in(0)->as_Initialize();
 160       AllocateNode* st_alloc = st_init->allocation();
 161 
 162       // Make sure that we are looking at the same allocation site.
 163       // The alloc variable is guaranteed to not be null here from earlier check.
 164       if (alloc == st_alloc) {
 165         // Check that the initialization is storing NULL so that no previous store
 166         // has been moved up and directly write a reference
 167         Node* captured_store = st_init->find_captured_store(offset,
 168                                                             type2aelembytes(T_OBJECT),
 169                                                             phase);
 170         if (captured_store == NULL || captured_store == st_init->zero_memory()) {
 171           return true;
 172         }
 173       }
 174     }
 175 
 176     // Unless there is an explicit 'continue', we must bail out here,
 177     // because 'mem' is an inscrutable memory state (e.g., a call).
 178     break;
 179   }
 180 
 181   return false;
 182 }
 183 
 184 #undef __
 185 #define __ ideal.
 186 
 187 void ShenandoahBarrierSetC2::satb_write_barrier_pre(GraphKit* kit,
 188                                                     bool do_load,
 189                                                     Node* obj,
 190                                                     Node* adr,
 191                                                     uint alias_idx,
 192                                                     Node* val,
 193                                                     const TypeOopPtr* val_type,
 194                                                     Node* pre_val,
 195                                                     BasicType bt) const {
 196   // Some sanity checks
 197   // Note: val is unused in this routine.
 198 
 199   if (do_load) {
 200     // We need to generate the load of the previous value
 201     assert(obj != NULL, "must have a base");
 202     assert(adr != NULL, "where are loading from?");
 203     assert(pre_val == NULL, "loaded already?");
 204     assert(val_type != NULL, "need a type");
 205 
 206     if (ReduceInitialCardMarks
 207         && satb_can_remove_pre_barrier(kit, &kit->gvn(), adr, bt, alias_idx)) {
 208       return;
 209     }
 210 
 211   } else {
 212     // In this case both val_type and alias_idx are unused.
 213     assert(pre_val != NULL, "must be loaded already");
 214     // Nothing to be done if pre_val is null.
 215     if (pre_val->bottom_type() == TypePtr::NULL_PTR) return;
 216     assert(pre_val->bottom_type()->basic_type() == T_OBJECT, "or we shouldn't be here");
 217   }
 218   assert(bt == T_OBJECT, "or we shouldn't be here");
 219 
 220   IdealKit ideal(kit, true);
 221 
 222   Node* tls = __ thread(); // ThreadLocalStorage
 223 
 224   Node* no_base = __ top();
 225   Node* zero  = __ ConI(0);
 226   Node* zeroX = __ ConX(0);
 227 
 228   float likely  = PROB_LIKELY(0.999);
 229   float unlikely  = PROB_UNLIKELY(0.999);
 230 
 231   // Offsets into the thread
 232   const int index_offset   = in_bytes(ShenandoahThreadLocalData::satb_mark_queue_index_offset());
 233   const int buffer_offset  = in_bytes(ShenandoahThreadLocalData::satb_mark_queue_buffer_offset());
 234 
 235   // Now the actual pointers into the thread
 236   Node* buffer_adr  = __ AddP(no_base, tls, __ ConX(buffer_offset));
 237   Node* index_adr   = __ AddP(no_base, tls, __ ConX(index_offset));
 238 
 239   // Now some of the values
 240   Node* marking;
 241   Node* gc_state = __ AddP(no_base, tls, __ ConX(in_bytes(ShenandoahThreadLocalData::gc_state_offset())));
 242   Node* ld = __ load(__ ctrl(), gc_state, TypeInt::BYTE, T_BYTE, Compile::AliasIdxRaw);
 243   marking = __ AndI(ld, __ ConI(ShenandoahHeap::MARKING));
 244   assert(ShenandoahBarrierC2Support::is_gc_state_load(ld), "Should match the shape");
 245 
 246   // if (!marking)
 247   __ if_then(marking, BoolTest::ne, zero, unlikely); {
 248     BasicType index_bt = TypeX_X->basic_type();
 249     assert(sizeof(size_t) == type2aelembytes(index_bt), "Loading Shenandoah SATBMarkQueue::_index with wrong size.");
 250     Node* index   = __ load(__ ctrl(), index_adr, TypeX_X, index_bt, Compile::AliasIdxRaw);
 251 
 252     if (do_load) {
 253       // load original value
 254       // alias_idx correct??
 255       pre_val = __ load(__ ctrl(), adr, val_type, bt, alias_idx);
 256     }
 257 
 258     // if (pre_val != NULL)
 259     __ if_then(pre_val, BoolTest::ne, kit->null()); {
 260       Node* buffer  = __ load(__ ctrl(), buffer_adr, TypeRawPtr::NOTNULL, T_ADDRESS, Compile::AliasIdxRaw);
 261 
 262       // is the queue for this thread full?
 263       __ if_then(index, BoolTest::ne, zeroX, likely); {
 264 
 265         // decrement the index
 266         Node* next_index = kit->gvn().transform(new SubXNode(index, __ ConX(sizeof(intptr_t))));
 267 
 268         // Now get the buffer location we will log the previous value into and store it
 269         Node *log_addr = __ AddP(no_base, buffer, next_index);
 270         __ store(__ ctrl(), log_addr, pre_val, T_OBJECT, Compile::AliasIdxRaw, MemNode::unordered);
 271         // update the index
 272         __ store(__ ctrl(), index_adr, next_index, index_bt, Compile::AliasIdxRaw, MemNode::unordered);
 273 
 274       } __ else_(); {
 275 
 276         // logging buffer is full, call the runtime
 277         const TypeFunc *tf = ShenandoahBarrierSetC2::write_ref_field_pre_entry_Type();
 278         __ make_leaf_call(tf, CAST_FROM_FN_PTR(address, ShenandoahRuntime::write_ref_field_pre_entry), "shenandoah_wb_pre", pre_val, tls);
 279       } __ end_if();  // (!index)
 280     } __ end_if();  // (pre_val != NULL)
 281   } __ end_if();  // (!marking)
 282 
 283   // Final sync IdealKit and GraphKit.
 284   kit->final_sync(ideal);
 285 
 286   if (ShenandoahSATBBarrier && adr != NULL) {
 287     Node* c = kit->control();
 288     Node* call = c->in(1)->in(1)->in(1)->in(0);
 289     assert(is_shenandoah_wb_pre_call(call), "shenandoah_wb_pre call expected");
 290     call->add_req(adr);
 291   }
 292 }
 293 
 294 bool ShenandoahBarrierSetC2::is_shenandoah_wb_pre_call(Node* call) {
 295   return call->is_CallLeaf() &&
 296          call->as_CallLeaf()->entry_point() == CAST_FROM_FN_PTR(address, ShenandoahRuntime::write_ref_field_pre_entry);
 297 }
 298 
 299 bool ShenandoahBarrierSetC2::is_shenandoah_lrb_call(Node* call) {
 300   if (!call->is_CallLeaf()) {
 301     return false;
 302   }
 303 
 304   address entry_point = call->as_CallLeaf()->entry_point();
 305   return (entry_point == CAST_FROM_FN_PTR(address, ShenandoahRuntime::load_reference_barrier)) ||
 306          (entry_point == CAST_FROM_FN_PTR(address, ShenandoahRuntime::load_reference_barrier_narrow));
 307 }
 308 
 309 bool ShenandoahBarrierSetC2::is_shenandoah_marking_if(PhaseTransform *phase, Node* n) {
 310   if (n->Opcode() != Op_If) {
 311     return false;
 312   }
 313 
 314   Node* bol = n->in(1);
 315   assert(bol->is_Bool(), "");
 316   Node* cmpx = bol->in(1);
 317   if (bol->as_Bool()->_test._test == BoolTest::ne &&
 318       cmpx->is_Cmp() && cmpx->in(2) == phase->intcon(0) &&
 319       is_shenandoah_state_load(cmpx->in(1)->in(1)) &&
 320       cmpx->in(1)->in(2)->is_Con() &&
 321       cmpx->in(1)->in(2) == phase->intcon(ShenandoahHeap::MARKING)) {
 322     return true;
 323   }
 324 
 325   return false;
 326 }
 327 
 328 bool ShenandoahBarrierSetC2::is_shenandoah_state_load(Node* n) {
 329   if (!n->is_Load()) return false;
 330   const int state_offset = in_bytes(ShenandoahThreadLocalData::gc_state_offset());
 331   return n->in(2)->is_AddP() && n->in(2)->in(2)->Opcode() == Op_ThreadLocal
 332          && n->in(2)->in(3)->is_Con()
 333          && n->in(2)->in(3)->bottom_type()->is_intptr_t()->get_con() == state_offset;
 334 }
 335 
 336 void ShenandoahBarrierSetC2::shenandoah_write_barrier_pre(GraphKit* kit,
 337                                                           bool do_load,
 338                                                           Node* obj,
 339                                                           Node* adr,
 340                                                           uint alias_idx,
 341                                                           Node* val,
 342                                                           const TypeOopPtr* val_type,
 343                                                           Node* pre_val,
 344                                                           BasicType bt) const {
 345   if (ShenandoahSATBBarrier) {
 346     IdealKit ideal(kit);
 347     kit->sync_kit(ideal);
 348 
 349     satb_write_barrier_pre(kit, do_load, obj, adr, alias_idx, val, val_type, pre_val, bt);
 350 
 351     ideal.sync_kit(kit);
 352     kit->final_sync(ideal);
 353   }
 354 }
 355 
 356 Node* ShenandoahBarrierSetC2::shenandoah_enqueue_barrier(GraphKit* kit, Node* pre_val) const {
 357   return kit->gvn().transform(new ShenandoahEnqueueBarrierNode(pre_val));
 358 }
 359 
 360 // Helper that guards and inserts a pre-barrier.
 361 void ShenandoahBarrierSetC2::insert_pre_barrier(GraphKit* kit, Node* base_oop, Node* offset,
 362                                                 Node* pre_val, bool need_mem_bar) const {
 363   // We could be accessing the referent field of a reference object. If so, when G1
 364   // is enabled, we need to log the value in the referent field in an SATB buffer.
 365   // This routine performs some compile time filters and generates suitable
 366   // runtime filters that guard the pre-barrier code.
 367   // Also add memory barrier for non volatile load from the referent field
 368   // to prevent commoning of loads across safepoint.
 369 
 370   // Some compile time checks.
 371 
 372   // If offset is a constant, is it java_lang_ref_Reference::_reference_offset?
 373   const TypeX* otype = offset->find_intptr_t_type();
 374   if (otype != NULL && otype->is_con() &&
 375       otype->get_con() != java_lang_ref_Reference::referent_offset) {
 376     // Constant offset but not the reference_offset so just return
 377     return;
 378   }
 379 
 380   // We only need to generate the runtime guards for instances.
 381   const TypeOopPtr* btype = base_oop->bottom_type()->isa_oopptr();
 382   if (btype != NULL) {
 383     if (btype->isa_aryptr()) {
 384       // Array type so nothing to do
 385       return;
 386     }
 387 
 388     const TypeInstPtr* itype = btype->isa_instptr();
 389     if (itype != NULL) {
 390       // Can the klass of base_oop be statically determined to be
 391       // _not_ a sub-class of Reference and _not_ Object?
 392       ciKlass* klass = itype->klass();
 393       if ( klass->is_loaded() &&
 394           !klass->is_subtype_of(kit->env()->Reference_klass()) &&
 395           !kit->env()->Object_klass()->is_subtype_of(klass)) {
 396         return;
 397       }
 398     }
 399   }
 400 
 401   // The compile time filters did not reject base_oop/offset so
 402   // we need to generate the following runtime filters
 403   //
 404   // if (offset == java_lang_ref_Reference::_reference_offset) {
 405   //   if (instance_of(base, java.lang.ref.Reference)) {
 406   //     pre_barrier(_, pre_val, ...);
 407   //   }
 408   // }
 409 
 410   float likely   = PROB_LIKELY(  0.999);
 411   float unlikely = PROB_UNLIKELY(0.999);
 412 
 413   IdealKit ideal(kit);
 414 
 415   Node* referent_off = __ ConX(java_lang_ref_Reference::referent_offset);
 416 
 417   __ if_then(offset, BoolTest::eq, referent_off, unlikely); {
 418       // Update graphKit memory and control from IdealKit.
 419       kit->sync_kit(ideal);
 420 
 421       Node* ref_klass_con = kit->makecon(TypeKlassPtr::make(kit->env()->Reference_klass()));
 422       Node* is_instof = kit->gen_instanceof(base_oop, ref_klass_con);
 423 
 424       // Update IdealKit memory and control from graphKit.
 425       __ sync_kit(kit);
 426 
 427       Node* one = __ ConI(1);
 428       // is_instof == 0 if base_oop == NULL
 429       __ if_then(is_instof, BoolTest::eq, one, unlikely); {
 430 
 431         // Update graphKit from IdeakKit.
 432         kit->sync_kit(ideal);
 433 
 434         // Use the pre-barrier to record the value in the referent field
 435         satb_write_barrier_pre(kit, false /* do_load */,
 436                                NULL /* obj */, NULL /* adr */, max_juint /* alias_idx */, NULL /* val */, NULL /* val_type */,
 437                                pre_val /* pre_val */,
 438                                T_OBJECT);
 439         if (need_mem_bar) {
 440           // Add memory barrier to prevent commoning reads from this field
 441           // across safepoint since GC can change its value.
 442           kit->insert_mem_bar(Op_MemBarCPUOrder);
 443         }
 444         // Update IdealKit from graphKit.
 445         __ sync_kit(kit);
 446 
 447       } __ end_if(); // _ref_type != ref_none
 448   } __ end_if(); // offset == referent_offset
 449 
 450   // Final sync IdealKit and GraphKit.
 451   kit->final_sync(ideal);
 452 }
 453 
 454 #undef __
 455 
 456 const TypeFunc* ShenandoahBarrierSetC2::write_ref_field_pre_entry_Type() {
 457   const Type **fields = TypeTuple::fields(2);
 458   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // original field value
 459   fields[TypeFunc::Parms+1] = TypeRawPtr::NOTNULL; // thread
 460   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
 461 
 462   // create result type (range)
 463   fields = TypeTuple::fields(0);
 464   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
 465 
 466   return TypeFunc::make(domain, range);
 467 }
 468 
 469 const TypeFunc* ShenandoahBarrierSetC2::shenandoah_clone_barrier_Type() {
 470   const Type **fields = TypeTuple::fields(1);
 471   fields[TypeFunc::Parms+0] = TypeOopPtr::NOTNULL; // src oop
 472   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
 473 
 474   // create result type (range)
 475   fields = TypeTuple::fields(0);
 476   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
 477 
 478   return TypeFunc::make(domain, range);
 479 }
 480 
 481 const TypeFunc* ShenandoahBarrierSetC2::shenandoah_load_reference_barrier_Type() {
 482   const Type **fields = TypeTuple::fields(2);
 483   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // original field value
 484   fields[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM;   // original load address
 485 
 486   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
 487 
 488   // create result type (range)
 489   fields = TypeTuple::fields(1);
 490   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;
 491   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
 492 
 493   return TypeFunc::make(domain, range);
 494 }
 495 
 496 Node* ShenandoahBarrierSetC2::store_at_resolved(C2Access& access, C2AccessValue& val) const {
 497   DecoratorSet decorators = access.decorators();
 498 
 499   const TypePtr* adr_type = access.addr().type();
 500   Node* adr = access.addr().node();
 501 
 502   bool anonymous = (decorators & ON_UNKNOWN_OOP_REF) != 0;
 503   bool on_heap = (decorators & IN_HEAP) != 0;
 504 
 505   if (!access.is_oop() || (!on_heap && !anonymous)) {
 506     return BarrierSetC2::store_at_resolved(access, val);
 507   }
 508 
 509   GraphKit* kit = access.kit();
 510 
 511   uint adr_idx = kit->C->get_alias_index(adr_type);
 512   assert(adr_idx != Compile::AliasIdxTop, "use other store_to_memory factory" );
 513   Node* value = val.node();
 514   value = shenandoah_storeval_barrier(kit, value);
 515   val.set_node(value);
 516   shenandoah_write_barrier_pre(kit, true /* do_load */, /*kit->control(),*/ access.base(), adr, adr_idx, val.node(),
 517                                static_cast<const TypeOopPtr*>(val.type()), NULL /* pre_val */, access.type());
 518   return BarrierSetC2::store_at_resolved(access, val);
 519 }
 520 
 521 Node* ShenandoahBarrierSetC2::load_at_resolved(C2Access& access, const Type* val_type) const {
 522   DecoratorSet decorators = access.decorators();
 523 
 524   Node* adr = access.addr().node();
 525   Node* obj = access.base();
 526 
 527   bool mismatched = (decorators & C2_MISMATCHED) != 0;
 528   bool unknown = (decorators & ON_UNKNOWN_OOP_REF) != 0;
 529   bool on_heap = (decorators & IN_HEAP) != 0;
 530   bool on_weak = (decorators & ON_WEAK_OOP_REF) != 0;
 531   bool is_unordered = (decorators & MO_UNORDERED) != 0;
 532   bool need_cpu_mem_bar = !is_unordered || mismatched || !on_heap;
 533 
 534   Node* top = Compile::current()->top();
 535 
 536   Node* offset = adr->is_AddP() ? adr->in(AddPNode::Offset) : top;
 537   Node* load = BarrierSetC2::load_at_resolved(access, val_type);
 538 
 539   if (access.is_oop()) {
 540     if (ShenandoahLoadRefBarrier) {
 541       load = new ShenandoahLoadReferenceBarrierNode(NULL, load);
 542       load = access.kit()->gvn().transform(load);
 543     }
 544   }
 545 
 546   // If we are reading the value of the referent field of a Reference
 547   // object (either by using Unsafe directly or through reflection)
 548   // then, if SATB is enabled, we need to record the referent in an
 549   // SATB log buffer using the pre-barrier mechanism.
 550   // Also we need to add memory barrier to prevent commoning reads
 551   // from this field across safepoint since GC can change its value.
 552   bool need_read_barrier = ShenandoahKeepAliveBarrier &&
 553     (on_heap && (on_weak || (unknown && offset != top && obj != top)));
 554 
 555   if (!access.is_oop() || !need_read_barrier) {
 556     return load;
 557   }
 558 
 559   GraphKit* kit = access.kit();
 560 
 561   if (on_weak) {
 562     // Use the pre-barrier to record the value in the referent field
 563     satb_write_barrier_pre(kit, false /* do_load */,
 564                            NULL /* obj */, NULL /* adr */, max_juint /* alias_idx */, NULL /* val */, NULL /* val_type */,
 565                            load /* pre_val */, T_OBJECT);
 566     // Add memory barrier to prevent commoning reads from this field
 567     // across safepoint since GC can change its value.
 568     kit->insert_mem_bar(Op_MemBarCPUOrder);
 569   } else if (unknown) {
 570     // We do not require a mem bar inside pre_barrier if need_mem_bar
 571     // is set: the barriers would be emitted by us.
 572     insert_pre_barrier(kit, obj, offset, load, !need_cpu_mem_bar);
 573   }
 574 
 575   return load;
 576 }
 577 
 578 static void pin_atomic_op(C2AtomicAccess& access) {
 579   if (!access.needs_pinning()) {
 580     return;
 581   }
 582   // SCMemProjNodes represent the memory state of a LoadStore. Their
 583   // main role is to prevent LoadStore nodes from being optimized away
 584   // when their results aren't used.
 585   GraphKit* kit = access.kit();
 586   Node* load_store = access.raw_access();
 587   assert(load_store != NULL, "must pin atomic op");
 588   Node* proj = kit->gvn().transform(new SCMemProjNode(load_store));
 589   kit->set_memory(proj, access.alias_idx());
 590 }
 591 
 592 Node* ShenandoahBarrierSetC2::atomic_cmpxchg_val_at_resolved(C2AtomicAccess& access, Node* expected_val,
 593                                                    Node* new_val, const Type* value_type) const {
 594   GraphKit* kit = access.kit();
 595   if (access.is_oop()) {
 596     new_val = shenandoah_storeval_barrier(kit, new_val);
 597     shenandoah_write_barrier_pre(kit, false /* do_load */,
 598                                  NULL, NULL, max_juint, NULL, NULL,
 599                                  expected_val /* pre_val */, T_OBJECT);
 600 
 601     MemNode::MemOrd mo = access.mem_node_mo();
 602     Node* mem = access.memory();
 603     Node* adr = access.addr().node();
 604     const TypePtr* adr_type = access.addr().type();
 605     Node* load_store = NULL;
 606 
 607 #ifdef _LP64
 608     if (adr->bottom_type()->is_ptr_to_narrowoop()) {
 609       Node *newval_enc = kit->gvn().transform(new EncodePNode(new_val, new_val->bottom_type()->make_narrowoop()));
 610       Node *oldval_enc = kit->gvn().transform(new EncodePNode(expected_val, expected_val->bottom_type()->make_narrowoop()));
 611       if (ShenandoahCASBarrier) {
 612         load_store = kit->gvn().transform(new ShenandoahCompareAndExchangeNNode(kit->control(), mem, adr, newval_enc, oldval_enc, adr_type, value_type->make_narrowoop(), mo));
 613       } else {
 614         load_store = kit->gvn().transform(new CompareAndExchangeNNode(kit->control(), mem, adr, newval_enc, oldval_enc, adr_type, value_type->make_narrowoop(), mo));
 615       }
 616     } else
 617 #endif
 618     {
 619       if (ShenandoahCASBarrier) {
 620         load_store = kit->gvn().transform(new ShenandoahCompareAndExchangePNode(kit->control(), mem, adr, new_val, expected_val, adr_type, value_type->is_oopptr(), mo));
 621       } else {
 622         load_store = kit->gvn().transform(new CompareAndExchangePNode(kit->control(), mem, adr, new_val, expected_val, adr_type, value_type->is_oopptr(), mo));
 623       }
 624     }
 625 
 626     access.set_raw_access(load_store);
 627     pin_atomic_op(access);
 628 
 629 #ifdef _LP64
 630     if (adr->bottom_type()->is_ptr_to_narrowoop()) {
 631       load_store = kit->gvn().transform(new DecodeNNode(load_store, load_store->get_ptr_type()));
 632     }
 633 #endif
 634     load_store = kit->gvn().transform(new ShenandoahLoadReferenceBarrierNode(NULL, load_store));
 635     return load_store;
 636   }
 637   return BarrierSetC2::atomic_cmpxchg_val_at_resolved(access, expected_val, new_val, value_type);
 638 }
 639 
 640 Node* ShenandoahBarrierSetC2::atomic_cmpxchg_bool_at_resolved(C2AtomicAccess& access, Node* expected_val,
 641                                                               Node* new_val, const Type* value_type) const {
 642   GraphKit* kit = access.kit();
 643   if (access.is_oop()) {
 644     new_val = shenandoah_storeval_barrier(kit, new_val);
 645     shenandoah_write_barrier_pre(kit, false /* do_load */,
 646                                  NULL, NULL, max_juint, NULL, NULL,
 647                                  expected_val /* pre_val */, T_OBJECT);
 648     DecoratorSet decorators = access.decorators();
 649     MemNode::MemOrd mo = access.mem_node_mo();
 650     Node* mem = access.memory();
 651     bool is_weak_cas = (decorators & C2_WEAK_CMPXCHG) != 0;
 652     Node* load_store = NULL;
 653     Node* adr = access.addr().node();
 654 #ifdef _LP64
 655     if (adr->bottom_type()->is_ptr_to_narrowoop()) {
 656       Node *newval_enc = kit->gvn().transform(new EncodePNode(new_val, new_val->bottom_type()->make_narrowoop()));
 657       Node *oldval_enc = kit->gvn().transform(new EncodePNode(expected_val, expected_val->bottom_type()->make_narrowoop()));
 658       if (ShenandoahCASBarrier) {
 659         if (is_weak_cas) {
 660           load_store = kit->gvn().transform(new ShenandoahWeakCompareAndSwapNNode(kit->control(), mem, adr, newval_enc, oldval_enc, mo));
 661         } else {
 662           load_store = kit->gvn().transform(new ShenandoahCompareAndSwapNNode(kit->control(), mem, adr, newval_enc, oldval_enc, mo));
 663         }
 664       } else {
 665         if (is_weak_cas) {
 666           load_store = kit->gvn().transform(new WeakCompareAndSwapNNode(kit->control(), mem, adr, newval_enc, oldval_enc, mo));
 667         } else {
 668           load_store = kit->gvn().transform(new CompareAndSwapNNode(kit->control(), mem, adr, newval_enc, oldval_enc, mo));
 669         }
 670       }
 671     } else
 672 #endif
 673     {
 674       if (ShenandoahCASBarrier) {
 675         if (is_weak_cas) {
 676           load_store = kit->gvn().transform(new ShenandoahWeakCompareAndSwapPNode(kit->control(), mem, adr, new_val, expected_val, mo));
 677         } else {
 678           load_store = kit->gvn().transform(new ShenandoahCompareAndSwapPNode(kit->control(), mem, adr, new_val, expected_val, mo));
 679         }
 680       } else {
 681         if (is_weak_cas) {
 682           load_store = kit->gvn().transform(new WeakCompareAndSwapPNode(kit->control(), mem, adr, new_val, expected_val, mo));
 683         } else {
 684           load_store = kit->gvn().transform(new CompareAndSwapPNode(kit->control(), mem, adr, new_val, expected_val, mo));
 685         }
 686       }
 687     }
 688     access.set_raw_access(load_store);
 689     pin_atomic_op(access);
 690     return load_store;
 691   }
 692   return BarrierSetC2::atomic_cmpxchg_bool_at_resolved(access, expected_val, new_val, value_type);
 693 }
 694 
 695 Node* ShenandoahBarrierSetC2::atomic_xchg_at_resolved(C2AtomicAccess& access, Node* val, const Type* value_type) const {
 696   GraphKit* kit = access.kit();
 697   if (access.is_oop()) {
 698     val = shenandoah_storeval_barrier(kit, val);
 699   }
 700   Node* result = BarrierSetC2::atomic_xchg_at_resolved(access, val, value_type);
 701   if (access.is_oop()) {
 702     result = kit->gvn().transform(new ShenandoahLoadReferenceBarrierNode(NULL, result));
 703     shenandoah_write_barrier_pre(kit, false /* do_load */,
 704                                  NULL, NULL, max_juint, NULL, NULL,
 705                                  result /* pre_val */, T_OBJECT);
 706   }
 707   return result;
 708 }
 709 
 710 // Support for GC barriers emitted during parsing
 711 bool ShenandoahBarrierSetC2::is_gc_barrier_node(Node* node) const {
 712   if (node->Opcode() == Op_ShenandoahLoadReferenceBarrier) return true;
 713   if (node->Opcode() != Op_CallLeaf && node->Opcode() != Op_CallLeafNoFP) {
 714     return false;
 715   }
 716   CallLeafNode *call = node->as_CallLeaf();
 717   if (call->_name == NULL) {
 718     return false;
 719   }
 720 
 721   return strcmp(call->_name, "shenandoah_clone_barrier") == 0 ||
 722          strcmp(call->_name, "shenandoah_cas_obj") == 0 ||
 723          strcmp(call->_name, "shenandoah_wb_pre") == 0;
 724 }
 725 
 726 Node* ShenandoahBarrierSetC2::step_over_gc_barrier(Node* c) const {
 727   if (c->Opcode() == Op_ShenandoahLoadReferenceBarrier) {
 728     return c->in(ShenandoahLoadReferenceBarrierNode::ValueIn);
 729   }
 730   if (c->Opcode() == Op_ShenandoahEnqueueBarrier) {
 731     c = c->in(1);
 732   }
 733   return c;
 734 }
 735 
 736 bool ShenandoahBarrierSetC2::expand_barriers(Compile* C, PhaseIterGVN& igvn) const {
 737   return !ShenandoahBarrierC2Support::expand(C, igvn);
 738 }
 739 
 740 bool ShenandoahBarrierSetC2::optimize_loops(PhaseIdealLoop* phase, LoopOptsMode mode, VectorSet& visited, Node_Stack& nstack, Node_List& worklist) const {
 741   if (mode == LoopOptsShenandoahExpand) {
 742     assert(UseShenandoahGC, "only for shenandoah");
 743     ShenandoahBarrierC2Support::pin_and_expand(phase);
 744     return true;
 745   } else if (mode == LoopOptsShenandoahPostExpand) {
 746     assert(UseShenandoahGC, "only for shenandoah");
 747     visited.Clear();
 748     ShenandoahBarrierC2Support::optimize_after_expansion(visited, nstack, worklist, phase);
 749     return true;
 750   }
 751   return false;
 752 }
 753 
 754 bool ShenandoahBarrierSetC2::array_copy_requires_gc_barriers(BasicType type) const {
 755   return false;
 756 }
 757 
 758 bool ShenandoahBarrierSetC2::clone_needs_barrier(Node* src, PhaseGVN& gvn) {
 759   const TypeOopPtr* src_type = gvn.type(src)->is_oopptr();
 760   if (src_type->isa_instptr() != NULL) {
 761     ciInstanceKlass* ik = src_type->klass()->as_instance_klass();
 762     if ((src_type->klass_is_exact() || (!ik->is_interface() && !ik->has_subklass())) && !ik->has_injected_fields()) {
 763       if (ik->has_object_fields()) {
 764         return true;
 765       } else {
 766         if (!src_type->klass_is_exact()) {
 767           Compile::current()->dependencies()->assert_leaf_type(ik);
 768         }
 769       }
 770     } else {
 771       return true;
 772         }
 773   } else if (src_type->isa_aryptr()) {
 774     BasicType src_elem  = src_type->klass()->as_array_klass()->element_type()->basic_type();
 775     if (src_elem == T_OBJECT || src_elem == T_ARRAY) {
 776       return true;
 777     }
 778   } else {
 779     return true;
 780   }
 781   return false;
 782 }
 783 
 784 void ShenandoahBarrierSetC2::clone_at_expansion(PhaseMacroExpand* phase, ArrayCopyNode* ac) const {
 785   Node* ctrl = ac->in(TypeFunc::Control);
 786   Node* mem = ac->in(TypeFunc::Memory);
 787   Node* src = ac->in(ArrayCopyNode::Src);
 788   Node* src_offset = ac->in(ArrayCopyNode::SrcPos);
 789   Node* dest = ac->in(ArrayCopyNode::Dest);
 790   Node* dest_offset = ac->in(ArrayCopyNode::DestPos);
 791   Node* length = ac->in(ArrayCopyNode::Length);
 792   assert (src_offset == NULL && dest_offset == NULL, "for clone offsets should be null");
 793   assert (src->is_AddP(), "for clone the src should be the interior ptr");
 794   assert (dest->is_AddP(), "for clone the dst should be the interior ptr");
 795 
 796   if (ShenandoahCloneBarrier && clone_needs_barrier(src, phase->igvn())) {
 797     // Check if heap is has forwarded objects. If it does, we need to call into the special
 798     // routine that would fix up source references before we can continue.
 799 
 800     enum { _heap_stable = 1, _heap_unstable, PATH_LIMIT };
 801     Node* region = new RegionNode(PATH_LIMIT);
 802     Node* mem_phi = new PhiNode(region, Type::MEMORY, TypeRawPtr::BOTTOM);
 803 
 804     Node* thread = phase->transform_later(new ThreadLocalNode());
 805     Node* offset = phase->igvn().MakeConX(in_bytes(ShenandoahThreadLocalData::gc_state_offset()));
 806     Node* gc_state_addr = phase->transform_later(new AddPNode(phase->C->top(), thread, offset));
 807 
 808     uint gc_state_idx = Compile::AliasIdxRaw;
 809     const TypePtr* gc_state_adr_type = NULL; // debug-mode-only argument
 810     debug_only(gc_state_adr_type = phase->C->get_adr_type(gc_state_idx));
 811 
 812     Node* gc_state    = phase->transform_later(new LoadBNode(ctrl, mem, gc_state_addr, gc_state_adr_type, TypeInt::BYTE, MemNode::unordered));
 813     Node* stable_and  = phase->transform_later(new AndINode(gc_state, phase->igvn().intcon(ShenandoahHeap::HAS_FORWARDED)));
 814     Node* stable_cmp  = phase->transform_later(new CmpINode(stable_and, phase->igvn().zerocon(T_INT)));
 815     Node* stable_test = phase->transform_later(new BoolNode(stable_cmp, BoolTest::ne));
 816 
 817     IfNode* stable_iff  = phase->transform_later(new IfNode(ctrl, stable_test, PROB_UNLIKELY(0.999), COUNT_UNKNOWN))->as_If();
 818     Node* stable_ctrl   = phase->transform_later(new IfFalseNode(stable_iff));
 819     Node* unstable_ctrl = phase->transform_later(new IfTrueNode(stable_iff));
 820 
 821     // Heap is stable, no need to do anything additional
 822     region->init_req(_heap_stable, stable_ctrl);
 823     mem_phi->init_req(_heap_stable, mem);
 824 
 825     // Heap is unstable, call into clone barrier stub
 826     Node* call = phase->make_leaf_call(unstable_ctrl, mem,
 827                     ShenandoahBarrierSetC2::shenandoah_clone_barrier_Type(),
 828                     CAST_FROM_FN_PTR(address, ShenandoahRuntime::shenandoah_clone_barrier),
 829                     "shenandoah_clone",
 830                     TypeRawPtr::BOTTOM,
 831                     src->in(AddPNode::Base));
 832     call = phase->transform_later(call);
 833 
 834     ctrl = phase->transform_later(new ProjNode(call, TypeFunc::Control));
 835     mem = phase->transform_later(new ProjNode(call, TypeFunc::Memory));
 836     region->init_req(_heap_unstable, ctrl);
 837     mem_phi->init_req(_heap_unstable, mem);
 838 
 839     // Wire up the actual arraycopy stub now
 840     ctrl = phase->transform_later(region);
 841     mem = phase->transform_later(mem_phi);
 842 
 843     const char* name = "arraycopy";
 844     call = phase->make_leaf_call(ctrl, mem,
 845                                  OptoRuntime::fast_arraycopy_Type(),
 846                                  phase->basictype2arraycopy(T_LONG, NULL, NULL, true, name, true),
 847                                  name, TypeRawPtr::BOTTOM,
 848                                  src, dest, length
 849                                  LP64_ONLY(COMMA phase->top()));
 850     call = phase->transform_later(call);
 851 
 852     // Hook up the whole thing into the graph
 853     phase->igvn().replace_node(ac, call);
 854   } else {
 855     BarrierSetC2::clone_at_expansion(phase, ac);
 856   }
 857 }
 858 
 859 // Support for macro expanded GC barriers
 860 void ShenandoahBarrierSetC2::register_potential_barrier_node(Node* node) const {
 861   if (node->Opcode() == Op_ShenandoahEnqueueBarrier) {
 862     state()->add_enqueue_barrier((ShenandoahEnqueueBarrierNode*) node);
 863   }
 864   if (node->Opcode() == Op_ShenandoahLoadReferenceBarrier) {
 865     state()->add_load_reference_barrier((ShenandoahLoadReferenceBarrierNode*) node);
 866   }
 867 }
 868 
 869 void ShenandoahBarrierSetC2::unregister_potential_barrier_node(Node* node) const {
 870   if (node->Opcode() == Op_ShenandoahEnqueueBarrier) {
 871     state()->remove_enqueue_barrier((ShenandoahEnqueueBarrierNode*) node);
 872   }
 873   if (node->Opcode() == Op_ShenandoahLoadReferenceBarrier) {
 874     state()->remove_load_reference_barrier((ShenandoahLoadReferenceBarrierNode*) node);
 875   }
 876 }
 877 
 878 void ShenandoahBarrierSetC2::eliminate_gc_barrier(PhaseMacroExpand* macro, Node* n) const {
 879   if (is_shenandoah_wb_pre_call(n)) {
 880     shenandoah_eliminate_wb_pre(n, &macro->igvn());
 881   }
 882 }
 883 
 884 void ShenandoahBarrierSetC2::shenandoah_eliminate_wb_pre(Node* call, PhaseIterGVN* igvn) const {
 885   assert(UseShenandoahGC && is_shenandoah_wb_pre_call(call), "");
 886   Node* c = call->as_Call()->proj_out(TypeFunc::Control);
 887   c = c->unique_ctrl_out();
 888   assert(c->is_Region() && c->req() == 3, "where's the pre barrier control flow?");
 889   c = c->unique_ctrl_out();
 890   assert(c->is_Region() && c->req() == 3, "where's the pre barrier control flow?");
 891   Node* iff = c->in(1)->is_IfProj() ? c->in(1)->in(0) : c->in(2)->in(0);
 892   assert(iff->is_If(), "expect test");
 893   if (!is_shenandoah_marking_if(igvn, iff)) {
 894     c = c->unique_ctrl_out();
 895     assert(c->is_Region() && c->req() == 3, "where's the pre barrier control flow?");
 896     iff = c->in(1)->is_IfProj() ? c->in(1)->in(0) : c->in(2)->in(0);
 897     assert(is_shenandoah_marking_if(igvn, iff), "expect marking test");
 898   }
 899   Node* cmpx = iff->in(1)->in(1);
 900   igvn->replace_node(cmpx, igvn->makecon(TypeInt::CC_EQ));
 901   igvn->rehash_node_delayed(call);
 902   call->del_req(call->req()-1);
 903 }
 904 
 905 void ShenandoahBarrierSetC2::enqueue_useful_gc_barrier(Unique_Node_List &worklist, Node* node) const {
 906   if (node->Opcode() == Op_AddP && ShenandoahBarrierSetC2::has_only_shenandoah_wb_pre_uses(node)) {
 907     worklist.push(node);
 908   }
 909 }
 910 
 911 void ShenandoahBarrierSetC2::eliminate_useless_gc_barriers(Unique_Node_List &useful) const {
 912   for (uint i = 0; i < useful.size(); i++) {
 913     Node* n = useful.at(i);
 914     if (n->Opcode() == Op_AddP && ShenandoahBarrierSetC2::has_only_shenandoah_wb_pre_uses(n)) {
 915       for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
 916         Compile::current()->record_for_igvn(n->fast_out(i));
 917       }
 918     }
 919   }
 920   for (int i = state()->enqueue_barriers_count() - 1; i >= 0; i--) {
 921     ShenandoahEnqueueBarrierNode* n = state()->enqueue_barrier(i);
 922     if (!useful.member(n)) {
 923       state()->remove_enqueue_barrier(n);
 924     }
 925   }
 926   for (int i = state()->load_reference_barriers_count() - 1; i >= 0; i--) {
 927     ShenandoahLoadReferenceBarrierNode* n = state()->load_reference_barrier(i);
 928     if (!useful.member(n)) {
 929       state()->remove_load_reference_barrier(n);
 930     }
 931   }
 932 }
 933 
 934 void ShenandoahBarrierSetC2::add_users_to_worklist(Unique_Node_List* worklist) const {}
 935 
 936 void* ShenandoahBarrierSetC2::create_barrier_state(Arena* comp_arena) const {
 937   return new(comp_arena) ShenandoahBarrierSetC2State(comp_arena);
 938 }
 939 
 940 ShenandoahBarrierSetC2State* ShenandoahBarrierSetC2::state() const {
 941   return reinterpret_cast<ShenandoahBarrierSetC2State*>(Compile::current()->barrier_set_state());
 942 }
 943 
 944 // If the BarrierSetC2 state has kept macro nodes in its compilation unit state to be
 945 // expanded later, then now is the time to do so.
 946 bool ShenandoahBarrierSetC2::expand_macro_nodes(PhaseMacroExpand* macro) const { return false; }
 947 
 948 #ifdef ASSERT
 949 void ShenandoahBarrierSetC2::verify_gc_barriers(bool post_parse) const {
 950   if (ShenandoahVerifyOptoBarriers && !post_parse) {
 951     ShenandoahBarrierC2Support::verify(Compile::current()->root());
 952   }
 953 }
 954 #endif
 955 
 956 Node* ShenandoahBarrierSetC2::ideal_node(PhaseGVN* phase, Node* n, bool can_reshape) const {
 957   if (is_shenandoah_wb_pre_call(n)) {
 958     uint cnt = ShenandoahBarrierSetC2::write_ref_field_pre_entry_Type()->domain()->cnt();
 959     if (n->req() > cnt) {
 960       Node* addp = n->in(cnt);
 961       if (has_only_shenandoah_wb_pre_uses(addp)) {
 962         n->del_req(cnt);
 963         if (can_reshape) {
 964           phase->is_IterGVN()->_worklist.push(addp);
 965         }
 966         return n;
 967       }
 968     }
 969   }
 970   if (n->Opcode() == Op_CmpP) {
 971     Node* in1 = n->in(1);
 972     Node* in2 = n->in(2);
 973     if (in1->bottom_type() == TypePtr::NULL_PTR) {
 974       in2 = step_over_gc_barrier(in2);
 975     }
 976     if (in2->bottom_type() == TypePtr::NULL_PTR) {
 977       in1 = step_over_gc_barrier(in1);
 978     }
 979     PhaseIterGVN* igvn = phase->is_IterGVN();
 980     if (in1 != n->in(1)) {
 981       if (igvn != NULL) {
 982         n->set_req_X(1, in1, igvn);
 983       } else {
 984         n->set_req(1, in1);
 985       }
 986       assert(in2 == n->in(2), "only one change");
 987       return n;
 988     }
 989     if (in2 != n->in(2)) {
 990       if (igvn != NULL) {
 991         n->set_req_X(2, in2, igvn);
 992       } else {
 993         n->set_req(2, in2);
 994       }
 995       return n;
 996     }
 997   } else if (can_reshape &&
 998              n->Opcode() == Op_If &&
 999              ShenandoahBarrierC2Support::is_heap_stable_test(n) &&
1000              n->in(0) != NULL) {
1001     Node* dom = n->in(0);
1002     Node* prev_dom = n;
1003     int op = n->Opcode();
1004     int dist = 16;
1005     // Search up the dominator tree for another heap stable test
1006     while (dom->Opcode() != op    ||  // Not same opcode?
1007            !ShenandoahBarrierC2Support::is_heap_stable_test(dom) ||  // Not same input 1?
1008            prev_dom->in(0) != dom) {  // One path of test does not dominate?
1009       if (dist < 0) return NULL;
1010 
1011       dist--;
1012       prev_dom = dom;
1013       dom = IfNode::up_one_dom(dom);
1014       if (!dom) return NULL;
1015     }
1016 
1017     // Check that we did not follow a loop back to ourselves
1018     if (n == dom) {
1019       return NULL;
1020     }
1021 
1022     return n->as_If()->dominated_by(prev_dom, phase->is_IterGVN());
1023   }
1024   return NULL;
1025 }
1026 
1027 bool ShenandoahBarrierSetC2::has_only_shenandoah_wb_pre_uses(Node* n) {
1028   for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
1029     Node* u = n->fast_out(i);
1030     if (!is_shenandoah_wb_pre_call(u)) {
1031       return false;
1032     }
1033   }
1034   return n->outcnt() > 0;
1035 }
1036 
1037 Node* ShenandoahBarrierSetC2::arraycopy_load_reference_barrier(PhaseGVN *phase, Node* v) {
1038   if (ShenandoahLoadRefBarrier) {
1039     return phase->transform(new ShenandoahLoadReferenceBarrierNode(NULL, v));
1040   }
1041   if (ShenandoahStoreValEnqueueBarrier) {
1042     return phase->transform(new ShenandoahEnqueueBarrierNode(v));
1043   }
1044   return v;
1045 }
1046