1 /*
   2  * Copyright (c) 1997, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_VM_OPTO_NODE_HPP
  26 #define SHARE_VM_OPTO_NODE_HPP
  27 
  28 #include "libadt/vectset.hpp"
  29 #include "opto/compile.hpp"
  30 #include "opto/type.hpp"
  31 
  32 // Portions of code courtesy of Clifford Click
  33 
  34 // Optimization - Graph Style
  35 
  36 
  37 class AbstractLockNode;
  38 class AddNode;
  39 class AddPNode;
  40 class AliasInfo;
  41 class AllocateArrayNode;
  42 class AllocateNode;
  43 class ArrayCopyNode;
  44 class Block;
  45 class BoolNode;
  46 class BoxLockNode;
  47 class CMoveNode;
  48 class CallDynamicJavaNode;
  49 class CallJavaNode;
  50 class CallLeafNode;
  51 class CallNode;
  52 class CallRuntimeNode;
  53 class CallStaticJavaNode;
  54 class CastIINode;
  55 class CastLLNode;
  56 class CatchNode;
  57 class CatchProjNode;
  58 class CheckCastPPNode;
  59 class ClearArrayNode;
  60 class CmpNode;
  61 class CodeBuffer;
  62 class ConstraintCastNode;
  63 class ConNode;
  64 class CompareAndSwapNode;
  65 class CompareAndExchangeNode;
  66 class CountedLoopNode;
  67 class CountedLoopEndNode;
  68 class DecodeNarrowPtrNode;
  69 class DecodeNNode;
  70 class DecodeNKlassNode;
  71 class EncodeNarrowPtrNode;
  72 class EncodePNode;
  73 class EncodePKlassNode;
  74 class FastLockNode;
  75 class FastUnlockNode;
  76 class IfNode;
  77 class IfProjNode;
  78 class IfFalseNode;
  79 class IfTrueNode;
  80 class InitializeNode;
  81 class JVMState;
  82 class JumpNode;
  83 class JumpProjNode;
  84 class LoadNode;
  85 class LoadBarrierNode;
  86 class LoadBarrierSlowRegNode;
  87 class LoadBarrierWeakSlowRegNode;
  88 class LoadStoreNode;
  89 class LockNode;
  90 class LoopNode;
  91 class MachBranchNode;
  92 class MachCallDynamicJavaNode;
  93 class MachCallJavaNode;
  94 class MachCallLeafNode;
  95 class MachCallNode;
  96 class MachCallRuntimeNode;
  97 class MachCallStaticJavaNode;
  98 class MachConstantBaseNode;
  99 class MachConstantNode;
 100 class MachGotoNode;
 101 class MachIfNode;
 102 class MachJumpNode;
 103 class MachNode;
 104 class MachNullCheckNode;
 105 class MachProjNode;
 106 class MachReturnNode;
 107 class MachSafePointNode;
 108 class MachSpillCopyNode;
 109 class MachTempNode;
 110 class MachMergeNode;
 111 class MachMemBarNode;
 112 class Matcher;
 113 class MemBarNode;
 114 class MemBarStoreStoreNode;
 115 class MemNode;
 116 class MergeMemNode;
 117 class MulNode;
 118 class MultiNode;
 119 class MultiBranchNode;
 120 class NeverBranchNode;
 121 class OuterStripMinedLoopNode;
 122 class OuterStripMinedLoopEndNode;
 123 class Node;
 124 class Node_Array;
 125 class Node_List;
 126 class Node_Stack;
 127 class NullCheckNode;
 128 class OopMap;
 129 class ParmNode;
 130 class PCTableNode;
 131 class PhaseCCP;
 132 class PhaseGVN;
 133 class PhaseIterGVN;
 134 class PhaseRegAlloc;
 135 class PhaseTransform;
 136 class PhaseValues;
 137 class PhiNode;
 138 class Pipeline;
 139 class ProjNode;
 140 class RangeCheckNode;
 141 class RegMask;
 142 class RegionNode;
 143 class RootNode;
 144 class SafePointNode;
 145 class SafePointScalarObjectNode;
 146 class ShenandoahBarrierNode;
 147 class StartNode;
 148 class State;
 149 class StoreNode;
 150 class SubNode;
 151 class Type;
 152 class TypeNode;
 153 class UnlockNode;
 154 class VectorNode;
 155 class LoadVectorNode;
 156 class StoreVectorNode;
 157 class VectorSet;
 158 typedef void (*NFunc)(Node&,void*);
 159 extern "C" {
 160   typedef int (*C_sort_func_t)(const void *, const void *);
 161 }
 162 
 163 // The type of all node counts and indexes.
 164 // It must hold at least 16 bits, but must also be fast to load and store.
 165 // This type, if less than 32 bits, could limit the number of possible nodes.
 166 // (To make this type platform-specific, move to globalDefinitions_xxx.hpp.)
 167 typedef unsigned int node_idx_t;
 168 
 169 
 170 #ifndef OPTO_DU_ITERATOR_ASSERT
 171 #ifdef ASSERT
 172 #define OPTO_DU_ITERATOR_ASSERT 1
 173 #else
 174 #define OPTO_DU_ITERATOR_ASSERT 0
 175 #endif
 176 #endif //OPTO_DU_ITERATOR_ASSERT
 177 
 178 #if OPTO_DU_ITERATOR_ASSERT
 179 class DUIterator;
 180 class DUIterator_Fast;
 181 class DUIterator_Last;
 182 #else
 183 typedef uint   DUIterator;
 184 typedef Node** DUIterator_Fast;
 185 typedef Node** DUIterator_Last;
 186 #endif
 187 
 188 // Node Sentinel
 189 #define NodeSentinel (Node*)-1
 190 
 191 // Unknown count frequency
 192 #define COUNT_UNKNOWN (-1.0f)
 193 
 194 //------------------------------Node-------------------------------------------
 195 // Nodes define actions in the program.  They create values, which have types.
 196 // They are both vertices in a directed graph and program primitives.  Nodes
 197 // are labeled; the label is the "opcode", the primitive function in the lambda
 198 // calculus sense that gives meaning to the Node.  Node inputs are ordered (so
 199 // that "a-b" is different from "b-a").  The inputs to a Node are the inputs to
 200 // the Node's function.  These inputs also define a Type equation for the Node.
 201 // Solving these Type equations amounts to doing dataflow analysis.
 202 // Control and data are uniformly represented in the graph.  Finally, Nodes
 203 // have a unique dense integer index which is used to index into side arrays
 204 // whenever I have phase-specific information.
 205 
 206 class Node {
 207   friend class VMStructs;
 208 
 209   // Lots of restrictions on cloning Nodes
 210   Node(const Node&);            // not defined; linker error to use these
 211   Node &operator=(const Node &rhs);
 212 
 213 public:
 214   friend class Compile;
 215   #if OPTO_DU_ITERATOR_ASSERT
 216   friend class DUIterator_Common;
 217   friend class DUIterator;
 218   friend class DUIterator_Fast;
 219   friend class DUIterator_Last;
 220   #endif
 221 
 222   // Because Nodes come and go, I define an Arena of Node structures to pull
 223   // from.  This should allow fast access to node creation & deletion.  This
 224   // field is a local cache of a value defined in some "program fragment" for
 225   // which these Nodes are just a part of.
 226 
 227   inline void* operator new(size_t x) throw() {
 228     Compile* C = Compile::current();
 229     Node* n = (Node*)C->node_arena()->Amalloc_D(x);
 230     return (void*)n;
 231   }
 232 
 233   // Delete is a NOP
 234   void operator delete( void *ptr ) {}
 235   // Fancy destructor; eagerly attempt to reclaim Node numberings and storage
 236   void destruct();
 237 
 238   // Create a new Node.  Required is the number is of inputs required for
 239   // semantic correctness.
 240   Node( uint required );
 241 
 242   // Create a new Node with given input edges.
 243   // This version requires use of the "edge-count" new.
 244   // E.g.  new (C,3) FooNode( C, NULL, left, right );
 245   Node( Node *n0 );
 246   Node( Node *n0, Node *n1 );
 247   Node( Node *n0, Node *n1, Node *n2 );
 248   Node( Node *n0, Node *n1, Node *n2, Node *n3 );
 249   Node( Node *n0, Node *n1, Node *n2, Node *n3, Node *n4 );
 250   Node( Node *n0, Node *n1, Node *n2, Node *n3, Node *n4, Node *n5 );
 251   Node( Node *n0, Node *n1, Node *n2, Node *n3,
 252             Node *n4, Node *n5, Node *n6 );
 253 
 254   // Clone an inherited Node given only the base Node type.
 255   Node* clone() const;
 256 
 257   // Clone a Node, immediately supplying one or two new edges.
 258   // The first and second arguments, if non-null, replace in(1) and in(2),
 259   // respectively.
 260   Node* clone_with_data_edge(Node* in1, Node* in2 = NULL) const {
 261     Node* nn = clone();
 262     if (in1 != NULL)  nn->set_req(1, in1);
 263     if (in2 != NULL)  nn->set_req(2, in2);
 264     return nn;
 265   }
 266 
 267 private:
 268   // Shared setup for the above constructors.
 269   // Handles all interactions with Compile::current.
 270   // Puts initial values in all Node fields except _idx.
 271   // Returns the initial value for _idx, which cannot
 272   // be initialized by assignment.
 273   inline int Init(int req);
 274 
 275 //----------------- input edge handling
 276 protected:
 277   friend class PhaseCFG;        // Access to address of _in array elements
 278   Node **_in;                   // Array of use-def references to Nodes
 279   Node **_out;                  // Array of def-use references to Nodes
 280 
 281   // Input edges are split into two categories.  Required edges are required
 282   // for semantic correctness; order is important and NULLs are allowed.
 283   // Precedence edges are used to help determine execution order and are
 284   // added, e.g., for scheduling purposes.  They are unordered and not
 285   // duplicated; they have no embedded NULLs.  Edges from 0 to _cnt-1
 286   // are required, from _cnt to _max-1 are precedence edges.
 287   node_idx_t _cnt;              // Total number of required Node inputs.
 288 
 289   node_idx_t _max;              // Actual length of input array.
 290 
 291   // Output edges are an unordered list of def-use edges which exactly
 292   // correspond to required input edges which point from other nodes
 293   // to this one.  Thus the count of the output edges is the number of
 294   // users of this node.
 295   node_idx_t _outcnt;           // Total number of Node outputs.
 296 
 297   node_idx_t _outmax;           // Actual length of output array.
 298 
 299   // Grow the actual input array to the next larger power-of-2 bigger than len.
 300   void grow( uint len );
 301   // Grow the output array to the next larger power-of-2 bigger than len.
 302   void out_grow( uint len );
 303 
 304  public:
 305   // Each Node is assigned a unique small/dense number.  This number is used
 306   // to index into auxiliary arrays of data and bit vectors.
 307   // The field _idx is declared constant to defend against inadvertent assignments,
 308   // since it is used by clients as a naked field. However, the field's value can be
 309   // changed using the set_idx() method.
 310   //
 311   // The PhaseRenumberLive phase renumbers nodes based on liveness information.
 312   // Therefore, it updates the value of the _idx field. The parse-time _idx is
 313   // preserved in _parse_idx.
 314   const node_idx_t _idx;
 315   DEBUG_ONLY(const node_idx_t _parse_idx;)
 316 
 317   // Get the (read-only) number of input edges
 318   uint req() const { return _cnt; }
 319   uint len() const { return _max; }
 320   // Get the (read-only) number of output edges
 321   uint outcnt() const { return _outcnt; }
 322 
 323 #if OPTO_DU_ITERATOR_ASSERT
 324   // Iterate over the out-edges of this node.  Deletions are illegal.
 325   inline DUIterator outs() const;
 326   // Use this when the out array might have changed to suppress asserts.
 327   inline DUIterator& refresh_out_pos(DUIterator& i) const;
 328   // Does the node have an out at this position?  (Used for iteration.)
 329   inline bool has_out(DUIterator& i) const;
 330   inline Node*    out(DUIterator& i) const;
 331   // Iterate over the out-edges of this node.  All changes are illegal.
 332   inline DUIterator_Fast fast_outs(DUIterator_Fast& max) const;
 333   inline Node*    fast_out(DUIterator_Fast& i) const;
 334   // Iterate over the out-edges of this node, deleting one at a time.
 335   inline DUIterator_Last last_outs(DUIterator_Last& min) const;
 336   inline Node*    last_out(DUIterator_Last& i) const;
 337   // The inline bodies of all these methods are after the iterator definitions.
 338 #else
 339   // Iterate over the out-edges of this node.  Deletions are illegal.
 340   // This iteration uses integral indexes, to decouple from array reallocations.
 341   DUIterator outs() const  { return 0; }
 342   // Use this when the out array might have changed to suppress asserts.
 343   DUIterator refresh_out_pos(DUIterator i) const { return i; }
 344 
 345   // Reference to the i'th output Node.  Error if out of bounds.
 346   Node*    out(DUIterator i) const { assert(i < _outcnt, "oob"); return _out[i]; }
 347   // Does the node have an out at this position?  (Used for iteration.)
 348   bool has_out(DUIterator i) const { return i < _outcnt; }
 349 
 350   // Iterate over the out-edges of this node.  All changes are illegal.
 351   // This iteration uses a pointer internal to the out array.
 352   DUIterator_Fast fast_outs(DUIterator_Fast& max) const {
 353     Node** out = _out;
 354     // Assign a limit pointer to the reference argument:
 355     max = out + (ptrdiff_t)_outcnt;
 356     // Return the base pointer:
 357     return out;
 358   }
 359   Node*    fast_out(DUIterator_Fast i) const  { return *i; }
 360   // Iterate over the out-edges of this node, deleting one at a time.
 361   // This iteration uses a pointer internal to the out array.
 362   DUIterator_Last last_outs(DUIterator_Last& min) const {
 363     Node** out = _out;
 364     // Assign a limit pointer to the reference argument:
 365     min = out;
 366     // Return the pointer to the start of the iteration:
 367     return out + (ptrdiff_t)_outcnt - 1;
 368   }
 369   Node*    last_out(DUIterator_Last i) const  { return *i; }
 370 #endif
 371 
 372   // Reference to the i'th input Node.  Error if out of bounds.
 373   Node* in(uint i) const { assert(i < _max, "oob: i=%d, _max=%d", i, _max); return _in[i]; }
 374   // Reference to the i'th input Node.  NULL if out of bounds.
 375   Node* lookup(uint i) const { return ((i < _max) ? _in[i] : NULL); }
 376   // Reference to the i'th output Node.  Error if out of bounds.
 377   // Use this accessor sparingly.  We are going trying to use iterators instead.
 378   Node* raw_out(uint i) const { assert(i < _outcnt,"oob"); return _out[i]; }
 379   // Return the unique out edge.
 380   Node* unique_out() const { assert(_outcnt==1,"not unique"); return _out[0]; }
 381   // Delete out edge at position 'i' by moving last out edge to position 'i'
 382   void  raw_del_out(uint i) {
 383     assert(i < _outcnt,"oob");
 384     assert(_outcnt > 0,"oob");
 385     #if OPTO_DU_ITERATOR_ASSERT
 386     // Record that a change happened here.
 387     debug_only(_last_del = _out[i]; ++_del_tick);
 388     #endif
 389     _out[i] = _out[--_outcnt];
 390     // Smash the old edge so it can't be used accidentally.
 391     debug_only(_out[_outcnt] = (Node *)(uintptr_t)0xdeadbeef);
 392   }
 393 
 394 #ifdef ASSERT
 395   bool is_dead() const;
 396 #define is_not_dead(n) ((n) == NULL || !VerifyIterativeGVN || !((n)->is_dead()))
 397   bool is_reachable_from_root() const;
 398 #endif
 399   // Check whether node has become unreachable
 400   bool is_unreachable(PhaseIterGVN &igvn) const;
 401 
 402   // Set a required input edge, also updates corresponding output edge
 403   void add_req( Node *n ); // Append a NEW required input
 404   void add_req( Node *n0, Node *n1 ) {
 405     add_req(n0); add_req(n1); }
 406   void add_req( Node *n0, Node *n1, Node *n2 ) {
 407     add_req(n0); add_req(n1); add_req(n2); }
 408   void add_req_batch( Node* n, uint m ); // Append m NEW required inputs (all n).
 409   void del_req( uint idx ); // Delete required edge & compact
 410   void del_req_ordered( uint idx ); // Delete required edge & compact with preserved order
 411   void ins_req( uint i, Node *n ); // Insert a NEW required input
 412   void set_req( uint i, Node *n ) {
 413     assert( is_not_dead(n), "can not use dead node");
 414     assert( i < _cnt, "oob: i=%d, _cnt=%d", i, _cnt);
 415     assert( !VerifyHashTableKeys || _hash_lock == 0,
 416             "remove node from hash table before modifying it");
 417     Node** p = &_in[i];    // cache this._in, across the del_out call
 418     if (*p != NULL)  (*p)->del_out((Node *)this);
 419     (*p) = n;
 420     if (n != NULL)      n->add_out((Node *)this);
 421     Compile::current()->record_modified_node(this);
 422   }
 423   // Light version of set_req() to init inputs after node creation.
 424   void init_req( uint i, Node *n ) {
 425     assert( i == 0 && this == n ||
 426             is_not_dead(n), "can not use dead node");
 427     assert( i < _cnt, "oob");
 428     assert( !VerifyHashTableKeys || _hash_lock == 0,
 429             "remove node from hash table before modifying it");
 430     assert( _in[i] == NULL, "sanity");
 431     _in[i] = n;
 432     if (n != NULL)      n->add_out((Node *)this);
 433     Compile::current()->record_modified_node(this);
 434   }
 435   // Find first occurrence of n among my edges:
 436   int find_edge(Node* n);
 437   int find_prec_edge(Node* n) {
 438     for (uint i = req(); i < len(); i++) {
 439       if (_in[i] == n) return i;
 440       if (_in[i] == NULL) {
 441         DEBUG_ONLY( while ((++i) < len()) assert(_in[i] == NULL, "Gap in prec edges!"); )
 442         break;
 443       }
 444     }
 445     return -1;
 446   }
 447   int replace_edge(Node* old, Node* neww);
 448   int replace_edges_in_range(Node* old, Node* neww, int start, int end);
 449   // NULL out all inputs to eliminate incoming Def-Use edges.
 450   // Return the number of edges between 'n' and 'this'
 451   int  disconnect_inputs(Node *n, Compile *c);
 452 
 453   // Quickly, return true if and only if I am Compile::current()->top().
 454   bool is_top() const {
 455     assert((this == (Node*) Compile::current()->top()) == (_out == NULL), "");
 456     return (_out == NULL);
 457   }
 458   // Reaffirm invariants for is_top.  (Only from Compile::set_cached_top_node.)
 459   void setup_is_top();
 460 
 461   // Strip away casting.  (It is depth-limited.)
 462   Node* uncast() const;
 463   // Return whether two Nodes are equivalent, after stripping casting.
 464   bool eqv_uncast(const Node* n) const {
 465     return (this->uncast() == n->uncast());
 466   }
 467 
 468   // Find out of current node that matches opcode.
 469   Node* find_out_with(int opcode);
 470   // Return true if the current node has an out that matches opcode.
 471   bool has_out_with(int opcode);
 472   // Return true if the current node has an out that matches any of the opcodes.
 473   bool has_out_with(int opcode1, int opcode2, int opcode3, int opcode4);
 474 
 475 private:
 476   static Node* uncast_helper(const Node* n);
 477 
 478   // Add an output edge to the end of the list
 479   void add_out( Node *n ) {
 480     if (is_top())  return;
 481     if( _outcnt == _outmax ) out_grow(_outcnt);
 482     _out[_outcnt++] = n;
 483   }
 484   // Delete an output edge
 485   void del_out( Node *n ) {
 486     if (is_top())  return;
 487     Node** outp = &_out[_outcnt];
 488     // Find and remove n
 489     do {
 490       assert(outp > _out, "Missing Def-Use edge");
 491     } while (*--outp != n);
 492     *outp = _out[--_outcnt];
 493     // Smash the old edge so it can't be used accidentally.
 494     debug_only(_out[_outcnt] = (Node *)(uintptr_t)0xdeadbeef);
 495     // Record that a change happened here.
 496     #if OPTO_DU_ITERATOR_ASSERT
 497     debug_only(_last_del = n; ++_del_tick);
 498     #endif
 499   }
 500   // Close gap after removing edge.
 501   void close_prec_gap_at(uint gap) {
 502     assert(_cnt <= gap && gap < _max, "no valid prec edge");
 503     uint i = gap;
 504     Node *last = NULL;
 505     for (; i < _max-1; ++i) {
 506       Node *next = _in[i+1];
 507       if (next == NULL) break;
 508       last = next;
 509     }
 510     _in[gap] = last; // Move last slot to empty one.
 511     _in[i] = NULL;   // NULL out last slot.
 512   }
 513 
 514 public:
 515   // Globally replace this node by a given new node, updating all uses.
 516   void replace_by(Node* new_node);
 517   // Globally replace this node by a given new node, updating all uses
 518   // and cutting input edges of old node.
 519   void subsume_by(Node* new_node, Compile* c) {
 520     replace_by(new_node);
 521     disconnect_inputs(NULL, c);
 522   }
 523   void set_req_X( uint i, Node *n, PhaseIterGVN *igvn );
 524   // Find the one non-null required input.  RegionNode only
 525   Node *nonnull_req() const;
 526   // Add or remove precedence edges
 527   void add_prec( Node *n );
 528   void rm_prec( uint i );
 529 
 530   // Note: prec(i) will not necessarily point to n if edge already exists.
 531   void set_prec( uint i, Node *n ) {
 532     assert(i < _max, "oob: i=%d, _max=%d", i, _max);
 533     assert(is_not_dead(n), "can not use dead node");
 534     assert(i >= _cnt, "not a precedence edge");
 535     // Avoid spec violation: duplicated prec edge.
 536     if (_in[i] == n) return;
 537     if (n == NULL || find_prec_edge(n) != -1) {
 538       rm_prec(i);
 539       return;
 540     }
 541     if (_in[i] != NULL) _in[i]->del_out((Node *)this);
 542     _in[i] = n;
 543     if (n != NULL) n->add_out((Node *)this);
 544   }
 545 
 546   // Set this node's index, used by cisc_version to replace current node
 547   void set_idx(uint new_idx) {
 548     const node_idx_t* ref = &_idx;
 549     *(node_idx_t*)ref = new_idx;
 550   }
 551   // Swap input edge order.  (Edge indexes i1 and i2 are usually 1 and 2.)
 552   void swap_edges(uint i1, uint i2) {
 553     debug_only(uint check_hash = (VerifyHashTableKeys && _hash_lock) ? hash() : NO_HASH);
 554     // Def-Use info is unchanged
 555     Node* n1 = in(i1);
 556     Node* n2 = in(i2);
 557     _in[i1] = n2;
 558     _in[i2] = n1;
 559     // If this node is in the hash table, make sure it doesn't need a rehash.
 560     assert(check_hash == NO_HASH || check_hash == hash(), "edge swap must preserve hash code");
 561   }
 562 
 563   // Iterators over input Nodes for a Node X are written as:
 564   // for( i = 0; i < X.req(); i++ ) ... X[i] ...
 565   // NOTE: Required edges can contain embedded NULL pointers.
 566 
 567 //----------------- Other Node Properties
 568 
 569   // Generate class IDs for (some) ideal nodes so that it is possible to determine
 570   // the type of a node using a non-virtual method call (the method is_<Node>() below).
 571   //
 572   // A class ID of an ideal node is a set of bits. In a class ID, a single bit determines
 573   // the type of the node the ID represents; another subset of an ID's bits are reserved
 574   // for the superclasses of the node represented by the ID.
 575   //
 576   // By design, if A is a supertype of B, A.is_B() returns true and B.is_A()
 577   // returns false. A.is_A() returns true.
 578   //
 579   // If two classes, A and B, have the same superclass, a different bit of A's class id
 580   // is reserved for A's type than for B's type. That bit is specified by the third
 581   // parameter in the macro DEFINE_CLASS_ID.
 582   //
 583   // By convention, classes with deeper hierarchy are declared first. Moreover,
 584   // classes with the same hierarchy depth are sorted by usage frequency.
 585   //
 586   // The query method masks the bits to cut off bits of subclasses and then compares
 587   // the result with the class id (see the macro DEFINE_CLASS_QUERY below).
 588   //
 589   //  Class_MachCall=30, ClassMask_MachCall=31
 590   // 12               8               4               0
 591   //  0   0   0   0   0   0   0   0   1   1   1   1   0
 592   //                                  |   |   |   |
 593   //                                  |   |   |   Bit_Mach=2
 594   //                                  |   |   Bit_MachReturn=4
 595   //                                  |   Bit_MachSafePoint=8
 596   //                                  Bit_MachCall=16
 597   //
 598   //  Class_CountedLoop=56, ClassMask_CountedLoop=63
 599   // 12               8               4               0
 600   //  0   0   0   0   0   0   0   1   1   1   0   0   0
 601   //                              |   |   |
 602   //                              |   |   Bit_Region=8
 603   //                              |   Bit_Loop=16
 604   //                              Bit_CountedLoop=32
 605 
 606   #define DEFINE_CLASS_ID(cl, supcl, subn) \
 607   Bit_##cl = (Class_##supcl == 0) ? 1 << subn : (Bit_##supcl) << (1 + subn) , \
 608   Class_##cl = Class_##supcl + Bit_##cl , \
 609   ClassMask_##cl = ((Bit_##cl << 1) - 1) ,
 610 
 611   // This enum is used only for C2 ideal and mach nodes with is_<node>() methods
 612   // so that it's values fits into 16 bits.
 613   enum NodeClasses {
 614     Bit_Node   = 0x0000,
 615     Class_Node = 0x0000,
 616     ClassMask_Node = 0xFFFF,
 617 
 618     DEFINE_CLASS_ID(Multi, Node, 0)
 619       DEFINE_CLASS_ID(SafePoint, Multi, 0)
 620         DEFINE_CLASS_ID(Call,      SafePoint, 0)
 621           DEFINE_CLASS_ID(CallJava,         Call, 0)
 622             DEFINE_CLASS_ID(CallStaticJava,   CallJava, 0)
 623             DEFINE_CLASS_ID(CallDynamicJava,  CallJava, 1)
 624           DEFINE_CLASS_ID(CallRuntime,      Call, 1)
 625             DEFINE_CLASS_ID(CallLeaf,         CallRuntime, 0)
 626           DEFINE_CLASS_ID(Allocate,         Call, 2)
 627             DEFINE_CLASS_ID(AllocateArray,    Allocate, 0)
 628           DEFINE_CLASS_ID(AbstractLock,     Call, 3)
 629             DEFINE_CLASS_ID(Lock,             AbstractLock, 0)
 630             DEFINE_CLASS_ID(Unlock,           AbstractLock, 1)
 631           DEFINE_CLASS_ID(ArrayCopy,        Call, 4)
 632       DEFINE_CLASS_ID(MultiBranch, Multi, 1)
 633         DEFINE_CLASS_ID(PCTable,     MultiBranch, 0)
 634           DEFINE_CLASS_ID(Catch,       PCTable, 0)
 635           DEFINE_CLASS_ID(Jump,        PCTable, 1)
 636         DEFINE_CLASS_ID(If,          MultiBranch, 1)
 637           DEFINE_CLASS_ID(CountedLoopEnd,         If, 0)
 638           DEFINE_CLASS_ID(RangeCheck,             If, 1)
 639           DEFINE_CLASS_ID(OuterStripMinedLoopEnd, If, 2)
 640         DEFINE_CLASS_ID(NeverBranch, MultiBranch, 2)
 641       DEFINE_CLASS_ID(Start,       Multi, 2)
 642       DEFINE_CLASS_ID(MemBar,      Multi, 3)
 643         DEFINE_CLASS_ID(Initialize,       MemBar, 0)
 644         DEFINE_CLASS_ID(MemBarStoreStore, MemBar, 1)
 645       DEFINE_CLASS_ID(LoadBarrier, Multi, 4)
 646 
 647     DEFINE_CLASS_ID(Mach,  Node, 1)
 648       DEFINE_CLASS_ID(MachReturn, Mach, 0)
 649         DEFINE_CLASS_ID(MachSafePoint, MachReturn, 0)
 650           DEFINE_CLASS_ID(MachCall, MachSafePoint, 0)
 651             DEFINE_CLASS_ID(MachCallJava,         MachCall, 0)
 652               DEFINE_CLASS_ID(MachCallStaticJava,   MachCallJava, 0)
 653               DEFINE_CLASS_ID(MachCallDynamicJava,  MachCallJava, 1)
 654             DEFINE_CLASS_ID(MachCallRuntime,      MachCall, 1)
 655               DEFINE_CLASS_ID(MachCallLeaf,         MachCallRuntime, 0)
 656       DEFINE_CLASS_ID(MachBranch, Mach, 1)
 657         DEFINE_CLASS_ID(MachIf,         MachBranch, 0)
 658         DEFINE_CLASS_ID(MachGoto,       MachBranch, 1)
 659         DEFINE_CLASS_ID(MachNullCheck,  MachBranch, 2)
 660       DEFINE_CLASS_ID(MachSpillCopy,    Mach, 2)
 661       DEFINE_CLASS_ID(MachTemp,         Mach, 3)
 662       DEFINE_CLASS_ID(MachConstantBase, Mach, 4)
 663       DEFINE_CLASS_ID(MachConstant,     Mach, 5)
 664         DEFINE_CLASS_ID(MachJump,       MachConstant, 0)
 665       DEFINE_CLASS_ID(MachMerge,        Mach, 6)
 666       DEFINE_CLASS_ID(MachMemBar,       Mach, 7)
 667 
 668     DEFINE_CLASS_ID(Type,  Node, 2)
 669       DEFINE_CLASS_ID(Phi,   Type, 0)
 670       DEFINE_CLASS_ID(ConstraintCast, Type, 1)
 671         DEFINE_CLASS_ID(CastII, ConstraintCast, 0)
 672         DEFINE_CLASS_ID(CastLL, ConstraintCast, 1)
 673         DEFINE_CLASS_ID(CheckCastPP, ConstraintCast, 2)
 674       DEFINE_CLASS_ID(CMove, Type, 3)
 675       DEFINE_CLASS_ID(SafePointScalarObject, Type, 4)
 676       DEFINE_CLASS_ID(DecodeNarrowPtr, Type, 5)
 677         DEFINE_CLASS_ID(DecodeN, DecodeNarrowPtr, 0)
 678         DEFINE_CLASS_ID(DecodeNKlass, DecodeNarrowPtr, 1)
 679       DEFINE_CLASS_ID(EncodeNarrowPtr, Type, 6)
 680         DEFINE_CLASS_ID(EncodeP, EncodeNarrowPtr, 0)
 681         DEFINE_CLASS_ID(EncodePKlass, EncodeNarrowPtr, 1)
 682       DEFINE_CLASS_ID(ShenandoahBarrier, Type, 7)
 683 
 684     DEFINE_CLASS_ID(Proj,  Node, 3)
 685       DEFINE_CLASS_ID(CatchProj, Proj, 0)
 686       DEFINE_CLASS_ID(JumpProj,  Proj, 1)
 687       DEFINE_CLASS_ID(IfProj,    Proj, 2)
 688         DEFINE_CLASS_ID(IfTrue,    IfProj, 0)
 689         DEFINE_CLASS_ID(IfFalse,   IfProj, 1)
 690       DEFINE_CLASS_ID(Parm,      Proj, 4)
 691       DEFINE_CLASS_ID(MachProj,  Proj, 5)
 692 
 693     DEFINE_CLASS_ID(Mem,   Node, 4)
 694       DEFINE_CLASS_ID(Load,  Mem, 0)
 695         DEFINE_CLASS_ID(LoadVector,  Load, 0)
 696           DEFINE_CLASS_ID(LoadBarrierSlowReg, Load, 1)
 697           DEFINE_CLASS_ID(LoadBarrierWeakSlowReg, Load, 2)
 698       DEFINE_CLASS_ID(Store, Mem, 1)
 699         DEFINE_CLASS_ID(StoreVector, Store, 0)
 700       DEFINE_CLASS_ID(LoadStore, Mem, 2)
 701         DEFINE_CLASS_ID(LoadStoreConditional, LoadStore, 0)
 702           DEFINE_CLASS_ID(CompareAndSwap, LoadStoreConditional, 0)
 703         DEFINE_CLASS_ID(CompareAndExchangeNode, LoadStore, 1)
 704 
 705     DEFINE_CLASS_ID(Region, Node, 5)
 706       DEFINE_CLASS_ID(Loop, Region, 0)
 707         DEFINE_CLASS_ID(Root,                Loop, 0)
 708         DEFINE_CLASS_ID(CountedLoop,         Loop, 1)
 709         DEFINE_CLASS_ID(OuterStripMinedLoop, Loop, 2)
 710 
 711     DEFINE_CLASS_ID(Sub,   Node, 6)
 712       DEFINE_CLASS_ID(Cmp,   Sub, 0)
 713         DEFINE_CLASS_ID(FastLock,   Cmp, 0)
 714         DEFINE_CLASS_ID(FastUnlock, Cmp, 1)
 715 
 716     DEFINE_CLASS_ID(MergeMem, Node, 7)
 717     DEFINE_CLASS_ID(Bool,     Node, 8)
 718     DEFINE_CLASS_ID(AddP,     Node, 9)
 719     DEFINE_CLASS_ID(BoxLock,  Node, 10)
 720     DEFINE_CLASS_ID(Add,      Node, 11)
 721     DEFINE_CLASS_ID(Mul,      Node, 12)
 722     DEFINE_CLASS_ID(Vector,   Node, 13)
 723     DEFINE_CLASS_ID(ClearArray, Node, 14)
 724 
 725     _max_classes  = ClassMask_ClearArray
 726   };
 727   #undef DEFINE_CLASS_ID
 728 
 729   // Flags are sorted by usage frequency.
 730   enum NodeFlags {
 731     Flag_is_Copy                     = 0x01, // should be first bit to avoid shift
 732     Flag_rematerialize               = Flag_is_Copy << 1,
 733     Flag_needs_anti_dependence_check = Flag_rematerialize << 1,
 734     Flag_is_macro                    = Flag_needs_anti_dependence_check << 1,
 735     Flag_is_Con                      = Flag_is_macro << 1,
 736     Flag_is_cisc_alternate           = Flag_is_Con << 1,
 737     Flag_is_dead_loop_safe           = Flag_is_cisc_alternate << 1,
 738     Flag_may_be_short_branch         = Flag_is_dead_loop_safe << 1,
 739     Flag_avoid_back_to_back_before   = Flag_may_be_short_branch << 1,
 740     Flag_avoid_back_to_back_after    = Flag_avoid_back_to_back_before << 1,
 741     Flag_has_call                    = Flag_avoid_back_to_back_after << 1,
 742     Flag_is_reduction                = Flag_has_call << 1,
 743     Flag_is_scheduled                = Flag_is_reduction << 1,
 744     Flag_has_vector_mask_set         = Flag_is_scheduled << 1,
 745     Flag_is_expensive                = Flag_has_vector_mask_set << 1,
 746     _max_flags = (Flag_is_expensive << 1) - 1 // allow flags combination
 747   };
 748 
 749 private:
 750   jushort _class_id;
 751   jushort _flags;
 752 
 753 protected:
 754   // These methods should be called from constructors only.
 755   void init_class_id(jushort c) {
 756     assert(c <= _max_classes, "invalid node class");
 757     _class_id = c; // cast out const
 758   }
 759   void init_flags(jushort fl) {
 760     assert(fl <= _max_flags, "invalid node flag");
 761     _flags |= fl;
 762   }
 763   void clear_flag(jushort fl) {
 764     assert(fl <= _max_flags, "invalid node flag");
 765     _flags &= ~fl;
 766   }
 767 
 768 public:
 769   const jushort class_id() const { return _class_id; }
 770 
 771   const jushort flags() const { return _flags; }
 772 
 773   void add_flag(jushort fl) { init_flags(fl); }
 774 
 775   void remove_flag(jushort fl) { clear_flag(fl); }
 776 
 777   // Return a dense integer opcode number
 778   virtual int Opcode() const;
 779 
 780   // Virtual inherited Node size
 781   virtual uint size_of() const;
 782 
 783   // Other interesting Node properties
 784   #define DEFINE_CLASS_QUERY(type)                           \
 785   bool is_##type() const {                                   \
 786     return ((_class_id & ClassMask_##type) == Class_##type); \
 787   }                                                          \
 788   type##Node *as_##type() const {                            \
 789     assert(is_##type(), "invalid node class");               \
 790     return (type##Node*)this;                                \
 791   }                                                          \
 792   type##Node* isa_##type() const {                           \
 793     return (is_##type()) ? as_##type() : NULL;               \
 794   }
 795 
 796   DEFINE_CLASS_QUERY(AbstractLock)
 797   DEFINE_CLASS_QUERY(Add)
 798   DEFINE_CLASS_QUERY(AddP)
 799   DEFINE_CLASS_QUERY(Allocate)
 800   DEFINE_CLASS_QUERY(AllocateArray)
 801   DEFINE_CLASS_QUERY(ArrayCopy)
 802   DEFINE_CLASS_QUERY(Bool)
 803   DEFINE_CLASS_QUERY(BoxLock)
 804   DEFINE_CLASS_QUERY(Call)
 805   DEFINE_CLASS_QUERY(CallDynamicJava)
 806   DEFINE_CLASS_QUERY(CallJava)
 807   DEFINE_CLASS_QUERY(CallLeaf)
 808   DEFINE_CLASS_QUERY(CallRuntime)
 809   DEFINE_CLASS_QUERY(CallStaticJava)
 810   DEFINE_CLASS_QUERY(Catch)
 811   DEFINE_CLASS_QUERY(CatchProj)
 812   DEFINE_CLASS_QUERY(CheckCastPP)
 813   DEFINE_CLASS_QUERY(CastII)
 814   DEFINE_CLASS_QUERY(CastLL)
 815   DEFINE_CLASS_QUERY(ConstraintCast)
 816   DEFINE_CLASS_QUERY(ClearArray)
 817   DEFINE_CLASS_QUERY(CMove)
 818   DEFINE_CLASS_QUERY(Cmp)
 819   DEFINE_CLASS_QUERY(CountedLoop)
 820   DEFINE_CLASS_QUERY(CountedLoopEnd)
 821   DEFINE_CLASS_QUERY(DecodeNarrowPtr)
 822   DEFINE_CLASS_QUERY(DecodeN)
 823   DEFINE_CLASS_QUERY(DecodeNKlass)
 824   DEFINE_CLASS_QUERY(EncodeNarrowPtr)
 825   DEFINE_CLASS_QUERY(EncodeP)
 826   DEFINE_CLASS_QUERY(EncodePKlass)
 827   DEFINE_CLASS_QUERY(FastLock)
 828   DEFINE_CLASS_QUERY(FastUnlock)
 829   DEFINE_CLASS_QUERY(If)
 830   DEFINE_CLASS_QUERY(RangeCheck)
 831   DEFINE_CLASS_QUERY(IfProj)
 832   DEFINE_CLASS_QUERY(IfFalse)
 833   DEFINE_CLASS_QUERY(IfTrue)
 834   DEFINE_CLASS_QUERY(Initialize)
 835   DEFINE_CLASS_QUERY(Jump)
 836   DEFINE_CLASS_QUERY(JumpProj)
 837   DEFINE_CLASS_QUERY(Load)
 838   DEFINE_CLASS_QUERY(LoadStore)
 839   DEFINE_CLASS_QUERY(LoadBarrier)
 840   DEFINE_CLASS_QUERY(LoadBarrierSlowReg)
 841   DEFINE_CLASS_QUERY(LoadBarrierWeakSlowReg)
 842   DEFINE_CLASS_QUERY(Lock)
 843   DEFINE_CLASS_QUERY(Loop)
 844   DEFINE_CLASS_QUERY(Mach)
 845   DEFINE_CLASS_QUERY(MachBranch)
 846   DEFINE_CLASS_QUERY(MachCall)
 847   DEFINE_CLASS_QUERY(MachCallDynamicJava)
 848   DEFINE_CLASS_QUERY(MachCallJava)
 849   DEFINE_CLASS_QUERY(MachCallLeaf)
 850   DEFINE_CLASS_QUERY(MachCallRuntime)
 851   DEFINE_CLASS_QUERY(MachCallStaticJava)
 852   DEFINE_CLASS_QUERY(MachConstantBase)
 853   DEFINE_CLASS_QUERY(MachConstant)
 854   DEFINE_CLASS_QUERY(MachGoto)
 855   DEFINE_CLASS_QUERY(MachIf)
 856   DEFINE_CLASS_QUERY(MachJump)
 857   DEFINE_CLASS_QUERY(MachNullCheck)
 858   DEFINE_CLASS_QUERY(MachProj)
 859   DEFINE_CLASS_QUERY(MachReturn)
 860   DEFINE_CLASS_QUERY(MachSafePoint)
 861   DEFINE_CLASS_QUERY(MachSpillCopy)
 862   DEFINE_CLASS_QUERY(MachTemp)
 863   DEFINE_CLASS_QUERY(MachMemBar)
 864   DEFINE_CLASS_QUERY(MachMerge)
 865   DEFINE_CLASS_QUERY(Mem)
 866   DEFINE_CLASS_QUERY(MemBar)
 867   DEFINE_CLASS_QUERY(MemBarStoreStore)
 868   DEFINE_CLASS_QUERY(MergeMem)
 869   DEFINE_CLASS_QUERY(Mul)
 870   DEFINE_CLASS_QUERY(Multi)
 871   DEFINE_CLASS_QUERY(MultiBranch)
 872   DEFINE_CLASS_QUERY(OuterStripMinedLoop)
 873   DEFINE_CLASS_QUERY(OuterStripMinedLoopEnd)
 874   DEFINE_CLASS_QUERY(Parm)
 875   DEFINE_CLASS_QUERY(PCTable)
 876   DEFINE_CLASS_QUERY(Phi)
 877   DEFINE_CLASS_QUERY(Proj)
 878   DEFINE_CLASS_QUERY(Region)
 879   DEFINE_CLASS_QUERY(Root)
 880   DEFINE_CLASS_QUERY(SafePoint)
 881   DEFINE_CLASS_QUERY(SafePointScalarObject)
 882   DEFINE_CLASS_QUERY(ShenandoahBarrier)
 883   DEFINE_CLASS_QUERY(Start)
 884   DEFINE_CLASS_QUERY(Store)
 885   DEFINE_CLASS_QUERY(Sub)
 886   DEFINE_CLASS_QUERY(Type)
 887   DEFINE_CLASS_QUERY(Vector)
 888   DEFINE_CLASS_QUERY(LoadVector)
 889   DEFINE_CLASS_QUERY(StoreVector)
 890   DEFINE_CLASS_QUERY(Unlock)
 891 
 892   #undef DEFINE_CLASS_QUERY
 893 
 894   // duplicate of is_MachSpillCopy()
 895   bool is_SpillCopy () const {
 896     return ((_class_id & ClassMask_MachSpillCopy) == Class_MachSpillCopy);
 897   }
 898 
 899   bool is_Con () const { return (_flags & Flag_is_Con) != 0; }
 900   // The data node which is safe to leave in dead loop during IGVN optimization.
 901   bool is_dead_loop_safe() const {
 902     return is_Phi() || (is_Proj() && in(0) == NULL) ||
 903            ((_flags & (Flag_is_dead_loop_safe | Flag_is_Con)) != 0 &&
 904             (!is_Proj() || !in(0)->is_Allocate()));
 905   }
 906 
 907   // is_Copy() returns copied edge index (0 or 1)
 908   uint is_Copy() const { return (_flags & Flag_is_Copy); }
 909 
 910   virtual bool is_CFG() const { return false; }
 911 
 912   // If this node is control-dependent on a test, can it be
 913   // rerouted to a dominating equivalent test?  This is usually
 914   // true of non-CFG nodes, but can be false for operations which
 915   // depend for their correct sequencing on more than one test.
 916   // (In that case, hoisting to a dominating test may silently
 917   // skip some other important test.)
 918   virtual bool depends_only_on_test() const { assert(!is_CFG(), ""); return true; };
 919 
 920   // When building basic blocks, I need to have a notion of block beginning
 921   // Nodes, next block selector Nodes (block enders), and next block
 922   // projections.  These calls need to work on their machine equivalents.  The
 923   // Ideal beginning Nodes are RootNode, RegionNode and StartNode.
 924   bool is_block_start() const {
 925     if ( is_Region() )
 926       return this == (const Node*)in(0);
 927     else
 928       return is_Start();
 929   }
 930 
 931   // The Ideal control projection Nodes are IfTrue/IfFalse, JumpProjNode, Root,
 932   // Goto and Return.  This call also returns the block ending Node.
 933   virtual const Node *is_block_proj() const;
 934 
 935   // The node is a "macro" node which needs to be expanded before matching
 936   bool is_macro() const { return (_flags & Flag_is_macro) != 0; }
 937   // The node is expensive: the best control is set during loop opts
 938   bool is_expensive() const { return (_flags & Flag_is_expensive) != 0 && in(0) != NULL; }
 939 
 940   // An arithmetic node which accumulates a data in a loop.
 941   // It must have the loop's phi as input and provide a def to the phi.
 942   bool is_reduction() const { return (_flags & Flag_is_reduction) != 0; }
 943 
 944   // The node is a CountedLoopEnd with a mask annotation so as to emit a restore context
 945   bool has_vector_mask_set() const { return (_flags & Flag_has_vector_mask_set) != 0; }
 946 
 947   // Used in lcm to mark nodes that have scheduled
 948   bool is_scheduled() const { return (_flags & Flag_is_scheduled) != 0; }
 949 
 950 //----------------- Optimization
 951 
 952   // Get the worst-case Type output for this Node.
 953   virtual const class Type *bottom_type() const;
 954 
 955   // If we find a better type for a node, try to record it permanently.
 956   // Return true if this node actually changed.
 957   // Be sure to do the hash_delete game in the "rehash" variant.
 958   void raise_bottom_type(const Type* new_type);
 959 
 960   // Get the address type with which this node uses and/or defs memory,
 961   // or NULL if none.  The address type is conservatively wide.
 962   // Returns non-null for calls, membars, loads, stores, etc.
 963   // Returns TypePtr::BOTTOM if the node touches memory "broadly".
 964   virtual const class TypePtr *adr_type() const { return NULL; }
 965 
 966   // Return an existing node which computes the same function as this node.
 967   // The optimistic combined algorithm requires this to return a Node which
 968   // is a small number of steps away (e.g., one of my inputs).
 969   virtual Node* Identity(PhaseGVN* phase);
 970 
 971   // Return the set of values this Node can take on at runtime.
 972   virtual const Type* Value(PhaseGVN* phase) const;
 973 
 974   // Return a node which is more "ideal" than the current node.
 975   // The invariants on this call are subtle.  If in doubt, read the
 976   // treatise in node.cpp above the default implemention AND TEST WITH
 977   // +VerifyIterativeGVN!
 978   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 979 
 980   // Some nodes have specific Ideal subgraph transformations only if they are
 981   // unique users of specific nodes. Such nodes should be put on IGVN worklist
 982   // for the transformations to happen.
 983   bool has_special_unique_user() const;
 984 
 985   // Skip Proj and CatchProj nodes chains. Check for Null and Top.
 986   Node* find_exact_control(Node* ctrl);
 987 
 988   // Check if 'this' node dominates or equal to 'sub'.
 989   bool dominates(Node* sub, Node_List &nlist);
 990 
 991 protected:
 992   bool remove_dead_region(PhaseGVN *phase, bool can_reshape);
 993 public:
 994 
 995   // See if there is valid pipeline info
 996   static  const Pipeline *pipeline_class();
 997   virtual const Pipeline *pipeline() const;
 998 
 999   // Compute the latency from the def to this instruction of the ith input node
1000   uint latency(uint i);
1001 
1002   // Hash & compare functions, for pessimistic value numbering
1003 
1004   // If the hash function returns the special sentinel value NO_HASH,
1005   // the node is guaranteed never to compare equal to any other node.
1006   // If we accidentally generate a hash with value NO_HASH the node
1007   // won't go into the table and we'll lose a little optimization.
1008   enum { NO_HASH = 0 };
1009   virtual uint hash() const;
1010   virtual uint cmp( const Node &n ) const;
1011 
1012   // Operation appears to be iteratively computed (such as an induction variable)
1013   // It is possible for this operation to return false for a loop-varying
1014   // value, if it appears (by local graph inspection) to be computed by a simple conditional.
1015   bool is_iteratively_computed();
1016 
1017   // Determine if a node is Counted loop induction variable.
1018   // The method is defined in loopnode.cpp.
1019   const Node* is_loop_iv() const;
1020 
1021   // Return a node with opcode "opc" and same inputs as "this" if one can
1022   // be found; Otherwise return NULL;
1023   Node* find_similar(int opc);
1024 
1025   // Return the unique control out if only one. Null if none or more than one.
1026   Node* unique_ctrl_out() const;
1027 
1028   // Set control or add control as precedence edge
1029   void ensure_control_or_add_prec(Node* c);
1030 
1031 //----------------- Code Generation
1032 
1033   // Ideal register class for Matching.  Zero means unmatched instruction
1034   // (these are cloned instead of converted to machine nodes).
1035   virtual uint ideal_reg() const;
1036 
1037   static const uint NotAMachineReg;   // must be > max. machine register
1038 
1039   // Do we Match on this edge index or not?  Generally false for Control
1040   // and true for everything else.  Weird for calls & returns.
1041   virtual uint match_edge(uint idx) const;
1042 
1043   // Register class output is returned in
1044   virtual const RegMask &out_RegMask() const;
1045   // Register class input is expected in
1046   virtual const RegMask &in_RegMask(uint) const;
1047   // Should we clone rather than spill this instruction?
1048   bool rematerialize() const;
1049 
1050   // Return JVM State Object if this Node carries debug info, or NULL otherwise
1051   virtual JVMState* jvms() const;
1052 
1053   // Print as assembly
1054   virtual void format( PhaseRegAlloc *, outputStream* st = tty ) const;
1055   // Emit bytes starting at parameter 'ptr'
1056   // Bump 'ptr' by the number of output bytes
1057   virtual void emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const;
1058   // Size of instruction in bytes
1059   virtual uint size(PhaseRegAlloc *ra_) const;
1060 
1061   // Convenience function to extract an integer constant from a node.
1062   // If it is not an integer constant (either Con, CastII, or Mach),
1063   // return value_if_unknown.
1064   jint find_int_con(jint value_if_unknown) const {
1065     const TypeInt* t = find_int_type();
1066     return (t != NULL && t->is_con()) ? t->get_con() : value_if_unknown;
1067   }
1068   // Return the constant, knowing it is an integer constant already
1069   jint get_int() const {
1070     const TypeInt* t = find_int_type();
1071     guarantee(t != NULL, "must be con");
1072     return t->get_con();
1073   }
1074   // Here's where the work is done.  Can produce non-constant int types too.
1075   const TypeInt* find_int_type() const;
1076 
1077   // Same thing for long (and intptr_t, via type.hpp):
1078   jlong get_long() const {
1079     const TypeLong* t = find_long_type();
1080     guarantee(t != NULL, "must be con");
1081     return t->get_con();
1082   }
1083   jlong find_long_con(jint value_if_unknown) const {
1084     const TypeLong* t = find_long_type();
1085     return (t != NULL && t->is_con()) ? t->get_con() : value_if_unknown;
1086   }
1087   const TypeLong* find_long_type() const;
1088 
1089   const TypePtr* get_ptr_type() const;
1090 
1091   // These guys are called by code generated by ADLC:
1092   intptr_t get_ptr() const;
1093   intptr_t get_narrowcon() const;
1094   jdouble getd() const;
1095   jfloat getf() const;
1096 
1097   // Nodes which are pinned into basic blocks
1098   virtual bool pinned() const { return false; }
1099 
1100   // Nodes which use memory without consuming it, hence need antidependences
1101   // More specifically, needs_anti_dependence_check returns true iff the node
1102   // (a) does a load, and (b) does not perform a store (except perhaps to a
1103   // stack slot or some other unaliased location).
1104   bool needs_anti_dependence_check() const;
1105 
1106   // Return which operand this instruction may cisc-spill. In other words,
1107   // return operand position that can convert from reg to memory access
1108   virtual int cisc_operand() const { return AdlcVMDeps::Not_cisc_spillable; }
1109   bool is_cisc_alternate() const { return (_flags & Flag_is_cisc_alternate) != 0; }
1110 
1111 //----------------- Graph walking
1112 public:
1113   // Walk and apply member functions recursively.
1114   // Supplied (this) pointer is root.
1115   void walk(NFunc pre, NFunc post, void *env);
1116   static void nop(Node &, void*); // Dummy empty function
1117   static void packregion( Node &n, void* );
1118 private:
1119   void walk_(NFunc pre, NFunc post, void *env, VectorSet &visited);
1120 
1121 //----------------- Printing, etc
1122 public:
1123 #ifndef PRODUCT
1124   Node* find(int idx) const;         // Search the graph for the given idx.
1125   Node* find_ctrl(int idx) const;    // Search control ancestors for the given idx.
1126   void dump() const { dump("\n"); }  // Print this node.
1127   void dump(const char* suffix, bool mark = false, outputStream *st = tty) const; // Print this node.
1128   void dump(int depth) const;        // Print this node, recursively to depth d
1129   void dump_ctrl(int depth) const;   // Print control nodes, to depth d
1130   void dump_comp() const;            // Print this node in compact representation.
1131   // Print this node in compact representation.
1132   void dump_comp(const char* suffix, outputStream *st = tty) const;
1133   virtual void dump_req(outputStream *st = tty) const;    // Print required-edge info
1134   virtual void dump_prec(outputStream *st = tty) const;   // Print precedence-edge info
1135   virtual void dump_out(outputStream *st = tty) const;    // Print the output edge info
1136   virtual void dump_spec(outputStream *st) const {};      // Print per-node info
1137   // Print compact per-node info
1138   virtual void dump_compact_spec(outputStream *st) const { dump_spec(st); }
1139   void dump_related() const;             // Print related nodes (depends on node at hand).
1140   // Print related nodes up to given depths for input and output nodes.
1141   void dump_related(uint d_in, uint d_out) const;
1142   void dump_related_compact() const;     // Print related nodes in compact representation.
1143   // Collect related nodes.
1144   virtual void related(GrowableArray<Node*> *in_rel, GrowableArray<Node*> *out_rel, bool compact) const;
1145   // Collect nodes starting from this node, explicitly including/excluding control and data links.
1146   void collect_nodes(GrowableArray<Node*> *ns, int d, bool ctrl, bool data) const;
1147 
1148   // Node collectors, to be used in implementations of Node::rel().
1149   // Collect the entire data input graph. Include control inputs if requested.
1150   void collect_nodes_in_all_data(GrowableArray<Node*> *ns, bool ctrl) const;
1151   // Collect the entire control input graph. Include data inputs if requested.
1152   void collect_nodes_in_all_ctrl(GrowableArray<Node*> *ns, bool data) const;
1153   // Collect the entire output graph until hitting and including control nodes.
1154   void collect_nodes_out_all_ctrl_boundary(GrowableArray<Node*> *ns) const;
1155 
1156   void verify_edges(Unique_Node_List &visited); // Verify bi-directional edges
1157   void verify() const;               // Check Def-Use info for my subgraph
1158   static void verify_recur(const Node *n, int verify_depth, VectorSet &old_space, VectorSet &new_space);
1159 
1160   // This call defines a class-unique string used to identify class instances
1161   virtual const char *Name() const;
1162 
1163   void dump_format(PhaseRegAlloc *ra) const; // debug access to MachNode::format(...)
1164   // RegMask Print Functions
1165   void dump_in_regmask(int idx) { in_RegMask(idx).dump(); }
1166   void dump_out_regmask() { out_RegMask().dump(); }
1167   static bool in_dump() { return Compile::current()->_in_dump_cnt > 0; }
1168   void fast_dump() const {
1169     tty->print("%4d: %-17s", _idx, Name());
1170     for (uint i = 0; i < len(); i++)
1171       if (in(i))
1172         tty->print(" %4d", in(i)->_idx);
1173       else
1174         tty->print(" NULL");
1175     tty->print("\n");
1176   }
1177 #endif
1178 #ifdef ASSERT
1179   void verify_construction();
1180   bool verify_jvms(const JVMState* jvms) const;
1181   int  _debug_idx;                     // Unique value assigned to every node.
1182   int   debug_idx() const              { return _debug_idx; }
1183   void  set_debug_idx( int debug_idx ) { _debug_idx = debug_idx; }
1184 
1185   Node* _debug_orig;                   // Original version of this, if any.
1186   Node*  debug_orig() const            { return _debug_orig; }
1187   void   set_debug_orig(Node* orig);   // _debug_orig = orig
1188 
1189   int        _hash_lock;               // Barrier to modifications of nodes in the hash table
1190   void  enter_hash_lock() { ++_hash_lock; assert(_hash_lock < 99, "in too many hash tables?"); }
1191   void   exit_hash_lock() { --_hash_lock; assert(_hash_lock >= 0, "mispaired hash locks"); }
1192 
1193   static void init_NodeProperty();
1194 
1195   #if OPTO_DU_ITERATOR_ASSERT
1196   const Node* _last_del;               // The last deleted node.
1197   uint        _del_tick;               // Bumped when a deletion happens..
1198   #endif
1199 #endif
1200 };
1201 
1202 
1203 #ifndef PRODUCT
1204 
1205 // Used in debugging code to avoid walking across dead or uninitialized edges.
1206 inline bool NotANode(const Node* n) {
1207   if (n == NULL)                   return true;
1208   if (((intptr_t)n & 1) != 0)      return true;  // uninitialized, etc.
1209   if (*(address*)n == badAddress)  return true;  // kill by Node::destruct
1210   return false;
1211 }
1212 
1213 #endif
1214 
1215 
1216 //-----------------------------------------------------------------------------
1217 // Iterators over DU info, and associated Node functions.
1218 
1219 #if OPTO_DU_ITERATOR_ASSERT
1220 
1221 // Common code for assertion checking on DU iterators.
1222 class DUIterator_Common {
1223 #ifdef ASSERT
1224  protected:
1225   bool         _vdui;               // cached value of VerifyDUIterators
1226   const Node*  _node;               // the node containing the _out array
1227   uint         _outcnt;             // cached node->_outcnt
1228   uint         _del_tick;           // cached node->_del_tick
1229   Node*        _last;               // last value produced by the iterator
1230 
1231   void sample(const Node* node);    // used by c'tor to set up for verifies
1232   void verify(const Node* node, bool at_end_ok = false);
1233   void verify_resync();
1234   void reset(const DUIterator_Common& that);
1235 
1236 // The VDUI_ONLY macro protects code conditionalized on VerifyDUIterators
1237   #define I_VDUI_ONLY(i,x) { if ((i)._vdui) { x; } }
1238 #else
1239   #define I_VDUI_ONLY(i,x) { }
1240 #endif //ASSERT
1241 };
1242 
1243 #define VDUI_ONLY(x)     I_VDUI_ONLY(*this, x)
1244 
1245 // Default DU iterator.  Allows appends onto the out array.
1246 // Allows deletion from the out array only at the current point.
1247 // Usage:
1248 //  for (DUIterator i = x->outs(); x->has_out(i); i++) {
1249 //    Node* y = x->out(i);
1250 //    ...
1251 //  }
1252 // Compiles in product mode to a unsigned integer index, which indexes
1253 // onto a repeatedly reloaded base pointer of x->_out.  The loop predicate
1254 // also reloads x->_outcnt.  If you delete, you must perform "--i" just
1255 // before continuing the loop.  You must delete only the last-produced
1256 // edge.  You must delete only a single copy of the last-produced edge,
1257 // or else you must delete all copies at once (the first time the edge
1258 // is produced by the iterator).
1259 class DUIterator : public DUIterator_Common {
1260   friend class Node;
1261 
1262   // This is the index which provides the product-mode behavior.
1263   // Whatever the product-mode version of the system does to the
1264   // DUI index is done to this index.  All other fields in
1265   // this class are used only for assertion checking.
1266   uint         _idx;
1267 
1268   #ifdef ASSERT
1269   uint         _refresh_tick;    // Records the refresh activity.
1270 
1271   void sample(const Node* node); // Initialize _refresh_tick etc.
1272   void verify(const Node* node, bool at_end_ok = false);
1273   void verify_increment();       // Verify an increment operation.
1274   void verify_resync();          // Verify that we can back up over a deletion.
1275   void verify_finish();          // Verify that the loop terminated properly.
1276   void refresh();                // Resample verification info.
1277   void reset(const DUIterator& that);  // Resample after assignment.
1278   #endif
1279 
1280   DUIterator(const Node* node, int dummy_to_avoid_conversion)
1281     { _idx = 0;                         debug_only(sample(node)); }
1282 
1283  public:
1284   // initialize to garbage; clear _vdui to disable asserts
1285   DUIterator()
1286     { /*initialize to garbage*/         debug_only(_vdui = false); }
1287 
1288   void operator++(int dummy_to_specify_postfix_op)
1289     { _idx++;                           VDUI_ONLY(verify_increment()); }
1290 
1291   void operator--()
1292     { VDUI_ONLY(verify_resync());       --_idx; }
1293 
1294   ~DUIterator()
1295     { VDUI_ONLY(verify_finish()); }
1296 
1297   void operator=(const DUIterator& that)
1298     { _idx = that._idx;                 debug_only(reset(that)); }
1299 };
1300 
1301 DUIterator Node::outs() const
1302   { return DUIterator(this, 0); }
1303 DUIterator& Node::refresh_out_pos(DUIterator& i) const
1304   { I_VDUI_ONLY(i, i.refresh());        return i; }
1305 bool Node::has_out(DUIterator& i) const
1306   { I_VDUI_ONLY(i, i.verify(this,true));return i._idx < _outcnt; }
1307 Node*    Node::out(DUIterator& i) const
1308   { I_VDUI_ONLY(i, i.verify(this));     return debug_only(i._last=) _out[i._idx]; }
1309 
1310 
1311 // Faster DU iterator.  Disallows insertions into the out array.
1312 // Allows deletion from the out array only at the current point.
1313 // Usage:
1314 //  for (DUIterator_Fast imax, i = x->fast_outs(imax); i < imax; i++) {
1315 //    Node* y = x->fast_out(i);
1316 //    ...
1317 //  }
1318 // Compiles in product mode to raw Node** pointer arithmetic, with
1319 // no reloading of pointers from the original node x.  If you delete,
1320 // you must perform "--i; --imax" just before continuing the loop.
1321 // If you delete multiple copies of the same edge, you must decrement
1322 // imax, but not i, multiple times:  "--i, imax -= num_edges".
1323 class DUIterator_Fast : public DUIterator_Common {
1324   friend class Node;
1325   friend class DUIterator_Last;
1326 
1327   // This is the pointer which provides the product-mode behavior.
1328   // Whatever the product-mode version of the system does to the
1329   // DUI pointer is done to this pointer.  All other fields in
1330   // this class are used only for assertion checking.
1331   Node**       _outp;
1332 
1333   #ifdef ASSERT
1334   void verify(const Node* node, bool at_end_ok = false);
1335   void verify_limit();
1336   void verify_resync();
1337   void verify_relimit(uint n);
1338   void reset(const DUIterator_Fast& that);
1339   #endif
1340 
1341   // Note:  offset must be signed, since -1 is sometimes passed
1342   DUIterator_Fast(const Node* node, ptrdiff_t offset)
1343     { _outp = node->_out + offset;      debug_only(sample(node)); }
1344 
1345  public:
1346   // initialize to garbage; clear _vdui to disable asserts
1347   DUIterator_Fast()
1348     { /*initialize to garbage*/         debug_only(_vdui = false); }
1349 
1350   void operator++(int dummy_to_specify_postfix_op)
1351     { _outp++;                          VDUI_ONLY(verify(_node, true)); }
1352 
1353   void operator--()
1354     { VDUI_ONLY(verify_resync());       --_outp; }
1355 
1356   void operator-=(uint n)   // applied to the limit only
1357     { _outp -= n;           VDUI_ONLY(verify_relimit(n));  }
1358 
1359   bool operator<(DUIterator_Fast& limit) {
1360     I_VDUI_ONLY(*this, this->verify(_node, true));
1361     I_VDUI_ONLY(limit, limit.verify_limit());
1362     return _outp < limit._outp;
1363   }
1364 
1365   void operator=(const DUIterator_Fast& that)
1366     { _outp = that._outp;               debug_only(reset(that)); }
1367 };
1368 
1369 DUIterator_Fast Node::fast_outs(DUIterator_Fast& imax) const {
1370   // Assign a limit pointer to the reference argument:
1371   imax = DUIterator_Fast(this, (ptrdiff_t)_outcnt);
1372   // Return the base pointer:
1373   return DUIterator_Fast(this, 0);
1374 }
1375 Node* Node::fast_out(DUIterator_Fast& i) const {
1376   I_VDUI_ONLY(i, i.verify(this));
1377   return debug_only(i._last=) *i._outp;
1378 }
1379 
1380 
1381 // Faster DU iterator.  Requires each successive edge to be removed.
1382 // Does not allow insertion of any edges.
1383 // Usage:
1384 //  for (DUIterator_Last imin, i = x->last_outs(imin); i >= imin; i -= num_edges) {
1385 //    Node* y = x->last_out(i);
1386 //    ...
1387 //  }
1388 // Compiles in product mode to raw Node** pointer arithmetic, with
1389 // no reloading of pointers from the original node x.
1390 class DUIterator_Last : private DUIterator_Fast {
1391   friend class Node;
1392 
1393   #ifdef ASSERT
1394   void verify(const Node* node, bool at_end_ok = false);
1395   void verify_limit();
1396   void verify_step(uint num_edges);
1397   #endif
1398 
1399   // Note:  offset must be signed, since -1 is sometimes passed
1400   DUIterator_Last(const Node* node, ptrdiff_t offset)
1401     : DUIterator_Fast(node, offset) { }
1402 
1403   void operator++(int dummy_to_specify_postfix_op) {} // do not use
1404   void operator<(int)                              {} // do not use
1405 
1406  public:
1407   DUIterator_Last() { }
1408   // initialize to garbage
1409 
1410   void operator--()
1411     { _outp--;              VDUI_ONLY(verify_step(1));  }
1412 
1413   void operator-=(uint n)
1414     { _outp -= n;           VDUI_ONLY(verify_step(n));  }
1415 
1416   bool operator>=(DUIterator_Last& limit) {
1417     I_VDUI_ONLY(*this, this->verify(_node, true));
1418     I_VDUI_ONLY(limit, limit.verify_limit());
1419     return _outp >= limit._outp;
1420   }
1421 
1422   void operator=(const DUIterator_Last& that)
1423     { DUIterator_Fast::operator=(that); }
1424 };
1425 
1426 DUIterator_Last Node::last_outs(DUIterator_Last& imin) const {
1427   // Assign a limit pointer to the reference argument:
1428   imin = DUIterator_Last(this, 0);
1429   // Return the initial pointer:
1430   return DUIterator_Last(this, (ptrdiff_t)_outcnt - 1);
1431 }
1432 Node* Node::last_out(DUIterator_Last& i) const {
1433   I_VDUI_ONLY(i, i.verify(this));
1434   return debug_only(i._last=) *i._outp;
1435 }
1436 
1437 #endif //OPTO_DU_ITERATOR_ASSERT
1438 
1439 #undef I_VDUI_ONLY
1440 #undef VDUI_ONLY
1441 
1442 // An Iterator that truly follows the iterator pattern.  Doesn't
1443 // support deletion but could be made to.
1444 //
1445 //   for (SimpleDUIterator i(n); i.has_next(); i.next()) {
1446 //     Node* m = i.get();
1447 //
1448 class SimpleDUIterator : public StackObj {
1449  private:
1450   Node* node;
1451   DUIterator_Fast i;
1452   DUIterator_Fast imax;
1453  public:
1454   SimpleDUIterator(Node* n): node(n), i(n->fast_outs(imax)) {}
1455   bool has_next() { return i < imax; }
1456   void next() { i++; }
1457   Node* get() { return node->fast_out(i); }
1458 };
1459 
1460 
1461 //-----------------------------------------------------------------------------
1462 // Map dense integer indices to Nodes.  Uses classic doubling-array trick.
1463 // Abstractly provides an infinite array of Node*'s, initialized to NULL.
1464 // Note that the constructor just zeros things, and since I use Arena
1465 // allocation I do not need a destructor to reclaim storage.
1466 class Node_Array : public ResourceObj {
1467   friend class VMStructs;
1468 protected:
1469   Arena *_a;                    // Arena to allocate in
1470   uint   _max;
1471   Node **_nodes;
1472   void   grow( uint i );        // Grow array node to fit
1473 public:
1474   Node_Array(Arena *a) : _a(a), _max(OptoNodeListSize) {
1475     _nodes = NEW_ARENA_ARRAY( a, Node *, OptoNodeListSize );
1476     for( int i = 0; i < OptoNodeListSize; i++ ) {
1477       _nodes[i] = NULL;
1478     }
1479   }
1480 
1481   Node_Array(Node_Array *na) : _a(na->_a), _max(na->_max), _nodes(na->_nodes) {}
1482   Node *operator[] ( uint i ) const // Lookup, or NULL for not mapped
1483   { return (i<_max) ? _nodes[i] : (Node*)NULL; }
1484   Node *at( uint i ) const { assert(i<_max,"oob"); return _nodes[i]; }
1485   Node **adr() { return _nodes; }
1486   // Extend the mapping: index i maps to Node *n.
1487   void map( uint i, Node *n ) { if( i>=_max ) grow(i); _nodes[i] = n; }
1488   void insert( uint i, Node *n );
1489   void remove( uint i );        // Remove, preserving order
1490   void sort( C_sort_func_t func);
1491   void reset( Arena *new_a );   // Zap mapping to empty; reclaim storage
1492   void clear();                 // Set all entries to NULL, keep storage
1493   uint Size() const { return _max; }
1494   void dump() const;
1495 };
1496 
1497 class Node_List : public Node_Array {
1498   friend class VMStructs;
1499   uint _cnt;
1500 public:
1501   Node_List() : Node_Array(Thread::current()->resource_area()), _cnt(0) {}
1502   Node_List(Arena *a) : Node_Array(a), _cnt(0) {}
1503   bool contains(const Node* n) const {
1504     for (uint e = 0; e < size(); e++) {
1505       if (at(e) == n) return true;
1506     }
1507     return false;
1508   }
1509   void insert( uint i, Node *n ) { Node_Array::insert(i,n); _cnt++; }
1510   void remove( uint i ) { Node_Array::remove(i); _cnt--; }
1511   void push( Node *b ) { map(_cnt++,b); }
1512   void yank( Node *n );         // Find and remove
1513   Node *pop() { return _nodes[--_cnt]; }
1514   Node *rpop() { Node *b = _nodes[0]; _nodes[0]=_nodes[--_cnt]; return b;}
1515   void clear() { _cnt = 0; Node_Array::clear(); } // retain storage
1516   uint size() const { return _cnt; }
1517   void dump() const;
1518   void dump_simple() const;
1519 };
1520 
1521 //------------------------------Unique_Node_List-------------------------------
1522 class Unique_Node_List : public Node_List {
1523   friend class VMStructs;
1524   VectorSet _in_worklist;
1525   uint _clock_index;            // Index in list where to pop from next
1526 public:
1527   Unique_Node_List() : Node_List(), _in_worklist(Thread::current()->resource_area()), _clock_index(0) {}
1528   Unique_Node_List(Arena *a) : Node_List(a), _in_worklist(a), _clock_index(0) {}
1529 
1530   void remove( Node *n );
1531   bool member( Node *n ) { return _in_worklist.test(n->_idx) != 0; }
1532   VectorSet &member_set(){ return _in_worklist; }
1533 
1534   void push( Node *b ) {
1535     if( !_in_worklist.test_set(b->_idx) )
1536       Node_List::push(b);
1537   }
1538   Node *pop() {
1539     if( _clock_index >= size() ) _clock_index = 0;
1540     Node *b = at(_clock_index);
1541     map( _clock_index, Node_List::pop());
1542     if (size() != 0) _clock_index++; // Always start from 0
1543     _in_worklist >>= b->_idx;
1544     return b;
1545   }
1546   Node *remove( uint i ) {
1547     Node *b = Node_List::at(i);
1548     _in_worklist >>= b->_idx;
1549     map(i,Node_List::pop());
1550     return b;
1551   }
1552   void yank( Node *n ) { _in_worklist >>= n->_idx; Node_List::yank(n); }
1553   void  clear() {
1554     _in_worklist.Clear();        // Discards storage but grows automatically
1555     Node_List::clear();
1556     _clock_index = 0;
1557   }
1558 
1559   // Used after parsing to remove useless nodes before Iterative GVN
1560   void remove_useless_nodes(VectorSet &useful);
1561 
1562 #ifndef PRODUCT
1563   void print_set() const { _in_worklist.print(); }
1564 #endif
1565 };
1566 
1567 // Inline definition of Compile::record_for_igvn must be deferred to this point.
1568 inline void Compile::record_for_igvn(Node* n) {
1569   _for_igvn->push(n);
1570 }
1571 
1572 //------------------------------Node_Stack-------------------------------------
1573 class Node_Stack {
1574   friend class VMStructs;
1575 protected:
1576   struct INode {
1577     Node *node; // Processed node
1578     uint  indx; // Index of next node's child
1579   };
1580   INode *_inode_top; // tos, stack grows up
1581   INode *_inode_max; // End of _inodes == _inodes + _max
1582   INode *_inodes;    // Array storage for the stack
1583   Arena *_a;         // Arena to allocate in
1584   void grow();
1585 public:
1586   Node_Stack(int size) {
1587     size_t max = (size > OptoNodeListSize) ? size : OptoNodeListSize;
1588     _a = Thread::current()->resource_area();
1589     _inodes = NEW_ARENA_ARRAY( _a, INode, max );
1590     _inode_max = _inodes + max;
1591     _inode_top = _inodes - 1; // stack is empty
1592   }
1593 
1594   Node_Stack(Arena *a, int size) : _a(a) {
1595     size_t max = (size > OptoNodeListSize) ? size : OptoNodeListSize;
1596     _inodes = NEW_ARENA_ARRAY( _a, INode, max );
1597     _inode_max = _inodes + max;
1598     _inode_top = _inodes - 1; // stack is empty
1599   }
1600 
1601   void pop() {
1602     assert(_inode_top >= _inodes, "node stack underflow");
1603     --_inode_top;
1604   }
1605   void push(Node *n, uint i) {
1606     ++_inode_top;
1607     if (_inode_top >= _inode_max) grow();
1608     INode *top = _inode_top; // optimization
1609     top->node = n;
1610     top->indx = i;
1611   }
1612   Node *node() const {
1613     return _inode_top->node;
1614   }
1615   Node* node_at(uint i) const {
1616     assert(_inodes + i <= _inode_top, "in range");
1617     return _inodes[i].node;
1618   }
1619   uint index() const {
1620     return _inode_top->indx;
1621   }
1622   uint index_at(uint i) const {
1623     assert(_inodes + i <= _inode_top, "in range");
1624     return _inodes[i].indx;
1625   }
1626   void set_node(Node *n) {
1627     _inode_top->node = n;
1628   }
1629   void set_index(uint i) {
1630     _inode_top->indx = i;
1631   }
1632   uint size_max() const { return (uint)pointer_delta(_inode_max, _inodes,  sizeof(INode)); } // Max size
1633   uint size() const { return (uint)pointer_delta((_inode_top+1), _inodes,  sizeof(INode)); } // Current size
1634   bool is_nonempty() const { return (_inode_top >= _inodes); }
1635   bool is_empty() const { return (_inode_top < _inodes); }
1636   void clear() { _inode_top = _inodes - 1; } // retain storage
1637 
1638   // Node_Stack is used to map nodes.
1639   Node* find(uint idx) const;
1640 };
1641 
1642 
1643 //-----------------------------Node_Notes--------------------------------------
1644 // Debugging or profiling annotations loosely and sparsely associated
1645 // with some nodes.  See Compile::node_notes_at for the accessor.
1646 class Node_Notes {
1647   friend class VMStructs;
1648   JVMState* _jvms;
1649 
1650 public:
1651   Node_Notes(JVMState* jvms = NULL) {
1652     _jvms = jvms;
1653   }
1654 
1655   JVMState* jvms()            { return _jvms; }
1656   void  set_jvms(JVMState* x) {        _jvms = x; }
1657 
1658   // True if there is nothing here.
1659   bool is_clear() {
1660     return (_jvms == NULL);
1661   }
1662 
1663   // Make there be nothing here.
1664   void clear() {
1665     _jvms = NULL;
1666   }
1667 
1668   // Make a new, clean node notes.
1669   static Node_Notes* make(Compile* C) {
1670     Node_Notes* nn = NEW_ARENA_ARRAY(C->comp_arena(), Node_Notes, 1);
1671     nn->clear();
1672     return nn;
1673   }
1674 
1675   Node_Notes* clone(Compile* C) {
1676     Node_Notes* nn = NEW_ARENA_ARRAY(C->comp_arena(), Node_Notes, 1);
1677     (*nn) = (*this);
1678     return nn;
1679   }
1680 
1681   // Absorb any information from source.
1682   bool update_from(Node_Notes* source) {
1683     bool changed = false;
1684     if (source != NULL) {
1685       if (source->jvms() != NULL) {
1686         set_jvms(source->jvms());
1687         changed = true;
1688       }
1689     }
1690     return changed;
1691   }
1692 };
1693 
1694 // Inlined accessors for Compile::node_nodes that require the preceding class:
1695 inline Node_Notes*
1696 Compile::locate_node_notes(GrowableArray<Node_Notes*>* arr,
1697                            int idx, bool can_grow) {
1698   assert(idx >= 0, "oob");
1699   int block_idx = (idx >> _log2_node_notes_block_size);
1700   int grow_by = (block_idx - (arr == NULL? 0: arr->length()));
1701   if (grow_by >= 0) {
1702     if (!can_grow) return NULL;
1703     grow_node_notes(arr, grow_by + 1);
1704   }
1705   if (arr == NULL) return NULL;
1706   // (Every element of arr is a sub-array of length _node_notes_block_size.)
1707   return arr->at(block_idx) + (idx & (_node_notes_block_size-1));
1708 }
1709 
1710 inline bool
1711 Compile::set_node_notes_at(int idx, Node_Notes* value) {
1712   if (value == NULL || value->is_clear())
1713     return false;  // nothing to write => write nothing
1714   Node_Notes* loc = locate_node_notes(_node_note_array, idx, true);
1715   assert(loc != NULL, "");
1716   return loc->update_from(value);
1717 }
1718 
1719 
1720 //------------------------------TypeNode---------------------------------------
1721 // Node with a Type constant.
1722 class TypeNode : public Node {
1723 protected:
1724   virtual uint hash() const;    // Check the type
1725   virtual uint cmp( const Node &n ) const;
1726   virtual uint size_of() const; // Size is bigger
1727   const Type* const _type;
1728 public:
1729   void set_type(const Type* t) {
1730     assert(t != NULL, "sanity");
1731     debug_only(uint check_hash = (VerifyHashTableKeys && _hash_lock) ? hash() : NO_HASH);
1732     *(const Type**)&_type = t;   // cast away const-ness
1733     // If this node is in the hash table, make sure it doesn't need a rehash.
1734     assert(check_hash == NO_HASH || check_hash == hash(), "type change must preserve hash code");
1735   }
1736   const Type* type() const { assert(_type != NULL, "sanity"); return _type; };
1737   TypeNode( const Type *t, uint required ) : Node(required), _type(t) {
1738     init_class_id(Class_Type);
1739   }
1740   virtual const Type* Value(PhaseGVN* phase) const;
1741   virtual const Type *bottom_type() const;
1742   virtual       uint  ideal_reg() const;
1743 #ifndef PRODUCT
1744   virtual void dump_spec(outputStream *st) const;
1745   virtual void dump_compact_spec(outputStream *st) const;
1746 #endif
1747 };
1748 
1749 #endif // SHARE_VM_OPTO_NODE_HPP