1 /*
   2  * Copyright (c) 1997, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_VM_UTILITIES_GLOBALDEFINITIONS_HPP
  26 #define SHARE_VM_UTILITIES_GLOBALDEFINITIONS_HPP
  27 
  28 #include "utilities/compilerWarnings.hpp"
  29 #include "utilities/debug.hpp"
  30 #include "utilities/macros.hpp"
  31 
  32 #include COMPILER_HEADER(utilities/globalDefinitions)
  33 
  34 // Defaults for macros that might be defined per compiler.
  35 #ifndef NOINLINE
  36 #define NOINLINE
  37 #endif
  38 #ifndef ALWAYSINLINE
  39 #define ALWAYSINLINE inline
  40 #endif
  41 
  42 #ifndef ATTRIBUTE_ALIGNED
  43 #define ATTRIBUTE_ALIGNED(x)
  44 #endif
  45 
  46 // This file holds all globally used constants & types, class (forward)
  47 // declarations and a few frequently used utility functions.
  48 
  49 //----------------------------------------------------------------------------------------------------
  50 // Printf-style formatters for fixed- and variable-width types as pointers and
  51 // integers.  These are derived from the definitions in inttypes.h.  If the platform
  52 // doesn't provide appropriate definitions, they should be provided in
  53 // the compiler-specific definitions file (e.g., globalDefinitions_gcc.hpp)
  54 
  55 #define BOOL_TO_STR(_b_) ((_b_) ? "true" : "false")
  56 
  57 // Format 32-bit quantities.
  58 #define INT32_FORMAT           "%" PRId32
  59 #define UINT32_FORMAT          "%" PRIu32
  60 #define INT32_FORMAT_W(width)  "%" #width PRId32
  61 #define UINT32_FORMAT_W(width) "%" #width PRIu32
  62 
  63 #define PTR32_FORMAT           "0x%08" PRIx32
  64 #define PTR32_FORMAT_W(width)  "0x%" #width PRIx32
  65 
  66 // Format 64-bit quantities.
  67 #define INT64_FORMAT           "%" PRId64
  68 #define UINT64_FORMAT          "%" PRIu64
  69 #define UINT64_FORMAT_X        "%" PRIx64
  70 #define INT64_FORMAT_W(width)  "%" #width PRId64
  71 #define UINT64_FORMAT_W(width) "%" #width PRIu64
  72 
  73 #define PTR64_FORMAT           "0x%016" PRIx64
  74 
  75 // Format jlong, if necessary
  76 #ifndef JLONG_FORMAT
  77 #define JLONG_FORMAT           INT64_FORMAT
  78 #endif
  79 #ifndef JULONG_FORMAT
  80 #define JULONG_FORMAT          UINT64_FORMAT
  81 #endif
  82 #ifndef JULONG_FORMAT_X
  83 #define JULONG_FORMAT_X        UINT64_FORMAT_X
  84 #endif
  85 
  86 // Format pointers which change size between 32- and 64-bit.
  87 #ifdef  _LP64
  88 #define INTPTR_FORMAT "0x%016" PRIxPTR
  89 #define PTR_FORMAT    "0x%016" PRIxPTR
  90 #else   // !_LP64
  91 #define INTPTR_FORMAT "0x%08"  PRIxPTR
  92 #define PTR_FORMAT    "0x%08"  PRIxPTR
  93 #endif  // _LP64
  94 
  95 // Format pointers without leading zeros
  96 #define INTPTRNZ_FORMAT "0x%"  PRIxPTR
  97 
  98 #define INTPTR_FORMAT_W(width)   "%" #width PRIxPTR
  99 
 100 #define SSIZE_FORMAT             "%"   PRIdPTR
 101 #define SIZE_FORMAT              "%"   PRIuPTR
 102 #define SIZE_FORMAT_HEX          "0x%" PRIxPTR
 103 #define SSIZE_FORMAT_W(width)    "%"   #width PRIdPTR
 104 #define SIZE_FORMAT_W(width)     "%"   #width PRIuPTR
 105 #define SIZE_FORMAT_HEX_W(width) "0x%" #width PRIxPTR
 106 
 107 #define INTX_FORMAT           "%" PRIdPTR
 108 #define UINTX_FORMAT          "%" PRIuPTR
 109 #define INTX_FORMAT_W(width)  "%" #width PRIdPTR
 110 #define UINTX_FORMAT_W(width) "%" #width PRIuPTR
 111 
 112 //----------------------------------------------------------------------------------------------------
 113 // Constants
 114 
 115 const int LogBytesPerShort   = 1;
 116 const int LogBytesPerInt     = 2;
 117 #ifdef _LP64
 118 const int LogBytesPerWord    = 3;
 119 #else
 120 const int LogBytesPerWord    = 2;
 121 #endif
 122 const int LogBytesPerLong    = 3;
 123 
 124 const int BytesPerShort      = 1 << LogBytesPerShort;
 125 const int BytesPerInt        = 1 << LogBytesPerInt;
 126 const int BytesPerWord       = 1 << LogBytesPerWord;
 127 const int BytesPerLong       = 1 << LogBytesPerLong;
 128 
 129 const int LogBitsPerByte     = 3;
 130 const int LogBitsPerShort    = LogBitsPerByte + LogBytesPerShort;
 131 const int LogBitsPerInt      = LogBitsPerByte + LogBytesPerInt;
 132 const int LogBitsPerWord     = LogBitsPerByte + LogBytesPerWord;
 133 const int LogBitsPerLong     = LogBitsPerByte + LogBytesPerLong;
 134 
 135 const int BitsPerByte        = 1 << LogBitsPerByte;
 136 const int BitsPerShort       = 1 << LogBitsPerShort;
 137 const int BitsPerInt         = 1 << LogBitsPerInt;
 138 const int BitsPerWord        = 1 << LogBitsPerWord;
 139 const int BitsPerLong        = 1 << LogBitsPerLong;
 140 
 141 const int WordAlignmentMask  = (1 << LogBytesPerWord) - 1;
 142 const int LongAlignmentMask  = (1 << LogBytesPerLong) - 1;
 143 
 144 const int WordsPerLong       = 2;       // Number of stack entries for longs
 145 
 146 const int oopSize            = sizeof(char*); // Full-width oop
 147 extern int heapOopSize;                       // Oop within a java object
 148 const int wordSize           = sizeof(char*);
 149 const int longSize           = sizeof(jlong);
 150 const int jintSize           = sizeof(jint);
 151 const int size_tSize         = sizeof(size_t);
 152 
 153 const int BytesPerOop        = BytesPerWord;  // Full-width oop
 154 
 155 extern int LogBytesPerHeapOop;                // Oop within a java object
 156 extern int LogBitsPerHeapOop;
 157 extern int BytesPerHeapOop;
 158 extern int BitsPerHeapOop;
 159 
 160 const int BitsPerJavaInteger = 32;
 161 const int BitsPerJavaLong    = 64;
 162 const int BitsPerSize_t      = size_tSize * BitsPerByte;
 163 
 164 // Size of a char[] needed to represent a jint as a string in decimal.
 165 const int jintAsStringSize = 12;
 166 
 167 // In fact this should be
 168 // log2_intptr(sizeof(class JavaThread)) - log2_intptr(64);
 169 // see os::set_memory_serialize_page()
 170 #ifdef _LP64
 171 const int SerializePageShiftCount = 4;
 172 #else
 173 const int SerializePageShiftCount = 3;
 174 #endif
 175 
 176 // An opaque struct of heap-word width, so that HeapWord* can be a generic
 177 // pointer into the heap.  We require that object sizes be measured in
 178 // units of heap words, so that that
 179 //   HeapWord* hw;
 180 //   hw += oop(hw)->foo();
 181 // works, where foo is a method (like size or scavenge) that returns the
 182 // object size.
 183 class HeapWord {
 184   friend class VMStructs;
 185  private:
 186   char* i;
 187 #ifndef PRODUCT
 188  public:
 189   char* value() { return i; }
 190 #endif
 191 };
 192 
 193 // Analogous opaque struct for metadata allocated from
 194 // metaspaces.
 195 class MetaWord {
 196  private:
 197   char* i;
 198 };
 199 
 200 // HeapWordSize must be 2^LogHeapWordSize.
 201 const int HeapWordSize        = sizeof(HeapWord);
 202 #ifdef _LP64
 203 const int LogHeapWordSize     = 3;
 204 #else
 205 const int LogHeapWordSize     = 2;
 206 #endif
 207 const int HeapWordsPerLong    = BytesPerLong / HeapWordSize;
 208 const int LogHeapWordsPerLong = LogBytesPerLong - LogHeapWordSize;
 209 
 210 // The minimum number of native machine words necessary to contain "byte_size"
 211 // bytes.
 212 inline size_t heap_word_size(size_t byte_size) {
 213   return (byte_size + (HeapWordSize-1)) >> LogHeapWordSize;
 214 }
 215 
 216 //-------------------------------------------
 217 // Constant for jlong (standardized by C++11)
 218 
 219 // Build a 64bit integer constant
 220 #define CONST64(x)  (x ## LL)
 221 #define UCONST64(x) (x ## ULL)
 222 
 223 const jlong min_jlong = CONST64(0x8000000000000000);
 224 const jlong max_jlong = CONST64(0x7fffffffffffffff);
 225 
 226 const size_t K                  = 1024;
 227 const size_t M                  = K*K;
 228 const size_t G                  = M*K;
 229 const size_t HWperKB            = K / sizeof(HeapWord);
 230 
 231 // Constants for converting from a base unit to milli-base units.  For
 232 // example from seconds to milliseconds and microseconds
 233 
 234 const int MILLIUNITS    = 1000;         // milli units per base unit
 235 const int MICROUNITS    = 1000000;      // micro units per base unit
 236 const int NANOUNITS     = 1000000000;   // nano units per base unit
 237 
 238 const jlong NANOSECS_PER_SEC      = CONST64(1000000000);
 239 const jint  NANOSECS_PER_MILLISEC = 1000000;
 240 
 241 // Proper units routines try to maintain at least three significant digits.
 242 // In worst case, it would print five significant digits with lower prefix.
 243 // G is close to MAX_SIZE on 32-bit platforms, so its product can easily overflow,
 244 // and therefore we need to be careful.
 245 
 246 inline const char* proper_unit_for_byte_size(size_t s) {
 247 #ifdef _LP64
 248   if (s >= 100*G) {
 249     return "G";
 250   }
 251 #endif
 252   if (s >= 100*M) {
 253     return "M";
 254   } else if (s >= 100*K) {
 255     return "K";
 256   } else {
 257     return "B";
 258   }
 259 }
 260 
 261 template <class T>
 262 inline T byte_size_in_proper_unit(T s) {
 263 #ifdef _LP64
 264   if (s >= 100*G) {
 265     return (T)(s/G);
 266   }
 267 #endif
 268   if (s >= 100*M) {
 269     return (T)(s/M);
 270   } else if (s >= 100*K) {
 271     return (T)(s/K);
 272   } else {
 273     return s;
 274   }
 275 }
 276 
 277 inline const char* exact_unit_for_byte_size(size_t s) {
 278 #ifdef _LP64
 279   if (s >= G && (s % G) == 0) {
 280     return "G";
 281   }
 282 #endif
 283   if (s >= M && (s % M) == 0) {
 284     return "M";
 285   }
 286   if (s >= K && (s % K) == 0) {
 287     return "K";
 288   }
 289   return "B";
 290 }
 291 
 292 inline size_t byte_size_in_exact_unit(size_t s) {
 293 #ifdef _LP64
 294   if (s >= G && (s % G) == 0) {
 295     return s / G;
 296   }
 297 #endif
 298   if (s >= M && (s % M) == 0) {
 299     return s / M;
 300   }
 301   if (s >= K && (s % K) == 0) {
 302     return s / K;
 303   }
 304   return s;
 305 }
 306 
 307 //----------------------------------------------------------------------------------------------------
 308 // VM type definitions
 309 
 310 // intx and uintx are the 'extended' int and 'extended' unsigned int types;
 311 // they are 32bit wide on a 32-bit platform, and 64bit wide on a 64bit platform.
 312 
 313 typedef intptr_t  intx;
 314 typedef uintptr_t uintx;
 315 
 316 const intx  min_intx  = (intx)1 << (sizeof(intx)*BitsPerByte-1);
 317 const intx  max_intx  = (uintx)min_intx - 1;
 318 const uintx max_uintx = (uintx)-1;
 319 
 320 // Table of values:
 321 //      sizeof intx         4               8
 322 // min_intx             0x80000000      0x8000000000000000
 323 // max_intx             0x7FFFFFFF      0x7FFFFFFFFFFFFFFF
 324 // max_uintx            0xFFFFFFFF      0xFFFFFFFFFFFFFFFF
 325 
 326 typedef unsigned int uint;   NEEDS_CLEANUP
 327 
 328 
 329 //----------------------------------------------------------------------------------------------------
 330 // Java type definitions
 331 
 332 // All kinds of 'plain' byte addresses
 333 typedef   signed char s_char;
 334 typedef unsigned char u_char;
 335 typedef u_char*       address;
 336 typedef uintptr_t     address_word; // unsigned integer which will hold a pointer
 337                                     // except for some implementations of a C++
 338                                     // linkage pointer to function. Should never
 339                                     // need one of those to be placed in this
 340                                     // type anyway.
 341 
 342 //  Utility functions to "portably" (?) bit twiddle pointers
 343 //  Where portable means keep ANSI C++ compilers quiet
 344 
 345 inline address       set_address_bits(address x, int m)       { return address(intptr_t(x) | m); }
 346 inline address       clear_address_bits(address x, int m)     { return address(intptr_t(x) & ~m); }
 347 
 348 //  Utility functions to "portably" make cast to/from function pointers.
 349 
 350 inline address_word  mask_address_bits(address x, int m)      { return address_word(x) & m; }
 351 inline address_word  castable_address(address x)              { return address_word(x) ; }
 352 inline address_word  castable_address(void* x)                { return address_word(x) ; }
 353 
 354 // Pointer subtraction.
 355 // The idea here is to avoid ptrdiff_t, which is signed and so doesn't have
 356 // the range we might need to find differences from one end of the heap
 357 // to the other.
 358 // A typical use might be:
 359 //     if (pointer_delta(end(), top()) >= size) {
 360 //       // enough room for an object of size
 361 //       ...
 362 // and then additions like
 363 //       ... top() + size ...
 364 // are safe because we know that top() is at least size below end().
 365 inline size_t pointer_delta(const volatile void* left,
 366                             const volatile void* right,
 367                             size_t element_size) {
 368   return (((uintptr_t) left) - ((uintptr_t) right)) / element_size;
 369 }
 370 
 371 // A version specialized for HeapWord*'s.
 372 inline size_t pointer_delta(const HeapWord* left, const HeapWord* right) {
 373   return pointer_delta(left, right, sizeof(HeapWord));
 374 }
 375 // A version specialized for MetaWord*'s.
 376 inline size_t pointer_delta(const MetaWord* left, const MetaWord* right) {
 377   return pointer_delta(left, right, sizeof(MetaWord));
 378 }
 379 
 380 //
 381 // ANSI C++ does not allow casting from one pointer type to a function pointer
 382 // directly without at best a warning. This macro accomplishes it silently
 383 // In every case that is present at this point the value be cast is a pointer
 384 // to a C linkage function. In some case the type used for the cast reflects
 385 // that linkage and a picky compiler would not complain. In other cases because
 386 // there is no convenient place to place a typedef with extern C linkage (i.e
 387 // a platform dependent header file) it doesn't. At this point no compiler seems
 388 // picky enough to catch these instances (which are few). It is possible that
 389 // using templates could fix these for all cases. This use of templates is likely
 390 // so far from the middle of the road that it is likely to be problematic in
 391 // many C++ compilers.
 392 //
 393 #define CAST_TO_FN_PTR(func_type, value) (reinterpret_cast<func_type>(value))
 394 #define CAST_FROM_FN_PTR(new_type, func_ptr) ((new_type)((address_word)(func_ptr)))
 395 
 396 // Unsigned byte types for os and stream.hpp
 397 
 398 // Unsigned one, two, four and eigth byte quantities used for describing
 399 // the .class file format. See JVM book chapter 4.
 400 
 401 typedef jubyte  u1;
 402 typedef jushort u2;
 403 typedef juint   u4;
 404 typedef julong  u8;
 405 
 406 const jubyte  max_jubyte  = (jubyte)-1;  // 0xFF       largest jubyte
 407 const jushort max_jushort = (jushort)-1; // 0xFFFF     largest jushort
 408 const juint   max_juint   = (juint)-1;   // 0xFFFFFFFF largest juint
 409 const julong  max_julong  = (julong)-1;  // 0xFF....FF largest julong
 410 
 411 typedef jbyte  s1;
 412 typedef jshort s2;
 413 typedef jint   s4;
 414 typedef jlong  s8;
 415 
 416 const jbyte min_jbyte = -(1 << 7);       // smallest jbyte
 417 const jbyte max_jbyte = (1 << 7) - 1;    // largest jbyte
 418 const jshort min_jshort = -(1 << 15);    // smallest jshort
 419 const jshort max_jshort = (1 << 15) - 1; // largest jshort
 420 
 421 const jint min_jint = (jint)1 << (sizeof(jint)*BitsPerByte-1); // 0x80000000 == smallest jint
 422 const jint max_jint = (juint)min_jint - 1;                     // 0x7FFFFFFF == largest jint
 423 
 424 //----------------------------------------------------------------------------------------------------
 425 // JVM spec restrictions
 426 
 427 const int max_method_code_size = 64*K - 1;  // JVM spec, 2nd ed. section 4.8.1 (p.134)
 428 
 429 //----------------------------------------------------------------------------------------------------
 430 // Default and minimum StringTableSize values
 431 
 432 const int defaultStringTableSize = NOT_LP64(1024) LP64_ONLY(65536);
 433 const int minimumStringTableSize = 128;
 434 
 435 const int defaultSymbolTableSize = 20011;
 436 const int minimumSymbolTableSize = 1009;
 437 
 438 
 439 //----------------------------------------------------------------------------------------------------
 440 // HotSwap - for JVMTI   aka Class File Replacement and PopFrame
 441 //
 442 // Determines whether on-the-fly class replacement and frame popping are enabled.
 443 
 444 #define HOTSWAP
 445 
 446 //----------------------------------------------------------------------------------------------------
 447 // Object alignment, in units of HeapWords.
 448 //
 449 // Minimum is max(BytesPerLong, BytesPerDouble, BytesPerOop) / HeapWordSize, so jlong, jdouble and
 450 // reference fields can be naturally aligned.
 451 
 452 extern int MinObjAlignment;
 453 extern int MinObjAlignmentInBytes;
 454 extern int MinObjAlignmentInBytesMask;
 455 
 456 extern int LogMinObjAlignment;
 457 extern int LogMinObjAlignmentInBytes;
 458 
 459 const int LogKlassAlignmentInBytes = 3;
 460 const int LogKlassAlignment        = LogKlassAlignmentInBytes - LogHeapWordSize;
 461 const int KlassAlignmentInBytes    = 1 << LogKlassAlignmentInBytes;
 462 const int KlassAlignment           = KlassAlignmentInBytes / HeapWordSize;
 463 
 464 // Maximal size of heap where unscaled compression can be used. Also upper bound
 465 // for heap placement: 4GB.
 466 const  uint64_t UnscaledOopHeapMax = (uint64_t(max_juint) + 1);
 467 // Maximal size of heap where compressed oops can be used. Also upper bound for heap
 468 // placement for zero based compression algorithm: UnscaledOopHeapMax << LogMinObjAlignmentInBytes.
 469 extern uint64_t OopEncodingHeapMax;
 470 
 471 // Maximal size of compressed class space. Above this limit compression is not possible.
 472 // Also upper bound for placement of zero based class space. (Class space is further limited
 473 // to be < 3G, see arguments.cpp.)
 474 const  uint64_t KlassEncodingMetaspaceMax = (uint64_t(max_juint) + 1) << LogKlassAlignmentInBytes;
 475 
 476 // Machine dependent stuff
 477 
 478 // The maximum size of the code cache.  Can be overridden by targets.
 479 #define CODE_CACHE_SIZE_LIMIT (2*G)
 480 // Allow targets to reduce the default size of the code cache.
 481 #define CODE_CACHE_DEFAULT_LIMIT CODE_CACHE_SIZE_LIMIT
 482 
 483 #include CPU_HEADER(globalDefinitions)
 484 
 485 // To assure the IRIW property on processors that are not multiple copy
 486 // atomic, sync instructions must be issued between volatile reads to
 487 // assure their ordering, instead of after volatile stores.
 488 // (See "A Tutorial Introduction to the ARM and POWER Relaxed Memory Models"
 489 // by Luc Maranget, Susmit Sarkar and Peter Sewell, INRIA/Cambridge)
 490 #ifdef CPU_NOT_MULTIPLE_COPY_ATOMIC
 491 const bool support_IRIW_for_not_multiple_copy_atomic_cpu = true;
 492 #else
 493 const bool support_IRIW_for_not_multiple_copy_atomic_cpu = false;
 494 #endif
 495 
 496 // The expected size in bytes of a cache line, used to pad data structures.
 497 #ifndef DEFAULT_CACHE_LINE_SIZE
 498   #define DEFAULT_CACHE_LINE_SIZE 64
 499 #endif
 500 
 501 
 502 //----------------------------------------------------------------------------------------------------
 503 // Utility macros for compilers
 504 // used to silence compiler warnings
 505 
 506 #define Unused_Variable(var) var
 507 
 508 
 509 //----------------------------------------------------------------------------------------------------
 510 // Miscellaneous
 511 
 512 // 6302670 Eliminate Hotspot __fabsf dependency
 513 // All fabs() callers should call this function instead, which will implicitly
 514 // convert the operand to double, avoiding a dependency on __fabsf which
 515 // doesn't exist in early versions of Solaris 8.
 516 inline double fabsd(double value) {
 517   return fabs(value);
 518 }
 519 
 520 // Returns numerator/denominator as percentage value from 0 to 100. If denominator
 521 // is zero, return 0.0.
 522 template<typename T>
 523 inline double percent_of(T numerator, T denominator) {
 524   return denominator != 0 ? (double)numerator / denominator * 100.0 : 0.0;
 525 }
 526 
 527 //----------------------------------------------------------------------------------------------------
 528 // Special casts
 529 // Cast floats into same-size integers and vice-versa w/o changing bit-pattern
 530 typedef union {
 531   jfloat f;
 532   jint i;
 533 } FloatIntConv;
 534 
 535 typedef union {
 536   jdouble d;
 537   jlong l;
 538   julong ul;
 539 } DoubleLongConv;
 540 
 541 inline jint    jint_cast    (jfloat  x)  { return ((FloatIntConv*)&x)->i; }
 542 inline jfloat  jfloat_cast  (jint    x)  { return ((FloatIntConv*)&x)->f; }
 543 
 544 inline jlong   jlong_cast   (jdouble x)  { return ((DoubleLongConv*)&x)->l;  }
 545 inline julong  julong_cast  (jdouble x)  { return ((DoubleLongConv*)&x)->ul; }
 546 inline jdouble jdouble_cast (jlong   x)  { return ((DoubleLongConv*)&x)->d;  }
 547 
 548 inline jint low (jlong value)                    { return jint(value); }
 549 inline jint high(jlong value)                    { return jint(value >> 32); }
 550 
 551 // the fancy casts are a hopefully portable way
 552 // to do unsigned 32 to 64 bit type conversion
 553 inline void set_low (jlong* value, jint low )    { *value &= (jlong)0xffffffff << 32;
 554                                                    *value |= (jlong)(julong)(juint)low; }
 555 
 556 inline void set_high(jlong* value, jint high)    { *value &= (jlong)(julong)(juint)0xffffffff;
 557                                                    *value |= (jlong)high       << 32; }
 558 
 559 inline jlong jlong_from(jint h, jint l) {
 560   jlong result = 0; // initialization to avoid warning
 561   set_high(&result, h);
 562   set_low(&result,  l);
 563   return result;
 564 }
 565 
 566 union jlong_accessor {
 567   jint  words[2];
 568   jlong long_value;
 569 };
 570 
 571 void basic_types_init(); // cannot define here; uses assert
 572 
 573 
 574 // NOTE: replicated in SA in vm/agent/sun/jvm/hotspot/runtime/BasicType.java
 575 enum BasicType {
 576   T_BOOLEAN     =  4,
 577   T_CHAR        =  5,
 578   T_FLOAT       =  6,
 579   T_DOUBLE      =  7,
 580   T_BYTE        =  8,
 581   T_SHORT       =  9,
 582   T_INT         = 10,
 583   T_LONG        = 11,
 584   T_OBJECT      = 12,
 585   T_ARRAY       = 13,
 586   T_VOID        = 14,
 587   T_ADDRESS     = 15,
 588   T_NARROWOOP   = 16,
 589   T_METADATA    = 17,
 590   T_NARROWKLASS = 18,
 591   T_CONFLICT    = 19, // for stack value type with conflicting contents
 592   T_ILLEGAL     = 99
 593 };
 594 
 595 inline bool is_java_primitive(BasicType t) {
 596   return T_BOOLEAN <= t && t <= T_LONG;
 597 }
 598 
 599 inline bool is_subword_type(BasicType t) {
 600   // these guys are processed exactly like T_INT in calling sequences:
 601   return (t == T_BOOLEAN || t == T_CHAR || t == T_BYTE || t == T_SHORT);
 602 }
 603 
 604 inline bool is_signed_subword_type(BasicType t) {
 605   return (t == T_BYTE || t == T_SHORT);
 606 }
 607 
 608 inline bool is_reference_type(BasicType t) {
 609   return (t == T_OBJECT || t == T_ARRAY);
 610 }
 611 
 612 // Convert a char from a classfile signature to a BasicType
 613 inline BasicType char2type(char c) {
 614   switch( c ) {
 615   case 'B': return T_BYTE;
 616   case 'C': return T_CHAR;
 617   case 'D': return T_DOUBLE;
 618   case 'F': return T_FLOAT;
 619   case 'I': return T_INT;
 620   case 'J': return T_LONG;
 621   case 'S': return T_SHORT;
 622   case 'Z': return T_BOOLEAN;
 623   case 'V': return T_VOID;
 624   case 'L': return T_OBJECT;
 625   case '[': return T_ARRAY;
 626   }
 627   return T_ILLEGAL;
 628 }
 629 
 630 extern char type2char_tab[T_CONFLICT+1];     // Map a BasicType to a jchar
 631 inline char type2char(BasicType t) { return (uint)t < T_CONFLICT+1 ? type2char_tab[t] : 0; }
 632 extern int type2size[T_CONFLICT+1];         // Map BasicType to result stack elements
 633 extern const char* type2name_tab[T_CONFLICT+1];     // Map a BasicType to a jchar
 634 inline const char* type2name(BasicType t) { return (uint)t < T_CONFLICT+1 ? type2name_tab[t] : NULL; }
 635 extern BasicType name2type(const char* name);
 636 
 637 // Auxiliary math routines
 638 // least common multiple
 639 extern size_t lcm(size_t a, size_t b);
 640 
 641 
 642 // NOTE: replicated in SA in vm/agent/sun/jvm/hotspot/runtime/BasicType.java
 643 enum BasicTypeSize {
 644   T_BOOLEAN_size     = 1,
 645   T_CHAR_size        = 1,
 646   T_FLOAT_size       = 1,
 647   T_DOUBLE_size      = 2,
 648   T_BYTE_size        = 1,
 649   T_SHORT_size       = 1,
 650   T_INT_size         = 1,
 651   T_LONG_size        = 2,
 652   T_OBJECT_size      = 1,
 653   T_ARRAY_size       = 1,
 654   T_NARROWOOP_size   = 1,
 655   T_NARROWKLASS_size = 1,
 656   T_VOID_size        = 0
 657 };
 658 
 659 
 660 // maps a BasicType to its instance field storage type:
 661 // all sub-word integral types are widened to T_INT
 662 extern BasicType type2field[T_CONFLICT+1];
 663 extern BasicType type2wfield[T_CONFLICT+1];
 664 
 665 
 666 // size in bytes
 667 enum ArrayElementSize {
 668   T_BOOLEAN_aelem_bytes     = 1,
 669   T_CHAR_aelem_bytes        = 2,
 670   T_FLOAT_aelem_bytes       = 4,
 671   T_DOUBLE_aelem_bytes      = 8,
 672   T_BYTE_aelem_bytes        = 1,
 673   T_SHORT_aelem_bytes       = 2,
 674   T_INT_aelem_bytes         = 4,
 675   T_LONG_aelem_bytes        = 8,
 676 #ifdef _LP64
 677   T_OBJECT_aelem_bytes      = 8,
 678   T_ARRAY_aelem_bytes       = 8,
 679 #else
 680   T_OBJECT_aelem_bytes      = 4,
 681   T_ARRAY_aelem_bytes       = 4,
 682 #endif
 683   T_NARROWOOP_aelem_bytes   = 4,
 684   T_NARROWKLASS_aelem_bytes = 4,
 685   T_VOID_aelem_bytes        = 0
 686 };
 687 
 688 extern int _type2aelembytes[T_CONFLICT+1]; // maps a BasicType to nof bytes used by its array element
 689 #ifdef ASSERT
 690 extern int type2aelembytes(BasicType t, bool allow_address = false); // asserts
 691 #else
 692 inline int type2aelembytes(BasicType t, bool allow_address = false) { return _type2aelembytes[t]; }
 693 #endif
 694 
 695 
 696 // JavaValue serves as a container for arbitrary Java values.
 697 
 698 class JavaValue {
 699 
 700  public:
 701   typedef union JavaCallValue {
 702     jfloat   f;
 703     jdouble  d;
 704     jint     i;
 705     jlong    l;
 706     jobject  h;
 707   } JavaCallValue;
 708 
 709  private:
 710   BasicType _type;
 711   JavaCallValue _value;
 712 
 713  public:
 714   JavaValue(BasicType t = T_ILLEGAL) { _type = t; }
 715 
 716   JavaValue(jfloat value) {
 717     _type    = T_FLOAT;
 718     _value.f = value;
 719   }
 720 
 721   JavaValue(jdouble value) {
 722     _type    = T_DOUBLE;
 723     _value.d = value;
 724   }
 725 
 726  jfloat get_jfloat() const { return _value.f; }
 727  jdouble get_jdouble() const { return _value.d; }
 728  jint get_jint() const { return _value.i; }
 729  jlong get_jlong() const { return _value.l; }
 730  jobject get_jobject() const { return _value.h; }
 731  JavaCallValue* get_value_addr() { return &_value; }
 732  BasicType get_type() const { return _type; }
 733 
 734  void set_jfloat(jfloat f) { _value.f = f;}
 735  void set_jdouble(jdouble d) { _value.d = d;}
 736  void set_jint(jint i) { _value.i = i;}
 737  void set_jlong(jlong l) { _value.l = l;}
 738  void set_jobject(jobject h) { _value.h = h;}
 739  void set_type(BasicType t) { _type = t; }
 740 
 741  jboolean get_jboolean() const { return (jboolean) (_value.i);}
 742  jbyte get_jbyte() const { return (jbyte) (_value.i);}
 743  jchar get_jchar() const { return (jchar) (_value.i);}
 744  jshort get_jshort() const { return (jshort) (_value.i);}
 745 
 746 };
 747 
 748 
 749 #define STACK_BIAS      0
 750 // V9 Sparc CPU's running in 64 Bit mode use a stack bias of 7ff
 751 // in order to extend the reach of the stack pointer.
 752 #if defined(SPARC) && defined(_LP64)
 753 #undef STACK_BIAS
 754 #define STACK_BIAS      0x7ff
 755 #endif
 756 
 757 
 758 // TosState describes the top-of-stack state before and after the execution of
 759 // a bytecode or method. The top-of-stack value may be cached in one or more CPU
 760 // registers. The TosState corresponds to the 'machine representation' of this cached
 761 // value. There's 4 states corresponding to the JAVA types int, long, float & double
 762 // as well as a 5th state in case the top-of-stack value is actually on the top
 763 // of stack (in memory) and thus not cached. The atos state corresponds to the itos
 764 // state when it comes to machine representation but is used separately for (oop)
 765 // type specific operations (e.g. verification code).
 766 
 767 enum TosState {         // describes the tos cache contents
 768   btos = 0,             // byte, bool tos cached
 769   ztos = 1,             // byte, bool tos cached
 770   ctos = 2,             // char tos cached
 771   stos = 3,             // short tos cached
 772   itos = 4,             // int tos cached
 773   ltos = 5,             // long tos cached
 774   ftos = 6,             // float tos cached
 775   dtos = 7,             // double tos cached
 776   atos = 8,             // object cached
 777   vtos = 9,             // tos not cached
 778   number_of_states,
 779   ilgl                  // illegal state: should not occur
 780 };
 781 
 782 
 783 inline TosState as_TosState(BasicType type) {
 784   switch (type) {
 785     case T_BYTE   : return btos;
 786     case T_BOOLEAN: return ztos;
 787     case T_CHAR   : return ctos;
 788     case T_SHORT  : return stos;
 789     case T_INT    : return itos;
 790     case T_LONG   : return ltos;
 791     case T_FLOAT  : return ftos;
 792     case T_DOUBLE : return dtos;
 793     case T_VOID   : return vtos;
 794     case T_ARRAY  : // fall through
 795     case T_OBJECT : return atos;
 796     default       : return ilgl;
 797   }
 798 }
 799 
 800 inline BasicType as_BasicType(TosState state) {
 801   switch (state) {
 802     case btos : return T_BYTE;
 803     case ztos : return T_BOOLEAN;
 804     case ctos : return T_CHAR;
 805     case stos : return T_SHORT;
 806     case itos : return T_INT;
 807     case ltos : return T_LONG;
 808     case ftos : return T_FLOAT;
 809     case dtos : return T_DOUBLE;
 810     case atos : return T_OBJECT;
 811     case vtos : return T_VOID;
 812     default   : return T_ILLEGAL;
 813   }
 814 }
 815 
 816 
 817 // Helper function to convert BasicType info into TosState
 818 // Note: Cannot define here as it uses global constant at the time being.
 819 TosState as_TosState(BasicType type);
 820 
 821 
 822 // JavaThreadState keeps track of which part of the code a thread is executing in. This
 823 // information is needed by the safepoint code.
 824 //
 825 // There are 4 essential states:
 826 //
 827 //  _thread_new         : Just started, but not executed init. code yet (most likely still in OS init code)
 828 //  _thread_in_native   : In native code. This is a safepoint region, since all oops will be in jobject handles
 829 //  _thread_in_vm       : Executing in the vm
 830 //  _thread_in_Java     : Executing either interpreted or compiled Java code (or could be in a stub)
 831 //
 832 // Each state has an associated xxxx_trans state, which is an intermediate state used when a thread is in
 833 // a transition from one state to another. These extra states makes it possible for the safepoint code to
 834 // handle certain thread_states without having to suspend the thread - making the safepoint code faster.
 835 //
 836 // Given a state, the xxxx_trans state can always be found by adding 1.
 837 //
 838 enum JavaThreadState {
 839   _thread_uninitialized     =  0, // should never happen (missing initialization)
 840   _thread_new               =  2, // just starting up, i.e., in process of being initialized
 841   _thread_new_trans         =  3, // corresponding transition state (not used, included for completness)
 842   _thread_in_native         =  4, // running in native code
 843   _thread_in_native_trans   =  5, // corresponding transition state
 844   _thread_in_vm             =  6, // running in VM
 845   _thread_in_vm_trans       =  7, // corresponding transition state
 846   _thread_in_Java           =  8, // running in Java or in stub code
 847   _thread_in_Java_trans     =  9, // corresponding transition state (not used, included for completness)
 848   _thread_blocked           = 10, // blocked in vm
 849   _thread_blocked_trans     = 11, // corresponding transition state
 850   _thread_max_state         = 12  // maximum thread state+1 - used for statistics allocation
 851 };
 852 
 853 
 854 
 855 //----------------------------------------------------------------------------------------------------
 856 // 'Forward' declarations of frequently used classes
 857 // (in order to reduce interface dependencies & reduce
 858 // number of unnecessary compilations after changes)
 859 
 860 class ClassFileStream;
 861 
 862 class Event;
 863 
 864 class Thread;
 865 class  VMThread;
 866 class  JavaThread;
 867 class Threads;
 868 
 869 class VM_Operation;
 870 class VMOperationQueue;
 871 
 872 class CodeBlob;
 873 class  CompiledMethod;
 874 class   nmethod;
 875 class RuntimeBlob;
 876 class  OSRAdapter;
 877 class  I2CAdapter;
 878 class  C2IAdapter;
 879 class CompiledIC;
 880 class relocInfo;
 881 class ScopeDesc;
 882 class PcDesc;
 883 
 884 class Recompiler;
 885 class Recompilee;
 886 class RecompilationPolicy;
 887 class RFrame;
 888 class  CompiledRFrame;
 889 class  InterpretedRFrame;
 890 
 891 class vframe;
 892 class   javaVFrame;
 893 class     interpretedVFrame;
 894 class     compiledVFrame;
 895 class     deoptimizedVFrame;
 896 class   externalVFrame;
 897 class     entryVFrame;
 898 
 899 class RegisterMap;
 900 
 901 class Mutex;
 902 class Monitor;
 903 class BasicLock;
 904 class BasicObjectLock;
 905 
 906 class PeriodicTask;
 907 
 908 class JavaCallWrapper;
 909 
 910 class   oopDesc;
 911 class   metaDataOopDesc;
 912 
 913 class NativeCall;
 914 
 915 class zone;
 916 
 917 class StubQueue;
 918 
 919 class outputStream;
 920 
 921 class ResourceArea;
 922 
 923 class DebugInformationRecorder;
 924 class ScopeValue;
 925 class CompressedStream;
 926 class   DebugInfoReadStream;
 927 class   DebugInfoWriteStream;
 928 class LocationValue;
 929 class ConstantValue;
 930 class IllegalValue;
 931 
 932 class PrivilegedElement;
 933 class MonitorArray;
 934 
 935 class MonitorInfo;
 936 
 937 class OffsetClosure;
 938 class OopMapCache;
 939 class InterpreterOopMap;
 940 class OopMapCacheEntry;
 941 class OSThread;
 942 
 943 typedef int (*OSThreadStartFunc)(void*);
 944 
 945 class Space;
 946 
 947 class JavaValue;
 948 class methodHandle;
 949 class JavaCallArguments;
 950 
 951 //----------------------------------------------------------------------------------------------------
 952 // Special constants for debugging
 953 
 954 const jint     badInt           = -3;                       // generic "bad int" value
 955 const intptr_t badAddressVal    = -2;                       // generic "bad address" value
 956 const intptr_t badOopVal        = -1;                       // generic "bad oop" value
 957 const intptr_t badHeapOopVal    = (intptr_t) CONST64(0x2BAD4B0BBAADBABE); // value used to zap heap after GC
 958 const int      badStackSegVal   = 0xCA;                     // value used to zap stack segments
 959 const int      badHandleValue   = 0xBC;                     // value used to zap vm handle area
 960 const int      badResourceValue = 0xAB;                     // value used to zap resource area
 961 const int      freeBlockPad     = 0xBA;                     // value used to pad freed blocks.
 962 const int      uninitBlockPad   = 0xF1;                     // value used to zap newly malloc'd blocks.
 963 const juint    uninitMetaWordVal= 0xf7f7f7f7;               // value used to zap newly allocated metachunk
 964 const juint    badHeapWordVal   = 0xBAADBABE;               // value used to zap heap after GC
 965 const juint    badMetaWordVal   = 0xBAADFADE;               // value used to zap metadata heap after GC
 966 const int      badCodeHeapNewVal= 0xCC;                     // value used to zap Code heap at allocation
 967 const int      badCodeHeapFreeVal = 0xDD;                   // value used to zap Code heap at deallocation
 968 
 969 
 970 // (These must be implemented as #defines because C++ compilers are
 971 // not obligated to inline non-integral constants!)
 972 #define       badAddress        ((address)::badAddressVal)
 973 #define       badOop            (cast_to_oop(::badOopVal))
 974 #define       badHeapWord       (::badHeapWordVal)
 975 
 976 // Default TaskQueue size is 16K (32-bit) or 128K (64-bit)
 977 #define TASKQUEUE_SIZE (NOT_LP64(1<<14) LP64_ONLY(1<<17))
 978 
 979 //----------------------------------------------------------------------------------------------------
 980 // Utility functions for bitfield manipulations
 981 
 982 const intptr_t AllBits    = ~0; // all bits set in a word
 983 const intptr_t NoBits     =  0; // no bits set in a word
 984 const jlong    NoLongBits =  0; // no bits set in a long
 985 const intptr_t OneBit     =  1; // only right_most bit set in a word
 986 
 987 // get a word with the n.th or the right-most or left-most n bits set
 988 // (note: #define used only so that they can be used in enum constant definitions)
 989 #define nth_bit(n)        (((n) >= BitsPerWord) ? 0 : (OneBit << (n)))
 990 #define right_n_bits(n)   (nth_bit(n) - 1)
 991 #define left_n_bits(n)    (right_n_bits(n) << (((n) >= BitsPerWord) ? 0 : (BitsPerWord - (n))))
 992 
 993 // bit-operations using a mask m
 994 inline void   set_bits    (intptr_t& x, intptr_t m) { x |= m; }
 995 inline void clear_bits    (intptr_t& x, intptr_t m) { x &= ~m; }
 996 inline intptr_t mask_bits      (intptr_t  x, intptr_t m) { return x & m; }
 997 inline jlong    mask_long_bits (jlong     x, jlong    m) { return x & m; }
 998 inline bool mask_bits_are_true (intptr_t flags, intptr_t mask) { return (flags & mask) == mask; }
 999 
1000 // bit-operations using the n.th bit
1001 inline void    set_nth_bit(intptr_t& x, int n) { set_bits  (x, nth_bit(n)); }
1002 inline void  clear_nth_bit(intptr_t& x, int n) { clear_bits(x, nth_bit(n)); }
1003 inline bool is_set_nth_bit(intptr_t  x, int n) { return mask_bits (x, nth_bit(n)) != NoBits; }
1004 
1005 // returns the bitfield of x starting at start_bit_no with length field_length (no sign-extension!)
1006 inline intptr_t bitfield(intptr_t x, int start_bit_no, int field_length) {
1007   return mask_bits(x >> start_bit_no, right_n_bits(field_length));
1008 }
1009 
1010 
1011 //----------------------------------------------------------------------------------------------------
1012 // Utility functions for integers
1013 
1014 // Avoid use of global min/max macros which may cause unwanted double
1015 // evaluation of arguments.
1016 #ifdef max
1017 #undef max
1018 #endif
1019 
1020 #ifdef min
1021 #undef min
1022 #endif
1023 
1024 // It is necessary to use templates here. Having normal overloaded
1025 // functions does not work because it is necessary to provide both 32-
1026 // and 64-bit overloaded functions, which does not work, and having
1027 // explicitly-typed versions of these routines (i.e., MAX2I, MAX2L)
1028 // will be even more error-prone than macros.
1029 template<class T> inline T MAX2(T a, T b)           { return (a > b) ? a : b; }
1030 template<class T> inline T MIN2(T a, T b)           { return (a < b) ? a : b; }
1031 template<class T> inline T MAX3(T a, T b, T c)      { return MAX2(MAX2(a, b), c); }
1032 template<class T> inline T MIN3(T a, T b, T c)      { return MIN2(MIN2(a, b), c); }
1033 template<class T> inline T MAX4(T a, T b, T c, T d) { return MAX2(MAX3(a, b, c), d); }
1034 template<class T> inline T MIN4(T a, T b, T c, T d) { return MIN2(MIN3(a, b, c), d); }
1035 
1036 template<class T> inline T ABS(T x)                 { return (x > 0) ? x : -x; }
1037 
1038 // true if x is a power of 2, false otherwise
1039 inline bool is_power_of_2(intptr_t x) {
1040   return ((x != NoBits) && (mask_bits(x, x - 1) == NoBits));
1041 }
1042 
1043 // long version of is_power_of_2
1044 inline bool is_power_of_2_long(jlong x) {
1045   return ((x != NoLongBits) && (mask_long_bits(x, x - 1) == NoLongBits));
1046 }
1047 
1048 // Returns largest i such that 2^i <= x.
1049 // If x == 0, the function returns -1.
1050 inline int log2_intptr(uintptr_t x) {
1051   int i = -1;
1052   uintptr_t p = 1;
1053   while (p != 0 && p <= x) {
1054     // p = 2^(i+1) && p <= x (i.e., 2^(i+1) <= x)
1055     i++; p *= 2;
1056   }
1057   // p = 2^(i+1) && x < p (i.e., 2^i <= x < 2^(i+1))
1058   // If p = 0, overflow has occurred and i = 31 or i = 63 (depending on the machine word size).
1059   return i;
1060 }
1061 
1062 //* largest i such that 2^i <= x
1063 inline int log2_long(julong x) {
1064   int i = -1;
1065   julong p =  1;
1066   while (p != 0 && p <= x) {
1067     // p = 2^(i+1) && p <= x (i.e., 2^(i+1) <= x)
1068     i++; p *= 2;
1069   }
1070   // p = 2^(i+1) && x < p (i.e., 2^i <= x < 2^(i+1))
1071   // (if p = 0 then overflow occurred and i = 63)
1072   return i;
1073 }
1074 
1075 // If x < 0, the function returns 31 on a 32-bit machine and 63 on a 64-bit machine.
1076 inline int log2_intptr(intptr_t x) {
1077   return log2_intptr((uintptr_t)x);
1078 }
1079 
1080 inline int log2_int(int x) {
1081   STATIC_ASSERT(sizeof(int) <= sizeof(uintptr_t));
1082   return log2_intptr((uintptr_t)x);
1083 }
1084 
1085 inline int log2_jint(jint x) {
1086   STATIC_ASSERT(sizeof(jint) <= sizeof(uintptr_t));
1087   return log2_intptr((uintptr_t)x);
1088 }
1089 
1090 inline int log2_uint(uint x) {
1091   STATIC_ASSERT(sizeof(uint) <= sizeof(uintptr_t));
1092   return log2_intptr((uintptr_t)x);
1093 }
1094 
1095 //  A negative value of 'x' will return '63'
1096 inline int log2_jlong(jlong x) {
1097   STATIC_ASSERT(sizeof(jlong) <= sizeof(julong));
1098   return log2_long((julong)x);
1099 }
1100 
1101 //* the argument must be exactly a power of 2
1102 inline int exact_log2(intptr_t x) {
1103   assert(is_power_of_2(x), "x must be a power of 2: " INTPTR_FORMAT, x);
1104   return log2_intptr(x);
1105 }
1106 
1107 //* the argument must be exactly a power of 2
1108 inline int exact_log2_long(jlong x) {
1109   assert(is_power_of_2_long(x), "x must be a power of 2: " JLONG_FORMAT, x);
1110   return log2_long(x);
1111 }
1112 
1113 inline bool is_odd (intx x) { return x & 1;      }
1114 inline bool is_even(intx x) { return !is_odd(x); }
1115 
1116 // abs methods which cannot overflow and so are well-defined across
1117 // the entire domain of integer types.
1118 static inline unsigned int uabs(unsigned int n) {
1119   union {
1120     unsigned int result;
1121     int value;
1122   };
1123   result = n;
1124   if (value < 0) result = 0-result;
1125   return result;
1126 }
1127 static inline julong uabs(julong n) {
1128   union {
1129     julong result;
1130     jlong value;
1131   };
1132   result = n;
1133   if (value < 0) result = 0-result;
1134   return result;
1135 }
1136 static inline julong uabs(jlong n) { return uabs((julong)n); }
1137 static inline unsigned int uabs(int n) { return uabs((unsigned int)n); }
1138 
1139 // "to" should be greater than "from."
1140 inline intx byte_size(void* from, void* to) {
1141   return (address)to - (address)from;
1142 }
1143 
1144 //----------------------------------------------------------------------------------------------------
1145 // Avoid non-portable casts with these routines (DEPRECATED)
1146 
1147 // NOTE: USE Bytes class INSTEAD WHERE POSSIBLE
1148 //       Bytes is optimized machine-specifically and may be much faster then the portable routines below.
1149 
1150 // Given sequence of four bytes, build into a 32-bit word
1151 // following the conventions used in class files.
1152 // On the 386, this could be realized with a simple address cast.
1153 //
1154 
1155 // This routine takes eight bytes:
1156 inline u8 build_u8_from( u1 c1, u1 c2, u1 c3, u1 c4, u1 c5, u1 c6, u1 c7, u1 c8 ) {
1157   return  (( u8(c1) << 56 )  &  ( u8(0xff) << 56 ))
1158        |  (( u8(c2) << 48 )  &  ( u8(0xff) << 48 ))
1159        |  (( u8(c3) << 40 )  &  ( u8(0xff) << 40 ))
1160        |  (( u8(c4) << 32 )  &  ( u8(0xff) << 32 ))
1161        |  (( u8(c5) << 24 )  &  ( u8(0xff) << 24 ))
1162        |  (( u8(c6) << 16 )  &  ( u8(0xff) << 16 ))
1163        |  (( u8(c7) <<  8 )  &  ( u8(0xff) <<  8 ))
1164        |  (( u8(c8) <<  0 )  &  ( u8(0xff) <<  0 ));
1165 }
1166 
1167 // This routine takes four bytes:
1168 inline u4 build_u4_from( u1 c1, u1 c2, u1 c3, u1 c4 ) {
1169   return  (( u4(c1) << 24 )  &  0xff000000)
1170        |  (( u4(c2) << 16 )  &  0x00ff0000)
1171        |  (( u4(c3) <<  8 )  &  0x0000ff00)
1172        |  (( u4(c4) <<  0 )  &  0x000000ff);
1173 }
1174 
1175 // And this one works if the four bytes are contiguous in memory:
1176 inline u4 build_u4_from( u1* p ) {
1177   return  build_u4_from( p[0], p[1], p[2], p[3] );
1178 }
1179 
1180 // Ditto for two-byte ints:
1181 inline u2 build_u2_from( u1 c1, u1 c2 ) {
1182   return  u2((( u2(c1) <<  8 )  &  0xff00)
1183           |  (( u2(c2) <<  0 )  &  0x00ff));
1184 }
1185 
1186 // And this one works if the two bytes are contiguous in memory:
1187 inline u2 build_u2_from( u1* p ) {
1188   return  build_u2_from( p[0], p[1] );
1189 }
1190 
1191 // Ditto for floats:
1192 inline jfloat build_float_from( u1 c1, u1 c2, u1 c3, u1 c4 ) {
1193   u4 u = build_u4_from( c1, c2, c3, c4 );
1194   return  *(jfloat*)&u;
1195 }
1196 
1197 inline jfloat build_float_from( u1* p ) {
1198   u4 u = build_u4_from( p );
1199   return  *(jfloat*)&u;
1200 }
1201 
1202 
1203 // now (64-bit) longs
1204 
1205 inline jlong build_long_from( u1 c1, u1 c2, u1 c3, u1 c4, u1 c5, u1 c6, u1 c7, u1 c8 ) {
1206   return  (( jlong(c1) << 56 )  &  ( jlong(0xff) << 56 ))
1207        |  (( jlong(c2) << 48 )  &  ( jlong(0xff) << 48 ))
1208        |  (( jlong(c3) << 40 )  &  ( jlong(0xff) << 40 ))
1209        |  (( jlong(c4) << 32 )  &  ( jlong(0xff) << 32 ))
1210        |  (( jlong(c5) << 24 )  &  ( jlong(0xff) << 24 ))
1211        |  (( jlong(c6) << 16 )  &  ( jlong(0xff) << 16 ))
1212        |  (( jlong(c7) <<  8 )  &  ( jlong(0xff) <<  8 ))
1213        |  (( jlong(c8) <<  0 )  &  ( jlong(0xff) <<  0 ));
1214 }
1215 
1216 inline jlong build_long_from( u1* p ) {
1217   return  build_long_from( p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7] );
1218 }
1219 
1220 
1221 // Doubles, too!
1222 inline jdouble build_double_from( u1 c1, u1 c2, u1 c3, u1 c4, u1 c5, u1 c6, u1 c7, u1 c8 ) {
1223   jlong u = build_long_from( c1, c2, c3, c4, c5, c6, c7, c8 );
1224   return  *(jdouble*)&u;
1225 }
1226 
1227 inline jdouble build_double_from( u1* p ) {
1228   jlong u = build_long_from( p );
1229   return  *(jdouble*)&u;
1230 }
1231 
1232 
1233 // Portable routines to go the other way:
1234 
1235 inline void explode_short_to( u2 x, u1& c1, u1& c2 ) {
1236   c1 = u1(x >> 8);
1237   c2 = u1(x);
1238 }
1239 
1240 inline void explode_short_to( u2 x, u1* p ) {
1241   explode_short_to( x, p[0], p[1]);
1242 }
1243 
1244 inline void explode_int_to( u4 x, u1& c1, u1& c2, u1& c3, u1& c4 ) {
1245   c1 = u1(x >> 24);
1246   c2 = u1(x >> 16);
1247   c3 = u1(x >>  8);
1248   c4 = u1(x);
1249 }
1250 
1251 inline void explode_int_to( u4 x, u1* p ) {
1252   explode_int_to( x, p[0], p[1], p[2], p[3]);
1253 }
1254 
1255 
1256 // Pack and extract shorts to/from ints:
1257 
1258 inline int extract_low_short_from_int(jint x) {
1259   return x & 0xffff;
1260 }
1261 
1262 inline int extract_high_short_from_int(jint x) {
1263   return (x >> 16) & 0xffff;
1264 }
1265 
1266 inline int build_int_from_shorts( jushort low, jushort high ) {
1267   return ((int)((unsigned int)high << 16) | (unsigned int)low);
1268 }
1269 
1270 // Convert pointer to intptr_t, for use in printing pointers.
1271 inline intptr_t p2i(const void * p) {
1272   return (intptr_t) p;
1273 }
1274 
1275 // swap a & b
1276 template<class T> static void swap(T& a, T& b) {
1277   T tmp = a;
1278   a = b;
1279   b = tmp;
1280 }
1281 
1282 #define ARRAY_SIZE(array) (sizeof(array)/sizeof((array)[0]))
1283 
1284 //----------------------------------------------------------------------------------------------------
1285 // Sum and product which can never overflow: they wrap, just like the
1286 // Java operations.  Note that we don't intend these to be used for
1287 // general-purpose arithmetic: their purpose is to emulate Java
1288 // operations.
1289 
1290 // The goal of this code to avoid undefined or implementation-defined
1291 // behavior.  The use of an lvalue to reference cast is explicitly
1292 // permitted by Lvalues and rvalues [basic.lval].  [Section 3.10 Para
1293 // 15 in C++03]
1294 #define JAVA_INTEGER_OP(OP, NAME, TYPE, UNSIGNED_TYPE)  \
1295 inline TYPE NAME (TYPE in1, TYPE in2) {                 \
1296   UNSIGNED_TYPE ures = static_cast<UNSIGNED_TYPE>(in1); \
1297   ures OP ## = static_cast<UNSIGNED_TYPE>(in2);         \
1298   return reinterpret_cast<TYPE&>(ures);                 \
1299 }
1300 
1301 JAVA_INTEGER_OP(+, java_add, jint, juint)
1302 JAVA_INTEGER_OP(-, java_subtract, jint, juint)
1303 JAVA_INTEGER_OP(*, java_multiply, jint, juint)
1304 JAVA_INTEGER_OP(+, java_add, jlong, julong)
1305 JAVA_INTEGER_OP(-, java_subtract, jlong, julong)
1306 JAVA_INTEGER_OP(*, java_multiply, jlong, julong)
1307 
1308 #undef JAVA_INTEGER_OP
1309 
1310 // Dereference vptr
1311 // All C++ compilers that we know of have the vtbl pointer in the first
1312 // word.  If there are exceptions, this function needs to be made compiler
1313 // specific.
1314 static inline void* dereference_vptr(const void* addr) {
1315   return *(void**)addr;
1316 }
1317 
1318 //----------------------------------------------------------------------------------------------------
1319 // String type aliases used by command line flag declarations and
1320 // processing utilities.
1321 
1322 typedef const char* ccstr;
1323 typedef const char* ccstrlist;   // represents string arguments which accumulate
1324 
1325 #endif // SHARE_VM_UTILITIES_GLOBALDEFINITIONS_HPP