/* * Copyright (c) 2018, Red Hat, Inc. All rights reserved. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. * */ #include "precompiled.hpp" #include "gc/shenandoah/heuristics/shenandoahAdaptiveHeuristics.hpp" #include "gc/shenandoah/shenandoahCollectionSet.hpp" #include "gc/shenandoah/shenandoahFreeSet.hpp" #include "gc/shenandoah/shenandoahHeap.inline.hpp" #include "gc/shenandoah/shenandoahHeapRegion.inline.hpp" #include "logging/log.hpp" #include "logging/logTag.hpp" #include "utilities/quickSort.hpp" ShenandoahAdaptiveHeuristics::ShenandoahAdaptiveHeuristics() : ShenandoahHeuristics() {} ShenandoahAdaptiveHeuristics::~ShenandoahAdaptiveHeuristics() {} void ShenandoahAdaptiveHeuristics::choose_collection_set_from_regiondata(ShenandoahCollectionSet* cset, RegionData* data, size_t size, size_t actual_free) { size_t garbage_threshold = ShenandoahHeapRegion::region_size_bytes() * ShenandoahGarbageThreshold / 100; // The logic for cset selection in adaptive is as follows: // // 1. We cannot get cset larger than available free space. Otherwise we guarantee OOME // during evacuation, and thus guarantee full GC. In practice, we also want to let // application to allocate something. This is why we limit CSet to some fraction of // available space. In non-overloaded heap, max_cset would contain all plausible candidates // over garbage threshold. // // 2. We should not get cset too low so that free threshold would not be met right // after the cycle. Otherwise we get back-to-back cycles for no reason if heap is // too fragmented. In non-overloaded non-fragmented heap min_garbage would be around zero. // // Therefore, we start by sorting the regions by garbage. Then we unconditionally add the best candidates // before we meet min_garbage. Then we add all candidates that fit with a garbage threshold before // we hit max_cset. When max_cset is hit, we terminate the cset selection. Note that in this scheme, // ShenandoahGarbageThreshold is the soft threshold which would be ignored until min_garbage is hit. size_t capacity = ShenandoahHeap::heap()->max_capacity(); size_t max_cset = (size_t)((1.0 * capacity / 100 * ShenandoahEvacReserve) / ShenandoahEvacWaste); size_t free_target = (capacity / 100 * ShenandoahMinFreeThreshold) + max_cset; size_t min_garbage = (free_target > actual_free ? (free_target - actual_free) : 0); log_info(gc, ergo)("Adaptive CSet Selection. Target Free: " SIZE_FORMAT "%s, Actual Free: " SIZE_FORMAT "%s, Max CSet: " SIZE_FORMAT "%s, Min Garbage: " SIZE_FORMAT "%s", byte_size_in_proper_unit(free_target), proper_unit_for_byte_size(free_target), byte_size_in_proper_unit(actual_free), proper_unit_for_byte_size(actual_free), byte_size_in_proper_unit(max_cset), proper_unit_for_byte_size(max_cset), byte_size_in_proper_unit(min_garbage), proper_unit_for_byte_size(min_garbage)); // Better select garbage-first regions QuickSort::sort(data, (int)size, compare_by_garbage, false); size_t cur_cset = 0; size_t cur_garbage = 0; for (size_t idx = 0; idx < size; idx++) { ShenandoahHeapRegion* r = data[idx]._region; size_t new_cset = cur_cset + r->get_live_data_bytes(); size_t new_garbage = cur_garbage + r->garbage(); if (new_cset > max_cset) { break; } if ((new_garbage < min_garbage) || (r->garbage() > garbage_threshold)) { cset->add_region(r); cur_cset = new_cset; cur_garbage = new_garbage; } } } void ShenandoahAdaptiveHeuristics::record_cycle_start() { ShenandoahHeuristics::record_cycle_start(); } bool ShenandoahAdaptiveHeuristics::should_start_gc() const { ShenandoahHeap* heap = ShenandoahHeap::heap(); size_t capacity = heap->max_capacity(); size_t available = heap->free_set()->available(); // Check if we are falling below the worst limit, time to trigger the GC, regardless of // anything else. size_t min_threshold = capacity / 100 * ShenandoahMinFreeThreshold; if (available < min_threshold) { log_info(gc)("Trigger: Free (" SIZE_FORMAT "%s) is below minimum threshold (" SIZE_FORMAT "%s)", byte_size_in_proper_unit(available), proper_unit_for_byte_size(available), byte_size_in_proper_unit(min_threshold), proper_unit_for_byte_size(min_threshold)); return true; } // Check if are need to learn a bit about the application const size_t max_learn = ShenandoahLearningSteps; if (_gc_times_learned < max_learn) { size_t init_threshold = capacity / 100 * ShenandoahInitFreeThreshold; if (available < init_threshold) { log_info(gc)("Trigger: Learning " SIZE_FORMAT " of " SIZE_FORMAT ". Free (" SIZE_FORMAT "%s) is below initial threshold (" SIZE_FORMAT "%s)", _gc_times_learned + 1, max_learn, byte_size_in_proper_unit(available), proper_unit_for_byte_size(available), byte_size_in_proper_unit(init_threshold), proper_unit_for_byte_size(init_threshold)); return true; } } // Check if allocation headroom is still okay. This also factors in: // 1. Some space to absorb allocation spikes // 2. Accumulated penalties from Degenerated and Full GC size_t allocation_headroom = available; size_t spike_headroom = capacity / 100 * ShenandoahAllocSpikeFactor; size_t penalties = capacity / 100 * _gc_time_penalties; allocation_headroom -= MIN2(allocation_headroom, spike_headroom); allocation_headroom -= MIN2(allocation_headroom, penalties); // TODO: Allocation rate is way too averaged to be useful during state changes double average_gc = _gc_time_history->avg(); double time_since_last = time_since_last_gc(); double allocation_rate = heap->bytes_allocated_since_gc_start() / time_since_last; if (average_gc > allocation_headroom / allocation_rate) { log_info(gc)("Trigger: Average GC time (%.2f ms) is above the time for allocation rate (%.0f %sB/s) to deplete free headroom (" SIZE_FORMAT "%s)", average_gc * 1000, byte_size_in_proper_unit(allocation_rate), proper_unit_for_byte_size(allocation_rate), byte_size_in_proper_unit(allocation_headroom), proper_unit_for_byte_size(allocation_headroom)); log_info(gc, ergo)("Free headroom: " SIZE_FORMAT "%s (free) - " SIZE_FORMAT "%s (spike) - " SIZE_FORMAT "%s (penalties) = " SIZE_FORMAT "%s", byte_size_in_proper_unit(available), proper_unit_for_byte_size(available), byte_size_in_proper_unit(spike_headroom), proper_unit_for_byte_size(spike_headroom), byte_size_in_proper_unit(penalties), proper_unit_for_byte_size(penalties), byte_size_in_proper_unit(allocation_headroom), proper_unit_for_byte_size(allocation_headroom)); return true; } return ShenandoahHeuristics::should_start_gc(); }