1 /*
   2  * Copyright (c) 2003, 2020, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "asm/macroAssembler.hpp"
  27 #include "asm/macroAssembler.inline.hpp"
  28 #include "code/debugInfoRec.hpp"
  29 #include "code/icBuffer.hpp"
  30 #include "code/nativeInst.hpp"
  31 #include "code/vtableStubs.hpp"
  32 #include "gc/shared/gcLocker.hpp"
  33 #include "gc/shared/collectedHeap.hpp"
  34 #include "interpreter/interpreter.hpp"
  35 #include "logging/log.hpp"
  36 #include "memory/resourceArea.hpp"
  37 #include "oops/compiledICHolder.hpp"
  38 #include "runtime/safepointMechanism.hpp"
  39 #include "runtime/sharedRuntime.hpp"
  40 #include "runtime/vframeArray.hpp"
  41 #include "utilities/align.hpp"
  42 #include "vmreg_x86.inline.hpp"
  43 #ifdef COMPILER1
  44 #include "c1/c1_Runtime1.hpp"
  45 #endif
  46 #ifdef COMPILER2
  47 #include "opto/runtime.hpp"
  48 #endif
  49 #include "vm_version_x86.hpp"
  50 
  51 #define __ masm->
  52 
  53 const int StackAlignmentInSlots = StackAlignmentInBytes / VMRegImpl::stack_slot_size;
  54 
  55 class RegisterSaver {
  56   // Capture info about frame layout
  57 #define DEF_XMM_OFFS(regnum) xmm ## regnum ## _off = xmm_off + (regnum)*16/BytesPerInt, xmm ## regnum ## H_off
  58   enum layout {
  59                 fpu_state_off = 0,
  60                 fpu_state_end = fpu_state_off+FPUStateSizeInWords,
  61                 st0_off, st0H_off,
  62                 st1_off, st1H_off,
  63                 st2_off, st2H_off,
  64                 st3_off, st3H_off,
  65                 st4_off, st4H_off,
  66                 st5_off, st5H_off,
  67                 st6_off, st6H_off,
  68                 st7_off, st7H_off,
  69                 xmm_off,
  70                 DEF_XMM_OFFS(0),
  71                 DEF_XMM_OFFS(1),
  72                 DEF_XMM_OFFS(2),
  73                 DEF_XMM_OFFS(3),
  74                 DEF_XMM_OFFS(4),
  75                 DEF_XMM_OFFS(5),
  76                 DEF_XMM_OFFS(6),
  77                 DEF_XMM_OFFS(7),
  78                 flags_off = xmm7_off + 16/BytesPerInt + 1, // 16-byte stack alignment fill word
  79                 rdi_off,
  80                 rsi_off,
  81                 ignore_off,  // extra copy of rbp,
  82                 rsp_off,
  83                 rbx_off,
  84                 rdx_off,
  85                 rcx_off,
  86                 rax_off,
  87                 // The frame sender code expects that rbp will be in the "natural" place and
  88                 // will override any oopMap setting for it. We must therefore force the layout
  89                 // so that it agrees with the frame sender code.
  90                 rbp_off,
  91                 return_off,      // slot for return address
  92                 reg_save_size };
  93   enum { FPU_regs_live = flags_off - fpu_state_end };
  94 
  95   public:
  96 
  97   static OopMap* save_live_registers(MacroAssembler* masm, int additional_frame_words,
  98                                      int* total_frame_words, bool verify_fpu = true, bool save_vectors = false);
  99   static void restore_live_registers(MacroAssembler* masm, bool restore_vectors = false);
 100 
 101   static int rax_offset() { return rax_off; }
 102   static int rbx_offset() { return rbx_off; }
 103 
 104   // Offsets into the register save area
 105   // Used by deoptimization when it is managing result register
 106   // values on its own
 107 
 108   static int raxOffset(void) { return rax_off; }
 109   static int rdxOffset(void) { return rdx_off; }
 110   static int rbxOffset(void) { return rbx_off; }
 111   static int xmm0Offset(void) { return xmm0_off; }
 112   // This really returns a slot in the fp save area, which one is not important
 113   static int fpResultOffset(void) { return st0_off; }
 114 
 115   // During deoptimization only the result register need to be restored
 116   // all the other values have already been extracted.
 117 
 118   static void restore_result_registers(MacroAssembler* masm);
 119 
 120 };
 121 
 122 OopMap* RegisterSaver::save_live_registers(MacroAssembler* masm, int additional_frame_words,
 123                                            int* total_frame_words, bool verify_fpu, bool save_vectors) {
 124   int num_xmm_regs = XMMRegisterImpl::number_of_registers;
 125   int ymm_bytes = num_xmm_regs * 16;
 126   int zmm_bytes = num_xmm_regs * 32;
 127 #ifdef COMPILER2
 128   if (save_vectors) {
 129     assert(UseAVX > 0, "Vectors larger than 16 byte long are supported only with AVX");
 130     assert(MaxVectorSize <= 64, "Only up to 64 byte long vectors are supported");
 131     // Save upper half of YMM registers
 132     int vect_bytes = ymm_bytes;
 133     if (UseAVX > 2) {
 134       // Save upper half of ZMM registers as well
 135       vect_bytes += zmm_bytes;
 136     }
 137     additional_frame_words += vect_bytes / wordSize;
 138   }
 139 #else
 140   assert(!save_vectors, "vectors are generated only by C2");
 141 #endif
 142   int frame_size_in_bytes = (reg_save_size + additional_frame_words) * wordSize;
 143   int frame_words = frame_size_in_bytes / wordSize;
 144   *total_frame_words = frame_words;
 145 
 146   assert(FPUStateSizeInWords == 27, "update stack layout");
 147 
 148   // save registers, fpu state, and flags
 149   // We assume caller has already has return address slot on the stack
 150   // We push epb twice in this sequence because we want the real rbp,
 151   // to be under the return like a normal enter and we want to use pusha
 152   // We push by hand instead of using push.
 153   __ enter();
 154   __ pusha();
 155   __ pushf();
 156   __ subptr(rsp,FPU_regs_live*wordSize); // Push FPU registers space
 157   __ push_FPU_state();          // Save FPU state & init
 158 
 159   if (verify_fpu) {
 160     // Some stubs may have non standard FPU control word settings so
 161     // only check and reset the value when it required to be the
 162     // standard value.  The safepoint blob in particular can be used
 163     // in methods which are using the 24 bit control word for
 164     // optimized float math.
 165 
 166 #ifdef ASSERT
 167     // Make sure the control word has the expected value
 168     Label ok;
 169     __ cmpw(Address(rsp, 0), StubRoutines::fpu_cntrl_wrd_std());
 170     __ jccb(Assembler::equal, ok);
 171     __ stop("corrupted control word detected");
 172     __ bind(ok);
 173 #endif
 174 
 175     // Reset the control word to guard against exceptions being unmasked
 176     // since fstp_d can cause FPU stack underflow exceptions.  Write it
 177     // into the on stack copy and then reload that to make sure that the
 178     // current and future values are correct.
 179     __ movw(Address(rsp, 0), StubRoutines::fpu_cntrl_wrd_std());
 180   }
 181 
 182   __ frstor(Address(rsp, 0));
 183   if (!verify_fpu) {
 184     // Set the control word so that exceptions are masked for the
 185     // following code.
 186     __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
 187   }
 188 
 189   int off = st0_off;
 190   int delta = st1_off - off;
 191 
 192   // Save the FPU registers in de-opt-able form
 193   for (int n = 0; n < FloatRegisterImpl::number_of_registers; n++) {
 194     __ fstp_d(Address(rsp, off*wordSize));
 195     off += delta;
 196   }
 197 
 198   off = xmm0_off;
 199   delta = xmm1_off - off;
 200   if(UseSSE == 1) {
 201     // Save the XMM state
 202     for (int n = 0; n < num_xmm_regs; n++) {
 203       __ movflt(Address(rsp, off*wordSize), as_XMMRegister(n));
 204       off += delta;
 205     }
 206   } else if(UseSSE >= 2) {
 207     // Save whole 128bit (16 bytes) XMM registers
 208     for (int n = 0; n < num_xmm_regs; n++) {
 209       __ movdqu(Address(rsp, off*wordSize), as_XMMRegister(n));
 210       off += delta;
 211     }
 212   }
 213 
 214   if (save_vectors) {
 215     __ subptr(rsp, ymm_bytes);
 216     // Save upper half of YMM registers
 217     for (int n = 0; n < num_xmm_regs; n++) {
 218       __ vextractf128_high(Address(rsp, n*16), as_XMMRegister(n));
 219     }
 220     if (UseAVX > 2) {
 221       __ subptr(rsp, zmm_bytes);
 222       // Save upper half of ZMM registers
 223       for (int n = 0; n < num_xmm_regs; n++) {
 224         __ vextractf64x4_high(Address(rsp, n*32), as_XMMRegister(n));
 225       }
 226     }
 227   }
 228   __ vzeroupper();
 229 
 230   // Set an oopmap for the call site.  This oopmap will map all
 231   // oop-registers and debug-info registers as callee-saved.  This
 232   // will allow deoptimization at this safepoint to find all possible
 233   // debug-info recordings, as well as let GC find all oops.
 234 
 235   OopMapSet *oop_maps = new OopMapSet();
 236   OopMap* map =  new OopMap( frame_words, 0 );
 237 
 238 #define STACK_OFFSET(x) VMRegImpl::stack2reg((x) + additional_frame_words)
 239 #define NEXTREG(x) (x)->as_VMReg()->next()
 240 
 241   map->set_callee_saved(STACK_OFFSET(rax_off), rax->as_VMReg());
 242   map->set_callee_saved(STACK_OFFSET(rcx_off), rcx->as_VMReg());
 243   map->set_callee_saved(STACK_OFFSET(rdx_off), rdx->as_VMReg());
 244   map->set_callee_saved(STACK_OFFSET(rbx_off), rbx->as_VMReg());
 245   // rbp, location is known implicitly, no oopMap
 246   map->set_callee_saved(STACK_OFFSET(rsi_off), rsi->as_VMReg());
 247   map->set_callee_saved(STACK_OFFSET(rdi_off), rdi->as_VMReg());
 248   // %%% This is really a waste but we'll keep things as they were for now for the upper component
 249   off = st0_off;
 250   delta = st1_off - off;
 251   for (int n = 0; n < FloatRegisterImpl::number_of_registers; n++) {
 252     FloatRegister freg_name = as_FloatRegister(n);
 253     map->set_callee_saved(STACK_OFFSET(off), freg_name->as_VMReg());
 254     map->set_callee_saved(STACK_OFFSET(off+1), NEXTREG(freg_name));
 255     off += delta;
 256   }
 257   off = xmm0_off;
 258   delta = xmm1_off - off;
 259   for (int n = 0; n < num_xmm_regs; n++) {
 260     XMMRegister xmm_name = as_XMMRegister(n);
 261     map->set_callee_saved(STACK_OFFSET(off), xmm_name->as_VMReg());
 262     map->set_callee_saved(STACK_OFFSET(off+1), NEXTREG(xmm_name));
 263     off += delta;
 264   }
 265 #undef NEXTREG
 266 #undef STACK_OFFSET
 267 
 268   return map;
 269 }
 270 
 271 void RegisterSaver::restore_live_registers(MacroAssembler* masm, bool restore_vectors) {
 272   int num_xmm_regs = XMMRegisterImpl::number_of_registers;
 273   int ymm_bytes = num_xmm_regs * 16;
 274   int zmm_bytes = num_xmm_regs * 32;
 275   // Recover XMM & FPU state
 276   int additional_frame_bytes = 0;
 277 #ifdef COMPILER2
 278   if (restore_vectors) {
 279     assert(UseAVX > 0, "Vectors larger than 16 byte long are supported only with AVX");
 280     assert(MaxVectorSize <= 64, "Only up to 64 byte long vectors are supported");
 281     // Save upper half of YMM registers
 282     additional_frame_bytes = ymm_bytes;
 283     if (UseAVX > 2) {
 284       // Save upper half of ZMM registers as well
 285       additional_frame_bytes += zmm_bytes;
 286     }
 287   }
 288 #else
 289   assert(!restore_vectors, "vectors are generated only by C2");
 290 #endif
 291 
 292   int off = xmm0_off;
 293   int delta = xmm1_off - off;
 294 
 295   __ vzeroupper();
 296 
 297   if (UseSSE == 1) {
 298     // Restore XMM registers
 299     assert(additional_frame_bytes == 0, "");
 300     for (int n = 0; n < num_xmm_regs; n++) {
 301       __ movflt(as_XMMRegister(n), Address(rsp, off*wordSize));
 302       off += delta;
 303     }
 304   } else if (UseSSE >= 2) {
 305     // Restore whole 128bit (16 bytes) XMM registers. Do this before restoring YMM and
 306     // ZMM because the movdqu instruction zeros the upper part of the XMM register.
 307     for (int n = 0; n < num_xmm_regs; n++) {
 308       __ movdqu(as_XMMRegister(n), Address(rsp, off*wordSize+additional_frame_bytes));
 309       off += delta;
 310     }
 311   }
 312 
 313   if (restore_vectors) {
 314     if (UseAVX > 2) {
 315       // Restore upper half of ZMM registers.
 316       for (int n = 0; n < num_xmm_regs; n++) {
 317         __ vinsertf64x4_high(as_XMMRegister(n), Address(rsp, n*32));
 318       }
 319       __ addptr(rsp, zmm_bytes);
 320     }
 321     // Restore upper half of YMM registers.
 322     for (int n = 0; n < num_xmm_regs; n++) {
 323       __ vinsertf128_high(as_XMMRegister(n), Address(rsp, n*16));
 324     }
 325     __ addptr(rsp, ymm_bytes);
 326   }
 327 
 328   __ pop_FPU_state();
 329   __ addptr(rsp, FPU_regs_live*wordSize); // Pop FPU registers
 330 
 331   __ popf();
 332   __ popa();
 333   // Get the rbp, described implicitly by the frame sender code (no oopMap)
 334   __ pop(rbp);
 335 }
 336 
 337 void RegisterSaver::restore_result_registers(MacroAssembler* masm) {
 338 
 339   // Just restore result register. Only used by deoptimization. By
 340   // now any callee save register that needs to be restore to a c2
 341   // caller of the deoptee has been extracted into the vframeArray
 342   // and will be stuffed into the c2i adapter we create for later
 343   // restoration so only result registers need to be restored here.
 344   //
 345 
 346   __ frstor(Address(rsp, 0));      // Restore fpu state
 347 
 348   // Recover XMM & FPU state
 349   if( UseSSE == 1 ) {
 350     __ movflt(xmm0, Address(rsp, xmm0_off*wordSize));
 351   } else if( UseSSE >= 2 ) {
 352     __ movdbl(xmm0, Address(rsp, xmm0_off*wordSize));
 353   }
 354   __ movptr(rax, Address(rsp, rax_off*wordSize));
 355   __ movptr(rdx, Address(rsp, rdx_off*wordSize));
 356   // Pop all of the register save are off the stack except the return address
 357   __ addptr(rsp, return_off * wordSize);
 358 }
 359 
 360 // Is vector's size (in bytes) bigger than a size saved by default?
 361 // 16 bytes XMM registers are saved by default using SSE2 movdqu instructions.
 362 // Note, MaxVectorSize == 0 with UseSSE < 2 and vectors are not generated.
 363 bool SharedRuntime::is_wide_vector(int size) {
 364   return size > 16;
 365 }
 366 
 367 size_t SharedRuntime::trampoline_size() {
 368   return 16;
 369 }
 370 
 371 void SharedRuntime::generate_trampoline(MacroAssembler *masm, address destination) {
 372   __ jump(RuntimeAddress(destination));
 373 }
 374 
 375 // The java_calling_convention describes stack locations as ideal slots on
 376 // a frame with no abi restrictions. Since we must observe abi restrictions
 377 // (like the placement of the register window) the slots must be biased by
 378 // the following value.
 379 static int reg2offset_in(VMReg r) {
 380   // Account for saved rbp, and return address
 381   // This should really be in_preserve_stack_slots
 382   return (r->reg2stack() + 2) * VMRegImpl::stack_slot_size;
 383 }
 384 
 385 static int reg2offset_out(VMReg r) {
 386   return (r->reg2stack() + SharedRuntime::out_preserve_stack_slots()) * VMRegImpl::stack_slot_size;
 387 }
 388 
 389 // ---------------------------------------------------------------------------
 390 // Read the array of BasicTypes from a signature, and compute where the
 391 // arguments should go.  Values in the VMRegPair regs array refer to 4-byte
 392 // quantities.  Values less than SharedInfo::stack0 are registers, those above
 393 // refer to 4-byte stack slots.  All stack slots are based off of the stack pointer
 394 // as framesizes are fixed.
 395 // VMRegImpl::stack0 refers to the first slot 0(sp).
 396 // and VMRegImpl::stack0+1 refers to the memory word 4-byes higher.  Register
 397 // up to RegisterImpl::number_of_registers) are the 32-bit
 398 // integer registers.
 399 
 400 // Pass first two oop/int args in registers ECX and EDX.
 401 // Pass first two float/double args in registers XMM0 and XMM1.
 402 // Doubles have precedence, so if you pass a mix of floats and doubles
 403 // the doubles will grab the registers before the floats will.
 404 
 405 // Note: the INPUTS in sig_bt are in units of Java argument words, which are
 406 // either 32-bit or 64-bit depending on the build.  The OUTPUTS are in 32-bit
 407 // units regardless of build. Of course for i486 there is no 64 bit build
 408 
 409 
 410 // ---------------------------------------------------------------------------
 411 // The compiled Java calling convention.
 412 // Pass first two oop/int args in registers ECX and EDX.
 413 // Pass first two float/double args in registers XMM0 and XMM1.
 414 // Doubles have precedence, so if you pass a mix of floats and doubles
 415 // the doubles will grab the registers before the floats will.
 416 int SharedRuntime::java_calling_convention(const BasicType *sig_bt,
 417                                            VMRegPair *regs,
 418                                            int total_args_passed,
 419                                            int is_outgoing) {
 420   uint    stack = 0;          // Starting stack position for args on stack
 421 
 422 
 423   // Pass first two oop/int args in registers ECX and EDX.
 424   uint reg_arg0 = 9999;
 425   uint reg_arg1 = 9999;
 426 
 427   // Pass first two float/double args in registers XMM0 and XMM1.
 428   // Doubles have precedence, so if you pass a mix of floats and doubles
 429   // the doubles will grab the registers before the floats will.
 430   // CNC - TURNED OFF FOR non-SSE.
 431   //       On Intel we have to round all doubles (and most floats) at
 432   //       call sites by storing to the stack in any case.
 433   // UseSSE=0 ==> Don't Use ==> 9999+0
 434   // UseSSE=1 ==> Floats only ==> 9999+1
 435   // UseSSE>=2 ==> Floats or doubles ==> 9999+2
 436   enum { fltarg_dontuse = 9999+0, fltarg_float_only = 9999+1, fltarg_flt_dbl = 9999+2 };
 437   uint fargs = (UseSSE>=2) ? 2 : UseSSE;
 438   uint freg_arg0 = 9999+fargs;
 439   uint freg_arg1 = 9999+fargs;
 440 
 441   // Pass doubles & longs aligned on the stack.  First count stack slots for doubles
 442   int i;
 443   for( i = 0; i < total_args_passed; i++) {
 444     if( sig_bt[i] == T_DOUBLE ) {
 445       // first 2 doubles go in registers
 446       if( freg_arg0 == fltarg_flt_dbl ) freg_arg0 = i;
 447       else if( freg_arg1 == fltarg_flt_dbl ) freg_arg1 = i;
 448       else // Else double is passed low on the stack to be aligned.
 449         stack += 2;
 450     } else if( sig_bt[i] == T_LONG ) {
 451       stack += 2;
 452     }
 453   }
 454   int dstack = 0;             // Separate counter for placing doubles
 455 
 456   // Now pick where all else goes.
 457   for( i = 0; i < total_args_passed; i++) {
 458     // From the type and the argument number (count) compute the location
 459     switch( sig_bt[i] ) {
 460     case T_SHORT:
 461     case T_CHAR:
 462     case T_BYTE:
 463     case T_BOOLEAN:
 464     case T_INT:
 465     case T_ARRAY:
 466     case T_OBJECT:
 467     case T_ADDRESS:
 468       if( reg_arg0 == 9999 )  {
 469         reg_arg0 = i;
 470         regs[i].set1(rcx->as_VMReg());
 471       } else if( reg_arg1 == 9999 )  {
 472         reg_arg1 = i;
 473         regs[i].set1(rdx->as_VMReg());
 474       } else {
 475         regs[i].set1(VMRegImpl::stack2reg(stack++));
 476       }
 477       break;
 478     case T_FLOAT:
 479       if( freg_arg0 == fltarg_flt_dbl || freg_arg0 == fltarg_float_only ) {
 480         freg_arg0 = i;
 481         regs[i].set1(xmm0->as_VMReg());
 482       } else if( freg_arg1 == fltarg_flt_dbl || freg_arg1 == fltarg_float_only ) {
 483         freg_arg1 = i;
 484         regs[i].set1(xmm1->as_VMReg());
 485       } else {
 486         regs[i].set1(VMRegImpl::stack2reg(stack++));
 487       }
 488       break;
 489     case T_LONG:
 490       assert((i + 1) < total_args_passed && sig_bt[i+1] == T_VOID, "missing Half" );
 491       regs[i].set2(VMRegImpl::stack2reg(dstack));
 492       dstack += 2;
 493       break;
 494     case T_DOUBLE:
 495       assert((i + 1) < total_args_passed && sig_bt[i+1] == T_VOID, "missing Half" );
 496       if( freg_arg0 == (uint)i ) {
 497         regs[i].set2(xmm0->as_VMReg());
 498       } else if( freg_arg1 == (uint)i ) {
 499         regs[i].set2(xmm1->as_VMReg());
 500       } else {
 501         regs[i].set2(VMRegImpl::stack2reg(dstack));
 502         dstack += 2;
 503       }
 504       break;
 505     case T_VOID: regs[i].set_bad(); break;
 506       break;
 507     default:
 508       ShouldNotReachHere();
 509       break;
 510     }
 511   }
 512 
 513   // return value can be odd number of VMRegImpl stack slots make multiple of 2
 514   return align_up(stack, 2);
 515 }
 516 
 517 // Patch the callers callsite with entry to compiled code if it exists.
 518 static void patch_callers_callsite(MacroAssembler *masm) {
 519   Label L;
 520   __ cmpptr(Address(rbx, in_bytes(Method::code_offset())), (int32_t)NULL_WORD);
 521   __ jcc(Assembler::equal, L);
 522   // Schedule the branch target address early.
 523   // Call into the VM to patch the caller, then jump to compiled callee
 524   // rax, isn't live so capture return address while we easily can
 525   __ movptr(rax, Address(rsp, 0));
 526   __ pusha();
 527   __ pushf();
 528 
 529   if (UseSSE == 1) {
 530     __ subptr(rsp, 2*wordSize);
 531     __ movflt(Address(rsp, 0), xmm0);
 532     __ movflt(Address(rsp, wordSize), xmm1);
 533   }
 534   if (UseSSE >= 2) {
 535     __ subptr(rsp, 4*wordSize);
 536     __ movdbl(Address(rsp, 0), xmm0);
 537     __ movdbl(Address(rsp, 2*wordSize), xmm1);
 538   }
 539 #ifdef COMPILER2
 540   // C2 may leave the stack dirty if not in SSE2+ mode
 541   if (UseSSE >= 2) {
 542     __ verify_FPU(0, "c2i transition should have clean FPU stack");
 543   } else {
 544     __ empty_FPU_stack();
 545   }
 546 #endif /* COMPILER2 */
 547 
 548   // VM needs caller's callsite
 549   __ push(rax);
 550   // VM needs target method
 551   __ push(rbx);
 552   __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::fixup_callers_callsite)));
 553   __ addptr(rsp, 2*wordSize);
 554 
 555   if (UseSSE == 1) {
 556     __ movflt(xmm0, Address(rsp, 0));
 557     __ movflt(xmm1, Address(rsp, wordSize));
 558     __ addptr(rsp, 2*wordSize);
 559   }
 560   if (UseSSE >= 2) {
 561     __ movdbl(xmm0, Address(rsp, 0));
 562     __ movdbl(xmm1, Address(rsp, 2*wordSize));
 563     __ addptr(rsp, 4*wordSize);
 564   }
 565 
 566   __ popf();
 567   __ popa();
 568   __ bind(L);
 569 }
 570 
 571 
 572 static void move_c2i_double(MacroAssembler *masm, XMMRegister r, int st_off) {
 573   int next_off = st_off - Interpreter::stackElementSize;
 574   __ movdbl(Address(rsp, next_off), r);
 575 }
 576 
 577 static void gen_c2i_adapter(MacroAssembler *masm,
 578                             int total_args_passed,
 579                             int comp_args_on_stack,
 580                             const BasicType *sig_bt,
 581                             const VMRegPair *regs,
 582                             Label& skip_fixup) {
 583   // Before we get into the guts of the C2I adapter, see if we should be here
 584   // at all.  We've come from compiled code and are attempting to jump to the
 585   // interpreter, which means the caller made a static call to get here
 586   // (vcalls always get a compiled target if there is one).  Check for a
 587   // compiled target.  If there is one, we need to patch the caller's call.
 588   patch_callers_callsite(masm);
 589 
 590   __ bind(skip_fixup);
 591 
 592 #ifdef COMPILER2
 593   // C2 may leave the stack dirty if not in SSE2+ mode
 594   if (UseSSE >= 2) {
 595     __ verify_FPU(0, "c2i transition should have clean FPU stack");
 596   } else {
 597     __ empty_FPU_stack();
 598   }
 599 #endif /* COMPILER2 */
 600 
 601   // Since all args are passed on the stack, total_args_passed * interpreter_
 602   // stack_element_size  is the
 603   // space we need.
 604   int extraspace = total_args_passed * Interpreter::stackElementSize;
 605 
 606   // Get return address
 607   __ pop(rax);
 608 
 609   // set senderSP value
 610   __ movptr(rsi, rsp);
 611 
 612   __ subptr(rsp, extraspace);
 613 
 614   // Now write the args into the outgoing interpreter space
 615   for (int i = 0; i < total_args_passed; i++) {
 616     if (sig_bt[i] == T_VOID) {
 617       assert(i > 0 && (sig_bt[i-1] == T_LONG || sig_bt[i-1] == T_DOUBLE), "missing half");
 618       continue;
 619     }
 620 
 621     // st_off points to lowest address on stack.
 622     int st_off = ((total_args_passed - 1) - i) * Interpreter::stackElementSize;
 623     int next_off = st_off - Interpreter::stackElementSize;
 624 
 625     // Say 4 args:
 626     // i   st_off
 627     // 0   12 T_LONG
 628     // 1    8 T_VOID
 629     // 2    4 T_OBJECT
 630     // 3    0 T_BOOL
 631     VMReg r_1 = regs[i].first();
 632     VMReg r_2 = regs[i].second();
 633     if (!r_1->is_valid()) {
 634       assert(!r_2->is_valid(), "");
 635       continue;
 636     }
 637 
 638     if (r_1->is_stack()) {
 639       // memory to memory use fpu stack top
 640       int ld_off = r_1->reg2stack() * VMRegImpl::stack_slot_size + extraspace;
 641 
 642       if (!r_2->is_valid()) {
 643         __ movl(rdi, Address(rsp, ld_off));
 644         __ movptr(Address(rsp, st_off), rdi);
 645       } else {
 646 
 647         // ld_off == LSW, ld_off+VMRegImpl::stack_slot_size == MSW
 648         // st_off == MSW, st_off-wordSize == LSW
 649 
 650         __ movptr(rdi, Address(rsp, ld_off));
 651         __ movptr(Address(rsp, next_off), rdi);
 652 #ifndef _LP64
 653         __ movptr(rdi, Address(rsp, ld_off + wordSize));
 654         __ movptr(Address(rsp, st_off), rdi);
 655 #else
 656 #ifdef ASSERT
 657         // Overwrite the unused slot with known junk
 658         __ mov64(rax, CONST64(0xdeadffffdeadaaaa));
 659         __ movptr(Address(rsp, st_off), rax);
 660 #endif /* ASSERT */
 661 #endif // _LP64
 662       }
 663     } else if (r_1->is_Register()) {
 664       Register r = r_1->as_Register();
 665       if (!r_2->is_valid()) {
 666         __ movl(Address(rsp, st_off), r);
 667       } else {
 668         // long/double in gpr
 669         NOT_LP64(ShouldNotReachHere());
 670         // Two VMRegs can be T_OBJECT, T_ADDRESS, T_DOUBLE, T_LONG
 671         // T_DOUBLE and T_LONG use two slots in the interpreter
 672         if ( sig_bt[i] == T_LONG || sig_bt[i] == T_DOUBLE) {
 673           // long/double in gpr
 674 #ifdef ASSERT
 675           // Overwrite the unused slot with known junk
 676           LP64_ONLY(__ mov64(rax, CONST64(0xdeadffffdeadaaab)));
 677           __ movptr(Address(rsp, st_off), rax);
 678 #endif /* ASSERT */
 679           __ movptr(Address(rsp, next_off), r);
 680         } else {
 681           __ movptr(Address(rsp, st_off), r);
 682         }
 683       }
 684     } else {
 685       assert(r_1->is_XMMRegister(), "");
 686       if (!r_2->is_valid()) {
 687         __ movflt(Address(rsp, st_off), r_1->as_XMMRegister());
 688       } else {
 689         assert(sig_bt[i] == T_DOUBLE || sig_bt[i] == T_LONG, "wrong type");
 690         move_c2i_double(masm, r_1->as_XMMRegister(), st_off);
 691       }
 692     }
 693   }
 694 
 695   // Schedule the branch target address early.
 696   __ movptr(rcx, Address(rbx, in_bytes(Method::interpreter_entry_offset())));
 697   // And repush original return address
 698   __ push(rax);
 699   __ jmp(rcx);
 700 }
 701 
 702 
 703 static void move_i2c_double(MacroAssembler *masm, XMMRegister r, Register saved_sp, int ld_off) {
 704   int next_val_off = ld_off - Interpreter::stackElementSize;
 705   __ movdbl(r, Address(saved_sp, next_val_off));
 706 }
 707 
 708 static void range_check(MacroAssembler* masm, Register pc_reg, Register temp_reg,
 709                         address code_start, address code_end,
 710                         Label& L_ok) {
 711   Label L_fail;
 712   __ lea(temp_reg, ExternalAddress(code_start));
 713   __ cmpptr(pc_reg, temp_reg);
 714   __ jcc(Assembler::belowEqual, L_fail);
 715   __ lea(temp_reg, ExternalAddress(code_end));
 716   __ cmpptr(pc_reg, temp_reg);
 717   __ jcc(Assembler::below, L_ok);
 718   __ bind(L_fail);
 719 }
 720 
 721 void SharedRuntime::gen_i2c_adapter(MacroAssembler *masm,
 722                                     int total_args_passed,
 723                                     int comp_args_on_stack,
 724                                     const BasicType *sig_bt,
 725                                     const VMRegPair *regs) {
 726   // Note: rsi contains the senderSP on entry. We must preserve it since
 727   // we may do a i2c -> c2i transition if we lose a race where compiled
 728   // code goes non-entrant while we get args ready.
 729 
 730   // Adapters can be frameless because they do not require the caller
 731   // to perform additional cleanup work, such as correcting the stack pointer.
 732   // An i2c adapter is frameless because the *caller* frame, which is interpreted,
 733   // routinely repairs its own stack pointer (from interpreter_frame_last_sp),
 734   // even if a callee has modified the stack pointer.
 735   // A c2i adapter is frameless because the *callee* frame, which is interpreted,
 736   // routinely repairs its caller's stack pointer (from sender_sp, which is set
 737   // up via the senderSP register).
 738   // In other words, if *either* the caller or callee is interpreted, we can
 739   // get the stack pointer repaired after a call.
 740   // This is why c2i and i2c adapters cannot be indefinitely composed.
 741   // In particular, if a c2i adapter were to somehow call an i2c adapter,
 742   // both caller and callee would be compiled methods, and neither would
 743   // clean up the stack pointer changes performed by the two adapters.
 744   // If this happens, control eventually transfers back to the compiled
 745   // caller, but with an uncorrected stack, causing delayed havoc.
 746 
 747   // Pick up the return address
 748   __ movptr(rax, Address(rsp, 0));
 749 
 750   if (VerifyAdapterCalls &&
 751       (Interpreter::code() != NULL || StubRoutines::code1() != NULL)) {
 752     // So, let's test for cascading c2i/i2c adapters right now.
 753     //  assert(Interpreter::contains($return_addr) ||
 754     //         StubRoutines::contains($return_addr),
 755     //         "i2c adapter must return to an interpreter frame");
 756     __ block_comment("verify_i2c { ");
 757     Label L_ok;
 758     if (Interpreter::code() != NULL)
 759       range_check(masm, rax, rdi,
 760                   Interpreter::code()->code_start(), Interpreter::code()->code_end(),
 761                   L_ok);
 762     if (StubRoutines::code1() != NULL)
 763       range_check(masm, rax, rdi,
 764                   StubRoutines::code1()->code_begin(), StubRoutines::code1()->code_end(),
 765                   L_ok);
 766     if (StubRoutines::code2() != NULL)
 767       range_check(masm, rax, rdi,
 768                   StubRoutines::code2()->code_begin(), StubRoutines::code2()->code_end(),
 769                   L_ok);
 770     const char* msg = "i2c adapter must return to an interpreter frame";
 771     __ block_comment(msg);
 772     __ stop(msg);
 773     __ bind(L_ok);
 774     __ block_comment("} verify_i2ce ");
 775   }
 776 
 777   // Must preserve original SP for loading incoming arguments because
 778   // we need to align the outgoing SP for compiled code.
 779   __ movptr(rdi, rsp);
 780 
 781   // Cut-out for having no stack args.  Since up to 2 int/oop args are passed
 782   // in registers, we will occasionally have no stack args.
 783   int comp_words_on_stack = 0;
 784   if (comp_args_on_stack) {
 785     // Sig words on the stack are greater-than VMRegImpl::stack0.  Those in
 786     // registers are below.  By subtracting stack0, we either get a negative
 787     // number (all values in registers) or the maximum stack slot accessed.
 788     // int comp_args_on_stack = VMRegImpl::reg2stack(max_arg);
 789     // Convert 4-byte stack slots to words.
 790     comp_words_on_stack = align_up(comp_args_on_stack*4, wordSize)>>LogBytesPerWord;
 791     // Round up to miminum stack alignment, in wordSize
 792     comp_words_on_stack = align_up(comp_words_on_stack, 2);
 793     __ subptr(rsp, comp_words_on_stack * wordSize);
 794   }
 795 
 796   // Align the outgoing SP
 797   __ andptr(rsp, -(StackAlignmentInBytes));
 798 
 799   // push the return address on the stack (note that pushing, rather
 800   // than storing it, yields the correct frame alignment for the callee)
 801   __ push(rax);
 802 
 803   // Put saved SP in another register
 804   const Register saved_sp = rax;
 805   __ movptr(saved_sp, rdi);
 806 
 807 
 808   // Will jump to the compiled code just as if compiled code was doing it.
 809   // Pre-load the register-jump target early, to schedule it better.
 810   __ movptr(rdi, Address(rbx, in_bytes(Method::from_compiled_offset())));
 811 
 812   // Now generate the shuffle code.  Pick up all register args and move the
 813   // rest through the floating point stack top.
 814   for (int i = 0; i < total_args_passed; i++) {
 815     if (sig_bt[i] == T_VOID) {
 816       // Longs and doubles are passed in native word order, but misaligned
 817       // in the 32-bit build.
 818       assert(i > 0 && (sig_bt[i-1] == T_LONG || sig_bt[i-1] == T_DOUBLE), "missing half");
 819       continue;
 820     }
 821 
 822     // Pick up 0, 1 or 2 words from SP+offset.
 823 
 824     assert(!regs[i].second()->is_valid() || regs[i].first()->next() == regs[i].second(),
 825             "scrambled load targets?");
 826     // Load in argument order going down.
 827     int ld_off = (total_args_passed - i) * Interpreter::stackElementSize;
 828     // Point to interpreter value (vs. tag)
 829     int next_off = ld_off - Interpreter::stackElementSize;
 830     //
 831     //
 832     //
 833     VMReg r_1 = regs[i].first();
 834     VMReg r_2 = regs[i].second();
 835     if (!r_1->is_valid()) {
 836       assert(!r_2->is_valid(), "");
 837       continue;
 838     }
 839     if (r_1->is_stack()) {
 840       // Convert stack slot to an SP offset (+ wordSize to account for return address )
 841       int st_off = regs[i].first()->reg2stack()*VMRegImpl::stack_slot_size + wordSize;
 842 
 843       // We can use rsi as a temp here because compiled code doesn't need rsi as an input
 844       // and if we end up going thru a c2i because of a miss a reasonable value of rsi
 845       // we be generated.
 846       if (!r_2->is_valid()) {
 847         // __ fld_s(Address(saved_sp, ld_off));
 848         // __ fstp_s(Address(rsp, st_off));
 849         __ movl(rsi, Address(saved_sp, ld_off));
 850         __ movptr(Address(rsp, st_off), rsi);
 851       } else {
 852         // Interpreter local[n] == MSW, local[n+1] == LSW however locals
 853         // are accessed as negative so LSW is at LOW address
 854 
 855         // ld_off is MSW so get LSW
 856         // st_off is LSW (i.e. reg.first())
 857         // __ fld_d(Address(saved_sp, next_off));
 858         // __ fstp_d(Address(rsp, st_off));
 859         //
 860         // We are using two VMRegs. This can be either T_OBJECT, T_ADDRESS, T_LONG, or T_DOUBLE
 861         // the interpreter allocates two slots but only uses one for thr T_LONG or T_DOUBLE case
 862         // So we must adjust where to pick up the data to match the interpreter.
 863         //
 864         // Interpreter local[n] == MSW, local[n+1] == LSW however locals
 865         // are accessed as negative so LSW is at LOW address
 866 
 867         // ld_off is MSW so get LSW
 868         const int offset = (NOT_LP64(true ||) sig_bt[i]==T_LONG||sig_bt[i]==T_DOUBLE)?
 869                            next_off : ld_off;
 870         __ movptr(rsi, Address(saved_sp, offset));
 871         __ movptr(Address(rsp, st_off), rsi);
 872 #ifndef _LP64
 873         __ movptr(rsi, Address(saved_sp, ld_off));
 874         __ movptr(Address(rsp, st_off + wordSize), rsi);
 875 #endif // _LP64
 876       }
 877     } else if (r_1->is_Register()) {  // Register argument
 878       Register r = r_1->as_Register();
 879       assert(r != rax, "must be different");
 880       if (r_2->is_valid()) {
 881         //
 882         // We are using two VMRegs. This can be either T_OBJECT, T_ADDRESS, T_LONG, or T_DOUBLE
 883         // the interpreter allocates two slots but only uses one for thr T_LONG or T_DOUBLE case
 884         // So we must adjust where to pick up the data to match the interpreter.
 885 
 886         const int offset = (NOT_LP64(true ||) sig_bt[i]==T_LONG||sig_bt[i]==T_DOUBLE)?
 887                            next_off : ld_off;
 888 
 889         // this can be a misaligned move
 890         __ movptr(r, Address(saved_sp, offset));
 891 #ifndef _LP64
 892         assert(r_2->as_Register() != rax, "need another temporary register");
 893         // Remember r_1 is low address (and LSB on x86)
 894         // So r_2 gets loaded from high address regardless of the platform
 895         __ movptr(r_2->as_Register(), Address(saved_sp, ld_off));
 896 #endif // _LP64
 897       } else {
 898         __ movl(r, Address(saved_sp, ld_off));
 899       }
 900     } else {
 901       assert(r_1->is_XMMRegister(), "");
 902       if (!r_2->is_valid()) {
 903         __ movflt(r_1->as_XMMRegister(), Address(saved_sp, ld_off));
 904       } else {
 905         move_i2c_double(masm, r_1->as_XMMRegister(), saved_sp, ld_off);
 906       }
 907     }
 908   }
 909 
 910   // 6243940 We might end up in handle_wrong_method if
 911   // the callee is deoptimized as we race thru here. If that
 912   // happens we don't want to take a safepoint because the
 913   // caller frame will look interpreted and arguments are now
 914   // "compiled" so it is much better to make this transition
 915   // invisible to the stack walking code. Unfortunately if
 916   // we try and find the callee by normal means a safepoint
 917   // is possible. So we stash the desired callee in the thread
 918   // and the vm will find there should this case occur.
 919 
 920   __ get_thread(rax);
 921   __ movptr(Address(rax, JavaThread::callee_target_offset()), rbx);
 922 
 923   // move Method* to rax, in case we end up in an c2i adapter.
 924   // the c2i adapters expect Method* in rax, (c2) because c2's
 925   // resolve stubs return the result (the method) in rax,.
 926   // I'd love to fix this.
 927   __ mov(rax, rbx);
 928 
 929   __ jmp(rdi);
 930 }
 931 
 932 // ---------------------------------------------------------------
 933 AdapterHandlerEntry* SharedRuntime::generate_i2c2i_adapters(MacroAssembler *masm,
 934                                                             int total_args_passed,
 935                                                             int comp_args_on_stack,
 936                                                             const BasicType *sig_bt,
 937                                                             const VMRegPair *regs,
 938                                                             AdapterFingerPrint* fingerprint) {
 939   address i2c_entry = __ pc();
 940 
 941   gen_i2c_adapter(masm, total_args_passed, comp_args_on_stack, sig_bt, regs);
 942 
 943   // -------------------------------------------------------------------------
 944   // Generate a C2I adapter.  On entry we know rbx, holds the Method* during calls
 945   // to the interpreter.  The args start out packed in the compiled layout.  They
 946   // need to be unpacked into the interpreter layout.  This will almost always
 947   // require some stack space.  We grow the current (compiled) stack, then repack
 948   // the args.  We  finally end in a jump to the generic interpreter entry point.
 949   // On exit from the interpreter, the interpreter will restore our SP (lest the
 950   // compiled code, which relys solely on SP and not EBP, get sick).
 951 
 952   address c2i_unverified_entry = __ pc();
 953   Label skip_fixup;
 954 
 955   Register holder = rax;
 956   Register receiver = rcx;
 957   Register temp = rbx;
 958 
 959   {
 960 
 961     Label missed;
 962     __ movptr(temp, Address(receiver, oopDesc::klass_offset_in_bytes()));
 963     __ cmpptr(temp, Address(holder, CompiledICHolder::holder_klass_offset()));
 964     __ movptr(rbx, Address(holder, CompiledICHolder::holder_metadata_offset()));
 965     __ jcc(Assembler::notEqual, missed);
 966     // Method might have been compiled since the call site was patched to
 967     // interpreted if that is the case treat it as a miss so we can get
 968     // the call site corrected.
 969     __ cmpptr(Address(rbx, in_bytes(Method::code_offset())), (int32_t)NULL_WORD);
 970     __ jcc(Assembler::equal, skip_fixup);
 971 
 972     __ bind(missed);
 973     __ jump(RuntimeAddress(SharedRuntime::get_ic_miss_stub()));
 974   }
 975 
 976   address c2i_entry = __ pc();
 977 
 978   gen_c2i_adapter(masm, total_args_passed, comp_args_on_stack, sig_bt, regs, skip_fixup);
 979 
 980   __ flush();
 981   return AdapterHandlerLibrary::new_entry(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry);
 982 }
 983 
 984 int SharedRuntime::c_calling_convention(const BasicType *sig_bt,
 985                                          VMRegPair *regs,
 986                                          VMRegPair *regs2,
 987                                          int total_args_passed) {
 988   assert(regs2 == NULL, "not needed on x86");
 989 // We return the amount of VMRegImpl stack slots we need to reserve for all
 990 // the arguments NOT counting out_preserve_stack_slots.
 991 
 992   uint    stack = 0;        // All arguments on stack
 993 
 994   for( int i = 0; i < total_args_passed; i++) {
 995     // From the type and the argument number (count) compute the location
 996     switch( sig_bt[i] ) {
 997     case T_BOOLEAN:
 998     case T_CHAR:
 999     case T_FLOAT:
1000     case T_BYTE:
1001     case T_SHORT:
1002     case T_INT:
1003     case T_OBJECT:
1004     case T_ARRAY:
1005     case T_ADDRESS:
1006     case T_METADATA:
1007       regs[i].set1(VMRegImpl::stack2reg(stack++));
1008       break;
1009     case T_LONG:
1010     case T_DOUBLE: // The stack numbering is reversed from Java
1011       // Since C arguments do not get reversed, the ordering for
1012       // doubles on the stack must be opposite the Java convention
1013       assert((i + 1) < total_args_passed && sig_bt[i+1] == T_VOID, "missing Half" );
1014       regs[i].set2(VMRegImpl::stack2reg(stack));
1015       stack += 2;
1016       break;
1017     case T_VOID: regs[i].set_bad(); break;
1018     default:
1019       ShouldNotReachHere();
1020       break;
1021     }
1022   }
1023   return stack;
1024 }
1025 
1026 // A simple move of integer like type
1027 static void simple_move32(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
1028   if (src.first()->is_stack()) {
1029     if (dst.first()->is_stack()) {
1030       // stack to stack
1031       // __ ld(FP, reg2offset(src.first()) + STACK_BIAS, L5);
1032       // __ st(L5, SP, reg2offset(dst.first()) + STACK_BIAS);
1033       __ movl2ptr(rax, Address(rbp, reg2offset_in(src.first())));
1034       __ movptr(Address(rsp, reg2offset_out(dst.first())), rax);
1035     } else {
1036       // stack to reg
1037       __ movl2ptr(dst.first()->as_Register(),  Address(rbp, reg2offset_in(src.first())));
1038     }
1039   } else if (dst.first()->is_stack()) {
1040     // reg to stack
1041     // no need to sign extend on 64bit
1042     __ movptr(Address(rsp, reg2offset_out(dst.first())), src.first()->as_Register());
1043   } else {
1044     if (dst.first() != src.first()) {
1045       __ mov(dst.first()->as_Register(), src.first()->as_Register());
1046     }
1047   }
1048 }
1049 
1050 // An oop arg. Must pass a handle not the oop itself
1051 static void object_move(MacroAssembler* masm,
1052                         OopMap* map,
1053                         int oop_handle_offset,
1054                         int framesize_in_slots,
1055                         VMRegPair src,
1056                         VMRegPair dst,
1057                         bool is_receiver,
1058                         int* receiver_offset) {
1059 
1060   // Because of the calling conventions we know that src can be a
1061   // register or a stack location. dst can only be a stack location.
1062 
1063   assert(dst.first()->is_stack(), "must be stack");
1064   // must pass a handle. First figure out the location we use as a handle
1065 
1066   if (src.first()->is_stack()) {
1067     // Oop is already on the stack as an argument
1068     Register rHandle = rax;
1069     Label nil;
1070     __ xorptr(rHandle, rHandle);
1071     __ cmpptr(Address(rbp, reg2offset_in(src.first())), (int32_t)NULL_WORD);
1072     __ jcc(Assembler::equal, nil);
1073     __ lea(rHandle, Address(rbp, reg2offset_in(src.first())));
1074     __ bind(nil);
1075     __ movptr(Address(rsp, reg2offset_out(dst.first())), rHandle);
1076 
1077     int offset_in_older_frame = src.first()->reg2stack() + SharedRuntime::out_preserve_stack_slots();
1078     map->set_oop(VMRegImpl::stack2reg(offset_in_older_frame + framesize_in_slots));
1079     if (is_receiver) {
1080       *receiver_offset = (offset_in_older_frame + framesize_in_slots) * VMRegImpl::stack_slot_size;
1081     }
1082   } else {
1083     // Oop is in an a register we must store it to the space we reserve
1084     // on the stack for oop_handles
1085     const Register rOop = src.first()->as_Register();
1086     const Register rHandle = rax;
1087     int oop_slot = (rOop == rcx ? 0 : 1) * VMRegImpl::slots_per_word + oop_handle_offset;
1088     int offset = oop_slot*VMRegImpl::stack_slot_size;
1089     Label skip;
1090     __ movptr(Address(rsp, offset), rOop);
1091     map->set_oop(VMRegImpl::stack2reg(oop_slot));
1092     __ xorptr(rHandle, rHandle);
1093     __ cmpptr(rOop, (int32_t)NULL_WORD);
1094     __ jcc(Assembler::equal, skip);
1095     __ lea(rHandle, Address(rsp, offset));
1096     __ bind(skip);
1097     // Store the handle parameter
1098     __ movptr(Address(rsp, reg2offset_out(dst.first())), rHandle);
1099     if (is_receiver) {
1100       *receiver_offset = offset;
1101     }
1102   }
1103 }
1104 
1105 // A float arg may have to do float reg int reg conversion
1106 static void float_move(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
1107   assert(!src.second()->is_valid() && !dst.second()->is_valid(), "bad float_move");
1108 
1109   // Because of the calling convention we know that src is either a stack location
1110   // or an xmm register. dst can only be a stack location.
1111 
1112   assert(dst.first()->is_stack() && ( src.first()->is_stack() || src.first()->is_XMMRegister()), "bad parameters");
1113 
1114   if (src.first()->is_stack()) {
1115     __ movl(rax, Address(rbp, reg2offset_in(src.first())));
1116     __ movptr(Address(rsp, reg2offset_out(dst.first())), rax);
1117   } else {
1118     // reg to stack
1119     __ movflt(Address(rsp, reg2offset_out(dst.first())), src.first()->as_XMMRegister());
1120   }
1121 }
1122 
1123 // A long move
1124 static void long_move(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
1125 
1126   // The only legal possibility for a long_move VMRegPair is:
1127   // 1: two stack slots (possibly unaligned)
1128   // as neither the java  or C calling convention will use registers
1129   // for longs.
1130 
1131   if (src.first()->is_stack() && dst.first()->is_stack()) {
1132     assert(src.second()->is_stack() && dst.second()->is_stack(), "must be all stack");
1133     __ movptr(rax, Address(rbp, reg2offset_in(src.first())));
1134     NOT_LP64(__ movptr(rbx, Address(rbp, reg2offset_in(src.second()))));
1135     __ movptr(Address(rsp, reg2offset_out(dst.first())), rax);
1136     NOT_LP64(__ movptr(Address(rsp, reg2offset_out(dst.second())), rbx));
1137   } else {
1138     ShouldNotReachHere();
1139   }
1140 }
1141 
1142 // A double move
1143 static void double_move(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
1144 
1145   // The only legal possibilities for a double_move VMRegPair are:
1146   // The painful thing here is that like long_move a VMRegPair might be
1147 
1148   // Because of the calling convention we know that src is either
1149   //   1: a single physical register (xmm registers only)
1150   //   2: two stack slots (possibly unaligned)
1151   // dst can only be a pair of stack slots.
1152 
1153   assert(dst.first()->is_stack() && (src.first()->is_XMMRegister() || src.first()->is_stack()), "bad args");
1154 
1155   if (src.first()->is_stack()) {
1156     // source is all stack
1157     __ movptr(rax, Address(rbp, reg2offset_in(src.first())));
1158     NOT_LP64(__ movptr(rbx, Address(rbp, reg2offset_in(src.second()))));
1159     __ movptr(Address(rsp, reg2offset_out(dst.first())), rax);
1160     NOT_LP64(__ movptr(Address(rsp, reg2offset_out(dst.second())), rbx));
1161   } else {
1162     // reg to stack
1163     // No worries about stack alignment
1164     __ movdbl(Address(rsp, reg2offset_out(dst.first())), src.first()->as_XMMRegister());
1165   }
1166 }
1167 
1168 
1169 void SharedRuntime::save_native_result(MacroAssembler *masm, BasicType ret_type, int frame_slots) {
1170   // We always ignore the frame_slots arg and just use the space just below frame pointer
1171   // which by this time is free to use
1172   switch (ret_type) {
1173   case T_FLOAT:
1174     __ fstp_s(Address(rbp, -wordSize));
1175     break;
1176   case T_DOUBLE:
1177     __ fstp_d(Address(rbp, -2*wordSize));
1178     break;
1179   case T_VOID:  break;
1180   case T_LONG:
1181     __ movptr(Address(rbp, -wordSize), rax);
1182     NOT_LP64(__ movptr(Address(rbp, -2*wordSize), rdx));
1183     break;
1184   default: {
1185     __ movptr(Address(rbp, -wordSize), rax);
1186     }
1187   }
1188 }
1189 
1190 void SharedRuntime::restore_native_result(MacroAssembler *masm, BasicType ret_type, int frame_slots) {
1191   // We always ignore the frame_slots arg and just use the space just below frame pointer
1192   // which by this time is free to use
1193   switch (ret_type) {
1194   case T_FLOAT:
1195     __ fld_s(Address(rbp, -wordSize));
1196     break;
1197   case T_DOUBLE:
1198     __ fld_d(Address(rbp, -2*wordSize));
1199     break;
1200   case T_LONG:
1201     __ movptr(rax, Address(rbp, -wordSize));
1202     NOT_LP64(__ movptr(rdx, Address(rbp, -2*wordSize)));
1203     break;
1204   case T_VOID:  break;
1205   default: {
1206     __ movptr(rax, Address(rbp, -wordSize));
1207     }
1208   }
1209 }
1210 
1211 
1212 static void save_or_restore_arguments(MacroAssembler* masm,
1213                                       const int stack_slots,
1214                                       const int total_in_args,
1215                                       const int arg_save_area,
1216                                       OopMap* map,
1217                                       VMRegPair* in_regs,
1218                                       BasicType* in_sig_bt) {
1219   // if map is non-NULL then the code should store the values,
1220   // otherwise it should load them.
1221   int handle_index = 0;
1222   // Save down double word first
1223   for ( int i = 0; i < total_in_args; i++) {
1224     if (in_regs[i].first()->is_XMMRegister() && in_sig_bt[i] == T_DOUBLE) {
1225       int slot = handle_index * VMRegImpl::slots_per_word + arg_save_area;
1226       int offset = slot * VMRegImpl::stack_slot_size;
1227       handle_index += 2;
1228       assert(handle_index <= stack_slots, "overflow");
1229       if (map != NULL) {
1230         __ movdbl(Address(rsp, offset), in_regs[i].first()->as_XMMRegister());
1231       } else {
1232         __ movdbl(in_regs[i].first()->as_XMMRegister(), Address(rsp, offset));
1233       }
1234     }
1235     if (in_regs[i].first()->is_Register() && in_sig_bt[i] == T_LONG) {
1236       int slot = handle_index * VMRegImpl::slots_per_word + arg_save_area;
1237       int offset = slot * VMRegImpl::stack_slot_size;
1238       handle_index += 2;
1239       assert(handle_index <= stack_slots, "overflow");
1240       if (map != NULL) {
1241         __ movl(Address(rsp, offset), in_regs[i].first()->as_Register());
1242         if (in_regs[i].second()->is_Register()) {
1243           __ movl(Address(rsp, offset + 4), in_regs[i].second()->as_Register());
1244         }
1245       } else {
1246         __ movl(in_regs[i].first()->as_Register(), Address(rsp, offset));
1247         if (in_regs[i].second()->is_Register()) {
1248           __ movl(in_regs[i].second()->as_Register(), Address(rsp, offset + 4));
1249         }
1250       }
1251     }
1252   }
1253   // Save or restore single word registers
1254   for ( int i = 0; i < total_in_args; i++) {
1255     if (in_regs[i].first()->is_Register()) {
1256       int slot = handle_index++ * VMRegImpl::slots_per_word + arg_save_area;
1257       int offset = slot * VMRegImpl::stack_slot_size;
1258       assert(handle_index <= stack_slots, "overflow");
1259       if (in_sig_bt[i] == T_ARRAY && map != NULL) {
1260         map->set_oop(VMRegImpl::stack2reg(slot));;
1261       }
1262 
1263       // Value is in an input register pass we must flush it to the stack
1264       const Register reg = in_regs[i].first()->as_Register();
1265       switch (in_sig_bt[i]) {
1266         case T_ARRAY:
1267           if (map != NULL) {
1268             __ movptr(Address(rsp, offset), reg);
1269           } else {
1270             __ movptr(reg, Address(rsp, offset));
1271           }
1272           break;
1273         case T_BOOLEAN:
1274         case T_CHAR:
1275         case T_BYTE:
1276         case T_SHORT:
1277         case T_INT:
1278           if (map != NULL) {
1279             __ movl(Address(rsp, offset), reg);
1280           } else {
1281             __ movl(reg, Address(rsp, offset));
1282           }
1283           break;
1284         case T_OBJECT:
1285         default: ShouldNotReachHere();
1286       }
1287     } else if (in_regs[i].first()->is_XMMRegister()) {
1288       if (in_sig_bt[i] == T_FLOAT) {
1289         int slot = handle_index++ * VMRegImpl::slots_per_word + arg_save_area;
1290         int offset = slot * VMRegImpl::stack_slot_size;
1291         assert(handle_index <= stack_slots, "overflow");
1292         if (map != NULL) {
1293           __ movflt(Address(rsp, offset), in_regs[i].first()->as_XMMRegister());
1294         } else {
1295           __ movflt(in_regs[i].first()->as_XMMRegister(), Address(rsp, offset));
1296         }
1297       }
1298     } else if (in_regs[i].first()->is_stack()) {
1299       if (in_sig_bt[i] == T_ARRAY && map != NULL) {
1300         int offset_in_older_frame = in_regs[i].first()->reg2stack() + SharedRuntime::out_preserve_stack_slots();
1301         map->set_oop(VMRegImpl::stack2reg(offset_in_older_frame + stack_slots));
1302       }
1303     }
1304   }
1305 }
1306 
1307 // Registers need to be saved for runtime call
1308 static Register caller_saved_registers[] = {
1309   rcx, rdx, rsi, rdi
1310 };
1311 
1312 // Save caller saved registers except r1 and r2
1313 static void save_registers_except(MacroAssembler* masm, Register r1, Register r2) {
1314   int reg_len = (int)(sizeof(caller_saved_registers) / sizeof(Register));
1315   for (int index = 0; index < reg_len; index ++) {
1316     Register this_reg = caller_saved_registers[index];
1317     if (this_reg != r1 && this_reg != r2) {
1318       __ push(this_reg);
1319     }
1320   }
1321 }
1322 
1323 // Restore caller saved registers except r1 and r2
1324 static void restore_registers_except(MacroAssembler* masm, Register r1, Register r2) {
1325   int reg_len = (int)(sizeof(caller_saved_registers) / sizeof(Register));
1326   for (int index = reg_len - 1; index >= 0; index --) {
1327     Register this_reg = caller_saved_registers[index];
1328     if (this_reg != r1 && this_reg != r2) {
1329       __ pop(this_reg);
1330     }
1331   }
1332 }
1333 
1334 // Pin object, return pinned object or null in rax
1335 static void gen_pin_object(MacroAssembler* masm,
1336                            Register thread, VMRegPair reg) {
1337   __ block_comment("gen_pin_object {");
1338 
1339   Label is_null;
1340   Register tmp_reg = rax;
1341   VMRegPair tmp(tmp_reg->as_VMReg());
1342   if (reg.first()->is_stack()) {
1343     // Load the arg up from the stack
1344     simple_move32(masm, reg, tmp);
1345     reg = tmp;
1346   } else {
1347     __ movl(tmp_reg, reg.first()->as_Register());
1348   }
1349   __ testptr(reg.first()->as_Register(), reg.first()->as_Register());
1350   __ jccb(Assembler::equal, is_null);
1351 
1352   // Save registers that may be used by runtime call
1353   Register arg = reg.first()->is_Register() ? reg.first()->as_Register() : noreg;
1354   save_registers_except(masm, arg, thread);
1355 
1356   __ call_VM_leaf(
1357     CAST_FROM_FN_PTR(address, SharedRuntime::pin_object),
1358     thread, reg.first()->as_Register());
1359 
1360   // Restore saved registers
1361   restore_registers_except(masm, arg, thread);
1362 
1363   __ bind(is_null);
1364   __ block_comment("} gen_pin_object");
1365 }
1366 
1367 // Unpin object
1368 static void gen_unpin_object(MacroAssembler* masm,
1369                              Register thread, VMRegPair reg) {
1370   __ block_comment("gen_unpin_object {");
1371   Label is_null;
1372 
1373   // temp register
1374   __ push(rax);
1375   Register tmp_reg = rax;
1376   VMRegPair tmp(tmp_reg->as_VMReg());
1377 
1378   simple_move32(masm, reg, tmp);
1379 
1380   __ testptr(rax, rax);
1381   __ jccb(Assembler::equal, is_null);
1382 
1383   // Save registers that may be used by runtime call
1384   Register arg = reg.first()->is_Register() ? reg.first()->as_Register() : noreg;
1385   save_registers_except(masm, arg, thread);
1386 
1387   __ call_VM_leaf(
1388     CAST_FROM_FN_PTR(address, SharedRuntime::unpin_object),
1389     thread, rax);
1390 
1391   // Restore saved registers
1392   restore_registers_except(masm, arg, thread);
1393   __ bind(is_null);
1394   __ pop(rax);
1395   __ block_comment("} gen_unpin_object");
1396 }
1397 
1398 // Check GCLocker::needs_gc and enter the runtime if it's true.  This
1399 // keeps a new JNI critical region from starting until a GC has been
1400 // forced.  Save down any oops in registers and describe them in an
1401 // OopMap.
1402 static void check_needs_gc_for_critical_native(MacroAssembler* masm,
1403                                                Register thread,
1404                                                int stack_slots,
1405                                                int total_c_args,
1406                                                int total_in_args,
1407                                                int arg_save_area,
1408                                                OopMapSet* oop_maps,
1409                                                VMRegPair* in_regs,
1410                                                BasicType* in_sig_bt) {
1411   __ block_comment("check GCLocker::needs_gc");
1412   Label cont;
1413   __ cmp8(ExternalAddress((address)GCLocker::needs_gc_address()), false);
1414   __ jcc(Assembler::equal, cont);
1415 
1416   // Save down any incoming oops and call into the runtime to halt for a GC
1417 
1418   OopMap* map = new OopMap(stack_slots * 2, 0 /* arg_slots*/);
1419 
1420   save_or_restore_arguments(masm, stack_slots, total_in_args,
1421                             arg_save_area, map, in_regs, in_sig_bt);
1422 
1423   address the_pc = __ pc();
1424   oop_maps->add_gc_map( __ offset(), map);
1425   __ set_last_Java_frame(thread, rsp, noreg, the_pc);
1426 
1427   __ block_comment("block_for_jni_critical");
1428   __ push(thread);
1429   __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::block_for_jni_critical)));
1430   __ increment(rsp, wordSize);
1431 
1432   __ get_thread(thread);
1433   __ reset_last_Java_frame(thread, false);
1434 
1435   save_or_restore_arguments(masm, stack_slots, total_in_args,
1436                             arg_save_area, NULL, in_regs, in_sig_bt);
1437 
1438   __ bind(cont);
1439 #ifdef ASSERT
1440   if (StressCriticalJNINatives) {
1441     // Stress register saving
1442     OopMap* map = new OopMap(stack_slots * 2, 0 /* arg_slots*/);
1443     save_or_restore_arguments(masm, stack_slots, total_in_args,
1444                               arg_save_area, map, in_regs, in_sig_bt);
1445     // Destroy argument registers
1446     for (int i = 0; i < total_in_args - 1; i++) {
1447       if (in_regs[i].first()->is_Register()) {
1448         const Register reg = in_regs[i].first()->as_Register();
1449         __ xorptr(reg, reg);
1450       } else if (in_regs[i].first()->is_XMMRegister()) {
1451         __ xorpd(in_regs[i].first()->as_XMMRegister(), in_regs[i].first()->as_XMMRegister());
1452       } else if (in_regs[i].first()->is_FloatRegister()) {
1453         ShouldNotReachHere();
1454       } else if (in_regs[i].first()->is_stack()) {
1455         // Nothing to do
1456       } else {
1457         ShouldNotReachHere();
1458       }
1459       if (in_sig_bt[i] == T_LONG || in_sig_bt[i] == T_DOUBLE) {
1460         i++;
1461       }
1462     }
1463 
1464     save_or_restore_arguments(masm, stack_slots, total_in_args,
1465                               arg_save_area, NULL, in_regs, in_sig_bt);
1466   }
1467 #endif
1468 }
1469 
1470 // Unpack an array argument into a pointer to the body and the length
1471 // if the array is non-null, otherwise pass 0 for both.
1472 static void unpack_array_argument(MacroAssembler* masm, VMRegPair reg, BasicType in_elem_type, VMRegPair body_arg, VMRegPair length_arg) {
1473   Register tmp_reg = rax;
1474   assert(!body_arg.first()->is_Register() || body_arg.first()->as_Register() != tmp_reg,
1475          "possible collision");
1476   assert(!length_arg.first()->is_Register() || length_arg.first()->as_Register() != tmp_reg,
1477          "possible collision");
1478 
1479   // Pass the length, ptr pair
1480   Label is_null, done;
1481   VMRegPair tmp(tmp_reg->as_VMReg());
1482   if (reg.first()->is_stack()) {
1483     // Load the arg up from the stack
1484     simple_move32(masm, reg, tmp);
1485     reg = tmp;
1486   }
1487   __ testptr(reg.first()->as_Register(), reg.first()->as_Register());
1488   __ jccb(Assembler::equal, is_null);
1489   __ lea(tmp_reg, Address(reg.first()->as_Register(), arrayOopDesc::base_offset_in_bytes(in_elem_type)));
1490   simple_move32(masm, tmp, body_arg);
1491   // load the length relative to the body.
1492   __ movl(tmp_reg, Address(tmp_reg, arrayOopDesc::length_offset_in_bytes() -
1493                            arrayOopDesc::base_offset_in_bytes(in_elem_type)));
1494   simple_move32(masm, tmp, length_arg);
1495   __ jmpb(done);
1496   __ bind(is_null);
1497   // Pass zeros
1498   __ xorptr(tmp_reg, tmp_reg);
1499   simple_move32(masm, tmp, body_arg);
1500   simple_move32(masm, tmp, length_arg);
1501   __ bind(done);
1502 }
1503 
1504 static void verify_oop_args(MacroAssembler* masm,
1505                             const methodHandle& method,
1506                             const BasicType* sig_bt,
1507                             const VMRegPair* regs) {
1508   Register temp_reg = rbx;  // not part of any compiled calling seq
1509   if (VerifyOops) {
1510     for (int i = 0; i < method->size_of_parameters(); i++) {
1511       if (sig_bt[i] == T_OBJECT ||
1512           sig_bt[i] == T_ARRAY) {
1513         VMReg r = regs[i].first();
1514         assert(r->is_valid(), "bad oop arg");
1515         if (r->is_stack()) {
1516           __ movptr(temp_reg, Address(rsp, r->reg2stack() * VMRegImpl::stack_slot_size + wordSize));
1517           __ verify_oop(temp_reg);
1518         } else {
1519           __ verify_oop(r->as_Register());
1520         }
1521       }
1522     }
1523   }
1524 }
1525 
1526 static void gen_special_dispatch(MacroAssembler* masm,
1527                                  const methodHandle& method,
1528                                  const BasicType* sig_bt,
1529                                  const VMRegPair* regs) {
1530   verify_oop_args(masm, method, sig_bt, regs);
1531   vmIntrinsics::ID iid = method->intrinsic_id();
1532 
1533   // Now write the args into the outgoing interpreter space
1534   bool     has_receiver   = false;
1535   Register receiver_reg   = noreg;
1536   int      member_arg_pos = -1;
1537   Register member_reg     = noreg;
1538   int      ref_kind       = MethodHandles::signature_polymorphic_intrinsic_ref_kind(iid);
1539   if (ref_kind != 0) {
1540     member_arg_pos = method->size_of_parameters() - 1;  // trailing MemberName argument
1541     member_reg = rbx;  // known to be free at this point
1542     has_receiver = MethodHandles::ref_kind_has_receiver(ref_kind);
1543   } else if (iid == vmIntrinsics::_invokeBasic) {
1544     has_receiver = true;
1545   } else {
1546     fatal("unexpected intrinsic id %d", iid);
1547   }
1548 
1549   if (member_reg != noreg) {
1550     // Load the member_arg into register, if necessary.
1551     SharedRuntime::check_member_name_argument_is_last_argument(method, sig_bt, regs);
1552     VMReg r = regs[member_arg_pos].first();
1553     if (r->is_stack()) {
1554       __ movptr(member_reg, Address(rsp, r->reg2stack() * VMRegImpl::stack_slot_size + wordSize));
1555     } else {
1556       // no data motion is needed
1557       member_reg = r->as_Register();
1558     }
1559   }
1560 
1561   if (has_receiver) {
1562     // Make sure the receiver is loaded into a register.
1563     assert(method->size_of_parameters() > 0, "oob");
1564     assert(sig_bt[0] == T_OBJECT, "receiver argument must be an object");
1565     VMReg r = regs[0].first();
1566     assert(r->is_valid(), "bad receiver arg");
1567     if (r->is_stack()) {
1568       // Porting note:  This assumes that compiled calling conventions always
1569       // pass the receiver oop in a register.  If this is not true on some
1570       // platform, pick a temp and load the receiver from stack.
1571       fatal("receiver always in a register");
1572       receiver_reg = rcx;  // known to be free at this point
1573       __ movptr(receiver_reg, Address(rsp, r->reg2stack() * VMRegImpl::stack_slot_size + wordSize));
1574     } else {
1575       // no data motion is needed
1576       receiver_reg = r->as_Register();
1577     }
1578   }
1579 
1580   // Figure out which address we are really jumping to:
1581   MethodHandles::generate_method_handle_dispatch(masm, iid,
1582                                                  receiver_reg, member_reg, /*for_compiler_entry:*/ true);
1583 }
1584 
1585 // ---------------------------------------------------------------------------
1586 // Generate a native wrapper for a given method.  The method takes arguments
1587 // in the Java compiled code convention, marshals them to the native
1588 // convention (handlizes oops, etc), transitions to native, makes the call,
1589 // returns to java state (possibly blocking), unhandlizes any result and
1590 // returns.
1591 //
1592 // Critical native functions are a shorthand for the use of
1593 // GetPrimtiveArrayCritical and disallow the use of any other JNI
1594 // functions.  The wrapper is expected to unpack the arguments before
1595 // passing them to the callee and perform checks before and after the
1596 // native call to ensure that they GCLocker
1597 // lock_critical/unlock_critical semantics are followed.  Some other
1598 // parts of JNI setup are skipped like the tear down of the JNI handle
1599 // block and the check for pending exceptions it's impossible for them
1600 // to be thrown.
1601 //
1602 // They are roughly structured like this:
1603 //    if (GCLocker::needs_gc())
1604 //      SharedRuntime::block_for_jni_critical();
1605 //    tranistion to thread_in_native
1606 //    unpack arrray arguments and call native entry point
1607 //    check for safepoint in progress
1608 //    check if any thread suspend flags are set
1609 //      call into JVM and possible unlock the JNI critical
1610 //      if a GC was suppressed while in the critical native.
1611 //    transition back to thread_in_Java
1612 //    return to caller
1613 //
1614 nmethod* SharedRuntime::generate_native_wrapper(MacroAssembler* masm,
1615                                                 const methodHandle& method,
1616                                                 int compile_id,
1617                                                 BasicType* in_sig_bt,
1618                                                 VMRegPair* in_regs,
1619                                                 BasicType ret_type,
1620                                                 address critical_entry) {
1621   if (method->is_method_handle_intrinsic()) {
1622     vmIntrinsics::ID iid = method->intrinsic_id();
1623     intptr_t start = (intptr_t)__ pc();
1624     int vep_offset = ((intptr_t)__ pc()) - start;
1625     gen_special_dispatch(masm,
1626                          method,
1627                          in_sig_bt,
1628                          in_regs);
1629     int frame_complete = ((intptr_t)__ pc()) - start;  // not complete, period
1630     __ flush();
1631     int stack_slots = SharedRuntime::out_preserve_stack_slots();  // no out slots at all, actually
1632     return nmethod::new_native_nmethod(method,
1633                                        compile_id,
1634                                        masm->code(),
1635                                        vep_offset,
1636                                        frame_complete,
1637                                        stack_slots / VMRegImpl::slots_per_word,
1638                                        in_ByteSize(-1),
1639                                        in_ByteSize(-1),
1640                                        (OopMapSet*)NULL);
1641   }
1642   bool is_critical_native = true;
1643   address native_func = critical_entry;
1644   if (native_func == NULL) {
1645     native_func = method->native_function();
1646     is_critical_native = false;
1647   }
1648   assert(native_func != NULL, "must have function");
1649 
1650   // An OopMap for lock (and class if static)
1651   OopMapSet *oop_maps = new OopMapSet();
1652 
1653   // We have received a description of where all the java arg are located
1654   // on entry to the wrapper. We need to convert these args to where
1655   // the jni function will expect them. To figure out where they go
1656   // we convert the java signature to a C signature by inserting
1657   // the hidden arguments as arg[0] and possibly arg[1] (static method)
1658 
1659   const int total_in_args = method->size_of_parameters();
1660   int total_c_args = total_in_args;
1661   if (!is_critical_native) {
1662     total_c_args += 1;
1663     if (method->is_static()) {
1664       total_c_args++;
1665     }
1666   } else {
1667     for (int i = 0; i < total_in_args; i++) {
1668       if (in_sig_bt[i] == T_ARRAY) {
1669         total_c_args++;
1670       }
1671     }
1672   }
1673 
1674   BasicType* out_sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_c_args);
1675   VMRegPair* out_regs   = NEW_RESOURCE_ARRAY(VMRegPair, total_c_args);
1676   BasicType* in_elem_bt = NULL;
1677 
1678   int argc = 0;
1679   if (!is_critical_native) {
1680     out_sig_bt[argc++] = T_ADDRESS;
1681     if (method->is_static()) {
1682       out_sig_bt[argc++] = T_OBJECT;
1683     }
1684 
1685     for (int i = 0; i < total_in_args ; i++ ) {
1686       out_sig_bt[argc++] = in_sig_bt[i];
1687     }
1688   } else {
1689     Thread* THREAD = Thread::current();
1690     in_elem_bt = NEW_RESOURCE_ARRAY(BasicType, total_in_args);
1691     SignatureStream ss(method->signature());
1692     for (int i = 0; i < total_in_args ; i++ ) {
1693       if (in_sig_bt[i] == T_ARRAY) {
1694         // Arrays are passed as int, elem* pair
1695         out_sig_bt[argc++] = T_INT;
1696         out_sig_bt[argc++] = T_ADDRESS;
1697         Symbol* atype = ss.as_symbol(CHECK_NULL);
1698         const char* at = atype->as_C_string();
1699         if (strlen(at) == 2) {
1700           assert(at[0] == '[', "must be");
1701           switch (at[1]) {
1702             case 'B': in_elem_bt[i]  = T_BYTE; break;
1703             case 'C': in_elem_bt[i]  = T_CHAR; break;
1704             case 'D': in_elem_bt[i]  = T_DOUBLE; break;
1705             case 'F': in_elem_bt[i]  = T_FLOAT; break;
1706             case 'I': in_elem_bt[i]  = T_INT; break;
1707             case 'J': in_elem_bt[i]  = T_LONG; break;
1708             case 'S': in_elem_bt[i]  = T_SHORT; break;
1709             case 'Z': in_elem_bt[i]  = T_BOOLEAN; break;
1710             default: ShouldNotReachHere();
1711           }
1712         }
1713       } else {
1714         out_sig_bt[argc++] = in_sig_bt[i];
1715         in_elem_bt[i] = T_VOID;
1716       }
1717       if (in_sig_bt[i] != T_VOID) {
1718         assert(in_sig_bt[i] == ss.type(), "must match");
1719         ss.next();
1720       }
1721     }
1722   }
1723 
1724   // Now figure out where the args must be stored and how much stack space
1725   // they require.
1726   int out_arg_slots;
1727   out_arg_slots = c_calling_convention(out_sig_bt, out_regs, NULL, total_c_args);
1728 
1729   // Compute framesize for the wrapper.  We need to handlize all oops in
1730   // registers a max of 2 on x86.
1731 
1732   // Calculate the total number of stack slots we will need.
1733 
1734   // First count the abi requirement plus all of the outgoing args
1735   int stack_slots = SharedRuntime::out_preserve_stack_slots() + out_arg_slots;
1736 
1737   // Now the space for the inbound oop handle area
1738   int total_save_slots = 2 * VMRegImpl::slots_per_word; // 2 arguments passed in registers
1739   if (is_critical_native) {
1740     // Critical natives may have to call out so they need a save area
1741     // for register arguments.
1742     int double_slots = 0;
1743     int single_slots = 0;
1744     for ( int i = 0; i < total_in_args; i++) {
1745       if (in_regs[i].first()->is_Register()) {
1746         const Register reg = in_regs[i].first()->as_Register();
1747         switch (in_sig_bt[i]) {
1748           case T_ARRAY:  // critical array (uses 2 slots on LP64)
1749           case T_BOOLEAN:
1750           case T_BYTE:
1751           case T_SHORT:
1752           case T_CHAR:
1753           case T_INT:  single_slots++; break;
1754           case T_LONG: double_slots++; break;
1755           default:  ShouldNotReachHere();
1756         }
1757       } else if (in_regs[i].first()->is_XMMRegister()) {
1758         switch (in_sig_bt[i]) {
1759           case T_FLOAT:  single_slots++; break;
1760           case T_DOUBLE: double_slots++; break;
1761           default:  ShouldNotReachHere();
1762         }
1763       } else if (in_regs[i].first()->is_FloatRegister()) {
1764         ShouldNotReachHere();
1765       }
1766     }
1767     total_save_slots = double_slots * 2 + single_slots;
1768     // align the save area
1769     if (double_slots != 0) {
1770       stack_slots = align_up(stack_slots, 2);
1771     }
1772   }
1773 
1774   int oop_handle_offset = stack_slots;
1775   stack_slots += total_save_slots;
1776 
1777   // Now any space we need for handlizing a klass if static method
1778 
1779   int klass_slot_offset = 0;
1780   int klass_offset = -1;
1781   int lock_slot_offset = 0;
1782   bool is_static = false;
1783 
1784   if (method->is_static()) {
1785     klass_slot_offset = stack_slots;
1786     stack_slots += VMRegImpl::slots_per_word;
1787     klass_offset = klass_slot_offset * VMRegImpl::stack_slot_size;
1788     is_static = true;
1789   }
1790 
1791   // Plus a lock if needed
1792 
1793   if (method->is_synchronized()) {
1794     lock_slot_offset = stack_slots;
1795     stack_slots += VMRegImpl::slots_per_word;
1796   }
1797 
1798   // Now a place (+2) to save return values or temp during shuffling
1799   // + 2 for return address (which we own) and saved rbp,
1800   stack_slots += 4;
1801 
1802   // Ok The space we have allocated will look like:
1803   //
1804   //
1805   // FP-> |                     |
1806   //      |---------------------|
1807   //      | 2 slots for moves   |
1808   //      |---------------------|
1809   //      | lock box (if sync)  |
1810   //      |---------------------| <- lock_slot_offset  (-lock_slot_rbp_offset)
1811   //      | klass (if static)   |
1812   //      |---------------------| <- klass_slot_offset
1813   //      | oopHandle area      |
1814   //      |---------------------| <- oop_handle_offset (a max of 2 registers)
1815   //      | outbound memory     |
1816   //      | based arguments     |
1817   //      |                     |
1818   //      |---------------------|
1819   //      |                     |
1820   // SP-> | out_preserved_slots |
1821   //
1822   //
1823   // ****************************************************************************
1824   // WARNING - on Windows Java Natives use pascal calling convention and pop the
1825   // arguments off of the stack after the jni call. Before the call we can use
1826   // instructions that are SP relative. After the jni call we switch to FP
1827   // relative instructions instead of re-adjusting the stack on windows.
1828   // ****************************************************************************
1829 
1830 
1831   // Now compute actual number of stack words we need rounding to make
1832   // stack properly aligned.
1833   stack_slots = align_up(stack_slots, StackAlignmentInSlots);
1834 
1835   int stack_size = stack_slots * VMRegImpl::stack_slot_size;
1836 
1837   intptr_t start = (intptr_t)__ pc();
1838 
1839   // First thing make an ic check to see if we should even be here
1840 
1841   // We are free to use all registers as temps without saving them and
1842   // restoring them except rbp. rbp is the only callee save register
1843   // as far as the interpreter and the compiler(s) are concerned.
1844 
1845 
1846   const Register ic_reg = rax;
1847   const Register receiver = rcx;
1848   Label hit;
1849   Label exception_pending;
1850 
1851   __ verify_oop(receiver);
1852   __ cmpptr(ic_reg, Address(receiver, oopDesc::klass_offset_in_bytes()));
1853   __ jcc(Assembler::equal, hit);
1854 
1855   __ jump(RuntimeAddress(SharedRuntime::get_ic_miss_stub()));
1856 
1857   // verified entry must be aligned for code patching.
1858   // and the first 5 bytes must be in the same cache line
1859   // if we align at 8 then we will be sure 5 bytes are in the same line
1860   __ align(8);
1861 
1862   __ bind(hit);
1863 
1864   int vep_offset = ((intptr_t)__ pc()) - start;
1865 
1866 #ifdef COMPILER1
1867   // For Object.hashCode, System.identityHashCode try to pull hashCode from object header if available.
1868   if ((InlineObjectHash && method->intrinsic_id() == vmIntrinsics::_hashCode) || (method->intrinsic_id() == vmIntrinsics::_identityHashCode)) {
1869     inline_check_hashcode_from_object_header(masm, method, rcx /*obj_reg*/, rax /*result*/);
1870    }
1871 #endif // COMPILER1
1872 
1873   // The instruction at the verified entry point must be 5 bytes or longer
1874   // because it can be patched on the fly by make_non_entrant. The stack bang
1875   // instruction fits that requirement.
1876 
1877   // Generate stack overflow check
1878 
1879   if (UseStackBanging) {
1880     __ bang_stack_with_offset((int)JavaThread::stack_shadow_zone_size());
1881   } else {
1882     // need a 5 byte instruction to allow MT safe patching to non-entrant
1883     __ fat_nop();
1884   }
1885 
1886   // Generate a new frame for the wrapper.
1887   __ enter();
1888   // -2 because return address is already present and so is saved rbp
1889   __ subptr(rsp, stack_size - 2*wordSize);
1890 
1891   // Frame is now completed as far as size and linkage.
1892   int frame_complete = ((intptr_t)__ pc()) - start;
1893 
1894   if (UseRTMLocking) {
1895     // Abort RTM transaction before calling JNI
1896     // because critical section will be large and will be
1897     // aborted anyway. Also nmethod could be deoptimized.
1898     __ xabort(0);
1899   }
1900 
1901   // Calculate the difference between rsp and rbp,. We need to know it
1902   // after the native call because on windows Java Natives will pop
1903   // the arguments and it is painful to do rsp relative addressing
1904   // in a platform independent way. So after the call we switch to
1905   // rbp, relative addressing.
1906 
1907   int fp_adjustment = stack_size - 2*wordSize;
1908 
1909 #ifdef COMPILER2
1910   // C2 may leave the stack dirty if not in SSE2+ mode
1911   if (UseSSE >= 2) {
1912     __ verify_FPU(0, "c2i transition should have clean FPU stack");
1913   } else {
1914     __ empty_FPU_stack();
1915   }
1916 #endif /* COMPILER2 */
1917 
1918   // Compute the rbp, offset for any slots used after the jni call
1919 
1920   int lock_slot_rbp_offset = (lock_slot_offset*VMRegImpl::stack_slot_size) - fp_adjustment;
1921 
1922   // We use rdi as a thread pointer because it is callee save and
1923   // if we load it once it is usable thru the entire wrapper
1924   const Register thread = rdi;
1925 
1926   // We use rsi as the oop handle for the receiver/klass
1927   // It is callee save so it survives the call to native
1928 
1929   const Register oop_handle_reg = rsi;
1930 
1931   __ get_thread(thread);
1932 
1933   if (is_critical_native && !Universe::heap()->supports_object_pinning()) {
1934     check_needs_gc_for_critical_native(masm, thread, stack_slots, total_c_args, total_in_args,
1935                                        oop_handle_offset, oop_maps, in_regs, in_sig_bt);
1936   }
1937 
1938   //
1939   // We immediately shuffle the arguments so that any vm call we have to
1940   // make from here on out (sync slow path, jvmti, etc.) we will have
1941   // captured the oops from our caller and have a valid oopMap for
1942   // them.
1943 
1944   // -----------------
1945   // The Grand Shuffle
1946   //
1947   // Natives require 1 or 2 extra arguments over the normal ones: the JNIEnv*
1948   // and, if static, the class mirror instead of a receiver.  This pretty much
1949   // guarantees that register layout will not match (and x86 doesn't use reg
1950   // parms though amd does).  Since the native abi doesn't use register args
1951   // and the java conventions does we don't have to worry about collisions.
1952   // All of our moved are reg->stack or stack->stack.
1953   // We ignore the extra arguments during the shuffle and handle them at the
1954   // last moment. The shuffle is described by the two calling convention
1955   // vectors we have in our possession. We simply walk the java vector to
1956   // get the source locations and the c vector to get the destinations.
1957 
1958   int c_arg = is_critical_native ? 0 : (method->is_static() ? 2 : 1 );
1959 
1960   // Record rsp-based slot for receiver on stack for non-static methods
1961   int receiver_offset = -1;
1962 
1963   // This is a trick. We double the stack slots so we can claim
1964   // the oops in the caller's frame. Since we are sure to have
1965   // more args than the caller doubling is enough to make
1966   // sure we can capture all the incoming oop args from the
1967   // caller.
1968   //
1969   OopMap* map = new OopMap(stack_slots * 2, 0 /* arg_slots*/);
1970 
1971   // Inbound arguments that need to be pinned for critical natives
1972   GrowableArray<int> pinned_args(total_in_args);
1973   // Current stack slot for storing register based array argument
1974   int pinned_slot = oop_handle_offset;
1975 
1976   // Mark location of rbp,
1977   // map->set_callee_saved(VMRegImpl::stack2reg( stack_slots - 2), stack_slots * 2, 0, rbp->as_VMReg());
1978 
1979   // We know that we only have args in at most two integer registers (rcx, rdx). So rax, rbx
1980   // Are free to temporaries if we have to do  stack to steck moves.
1981   // All inbound args are referenced based on rbp, and all outbound args via rsp.
1982 
1983   for (int i = 0; i < total_in_args ; i++, c_arg++ ) {
1984     switch (in_sig_bt[i]) {
1985       case T_ARRAY:
1986         if (is_critical_native) {
1987           VMRegPair in_arg = in_regs[i];
1988           if (Universe::heap()->supports_object_pinning()) {
1989             // gen_pin_object handles save and restore
1990             // of any clobbered registers
1991             gen_pin_object(masm, thread, in_arg);
1992             pinned_args.append(i);
1993 
1994             // rax has pinned array
1995             VMRegPair result_reg(rax->as_VMReg());
1996             if (!in_arg.first()->is_stack()) {
1997               assert(pinned_slot <= stack_slots, "overflow");
1998               simple_move32(masm, result_reg, VMRegImpl::stack2reg(pinned_slot));
1999               pinned_slot += VMRegImpl::slots_per_word;
2000             } else {
2001               // Write back pinned value, it will be used to unpin this argument
2002               __ movptr(Address(rbp, reg2offset_in(in_arg.first())), result_reg.first()->as_Register());
2003             }
2004             // We have the array in register, use it
2005             in_arg = result_reg;
2006           }
2007 
2008           unpack_array_argument(masm, in_arg, in_elem_bt[i], out_regs[c_arg + 1], out_regs[c_arg]);
2009           c_arg++;
2010           break;
2011         }
2012       case T_OBJECT:
2013         assert(!is_critical_native, "no oop arguments");
2014         object_move(masm, map, oop_handle_offset, stack_slots, in_regs[i], out_regs[c_arg],
2015                     ((i == 0) && (!is_static)),
2016                     &receiver_offset);
2017         break;
2018       case T_VOID:
2019         break;
2020 
2021       case T_FLOAT:
2022         float_move(masm, in_regs[i], out_regs[c_arg]);
2023           break;
2024 
2025       case T_DOUBLE:
2026         assert( i + 1 < total_in_args &&
2027                 in_sig_bt[i + 1] == T_VOID &&
2028                 out_sig_bt[c_arg+1] == T_VOID, "bad arg list");
2029         double_move(masm, in_regs[i], out_regs[c_arg]);
2030         break;
2031 
2032       case T_LONG :
2033         long_move(masm, in_regs[i], out_regs[c_arg]);
2034         break;
2035 
2036       case T_ADDRESS: assert(false, "found T_ADDRESS in java args");
2037 
2038       default:
2039         simple_move32(masm, in_regs[i], out_regs[c_arg]);
2040     }
2041   }
2042 
2043   // Pre-load a static method's oop into rsi.  Used both by locking code and
2044   // the normal JNI call code.
2045   if (method->is_static() && !is_critical_native) {
2046 
2047     //  load opp into a register
2048     __ movoop(oop_handle_reg, JNIHandles::make_local(method->method_holder()->java_mirror()));
2049 
2050     // Now handlize the static class mirror it's known not-null.
2051     __ movptr(Address(rsp, klass_offset), oop_handle_reg);
2052     map->set_oop(VMRegImpl::stack2reg(klass_slot_offset));
2053 
2054     // Now get the handle
2055     __ lea(oop_handle_reg, Address(rsp, klass_offset));
2056     // store the klass handle as second argument
2057     __ movptr(Address(rsp, wordSize), oop_handle_reg);
2058   }
2059 
2060   // Change state to native (we save the return address in the thread, since it might not
2061   // be pushed on the stack when we do a a stack traversal). It is enough that the pc()
2062   // points into the right code segment. It does not have to be the correct return pc.
2063   // We use the same pc/oopMap repeatedly when we call out
2064 
2065   intptr_t the_pc = (intptr_t) __ pc();
2066   oop_maps->add_gc_map(the_pc - start, map);
2067 
2068   __ set_last_Java_frame(thread, rsp, noreg, (address)the_pc);
2069 
2070 
2071   // We have all of the arguments setup at this point. We must not touch any register
2072   // argument registers at this point (what if we save/restore them there are no oop?
2073 
2074   {
2075     SkipIfEqual skip_if(masm, &DTraceMethodProbes, 0);
2076     __ mov_metadata(rax, method());
2077     __ call_VM_leaf(
2078          CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry),
2079          thread, rax);
2080   }
2081 
2082   // RedefineClasses() tracing support for obsolete method entry
2083   if (log_is_enabled(Trace, redefine, class, obsolete)) {
2084     __ mov_metadata(rax, method());
2085     __ call_VM_leaf(
2086          CAST_FROM_FN_PTR(address, SharedRuntime::rc_trace_method_entry),
2087          thread, rax);
2088   }
2089 
2090   // These are register definitions we need for locking/unlocking
2091   const Register swap_reg = rax;  // Must use rax, for cmpxchg instruction
2092   const Register obj_reg  = rcx;  // Will contain the oop
2093   const Register lock_reg = rdx;  // Address of compiler lock object (BasicLock)
2094 
2095   Label slow_path_lock;
2096   Label lock_done;
2097 
2098   // Lock a synchronized method
2099   if (method->is_synchronized()) {
2100     assert(!is_critical_native, "unhandled");
2101 
2102 
2103     const int mark_word_offset = BasicLock::displaced_header_offset_in_bytes();
2104 
2105     // Get the handle (the 2nd argument)
2106     __ movptr(oop_handle_reg, Address(rsp, wordSize));
2107 
2108     // Get address of the box
2109 
2110     __ lea(lock_reg, Address(rbp, lock_slot_rbp_offset));
2111 
2112     // Load the oop from the handle
2113     __ movptr(obj_reg, Address(oop_handle_reg, 0));
2114 
2115     if (UseBiasedLocking) {
2116       // Note that oop_handle_reg is trashed during this call
2117       __ biased_locking_enter(lock_reg, obj_reg, swap_reg, oop_handle_reg, false, lock_done, &slow_path_lock);
2118     }
2119 
2120     // Load immediate 1 into swap_reg %rax,
2121     __ movptr(swap_reg, 1);
2122 
2123     // Load (object->mark() | 1) into swap_reg %rax,
2124     __ orptr(swap_reg, Address(obj_reg, oopDesc::mark_offset_in_bytes()));
2125 
2126     // Save (object->mark() | 1) into BasicLock's displaced header
2127     __ movptr(Address(lock_reg, mark_word_offset), swap_reg);
2128 
2129     if (os::is_MP()) {
2130       __ lock();
2131     }
2132 
2133     // src -> dest iff dest == rax, else rax, <- dest
2134     // *obj_reg = lock_reg iff *obj_reg == rax, else rax, = *(obj_reg)
2135     __ cmpxchgptr(lock_reg, Address(obj_reg, oopDesc::mark_offset_in_bytes()));
2136     __ jcc(Assembler::equal, lock_done);
2137 
2138     // Test if the oopMark is an obvious stack pointer, i.e.,
2139     //  1) (mark & 3) == 0, and
2140     //  2) rsp <= mark < mark + os::pagesize()
2141     // These 3 tests can be done by evaluating the following
2142     // expression: ((mark - rsp) & (3 - os::vm_page_size())),
2143     // assuming both stack pointer and pagesize have their
2144     // least significant 2 bits clear.
2145     // NOTE: the oopMark is in swap_reg %rax, as the result of cmpxchg
2146 
2147     __ subptr(swap_reg, rsp);
2148     __ andptr(swap_reg, 3 - os::vm_page_size());
2149 
2150     // Save the test result, for recursive case, the result is zero
2151     __ movptr(Address(lock_reg, mark_word_offset), swap_reg);
2152     __ jcc(Assembler::notEqual, slow_path_lock);
2153     // Slow path will re-enter here
2154     __ bind(lock_done);
2155 
2156     if (UseBiasedLocking) {
2157       // Re-fetch oop_handle_reg as we trashed it above
2158       __ movptr(oop_handle_reg, Address(rsp, wordSize));
2159     }
2160   }
2161 
2162 
2163   // Finally just about ready to make the JNI call
2164 
2165 
2166   // get JNIEnv* which is first argument to native
2167   if (!is_critical_native) {
2168     __ lea(rdx, Address(thread, in_bytes(JavaThread::jni_environment_offset())));
2169     __ movptr(Address(rsp, 0), rdx);
2170   }
2171 
2172   // Now set thread in native
2173   __ movl(Address(thread, JavaThread::thread_state_offset()), _thread_in_native);
2174 
2175   __ call(RuntimeAddress(native_func));
2176 
2177   // Verify or restore cpu control state after JNI call
2178   __ restore_cpu_control_state_after_jni();
2179 
2180   // WARNING - on Windows Java Natives use pascal calling convention and pop the
2181   // arguments off of the stack. We could just re-adjust the stack pointer here
2182   // and continue to do SP relative addressing but we instead switch to FP
2183   // relative addressing.
2184 
2185   // Unpack native results.
2186   switch (ret_type) {
2187   case T_BOOLEAN: __ c2bool(rax);            break;
2188   case T_CHAR   : __ andptr(rax, 0xFFFF);    break;
2189   case T_BYTE   : __ sign_extend_byte (rax); break;
2190   case T_SHORT  : __ sign_extend_short(rax); break;
2191   case T_INT    : /* nothing to do */        break;
2192   case T_DOUBLE :
2193   case T_FLOAT  :
2194     // Result is in st0 we'll save as needed
2195     break;
2196   case T_ARRAY:                 // Really a handle
2197   case T_OBJECT:                // Really a handle
2198       break; // can't de-handlize until after safepoint check
2199   case T_VOID: break;
2200   case T_LONG: break;
2201   default       : ShouldNotReachHere();
2202   }
2203 
2204   // unpin pinned arguments
2205   pinned_slot = oop_handle_offset;
2206   if (pinned_args.length() > 0) {
2207     // save return value that may be overwritten otherwise.
2208     save_native_result(masm, ret_type, stack_slots);
2209     for (int index = 0; index < pinned_args.length(); index ++) {
2210       int i = pinned_args.at(index);
2211       assert(pinned_slot <= stack_slots, "overflow");
2212       if (!in_regs[i].first()->is_stack()) {
2213         int offset = pinned_slot * VMRegImpl::stack_slot_size;
2214         __ movl(in_regs[i].first()->as_Register(), Address(rsp, offset));
2215         pinned_slot += VMRegImpl::slots_per_word;
2216       }
2217       // gen_pin_object handles save and restore
2218       // of any other clobbered registers
2219       gen_unpin_object(masm, thread, in_regs[i]);
2220     }
2221     restore_native_result(masm, ret_type, stack_slots);
2222   }
2223 
2224   // Switch thread to "native transition" state before reading the synchronization state.
2225   // This additional state is necessary because reading and testing the synchronization
2226   // state is not atomic w.r.t. GC, as this scenario demonstrates:
2227   //     Java thread A, in _thread_in_native state, loads _not_synchronized and is preempted.
2228   //     VM thread changes sync state to synchronizing and suspends threads for GC.
2229   //     Thread A is resumed to finish this native method, but doesn't block here since it
2230   //     didn't see any synchronization is progress, and escapes.
2231   __ movl(Address(thread, JavaThread::thread_state_offset()), _thread_in_native_trans);
2232 
2233   if(os::is_MP()) {
2234     if (UseMembar) {
2235       // Force this write out before the read below
2236       __ membar(Assembler::Membar_mask_bits(
2237            Assembler::LoadLoad | Assembler::LoadStore |
2238            Assembler::StoreLoad | Assembler::StoreStore));
2239     } else {
2240       // Write serialization page so VM thread can do a pseudo remote membar.
2241       // We use the current thread pointer to calculate a thread specific
2242       // offset to write to within the page. This minimizes bus traffic
2243       // due to cache line collision.
2244       __ serialize_memory(thread, rcx);
2245     }
2246   }
2247 
2248   if (AlwaysRestoreFPU) {
2249     // Make sure the control word is correct.
2250     __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
2251   }
2252 
2253   Label after_transition;
2254 
2255   // check for safepoint operation in progress and/or pending suspend requests
2256   { Label Continue, slow_path;
2257 
2258     __ safepoint_poll(slow_path, thread, noreg);
2259 
2260     __ cmpl(Address(thread, JavaThread::suspend_flags_offset()), 0);
2261     __ jcc(Assembler::equal, Continue);
2262     __ bind(slow_path);
2263 
2264     // Don't use call_VM as it will see a possible pending exception and forward it
2265     // and never return here preventing us from clearing _last_native_pc down below.
2266     // Also can't use call_VM_leaf either as it will check to see if rsi & rdi are
2267     // preserved and correspond to the bcp/locals pointers. So we do a runtime call
2268     // by hand.
2269     //
2270     __ vzeroupper();
2271 
2272     save_native_result(masm, ret_type, stack_slots);
2273     __ push(thread);
2274     if (!is_critical_native) {
2275       __ call(RuntimeAddress(CAST_FROM_FN_PTR(address,
2276                                               JavaThread::check_special_condition_for_native_trans)));
2277     } else {
2278       __ call(RuntimeAddress(CAST_FROM_FN_PTR(address,
2279                                               JavaThread::check_special_condition_for_native_trans_and_transition)));
2280     }
2281     __ increment(rsp, wordSize);
2282     // Restore any method result value
2283     restore_native_result(masm, ret_type, stack_slots);
2284 
2285     if (is_critical_native) {
2286       // The call above performed the transition to thread_in_Java so
2287       // skip the transition logic below.
2288       __ jmpb(after_transition);
2289     }
2290 
2291     __ bind(Continue);
2292   }
2293 
2294   // change thread state
2295   __ movl(Address(thread, JavaThread::thread_state_offset()), _thread_in_Java);
2296   __ bind(after_transition);
2297 
2298   Label reguard;
2299   Label reguard_done;
2300   __ cmpl(Address(thread, JavaThread::stack_guard_state_offset()), JavaThread::stack_guard_yellow_reserved_disabled);
2301   __ jcc(Assembler::equal, reguard);
2302 
2303   // slow path reguard  re-enters here
2304   __ bind(reguard_done);
2305 
2306   // Handle possible exception (will unlock if necessary)
2307 
2308   // native result if any is live
2309 
2310   // Unlock
2311   Label slow_path_unlock;
2312   Label unlock_done;
2313   if (method->is_synchronized()) {
2314 
2315     Label done;
2316 
2317     // Get locked oop from the handle we passed to jni
2318     __ movptr(obj_reg, Address(oop_handle_reg, 0));
2319 
2320     if (UseBiasedLocking) {
2321       __ biased_locking_exit(obj_reg, rbx, done);
2322     }
2323 
2324     // Simple recursive lock?
2325 
2326     __ cmpptr(Address(rbp, lock_slot_rbp_offset), (int32_t)NULL_WORD);
2327     __ jcc(Assembler::equal, done);
2328 
2329     // Must save rax, if if it is live now because cmpxchg must use it
2330     if (ret_type != T_FLOAT && ret_type != T_DOUBLE && ret_type != T_VOID) {
2331       save_native_result(masm, ret_type, stack_slots);
2332     }
2333 
2334     //  get old displaced header
2335     __ movptr(rbx, Address(rbp, lock_slot_rbp_offset));
2336 
2337     // get address of the stack lock
2338     __ lea(rax, Address(rbp, lock_slot_rbp_offset));
2339 
2340     // Atomic swap old header if oop still contains the stack lock
2341     if (os::is_MP()) {
2342     __ lock();
2343     }
2344 
2345     // src -> dest iff dest == rax, else rax, <- dest
2346     // *obj_reg = rbx, iff *obj_reg == rax, else rax, = *(obj_reg)
2347     __ cmpxchgptr(rbx, Address(obj_reg, oopDesc::mark_offset_in_bytes()));
2348     __ jcc(Assembler::notEqual, slow_path_unlock);
2349 
2350     // slow path re-enters here
2351     __ bind(unlock_done);
2352     if (ret_type != T_FLOAT && ret_type != T_DOUBLE && ret_type != T_VOID) {
2353       restore_native_result(masm, ret_type, stack_slots);
2354     }
2355 
2356     __ bind(done);
2357 
2358   }
2359 
2360   {
2361     SkipIfEqual skip_if(masm, &DTraceMethodProbes, 0);
2362     // Tell dtrace about this method exit
2363     save_native_result(masm, ret_type, stack_slots);
2364     __ mov_metadata(rax, method());
2365     __ call_VM_leaf(
2366          CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit),
2367          thread, rax);
2368     restore_native_result(masm, ret_type, stack_slots);
2369   }
2370 
2371   // We can finally stop using that last_Java_frame we setup ages ago
2372 
2373   __ reset_last_Java_frame(thread, false);
2374 
2375   // Unbox oop result, e.g. JNIHandles::resolve value.
2376   if (ret_type == T_OBJECT || ret_type == T_ARRAY) {
2377     __ resolve_jobject(rax /* value */,
2378                        thread /* thread */,
2379                        rcx /* tmp */);
2380   }
2381 
2382   if (CheckJNICalls) {
2383     // clear_pending_jni_exception_check
2384     __ movptr(Address(thread, JavaThread::pending_jni_exception_check_fn_offset()), NULL_WORD);
2385   }
2386 
2387   if (!is_critical_native) {
2388     // reset handle block
2389     __ movptr(rcx, Address(thread, JavaThread::active_handles_offset()));
2390     __ movl(Address(rcx, JNIHandleBlock::top_offset_in_bytes()), NULL_WORD);
2391 
2392     // Any exception pending?
2393     __ cmpptr(Address(thread, in_bytes(Thread::pending_exception_offset())), (int32_t)NULL_WORD);
2394     __ jcc(Assembler::notEqual, exception_pending);
2395   }
2396 
2397   // no exception, we're almost done
2398 
2399   // check that only result value is on FPU stack
2400   __ verify_FPU(ret_type == T_FLOAT || ret_type == T_DOUBLE ? 1 : 0, "native_wrapper normal exit");
2401 
2402   // Fixup floating pointer results so that result looks like a return from a compiled method
2403   if (ret_type == T_FLOAT) {
2404     if (UseSSE >= 1) {
2405       // Pop st0 and store as float and reload into xmm register
2406       __ fstp_s(Address(rbp, -4));
2407       __ movflt(xmm0, Address(rbp, -4));
2408     }
2409   } else if (ret_type == T_DOUBLE) {
2410     if (UseSSE >= 2) {
2411       // Pop st0 and store as double and reload into xmm register
2412       __ fstp_d(Address(rbp, -8));
2413       __ movdbl(xmm0, Address(rbp, -8));
2414     }
2415   }
2416 
2417   // Return
2418 
2419   __ leave();
2420   __ ret(0);
2421 
2422   // Unexpected paths are out of line and go here
2423 
2424   // Slow path locking & unlocking
2425   if (method->is_synchronized()) {
2426 
2427     // BEGIN Slow path lock
2428 
2429     __ bind(slow_path_lock);
2430 
2431     // has last_Java_frame setup. No exceptions so do vanilla call not call_VM
2432     // args are (oop obj, BasicLock* lock, JavaThread* thread)
2433     __ push(thread);
2434     __ push(lock_reg);
2435     __ push(obj_reg);
2436     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::complete_monitor_locking_C)));
2437     __ addptr(rsp, 3*wordSize);
2438 
2439 #ifdef ASSERT
2440     { Label L;
2441     __ cmpptr(Address(thread, in_bytes(Thread::pending_exception_offset())), (int)NULL_WORD);
2442     __ jcc(Assembler::equal, L);
2443     __ stop("no pending exception allowed on exit from monitorenter");
2444     __ bind(L);
2445     }
2446 #endif
2447     __ jmp(lock_done);
2448 
2449     // END Slow path lock
2450 
2451     // BEGIN Slow path unlock
2452     __ bind(slow_path_unlock);
2453     __ vzeroupper();
2454     // Slow path unlock
2455 
2456     if (ret_type == T_FLOAT || ret_type == T_DOUBLE ) {
2457       save_native_result(masm, ret_type, stack_slots);
2458     }
2459     // Save pending exception around call to VM (which contains an EXCEPTION_MARK)
2460 
2461     __ pushptr(Address(thread, in_bytes(Thread::pending_exception_offset())));
2462     __ movptr(Address(thread, in_bytes(Thread::pending_exception_offset())), NULL_WORD);
2463 
2464 
2465     // should be a peal
2466     // +wordSize because of the push above
2467     // args are (oop obj, BasicLock* lock, JavaThread* thread)
2468     __ push(thread);
2469     __ lea(rax, Address(rbp, lock_slot_rbp_offset));
2470     __ push(rax);
2471 
2472     __ push(obj_reg);
2473     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::complete_monitor_unlocking_C)));
2474     __ addptr(rsp, 3*wordSize);
2475 #ifdef ASSERT
2476     {
2477       Label L;
2478       __ cmpptr(Address(thread, in_bytes(Thread::pending_exception_offset())), (int32_t)NULL_WORD);
2479       __ jcc(Assembler::equal, L);
2480       __ stop("no pending exception allowed on exit complete_monitor_unlocking_C");
2481       __ bind(L);
2482     }
2483 #endif /* ASSERT */
2484 
2485     __ popptr(Address(thread, in_bytes(Thread::pending_exception_offset())));
2486 
2487     if (ret_type == T_FLOAT || ret_type == T_DOUBLE ) {
2488       restore_native_result(masm, ret_type, stack_slots);
2489     }
2490     __ jmp(unlock_done);
2491     // END Slow path unlock
2492 
2493   }
2494 
2495   // SLOW PATH Reguard the stack if needed
2496 
2497   __ bind(reguard);
2498   __ vzeroupper();
2499   save_native_result(masm, ret_type, stack_slots);
2500   {
2501     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::reguard_yellow_pages)));
2502   }
2503   restore_native_result(masm, ret_type, stack_slots);
2504   __ jmp(reguard_done);
2505 
2506 
2507   // BEGIN EXCEPTION PROCESSING
2508 
2509   if (!is_critical_native) {
2510     // Forward  the exception
2511     __ bind(exception_pending);
2512 
2513     // remove possible return value from FPU register stack
2514     __ empty_FPU_stack();
2515 
2516     // pop our frame
2517     __ leave();
2518     // and forward the exception
2519     __ jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
2520   }
2521 
2522   __ flush();
2523 
2524   nmethod *nm = nmethod::new_native_nmethod(method,
2525                                             compile_id,
2526                                             masm->code(),
2527                                             vep_offset,
2528                                             frame_complete,
2529                                             stack_slots / VMRegImpl::slots_per_word,
2530                                             (is_static ? in_ByteSize(klass_offset) : in_ByteSize(receiver_offset)),
2531                                             in_ByteSize(lock_slot_offset*VMRegImpl::stack_slot_size),
2532                                             oop_maps);
2533 
2534   if (is_critical_native) {
2535     nm->set_lazy_critical_native(true);
2536   }
2537 
2538   return nm;
2539 
2540 }
2541 
2542 // this function returns the adjust size (in number of words) to a c2i adapter
2543 // activation for use during deoptimization
2544 int Deoptimization::last_frame_adjust(int callee_parameters, int callee_locals ) {
2545   return (callee_locals - callee_parameters) * Interpreter::stackElementWords;
2546 }
2547 
2548 
2549 uint SharedRuntime::out_preserve_stack_slots() {
2550   return 0;
2551 }
2552 
2553 //------------------------------generate_deopt_blob----------------------------
2554 void SharedRuntime::generate_deopt_blob() {
2555   // allocate space for the code
2556   ResourceMark rm;
2557   // setup code generation tools
2558   // note: the buffer code size must account for StackShadowPages=50
2559   CodeBuffer   buffer("deopt_blob", 1536, 1024);
2560   MacroAssembler* masm = new MacroAssembler(&buffer);
2561   int frame_size_in_words;
2562   OopMap* map = NULL;
2563   // Account for the extra args we place on the stack
2564   // by the time we call fetch_unroll_info
2565   const int additional_words = 2; // deopt kind, thread
2566 
2567   OopMapSet *oop_maps = new OopMapSet();
2568 
2569   // -------------
2570   // This code enters when returning to a de-optimized nmethod.  A return
2571   // address has been pushed on the the stack, and return values are in
2572   // registers.
2573   // If we are doing a normal deopt then we were called from the patched
2574   // nmethod from the point we returned to the nmethod. So the return
2575   // address on the stack is wrong by NativeCall::instruction_size
2576   // We will adjust the value to it looks like we have the original return
2577   // address on the stack (like when we eagerly deoptimized).
2578   // In the case of an exception pending with deoptimized then we enter
2579   // with a return address on the stack that points after the call we patched
2580   // into the exception handler. We have the following register state:
2581   //    rax,: exception
2582   //    rbx,: exception handler
2583   //    rdx: throwing pc
2584   // So in this case we simply jam rdx into the useless return address and
2585   // the stack looks just like we want.
2586   //
2587   // At this point we need to de-opt.  We save the argument return
2588   // registers.  We call the first C routine, fetch_unroll_info().  This
2589   // routine captures the return values and returns a structure which
2590   // describes the current frame size and the sizes of all replacement frames.
2591   // The current frame is compiled code and may contain many inlined
2592   // functions, each with their own JVM state.  We pop the current frame, then
2593   // push all the new frames.  Then we call the C routine unpack_frames() to
2594   // populate these frames.  Finally unpack_frames() returns us the new target
2595   // address.  Notice that callee-save registers are BLOWN here; they have
2596   // already been captured in the vframeArray at the time the return PC was
2597   // patched.
2598   address start = __ pc();
2599   Label cont;
2600 
2601   // Prolog for non exception case!
2602 
2603   // Save everything in sight.
2604 
2605   map = RegisterSaver::save_live_registers(masm, additional_words, &frame_size_in_words, false);
2606   // Normal deoptimization
2607   __ push(Deoptimization::Unpack_deopt);
2608   __ jmp(cont);
2609 
2610   int reexecute_offset = __ pc() - start;
2611 
2612   // Reexecute case
2613   // return address is the pc describes what bci to do re-execute at
2614 
2615   // No need to update map as each call to save_live_registers will produce identical oopmap
2616   (void) RegisterSaver::save_live_registers(masm, additional_words, &frame_size_in_words, false);
2617 
2618   __ push(Deoptimization::Unpack_reexecute);
2619   __ jmp(cont);
2620 
2621   int exception_offset = __ pc() - start;
2622 
2623   // Prolog for exception case
2624 
2625   // all registers are dead at this entry point, except for rax, and
2626   // rdx which contain the exception oop and exception pc
2627   // respectively.  Set them in TLS and fall thru to the
2628   // unpack_with_exception_in_tls entry point.
2629 
2630   __ get_thread(rdi);
2631   __ movptr(Address(rdi, JavaThread::exception_pc_offset()), rdx);
2632   __ movptr(Address(rdi, JavaThread::exception_oop_offset()), rax);
2633 
2634   int exception_in_tls_offset = __ pc() - start;
2635 
2636   // new implementation because exception oop is now passed in JavaThread
2637 
2638   // Prolog for exception case
2639   // All registers must be preserved because they might be used by LinearScan
2640   // Exceptiop oop and throwing PC are passed in JavaThread
2641   // tos: stack at point of call to method that threw the exception (i.e. only
2642   // args are on the stack, no return address)
2643 
2644   // make room on stack for the return address
2645   // It will be patched later with the throwing pc. The correct value is not
2646   // available now because loading it from memory would destroy registers.
2647   __ push(0);
2648 
2649   // Save everything in sight.
2650 
2651   // No need to update map as each call to save_live_registers will produce identical oopmap
2652   (void) RegisterSaver::save_live_registers(masm, additional_words, &frame_size_in_words, false);
2653 
2654   // Now it is safe to overwrite any register
2655 
2656   // store the correct deoptimization type
2657   __ push(Deoptimization::Unpack_exception);
2658 
2659   // load throwing pc from JavaThread and patch it as the return address
2660   // of the current frame. Then clear the field in JavaThread
2661   __ get_thread(rdi);
2662   __ movptr(rdx, Address(rdi, JavaThread::exception_pc_offset()));
2663   __ movptr(Address(rbp, wordSize), rdx);
2664   __ movptr(Address(rdi, JavaThread::exception_pc_offset()), NULL_WORD);
2665 
2666 #ifdef ASSERT
2667   // verify that there is really an exception oop in JavaThread
2668   __ movptr(rax, Address(rdi, JavaThread::exception_oop_offset()));
2669   __ verify_oop(rax);
2670 
2671   // verify that there is no pending exception
2672   Label no_pending_exception;
2673   __ movptr(rax, Address(rdi, Thread::pending_exception_offset()));
2674   __ testptr(rax, rax);
2675   __ jcc(Assembler::zero, no_pending_exception);
2676   __ stop("must not have pending exception here");
2677   __ bind(no_pending_exception);
2678 #endif
2679 
2680   __ bind(cont);
2681 
2682   // Compiled code leaves the floating point stack dirty, empty it.
2683   __ empty_FPU_stack();
2684 
2685 
2686   // Call C code.  Need thread and this frame, but NOT official VM entry
2687   // crud.  We cannot block on this call, no GC can happen.
2688   __ get_thread(rcx);
2689   __ push(rcx);
2690   // fetch_unroll_info needs to call last_java_frame()
2691   __ set_last_Java_frame(rcx, noreg, noreg, NULL);
2692 
2693   __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::fetch_unroll_info)));
2694 
2695   // Need to have an oopmap that tells fetch_unroll_info where to
2696   // find any register it might need.
2697 
2698   oop_maps->add_gc_map( __ pc()-start, map);
2699 
2700   // Discard args to fetch_unroll_info
2701   __ pop(rcx);
2702   __ pop(rcx);
2703 
2704   __ get_thread(rcx);
2705   __ reset_last_Java_frame(rcx, false);
2706 
2707   // Load UnrollBlock into EDI
2708   __ mov(rdi, rax);
2709 
2710   // Move the unpack kind to a safe place in the UnrollBlock because
2711   // we are very short of registers
2712 
2713   Address unpack_kind(rdi, Deoptimization::UnrollBlock::unpack_kind_offset_in_bytes());
2714   // retrieve the deopt kind from the UnrollBlock.
2715   __ movl(rax, unpack_kind);
2716 
2717    Label noException;
2718   __ cmpl(rax, Deoptimization::Unpack_exception);   // Was exception pending?
2719   __ jcc(Assembler::notEqual, noException);
2720   __ movptr(rax, Address(rcx, JavaThread::exception_oop_offset()));
2721   __ movptr(rdx, Address(rcx, JavaThread::exception_pc_offset()));
2722   __ movptr(Address(rcx, JavaThread::exception_oop_offset()), NULL_WORD);
2723   __ movptr(Address(rcx, JavaThread::exception_pc_offset()), NULL_WORD);
2724 
2725   __ verify_oop(rax);
2726 
2727   // Overwrite the result registers with the exception results.
2728   __ movptr(Address(rsp, RegisterSaver::raxOffset()*wordSize), rax);
2729   __ movptr(Address(rsp, RegisterSaver::rdxOffset()*wordSize), rdx);
2730 
2731   __ bind(noException);
2732 
2733   // Stack is back to only having register save data on the stack.
2734   // Now restore the result registers. Everything else is either dead or captured
2735   // in the vframeArray.
2736 
2737   RegisterSaver::restore_result_registers(masm);
2738 
2739   // Non standard control word may be leaked out through a safepoint blob, and we can
2740   // deopt at a poll point with the non standard control word. However, we should make
2741   // sure the control word is correct after restore_result_registers.
2742   __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
2743 
2744   // All of the register save area has been popped of the stack. Only the
2745   // return address remains.
2746 
2747   // Pop all the frames we must move/replace.
2748   //
2749   // Frame picture (youngest to oldest)
2750   // 1: self-frame (no frame link)
2751   // 2: deopting frame  (no frame link)
2752   // 3: caller of deopting frame (could be compiled/interpreted).
2753   //
2754   // Note: by leaving the return address of self-frame on the stack
2755   // and using the size of frame 2 to adjust the stack
2756   // when we are done the return to frame 3 will still be on the stack.
2757 
2758   // Pop deoptimized frame
2759   __ addptr(rsp, Address(rdi,Deoptimization::UnrollBlock::size_of_deoptimized_frame_offset_in_bytes()));
2760 
2761   // sp should be pointing at the return address to the caller (3)
2762 
2763   // Pick up the initial fp we should save
2764   // restore rbp before stack bang because if stack overflow is thrown it needs to be pushed (and preserved)
2765   __ movptr(rbp, Address(rdi, Deoptimization::UnrollBlock::initial_info_offset_in_bytes()));
2766 
2767 #ifdef ASSERT
2768   // Compilers generate code that bang the stack by as much as the
2769   // interpreter would need. So this stack banging should never
2770   // trigger a fault. Verify that it does not on non product builds.
2771   if (UseStackBanging) {
2772     __ movl(rbx, Address(rdi ,Deoptimization::UnrollBlock::total_frame_sizes_offset_in_bytes()));
2773     __ bang_stack_size(rbx, rcx);
2774   }
2775 #endif
2776 
2777   // Load array of frame pcs into ECX
2778   __ movptr(rcx,Address(rdi,Deoptimization::UnrollBlock::frame_pcs_offset_in_bytes()));
2779 
2780   __ pop(rsi); // trash the old pc
2781 
2782   // Load array of frame sizes into ESI
2783   __ movptr(rsi,Address(rdi,Deoptimization::UnrollBlock::frame_sizes_offset_in_bytes()));
2784 
2785   Address counter(rdi, Deoptimization::UnrollBlock::counter_temp_offset_in_bytes());
2786 
2787   __ movl(rbx, Address(rdi, Deoptimization::UnrollBlock::number_of_frames_offset_in_bytes()));
2788   __ movl(counter, rbx);
2789 
2790   // Now adjust the caller's stack to make up for the extra locals
2791   // but record the original sp so that we can save it in the skeletal interpreter
2792   // frame and the stack walking of interpreter_sender will get the unextended sp
2793   // value and not the "real" sp value.
2794 
2795   Address sp_temp(rdi, Deoptimization::UnrollBlock::sender_sp_temp_offset_in_bytes());
2796   __ movptr(sp_temp, rsp);
2797   __ movl2ptr(rbx, Address(rdi, Deoptimization::UnrollBlock::caller_adjustment_offset_in_bytes()));
2798   __ subptr(rsp, rbx);
2799 
2800   // Push interpreter frames in a loop
2801   Label loop;
2802   __ bind(loop);
2803   __ movptr(rbx, Address(rsi, 0));      // Load frame size
2804   __ subptr(rbx, 2*wordSize);           // we'll push pc and rbp, by hand
2805   __ pushptr(Address(rcx, 0));          // save return address
2806   __ enter();                           // save old & set new rbp,
2807   __ subptr(rsp, rbx);                  // Prolog!
2808   __ movptr(rbx, sp_temp);              // sender's sp
2809   // This value is corrected by layout_activation_impl
2810   __ movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), NULL_WORD);
2811   __ movptr(Address(rbp, frame::interpreter_frame_sender_sp_offset * wordSize), rbx); // Make it walkable
2812   __ movptr(sp_temp, rsp);              // pass to next frame
2813   __ addptr(rsi, wordSize);             // Bump array pointer (sizes)
2814   __ addptr(rcx, wordSize);             // Bump array pointer (pcs)
2815   __ decrementl(counter);             // decrement counter
2816   __ jcc(Assembler::notZero, loop);
2817   __ pushptr(Address(rcx, 0));          // save final return address
2818 
2819   // Re-push self-frame
2820   __ enter();                           // save old & set new rbp,
2821 
2822   //  Return address and rbp, are in place
2823   // We'll push additional args later. Just allocate a full sized
2824   // register save area
2825   __ subptr(rsp, (frame_size_in_words-additional_words - 2) * wordSize);
2826 
2827   // Restore frame locals after moving the frame
2828   __ movptr(Address(rsp, RegisterSaver::raxOffset()*wordSize), rax);
2829   __ movptr(Address(rsp, RegisterSaver::rdxOffset()*wordSize), rdx);
2830   __ fstp_d(Address(rsp, RegisterSaver::fpResultOffset()*wordSize));   // Pop float stack and store in local
2831   if( UseSSE>=2 ) __ movdbl(Address(rsp, RegisterSaver::xmm0Offset()*wordSize), xmm0);
2832   if( UseSSE==1 ) __ movflt(Address(rsp, RegisterSaver::xmm0Offset()*wordSize), xmm0);
2833 
2834   // Set up the args to unpack_frame
2835 
2836   __ pushl(unpack_kind);                     // get the unpack_kind value
2837   __ get_thread(rcx);
2838   __ push(rcx);
2839 
2840   // set last_Java_sp, last_Java_fp
2841   __ set_last_Java_frame(rcx, noreg, rbp, NULL);
2842 
2843   // Call C code.  Need thread but NOT official VM entry
2844   // crud.  We cannot block on this call, no GC can happen.  Call should
2845   // restore return values to their stack-slots with the new SP.
2846   __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::unpack_frames)));
2847   // Set an oopmap for the call site
2848   oop_maps->add_gc_map( __ pc()-start, new OopMap( frame_size_in_words, 0 ));
2849 
2850   // rax, contains the return result type
2851   __ push(rax);
2852 
2853   __ get_thread(rcx);
2854   __ reset_last_Java_frame(rcx, false);
2855 
2856   // Collect return values
2857   __ movptr(rax,Address(rsp, (RegisterSaver::raxOffset() + additional_words + 1)*wordSize));
2858   __ movptr(rdx,Address(rsp, (RegisterSaver::rdxOffset() + additional_words + 1)*wordSize));
2859 
2860   // Clear floating point stack before returning to interpreter
2861   __ empty_FPU_stack();
2862 
2863   // Check if we should push the float or double return value.
2864   Label results_done, yes_double_value;
2865   __ cmpl(Address(rsp, 0), T_DOUBLE);
2866   __ jcc (Assembler::zero, yes_double_value);
2867   __ cmpl(Address(rsp, 0), T_FLOAT);
2868   __ jcc (Assembler::notZero, results_done);
2869 
2870   // return float value as expected by interpreter
2871   if( UseSSE>=1 ) __ movflt(xmm0, Address(rsp, (RegisterSaver::xmm0Offset() + additional_words + 1)*wordSize));
2872   else            __ fld_d(Address(rsp, (RegisterSaver::fpResultOffset() + additional_words + 1)*wordSize));
2873   __ jmp(results_done);
2874 
2875   // return double value as expected by interpreter
2876   __ bind(yes_double_value);
2877   if( UseSSE>=2 ) __ movdbl(xmm0, Address(rsp, (RegisterSaver::xmm0Offset() + additional_words + 1)*wordSize));
2878   else            __ fld_d(Address(rsp, (RegisterSaver::fpResultOffset() + additional_words + 1)*wordSize));
2879 
2880   __ bind(results_done);
2881 
2882   // Pop self-frame.
2883   __ leave();                              // Epilog!
2884 
2885   // Jump to interpreter
2886   __ ret(0);
2887 
2888   // -------------
2889   // make sure all code is generated
2890   masm->flush();
2891 
2892   _deopt_blob = DeoptimizationBlob::create( &buffer, oop_maps, 0, exception_offset, reexecute_offset, frame_size_in_words);
2893   _deopt_blob->set_unpack_with_exception_in_tls_offset(exception_in_tls_offset);
2894 }
2895 
2896 
2897 #ifdef COMPILER2
2898 //------------------------------generate_uncommon_trap_blob--------------------
2899 void SharedRuntime::generate_uncommon_trap_blob() {
2900   // allocate space for the code
2901   ResourceMark rm;
2902   // setup code generation tools
2903   CodeBuffer   buffer("uncommon_trap_blob", 512, 512);
2904   MacroAssembler* masm = new MacroAssembler(&buffer);
2905 
2906   enum frame_layout {
2907     arg0_off,      // thread                     sp + 0 // Arg location for
2908     arg1_off,      // unloaded_class_index       sp + 1 // calling C
2909     arg2_off,      // exec_mode                  sp + 2
2910     // The frame sender code expects that rbp will be in the "natural" place and
2911     // will override any oopMap setting for it. We must therefore force the layout
2912     // so that it agrees with the frame sender code.
2913     rbp_off,       // callee saved register      sp + 3
2914     return_off,    // slot for return address    sp + 4
2915     framesize
2916   };
2917 
2918   address start = __ pc();
2919 
2920   if (UseRTMLocking) {
2921     // Abort RTM transaction before possible nmethod deoptimization.
2922     __ xabort(0);
2923   }
2924 
2925   // Push self-frame.
2926   __ subptr(rsp, return_off*wordSize);     // Epilog!
2927 
2928   // rbp, is an implicitly saved callee saved register (i.e. the calling
2929   // convention will save restore it in prolog/epilog) Other than that
2930   // there are no callee save registers no that adapter frames are gone.
2931   __ movptr(Address(rsp, rbp_off*wordSize), rbp);
2932 
2933   // Clear the floating point exception stack
2934   __ empty_FPU_stack();
2935 
2936   // set last_Java_sp
2937   __ get_thread(rdx);
2938   __ set_last_Java_frame(rdx, noreg, noreg, NULL);
2939 
2940   // Call C code.  Need thread but NOT official VM entry
2941   // crud.  We cannot block on this call, no GC can happen.  Call should
2942   // capture callee-saved registers as well as return values.
2943   __ movptr(Address(rsp, arg0_off*wordSize), rdx);
2944   // argument already in ECX
2945   __ movl(Address(rsp, arg1_off*wordSize),rcx);
2946   __ movl(Address(rsp, arg2_off*wordSize), Deoptimization::Unpack_uncommon_trap);
2947   __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::uncommon_trap)));
2948 
2949   // Set an oopmap for the call site
2950   OopMapSet *oop_maps = new OopMapSet();
2951   OopMap* map =  new OopMap( framesize, 0 );
2952   // No oopMap for rbp, it is known implicitly
2953 
2954   oop_maps->add_gc_map( __ pc()-start, map);
2955 
2956   __ get_thread(rcx);
2957 
2958   __ reset_last_Java_frame(rcx, false);
2959 
2960   // Load UnrollBlock into EDI
2961   __ movptr(rdi, rax);
2962 
2963 #ifdef ASSERT
2964   { Label L;
2965     __ cmpptr(Address(rdi, Deoptimization::UnrollBlock::unpack_kind_offset_in_bytes()),
2966             (int32_t)Deoptimization::Unpack_uncommon_trap);
2967     __ jcc(Assembler::equal, L);
2968     __ stop("SharedRuntime::generate_deopt_blob: expected Unpack_uncommon_trap");
2969     __ bind(L);
2970   }
2971 #endif
2972 
2973   // Pop all the frames we must move/replace.
2974   //
2975   // Frame picture (youngest to oldest)
2976   // 1: self-frame (no frame link)
2977   // 2: deopting frame  (no frame link)
2978   // 3: caller of deopting frame (could be compiled/interpreted).
2979 
2980   // Pop self-frame.  We have no frame, and must rely only on EAX and ESP.
2981   __ addptr(rsp,(framesize-1)*wordSize);     // Epilog!
2982 
2983   // Pop deoptimized frame
2984   __ movl2ptr(rcx, Address(rdi,Deoptimization::UnrollBlock::size_of_deoptimized_frame_offset_in_bytes()));
2985   __ addptr(rsp, rcx);
2986 
2987   // sp should be pointing at the return address to the caller (3)
2988 
2989   // Pick up the initial fp we should save
2990   // restore rbp before stack bang because if stack overflow is thrown it needs to be pushed (and preserved)
2991   __ movptr(rbp, Address(rdi, Deoptimization::UnrollBlock::initial_info_offset_in_bytes()));
2992 
2993 #ifdef ASSERT
2994   // Compilers generate code that bang the stack by as much as the
2995   // interpreter would need. So this stack banging should never
2996   // trigger a fault. Verify that it does not on non product builds.
2997   if (UseStackBanging) {
2998     __ movl(rbx, Address(rdi ,Deoptimization::UnrollBlock::total_frame_sizes_offset_in_bytes()));
2999     __ bang_stack_size(rbx, rcx);
3000   }
3001 #endif
3002 
3003   // Load array of frame pcs into ECX
3004   __ movl(rcx,Address(rdi,Deoptimization::UnrollBlock::frame_pcs_offset_in_bytes()));
3005 
3006   __ pop(rsi); // trash the pc
3007 
3008   // Load array of frame sizes into ESI
3009   __ movptr(rsi,Address(rdi,Deoptimization::UnrollBlock::frame_sizes_offset_in_bytes()));
3010 
3011   Address counter(rdi, Deoptimization::UnrollBlock::counter_temp_offset_in_bytes());
3012 
3013   __ movl(rbx, Address(rdi, Deoptimization::UnrollBlock::number_of_frames_offset_in_bytes()));
3014   __ movl(counter, rbx);
3015 
3016   // Now adjust the caller's stack to make up for the extra locals
3017   // but record the original sp so that we can save it in the skeletal interpreter
3018   // frame and the stack walking of interpreter_sender will get the unextended sp
3019   // value and not the "real" sp value.
3020 
3021   Address sp_temp(rdi, Deoptimization::UnrollBlock::sender_sp_temp_offset_in_bytes());
3022   __ movptr(sp_temp, rsp);
3023   __ movl(rbx, Address(rdi, Deoptimization::UnrollBlock::caller_adjustment_offset_in_bytes()));
3024   __ subptr(rsp, rbx);
3025 
3026   // Push interpreter frames in a loop
3027   Label loop;
3028   __ bind(loop);
3029   __ movptr(rbx, Address(rsi, 0));      // Load frame size
3030   __ subptr(rbx, 2*wordSize);           // we'll push pc and rbp, by hand
3031   __ pushptr(Address(rcx, 0));          // save return address
3032   __ enter();                           // save old & set new rbp,
3033   __ subptr(rsp, rbx);                  // Prolog!
3034   __ movptr(rbx, sp_temp);              // sender's sp
3035   // This value is corrected by layout_activation_impl
3036   __ movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), NULL_WORD );
3037   __ movptr(Address(rbp, frame::interpreter_frame_sender_sp_offset * wordSize), rbx); // Make it walkable
3038   __ movptr(sp_temp, rsp);              // pass to next frame
3039   __ addptr(rsi, wordSize);             // Bump array pointer (sizes)
3040   __ addptr(rcx, wordSize);             // Bump array pointer (pcs)
3041   __ decrementl(counter);             // decrement counter
3042   __ jcc(Assembler::notZero, loop);
3043   __ pushptr(Address(rcx, 0));            // save final return address
3044 
3045   // Re-push self-frame
3046   __ enter();                           // save old & set new rbp,
3047   __ subptr(rsp, (framesize-2) * wordSize);   // Prolog!
3048 
3049 
3050   // set last_Java_sp, last_Java_fp
3051   __ get_thread(rdi);
3052   __ set_last_Java_frame(rdi, noreg, rbp, NULL);
3053 
3054   // Call C code.  Need thread but NOT official VM entry
3055   // crud.  We cannot block on this call, no GC can happen.  Call should
3056   // restore return values to their stack-slots with the new SP.
3057   __ movptr(Address(rsp,arg0_off*wordSize),rdi);
3058   __ movl(Address(rsp,arg1_off*wordSize), Deoptimization::Unpack_uncommon_trap);
3059   __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::unpack_frames)));
3060   // Set an oopmap for the call site
3061   oop_maps->add_gc_map( __ pc()-start, new OopMap( framesize, 0 ) );
3062 
3063   __ get_thread(rdi);
3064   __ reset_last_Java_frame(rdi, true);
3065 
3066   // Pop self-frame.
3067   __ leave();     // Epilog!
3068 
3069   // Jump to interpreter
3070   __ ret(0);
3071 
3072   // -------------
3073   // make sure all code is generated
3074   masm->flush();
3075 
3076    _uncommon_trap_blob = UncommonTrapBlob::create(&buffer, oop_maps, framesize);
3077 }
3078 #endif // COMPILER2
3079 
3080 //------------------------------generate_handler_blob------
3081 //
3082 // Generate a special Compile2Runtime blob that saves all registers,
3083 // setup oopmap, and calls safepoint code to stop the compiled code for
3084 // a safepoint.
3085 //
3086 SafepointBlob* SharedRuntime::generate_handler_blob(address call_ptr, int poll_type) {
3087 
3088   // Account for thread arg in our frame
3089   const int additional_words = 1;
3090   int frame_size_in_words;
3091 
3092   assert (StubRoutines::forward_exception_entry() != NULL, "must be generated before");
3093 
3094   ResourceMark rm;
3095   OopMapSet *oop_maps = new OopMapSet();
3096   OopMap* map;
3097 
3098   // allocate space for the code
3099   // setup code generation tools
3100   CodeBuffer   buffer("handler_blob", 1024, 512);
3101   MacroAssembler* masm = new MacroAssembler(&buffer);
3102 
3103   const Register java_thread = rdi; // callee-saved for VC++
3104   address start   = __ pc();
3105   address call_pc = NULL;
3106   bool cause_return = (poll_type == POLL_AT_RETURN);
3107   bool save_vectors = (poll_type == POLL_AT_VECTOR_LOOP);
3108 
3109   if (UseRTMLocking) {
3110     // Abort RTM transaction before calling runtime
3111     // because critical section will be large and will be
3112     // aborted anyway. Also nmethod could be deoptimized.
3113     __ xabort(0);
3114   }
3115 
3116   // If cause_return is true we are at a poll_return and there is
3117   // the return address on the stack to the caller on the nmethod
3118   // that is safepoint. We can leave this return on the stack and
3119   // effectively complete the return and safepoint in the caller.
3120   // Otherwise we push space for a return address that the safepoint
3121   // handler will install later to make the stack walking sensible.
3122   if (!cause_return)
3123     __ push(rbx);  // Make room for return address (or push it again)
3124 
3125   map = RegisterSaver::save_live_registers(masm, additional_words, &frame_size_in_words, false, save_vectors);
3126 
3127   // The following is basically a call_VM. However, we need the precise
3128   // address of the call in order to generate an oopmap. Hence, we do all the
3129   // work ourselves.
3130 
3131   // Push thread argument and setup last_Java_sp
3132   __ get_thread(java_thread);
3133   __ push(java_thread);
3134   __ set_last_Java_frame(java_thread, noreg, noreg, NULL);
3135 
3136   // if this was not a poll_return then we need to correct the return address now.
3137   if (!cause_return) {
3138     // Get the return pc saved by the signal handler and stash it in its appropriate place on the stack.
3139     // Additionally, rbx is a callee saved register and we can look at it later to determine
3140     // if someone changed the return address for us!
3141     __ movptr(rbx, Address(java_thread, JavaThread::saved_exception_pc_offset()));
3142     __ movptr(Address(rbp, wordSize), rbx);
3143   }
3144 
3145   // do the call
3146   __ call(RuntimeAddress(call_ptr));
3147 
3148   // Set an oopmap for the call site.  This oopmap will map all
3149   // oop-registers and debug-info registers as callee-saved.  This
3150   // will allow deoptimization at this safepoint to find all possible
3151   // debug-info recordings, as well as let GC find all oops.
3152 
3153   oop_maps->add_gc_map( __ pc() - start, map);
3154 
3155   // Discard arg
3156   __ pop(rcx);
3157 
3158   Label noException;
3159 
3160   // Clear last_Java_sp again
3161   __ get_thread(java_thread);
3162   __ reset_last_Java_frame(java_thread, false);
3163 
3164   __ cmpptr(Address(java_thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
3165   __ jcc(Assembler::equal, noException);
3166 
3167   // Exception pending
3168   RegisterSaver::restore_live_registers(masm, save_vectors);
3169 
3170   __ jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
3171 
3172   __ bind(noException);
3173 
3174   Label no_adjust, bail, not_special;
3175   if (SafepointMechanism::uses_thread_local_poll() && !cause_return) {
3176     // If our stashed return pc was modified by the runtime we avoid touching it
3177     __ cmpptr(rbx, Address(rbp, wordSize));
3178     __ jccb(Assembler::notEqual, no_adjust);
3179 
3180     // Skip over the poll instruction.
3181     // See NativeInstruction::is_safepoint_poll()
3182     // Possible encodings:
3183     //      85 00       test   %eax,(%rax)
3184     //      85 01       test   %eax,(%rcx)
3185     //      85 02       test   %eax,(%rdx)
3186     //      85 03       test   %eax,(%rbx)
3187     //      85 06       test   %eax,(%rsi)
3188     //      85 07       test   %eax,(%rdi)
3189     //
3190     //      85 04 24    test   %eax,(%rsp)
3191     //      85 45 00    test   %eax,0x0(%rbp)
3192 
3193 #ifdef ASSERT
3194     __ movptr(rax, rbx); // remember where 0x85 should be, for verification below
3195 #endif
3196     // rsp/rbp base encoding takes 3 bytes with the following register values:
3197     // rsp 0x04
3198     // rbp 0x05
3199     __ movzbl(rcx, Address(rbx, 1));
3200     __ andptr(rcx, 0x07); // looking for 0x04 .. 0x05
3201     __ subptr(rcx, 4);    // looking for 0x00 .. 0x01
3202     __ cmpptr(rcx, 1);
3203     __ jcc(Assembler::above, not_special);
3204     __ addptr(rbx, 1);
3205     __ bind(not_special);
3206 #ifdef ASSERT
3207     // Verify the correct encoding of the poll we're about to skip.
3208     __ cmpb(Address(rax, 0), NativeTstRegMem::instruction_code_memXregl);
3209     __ jcc(Assembler::notEqual, bail);
3210     // Mask out the modrm bits
3211     __ testb(Address(rax, 1), NativeTstRegMem::modrm_mask);
3212     // rax encodes to 0, so if the bits are nonzero it's incorrect
3213     __ jcc(Assembler::notZero, bail);
3214 #endif
3215     // Adjust return pc forward to step over the safepoint poll instruction
3216     __ addptr(rbx, 2);
3217     __ movptr(Address(rbp, wordSize), rbx);
3218   }
3219 
3220   __ bind(no_adjust);
3221   // Normal exit, register restoring and exit
3222   RegisterSaver::restore_live_registers(masm, save_vectors);
3223 
3224   __ ret(0);
3225 
3226 #ifdef ASSERT
3227   __ bind(bail);
3228   __ stop("Attempting to adjust pc to skip safepoint poll but the return point is not what we expected");
3229 #endif
3230 
3231   // make sure all code is generated
3232   masm->flush();
3233 
3234   // Fill-out other meta info
3235   return SafepointBlob::create(&buffer, oop_maps, frame_size_in_words);
3236 }
3237 
3238 //
3239 // generate_resolve_blob - call resolution (static/virtual/opt-virtual/ic-miss
3240 //
3241 // Generate a stub that calls into vm to find out the proper destination
3242 // of a java call. All the argument registers are live at this point
3243 // but since this is generic code we don't know what they are and the caller
3244 // must do any gc of the args.
3245 //
3246 RuntimeStub* SharedRuntime::generate_resolve_blob(address destination, const char* name) {
3247   assert (StubRoutines::forward_exception_entry() != NULL, "must be generated before");
3248 
3249   // allocate space for the code
3250   ResourceMark rm;
3251 
3252   CodeBuffer buffer(name, 1000, 512);
3253   MacroAssembler* masm                = new MacroAssembler(&buffer);
3254 
3255   int frame_size_words;
3256   enum frame_layout {
3257                 thread_off,
3258                 extra_words };
3259 
3260   OopMapSet *oop_maps = new OopMapSet();
3261   OopMap* map = NULL;
3262 
3263   int start = __ offset();
3264 
3265   map = RegisterSaver::save_live_registers(masm, extra_words, &frame_size_words);
3266 
3267   int frame_complete = __ offset();
3268 
3269   const Register thread = rdi;
3270   __ get_thread(rdi);
3271 
3272   __ push(thread);
3273   __ set_last_Java_frame(thread, noreg, rbp, NULL);
3274 
3275   __ call(RuntimeAddress(destination));
3276 
3277 
3278   // Set an oopmap for the call site.
3279   // We need this not only for callee-saved registers, but also for volatile
3280   // registers that the compiler might be keeping live across a safepoint.
3281 
3282   oop_maps->add_gc_map( __ offset() - start, map);
3283 
3284   // rax, contains the address we are going to jump to assuming no exception got installed
3285 
3286   __ addptr(rsp, wordSize);
3287 
3288   // clear last_Java_sp
3289   __ reset_last_Java_frame(thread, true);
3290   // check for pending exceptions
3291   Label pending;
3292   __ cmpptr(Address(thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
3293   __ jcc(Assembler::notEqual, pending);
3294 
3295   // get the returned Method*
3296   __ get_vm_result_2(rbx, thread);
3297   __ movptr(Address(rsp, RegisterSaver::rbx_offset() * wordSize), rbx);
3298 
3299   __ movptr(Address(rsp, RegisterSaver::rax_offset() * wordSize), rax);
3300 
3301   RegisterSaver::restore_live_registers(masm);
3302 
3303   // We are back the the original state on entry and ready to go.
3304 
3305   __ jmp(rax);
3306 
3307   // Pending exception after the safepoint
3308 
3309   __ bind(pending);
3310 
3311   RegisterSaver::restore_live_registers(masm);
3312 
3313   // exception pending => remove activation and forward to exception handler
3314 
3315   __ get_thread(thread);
3316   __ movptr(Address(thread, JavaThread::vm_result_offset()), NULL_WORD);
3317   __ movptr(rax, Address(thread, Thread::pending_exception_offset()));
3318   __ jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
3319 
3320   // -------------
3321   // make sure all code is generated
3322   masm->flush();
3323 
3324   // return the  blob
3325   // frame_size_words or bytes??
3326   return RuntimeStub::new_runtime_stub(name, &buffer, frame_complete, frame_size_words, oop_maps, true);
3327 }