1 /*
   2  * Copyright (c) 2014, 2019, Red Hat, Inc. All rights reserved.
   3  *
   4  * This code is free software; you can redistribute it and/or modify it
   5  * under the terms of the GNU General Public License version 2 only, as
   6  * published by the Free Software Foundation.
   7  *
   8  * This code is distributed in the hope that it will be useful, but WITHOUT
   9  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  10  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  11  * version 2 for more details (a copy is included in the LICENSE file that
  12  * accompanied this code).
  13  *
  14  * You should have received a copy of the GNU General Public License version
  15  * 2 along with this work; if not, write to the Free Software Foundation,
  16  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  17  *
  18  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  19  * or visit www.oracle.com if you need additional information or have any
  20  * questions.
  21  *
  22  */
  23 
  24 #include "precompiled.hpp"
  25 
  26 #include "code/codeCache.hpp"
  27 #include "gc/shared/gcTraceTime.inline.hpp"
  28 #include "gc/shared/preservedMarks.inline.hpp"
  29 #include "gc/shenandoah/shenandoahForwarding.inline.hpp"
  30 #include "gc/shenandoah/shenandoahConcurrentMark.inline.hpp"
  31 #include "gc/shenandoah/shenandoahCollectionSet.hpp"
  32 #include "gc/shenandoah/shenandoahFreeSet.hpp"
  33 #include "gc/shenandoah/shenandoahPhaseTimings.hpp"
  34 #include "gc/shenandoah/shenandoahMarkCompact.hpp"
  35 #include "gc/shenandoah/shenandoahHeapRegionSet.hpp"
  36 #include "gc/shenandoah/shenandoahHeap.inline.hpp"
  37 #include "gc/shenandoah/shenandoahHeapRegion.inline.hpp"
  38 #include "gc/shenandoah/shenandoahMarkingContext.inline.hpp"
  39 #include "gc/shenandoah/shenandoahRootProcessor.inline.hpp"
  40 #include "gc/shenandoah/shenandoahTaskqueue.inline.hpp"
  41 #include "gc/shenandoah/shenandoahUtils.hpp"
  42 #include "gc/shenandoah/shenandoahVerifier.hpp"
  43 #include "gc/shenandoah/shenandoahVMOperations.hpp"
  44 #include "gc/shenandoah/shenandoahWorkerPolicy.hpp"
  45 #include "gc/shenandoah/heuristics/shenandoahHeuristics.hpp"
  46 #include "memory/metaspace.hpp"
  47 #include "oops/oop.inline.hpp"
  48 #include "runtime/biasedLocking.hpp"
  49 #include "runtime/thread.hpp"
  50 #include "utilities/copy.hpp"
  51 #include "utilities/growableArray.hpp"
  52 #include "gc/shared/workgroup.hpp"
  53 
  54 ShenandoahMarkCompact::ShenandoahMarkCompact() :
  55   _gc_timer(NULL),
  56   _preserved_marks(new PreservedMarksSet(true)) {}
  57 
  58 void ShenandoahMarkCompact::initialize(GCTimer* gc_timer) {
  59   _gc_timer = gc_timer;
  60 }
  61 
  62 void ShenandoahMarkCompact::do_it(GCCause::Cause gc_cause) {
  63   ShenandoahHeap* heap = ShenandoahHeap::heap();
  64 
  65   if (ShenandoahVerify) {
  66     heap->verifier()->verify_before_fullgc();
  67   }
  68 
  69   if (VerifyBeforeGC) {
  70     Universe::verify();
  71   }
  72 
  73   heap->set_full_gc_in_progress(true);
  74 
  75   assert(ShenandoahSafepoint::is_at_shenandoah_safepoint(), "must be at a safepoint");
  76   assert(Thread::current()->is_VM_thread(), "Do full GC only while world is stopped");
  77 
  78   {
  79     ShenandoahGCPhase phase(ShenandoahPhaseTimings::full_gc_heapdump_pre);
  80     heap->pre_full_gc_dump(_gc_timer);
  81   }
  82 
  83   {
  84     ShenandoahGCPhase prepare_phase(ShenandoahPhaseTimings::full_gc_prepare);
  85     // Full GC is supposed to recover from any GC state:
  86 
  87     // a0. Remember if we have forwarded objects
  88     bool has_forwarded_objects = heap->has_forwarded_objects();
  89 
  90     // a1. Cancel evacuation, if in progress
  91     if (heap->is_evacuation_in_progress()) {
  92       heap->set_evacuation_in_progress(false);
  93     }
  94     assert(!heap->is_evacuation_in_progress(), "sanity");
  95 
  96     // a2. Cancel update-refs, if in progress
  97     if (heap->is_update_refs_in_progress()) {
  98       heap->set_update_refs_in_progress(false);
  99     }
 100     assert(!heap->is_update_refs_in_progress(), "sanity");
 101 
 102     // b. Cancel concurrent mark, if in progress
 103     if (heap->is_concurrent_mark_in_progress()) {
 104       heap->concurrent_mark()->cancel();
 105       heap->set_concurrent_mark_in_progress(false);
 106     }
 107     assert(!heap->is_concurrent_mark_in_progress(), "sanity");
 108 
 109     // c. Reset the bitmaps for new marking
 110     heap->reset_mark_bitmap();
 111     assert(heap->marking_context()->is_bitmap_clear(), "sanity");
 112     assert(!heap->marking_context()->is_complete(), "sanity");
 113 
 114     // d. Abandon reference discovery and clear all discovered references.
 115     ReferenceProcessor* rp = heap->ref_processor();
 116     rp->disable_discovery();
 117     rp->abandon_partial_discovery();
 118     rp->verify_no_references_recorded();
 119 
 120     // e. Set back forwarded objects bit back, in case some steps above dropped it.
 121     heap->set_has_forwarded_objects(has_forwarded_objects);
 122 
 123     // f. Sync pinned region status from the CP marks
 124     heap->sync_pinned_region_status();
 125 
 126     // The rest of prologue:
 127     BiasedLocking::preserve_marks();
 128     _preserved_marks->init(heap->workers()->active_workers());
 129   }
 130 
 131   heap->make_parsable(true);
 132 
 133   CodeCache::gc_prologue();
 134 
 135   OrderAccess::fence();
 136 
 137   phase1_mark_heap();
 138 
 139   // Once marking is done, which may have fixed up forwarded objects, we can drop it.
 140   // Coming out of Full GC, we would not have any forwarded objects.
 141   // This also prevents resolves with fwdptr from kicking in while adjusting pointers in phase3.
 142   heap->set_has_forwarded_objects(false);
 143 
 144   heap->set_full_gc_move_in_progress(true);
 145 
 146   // Setup workers for the rest
 147   OrderAccess::fence();
 148 
 149   // Initialize worker slices
 150   ShenandoahHeapRegionSet** worker_slices = NEW_C_HEAP_ARRAY(ShenandoahHeapRegionSet*, heap->max_workers(), mtGC);
 151   for (uint i = 0; i < heap->max_workers(); i++) {
 152     worker_slices[i] = new ShenandoahHeapRegionSet();
 153   }
 154 
 155   {
 156     // The rest of code performs region moves, where region status is undefined
 157     // until all phases run together.
 158     ShenandoahHeapLocker lock(heap->lock());
 159 
 160     phase2_calculate_target_addresses(worker_slices);
 161 
 162     OrderAccess::fence();
 163 
 164     phase3_update_references();
 165 
 166     phase4_compact_objects(worker_slices);
 167   }
 168 
 169   {
 170     // Epilogue
 171     SharedRestorePreservedMarksTaskExecutor exec(heap->workers());
 172     _preserved_marks->restore(&exec);
 173     BiasedLocking::restore_marks();
 174     _preserved_marks->reclaim();
 175 
 176     CodeCache::gc_epilogue();
 177   }
 178 
 179   // Resize metaspace
 180   MetaspaceGC::compute_new_size();
 181 
 182   // Free worker slices
 183   for (uint i = 0; i < heap->max_workers(); i++) {
 184     delete worker_slices[i];
 185   }
 186   FREE_C_HEAP_ARRAY(ShenandoahHeapRegionSet*, worker_slices);
 187 
 188   heap->set_full_gc_move_in_progress(false);
 189   heap->set_full_gc_in_progress(false);
 190 
 191   if (ShenandoahVerify) {
 192     heap->verifier()->verify_after_fullgc();
 193   }
 194 
 195   if (VerifyAfterGC) {
 196     Universe::verify();
 197   }
 198 
 199   {
 200     ShenandoahGCPhase phase(ShenandoahPhaseTimings::full_gc_heapdump_post);
 201     heap->post_full_gc_dump(_gc_timer);
 202   }
 203 }
 204 
 205 class ShenandoahPrepareForMarkClosure: public ShenandoahHeapRegionClosure {
 206 private:
 207   ShenandoahMarkingContext* const _ctx;
 208 
 209 public:
 210   ShenandoahPrepareForMarkClosure() : _ctx(ShenandoahHeap::heap()->marking_context()) {}
 211 
 212   void heap_region_do(ShenandoahHeapRegion *r) {
 213     _ctx->capture_top_at_mark_start(r);
 214     r->clear_live_data();
 215   }
 216 };
 217 
 218 void ShenandoahMarkCompact::phase1_mark_heap() {
 219   GCTraceTime(Info, gc, phases) time("Phase 1: Mark live objects", _gc_timer);
 220   ShenandoahGCPhase mark_phase(ShenandoahPhaseTimings::full_gc_mark);
 221 
 222   ShenandoahHeap* heap = ShenandoahHeap::heap();
 223 
 224   ShenandoahPrepareForMarkClosure cl;
 225   heap->heap_region_iterate(&cl);
 226 
 227   ShenandoahConcurrentMark* cm = heap->concurrent_mark();
 228 
 229   heap->set_process_references(heap->heuristics()->can_process_references());
 230   heap->set_unload_classes(heap->heuristics()->can_unload_classes());
 231 
 232   ReferenceProcessor* rp = heap->ref_processor();
 233   // enable ("weak") refs discovery
 234   rp->enable_discovery(true /*verify_no_refs*/);
 235   rp->setup_policy(true); // forcefully purge all soft references
 236   rp->set_active_mt_degree(heap->workers()->active_workers());
 237 
 238   cm->update_roots(ShenandoahPhaseTimings::full_gc_update_roots);
 239   cm->mark_roots(ShenandoahPhaseTimings::full_gc_scan_roots);
 240   cm->finish_mark_from_roots(/* full_gc = */ true);
 241   heap->mark_complete_marking_context();
 242   heap->parallel_cleaning(true /* full_gc */);
 243 }
 244 
 245 class ShenandoahPrepareForCompactionObjectClosure : public ObjectClosure {
 246 private:
 247   PreservedMarks*          const _preserved_marks;
 248   ShenandoahHeap*          const _heap;
 249   GrowableArray<ShenandoahHeapRegion*>& _empty_regions;
 250   int _empty_regions_pos;
 251   ShenandoahHeapRegion*          _to_region;
 252   ShenandoahHeapRegion*          _from_region;
 253   HeapWord* _compact_point;
 254 
 255 public:
 256   ShenandoahPrepareForCompactionObjectClosure(PreservedMarks* preserved_marks,
 257                                               GrowableArray<ShenandoahHeapRegion*>& empty_regions,
 258                                               ShenandoahHeapRegion* to_region) :
 259     _preserved_marks(preserved_marks),
 260     _heap(ShenandoahHeap::heap()),
 261     _empty_regions(empty_regions),
 262     _empty_regions_pos(0),
 263     _to_region(to_region),
 264     _from_region(NULL),
 265     _compact_point(to_region->bottom()) {}
 266 
 267   void set_from_region(ShenandoahHeapRegion* from_region) {
 268     _from_region = from_region;
 269   }
 270 
 271   void finish_region() {
 272     assert(_to_region != NULL, "should not happen");
 273     _to_region->set_new_top(_compact_point);
 274   }
 275 
 276   bool is_compact_same_region() {
 277     return _from_region == _to_region;
 278   }
 279 
 280   int empty_regions_pos() {
 281     return _empty_regions_pos;
 282   }
 283 
 284   void do_object(oop p) {
 285     assert(_from_region != NULL, "must set before work");
 286     assert(_heap->complete_marking_context()->is_marked(p), "must be marked");
 287     assert(!_heap->complete_marking_context()->allocated_after_mark_start((HeapWord*) p), "must be truly marked");
 288 
 289     size_t obj_size = p->size();
 290     if (_compact_point + obj_size > _to_region->end()) {
 291       finish_region();
 292 
 293       // Object doesn't fit. Pick next empty region and start compacting there.
 294       ShenandoahHeapRegion* new_to_region;
 295       if (_empty_regions_pos < _empty_regions.length()) {
 296         new_to_region = _empty_regions.at(_empty_regions_pos);
 297         _empty_regions_pos++;
 298       } else {
 299         // Out of empty region? Compact within the same region.
 300         new_to_region = _from_region;
 301       }
 302 
 303       assert(new_to_region != _to_region, "must not reuse same to-region");
 304       assert(new_to_region != NULL, "must not be NULL");
 305       _to_region = new_to_region;
 306       _compact_point = _to_region->bottom();
 307     }
 308 
 309     // Object fits into current region, record new location:
 310     assert(_compact_point + obj_size <= _to_region->end(), "must fit");
 311     shenandoah_assert_not_forwarded(NULL, p);
 312     _preserved_marks->push_if_necessary(p, p->mark_raw());
 313     p->forward_to(oop(_compact_point));
 314     _compact_point += obj_size;
 315   }
 316 };
 317 
 318 class ShenandoahPrepareForCompactionTask : public AbstractGangTask {
 319 private:
 320   PreservedMarksSet*        const _preserved_marks;
 321   ShenandoahHeap*           const _heap;
 322   ShenandoahHeapRegionSet** const _worker_slices;
 323 
 324 public:
 325   ShenandoahPrepareForCompactionTask(PreservedMarksSet *preserved_marks, ShenandoahHeapRegionSet **worker_slices) :
 326     AbstractGangTask("Shenandoah Prepare For Compaction Task"),
 327     _preserved_marks(preserved_marks),
 328     _heap(ShenandoahHeap::heap()), _worker_slices(worker_slices) {
 329   }
 330 
 331   static bool is_candidate_region(ShenandoahHeapRegion* r) {
 332     // Empty region: get it into the slice to defragment the slice itself.
 333     // We could have skipped this without violating correctness, but we really
 334     // want to compact all live regions to the start of the heap, which sometimes
 335     // means moving them into the fully empty regions.
 336     if (r->is_empty()) return true;
 337 
 338     // Can move the region, and this is not the humongous region. Humongous
 339     // moves are special cased here, because their moves are handled separately.
 340     return r->is_stw_move_allowed() && !r->is_humongous();
 341   }
 342 
 343   void work(uint worker_id) {
 344     ShenandoahHeapRegionSet* slice = _worker_slices[worker_id];
 345     ShenandoahHeapRegionSetIterator it(slice);
 346     ShenandoahHeapRegion* from_region = it.next();
 347     // No work?
 348     if (from_region == NULL) {
 349        return;
 350     }
 351 
 352     // Sliding compaction. Walk all regions in the slice, and compact them.
 353     // Remember empty regions and reuse them as needed.
 354     ResourceMark rm;
 355 
 356     GrowableArray<ShenandoahHeapRegion*> empty_regions((int)_heap->num_regions());
 357 
 358     ShenandoahPrepareForCompactionObjectClosure cl(_preserved_marks->get(worker_id), empty_regions, from_region);
 359 
 360     while (from_region != NULL) {
 361       assert(is_candidate_region(from_region), "Sanity");
 362 
 363       cl.set_from_region(from_region);
 364       if (from_region->has_live()) {
 365         _heap->marked_object_iterate(from_region, &cl);
 366       }
 367 
 368       // Compacted the region to somewhere else? From-region is empty then.
 369       if (!cl.is_compact_same_region()) {
 370         empty_regions.append(from_region);
 371       }
 372       from_region = it.next();
 373     }
 374     cl.finish_region();
 375 
 376     // Mark all remaining regions as empty
 377     for (int pos = cl.empty_regions_pos(); pos < empty_regions.length(); ++pos) {
 378       ShenandoahHeapRegion* r = empty_regions.at(pos);
 379       r->set_new_top(r->bottom());
 380     }
 381   }
 382 };
 383 
 384 void ShenandoahMarkCompact::calculate_target_humongous_objects() {
 385   ShenandoahHeap* heap = ShenandoahHeap::heap();
 386 
 387   // Compute the new addresses for humongous objects. We need to do this after addresses
 388   // for regular objects are calculated, and we know what regions in heap suffix are
 389   // available for humongous moves.
 390   //
 391   // Scan the heap backwards, because we are compacting humongous regions towards the end.
 392   // Maintain the contiguous compaction window in [to_begin; to_end), so that we can slide
 393   // humongous start there.
 394   //
 395   // The complication is potential non-movable regions during the scan. If such region is
 396   // detected, then sliding restarts towards that non-movable region.
 397 
 398   size_t to_begin = heap->num_regions();
 399   size_t to_end = heap->num_regions();
 400 
 401   for (size_t c = heap->num_regions(); c > 0; c--) {
 402     ShenandoahHeapRegion *r = heap->get_region(c - 1);
 403     if (r->is_humongous_continuation() || (r->new_top() == r->bottom())) {
 404       // To-region candidate: record this, and continue scan
 405       to_begin = r->index();
 406       continue;
 407     }
 408 
 409     if (r->is_humongous_start() && r->is_stw_move_allowed()) {
 410       // From-region candidate: movable humongous region
 411       oop old_obj = oop(r->bottom());
 412       size_t words_size = old_obj->size();
 413       size_t num_regions = ShenandoahHeapRegion::required_regions(words_size * HeapWordSize);
 414 
 415       size_t start = to_end - num_regions;
 416 
 417       if (start >= to_begin && start != r->index()) {
 418         // Fits into current window, and the move is non-trivial. Record the move then, and continue scan.
 419         _preserved_marks->get(0)->push_if_necessary(old_obj, old_obj->mark_raw());
 420         old_obj->forward_to(oop(heap->get_region(start)->bottom()));
 421         to_end = start;
 422         continue;
 423       }
 424     }
 425 
 426     // Failed to fit. Scan starting from current region.
 427     to_begin = r->index();
 428     to_end = r->index();
 429   }
 430 }
 431 
 432 class ShenandoahEnsureHeapActiveClosure: public ShenandoahHeapRegionClosure {
 433 private:
 434   ShenandoahHeap* const _heap;
 435 
 436 public:
 437   ShenandoahEnsureHeapActiveClosure() : _heap(ShenandoahHeap::heap()) {}
 438   void heap_region_do(ShenandoahHeapRegion* r) {
 439     if (r->is_trash()) {
 440       r->recycle();
 441     }
 442     if (r->is_cset()) {
 443       r->make_regular_bypass();
 444     }
 445     if (r->is_empty_uncommitted()) {
 446       r->make_committed_bypass();
 447     }
 448     assert (r->is_committed(), "only committed regions in heap now, see region " SIZE_FORMAT, r->index());
 449 
 450     // Record current region occupancy: this communicates empty regions are free
 451     // to the rest of Full GC code.
 452     r->set_new_top(r->top());
 453   }
 454 };
 455 
 456 class ShenandoahTrashImmediateGarbageClosure: public ShenandoahHeapRegionClosure {
 457 private:
 458   ShenandoahHeap* const _heap;
 459   ShenandoahMarkingContext* const _ctx;
 460 
 461 public:
 462   ShenandoahTrashImmediateGarbageClosure() :
 463     _heap(ShenandoahHeap::heap()),
 464     _ctx(ShenandoahHeap::heap()->complete_marking_context()) {}
 465 
 466   void heap_region_do(ShenandoahHeapRegion* r) {
 467     if (r->is_humongous_start()) {
 468       oop humongous_obj = oop(r->bottom());
 469       if (!_ctx->is_marked(humongous_obj)) {
 470         assert(!r->has_live(),
 471                "Region " SIZE_FORMAT " is not marked, should not have live", r->index());
 472         _heap->trash_humongous_region_at(r);
 473       } else {
 474         assert(r->has_live(),
 475                "Region " SIZE_FORMAT " should have live", r->index());
 476       }
 477     } else if (r->is_humongous_continuation()) {
 478       // If we hit continuation, the non-live humongous starts should have been trashed already
 479       assert(r->humongous_start_region()->has_live(),
 480              "Region " SIZE_FORMAT " should have live", r->index());
 481     } else if (r->is_regular()) {
 482       if (!r->has_live()) {
 483         r->make_trash_immediate();
 484       }
 485     }
 486   }
 487 };
 488 
 489 void ShenandoahMarkCompact::distribute_slices(ShenandoahHeapRegionSet** worker_slices) {
 490   ShenandoahHeap* heap = ShenandoahHeap::heap();
 491 
 492   uint n_workers = heap->workers()->active_workers();
 493   size_t n_regions = heap->num_regions();
 494 
 495   // What we want to accomplish: have the dense prefix of data, while still balancing
 496   // out the parallel work.
 497   //
 498   // Assuming the amount of work is driven by the live data that needs moving, we can slice
 499   // the entire heap into equal-live-sized prefix slices, and compact into them. So, each
 500   // thread takes all regions in its prefix subset, and then it takes some regions from
 501   // the tail.
 502   //
 503   // Tail region selection becomes interesting.
 504   //
 505   // First, we want to distribute the regions fairly between the workers, and those regions
 506   // might have different amount of live data. So, until we sure no workers need live data,
 507   // we need to only take what the worker needs.
 508   //
 509   // Second, since we slide everything to the left in each slice, the most busy regions
 510   // would be the ones on the left. Which means we want to have all workers have their after-tail
 511   // regions as close to the left as possible.
 512   //
 513   // The easiest way to do this is to distribute after-tail regions in round-robin between
 514   // workers that still need live data.
 515   //
 516   // Consider parallel workers A, B, C, then the target slice layout would be:
 517   //
 518   //  AAAAAAAABBBBBBBBCCCCCCCC|ABCABCABCABCABCABCABCABABABABABABABABABABAAAAA
 519   //
 520   //  (.....dense-prefix.....) (.....................tail...................)
 521   //  [all regions fully live] [left-most regions are fuller that right-most]
 522   //
 523 
 524   // Compute how much live data is there. This would approximate the size of dense prefix
 525   // we target to create.
 526   size_t total_live = 0;
 527   for (size_t idx = 0; idx < n_regions; idx++) {
 528     ShenandoahHeapRegion *r = heap->get_region(idx);
 529     if (ShenandoahPrepareForCompactionTask::is_candidate_region(r)) {
 530       total_live += r->get_live_data_words();
 531     }
 532   }
 533 
 534   // Estimate the size for the dense prefix. Note that we specifically count only the
 535   // "full" regions, so there would be some non-full regions in the slice tail.
 536   size_t live_per_worker = total_live / n_workers;
 537   size_t prefix_regions_per_worker = live_per_worker / ShenandoahHeapRegion::region_size_words();
 538   size_t prefix_regions_total = prefix_regions_per_worker * n_workers;
 539   prefix_regions_total = MIN2(prefix_regions_total, n_regions);
 540   assert(prefix_regions_total <= n_regions, "Sanity");
 541 
 542   // There might be non-candidate regions in the prefix. To compute where the tail actually
 543   // ends up being, we need to account those as well.
 544   size_t prefix_end = prefix_regions_total;
 545   for (size_t idx = 0; idx < prefix_regions_total; idx++) {
 546     ShenandoahHeapRegion *r = heap->get_region(idx);
 547     if (!ShenandoahPrepareForCompactionTask::is_candidate_region(r)) {
 548       prefix_end++;
 549     }
 550   }
 551   prefix_end = MIN2(prefix_end, n_regions);
 552   assert(prefix_end <= n_regions, "Sanity");
 553 
 554   // Distribute prefix regions per worker: each thread definitely gets its own same-sized
 555   // subset of dense prefix.
 556   size_t prefix_idx = 0;
 557 
 558   size_t* live = NEW_C_HEAP_ARRAY(size_t, n_workers, mtGC);
 559 
 560   for (size_t wid = 0; wid < n_workers; wid++) {
 561     ShenandoahHeapRegionSet* slice = worker_slices[wid];
 562 
 563     live[wid] = 0;
 564     size_t regs = 0;
 565 
 566     // Add all prefix regions for this worker
 567     while (prefix_idx < prefix_end && regs < prefix_regions_per_worker) {
 568       ShenandoahHeapRegion *r = heap->get_region(prefix_idx);
 569       if (ShenandoahPrepareForCompactionTask::is_candidate_region(r)) {
 570         slice->add_region(r);
 571         live[wid] += r->get_live_data_words();
 572         regs++;
 573       }
 574       prefix_idx++;
 575     }
 576   }
 577 
 578   // Distribute the tail among workers in round-robin fashion.
 579   size_t wid = n_workers - 1;
 580 
 581   for (size_t tail_idx = prefix_end; tail_idx < n_regions; tail_idx++) {
 582     ShenandoahHeapRegion *r = heap->get_region(tail_idx);
 583     if (ShenandoahPrepareForCompactionTask::is_candidate_region(r)) {
 584       assert(wid < n_workers, "Sanity");
 585 
 586       size_t live_region = r->get_live_data_words();
 587 
 588       // Select next worker that still needs live data.
 589       size_t old_wid = wid;
 590       do {
 591         wid++;
 592         if (wid == n_workers) wid = 0;
 593       } while (live[wid] + live_region >= live_per_worker && old_wid != wid);
 594 
 595       if (old_wid == wid) {
 596         // Circled back to the same worker? This means liveness data was
 597         // miscalculated. Bump the live_per_worker limit so that
 598         // everyone gets a piece of the leftover work.
 599         live_per_worker += ShenandoahHeapRegion::region_size_words();
 600       }
 601 
 602       worker_slices[wid]->add_region(r);
 603       live[wid] += live_region;
 604     }
 605   }
 606 
 607   FREE_C_HEAP_ARRAY(size_t, live);
 608 
 609 #ifdef ASSERT
 610   ResourceBitMap map(n_regions);
 611   for (size_t wid = 0; wid < n_workers; wid++) {
 612     ShenandoahHeapRegionSetIterator it(worker_slices[wid]);
 613     ShenandoahHeapRegion* r = it.next();
 614     while (r != NULL) {
 615       size_t idx = r->index();
 616       assert(ShenandoahPrepareForCompactionTask::is_candidate_region(r), "Sanity: " SIZE_FORMAT, idx);
 617       assert(!map.at(idx), "No region distributed twice: " SIZE_FORMAT, idx);
 618       map.at_put(idx, true);
 619       r = it.next();
 620     }
 621   }
 622 
 623   for (size_t rid = 0; rid < n_regions; rid++) {
 624     bool is_candidate = ShenandoahPrepareForCompactionTask::is_candidate_region(heap->get_region(rid));
 625     bool is_distributed = map.at(rid);
 626     assert(is_distributed || !is_candidate, "All candidates are distributed: " SIZE_FORMAT, rid);
 627   }
 628 #endif
 629 }
 630 
 631 void ShenandoahMarkCompact::phase2_calculate_target_addresses(ShenandoahHeapRegionSet** worker_slices) {
 632   GCTraceTime(Info, gc, phases) time("Phase 2: Compute new object addresses", _gc_timer);
 633   ShenandoahGCPhase calculate_address_phase(ShenandoahPhaseTimings::full_gc_calculate_addresses);
 634 
 635   ShenandoahHeap* heap = ShenandoahHeap::heap();
 636 
 637   // About to figure out which regions can be compacted, make sure pinning status
 638   // had been updated in GC prologue.
 639   heap->assert_pinned_region_status();
 640 
 641   {
 642     // Trash the immediately collectible regions before computing addresses
 643     ShenandoahTrashImmediateGarbageClosure tigcl;
 644     heap->heap_region_iterate(&tigcl);
 645 
 646     // Make sure regions are in good state: committed, active, clean.
 647     // This is needed because we are potentially sliding the data through them.
 648     ShenandoahEnsureHeapActiveClosure ecl;
 649     heap->heap_region_iterate(&ecl);
 650   }
 651 
 652   // Compute the new addresses for regular objects
 653   {
 654     ShenandoahGCPhase phase(ShenandoahPhaseTimings::full_gc_calculate_addresses_regular);
 655 
 656     distribute_slices(worker_slices);
 657 
 658     ShenandoahPrepareForCompactionTask task(_preserved_marks, worker_slices);
 659     heap->workers()->run_task(&task);
 660   }
 661 
 662   // Compute the new addresses for humongous objects
 663   {
 664     ShenandoahGCPhase phase(ShenandoahPhaseTimings::full_gc_calculate_addresses_humong);
 665     calculate_target_humongous_objects();
 666   }
 667 }
 668 
 669 class ShenandoahAdjustPointersClosure : public MetadataVisitingOopIterateClosure {
 670 private:
 671   ShenandoahHeap* const _heap;
 672   ShenandoahMarkingContext* const _ctx;
 673 
 674   template <class T>
 675   inline void do_oop_work(T* p) {
 676     T o = RawAccess<>::oop_load(p);
 677     if (!CompressedOops::is_null(o)) {
 678       oop obj = CompressedOops::decode_not_null(o);
 679       assert(_ctx->is_marked(obj), "must be marked");
 680       if (obj->is_forwarded()) {
 681         oop forw = obj->forwardee();
 682         RawAccess<IS_NOT_NULL>::oop_store(p, forw);
 683       }
 684     }
 685   }
 686 
 687 public:
 688   ShenandoahAdjustPointersClosure() :
 689     _heap(ShenandoahHeap::heap()),
 690     _ctx(ShenandoahHeap::heap()->complete_marking_context()) {}
 691 
 692   void do_oop(oop* p)       { do_oop_work(p); }
 693   void do_oop(narrowOop* p) { do_oop_work(p); }
 694 };
 695 
 696 class ShenandoahAdjustPointersObjectClosure : public ObjectClosure {
 697 private:
 698   ShenandoahHeap* const _heap;
 699   ShenandoahAdjustPointersClosure _cl;
 700 
 701 public:
 702   ShenandoahAdjustPointersObjectClosure() :
 703     _heap(ShenandoahHeap::heap()) {
 704   }
 705   void do_object(oop p) {
 706     assert(_heap->complete_marking_context()->is_marked(p), "must be marked");
 707     p->oop_iterate(&_cl);
 708   }
 709 };
 710 
 711 class ShenandoahAdjustPointersTask : public AbstractGangTask {
 712 private:
 713   ShenandoahHeap*          const _heap;
 714   ShenandoahRegionIterator       _regions;
 715 
 716 public:
 717   ShenandoahAdjustPointersTask() :
 718     AbstractGangTask("Shenandoah Adjust Pointers Task"),
 719     _heap(ShenandoahHeap::heap()) {
 720   }
 721 
 722   void work(uint worker_id) {
 723     ShenandoahAdjustPointersObjectClosure obj_cl;
 724     ShenandoahHeapRegion* r = _regions.next();
 725     while (r != NULL) {
 726       if (!r->is_humongous_continuation() && r->has_live()) {
 727         _heap->marked_object_iterate(r, &obj_cl);
 728       }
 729       r = _regions.next();
 730     }
 731   }
 732 };
 733 
 734 class ShenandoahAdjustRootPointersTask : public AbstractGangTask {
 735 private:
 736   ShenandoahRootAdjuster* _rp;
 737   PreservedMarksSet* _preserved_marks;
 738 public:
 739   ShenandoahAdjustRootPointersTask(ShenandoahRootAdjuster* rp, PreservedMarksSet* preserved_marks) :
 740     AbstractGangTask("Shenandoah Adjust Root Pointers Task"),
 741     _rp(rp),
 742     _preserved_marks(preserved_marks) {}
 743 
 744   void work(uint worker_id) {
 745     ShenandoahAdjustPointersClosure cl;
 746     _rp->roots_do(worker_id, &cl);
 747     _preserved_marks->get(worker_id)->adjust_during_full_gc();
 748   }
 749 };
 750 
 751 void ShenandoahMarkCompact::phase3_update_references() {
 752   GCTraceTime(Info, gc, phases) time("Phase 3: Adjust pointers", _gc_timer);
 753   ShenandoahGCPhase adjust_pointer_phase(ShenandoahPhaseTimings::full_gc_adjust_pointers);
 754 
 755   ShenandoahHeap* heap = ShenandoahHeap::heap();
 756 
 757   WorkGang* workers = heap->workers();
 758   uint nworkers = workers->active_workers();
 759   {
 760 #if COMPILER2_OR_JVMCI
 761     DerivedPointerTable::clear();
 762 #endif
 763     ShenandoahRootAdjuster rp(nworkers, ShenandoahPhaseTimings::full_gc_adjust_roots);
 764     ShenandoahAdjustRootPointersTask task(&rp, _preserved_marks);
 765     workers->run_task(&task);
 766 #if COMPILER2_OR_JVMCI
 767     DerivedPointerTable::update_pointers();
 768 #endif
 769   }
 770 
 771   ShenandoahAdjustPointersTask adjust_pointers_task;
 772   workers->run_task(&adjust_pointers_task);
 773 }
 774 
 775 class ShenandoahCompactObjectsClosure : public ObjectClosure {
 776 private:
 777   ShenandoahHeap* const _heap;
 778   uint            const _worker_id;
 779 
 780 public:
 781   ShenandoahCompactObjectsClosure(uint worker_id) :
 782     _heap(ShenandoahHeap::heap()), _worker_id(worker_id) {}
 783 
 784   void do_object(oop p) {
 785     assert(_heap->complete_marking_context()->is_marked(p), "must be marked");
 786     size_t size = (size_t)p->size();
 787     if (p->is_forwarded()) {
 788       HeapWord* compact_from = (HeapWord*) p;
 789       HeapWord* compact_to = (HeapWord*) p->forwardee();
 790       Copy::aligned_conjoint_words(compact_from, compact_to, size);
 791       oop new_obj = oop(compact_to);
 792       new_obj->init_mark_raw();
 793     }
 794   }
 795 };
 796 
 797 class ShenandoahCompactObjectsTask : public AbstractGangTask {
 798 private:
 799   ShenandoahHeap* const _heap;
 800   ShenandoahHeapRegionSet** const _worker_slices;
 801 
 802 public:
 803   ShenandoahCompactObjectsTask(ShenandoahHeapRegionSet** worker_slices) :
 804     AbstractGangTask("Shenandoah Compact Objects Task"),
 805     _heap(ShenandoahHeap::heap()),
 806     _worker_slices(worker_slices) {
 807   }
 808 
 809   void work(uint worker_id) {
 810     ShenandoahHeapRegionSetIterator slice(_worker_slices[worker_id]);
 811 
 812     ShenandoahCompactObjectsClosure cl(worker_id);
 813     ShenandoahHeapRegion* r = slice.next();
 814     while (r != NULL) {
 815       assert(!r->is_humongous(), "must not get humongous regions here");
 816       if (r->has_live()) {
 817         _heap->marked_object_iterate(r, &cl);
 818       }
 819       r->set_top(r->new_top());
 820       r = slice.next();
 821     }
 822   }
 823 };
 824 
 825 class ShenandoahPostCompactClosure : public ShenandoahHeapRegionClosure {
 826 private:
 827   ShenandoahHeap* const _heap;
 828   size_t _live;
 829 
 830 public:
 831   ShenandoahPostCompactClosure() : _heap(ShenandoahHeap::heap()), _live(0) {
 832     _heap->free_set()->clear();
 833   }
 834 
 835   void heap_region_do(ShenandoahHeapRegion* r) {
 836     assert (!r->is_cset(), "cset regions should have been demoted already");
 837 
 838     // Need to reset the complete-top-at-mark-start pointer here because
 839     // the complete marking bitmap is no longer valid. This ensures
 840     // size-based iteration in marked_object_iterate().
 841     // NOTE: See blurb at ShenandoahMCResetCompleteBitmapTask on why we need to skip
 842     // pinned regions.
 843     if (!r->is_pinned()) {
 844       _heap->complete_marking_context()->reset_top_at_mark_start(r);
 845     }
 846 
 847     size_t live = r->used();
 848 
 849     // Make empty regions that have been allocated into regular
 850     if (r->is_empty() && live > 0) {
 851       r->make_regular_bypass();
 852     }
 853 
 854     // Reclaim regular regions that became empty
 855     if (r->is_regular() && live == 0) {
 856       r->make_trash();
 857     }
 858 
 859     // Recycle all trash regions
 860     if (r->is_trash()) {
 861       live = 0;
 862       r->recycle();
 863     }
 864 
 865     r->set_live_data(live);
 866     r->reset_alloc_metadata();
 867     _live += live;
 868   }
 869 
 870   size_t get_live() {
 871     return _live;
 872   }
 873 };
 874 
 875 void ShenandoahMarkCompact::compact_humongous_objects() {
 876   // Compact humongous regions, based on their fwdptr objects.
 877   //
 878   // This code is serial, because doing the in-slice parallel sliding is tricky. In most cases,
 879   // humongous regions are already compacted, and do not require further moves, which alleviates
 880   // sliding costs. We may consider doing this in parallel in future.
 881 
 882   ShenandoahHeap* heap = ShenandoahHeap::heap();
 883 
 884   for (size_t c = heap->num_regions(); c > 0; c--) {
 885     ShenandoahHeapRegion* r = heap->get_region(c - 1);
 886     if (r->is_humongous_start()) {
 887       oop old_obj = oop(r->bottom());
 888       if (!old_obj->is_forwarded()) {
 889         // No need to move the object, it stays at the same slot
 890         continue;
 891       }
 892       size_t words_size = old_obj->size();
 893       size_t num_regions = ShenandoahHeapRegion::required_regions(words_size * HeapWordSize);
 894 
 895       size_t old_start = r->index();
 896       size_t old_end   = old_start + num_regions - 1;
 897       size_t new_start = heap->heap_region_index_containing(old_obj->forwardee());
 898       size_t new_end   = new_start + num_regions - 1;
 899       assert(old_start != new_start, "must be real move");
 900       assert(r->is_stw_move_allowed(), "Region " SIZE_FORMAT " should be movable", r->index());
 901 
 902       Copy::aligned_conjoint_words(heap->get_region(old_start)->bottom(),
 903                                    heap->get_region(new_start)->bottom(),
 904                                    ShenandoahHeapRegion::region_size_words()*num_regions);
 905 
 906       oop new_obj = oop(heap->get_region(new_start)->bottom());
 907       new_obj->init_mark_raw();
 908 
 909       {
 910         for (size_t c = old_start; c <= old_end; c++) {
 911           ShenandoahHeapRegion* r = heap->get_region(c);
 912           r->make_regular_bypass();
 913           r->set_top(r->bottom());
 914         }
 915 
 916         for (size_t c = new_start; c <= new_end; c++) {
 917           ShenandoahHeapRegion* r = heap->get_region(c);
 918           if (c == new_start) {
 919             r->make_humongous_start_bypass();
 920           } else {
 921             r->make_humongous_cont_bypass();
 922           }
 923 
 924           // Trailing region may be non-full, record the remainder there
 925           size_t remainder = words_size & ShenandoahHeapRegion::region_size_words_mask();
 926           if ((c == new_end) && (remainder != 0)) {
 927             r->set_top(r->bottom() + remainder);
 928           } else {
 929             r->set_top(r->end());
 930           }
 931 
 932           r->reset_alloc_metadata();
 933         }
 934       }
 935     }
 936   }
 937 }
 938 
 939 // This is slightly different to ShHeap::reset_next_mark_bitmap:
 940 // we need to remain able to walk pinned regions.
 941 // Since pinned region do not move and don't get compacted, we will get holes with
 942 // unreachable objects in them (which may have pointers to unloaded Klasses and thus
 943 // cannot be iterated over using oop->size(). The only way to safely iterate over those is using
 944 // a valid marking bitmap and valid TAMS pointer. This class only resets marking
 945 // bitmaps for un-pinned regions, and later we only reset TAMS for unpinned regions.
 946 class ShenandoahMCResetCompleteBitmapTask : public AbstractGangTask {
 947 private:
 948   ShenandoahRegionIterator _regions;
 949 
 950 public:
 951   ShenandoahMCResetCompleteBitmapTask() :
 952     AbstractGangTask("Parallel Reset Bitmap Task") {
 953   }
 954 
 955   void work(uint worker_id) {
 956     ShenandoahHeapRegion* region = _regions.next();
 957     ShenandoahHeap* heap = ShenandoahHeap::heap();
 958     ShenandoahMarkingContext* const ctx = heap->complete_marking_context();
 959     while (region != NULL) {
 960       if (heap->is_bitmap_slice_committed(region) && !region->is_pinned() && region->has_live()) {
 961         ctx->clear_bitmap(region);
 962       }
 963       region = _regions.next();
 964     }
 965   }
 966 };
 967 
 968 void ShenandoahMarkCompact::phase4_compact_objects(ShenandoahHeapRegionSet** worker_slices) {
 969   GCTraceTime(Info, gc, phases) time("Phase 4: Move objects", _gc_timer);
 970   ShenandoahGCPhase compaction_phase(ShenandoahPhaseTimings::full_gc_copy_objects);
 971 
 972   ShenandoahHeap* heap = ShenandoahHeap::heap();
 973 
 974   // Compact regular objects first
 975   {
 976     ShenandoahGCPhase phase(ShenandoahPhaseTimings::full_gc_copy_objects_regular);
 977     ShenandoahCompactObjectsTask compact_task(worker_slices);
 978     heap->workers()->run_task(&compact_task);
 979   }
 980 
 981   // Compact humongous objects after regular object moves
 982   {
 983     ShenandoahGCPhase phase(ShenandoahPhaseTimings::full_gc_copy_objects_humong);
 984     compact_humongous_objects();
 985   }
 986 
 987   // Reset complete bitmap. We're about to reset the complete-top-at-mark-start pointer
 988   // and must ensure the bitmap is in sync.
 989   {
 990     ShenandoahGCPhase phase(ShenandoahPhaseTimings::full_gc_copy_objects_reset_complete);
 991     ShenandoahMCResetCompleteBitmapTask task;
 992     heap->workers()->run_task(&task);
 993   }
 994 
 995   // Bring regions in proper states after the collection, and set heap properties.
 996   {
 997     ShenandoahGCPhase phase(ShenandoahPhaseTimings::full_gc_copy_objects_rebuild);
 998 
 999     ShenandoahPostCompactClosure post_compact;
1000     heap->heap_region_iterate(&post_compact);
1001     heap->set_used(post_compact.get_live());
1002 
1003     heap->collection_set()->clear();
1004     heap->free_set()->rebuild();
1005   }
1006 
1007   heap->clear_cancelled_gc();
1008 }