1 /*
   2  * Copyright (c) 1997, 2019, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/systemDictionary.hpp"
  27 #include "compiler/compileLog.hpp"
  28 #include "gc/shared/barrierSet.hpp"
  29 #include "gc/shared/c2/barrierSetC2.hpp"
  30 #include "memory/allocation.inline.hpp"
  31 #include "memory/resourceArea.hpp"
  32 #include "oops/objArrayKlass.hpp"
  33 #include "opto/addnode.hpp"
  34 #include "opto/arraycopynode.hpp"
  35 #include "opto/cfgnode.hpp"
  36 #include "opto/compile.hpp"
  37 #include "opto/connode.hpp"
  38 #include "opto/convertnode.hpp"
  39 #include "opto/loopnode.hpp"
  40 #include "opto/machnode.hpp"
  41 #include "opto/matcher.hpp"
  42 #include "opto/memnode.hpp"
  43 #include "opto/mulnode.hpp"
  44 #include "opto/narrowptrnode.hpp"
  45 #include "opto/phaseX.hpp"
  46 #include "opto/regmask.hpp"
  47 #include "opto/rootnode.hpp"
  48 #include "utilities/align.hpp"
  49 #include "utilities/copy.hpp"
  50 #include "utilities/macros.hpp"
  51 #include "utilities/vmError.hpp"
  52 #if INCLUDE_ZGC
  53 #include "gc/z/c2/zBarrierSetC2.hpp"
  54 #endif
  55 #if INCLUDE_SHENANDOAHGC
  56 #include "gc/shenandoah/c2/shenandoahBarrierSetC2.hpp"
  57 #endif
  58 
  59 // Portions of code courtesy of Clifford Click
  60 
  61 // Optimization - Graph Style
  62 
  63 static Node *step_through_mergemem(PhaseGVN *phase, MergeMemNode *mmem,  const TypePtr *tp, const TypePtr *adr_check, outputStream *st);
  64 
  65 //=============================================================================
  66 uint MemNode::size_of() const { return sizeof(*this); }
  67 
  68 const TypePtr *MemNode::adr_type() const {
  69   Node* adr = in(Address);
  70   if (adr == NULL)  return NULL; // node is dead
  71   const TypePtr* cross_check = NULL;
  72   DEBUG_ONLY(cross_check = _adr_type);
  73   return calculate_adr_type(adr->bottom_type(), cross_check);
  74 }
  75 
  76 bool MemNode::check_if_adr_maybe_raw(Node* adr) {
  77   if (adr != NULL) {
  78     if (adr->bottom_type()->base() == Type::RawPtr || adr->bottom_type()->base() == Type::AnyPtr) {
  79       return true;
  80     }
  81   }
  82   return false;
  83 }
  84 
  85 #ifndef PRODUCT
  86 void MemNode::dump_spec(outputStream *st) const {
  87   if (in(Address) == NULL)  return; // node is dead
  88 #ifndef ASSERT
  89   // fake the missing field
  90   const TypePtr* _adr_type = NULL;
  91   if (in(Address) != NULL)
  92     _adr_type = in(Address)->bottom_type()->isa_ptr();
  93 #endif
  94   dump_adr_type(this, _adr_type, st);
  95 
  96   Compile* C = Compile::current();
  97   if (C->alias_type(_adr_type)->is_volatile()) {
  98     st->print(" Volatile!");
  99   }
 100   if (_unaligned_access) {
 101     st->print(" unaligned");
 102   }
 103   if (_mismatched_access) {
 104     st->print(" mismatched");
 105   }
 106   if (_unsafe_access) {
 107     st->print(" unsafe");
 108   }
 109 }
 110 
 111 void MemNode::dump_adr_type(const Node* mem, const TypePtr* adr_type, outputStream *st) {
 112   st->print(" @");
 113   if (adr_type == NULL) {
 114     st->print("NULL");
 115   } else {
 116     adr_type->dump_on(st);
 117     Compile* C = Compile::current();
 118     Compile::AliasType* atp = NULL;
 119     if (C->have_alias_type(adr_type))  atp = C->alias_type(adr_type);
 120     if (atp == NULL)
 121       st->print(", idx=?\?;");
 122     else if (atp->index() == Compile::AliasIdxBot)
 123       st->print(", idx=Bot;");
 124     else if (atp->index() == Compile::AliasIdxTop)
 125       st->print(", idx=Top;");
 126     else if (atp->index() == Compile::AliasIdxRaw)
 127       st->print(", idx=Raw;");
 128     else {
 129       ciField* field = atp->field();
 130       if (field) {
 131         st->print(", name=");
 132         field->print_name_on(st);
 133       }
 134       st->print(", idx=%d;", atp->index());
 135     }
 136   }
 137 }
 138 
 139 extern void print_alias_types();
 140 
 141 #endif
 142 
 143 Node *MemNode::optimize_simple_memory_chain(Node *mchain, const TypeOopPtr *t_oop, Node *load, PhaseGVN *phase) {
 144   assert((t_oop != NULL), "sanity");
 145   bool is_instance = t_oop->is_known_instance_field();
 146   bool is_boxed_value_load = t_oop->is_ptr_to_boxed_value() &&
 147                              (load != NULL) && load->is_Load() &&
 148                              (phase->is_IterGVN() != NULL);
 149   if (!(is_instance || is_boxed_value_load))
 150     return mchain;  // don't try to optimize non-instance types
 151   uint instance_id = t_oop->instance_id();
 152   Node *start_mem = phase->C->start()->proj_out_or_null(TypeFunc::Memory);
 153   Node *prev = NULL;
 154   Node *result = mchain;
 155   while (prev != result) {
 156     prev = result;
 157     if (result == start_mem)
 158       break;  // hit one of our sentinels
 159     // skip over a call which does not affect this memory slice
 160     if (result->is_Proj() && result->as_Proj()->_con == TypeFunc::Memory) {
 161       Node *proj_in = result->in(0);
 162       if (proj_in->is_Allocate() && proj_in->_idx == instance_id) {
 163         break;  // hit one of our sentinels
 164       } else if (proj_in->is_Call()) {
 165         // ArrayCopyNodes processed here as well
 166         CallNode *call = proj_in->as_Call();
 167         if (!call->may_modify(t_oop, phase)) { // returns false for instances
 168           result = call->in(TypeFunc::Memory);
 169         }
 170       } else if (proj_in->is_Initialize()) {
 171         AllocateNode* alloc = proj_in->as_Initialize()->allocation();
 172         // Stop if this is the initialization for the object instance which
 173         // contains this memory slice, otherwise skip over it.
 174         if ((alloc == NULL) || (alloc->_idx == instance_id)) {
 175           break;
 176         }
 177         if (is_instance) {
 178           result = proj_in->in(TypeFunc::Memory);
 179         } else if (is_boxed_value_load) {
 180           Node* klass = alloc->in(AllocateNode::KlassNode);
 181           const TypeKlassPtr* tklass = phase->type(klass)->is_klassptr();
 182           if (tklass->klass_is_exact() && !tklass->klass()->equals(t_oop->klass())) {
 183             result = proj_in->in(TypeFunc::Memory); // not related allocation
 184           }
 185         }
 186       } else if (proj_in->is_MemBar()) {
 187         ArrayCopyNode* ac = NULL;
 188         if (ArrayCopyNode::may_modify(t_oop, proj_in->as_MemBar(), phase, ac)) {
 189           break;
 190         }
 191         result = proj_in->in(TypeFunc::Memory);
 192       } else {
 193         assert(false, "unexpected projection");
 194       }
 195     } else if (result->is_ClearArray()) {
 196       if (!is_instance || !ClearArrayNode::step_through(&result, instance_id, phase)) {
 197         // Can not bypass initialization of the instance
 198         // we are looking for.
 199         break;
 200       }
 201       // Otherwise skip it (the call updated 'result' value).
 202     } else if (result->is_MergeMem()) {
 203       result = step_through_mergemem(phase, result->as_MergeMem(), t_oop, NULL, tty);
 204     }
 205   }
 206   return result;
 207 }
 208 
 209 Node *MemNode::optimize_memory_chain(Node *mchain, const TypePtr *t_adr, Node *load, PhaseGVN *phase) {
 210   const TypeOopPtr* t_oop = t_adr->isa_oopptr();
 211   if (t_oop == NULL)
 212     return mchain;  // don't try to optimize non-oop types
 213   Node* result = optimize_simple_memory_chain(mchain, t_oop, load, phase);
 214   bool is_instance = t_oop->is_known_instance_field();
 215   PhaseIterGVN *igvn = phase->is_IterGVN();
 216   if (is_instance && igvn != NULL  && result->is_Phi()) {
 217     PhiNode *mphi = result->as_Phi();
 218     assert(mphi->bottom_type() == Type::MEMORY, "memory phi required");
 219     const TypePtr *t = mphi->adr_type();
 220     if (t == TypePtr::BOTTOM || t == TypeRawPtr::BOTTOM ||
 221         (t->isa_oopptr() && !t->is_oopptr()->is_known_instance() &&
 222          t->is_oopptr()->cast_to_exactness(true)
 223            ->is_oopptr()->cast_to_ptr_type(t_oop->ptr())
 224             ->is_oopptr()->cast_to_instance_id(t_oop->instance_id()) == t_oop)) {
 225       // clone the Phi with our address type
 226       result = mphi->split_out_instance(t_adr, igvn);
 227     } else {
 228       assert(phase->C->get_alias_index(t) == phase->C->get_alias_index(t_adr), "correct memory chain");
 229     }
 230   }
 231   return result;
 232 }
 233 
 234 static Node *step_through_mergemem(PhaseGVN *phase, MergeMemNode *mmem,  const TypePtr *tp, const TypePtr *adr_check, outputStream *st) {
 235   uint alias_idx = phase->C->get_alias_index(tp);
 236   Node *mem = mmem;
 237 #ifdef ASSERT
 238   {
 239     // Check that current type is consistent with the alias index used during graph construction
 240     assert(alias_idx >= Compile::AliasIdxRaw, "must not be a bad alias_idx");
 241     bool consistent =  adr_check == NULL || adr_check->empty() ||
 242                        phase->C->must_alias(adr_check, alias_idx );
 243     // Sometimes dead array references collapse to a[-1], a[-2], or a[-3]
 244     if( !consistent && adr_check != NULL && !adr_check->empty() &&
 245                tp->isa_aryptr() &&        tp->offset() == Type::OffsetBot &&
 246         adr_check->isa_aryptr() && adr_check->offset() != Type::OffsetBot &&
 247         ( adr_check->offset() == arrayOopDesc::length_offset_in_bytes() ||
 248           adr_check->offset() == oopDesc::klass_offset_in_bytes() ||
 249           adr_check->offset() == oopDesc::mark_offset_in_bytes() ) ) {
 250       // don't assert if it is dead code.
 251       consistent = true;
 252     }
 253     if( !consistent ) {
 254       st->print("alias_idx==%d, adr_check==", alias_idx);
 255       if( adr_check == NULL ) {
 256         st->print("NULL");
 257       } else {
 258         adr_check->dump();
 259       }
 260       st->cr();
 261       print_alias_types();
 262       assert(consistent, "adr_check must match alias idx");
 263     }
 264   }
 265 #endif
 266   // TypeOopPtr::NOTNULL+any is an OOP with unknown offset - generally
 267   // means an array I have not precisely typed yet.  Do not do any
 268   // alias stuff with it any time soon.
 269   const TypeOopPtr *toop = tp->isa_oopptr();
 270   if( tp->base() != Type::AnyPtr &&
 271       !(toop &&
 272         toop->klass() != NULL &&
 273         toop->klass()->is_java_lang_Object() &&
 274         toop->offset() == Type::OffsetBot) ) {
 275     // compress paths and change unreachable cycles to TOP
 276     // If not, we can update the input infinitely along a MergeMem cycle
 277     // Equivalent code in PhiNode::Ideal
 278     Node* m  = phase->transform(mmem);
 279     // If transformed to a MergeMem, get the desired slice
 280     // Otherwise the returned node represents memory for every slice
 281     mem = (m->is_MergeMem())? m->as_MergeMem()->memory_at(alias_idx) : m;
 282     // Update input if it is progress over what we have now
 283   }
 284   return mem;
 285 }
 286 
 287 //--------------------------Ideal_common---------------------------------------
 288 // Look for degenerate control and memory inputs.  Bypass MergeMem inputs.
 289 // Unhook non-raw memories from complete (macro-expanded) initializations.
 290 Node *MemNode::Ideal_common(PhaseGVN *phase, bool can_reshape) {
 291   // If our control input is a dead region, kill all below the region
 292   Node *ctl = in(MemNode::Control);
 293   if (ctl && remove_dead_region(phase, can_reshape))
 294     return this;
 295   ctl = in(MemNode::Control);
 296   // Don't bother trying to transform a dead node
 297   if (ctl && ctl->is_top())  return NodeSentinel;
 298 
 299   PhaseIterGVN *igvn = phase->is_IterGVN();
 300   // Wait if control on the worklist.
 301   if (ctl && can_reshape && igvn != NULL) {
 302     Node* bol = NULL;
 303     Node* cmp = NULL;
 304     if (ctl->in(0)->is_If()) {
 305       assert(ctl->is_IfTrue() || ctl->is_IfFalse(), "sanity");
 306       bol = ctl->in(0)->in(1);
 307       if (bol->is_Bool())
 308         cmp = ctl->in(0)->in(1)->in(1);
 309     }
 310     if (igvn->_worklist.member(ctl) ||
 311         (bol != NULL && igvn->_worklist.member(bol)) ||
 312         (cmp != NULL && igvn->_worklist.member(cmp)) ) {
 313       // This control path may be dead.
 314       // Delay this memory node transformation until the control is processed.
 315       phase->is_IterGVN()->_worklist.push(this);
 316       return NodeSentinel; // caller will return NULL
 317     }
 318   }
 319   // Ignore if memory is dead, or self-loop
 320   Node *mem = in(MemNode::Memory);
 321   if (phase->type( mem ) == Type::TOP) return NodeSentinel; // caller will return NULL
 322   assert(mem != this, "dead loop in MemNode::Ideal");
 323 
 324   if (can_reshape && igvn != NULL && igvn->_worklist.member(mem)) {
 325     // This memory slice may be dead.
 326     // Delay this mem node transformation until the memory is processed.
 327     phase->is_IterGVN()->_worklist.push(this);
 328     return NodeSentinel; // caller will return NULL
 329   }
 330 
 331   Node *address = in(MemNode::Address);
 332   const Type *t_adr = phase->type(address);
 333   if (t_adr == Type::TOP)              return NodeSentinel; // caller will return NULL
 334 
 335   if (can_reshape && is_unsafe_access() && (t_adr == TypePtr::NULL_PTR)) {
 336     // Unsafe off-heap access with zero address. Remove access and other control users
 337     // to not confuse optimizations and add a HaltNode to fail if this is ever executed.
 338     assert(ctl != NULL, "unsafe accesses should be control dependent");
 339     for (DUIterator_Fast imax, i = ctl->fast_outs(imax); i < imax; i++) {
 340       Node* u = ctl->fast_out(i);
 341       if (u != ctl) {
 342         igvn->rehash_node_delayed(u);
 343         int nb = u->replace_edge(ctl, phase->C->top());
 344         --i, imax -= nb;
 345       }
 346     }
 347     Node* frame = igvn->transform(new ParmNode(phase->C->start(), TypeFunc::FramePtr));
 348     Node* halt = igvn->transform(new HaltNode(ctl, frame, "unsafe off-heap access with zero address"));
 349     phase->C->root()->add_req(halt);
 350     return this;
 351   }
 352 
 353   if (can_reshape && igvn != NULL &&
 354       (igvn->_worklist.member(address) ||
 355        (igvn->_worklist.size() > 0 && t_adr != adr_type())) ) {
 356     // The address's base and type may change when the address is processed.
 357     // Delay this mem node transformation until the address is processed.
 358     phase->is_IterGVN()->_worklist.push(this);
 359     return NodeSentinel; // caller will return NULL
 360   }
 361 
 362   // Do NOT remove or optimize the next lines: ensure a new alias index
 363   // is allocated for an oop pointer type before Escape Analysis.
 364   // Note: C++ will not remove it since the call has side effect.
 365   if (t_adr->isa_oopptr()) {
 366     int alias_idx = phase->C->get_alias_index(t_adr->is_ptr());
 367   }
 368 
 369   Node* base = NULL;
 370   if (address->is_AddP()) {
 371     base = address->in(AddPNode::Base);
 372   }
 373   if (base != NULL && phase->type(base)->higher_equal(TypePtr::NULL_PTR) &&
 374       !t_adr->isa_rawptr()) {
 375     // Note: raw address has TOP base and top->higher_equal(TypePtr::NULL_PTR) is true.
 376     // Skip this node optimization if its address has TOP base.
 377     return NodeSentinel; // caller will return NULL
 378   }
 379 
 380   // Avoid independent memory operations
 381   Node* old_mem = mem;
 382 
 383   // The code which unhooks non-raw memories from complete (macro-expanded)
 384   // initializations was removed. After macro-expansion all stores catched
 385   // by Initialize node became raw stores and there is no information
 386   // which memory slices they modify. So it is unsafe to move any memory
 387   // operation above these stores. Also in most cases hooked non-raw memories
 388   // were already unhooked by using information from detect_ptr_independence()
 389   // and find_previous_store().
 390 
 391   if (mem->is_MergeMem()) {
 392     MergeMemNode* mmem = mem->as_MergeMem();
 393     const TypePtr *tp = t_adr->is_ptr();
 394 
 395     mem = step_through_mergemem(phase, mmem, tp, adr_type(), tty);
 396   }
 397 
 398   if (mem != old_mem) {
 399     set_req(MemNode::Memory, mem);
 400     if (can_reshape && old_mem->outcnt() == 0 && igvn != NULL) {
 401       igvn->_worklist.push(old_mem);
 402     }
 403     if (phase->type(mem) == Type::TOP) return NodeSentinel;
 404     return this;
 405   }
 406 
 407   // let the subclass continue analyzing...
 408   return NULL;
 409 }
 410 
 411 // Helper function for proving some simple control dominations.
 412 // Attempt to prove that all control inputs of 'dom' dominate 'sub'.
 413 // Already assumes that 'dom' is available at 'sub', and that 'sub'
 414 // is not a constant (dominated by the method's StartNode).
 415 // Used by MemNode::find_previous_store to prove that the
 416 // control input of a memory operation predates (dominates)
 417 // an allocation it wants to look past.
 418 bool MemNode::all_controls_dominate(Node* dom, Node* sub) {
 419   if (dom == NULL || dom->is_top() || sub == NULL || sub->is_top())
 420     return false; // Conservative answer for dead code
 421 
 422   // Check 'dom'. Skip Proj and CatchProj nodes.
 423   dom = dom->find_exact_control(dom);
 424   if (dom == NULL || dom->is_top())
 425     return false; // Conservative answer for dead code
 426 
 427   if (dom == sub) {
 428     // For the case when, for example, 'sub' is Initialize and the original
 429     // 'dom' is Proj node of the 'sub'.
 430     return false;
 431   }
 432 
 433   if (dom->is_Con() || dom->is_Start() || dom->is_Root() || dom == sub)
 434     return true;
 435 
 436   // 'dom' dominates 'sub' if its control edge and control edges
 437   // of all its inputs dominate or equal to sub's control edge.
 438 
 439   // Currently 'sub' is either Allocate, Initialize or Start nodes.
 440   // Or Region for the check in LoadNode::Ideal();
 441   // 'sub' should have sub->in(0) != NULL.
 442   assert(sub->is_Allocate() || sub->is_Initialize() || sub->is_Start() ||
 443          sub->is_Region() || sub->is_Call(), "expecting only these nodes");
 444 
 445   // Get control edge of 'sub'.
 446   Node* orig_sub = sub;
 447   sub = sub->find_exact_control(sub->in(0));
 448   if (sub == NULL || sub->is_top())
 449     return false; // Conservative answer for dead code
 450 
 451   assert(sub->is_CFG(), "expecting control");
 452 
 453   if (sub == dom)
 454     return true;
 455 
 456   if (sub->is_Start() || sub->is_Root())
 457     return false;
 458 
 459   {
 460     // Check all control edges of 'dom'.
 461 
 462     ResourceMark rm;
 463     Arena* arena = Thread::current()->resource_area();
 464     Node_List nlist(arena);
 465     Unique_Node_List dom_list(arena);
 466 
 467     dom_list.push(dom);
 468     bool only_dominating_controls = false;
 469 
 470     for (uint next = 0; next < dom_list.size(); next++) {
 471       Node* n = dom_list.at(next);
 472       if (n == orig_sub)
 473         return false; // One of dom's inputs dominated by sub.
 474       if (!n->is_CFG() && n->pinned()) {
 475         // Check only own control edge for pinned non-control nodes.
 476         n = n->find_exact_control(n->in(0));
 477         if (n == NULL || n->is_top())
 478           return false; // Conservative answer for dead code
 479         assert(n->is_CFG(), "expecting control");
 480         dom_list.push(n);
 481       } else if (n->is_Con() || n->is_Start() || n->is_Root()) {
 482         only_dominating_controls = true;
 483       } else if (n->is_CFG()) {
 484         if (n->dominates(sub, nlist))
 485           only_dominating_controls = true;
 486         else
 487           return false;
 488       } else {
 489         // First, own control edge.
 490         Node* m = n->find_exact_control(n->in(0));
 491         if (m != NULL) {
 492           if (m->is_top())
 493             return false; // Conservative answer for dead code
 494           dom_list.push(m);
 495         }
 496         // Now, the rest of edges.
 497         uint cnt = n->req();
 498         for (uint i = 1; i < cnt; i++) {
 499           m = n->find_exact_control(n->in(i));
 500           if (m == NULL || m->is_top())
 501             continue;
 502           dom_list.push(m);
 503         }
 504       }
 505     }
 506     return only_dominating_controls;
 507   }
 508 }
 509 
 510 //---------------------detect_ptr_independence---------------------------------
 511 // Used by MemNode::find_previous_store to prove that two base
 512 // pointers are never equal.
 513 // The pointers are accompanied by their associated allocations,
 514 // if any, which have been previously discovered by the caller.
 515 bool MemNode::detect_ptr_independence(Node* p1, AllocateNode* a1,
 516                                       Node* p2, AllocateNode* a2,
 517                                       PhaseTransform* phase) {
 518   // Attempt to prove that these two pointers cannot be aliased.
 519   // They may both manifestly be allocations, and they should differ.
 520   // Or, if they are not both allocations, they can be distinct constants.
 521   // Otherwise, one is an allocation and the other a pre-existing value.
 522   if (a1 == NULL && a2 == NULL) {           // neither an allocation
 523     return (p1 != p2) && p1->is_Con() && p2->is_Con();
 524   } else if (a1 != NULL && a2 != NULL) {    // both allocations
 525     return (a1 != a2);
 526   } else if (a1 != NULL) {                  // one allocation a1
 527     // (Note:  p2->is_Con implies p2->in(0)->is_Root, which dominates.)
 528     return all_controls_dominate(p2, a1);
 529   } else { //(a2 != NULL)                   // one allocation a2
 530     return all_controls_dominate(p1, a2);
 531   }
 532   return false;
 533 }
 534 
 535 
 536 // Find an arraycopy that must have set (can_see_stored_value=true) or
 537 // could have set (can_see_stored_value=false) the value for this load
 538 Node* LoadNode::find_previous_arraycopy(PhaseTransform* phase, Node* ld_alloc, Node*& mem, bool can_see_stored_value) const {
 539   if (mem->is_Proj() && mem->in(0) != NULL && (mem->in(0)->Opcode() == Op_MemBarStoreStore ||
 540                                                mem->in(0)->Opcode() == Op_MemBarCPUOrder)) {
 541     Node* mb = mem->in(0);
 542     if (mb->in(0) != NULL && mb->in(0)->is_Proj() &&
 543         mb->in(0)->in(0) != NULL && mb->in(0)->in(0)->is_ArrayCopy()) {
 544       ArrayCopyNode* ac = mb->in(0)->in(0)->as_ArrayCopy();
 545       if (ac->is_clonebasic()) {
 546         intptr_t offset;
 547         AllocateNode* alloc = AllocateNode::Ideal_allocation(ac->in(ArrayCopyNode::Dest), phase, offset);
 548         if (alloc != NULL && alloc == ld_alloc) {
 549           return ac;
 550         }
 551       }
 552     }
 553   } else if (mem->is_Proj() && mem->in(0) != NULL && mem->in(0)->is_ArrayCopy()) {
 554     ArrayCopyNode* ac = mem->in(0)->as_ArrayCopy();
 555 
 556     if (ac->is_arraycopy_validated() ||
 557         ac->is_copyof_validated() ||
 558         ac->is_copyofrange_validated()) {
 559       Node* ld_addp = in(MemNode::Address);
 560       if (ld_addp->is_AddP()) {
 561         Node* ld_base = ld_addp->in(AddPNode::Address);
 562         Node* ld_offs = ld_addp->in(AddPNode::Offset);
 563 
 564         Node* dest = ac->in(ArrayCopyNode::Dest);
 565 
 566         if (dest == ld_base) {
 567           const TypeX *ld_offs_t = phase->type(ld_offs)->isa_intptr_t();
 568           if (ac->modifies(ld_offs_t->_lo, ld_offs_t->_hi, phase, can_see_stored_value)) {
 569             return ac;
 570           }
 571           if (!can_see_stored_value) {
 572             mem = ac->in(TypeFunc::Memory);
 573           }
 574         }
 575       }
 576     }
 577   }
 578   return NULL;
 579 }
 580 
 581 // The logic for reordering loads and stores uses four steps:
 582 // (a) Walk carefully past stores and initializations which we
 583 //     can prove are independent of this load.
 584 // (b) Observe that the next memory state makes an exact match
 585 //     with self (load or store), and locate the relevant store.
 586 // (c) Ensure that, if we were to wire self directly to the store,
 587 //     the optimizer would fold it up somehow.
 588 // (d) Do the rewiring, and return, depending on some other part of
 589 //     the optimizer to fold up the load.
 590 // This routine handles steps (a) and (b).  Steps (c) and (d) are
 591 // specific to loads and stores, so they are handled by the callers.
 592 // (Currently, only LoadNode::Ideal has steps (c), (d).  More later.)
 593 //
 594 Node* MemNode::find_previous_store(PhaseTransform* phase) {
 595   Node*         ctrl   = in(MemNode::Control);
 596   Node*         adr    = in(MemNode::Address);
 597   intptr_t      offset = 0;
 598   Node*         base   = AddPNode::Ideal_base_and_offset(adr, phase, offset);
 599   AllocateNode* alloc  = AllocateNode::Ideal_allocation(base, phase);
 600 
 601   if (offset == Type::OffsetBot)
 602     return NULL;            // cannot unalias unless there are precise offsets
 603 
 604   const bool adr_maybe_raw = check_if_adr_maybe_raw(adr);
 605   const TypeOopPtr *addr_t = adr->bottom_type()->isa_oopptr();
 606 
 607   intptr_t size_in_bytes = memory_size();
 608 
 609   Node* mem = in(MemNode::Memory);   // start searching here...
 610 
 611   int cnt = 50;             // Cycle limiter
 612   for (;;) {                // While we can dance past unrelated stores...
 613     if (--cnt < 0)  break;  // Caught in cycle or a complicated dance?
 614 
 615     Node* prev = mem;
 616     if (mem->is_Store()) {
 617       Node* st_adr = mem->in(MemNode::Address);
 618       intptr_t st_offset = 0;
 619       Node* st_base = AddPNode::Ideal_base_and_offset(st_adr, phase, st_offset);
 620       if (st_base == NULL)
 621         break;              // inscrutable pointer
 622 
 623       // For raw accesses it's not enough to prove that constant offsets don't intersect.
 624       // We need the bases to be the equal in order for the offset check to make sense.
 625       if ((adr_maybe_raw || check_if_adr_maybe_raw(st_adr)) && st_base != base) {
 626         break;
 627       }
 628 
 629       if (st_offset != offset && st_offset != Type::OffsetBot) {
 630         const int MAX_STORE = BytesPerLong;
 631         if (st_offset >= offset + size_in_bytes ||
 632             st_offset <= offset - MAX_STORE ||
 633             st_offset <= offset - mem->as_Store()->memory_size()) {
 634           // Success:  The offsets are provably independent.
 635           // (You may ask, why not just test st_offset != offset and be done?
 636           // The answer is that stores of different sizes can co-exist
 637           // in the same sequence of RawMem effects.  We sometimes initialize
 638           // a whole 'tile' of array elements with a single jint or jlong.)
 639           mem = mem->in(MemNode::Memory);
 640           continue;           // (a) advance through independent store memory
 641         }
 642       }
 643       if (st_base != base &&
 644           detect_ptr_independence(base, alloc,
 645                                   st_base,
 646                                   AllocateNode::Ideal_allocation(st_base, phase),
 647                                   phase)) {
 648         // Success:  The bases are provably independent.
 649         mem = mem->in(MemNode::Memory);
 650         continue;           // (a) advance through independent store memory
 651       }
 652 
 653       // (b) At this point, if the bases or offsets do not agree, we lose,
 654       // since we have not managed to prove 'this' and 'mem' independent.
 655       if (st_base == base && st_offset == offset) {
 656         return mem;         // let caller handle steps (c), (d)
 657       }
 658 
 659     } else if (mem->is_Proj() && mem->in(0)->is_Initialize()) {
 660       InitializeNode* st_init = mem->in(0)->as_Initialize();
 661       AllocateNode*  st_alloc = st_init->allocation();
 662       if (st_alloc == NULL)
 663         break;              // something degenerated
 664       bool known_identical = false;
 665       bool known_independent = false;
 666       if (alloc == st_alloc)
 667         known_identical = true;
 668       else if (alloc != NULL)
 669         known_independent = true;
 670       else if (all_controls_dominate(this, st_alloc))
 671         known_independent = true;
 672 
 673       if (known_independent) {
 674         // The bases are provably independent: Either they are
 675         // manifestly distinct allocations, or else the control
 676         // of this load dominates the store's allocation.
 677         int alias_idx = phase->C->get_alias_index(adr_type());
 678         if (alias_idx == Compile::AliasIdxRaw) {
 679           mem = st_alloc->in(TypeFunc::Memory);
 680         } else {
 681           mem = st_init->memory(alias_idx);
 682         }
 683         continue;           // (a) advance through independent store memory
 684       }
 685 
 686       // (b) at this point, if we are not looking at a store initializing
 687       // the same allocation we are loading from, we lose.
 688       if (known_identical) {
 689         // From caller, can_see_stored_value will consult find_captured_store.
 690         return mem;         // let caller handle steps (c), (d)
 691       }
 692 
 693     } else if (find_previous_arraycopy(phase, alloc, mem, false) != NULL) {
 694       if (prev != mem) {
 695         // Found an arraycopy but it doesn't affect that load
 696         continue;
 697       }
 698       // Found an arraycopy that may affect that load
 699       return mem;
 700     } else if (addr_t != NULL && addr_t->is_known_instance_field()) {
 701       // Can't use optimize_simple_memory_chain() since it needs PhaseGVN.
 702       if (mem->is_Proj() && mem->in(0)->is_Call()) {
 703         // ArrayCopyNodes processed here as well.
 704         CallNode *call = mem->in(0)->as_Call();
 705         if (!call->may_modify(addr_t, phase)) {
 706           mem = call->in(TypeFunc::Memory);
 707           continue;         // (a) advance through independent call memory
 708         }
 709       } else if (mem->is_Proj() && mem->in(0)->is_MemBar()) {
 710         ArrayCopyNode* ac = NULL;
 711         if (ArrayCopyNode::may_modify(addr_t, mem->in(0)->as_MemBar(), phase, ac)) {
 712           break;
 713         }
 714         mem = mem->in(0)->in(TypeFunc::Memory);
 715         continue;           // (a) advance through independent MemBar memory
 716       } else if (mem->is_ClearArray()) {
 717         if (ClearArrayNode::step_through(&mem, (uint)addr_t->instance_id(), phase)) {
 718           // (the call updated 'mem' value)
 719           continue;         // (a) advance through independent allocation memory
 720         } else {
 721           // Can not bypass initialization of the instance
 722           // we are looking for.
 723           return mem;
 724         }
 725       } else if (mem->is_MergeMem()) {
 726         int alias_idx = phase->C->get_alias_index(adr_type());
 727         mem = mem->as_MergeMem()->memory_at(alias_idx);
 728         continue;           // (a) advance through independent MergeMem memory
 729       }
 730     }
 731 
 732     // Unless there is an explicit 'continue', we must bail out here,
 733     // because 'mem' is an inscrutable memory state (e.g., a call).
 734     break;
 735   }
 736 
 737   return NULL;              // bail out
 738 }
 739 
 740 //----------------------calculate_adr_type-------------------------------------
 741 // Helper function.  Notices when the given type of address hits top or bottom.
 742 // Also, asserts a cross-check of the type against the expected address type.
 743 const TypePtr* MemNode::calculate_adr_type(const Type* t, const TypePtr* cross_check) {
 744   if (t == Type::TOP)  return NULL; // does not touch memory any more?
 745   #ifdef PRODUCT
 746   cross_check = NULL;
 747   #else
 748   if (!VerifyAliases || VMError::is_error_reported() || Node::in_dump())  cross_check = NULL;
 749   #endif
 750   const TypePtr* tp = t->isa_ptr();
 751   if (tp == NULL) {
 752     assert(cross_check == NULL || cross_check == TypePtr::BOTTOM, "expected memory type must be wide");
 753     return TypePtr::BOTTOM;           // touches lots of memory
 754   } else {
 755     #ifdef ASSERT
 756     // %%%% [phh] We don't check the alias index if cross_check is
 757     //            TypeRawPtr::BOTTOM.  Needs to be investigated.
 758     if (cross_check != NULL &&
 759         cross_check != TypePtr::BOTTOM &&
 760         cross_check != TypeRawPtr::BOTTOM) {
 761       // Recheck the alias index, to see if it has changed (due to a bug).
 762       Compile* C = Compile::current();
 763       assert(C->get_alias_index(cross_check) == C->get_alias_index(tp),
 764              "must stay in the original alias category");
 765       // The type of the address must be contained in the adr_type,
 766       // disregarding "null"-ness.
 767       // (We make an exception for TypeRawPtr::BOTTOM, which is a bit bucket.)
 768       const TypePtr* tp_notnull = tp->join(TypePtr::NOTNULL)->is_ptr();
 769       assert(cross_check->meet(tp_notnull) == cross_check->remove_speculative(),
 770              "real address must not escape from expected memory type");
 771     }
 772     #endif
 773     return tp;
 774   }
 775 }
 776 
 777 //=============================================================================
 778 // Should LoadNode::Ideal() attempt to remove control edges?
 779 bool LoadNode::can_remove_control() const {
 780   return true;
 781 }
 782 uint LoadNode::size_of() const { return sizeof(*this); }
 783 uint LoadNode::cmp( const Node &n ) const
 784 { return !Type::cmp( _type, ((LoadNode&)n)._type ); }
 785 const Type *LoadNode::bottom_type() const { return _type; }
 786 uint LoadNode::ideal_reg() const {
 787   return _type->ideal_reg();
 788 }
 789 
 790 #ifndef PRODUCT
 791 void LoadNode::dump_spec(outputStream *st) const {
 792   MemNode::dump_spec(st);
 793   if( !Verbose && !WizardMode ) {
 794     // standard dump does this in Verbose and WizardMode
 795     st->print(" #"); _type->dump_on(st);
 796   }
 797   if (!depends_only_on_test()) {
 798     st->print(" (does not depend only on test)");
 799   }
 800 }
 801 #endif
 802 
 803 #ifdef ASSERT
 804 //----------------------------is_immutable_value-------------------------------
 805 // Helper function to allow a raw load without control edge for some cases
 806 bool LoadNode::is_immutable_value(Node* adr) {
 807   return (adr->is_AddP() && adr->in(AddPNode::Base)->is_top() &&
 808           adr->in(AddPNode::Address)->Opcode() == Op_ThreadLocal &&
 809           (adr->in(AddPNode::Offset)->find_intptr_t_con(-1) ==
 810            in_bytes(JavaThread::osthread_offset())));
 811 }
 812 #endif
 813 
 814 //----------------------------LoadNode::make-----------------------------------
 815 // Polymorphic factory method:
 816 Node *LoadNode::make(PhaseGVN& gvn, Node *ctl, Node *mem, Node *adr, const TypePtr* adr_type, const Type *rt, BasicType bt, MemOrd mo,
 817                      ControlDependency control_dependency, bool unaligned, bool mismatched, bool unsafe) {
 818   Compile* C = gvn.C;
 819 
 820   // sanity check the alias category against the created node type
 821   assert(!(adr_type->isa_oopptr() &&
 822            adr_type->offset() == oopDesc::klass_offset_in_bytes()),
 823          "use LoadKlassNode instead");
 824   assert(!(adr_type->isa_aryptr() &&
 825            adr_type->offset() == arrayOopDesc::length_offset_in_bytes()),
 826          "use LoadRangeNode instead");
 827   // Check control edge of raw loads
 828   assert( ctl != NULL || C->get_alias_index(adr_type) != Compile::AliasIdxRaw ||
 829           // oop will be recorded in oop map if load crosses safepoint
 830           rt->isa_oopptr() || is_immutable_value(adr),
 831           "raw memory operations should have control edge");
 832   LoadNode* load = NULL;
 833   switch (bt) {
 834   case T_BOOLEAN: load = new LoadUBNode(ctl, mem, adr, adr_type, rt->is_int(),  mo, control_dependency); break;
 835   case T_BYTE:    load = new LoadBNode (ctl, mem, adr, adr_type, rt->is_int(),  mo, control_dependency); break;
 836   case T_INT:     load = new LoadINode (ctl, mem, adr, adr_type, rt->is_int(),  mo, control_dependency); break;
 837   case T_CHAR:    load = new LoadUSNode(ctl, mem, adr, adr_type, rt->is_int(),  mo, control_dependency); break;
 838   case T_SHORT:   load = new LoadSNode (ctl, mem, adr, adr_type, rt->is_int(),  mo, control_dependency); break;
 839   case T_LONG:    load = new LoadLNode (ctl, mem, adr, adr_type, rt->is_long(), mo, control_dependency); break;
 840   case T_FLOAT:   load = new LoadFNode (ctl, mem, adr, adr_type, rt,            mo, control_dependency); break;
 841   case T_DOUBLE:  load = new LoadDNode (ctl, mem, adr, adr_type, rt,            mo, control_dependency); break;
 842   case T_ADDRESS: load = new LoadPNode (ctl, mem, adr, adr_type, rt->is_ptr(),  mo, control_dependency); break;
 843   case T_OBJECT:
 844 #ifdef _LP64
 845     if (adr->bottom_type()->is_ptr_to_narrowoop()) {
 846       load = new LoadNNode(ctl, mem, adr, adr_type, rt->make_narrowoop(), mo, control_dependency);
 847     } else
 848 #endif
 849     {
 850       assert(!adr->bottom_type()->is_ptr_to_narrowoop() && !adr->bottom_type()->is_ptr_to_narrowklass(), "should have got back a narrow oop");
 851       load = new LoadPNode(ctl, mem, adr, adr_type, rt->is_ptr(), mo, control_dependency);
 852     }
 853     break;
 854   default:
 855     ShouldNotReachHere();
 856     break;
 857   }
 858   assert(load != NULL, "LoadNode should have been created");
 859   if (unaligned) {
 860     load->set_unaligned_access();
 861   }
 862   if (mismatched) {
 863     load->set_mismatched_access();
 864   }
 865   if (unsafe) {
 866     load->set_unsafe_access();
 867   }
 868   if (load->Opcode() == Op_LoadN) {
 869     Node* ld = gvn.transform(load);
 870     return new DecodeNNode(ld, ld->bottom_type()->make_ptr());
 871   }
 872 
 873   return load;
 874 }
 875 
 876 LoadLNode* LoadLNode::make_atomic(Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type, const Type* rt, MemOrd mo,
 877                                   ControlDependency control_dependency, bool unaligned, bool mismatched, bool unsafe) {
 878   bool require_atomic = true;
 879   LoadLNode* load = new LoadLNode(ctl, mem, adr, adr_type, rt->is_long(), mo, control_dependency, require_atomic);
 880   if (unaligned) {
 881     load->set_unaligned_access();
 882   }
 883   if (mismatched) {
 884     load->set_mismatched_access();
 885   }
 886   if (unsafe) {
 887     load->set_unsafe_access();
 888   }
 889   return load;
 890 }
 891 
 892 LoadDNode* LoadDNode::make_atomic(Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type, const Type* rt, MemOrd mo,
 893                                   ControlDependency control_dependency, bool unaligned, bool mismatched, bool unsafe) {
 894   bool require_atomic = true;
 895   LoadDNode* load = new LoadDNode(ctl, mem, adr, adr_type, rt, mo, control_dependency, require_atomic);
 896   if (unaligned) {
 897     load->set_unaligned_access();
 898   }
 899   if (mismatched) {
 900     load->set_mismatched_access();
 901   }
 902   if (unsafe) {
 903     load->set_unsafe_access();
 904   }
 905   return load;
 906 }
 907 
 908 
 909 
 910 //------------------------------hash-------------------------------------------
 911 uint LoadNode::hash() const {
 912   // unroll addition of interesting fields
 913   return (uintptr_t)in(Control) + (uintptr_t)in(Memory) + (uintptr_t)in(Address);
 914 }
 915 
 916 static bool skip_through_membars(Compile::AliasType* atp, const TypeInstPtr* tp, bool eliminate_boxing) {
 917   if ((atp != NULL) && (atp->index() >= Compile::AliasIdxRaw)) {
 918     bool non_volatile = (atp->field() != NULL) && !atp->field()->is_volatile();
 919     bool is_stable_ary = FoldStableValues &&
 920                          (tp != NULL) && (tp->isa_aryptr() != NULL) &&
 921                          tp->isa_aryptr()->is_stable();
 922 
 923     return (eliminate_boxing && non_volatile) || is_stable_ary;
 924   }
 925 
 926   return false;
 927 }
 928 
 929 // Is the value loaded previously stored by an arraycopy? If so return
 930 // a load node that reads from the source array so we may be able to
 931 // optimize out the ArrayCopy node later.
 932 Node* LoadNode::can_see_arraycopy_value(Node* st, PhaseGVN* phase) const {
 933 #if INCLUDE_ZGC
 934   if (UseZGC) {
 935     if (bottom_type()->make_oopptr() != NULL) {
 936       return NULL;
 937     }
 938   }
 939 #endif
 940 
 941   Node* ld_adr = in(MemNode::Address);
 942   intptr_t ld_off = 0;
 943   AllocateNode* ld_alloc = AllocateNode::Ideal_allocation(ld_adr, phase, ld_off);
 944   Node* ac = find_previous_arraycopy(phase, ld_alloc, st, true);
 945   if (ac != NULL) {
 946     assert(ac->is_ArrayCopy(), "what kind of node can this be?");
 947 
 948     Node* mem = ac->in(TypeFunc::Memory);
 949     Node* ctl = ac->in(0);
 950     Node* src = ac->in(ArrayCopyNode::Src);
 951 
 952     if (!ac->as_ArrayCopy()->is_clonebasic() && !phase->type(src)->isa_aryptr()) {
 953       return NULL;
 954     }
 955 
 956     LoadNode* ld = clone()->as_Load();
 957     Node* addp = in(MemNode::Address)->clone();
 958     if (ac->as_ArrayCopy()->is_clonebasic()) {
 959       assert(ld_alloc != NULL, "need an alloc");
 960       assert(addp->is_AddP(), "address must be addp");
 961       assert(addp->in(AddPNode::Base) == ac->in(ArrayCopyNode::Dest)->in(AddPNode::Base), "strange pattern");
 962       assert(addp->in(AddPNode::Address) == ac->in(ArrayCopyNode::Dest)->in(AddPNode::Address), "strange pattern");
 963       addp->set_req(AddPNode::Base, src->in(AddPNode::Base));
 964       addp->set_req(AddPNode::Address, src->in(AddPNode::Address));
 965     } else {
 966       assert(ac->as_ArrayCopy()->is_arraycopy_validated() ||
 967              ac->as_ArrayCopy()->is_copyof_validated() ||
 968              ac->as_ArrayCopy()->is_copyofrange_validated(), "only supported cases");
 969       assert(addp->in(AddPNode::Base) == addp->in(AddPNode::Address), "should be");
 970       addp->set_req(AddPNode::Base, src);
 971       addp->set_req(AddPNode::Address, src);
 972 
 973       const TypeAryPtr* ary_t = phase->type(in(MemNode::Address))->isa_aryptr();
 974       BasicType ary_elem  = ary_t->klass()->as_array_klass()->element_type()->basic_type();
 975       uint header = arrayOopDesc::base_offset_in_bytes(ary_elem);
 976       uint shift  = exact_log2(type2aelembytes(ary_elem));
 977 
 978       Node* diff = phase->transform(new SubINode(ac->in(ArrayCopyNode::SrcPos), ac->in(ArrayCopyNode::DestPos)));
 979 #ifdef _LP64
 980       diff = phase->transform(new ConvI2LNode(diff));
 981 #endif
 982       diff = phase->transform(new LShiftXNode(diff, phase->intcon(shift)));
 983 
 984       Node* offset = phase->transform(new AddXNode(addp->in(AddPNode::Offset), diff));
 985       addp->set_req(AddPNode::Offset, offset);
 986     }
 987     addp = phase->transform(addp);
 988 #ifdef ASSERT
 989     const TypePtr* adr_type = phase->type(addp)->is_ptr();
 990     ld->_adr_type = adr_type;
 991 #endif
 992     ld->set_req(MemNode::Address, addp);
 993     ld->set_req(0, ctl);
 994     ld->set_req(MemNode::Memory, mem);
 995     // load depends on the tests that validate the arraycopy
 996     ld->_control_dependency = Pinned;
 997     return ld;
 998   }
 999   return NULL;
1000 }
1001 
1002 
1003 //---------------------------can_see_stored_value------------------------------
1004 // This routine exists to make sure this set of tests is done the same
1005 // everywhere.  We need to make a coordinated change: first LoadNode::Ideal
1006 // will change the graph shape in a way which makes memory alive twice at the
1007 // same time (uses the Oracle model of aliasing), then some
1008 // LoadXNode::Identity will fold things back to the equivalence-class model
1009 // of aliasing.
1010 Node* MemNode::can_see_stored_value(Node* st, PhaseTransform* phase) const {
1011   Node* ld_adr = in(MemNode::Address);
1012   intptr_t ld_off = 0;
1013   AllocateNode* ld_alloc = AllocateNode::Ideal_allocation(ld_adr, phase, ld_off);
1014   const TypeInstPtr* tp = phase->type(ld_adr)->isa_instptr();
1015   Compile::AliasType* atp = (tp != NULL) ? phase->C->alias_type(tp) : NULL;
1016   // This is more general than load from boxing objects.
1017   if (skip_through_membars(atp, tp, phase->C->eliminate_boxing())) {
1018     uint alias_idx = atp->index();
1019     bool final = !atp->is_rewritable();
1020     Node* result = NULL;
1021     Node* current = st;
1022     // Skip through chains of MemBarNodes checking the MergeMems for
1023     // new states for the slice of this load.  Stop once any other
1024     // kind of node is encountered.  Loads from final memory can skip
1025     // through any kind of MemBar but normal loads shouldn't skip
1026     // through MemBarAcquire since the could allow them to move out of
1027     // a synchronized region.
1028     while (current->is_Proj()) {
1029       int opc = current->in(0)->Opcode();
1030       if ((final && (opc == Op_MemBarAcquire ||
1031                      opc == Op_MemBarAcquireLock ||
1032                      opc == Op_LoadFence)) ||
1033           opc == Op_MemBarRelease ||
1034           opc == Op_StoreFence ||
1035           opc == Op_MemBarReleaseLock ||
1036           opc == Op_MemBarStoreStore ||
1037           opc == Op_MemBarCPUOrder) {
1038         Node* mem = current->in(0)->in(TypeFunc::Memory);
1039         if (mem->is_MergeMem()) {
1040           MergeMemNode* merge = mem->as_MergeMem();
1041           Node* new_st = merge->memory_at(alias_idx);
1042           if (new_st == merge->base_memory()) {
1043             // Keep searching
1044             current = new_st;
1045             continue;
1046           }
1047           // Save the new memory state for the slice and fall through
1048           // to exit.
1049           result = new_st;
1050         }
1051       }
1052       break;
1053     }
1054     if (result != NULL) {
1055       st = result;
1056     }
1057   }
1058 
1059   // Loop around twice in the case Load -> Initialize -> Store.
1060   // (See PhaseIterGVN::add_users_to_worklist, which knows about this case.)
1061   for (int trip = 0; trip <= 1; trip++) {
1062 
1063     if (st->is_Store()) {
1064       Node* st_adr = st->in(MemNode::Address);
1065       if (!phase->eqv(st_adr, ld_adr)) {
1066         // Try harder before giving up...  Match raw and non-raw pointers.
1067         intptr_t st_off = 0;
1068         AllocateNode* alloc = AllocateNode::Ideal_allocation(st_adr, phase, st_off);
1069         if (alloc == NULL)       return NULL;
1070         if (alloc != ld_alloc)   return NULL;
1071         if (ld_off != st_off)    return NULL;
1072         // At this point we have proven something like this setup:
1073         //  A = Allocate(...)
1074         //  L = LoadQ(,  AddP(CastPP(, A.Parm),, #Off))
1075         //  S = StoreQ(, AddP(,        A.Parm  , #Off), V)
1076         // (Actually, we haven't yet proven the Q's are the same.)
1077         // In other words, we are loading from a casted version of
1078         // the same pointer-and-offset that we stored to.
1079         // Thus, we are able to replace L by V.
1080       }
1081       // Now prove that we have a LoadQ matched to a StoreQ, for some Q.
1082       if (store_Opcode() != st->Opcode())
1083         return NULL;
1084       return st->in(MemNode::ValueIn);
1085     }
1086 
1087     // A load from a freshly-created object always returns zero.
1088     // (This can happen after LoadNode::Ideal resets the load's memory input
1089     // to find_captured_store, which returned InitializeNode::zero_memory.)
1090     if (st->is_Proj() && st->in(0)->is_Allocate() &&
1091         (st->in(0) == ld_alloc) &&
1092         (ld_off >= st->in(0)->as_Allocate()->minimum_header_size())) {
1093       // return a zero value for the load's basic type
1094       // (This is one of the few places where a generic PhaseTransform
1095       // can create new nodes.  Think of it as lazily manifesting
1096       // virtually pre-existing constants.)
1097       return phase->zerocon(memory_type());
1098     }
1099 
1100     // A load from an initialization barrier can match a captured store.
1101     if (st->is_Proj() && st->in(0)->is_Initialize()) {
1102       InitializeNode* init = st->in(0)->as_Initialize();
1103       AllocateNode* alloc = init->allocation();
1104       if ((alloc != NULL) && (alloc == ld_alloc)) {
1105         // examine a captured store value
1106         st = init->find_captured_store(ld_off, memory_size(), phase);
1107         if (st != NULL) {
1108           continue;             // take one more trip around
1109         }
1110       }
1111     }
1112 
1113     // Load boxed value from result of valueOf() call is input parameter.
1114     if (this->is_Load() && ld_adr->is_AddP() &&
1115         (tp != NULL) && tp->is_ptr_to_boxed_value()) {
1116       intptr_t ignore = 0;
1117       Node* base = AddPNode::Ideal_base_and_offset(ld_adr, phase, ignore);
1118 #if INCLUDE_SHENANDOAHGC
1119       if (UseShenandoahGC) {
1120         base = ((ShenandoahBarrierSetC2*) BarrierSet::barrier_set()->barrier_set_c2())->step_over_gc_barrier(base);
1121       }
1122 #endif
1123       if (base != NULL && base->is_Proj() &&
1124           base->as_Proj()->_con == TypeFunc::Parms &&
1125           base->in(0)->is_CallStaticJava() &&
1126           base->in(0)->as_CallStaticJava()->is_boxing_method()) {
1127         return base->in(0)->in(TypeFunc::Parms);
1128       }
1129     }
1130 
1131     break;
1132   }
1133 
1134   return NULL;
1135 }
1136 
1137 //----------------------is_instance_field_load_with_local_phi------------------
1138 bool LoadNode::is_instance_field_load_with_local_phi(Node* ctrl) {
1139   if( in(Memory)->is_Phi() && in(Memory)->in(0) == ctrl &&
1140       in(Address)->is_AddP() ) {
1141     const TypeOopPtr* t_oop = in(Address)->bottom_type()->isa_oopptr();
1142     // Only instances and boxed values.
1143     if( t_oop != NULL &&
1144         (t_oop->is_ptr_to_boxed_value() ||
1145          t_oop->is_known_instance_field()) &&
1146         t_oop->offset() != Type::OffsetBot &&
1147         t_oop->offset() != Type::OffsetTop) {
1148       return true;
1149     }
1150   }
1151   return false;
1152 }
1153 
1154 //------------------------------Identity---------------------------------------
1155 // Loads are identity if previous store is to same address
1156 Node* LoadNode::Identity(PhaseGVN* phase) {
1157   // If the previous store-maker is the right kind of Store, and the store is
1158   // to the same address, then we are equal to the value stored.
1159   Node* mem = in(Memory);
1160   Node* value = can_see_stored_value(mem, phase);
1161   if( value ) {
1162     // byte, short & char stores truncate naturally.
1163     // A load has to load the truncated value which requires
1164     // some sort of masking operation and that requires an
1165     // Ideal call instead of an Identity call.
1166     if (memory_size() < BytesPerInt) {
1167       // If the input to the store does not fit with the load's result type,
1168       // it must be truncated via an Ideal call.
1169       if (!phase->type(value)->higher_equal(phase->type(this)))
1170         return this;
1171     }
1172     // (This works even when value is a Con, but LoadNode::Value
1173     // usually runs first, producing the singleton type of the Con.)
1174     return value;
1175   }
1176 
1177   // Search for an existing data phi which was generated before for the same
1178   // instance's field to avoid infinite generation of phis in a loop.
1179   Node *region = mem->in(0);
1180   if (is_instance_field_load_with_local_phi(region)) {
1181     const TypeOopPtr *addr_t = in(Address)->bottom_type()->isa_oopptr();
1182     int this_index  = phase->C->get_alias_index(addr_t);
1183     int this_offset = addr_t->offset();
1184     int this_iid    = addr_t->instance_id();
1185     if (!addr_t->is_known_instance() &&
1186          addr_t->is_ptr_to_boxed_value()) {
1187       // Use _idx of address base (could be Phi node) for boxed values.
1188       intptr_t   ignore = 0;
1189       Node*      base = AddPNode::Ideal_base_and_offset(in(Address), phase, ignore);
1190       if (base == NULL) {
1191         return this;
1192       }
1193       this_iid = base->_idx;
1194     }
1195     const Type* this_type = bottom_type();
1196     for (DUIterator_Fast imax, i = region->fast_outs(imax); i < imax; i++) {
1197       Node* phi = region->fast_out(i);
1198       if (phi->is_Phi() && phi != mem &&
1199           phi->as_Phi()->is_same_inst_field(this_type, (int)mem->_idx, this_iid, this_index, this_offset)) {
1200         return phi;
1201       }
1202     }
1203   }
1204 
1205   return this;
1206 }
1207 
1208 // Construct an equivalent unsigned load.
1209 Node* LoadNode::convert_to_unsigned_load(PhaseGVN& gvn) {
1210   BasicType bt = T_ILLEGAL;
1211   const Type* rt = NULL;
1212   switch (Opcode()) {
1213     case Op_LoadUB: return this;
1214     case Op_LoadUS: return this;
1215     case Op_LoadB: bt = T_BOOLEAN; rt = TypeInt::UBYTE; break;
1216     case Op_LoadS: bt = T_CHAR;    rt = TypeInt::CHAR;  break;
1217     default:
1218       assert(false, "no unsigned variant: %s", Name());
1219       return NULL;
1220   }
1221   return LoadNode::make(gvn, in(MemNode::Control), in(MemNode::Memory), in(MemNode::Address),
1222                         raw_adr_type(), rt, bt, _mo, _control_dependency,
1223                         is_unaligned_access(), is_mismatched_access());
1224 }
1225 
1226 // Construct an equivalent signed load.
1227 Node* LoadNode::convert_to_signed_load(PhaseGVN& gvn) {
1228   BasicType bt = T_ILLEGAL;
1229   const Type* rt = NULL;
1230   switch (Opcode()) {
1231     case Op_LoadUB: bt = T_BYTE;  rt = TypeInt::BYTE;  break;
1232     case Op_LoadUS: bt = T_SHORT; rt = TypeInt::SHORT; break;
1233     case Op_LoadB: // fall through
1234     case Op_LoadS: // fall through
1235     case Op_LoadI: // fall through
1236     case Op_LoadL: return this;
1237     default:
1238       assert(false, "no signed variant: %s", Name());
1239       return NULL;
1240   }
1241   return LoadNode::make(gvn, in(MemNode::Control), in(MemNode::Memory), in(MemNode::Address),
1242                         raw_adr_type(), rt, bt, _mo, _control_dependency,
1243                         is_unaligned_access(), is_mismatched_access());
1244 }
1245 
1246 // We're loading from an object which has autobox behaviour.
1247 // If this object is result of a valueOf call we'll have a phi
1248 // merging a newly allocated object and a load from the cache.
1249 // We want to replace this load with the original incoming
1250 // argument to the valueOf call.
1251 Node* LoadNode::eliminate_autobox(PhaseGVN* phase) {
1252   assert(phase->C->eliminate_boxing(), "sanity");
1253   intptr_t ignore = 0;
1254   Node* base = AddPNode::Ideal_base_and_offset(in(Address), phase, ignore);
1255   if ((base == NULL) || base->is_Phi()) {
1256     // Push the loads from the phi that comes from valueOf up
1257     // through it to allow elimination of the loads and the recovery
1258     // of the original value. It is done in split_through_phi().
1259     return NULL;
1260   } else if (base->is_Load() ||
1261              (base->is_DecodeN() && base->in(1)->is_Load())) {
1262     // Eliminate the load of boxed value for integer types from the cache
1263     // array by deriving the value from the index into the array.
1264     // Capture the offset of the load and then reverse the computation.
1265 
1266     // Get LoadN node which loads a boxing object from 'cache' array.
1267     if (base->is_DecodeN()) {
1268       base = base->in(1);
1269     }
1270     if (!base->in(Address)->is_AddP()) {
1271       return NULL; // Complex address
1272     }
1273     AddPNode* address = base->in(Address)->as_AddP();
1274     Node* cache_base = address->in(AddPNode::Base);
1275     if ((cache_base != NULL) && cache_base->is_DecodeN()) {
1276       // Get ConP node which is static 'cache' field.
1277       cache_base = cache_base->in(1);
1278     }
1279     if ((cache_base != NULL) && cache_base->is_Con()) {
1280       const TypeAryPtr* base_type = cache_base->bottom_type()->isa_aryptr();
1281       if ((base_type != NULL) && base_type->is_autobox_cache()) {
1282         Node* elements[4];
1283         int shift = exact_log2(type2aelembytes(T_OBJECT));
1284         int count = address->unpack_offsets(elements, ARRAY_SIZE(elements));
1285         if (count > 0 && elements[0]->is_Con() &&
1286             (count == 1 ||
1287              (count == 2 && elements[1]->Opcode() == Op_LShiftX &&
1288                             elements[1]->in(2) == phase->intcon(shift)))) {
1289           ciObjArray* array = base_type->const_oop()->as_obj_array();
1290           // Fetch the box object cache[0] at the base of the array and get its value
1291           ciInstance* box = array->obj_at(0)->as_instance();
1292           ciInstanceKlass* ik = box->klass()->as_instance_klass();
1293           assert(ik->is_box_klass(), "sanity");
1294           assert(ik->nof_nonstatic_fields() == 1, "change following code");
1295           if (ik->nof_nonstatic_fields() == 1) {
1296             // This should be true nonstatic_field_at requires calling
1297             // nof_nonstatic_fields so check it anyway
1298             ciConstant c = box->field_value(ik->nonstatic_field_at(0));
1299             BasicType bt = c.basic_type();
1300             // Only integer types have boxing cache.
1301             assert(bt == T_BOOLEAN || bt == T_CHAR  ||
1302                    bt == T_BYTE    || bt == T_SHORT ||
1303                    bt == T_INT     || bt == T_LONG, "wrong type = %s", type2name(bt));
1304             jlong cache_low = (bt == T_LONG) ? c.as_long() : c.as_int();
1305             if (cache_low != (int)cache_low) {
1306               return NULL; // should not happen since cache is array indexed by value
1307             }
1308             jlong offset = arrayOopDesc::base_offset_in_bytes(T_OBJECT) - (cache_low << shift);
1309             if (offset != (int)offset) {
1310               return NULL; // should not happen since cache is array indexed by value
1311             }
1312            // Add up all the offsets making of the address of the load
1313             Node* result = elements[0];
1314             for (int i = 1; i < count; i++) {
1315               result = phase->transform(new AddXNode(result, elements[i]));
1316             }
1317             // Remove the constant offset from the address and then
1318             result = phase->transform(new AddXNode(result, phase->MakeConX(-(int)offset)));
1319             // remove the scaling of the offset to recover the original index.
1320             if (result->Opcode() == Op_LShiftX && result->in(2) == phase->intcon(shift)) {
1321               // Peel the shift off directly but wrap it in a dummy node
1322               // since Ideal can't return existing nodes
1323               result = new RShiftXNode(result->in(1), phase->intcon(0));
1324             } else if (result->is_Add() && result->in(2)->is_Con() &&
1325                        result->in(1)->Opcode() == Op_LShiftX &&
1326                        result->in(1)->in(2) == phase->intcon(shift)) {
1327               // We can't do general optimization: ((X<<Z) + Y) >> Z ==> X + (Y>>Z)
1328               // but for boxing cache access we know that X<<Z will not overflow
1329               // (there is range check) so we do this optimizatrion by hand here.
1330               Node* add_con = new RShiftXNode(result->in(2), phase->intcon(shift));
1331               result = new AddXNode(result->in(1)->in(1), phase->transform(add_con));
1332             } else {
1333               result = new RShiftXNode(result, phase->intcon(shift));
1334             }
1335 #ifdef _LP64
1336             if (bt != T_LONG) {
1337               result = new ConvL2INode(phase->transform(result));
1338             }
1339 #else
1340             if (bt == T_LONG) {
1341               result = new ConvI2LNode(phase->transform(result));
1342             }
1343 #endif
1344             // Boxing/unboxing can be done from signed & unsigned loads (e.g. LoadUB -> ... -> LoadB pair).
1345             // Need to preserve unboxing load type if it is unsigned.
1346             switch(this->Opcode()) {
1347               case Op_LoadUB:
1348                 result = new AndINode(phase->transform(result), phase->intcon(0xFF));
1349                 break;
1350               case Op_LoadUS:
1351                 result = new AndINode(phase->transform(result), phase->intcon(0xFFFF));
1352                 break;
1353             }
1354             return result;
1355           }
1356         }
1357       }
1358     }
1359   }
1360   return NULL;
1361 }
1362 
1363 static bool stable_phi(PhiNode* phi, PhaseGVN *phase) {
1364   Node* region = phi->in(0);
1365   if (region == NULL) {
1366     return false; // Wait stable graph
1367   }
1368   uint cnt = phi->req();
1369   for (uint i = 1; i < cnt; i++) {
1370     Node* rc = region->in(i);
1371     if (rc == NULL || phase->type(rc) == Type::TOP)
1372       return false; // Wait stable graph
1373     Node* in = phi->in(i);
1374     if (in == NULL || phase->type(in) == Type::TOP)
1375       return false; // Wait stable graph
1376   }
1377   return true;
1378 }
1379 //------------------------------split_through_phi------------------------------
1380 // Split instance or boxed field load through Phi.
1381 Node *LoadNode::split_through_phi(PhaseGVN *phase) {
1382   Node* mem     = in(Memory);
1383   Node* address = in(Address);
1384   const TypeOopPtr *t_oop = phase->type(address)->isa_oopptr();
1385 
1386   assert((t_oop != NULL) &&
1387          (t_oop->is_known_instance_field() ||
1388           t_oop->is_ptr_to_boxed_value()), "invalide conditions");
1389 
1390   Compile* C = phase->C;
1391   intptr_t ignore = 0;
1392   Node*    base = AddPNode::Ideal_base_and_offset(address, phase, ignore);
1393   bool base_is_phi = (base != NULL) && base->is_Phi();
1394   bool load_boxed_values = t_oop->is_ptr_to_boxed_value() && C->aggressive_unboxing() &&
1395                            (base != NULL) && (base == address->in(AddPNode::Base)) &&
1396                            phase->type(base)->higher_equal(TypePtr::NOTNULL);
1397 
1398   if (!((mem->is_Phi() || base_is_phi) &&
1399         (load_boxed_values || t_oop->is_known_instance_field()))) {
1400     return NULL; // memory is not Phi
1401   }
1402 
1403   if (mem->is_Phi()) {
1404     if (!stable_phi(mem->as_Phi(), phase)) {
1405       return NULL; // Wait stable graph
1406     }
1407     uint cnt = mem->req();
1408     // Check for loop invariant memory.
1409     if (cnt == 3) {
1410       for (uint i = 1; i < cnt; i++) {
1411         Node* in = mem->in(i);
1412         Node*  m = optimize_memory_chain(in, t_oop, this, phase);
1413         if (m == mem) {
1414           if (i == 1) {
1415             // if the first edge was a loop, check second edge too.
1416             // If both are replaceable - we are in an infinite loop
1417             Node *n = optimize_memory_chain(mem->in(2), t_oop, this, phase);
1418             if (n == mem) {
1419               break;
1420             }
1421           }
1422           set_req(Memory, mem->in(cnt - i));
1423           return this; // made change
1424         }
1425       }
1426     }
1427   }
1428   if (base_is_phi) {
1429     if (!stable_phi(base->as_Phi(), phase)) {
1430       return NULL; // Wait stable graph
1431     }
1432     uint cnt = base->req();
1433     // Check for loop invariant memory.
1434     if (cnt == 3) {
1435       for (uint i = 1; i < cnt; i++) {
1436         if (base->in(i) == base) {
1437           return NULL; // Wait stable graph
1438         }
1439       }
1440     }
1441   }
1442 
1443   bool load_boxed_phi = load_boxed_values && base_is_phi && (base->in(0) == mem->in(0));
1444 
1445   // Split through Phi (see original code in loopopts.cpp).
1446   assert(C->have_alias_type(t_oop), "instance should have alias type");
1447 
1448   // Do nothing here if Identity will find a value
1449   // (to avoid infinite chain of value phis generation).
1450   if (!phase->eqv(this, phase->apply_identity(this)))
1451     return NULL;
1452 
1453   // Select Region to split through.
1454   Node* region;
1455   if (!base_is_phi) {
1456     assert(mem->is_Phi(), "sanity");
1457     region = mem->in(0);
1458     // Skip if the region dominates some control edge of the address.
1459     if (!MemNode::all_controls_dominate(address, region))
1460       return NULL;
1461   } else if (!mem->is_Phi()) {
1462     assert(base_is_phi, "sanity");
1463     region = base->in(0);
1464     // Skip if the region dominates some control edge of the memory.
1465     if (!MemNode::all_controls_dominate(mem, region))
1466       return NULL;
1467   } else if (base->in(0) != mem->in(0)) {
1468     assert(base_is_phi && mem->is_Phi(), "sanity");
1469     if (MemNode::all_controls_dominate(mem, base->in(0))) {
1470       region = base->in(0);
1471     } else if (MemNode::all_controls_dominate(address, mem->in(0))) {
1472       region = mem->in(0);
1473     } else {
1474       return NULL; // complex graph
1475     }
1476   } else {
1477     assert(base->in(0) == mem->in(0), "sanity");
1478     region = mem->in(0);
1479   }
1480 
1481   const Type* this_type = this->bottom_type();
1482   int this_index  = C->get_alias_index(t_oop);
1483   int this_offset = t_oop->offset();
1484   int this_iid    = t_oop->instance_id();
1485   if (!t_oop->is_known_instance() && load_boxed_values) {
1486     // Use _idx of address base for boxed values.
1487     this_iid = base->_idx;
1488   }
1489   PhaseIterGVN* igvn = phase->is_IterGVN();
1490   Node* phi = new PhiNode(region, this_type, NULL, mem->_idx, this_iid, this_index, this_offset);
1491   for (uint i = 1; i < region->req(); i++) {
1492     Node* x;
1493     Node* the_clone = NULL;
1494     Node* in = region->in(i);
1495     if (region->is_CountedLoop() && region->as_Loop()->is_strip_mined() && i == LoopNode::EntryControl &&
1496         in != NULL && in->is_OuterStripMinedLoop()) {
1497       // No node should go in the outer strip mined loop
1498       in = in->in(LoopNode::EntryControl);
1499     }
1500     if (in == NULL || in == C->top()) {
1501       x = C->top();      // Dead path?  Use a dead data op
1502     } else {
1503       x = this->clone();        // Else clone up the data op
1504       the_clone = x;            // Remember for possible deletion.
1505       // Alter data node to use pre-phi inputs
1506       if (this->in(0) == region) {
1507         x->set_req(0, in);
1508       } else {
1509         x->set_req(0, NULL);
1510       }
1511       if (mem->is_Phi() && (mem->in(0) == region)) {
1512         x->set_req(Memory, mem->in(i)); // Use pre-Phi input for the clone.
1513       }
1514       if (address->is_Phi() && address->in(0) == region) {
1515         x->set_req(Address, address->in(i)); // Use pre-Phi input for the clone
1516       }
1517       if (base_is_phi && (base->in(0) == region)) {
1518         Node* base_x = base->in(i); // Clone address for loads from boxed objects.
1519         Node* adr_x = phase->transform(new AddPNode(base_x,base_x,address->in(AddPNode::Offset)));
1520         x->set_req(Address, adr_x);
1521       }
1522     }
1523     // Check for a 'win' on some paths
1524     const Type *t = x->Value(igvn);
1525 
1526     bool singleton = t->singleton();
1527 
1528     // See comments in PhaseIdealLoop::split_thru_phi().
1529     if (singleton && t == Type::TOP) {
1530       singleton &= region->is_Loop() && (i != LoopNode::EntryControl);
1531     }
1532 
1533     if (singleton) {
1534       x = igvn->makecon(t);
1535     } else {
1536       // We now call Identity to try to simplify the cloned node.
1537       // Note that some Identity methods call phase->type(this).
1538       // Make sure that the type array is big enough for
1539       // our new node, even though we may throw the node away.
1540       // (This tweaking with igvn only works because x is a new node.)
1541       igvn->set_type(x, t);
1542       // If x is a TypeNode, capture any more-precise type permanently into Node
1543       // otherwise it will be not updated during igvn->transform since
1544       // igvn->type(x) is set to x->Value() already.
1545       x->raise_bottom_type(t);
1546       Node *y = igvn->apply_identity(x);
1547       if (y != x) {
1548         x = y;
1549       } else {
1550         y = igvn->hash_find_insert(x);
1551         if (y) {
1552           x = y;
1553         } else {
1554           // Else x is a new node we are keeping
1555           // We do not need register_new_node_with_optimizer
1556           // because set_type has already been called.
1557           igvn->_worklist.push(x);
1558         }
1559       }
1560     }
1561     if (x != the_clone && the_clone != NULL) {
1562       igvn->remove_dead_node(the_clone);
1563     }
1564     phi->set_req(i, x);
1565   }
1566   // Record Phi
1567   igvn->register_new_node_with_optimizer(phi);
1568   return phi;
1569 }
1570 
1571 //------------------------------Ideal------------------------------------------
1572 // If the load is from Field memory and the pointer is non-null, it might be possible to
1573 // zero out the control input.
1574 // If the offset is constant and the base is an object allocation,
1575 // try to hook me up to the exact initializing store.
1576 Node *LoadNode::Ideal(PhaseGVN *phase, bool can_reshape) {
1577   Node* p = MemNode::Ideal_common(phase, can_reshape);
1578   if (p)  return (p == NodeSentinel) ? NULL : p;
1579 
1580   Node* ctrl    = in(MemNode::Control);
1581   Node* address = in(MemNode::Address);
1582   bool progress = false;
1583 
1584   bool addr_mark = ((phase->type(address)->isa_oopptr() || phase->type(address)->isa_narrowoop()) &&
1585          phase->type(address)->is_ptr()->offset() == oopDesc::mark_offset_in_bytes());
1586 
1587   // Skip up past a SafePoint control.  Cannot do this for Stores because
1588   // pointer stores & cardmarks must stay on the same side of a SafePoint.
1589   if( ctrl != NULL && ctrl->Opcode() == Op_SafePoint &&
1590       phase->C->get_alias_index(phase->type(address)->is_ptr()) != Compile::AliasIdxRaw  &&
1591       !addr_mark ) {
1592     ctrl = ctrl->in(0);
1593     set_req(MemNode::Control,ctrl);
1594     progress = true;
1595   }
1596 
1597   intptr_t ignore = 0;
1598   Node*    base   = AddPNode::Ideal_base_and_offset(address, phase, ignore);
1599   if (base != NULL
1600       && phase->C->get_alias_index(phase->type(address)->is_ptr()) != Compile::AliasIdxRaw) {
1601     // Check for useless control edge in some common special cases
1602     if (in(MemNode::Control) != NULL
1603         && can_remove_control()
1604         && phase->type(base)->higher_equal(TypePtr::NOTNULL)
1605         && all_controls_dominate(base, phase->C->start())) {
1606       // A method-invariant, non-null address (constant or 'this' argument).
1607       set_req(MemNode::Control, NULL);
1608       progress = true;
1609     }
1610   }
1611 
1612   Node* mem = in(MemNode::Memory);
1613   const TypePtr *addr_t = phase->type(address)->isa_ptr();
1614 
1615   if (can_reshape && (addr_t != NULL)) {
1616     // try to optimize our memory input
1617     Node* opt_mem = MemNode::optimize_memory_chain(mem, addr_t, this, phase);
1618     if (opt_mem != mem) {
1619       set_req(MemNode::Memory, opt_mem);
1620       if (phase->type( opt_mem ) == Type::TOP) return NULL;
1621       return this;
1622     }
1623     const TypeOopPtr *t_oop = addr_t->isa_oopptr();
1624     if ((t_oop != NULL) &&
1625         (t_oop->is_known_instance_field() ||
1626          t_oop->is_ptr_to_boxed_value())) {
1627       PhaseIterGVN *igvn = phase->is_IterGVN();
1628       if (igvn != NULL && igvn->_worklist.member(opt_mem)) {
1629         // Delay this transformation until memory Phi is processed.
1630         phase->is_IterGVN()->_worklist.push(this);
1631         return NULL;
1632       }
1633       // Split instance field load through Phi.
1634       Node* result = split_through_phi(phase);
1635       if (result != NULL) return result;
1636 
1637       if (t_oop->is_ptr_to_boxed_value()) {
1638         Node* result = eliminate_autobox(phase);
1639         if (result != NULL) return result;
1640       }
1641     }
1642   }
1643 
1644   // Is there a dominating load that loads the same value?  Leave
1645   // anything that is not a load of a field/array element (like
1646   // barriers etc.) alone
1647   if (in(0) != NULL && !adr_type()->isa_rawptr() && can_reshape) {
1648     for (DUIterator_Fast imax, i = mem->fast_outs(imax); i < imax; i++) {
1649       Node *use = mem->fast_out(i);
1650       if (use != this &&
1651           use->Opcode() == Opcode() &&
1652           use->in(0) != NULL &&
1653           use->in(0) != in(0) &&
1654           use->in(Address) == in(Address)) {
1655         Node* ctl = in(0);
1656         for (int i = 0; i < 10 && ctl != NULL; i++) {
1657           ctl = IfNode::up_one_dom(ctl);
1658           if (ctl == use->in(0)) {
1659             set_req(0, use->in(0));
1660             return this;
1661           }
1662         }
1663       }
1664     }
1665   }
1666 
1667   // Check for prior store with a different base or offset; make Load
1668   // independent.  Skip through any number of them.  Bail out if the stores
1669   // are in an endless dead cycle and report no progress.  This is a key
1670   // transform for Reflection.  However, if after skipping through the Stores
1671   // we can't then fold up against a prior store do NOT do the transform as
1672   // this amounts to using the 'Oracle' model of aliasing.  It leaves the same
1673   // array memory alive twice: once for the hoisted Load and again after the
1674   // bypassed Store.  This situation only works if EVERYBODY who does
1675   // anti-dependence work knows how to bypass.  I.e. we need all
1676   // anti-dependence checks to ask the same Oracle.  Right now, that Oracle is
1677   // the alias index stuff.  So instead, peek through Stores and IFF we can
1678   // fold up, do so.
1679   Node* prev_mem = find_previous_store(phase);
1680   if (prev_mem != NULL) {
1681     Node* value = can_see_arraycopy_value(prev_mem, phase);
1682     if (value != NULL) {
1683       return value;
1684     }
1685   }
1686   // Steps (a), (b):  Walk past independent stores to find an exact match.
1687   if (prev_mem != NULL && prev_mem != in(MemNode::Memory)) {
1688     // (c) See if we can fold up on the spot, but don't fold up here.
1689     // Fold-up might require truncation (for LoadB/LoadS/LoadUS) or
1690     // just return a prior value, which is done by Identity calls.
1691     if (can_see_stored_value(prev_mem, phase)) {
1692       // Make ready for step (d):
1693       set_req(MemNode::Memory, prev_mem);
1694       return this;
1695     }
1696   }
1697 
1698   return progress ? this : NULL;
1699 }
1700 
1701 // Helper to recognize certain Klass fields which are invariant across
1702 // some group of array types (e.g., int[] or all T[] where T < Object).
1703 const Type*
1704 LoadNode::load_array_final_field(const TypeKlassPtr *tkls,
1705                                  ciKlass* klass) const {
1706   if (tkls->offset() == in_bytes(Klass::modifier_flags_offset())) {
1707     // The field is Klass::_modifier_flags.  Return its (constant) value.
1708     // (Folds up the 2nd indirection in aClassConstant.getModifiers().)
1709     assert(this->Opcode() == Op_LoadI, "must load an int from _modifier_flags");
1710     return TypeInt::make(klass->modifier_flags());
1711   }
1712   if (tkls->offset() == in_bytes(Klass::access_flags_offset())) {
1713     // The field is Klass::_access_flags.  Return its (constant) value.
1714     // (Folds up the 2nd indirection in Reflection.getClassAccessFlags(aClassConstant).)
1715     assert(this->Opcode() == Op_LoadI, "must load an int from _access_flags");
1716     return TypeInt::make(klass->access_flags());
1717   }
1718   if (tkls->offset() == in_bytes(Klass::layout_helper_offset())) {
1719     // The field is Klass::_layout_helper.  Return its constant value if known.
1720     assert(this->Opcode() == Op_LoadI, "must load an int from _layout_helper");
1721     return TypeInt::make(klass->layout_helper());
1722   }
1723 
1724   // No match.
1725   return NULL;
1726 }
1727 
1728 //------------------------------Value-----------------------------------------
1729 const Type* LoadNode::Value(PhaseGVN* phase) const {
1730   // Either input is TOP ==> the result is TOP
1731   Node* mem = in(MemNode::Memory);
1732   const Type *t1 = phase->type(mem);
1733   if (t1 == Type::TOP)  return Type::TOP;
1734   Node* adr = in(MemNode::Address);
1735   const TypePtr* tp = phase->type(adr)->isa_ptr();
1736   if (tp == NULL || tp->empty())  return Type::TOP;
1737   int off = tp->offset();
1738   assert(off != Type::OffsetTop, "case covered by TypePtr::empty");
1739   Compile* C = phase->C;
1740 
1741   // Try to guess loaded type from pointer type
1742   if (tp->isa_aryptr()) {
1743     const TypeAryPtr* ary = tp->is_aryptr();
1744     const Type* t = ary->elem();
1745 
1746     // Determine whether the reference is beyond the header or not, by comparing
1747     // the offset against the offset of the start of the array's data.
1748     // Different array types begin at slightly different offsets (12 vs. 16).
1749     // We choose T_BYTE as an example base type that is least restrictive
1750     // as to alignment, which will therefore produce the smallest
1751     // possible base offset.
1752     const int min_base_off = arrayOopDesc::base_offset_in_bytes(T_BYTE);
1753     const bool off_beyond_header = ((uint)off >= (uint)min_base_off);
1754 
1755     // Try to constant-fold a stable array element.
1756     if (FoldStableValues && !is_mismatched_access() && ary->is_stable()) {
1757       // Make sure the reference is not into the header and the offset is constant
1758       ciObject* aobj = ary->const_oop();
1759       if (aobj != NULL && off_beyond_header && adr->is_AddP() && off != Type::OffsetBot) {
1760         int stable_dimension = (ary->stable_dimension() > 0 ? ary->stable_dimension() - 1 : 0);
1761         const Type* con_type = Type::make_constant_from_array_element(aobj->as_array(), off,
1762                                                                       stable_dimension,
1763                                                                       memory_type(), is_unsigned());
1764         if (con_type != NULL) {
1765           return con_type;
1766         }
1767       }
1768     }
1769 
1770     // Don't do this for integer types. There is only potential profit if
1771     // the element type t is lower than _type; that is, for int types, if _type is
1772     // more restrictive than t.  This only happens here if one is short and the other
1773     // char (both 16 bits), and in those cases we've made an intentional decision
1774     // to use one kind of load over the other. See AndINode::Ideal and 4965907.
1775     // Also, do not try to narrow the type for a LoadKlass, regardless of offset.
1776     //
1777     // Yes, it is possible to encounter an expression like (LoadKlass p1:(AddP x x 8))
1778     // where the _gvn.type of the AddP is wider than 8.  This occurs when an earlier
1779     // copy p0 of (AddP x x 8) has been proven equal to p1, and the p0 has been
1780     // subsumed by p1.  If p1 is on the worklist but has not yet been re-transformed,
1781     // it is possible that p1 will have a type like Foo*[int+]:NotNull*+any.
1782     // In fact, that could have been the original type of p1, and p1 could have
1783     // had an original form like p1:(AddP x x (LShiftL quux 3)), where the
1784     // expression (LShiftL quux 3) independently optimized to the constant 8.
1785     if ((t->isa_int() == NULL) && (t->isa_long() == NULL)
1786         && (_type->isa_vect() == NULL)
1787         && Opcode() != Op_LoadKlass && Opcode() != Op_LoadNKlass) {
1788       // t might actually be lower than _type, if _type is a unique
1789       // concrete subclass of abstract class t.
1790       if (off_beyond_header) {  // is the offset beyond the header?
1791         const Type* jt = t->join_speculative(_type);
1792         // In any case, do not allow the join, per se, to empty out the type.
1793         if (jt->empty() && !t->empty()) {
1794           // This can happen if a interface-typed array narrows to a class type.
1795           jt = _type;
1796         }
1797 #ifdef ASSERT
1798         if (phase->C->eliminate_boxing() && adr->is_AddP()) {
1799           // The pointers in the autobox arrays are always non-null
1800           Node* base = adr->in(AddPNode::Base);
1801           if ((base != NULL) && base->is_DecodeN()) {
1802             // Get LoadN node which loads IntegerCache.cache field
1803             base = base->in(1);
1804           }
1805           if ((base != NULL) && base->is_Con()) {
1806             const TypeAryPtr* base_type = base->bottom_type()->isa_aryptr();
1807             if ((base_type != NULL) && base_type->is_autobox_cache()) {
1808               // It could be narrow oop
1809               assert(jt->make_ptr()->ptr() == TypePtr::NotNull,"sanity");
1810             }
1811           }
1812         }
1813 #endif
1814         return jt;
1815       }
1816     }
1817   } else if (tp->base() == Type::InstPtr) {
1818     assert( off != Type::OffsetBot ||
1819             // arrays can be cast to Objects
1820             tp->is_oopptr()->klass()->is_java_lang_Object() ||
1821             // unsafe field access may not have a constant offset
1822             C->has_unsafe_access(),
1823             "Field accesses must be precise" );
1824     // For oop loads, we expect the _type to be precise.
1825 
1826     // Optimize loads from constant fields.
1827     const TypeInstPtr* tinst = tp->is_instptr();
1828     ciObject* const_oop = tinst->const_oop();
1829     if (!is_mismatched_access() && off != Type::OffsetBot && const_oop != NULL && const_oop->is_instance()) {
1830       const Type* con_type = Type::make_constant_from_field(const_oop->as_instance(), off, is_unsigned(), memory_type());
1831       if (con_type != NULL) {
1832         return con_type;
1833       }
1834     }
1835   } else if (tp->base() == Type::KlassPtr) {
1836     assert( off != Type::OffsetBot ||
1837             // arrays can be cast to Objects
1838             tp->is_klassptr()->klass()->is_java_lang_Object() ||
1839             // also allow array-loading from the primary supertype
1840             // array during subtype checks
1841             Opcode() == Op_LoadKlass,
1842             "Field accesses must be precise" );
1843     // For klass/static loads, we expect the _type to be precise
1844   } else if (tp->base() == Type::RawPtr && adr->is_Load() && off == 0) {
1845     /* With mirrors being an indirect in the Klass*
1846      * the VM is now using two loads. LoadKlass(LoadP(LoadP(Klass, mirror_offset), zero_offset))
1847      * The LoadP from the Klass has a RawPtr type (see LibraryCallKit::load_mirror_from_klass).
1848      *
1849      * So check the type and klass of the node before the LoadP.
1850      */
1851     Node* adr2 = adr->in(MemNode::Address);
1852     const TypeKlassPtr* tkls = phase->type(adr2)->isa_klassptr();
1853     if (tkls != NULL && !StressReflectiveCode) {
1854       ciKlass* klass = tkls->klass();
1855       if (klass->is_loaded() && tkls->klass_is_exact() && tkls->offset() == in_bytes(Klass::java_mirror_offset())) {
1856         assert(adr->Opcode() == Op_LoadP, "must load an oop from _java_mirror");
1857         assert(Opcode() == Op_LoadP, "must load an oop from _java_mirror");
1858         return TypeInstPtr::make(klass->java_mirror());
1859       }
1860     }
1861   }
1862 
1863   const TypeKlassPtr *tkls = tp->isa_klassptr();
1864   if (tkls != NULL && !StressReflectiveCode) {
1865     ciKlass* klass = tkls->klass();
1866     if (klass->is_loaded() && tkls->klass_is_exact()) {
1867       // We are loading a field from a Klass metaobject whose identity
1868       // is known at compile time (the type is "exact" or "precise").
1869       // Check for fields we know are maintained as constants by the VM.
1870       if (tkls->offset() == in_bytes(Klass::super_check_offset_offset())) {
1871         // The field is Klass::_super_check_offset.  Return its (constant) value.
1872         // (Folds up type checking code.)
1873         assert(Opcode() == Op_LoadI, "must load an int from _super_check_offset");
1874         return TypeInt::make(klass->super_check_offset());
1875       }
1876       // Compute index into primary_supers array
1877       juint depth = (tkls->offset() - in_bytes(Klass::primary_supers_offset())) / sizeof(Klass*);
1878       // Check for overflowing; use unsigned compare to handle the negative case.
1879       if( depth < ciKlass::primary_super_limit() ) {
1880         // The field is an element of Klass::_primary_supers.  Return its (constant) value.
1881         // (Folds up type checking code.)
1882         assert(Opcode() == Op_LoadKlass, "must load a klass from _primary_supers");
1883         ciKlass *ss = klass->super_of_depth(depth);
1884         return ss ? TypeKlassPtr::make(ss) : TypePtr::NULL_PTR;
1885       }
1886       const Type* aift = load_array_final_field(tkls, klass);
1887       if (aift != NULL)  return aift;
1888     }
1889 
1890     // We can still check if we are loading from the primary_supers array at a
1891     // shallow enough depth.  Even though the klass is not exact, entries less
1892     // than or equal to its super depth are correct.
1893     if (klass->is_loaded() ) {
1894       ciType *inner = klass;
1895       while( inner->is_obj_array_klass() )
1896         inner = inner->as_obj_array_klass()->base_element_type();
1897       if( inner->is_instance_klass() &&
1898           !inner->as_instance_klass()->flags().is_interface() ) {
1899         // Compute index into primary_supers array
1900         juint depth = (tkls->offset() - in_bytes(Klass::primary_supers_offset())) / sizeof(Klass*);
1901         // Check for overflowing; use unsigned compare to handle the negative case.
1902         if( depth < ciKlass::primary_super_limit() &&
1903             depth <= klass->super_depth() ) { // allow self-depth checks to handle self-check case
1904           // The field is an element of Klass::_primary_supers.  Return its (constant) value.
1905           // (Folds up type checking code.)
1906           assert(Opcode() == Op_LoadKlass, "must load a klass from _primary_supers");
1907           ciKlass *ss = klass->super_of_depth(depth);
1908           return ss ? TypeKlassPtr::make(ss) : TypePtr::NULL_PTR;
1909         }
1910       }
1911     }
1912 
1913     // If the type is enough to determine that the thing is not an array,
1914     // we can give the layout_helper a positive interval type.
1915     // This will help short-circuit some reflective code.
1916     if (tkls->offset() == in_bytes(Klass::layout_helper_offset())
1917         && !klass->is_array_klass() // not directly typed as an array
1918         && !klass->is_interface()  // specifically not Serializable & Cloneable
1919         && !klass->is_java_lang_Object()   // not the supertype of all T[]
1920         ) {
1921       // Note:  When interfaces are reliable, we can narrow the interface
1922       // test to (klass != Serializable && klass != Cloneable).
1923       assert(Opcode() == Op_LoadI, "must load an int from _layout_helper");
1924       jint min_size = Klass::instance_layout_helper(oopDesc::header_size(), false);
1925       // The key property of this type is that it folds up tests
1926       // for array-ness, since it proves that the layout_helper is positive.
1927       // Thus, a generic value like the basic object layout helper works fine.
1928       return TypeInt::make(min_size, max_jint, Type::WidenMin);
1929     }
1930   }
1931 
1932   // If we are loading from a freshly-allocated object, produce a zero,
1933   // if the load is provably beyond the header of the object.
1934   // (Also allow a variable load from a fresh array to produce zero.)
1935   const TypeOopPtr *tinst = tp->isa_oopptr();
1936   bool is_instance = (tinst != NULL) && tinst->is_known_instance_field();
1937   bool is_boxed_value = (tinst != NULL) && tinst->is_ptr_to_boxed_value();
1938   if (ReduceFieldZeroing || is_instance || is_boxed_value) {
1939     Node* value = can_see_stored_value(mem,phase);
1940     if (value != NULL && value->is_Con()) {
1941       assert(value->bottom_type()->higher_equal(_type),"sanity");
1942       return value->bottom_type();
1943     }
1944   }
1945 
1946   if (is_instance) {
1947     // If we have an instance type and our memory input is the
1948     // programs's initial memory state, there is no matching store,
1949     // so just return a zero of the appropriate type
1950     Node *mem = in(MemNode::Memory);
1951     if (mem->is_Parm() && mem->in(0)->is_Start()) {
1952       assert(mem->as_Parm()->_con == TypeFunc::Memory, "must be memory Parm");
1953       return Type::get_zero_type(_type->basic_type());
1954     }
1955   }
1956   return _type;
1957 }
1958 
1959 //------------------------------match_edge-------------------------------------
1960 // Do we Match on this edge index or not?  Match only the address.
1961 uint LoadNode::match_edge(uint idx) const {
1962   return idx == MemNode::Address;
1963 }
1964 
1965 //--------------------------LoadBNode::Ideal--------------------------------------
1966 //
1967 //  If the previous store is to the same address as this load,
1968 //  and the value stored was larger than a byte, replace this load
1969 //  with the value stored truncated to a byte.  If no truncation is
1970 //  needed, the replacement is done in LoadNode::Identity().
1971 //
1972 Node *LoadBNode::Ideal(PhaseGVN *phase, bool can_reshape) {
1973   Node* mem = in(MemNode::Memory);
1974   Node* value = can_see_stored_value(mem,phase);
1975   if( value && !phase->type(value)->higher_equal( _type ) ) {
1976     Node *result = phase->transform( new LShiftINode(value, phase->intcon(24)) );
1977     return new RShiftINode(result, phase->intcon(24));
1978   }
1979   // Identity call will handle the case where truncation is not needed.
1980   return LoadNode::Ideal(phase, can_reshape);
1981 }
1982 
1983 const Type* LoadBNode::Value(PhaseGVN* phase) const {
1984   Node* mem = in(MemNode::Memory);
1985   Node* value = can_see_stored_value(mem,phase);
1986   if (value != NULL && value->is_Con() &&
1987       !value->bottom_type()->higher_equal(_type)) {
1988     // If the input to the store does not fit with the load's result type,
1989     // it must be truncated. We can't delay until Ideal call since
1990     // a singleton Value is needed for split_thru_phi optimization.
1991     int con = value->get_int();
1992     return TypeInt::make((con << 24) >> 24);
1993   }
1994   return LoadNode::Value(phase);
1995 }
1996 
1997 //--------------------------LoadUBNode::Ideal-------------------------------------
1998 //
1999 //  If the previous store is to the same address as this load,
2000 //  and the value stored was larger than a byte, replace this load
2001 //  with the value stored truncated to a byte.  If no truncation is
2002 //  needed, the replacement is done in LoadNode::Identity().
2003 //
2004 Node* LoadUBNode::Ideal(PhaseGVN* phase, bool can_reshape) {
2005   Node* mem = in(MemNode::Memory);
2006   Node* value = can_see_stored_value(mem, phase);
2007   if (value && !phase->type(value)->higher_equal(_type))
2008     return new AndINode(value, phase->intcon(0xFF));
2009   // Identity call will handle the case where truncation is not needed.
2010   return LoadNode::Ideal(phase, can_reshape);
2011 }
2012 
2013 const Type* LoadUBNode::Value(PhaseGVN* phase) const {
2014   Node* mem = in(MemNode::Memory);
2015   Node* value = can_see_stored_value(mem,phase);
2016   if (value != NULL && value->is_Con() &&
2017       !value->bottom_type()->higher_equal(_type)) {
2018     // If the input to the store does not fit with the load's result type,
2019     // it must be truncated. We can't delay until Ideal call since
2020     // a singleton Value is needed for split_thru_phi optimization.
2021     int con = value->get_int();
2022     return TypeInt::make(con & 0xFF);
2023   }
2024   return LoadNode::Value(phase);
2025 }
2026 
2027 //--------------------------LoadUSNode::Ideal-------------------------------------
2028 //
2029 //  If the previous store is to the same address as this load,
2030 //  and the value stored was larger than a char, replace this load
2031 //  with the value stored truncated to a char.  If no truncation is
2032 //  needed, the replacement is done in LoadNode::Identity().
2033 //
2034 Node *LoadUSNode::Ideal(PhaseGVN *phase, bool can_reshape) {
2035   Node* mem = in(MemNode::Memory);
2036   Node* value = can_see_stored_value(mem,phase);
2037   if( value && !phase->type(value)->higher_equal( _type ) )
2038     return new AndINode(value,phase->intcon(0xFFFF));
2039   // Identity call will handle the case where truncation is not needed.
2040   return LoadNode::Ideal(phase, can_reshape);
2041 }
2042 
2043 const Type* LoadUSNode::Value(PhaseGVN* phase) const {
2044   Node* mem = in(MemNode::Memory);
2045   Node* value = can_see_stored_value(mem,phase);
2046   if (value != NULL && value->is_Con() &&
2047       !value->bottom_type()->higher_equal(_type)) {
2048     // If the input to the store does not fit with the load's result type,
2049     // it must be truncated. We can't delay until Ideal call since
2050     // a singleton Value is needed for split_thru_phi optimization.
2051     int con = value->get_int();
2052     return TypeInt::make(con & 0xFFFF);
2053   }
2054   return LoadNode::Value(phase);
2055 }
2056 
2057 //--------------------------LoadSNode::Ideal--------------------------------------
2058 //
2059 //  If the previous store is to the same address as this load,
2060 //  and the value stored was larger than a short, replace this load
2061 //  with the value stored truncated to a short.  If no truncation is
2062 //  needed, the replacement is done in LoadNode::Identity().
2063 //
2064 Node *LoadSNode::Ideal(PhaseGVN *phase, bool can_reshape) {
2065   Node* mem = in(MemNode::Memory);
2066   Node* value = can_see_stored_value(mem,phase);
2067   if( value && !phase->type(value)->higher_equal( _type ) ) {
2068     Node *result = phase->transform( new LShiftINode(value, phase->intcon(16)) );
2069     return new RShiftINode(result, phase->intcon(16));
2070   }
2071   // Identity call will handle the case where truncation is not needed.
2072   return LoadNode::Ideal(phase, can_reshape);
2073 }
2074 
2075 const Type* LoadSNode::Value(PhaseGVN* phase) const {
2076   Node* mem = in(MemNode::Memory);
2077   Node* value = can_see_stored_value(mem,phase);
2078   if (value != NULL && value->is_Con() &&
2079       !value->bottom_type()->higher_equal(_type)) {
2080     // If the input to the store does not fit with the load's result type,
2081     // it must be truncated. We can't delay until Ideal call since
2082     // a singleton Value is needed for split_thru_phi optimization.
2083     int con = value->get_int();
2084     return TypeInt::make((con << 16) >> 16);
2085   }
2086   return LoadNode::Value(phase);
2087 }
2088 
2089 //=============================================================================
2090 //----------------------------LoadKlassNode::make------------------------------
2091 // Polymorphic factory method:
2092 Node* LoadKlassNode::make(PhaseGVN& gvn, Node* ctl, Node* mem, Node* adr, const TypePtr* at, const TypeKlassPtr* tk) {
2093   // sanity check the alias category against the created node type
2094   const TypePtr *adr_type = adr->bottom_type()->isa_ptr();
2095   assert(adr_type != NULL, "expecting TypeKlassPtr");
2096 #ifdef _LP64
2097   if (adr_type->is_ptr_to_narrowklass()) {
2098     assert(UseCompressedClassPointers, "no compressed klasses");
2099     Node* load_klass = gvn.transform(new LoadNKlassNode(ctl, mem, adr, at, tk->make_narrowklass(), MemNode::unordered));
2100     return new DecodeNKlassNode(load_klass, load_klass->bottom_type()->make_ptr());
2101   }
2102 #endif
2103   assert(!adr_type->is_ptr_to_narrowklass() && !adr_type->is_ptr_to_narrowoop(), "should have got back a narrow oop");
2104   return new LoadKlassNode(ctl, mem, adr, at, tk, MemNode::unordered);
2105 }
2106 
2107 //------------------------------Value------------------------------------------
2108 const Type* LoadKlassNode::Value(PhaseGVN* phase) const {
2109   return klass_value_common(phase);
2110 }
2111 
2112 // In most cases, LoadKlassNode does not have the control input set. If the control
2113 // input is set, it must not be removed (by LoadNode::Ideal()).
2114 bool LoadKlassNode::can_remove_control() const {
2115   return false;
2116 }
2117 
2118 const Type* LoadNode::klass_value_common(PhaseGVN* phase) const {
2119   // Either input is TOP ==> the result is TOP
2120   const Type *t1 = phase->type( in(MemNode::Memory) );
2121   if (t1 == Type::TOP)  return Type::TOP;
2122   Node *adr = in(MemNode::Address);
2123   const Type *t2 = phase->type( adr );
2124   if (t2 == Type::TOP)  return Type::TOP;
2125   const TypePtr *tp = t2->is_ptr();
2126   if (TypePtr::above_centerline(tp->ptr()) ||
2127       tp->ptr() == TypePtr::Null)  return Type::TOP;
2128 
2129   // Return a more precise klass, if possible
2130   const TypeInstPtr *tinst = tp->isa_instptr();
2131   if (tinst != NULL) {
2132     ciInstanceKlass* ik = tinst->klass()->as_instance_klass();
2133     int offset = tinst->offset();
2134     if (ik == phase->C->env()->Class_klass()
2135         && (offset == java_lang_Class::klass_offset_in_bytes() ||
2136             offset == java_lang_Class::array_klass_offset_in_bytes())) {
2137       // We are loading a special hidden field from a Class mirror object,
2138       // the field which points to the VM's Klass metaobject.
2139       ciType* t = tinst->java_mirror_type();
2140       // java_mirror_type returns non-null for compile-time Class constants.
2141       if (t != NULL) {
2142         // constant oop => constant klass
2143         if (offset == java_lang_Class::array_klass_offset_in_bytes()) {
2144           if (t->is_void()) {
2145             // We cannot create a void array.  Since void is a primitive type return null
2146             // klass.  Users of this result need to do a null check on the returned klass.
2147             return TypePtr::NULL_PTR;
2148           }
2149           return TypeKlassPtr::make(ciArrayKlass::make(t));
2150         }
2151         if (!t->is_klass()) {
2152           // a primitive Class (e.g., int.class) has NULL for a klass field
2153           return TypePtr::NULL_PTR;
2154         }
2155         // (Folds up the 1st indirection in aClassConstant.getModifiers().)
2156         return TypeKlassPtr::make(t->as_klass());
2157       }
2158       // non-constant mirror, so we can't tell what's going on
2159     }
2160     if( !ik->is_loaded() )
2161       return _type;             // Bail out if not loaded
2162     if (offset == oopDesc::klass_offset_in_bytes()) {
2163       if (tinst->klass_is_exact()) {
2164         return TypeKlassPtr::make(ik);
2165       }
2166       // See if we can become precise: no subklasses and no interface
2167       // (Note:  We need to support verified interfaces.)
2168       if (!ik->is_interface() && !ik->has_subklass()) {
2169         //assert(!UseExactTypes, "this code should be useless with exact types");
2170         // Add a dependence; if any subclass added we need to recompile
2171         if (!ik->is_final()) {
2172           // %%% should use stronger assert_unique_concrete_subtype instead
2173           phase->C->dependencies()->assert_leaf_type(ik);
2174         }
2175         // Return precise klass
2176         return TypeKlassPtr::make(ik);
2177       }
2178 
2179       // Return root of possible klass
2180       return TypeKlassPtr::make(TypePtr::NotNull, ik, 0/*offset*/);
2181     }
2182   }
2183 
2184   // Check for loading klass from an array
2185   const TypeAryPtr *tary = tp->isa_aryptr();
2186   if( tary != NULL ) {
2187     ciKlass *tary_klass = tary->klass();
2188     if (tary_klass != NULL   // can be NULL when at BOTTOM or TOP
2189         && tary->offset() == oopDesc::klass_offset_in_bytes()) {
2190       if (tary->klass_is_exact()) {
2191         return TypeKlassPtr::make(tary_klass);
2192       }
2193       ciArrayKlass *ak = tary->klass()->as_array_klass();
2194       // If the klass is an object array, we defer the question to the
2195       // array component klass.
2196       if( ak->is_obj_array_klass() ) {
2197         assert( ak->is_loaded(), "" );
2198         ciKlass *base_k = ak->as_obj_array_klass()->base_element_klass();
2199         if( base_k->is_loaded() && base_k->is_instance_klass() ) {
2200           ciInstanceKlass* ik = base_k->as_instance_klass();
2201           // See if we can become precise: no subklasses and no interface
2202           if (!ik->is_interface() && !ik->has_subklass()) {
2203             //assert(!UseExactTypes, "this code should be useless with exact types");
2204             // Add a dependence; if any subclass added we need to recompile
2205             if (!ik->is_final()) {
2206               phase->C->dependencies()->assert_leaf_type(ik);
2207             }
2208             // Return precise array klass
2209             return TypeKlassPtr::make(ak);
2210           }
2211         }
2212         return TypeKlassPtr::make(TypePtr::NotNull, ak, 0/*offset*/);
2213       } else {                  // Found a type-array?
2214         //assert(!UseExactTypes, "this code should be useless with exact types");
2215         assert( ak->is_type_array_klass(), "" );
2216         return TypeKlassPtr::make(ak); // These are always precise
2217       }
2218     }
2219   }
2220 
2221   // Check for loading klass from an array klass
2222   const TypeKlassPtr *tkls = tp->isa_klassptr();
2223   if (tkls != NULL && !StressReflectiveCode) {
2224     ciKlass* klass = tkls->klass();
2225     if( !klass->is_loaded() )
2226       return _type;             // Bail out if not loaded
2227     if( klass->is_obj_array_klass() &&
2228         tkls->offset() == in_bytes(ObjArrayKlass::element_klass_offset())) {
2229       ciKlass* elem = klass->as_obj_array_klass()->element_klass();
2230       // // Always returning precise element type is incorrect,
2231       // // e.g., element type could be object and array may contain strings
2232       // return TypeKlassPtr::make(TypePtr::Constant, elem, 0);
2233 
2234       // The array's TypeKlassPtr was declared 'precise' or 'not precise'
2235       // according to the element type's subclassing.
2236       return TypeKlassPtr::make(tkls->ptr(), elem, 0/*offset*/);
2237     }
2238     if( klass->is_instance_klass() && tkls->klass_is_exact() &&
2239         tkls->offset() == in_bytes(Klass::super_offset())) {
2240       ciKlass* sup = klass->as_instance_klass()->super();
2241       // The field is Klass::_super.  Return its (constant) value.
2242       // (Folds up the 2nd indirection in aClassConstant.getSuperClass().)
2243       return sup ? TypeKlassPtr::make(sup) : TypePtr::NULL_PTR;
2244     }
2245   }
2246 
2247   // Bailout case
2248   return LoadNode::Value(phase);
2249 }
2250 
2251 //------------------------------Identity---------------------------------------
2252 // To clean up reflective code, simplify k.java_mirror.as_klass to plain k.
2253 // Also feed through the klass in Allocate(...klass...)._klass.
2254 Node* LoadKlassNode::Identity(PhaseGVN* phase) {
2255   return klass_identity_common(phase);
2256 }
2257 
2258 Node* LoadNode::klass_identity_common(PhaseGVN* phase) {
2259   Node* x = LoadNode::Identity(phase);
2260   if (x != this)  return x;
2261 
2262   // Take apart the address into an oop and and offset.
2263   // Return 'this' if we cannot.
2264   Node*    adr    = in(MemNode::Address);
2265   intptr_t offset = 0;
2266   Node*    base   = AddPNode::Ideal_base_and_offset(adr, phase, offset);
2267   if (base == NULL)     return this;
2268   const TypeOopPtr* toop = phase->type(adr)->isa_oopptr();
2269   if (toop == NULL)     return this;
2270 
2271   // Step over potential GC barrier for OopHandle resolve
2272   BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
2273   if (bs->is_gc_barrier_node(base)) {
2274     base = bs->step_over_gc_barrier(base);
2275   }
2276 
2277   // We can fetch the klass directly through an AllocateNode.
2278   // This works even if the klass is not constant (clone or newArray).
2279   if (offset == oopDesc::klass_offset_in_bytes()) {
2280     Node* allocated_klass = AllocateNode::Ideal_klass(base, phase);
2281     if (allocated_klass != NULL) {
2282       return allocated_klass;
2283     }
2284   }
2285 
2286   // Simplify k.java_mirror.as_klass to plain k, where k is a Klass*.
2287   // See inline_native_Class_query for occurrences of these patterns.
2288   // Java Example:  x.getClass().isAssignableFrom(y)
2289   //
2290   // This improves reflective code, often making the Class
2291   // mirror go completely dead.  (Current exception:  Class
2292   // mirrors may appear in debug info, but we could clean them out by
2293   // introducing a new debug info operator for Klass.java_mirror).
2294 
2295   if (toop->isa_instptr() && toop->klass() == phase->C->env()->Class_klass()
2296       && offset == java_lang_Class::klass_offset_in_bytes()) {
2297     if (base->is_Load()) {
2298       Node* base2 = base->in(MemNode::Address);
2299       if (base2->is_Load()) { /* direct load of a load which is the OopHandle */
2300         Node* adr2 = base2->in(MemNode::Address);
2301         const TypeKlassPtr* tkls = phase->type(adr2)->isa_klassptr();
2302         if (tkls != NULL && !tkls->empty()
2303             && (tkls->klass()->is_instance_klass() ||
2304               tkls->klass()->is_array_klass())
2305             && adr2->is_AddP()
2306            ) {
2307           int mirror_field = in_bytes(Klass::java_mirror_offset());
2308           if (tkls->offset() == mirror_field) {
2309             return adr2->in(AddPNode::Base);
2310           }
2311         }
2312       }
2313     }
2314   }
2315 
2316   return this;
2317 }
2318 
2319 
2320 //------------------------------Value------------------------------------------
2321 const Type* LoadNKlassNode::Value(PhaseGVN* phase) const {
2322   const Type *t = klass_value_common(phase);
2323   if (t == Type::TOP)
2324     return t;
2325 
2326   return t->make_narrowklass();
2327 }
2328 
2329 //------------------------------Identity---------------------------------------
2330 // To clean up reflective code, simplify k.java_mirror.as_klass to narrow k.
2331 // Also feed through the klass in Allocate(...klass...)._klass.
2332 Node* LoadNKlassNode::Identity(PhaseGVN* phase) {
2333   Node *x = klass_identity_common(phase);
2334 
2335   const Type *t = phase->type( x );
2336   if( t == Type::TOP ) return x;
2337   if( t->isa_narrowklass()) return x;
2338   assert (!t->isa_narrowoop(), "no narrow oop here");
2339 
2340   return phase->transform(new EncodePKlassNode(x, t->make_narrowklass()));
2341 }
2342 
2343 //------------------------------Value-----------------------------------------
2344 const Type* LoadRangeNode::Value(PhaseGVN* phase) const {
2345   // Either input is TOP ==> the result is TOP
2346   const Type *t1 = phase->type( in(MemNode::Memory) );
2347   if( t1 == Type::TOP ) return Type::TOP;
2348   Node *adr = in(MemNode::Address);
2349   const Type *t2 = phase->type( adr );
2350   if( t2 == Type::TOP ) return Type::TOP;
2351   const TypePtr *tp = t2->is_ptr();
2352   if (TypePtr::above_centerline(tp->ptr()))  return Type::TOP;
2353   const TypeAryPtr *tap = tp->isa_aryptr();
2354   if( !tap ) return _type;
2355   return tap->size();
2356 }
2357 
2358 //-------------------------------Ideal---------------------------------------
2359 // Feed through the length in AllocateArray(...length...)._length.
2360 Node *LoadRangeNode::Ideal(PhaseGVN *phase, bool can_reshape) {
2361   Node* p = MemNode::Ideal_common(phase, can_reshape);
2362   if (p)  return (p == NodeSentinel) ? NULL : p;
2363 
2364   // Take apart the address into an oop and and offset.
2365   // Return 'this' if we cannot.
2366   Node*    adr    = in(MemNode::Address);
2367   intptr_t offset = 0;
2368   Node*    base   = AddPNode::Ideal_base_and_offset(adr, phase,  offset);
2369   if (base == NULL)     return NULL;
2370   const TypeAryPtr* tary = phase->type(adr)->isa_aryptr();
2371   if (tary == NULL)     return NULL;
2372 
2373   // We can fetch the length directly through an AllocateArrayNode.
2374   // This works even if the length is not constant (clone or newArray).
2375   if (offset == arrayOopDesc::length_offset_in_bytes()) {
2376     AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(base, phase);
2377     if (alloc != NULL) {
2378       Node* allocated_length = alloc->Ideal_length();
2379       Node* len = alloc->make_ideal_length(tary, phase);
2380       if (allocated_length != len) {
2381         // New CastII improves on this.
2382         return len;
2383       }
2384     }
2385   }
2386 
2387   return NULL;
2388 }
2389 
2390 //------------------------------Identity---------------------------------------
2391 // Feed through the length in AllocateArray(...length...)._length.
2392 Node* LoadRangeNode::Identity(PhaseGVN* phase) {
2393   Node* x = LoadINode::Identity(phase);
2394   if (x != this)  return x;
2395 
2396   // Take apart the address into an oop and and offset.
2397   // Return 'this' if we cannot.
2398   Node*    adr    = in(MemNode::Address);
2399   intptr_t offset = 0;
2400   Node*    base   = AddPNode::Ideal_base_and_offset(adr, phase, offset);
2401   if (base == NULL)     return this;
2402   const TypeAryPtr* tary = phase->type(adr)->isa_aryptr();
2403   if (tary == NULL)     return this;
2404 
2405   // We can fetch the length directly through an AllocateArrayNode.
2406   // This works even if the length is not constant (clone or newArray).
2407   if (offset == arrayOopDesc::length_offset_in_bytes()) {
2408     AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(base, phase);
2409     if (alloc != NULL) {
2410       Node* allocated_length = alloc->Ideal_length();
2411       // Do not allow make_ideal_length to allocate a CastII node.
2412       Node* len = alloc->make_ideal_length(tary, phase, false);
2413       if (allocated_length == len) {
2414         // Return allocated_length only if it would not be improved by a CastII.
2415         return allocated_length;
2416       }
2417     }
2418   }
2419 
2420   return this;
2421 
2422 }
2423 
2424 //=============================================================================
2425 //---------------------------StoreNode::make-----------------------------------
2426 // Polymorphic factory method:
2427 StoreNode* StoreNode::make(PhaseGVN& gvn, Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type, Node* val, BasicType bt, MemOrd mo) {
2428   assert((mo == unordered || mo == release), "unexpected");
2429   Compile* C = gvn.C;
2430   assert(C->get_alias_index(adr_type) != Compile::AliasIdxRaw ||
2431          ctl != NULL, "raw memory operations should have control edge");
2432 
2433   switch (bt) {
2434   case T_BOOLEAN: val = gvn.transform(new AndINode(val, gvn.intcon(0x1))); // Fall through to T_BYTE case
2435   case T_BYTE:    return new StoreBNode(ctl, mem, adr, adr_type, val, mo);
2436   case T_INT:     return new StoreINode(ctl, mem, adr, adr_type, val, mo);
2437   case T_CHAR:
2438   case T_SHORT:   return new StoreCNode(ctl, mem, adr, adr_type, val, mo);
2439   case T_LONG:    return new StoreLNode(ctl, mem, adr, adr_type, val, mo);
2440   case T_FLOAT:   return new StoreFNode(ctl, mem, adr, adr_type, val, mo);
2441   case T_DOUBLE:  return new StoreDNode(ctl, mem, adr, adr_type, val, mo);
2442   case T_METADATA:
2443   case T_ADDRESS:
2444   case T_OBJECT:
2445 #ifdef _LP64
2446     if (adr->bottom_type()->is_ptr_to_narrowoop()) {
2447       val = gvn.transform(new EncodePNode(val, val->bottom_type()->make_narrowoop()));
2448       return new StoreNNode(ctl, mem, adr, adr_type, val, mo);
2449     } else if (adr->bottom_type()->is_ptr_to_narrowklass() ||
2450                (UseCompressedClassPointers && val->bottom_type()->isa_klassptr() &&
2451                 adr->bottom_type()->isa_rawptr())) {
2452       val = gvn.transform(new EncodePKlassNode(val, val->bottom_type()->make_narrowklass()));
2453       return new StoreNKlassNode(ctl, mem, adr, adr_type, val, mo);
2454     }
2455 #endif
2456     {
2457       return new StorePNode(ctl, mem, adr, adr_type, val, mo);
2458     }
2459   default:
2460     ShouldNotReachHere();
2461     return (StoreNode*)NULL;
2462   }
2463 }
2464 
2465 StoreLNode* StoreLNode::make_atomic(Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type, Node* val, MemOrd mo) {
2466   bool require_atomic = true;
2467   return new StoreLNode(ctl, mem, adr, adr_type, val, mo, require_atomic);
2468 }
2469 
2470 StoreDNode* StoreDNode::make_atomic(Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type, Node* val, MemOrd mo) {
2471   bool require_atomic = true;
2472   return new StoreDNode(ctl, mem, adr, adr_type, val, mo, require_atomic);
2473 }
2474 
2475 
2476 //--------------------------bottom_type----------------------------------------
2477 const Type *StoreNode::bottom_type() const {
2478   return Type::MEMORY;
2479 }
2480 
2481 //------------------------------hash-------------------------------------------
2482 uint StoreNode::hash() const {
2483   // unroll addition of interesting fields
2484   //return (uintptr_t)in(Control) + (uintptr_t)in(Memory) + (uintptr_t)in(Address) + (uintptr_t)in(ValueIn);
2485 
2486   // Since they are not commoned, do not hash them:
2487   return NO_HASH;
2488 }
2489 
2490 //------------------------------Ideal------------------------------------------
2491 // Change back-to-back Store(, p, x) -> Store(m, p, y) to Store(m, p, x).
2492 // When a store immediately follows a relevant allocation/initialization,
2493 // try to capture it into the initialization, or hoist it above.
2494 Node *StoreNode::Ideal(PhaseGVN *phase, bool can_reshape) {
2495   Node* p = MemNode::Ideal_common(phase, can_reshape);
2496   if (p)  return (p == NodeSentinel) ? NULL : p;
2497 
2498   Node* mem     = in(MemNode::Memory);
2499   Node* address = in(MemNode::Address);
2500   // Back-to-back stores to same address?  Fold em up.  Generally
2501   // unsafe if I have intervening uses...  Also disallowed for StoreCM
2502   // since they must follow each StoreP operation.  Redundant StoreCMs
2503   // are eliminated just before matching in final_graph_reshape.
2504   {
2505     Node* st = mem;
2506     // If Store 'st' has more than one use, we cannot fold 'st' away.
2507     // For example, 'st' might be the final state at a conditional
2508     // return.  Or, 'st' might be used by some node which is live at
2509     // the same time 'st' is live, which might be unschedulable.  So,
2510     // require exactly ONE user until such time as we clone 'mem' for
2511     // each of 'mem's uses (thus making the exactly-1-user-rule hold
2512     // true).
2513     while (st->is_Store() && st->outcnt() == 1 && st->Opcode() != Op_StoreCM) {
2514       // Looking at a dead closed cycle of memory?
2515       assert(st != st->in(MemNode::Memory), "dead loop in StoreNode::Ideal");
2516       assert(Opcode() == st->Opcode() ||
2517              st->Opcode() == Op_StoreVector ||
2518              Opcode() == Op_StoreVector ||
2519              phase->C->get_alias_index(adr_type()) == Compile::AliasIdxRaw ||
2520              (Opcode() == Op_StoreL && st->Opcode() == Op_StoreI) || // expanded ClearArrayNode
2521              (Opcode() == Op_StoreI && st->Opcode() == Op_StoreL) || // initialization by arraycopy
2522              (is_mismatched_access() || st->as_Store()->is_mismatched_access()),
2523              "no mismatched stores, except on raw memory: %s %s", NodeClassNames[Opcode()], NodeClassNames[st->Opcode()]);
2524 
2525       if (st->in(MemNode::Address)->eqv_uncast(address) &&
2526           st->as_Store()->memory_size() <= this->memory_size()) {
2527         Node* use = st->raw_out(0);
2528         phase->igvn_rehash_node_delayed(use);
2529         if (can_reshape) {
2530           use->set_req_X(MemNode::Memory, st->in(MemNode::Memory), phase->is_IterGVN());
2531         } else {
2532           // It's OK to do this in the parser, since DU info is always accurate,
2533           // and the parser always refers to nodes via SafePointNode maps.
2534           use->set_req(MemNode::Memory, st->in(MemNode::Memory));
2535         }
2536         return this;
2537       }
2538       st = st->in(MemNode::Memory);
2539     }
2540   }
2541 
2542 
2543   // Capture an unaliased, unconditional, simple store into an initializer.
2544   // Or, if it is independent of the allocation, hoist it above the allocation.
2545   if (ReduceFieldZeroing && /*can_reshape &&*/
2546       mem->is_Proj() && mem->in(0)->is_Initialize()) {
2547     InitializeNode* init = mem->in(0)->as_Initialize();
2548     intptr_t offset = init->can_capture_store(this, phase, can_reshape);
2549     if (offset > 0) {
2550       Node* moved = init->capture_store(this, offset, phase, can_reshape);
2551       // If the InitializeNode captured me, it made a raw copy of me,
2552       // and I need to disappear.
2553       if (moved != NULL) {
2554         // %%% hack to ensure that Ideal returns a new node:
2555         mem = MergeMemNode::make(mem);
2556         return mem;             // fold me away
2557       }
2558     }
2559   }
2560 
2561   return NULL;                  // No further progress
2562 }
2563 
2564 //------------------------------Value-----------------------------------------
2565 const Type* StoreNode::Value(PhaseGVN* phase) const {
2566   // Either input is TOP ==> the result is TOP
2567   const Type *t1 = phase->type( in(MemNode::Memory) );
2568   if( t1 == Type::TOP ) return Type::TOP;
2569   const Type *t2 = phase->type( in(MemNode::Address) );
2570   if( t2 == Type::TOP ) return Type::TOP;
2571   const Type *t3 = phase->type( in(MemNode::ValueIn) );
2572   if( t3 == Type::TOP ) return Type::TOP;
2573   return Type::MEMORY;
2574 }
2575 
2576 //------------------------------Identity---------------------------------------
2577 // Remove redundant stores:
2578 //   Store(m, p, Load(m, p)) changes to m.
2579 //   Store(, p, x) -> Store(m, p, x) changes to Store(m, p, x).
2580 Node* StoreNode::Identity(PhaseGVN* phase) {
2581   Node* mem = in(MemNode::Memory);
2582   Node* adr = in(MemNode::Address);
2583   Node* val = in(MemNode::ValueIn);
2584 
2585   Node* result = this;
2586 
2587   // Load then Store?  Then the Store is useless
2588   if (val->is_Load() &&
2589       val->in(MemNode::Address)->eqv_uncast(adr) &&
2590       val->in(MemNode::Memory )->eqv_uncast(mem) &&
2591       val->as_Load()->store_Opcode() == Opcode()) {
2592     result = mem;
2593   }
2594 
2595   // Two stores in a row of the same value?
2596   if (result == this &&
2597       mem->is_Store() &&
2598       mem->in(MemNode::Address)->eqv_uncast(adr) &&
2599       mem->in(MemNode::ValueIn)->eqv_uncast(val) &&
2600       mem->Opcode() == Opcode()) {
2601     result = mem;
2602   }
2603 
2604   // Store of zero anywhere into a freshly-allocated object?
2605   // Then the store is useless.
2606   // (It must already have been captured by the InitializeNode.)
2607   if (result == this &&
2608       ReduceFieldZeroing && phase->type(val)->is_zero_type()) {
2609     // a newly allocated object is already all-zeroes everywhere
2610     if (mem->is_Proj() && mem->in(0)->is_Allocate()) {
2611       result = mem;
2612     }
2613 
2614     if (result == this) {
2615       // the store may also apply to zero-bits in an earlier object
2616       Node* prev_mem = find_previous_store(phase);
2617       // Steps (a), (b):  Walk past independent stores to find an exact match.
2618       if (prev_mem != NULL) {
2619         Node* prev_val = can_see_stored_value(prev_mem, phase);
2620         if (prev_val != NULL && phase->eqv(prev_val, val)) {
2621           // prev_val and val might differ by a cast; it would be good
2622           // to keep the more informative of the two.
2623           result = mem;
2624         }
2625       }
2626     }
2627   }
2628 
2629   if (result != this && phase->is_IterGVN() != NULL) {
2630     MemBarNode* trailing = trailing_membar();
2631     if (trailing != NULL) {
2632 #ifdef ASSERT
2633       const TypeOopPtr* t_oop = phase->type(in(Address))->isa_oopptr();
2634       assert(t_oop == NULL || t_oop->is_known_instance_field(), "only for non escaping objects");
2635 #endif
2636       PhaseIterGVN* igvn = phase->is_IterGVN();
2637       trailing->remove(igvn);
2638     }
2639   }
2640 
2641   return result;
2642 }
2643 
2644 //------------------------------match_edge-------------------------------------
2645 // Do we Match on this edge index or not?  Match only memory & value
2646 uint StoreNode::match_edge(uint idx) const {
2647   return idx == MemNode::Address || idx == MemNode::ValueIn;
2648 }
2649 
2650 //------------------------------cmp--------------------------------------------
2651 // Do not common stores up together.  They generally have to be split
2652 // back up anyways, so do not bother.
2653 uint StoreNode::cmp( const Node &n ) const {
2654   return (&n == this);          // Always fail except on self
2655 }
2656 
2657 //------------------------------Ideal_masked_input-----------------------------
2658 // Check for a useless mask before a partial-word store
2659 // (StoreB ... (AndI valIn conIa) )
2660 // If (conIa & mask == mask) this simplifies to
2661 // (StoreB ... (valIn) )
2662 Node *StoreNode::Ideal_masked_input(PhaseGVN *phase, uint mask) {
2663   Node *val = in(MemNode::ValueIn);
2664   if( val->Opcode() == Op_AndI ) {
2665     const TypeInt *t = phase->type( val->in(2) )->isa_int();
2666     if( t && t->is_con() && (t->get_con() & mask) == mask ) {
2667       set_req(MemNode::ValueIn, val->in(1));
2668       return this;
2669     }
2670   }
2671   return NULL;
2672 }
2673 
2674 
2675 //------------------------------Ideal_sign_extended_input----------------------
2676 // Check for useless sign-extension before a partial-word store
2677 // (StoreB ... (RShiftI _ (LShiftI _ valIn conIL ) conIR) )
2678 // If (conIL == conIR && conIR <= num_bits)  this simplifies to
2679 // (StoreB ... (valIn) )
2680 Node *StoreNode::Ideal_sign_extended_input(PhaseGVN *phase, int num_bits) {
2681   Node *val = in(MemNode::ValueIn);
2682   if( val->Opcode() == Op_RShiftI ) {
2683     const TypeInt *t = phase->type( val->in(2) )->isa_int();
2684     if( t && t->is_con() && (t->get_con() <= num_bits) ) {
2685       Node *shl = val->in(1);
2686       if( shl->Opcode() == Op_LShiftI ) {
2687         const TypeInt *t2 = phase->type( shl->in(2) )->isa_int();
2688         if( t2 && t2->is_con() && (t2->get_con() == t->get_con()) ) {
2689           set_req(MemNode::ValueIn, shl->in(1));
2690           return this;
2691         }
2692       }
2693     }
2694   }
2695   return NULL;
2696 }
2697 
2698 //------------------------------value_never_loaded-----------------------------------
2699 // Determine whether there are any possible loads of the value stored.
2700 // For simplicity, we actually check if there are any loads from the
2701 // address stored to, not just for loads of the value stored by this node.
2702 //
2703 bool StoreNode::value_never_loaded( PhaseTransform *phase) const {
2704   Node *adr = in(Address);
2705   const TypeOopPtr *adr_oop = phase->type(adr)->isa_oopptr();
2706   if (adr_oop == NULL)
2707     return false;
2708   if (!adr_oop->is_known_instance_field())
2709     return false; // if not a distinct instance, there may be aliases of the address
2710   for (DUIterator_Fast imax, i = adr->fast_outs(imax); i < imax; i++) {
2711     Node *use = adr->fast_out(i);
2712     if (use->is_Load() || use->is_LoadStore()) {
2713       return false;
2714     }
2715   }
2716   return true;
2717 }
2718 
2719 MemBarNode* StoreNode::trailing_membar() const {
2720   if (is_release()) {
2721     MemBarNode* trailing_mb = NULL;
2722     for (DUIterator_Fast imax, i = fast_outs(imax); i < imax; i++) {
2723       Node* u = fast_out(i);
2724       if (u->is_MemBar()) {
2725         if (u->as_MemBar()->trailing_store()) {
2726           assert(u->Opcode() == Op_MemBarVolatile, "");
2727           assert(trailing_mb == NULL, "only one");
2728           trailing_mb = u->as_MemBar();
2729 #ifdef ASSERT
2730           Node* leading = u->as_MemBar()->leading_membar();
2731           assert(leading->Opcode() == Op_MemBarRelease, "incorrect membar");
2732           assert(leading->as_MemBar()->leading_store(), "incorrect membar pair");
2733           assert(leading->as_MemBar()->trailing_membar() == u, "incorrect membar pair");
2734 #endif
2735         } else {
2736           assert(u->as_MemBar()->standalone(), "");
2737         }
2738       }
2739     }
2740     return trailing_mb;
2741   }
2742   return NULL;
2743 }
2744 
2745 
2746 //=============================================================================
2747 //------------------------------Ideal------------------------------------------
2748 // If the store is from an AND mask that leaves the low bits untouched, then
2749 // we can skip the AND operation.  If the store is from a sign-extension
2750 // (a left shift, then right shift) we can skip both.
2751 Node *StoreBNode::Ideal(PhaseGVN *phase, bool can_reshape){
2752   Node *progress = StoreNode::Ideal_masked_input(phase, 0xFF);
2753   if( progress != NULL ) return progress;
2754 
2755   progress = StoreNode::Ideal_sign_extended_input(phase, 24);
2756   if( progress != NULL ) return progress;
2757 
2758   // Finally check the default case
2759   return StoreNode::Ideal(phase, can_reshape);
2760 }
2761 
2762 //=============================================================================
2763 //------------------------------Ideal------------------------------------------
2764 // If the store is from an AND mask that leaves the low bits untouched, then
2765 // we can skip the AND operation
2766 Node *StoreCNode::Ideal(PhaseGVN *phase, bool can_reshape){
2767   Node *progress = StoreNode::Ideal_masked_input(phase, 0xFFFF);
2768   if( progress != NULL ) return progress;
2769 
2770   progress = StoreNode::Ideal_sign_extended_input(phase, 16);
2771   if( progress != NULL ) return progress;
2772 
2773   // Finally check the default case
2774   return StoreNode::Ideal(phase, can_reshape);
2775 }
2776 
2777 //=============================================================================
2778 //------------------------------Identity---------------------------------------
2779 Node* StoreCMNode::Identity(PhaseGVN* phase) {
2780   // No need to card mark when storing a null ptr
2781   Node* my_store = in(MemNode::OopStore);
2782   if (my_store->is_Store()) {
2783     const Type *t1 = phase->type( my_store->in(MemNode::ValueIn) );
2784     if( t1 == TypePtr::NULL_PTR ) {
2785       return in(MemNode::Memory);
2786     }
2787   }
2788   return this;
2789 }
2790 
2791 //=============================================================================
2792 //------------------------------Ideal---------------------------------------
2793 Node *StoreCMNode::Ideal(PhaseGVN *phase, bool can_reshape){
2794   Node* progress = StoreNode::Ideal(phase, can_reshape);
2795   if (progress != NULL) return progress;
2796 
2797   Node* my_store = in(MemNode::OopStore);
2798   if (my_store->is_MergeMem()) {
2799     Node* mem = my_store->as_MergeMem()->memory_at(oop_alias_idx());
2800     set_req(MemNode::OopStore, mem);
2801     return this;
2802   }
2803 
2804   return NULL;
2805 }
2806 
2807 //------------------------------Value-----------------------------------------
2808 const Type* StoreCMNode::Value(PhaseGVN* phase) const {
2809   // Either input is TOP ==> the result is TOP
2810   const Type *t = phase->type( in(MemNode::Memory) );
2811   if( t == Type::TOP ) return Type::TOP;
2812   t = phase->type( in(MemNode::Address) );
2813   if( t == Type::TOP ) return Type::TOP;
2814   t = phase->type( in(MemNode::ValueIn) );
2815   if( t == Type::TOP ) return Type::TOP;
2816   // If extra input is TOP ==> the result is TOP
2817   t = phase->type( in(MemNode::OopStore) );
2818   if( t == Type::TOP ) return Type::TOP;
2819 
2820   return StoreNode::Value( phase );
2821 }
2822 
2823 
2824 //=============================================================================
2825 //----------------------------------SCMemProjNode------------------------------
2826 const Type* SCMemProjNode::Value(PhaseGVN* phase) const
2827 {
2828   return bottom_type();
2829 }
2830 
2831 //=============================================================================
2832 //----------------------------------LoadStoreNode------------------------------
2833 LoadStoreNode::LoadStoreNode( Node *c, Node *mem, Node *adr, Node *val, const TypePtr* at, const Type* rt, uint required )
2834   : Node(required),
2835     _type(rt),
2836     _adr_type(at)
2837 {
2838   init_req(MemNode::Control, c  );
2839   init_req(MemNode::Memory , mem);
2840   init_req(MemNode::Address, adr);
2841   init_req(MemNode::ValueIn, val);
2842   init_class_id(Class_LoadStore);
2843 }
2844 
2845 uint LoadStoreNode::ideal_reg() const {
2846   return _type->ideal_reg();
2847 }
2848 
2849 bool LoadStoreNode::result_not_used() const {
2850   for( DUIterator_Fast imax, i = fast_outs(imax); i < imax; i++ ) {
2851     Node *x = fast_out(i);
2852     if (x->Opcode() == Op_SCMemProj) continue;
2853     return false;
2854   }
2855   return true;
2856 }
2857 
2858 MemBarNode* LoadStoreNode::trailing_membar() const {
2859   MemBarNode* trailing = NULL;
2860   for (DUIterator_Fast imax, i = fast_outs(imax); i < imax; i++) {
2861     Node* u = fast_out(i);
2862     if (u->is_MemBar()) {
2863       if (u->as_MemBar()->trailing_load_store()) {
2864         assert(u->Opcode() == Op_MemBarAcquire, "");
2865         assert(trailing == NULL, "only one");
2866         trailing = u->as_MemBar();
2867 #ifdef ASSERT
2868         Node* leading = trailing->leading_membar();
2869         assert(support_IRIW_for_not_multiple_copy_atomic_cpu || leading->Opcode() == Op_MemBarRelease, "incorrect membar");
2870         assert(leading->as_MemBar()->leading_load_store(), "incorrect membar pair");
2871         assert(leading->as_MemBar()->trailing_membar() == trailing, "incorrect membar pair");
2872 #endif
2873       } else {
2874         assert(u->as_MemBar()->standalone(), "wrong barrier kind");
2875       }
2876     }
2877   }
2878 
2879   return trailing;
2880 }
2881 
2882 uint LoadStoreNode::size_of() const { return sizeof(*this); }
2883 
2884 //=============================================================================
2885 //----------------------------------LoadStoreConditionalNode--------------------
2886 LoadStoreConditionalNode::LoadStoreConditionalNode( Node *c, Node *mem, Node *adr, Node *val, Node *ex ) : LoadStoreNode(c, mem, adr, val, NULL, TypeInt::BOOL, 5) {
2887   init_req(ExpectedIn, ex );
2888 }
2889 
2890 //=============================================================================
2891 //-------------------------------adr_type--------------------------------------
2892 const TypePtr* ClearArrayNode::adr_type() const {
2893   Node *adr = in(3);
2894   if (adr == NULL)  return NULL; // node is dead
2895   return MemNode::calculate_adr_type(adr->bottom_type());
2896 }
2897 
2898 //------------------------------match_edge-------------------------------------
2899 // Do we Match on this edge index or not?  Do not match memory
2900 uint ClearArrayNode::match_edge(uint idx) const {
2901   return idx > 1;
2902 }
2903 
2904 //------------------------------Identity---------------------------------------
2905 // Clearing a zero length array does nothing
2906 Node* ClearArrayNode::Identity(PhaseGVN* phase) {
2907   return phase->type(in(2))->higher_equal(TypeX::ZERO)  ? in(1) : this;
2908 }
2909 
2910 //------------------------------Idealize---------------------------------------
2911 // Clearing a short array is faster with stores
2912 Node *ClearArrayNode::Ideal(PhaseGVN *phase, bool can_reshape) {
2913   // Already know this is a large node, do not try to ideal it
2914   if (!IdealizeClearArrayNode || _is_large) return NULL;
2915 
2916   const int unit = BytesPerLong;
2917   const TypeX* t = phase->type(in(2))->isa_intptr_t();
2918   if (!t)  return NULL;
2919   if (!t->is_con())  return NULL;
2920   intptr_t raw_count = t->get_con();
2921   intptr_t size = raw_count;
2922   if (!Matcher::init_array_count_is_in_bytes) size *= unit;
2923   // Clearing nothing uses the Identity call.
2924   // Negative clears are possible on dead ClearArrays
2925   // (see jck test stmt114.stmt11402.val).
2926   if (size <= 0 || size % unit != 0)  return NULL;
2927   intptr_t count = size / unit;
2928   // Length too long; communicate this to matchers and assemblers.
2929   // Assemblers are responsible to produce fast hardware clears for it.
2930   if (size > InitArrayShortSize) {
2931     return new ClearArrayNode(in(0), in(1), in(2), in(3), true);
2932   }
2933   Node *mem = in(1);
2934   if( phase->type(mem)==Type::TOP ) return NULL;
2935   Node *adr = in(3);
2936   const Type* at = phase->type(adr);
2937   if( at==Type::TOP ) return NULL;
2938   const TypePtr* atp = at->isa_ptr();
2939   // adjust atp to be the correct array element address type
2940   if (atp == NULL)  atp = TypePtr::BOTTOM;
2941   else              atp = atp->add_offset(Type::OffsetBot);
2942   // Get base for derived pointer purposes
2943   if( adr->Opcode() != Op_AddP ) Unimplemented();
2944   Node *base = adr->in(1);
2945 
2946   Node *zero = phase->makecon(TypeLong::ZERO);
2947   Node *off  = phase->MakeConX(BytesPerLong);
2948   mem = new StoreLNode(in(0),mem,adr,atp,zero,MemNode::unordered,false);
2949   count--;
2950   while( count-- ) {
2951     mem = phase->transform(mem);
2952     adr = phase->transform(new AddPNode(base,adr,off));
2953     mem = new StoreLNode(in(0),mem,adr,atp,zero,MemNode::unordered,false);
2954   }
2955   return mem;
2956 }
2957 
2958 //----------------------------step_through----------------------------------
2959 // Return allocation input memory edge if it is different instance
2960 // or itself if it is the one we are looking for.
2961 bool ClearArrayNode::step_through(Node** np, uint instance_id, PhaseTransform* phase) {
2962   Node* n = *np;
2963   assert(n->is_ClearArray(), "sanity");
2964   intptr_t offset;
2965   AllocateNode* alloc = AllocateNode::Ideal_allocation(n->in(3), phase, offset);
2966   // This method is called only before Allocate nodes are expanded
2967   // during macro nodes expansion. Before that ClearArray nodes are
2968   // only generated in PhaseMacroExpand::generate_arraycopy() (before
2969   // Allocate nodes are expanded) which follows allocations.
2970   assert(alloc != NULL, "should have allocation");
2971   if (alloc->_idx == instance_id) {
2972     // Can not bypass initialization of the instance we are looking for.
2973     return false;
2974   }
2975   // Otherwise skip it.
2976   InitializeNode* init = alloc->initialization();
2977   if (init != NULL)
2978     *np = init->in(TypeFunc::Memory);
2979   else
2980     *np = alloc->in(TypeFunc::Memory);
2981   return true;
2982 }
2983 
2984 //----------------------------clear_memory-------------------------------------
2985 // Generate code to initialize object storage to zero.
2986 Node* ClearArrayNode::clear_memory(Node* ctl, Node* mem, Node* dest,
2987                                    intptr_t start_offset,
2988                                    Node* end_offset,
2989                                    PhaseGVN* phase) {
2990   intptr_t offset = start_offset;
2991 
2992   int unit = BytesPerLong;
2993   if ((offset % unit) != 0) {
2994     Node* adr = new AddPNode(dest, dest, phase->MakeConX(offset));
2995     adr = phase->transform(adr);
2996     const TypePtr* atp = TypeRawPtr::BOTTOM;
2997     mem = StoreNode::make(*phase, ctl, mem, adr, atp, phase->zerocon(T_INT), T_INT, MemNode::unordered);
2998     mem = phase->transform(mem);
2999     offset += BytesPerInt;
3000   }
3001   assert((offset % unit) == 0, "");
3002 
3003   // Initialize the remaining stuff, if any, with a ClearArray.
3004   return clear_memory(ctl, mem, dest, phase->MakeConX(offset), end_offset, phase);
3005 }
3006 
3007 Node* ClearArrayNode::clear_memory(Node* ctl, Node* mem, Node* dest,
3008                                    Node* start_offset,
3009                                    Node* end_offset,
3010                                    PhaseGVN* phase) {
3011   if (start_offset == end_offset) {
3012     // nothing to do
3013     return mem;
3014   }
3015 
3016   int unit = BytesPerLong;
3017   Node* zbase = start_offset;
3018   Node* zend  = end_offset;
3019 
3020   // Scale to the unit required by the CPU:
3021   if (!Matcher::init_array_count_is_in_bytes) {
3022     Node* shift = phase->intcon(exact_log2(unit));
3023     zbase = phase->transform(new URShiftXNode(zbase, shift) );
3024     zend  = phase->transform(new URShiftXNode(zend,  shift) );
3025   }
3026 
3027   // Bulk clear double-words
3028   Node* zsize = phase->transform(new SubXNode(zend, zbase) );
3029   Node* adr = phase->transform(new AddPNode(dest, dest, start_offset) );
3030   mem = new ClearArrayNode(ctl, mem, zsize, adr, false);
3031   return phase->transform(mem);
3032 }
3033 
3034 Node* ClearArrayNode::clear_memory(Node* ctl, Node* mem, Node* dest,
3035                                    intptr_t start_offset,
3036                                    intptr_t end_offset,
3037                                    PhaseGVN* phase) {
3038   if (start_offset == end_offset) {
3039     // nothing to do
3040     return mem;
3041   }
3042 
3043   assert((end_offset % BytesPerInt) == 0, "odd end offset");
3044   intptr_t done_offset = end_offset;
3045   if ((done_offset % BytesPerLong) != 0) {
3046     done_offset -= BytesPerInt;
3047   }
3048   if (done_offset > start_offset) {
3049     mem = clear_memory(ctl, mem, dest,
3050                        start_offset, phase->MakeConX(done_offset), phase);
3051   }
3052   if (done_offset < end_offset) { // emit the final 32-bit store
3053     Node* adr = new AddPNode(dest, dest, phase->MakeConX(done_offset));
3054     adr = phase->transform(adr);
3055     const TypePtr* atp = TypeRawPtr::BOTTOM;
3056     mem = StoreNode::make(*phase, ctl, mem, adr, atp, phase->zerocon(T_INT), T_INT, MemNode::unordered);
3057     mem = phase->transform(mem);
3058     done_offset += BytesPerInt;
3059   }
3060   assert(done_offset == end_offset, "");
3061   return mem;
3062 }
3063 
3064 //=============================================================================
3065 MemBarNode::MemBarNode(Compile* C, int alias_idx, Node* precedent)
3066   : MultiNode(TypeFunc::Parms + (precedent == NULL? 0: 1)),
3067     _adr_type(C->get_adr_type(alias_idx)), _kind(Standalone)
3068 #ifdef ASSERT
3069   , _pair_idx(0)
3070 #endif
3071 {
3072   init_class_id(Class_MemBar);
3073   Node* top = C->top();
3074   init_req(TypeFunc::I_O,top);
3075   init_req(TypeFunc::FramePtr,top);
3076   init_req(TypeFunc::ReturnAdr,top);
3077   if (precedent != NULL)
3078     init_req(TypeFunc::Parms, precedent);
3079 }
3080 
3081 //------------------------------cmp--------------------------------------------
3082 uint MemBarNode::hash() const { return NO_HASH; }
3083 uint MemBarNode::cmp( const Node &n ) const {
3084   return (&n == this);          // Always fail except on self
3085 }
3086 
3087 //------------------------------make-------------------------------------------
3088 MemBarNode* MemBarNode::make(Compile* C, int opcode, int atp, Node* pn) {
3089   switch (opcode) {
3090   case Op_MemBarAcquire:     return new MemBarAcquireNode(C, atp, pn);
3091   case Op_LoadFence:         return new LoadFenceNode(C, atp, pn);
3092   case Op_MemBarRelease:     return new MemBarReleaseNode(C, atp, pn);
3093   case Op_StoreFence:        return new StoreFenceNode(C, atp, pn);
3094   case Op_MemBarAcquireLock: return new MemBarAcquireLockNode(C, atp, pn);
3095   case Op_MemBarReleaseLock: return new MemBarReleaseLockNode(C, atp, pn);
3096   case Op_MemBarVolatile:    return new MemBarVolatileNode(C, atp, pn);
3097   case Op_MemBarCPUOrder:    return new MemBarCPUOrderNode(C, atp, pn);
3098   case Op_OnSpinWait:        return new OnSpinWaitNode(C, atp, pn);
3099   case Op_Initialize:        return new InitializeNode(C, atp, pn);
3100   case Op_MemBarStoreStore:  return new MemBarStoreStoreNode(C, atp, pn);
3101   default: ShouldNotReachHere(); return NULL;
3102   }
3103 }
3104 
3105 void MemBarNode::remove(PhaseIterGVN *igvn) {
3106   if (outcnt() != 2) {
3107     return;
3108   }
3109   if (trailing_store() || trailing_load_store()) {
3110     MemBarNode* leading = leading_membar();
3111     if (leading != NULL) {
3112       assert(leading->trailing_membar() == this, "inconsistent leading/trailing membars");
3113       leading->remove(igvn);
3114     }
3115   }
3116   igvn->replace_node(proj_out(TypeFunc::Memory), in(TypeFunc::Memory));
3117   igvn->replace_node(proj_out(TypeFunc::Control), in(TypeFunc::Control));
3118 }
3119 
3120 //------------------------------Ideal------------------------------------------
3121 // Return a node which is more "ideal" than the current node.  Strip out
3122 // control copies
3123 Node *MemBarNode::Ideal(PhaseGVN *phase, bool can_reshape) {
3124   if (remove_dead_region(phase, can_reshape)) return this;
3125   // Don't bother trying to transform a dead node
3126   if (in(0) && in(0)->is_top()) {
3127     return NULL;
3128   }
3129 
3130 #if INCLUDE_ZGC
3131   if (UseZGC) {
3132     if (req() == (Precedent+1) && in(MemBarNode::Precedent)->in(0) != NULL && in(MemBarNode::Precedent)->in(0)->is_LoadBarrier()) {
3133       Node* load_node = in(MemBarNode::Precedent)->in(0)->in(LoadBarrierNode::Oop);
3134       set_req(MemBarNode::Precedent, load_node);
3135       return this;
3136     }
3137   }
3138 #endif
3139 
3140   bool progress = false;
3141   // Eliminate volatile MemBars for scalar replaced objects.
3142   if (can_reshape && req() == (Precedent+1)) {
3143     bool eliminate = false;
3144     int opc = Opcode();
3145     if ((opc == Op_MemBarAcquire || opc == Op_MemBarVolatile)) {
3146       // Volatile field loads and stores.
3147       Node* my_mem = in(MemBarNode::Precedent);
3148       // The MembarAquire may keep an unused LoadNode alive through the Precedent edge
3149       if ((my_mem != NULL) && (opc == Op_MemBarAcquire) && (my_mem->outcnt() == 1)) {
3150         // if the Precedent is a decodeN and its input (a Load) is used at more than one place,
3151         // replace this Precedent (decodeN) with the Load instead.
3152         if ((my_mem->Opcode() == Op_DecodeN) && (my_mem->in(1)->outcnt() > 1))  {
3153           Node* load_node = my_mem->in(1);
3154           set_req(MemBarNode::Precedent, load_node);
3155           phase->is_IterGVN()->_worklist.push(my_mem);
3156           my_mem = load_node;
3157         } else {
3158           assert(my_mem->unique_out() == this, "sanity");
3159           del_req(Precedent);
3160           phase->is_IterGVN()->_worklist.push(my_mem); // remove dead node later
3161           my_mem = NULL;
3162         }
3163         progress = true;
3164       }
3165       if (my_mem != NULL && my_mem->is_Mem()) {
3166         const TypeOopPtr* t_oop = my_mem->in(MemNode::Address)->bottom_type()->isa_oopptr();
3167         // Check for scalar replaced object reference.
3168         if( t_oop != NULL && t_oop->is_known_instance_field() &&
3169             t_oop->offset() != Type::OffsetBot &&
3170             t_oop->offset() != Type::OffsetTop) {
3171           eliminate = true;
3172         }
3173       }
3174     } else if (opc == Op_MemBarRelease) {
3175       // Final field stores.
3176       Node* alloc = AllocateNode::Ideal_allocation(in(MemBarNode::Precedent), phase);
3177       if ((alloc != NULL) && alloc->is_Allocate() &&
3178           alloc->as_Allocate()->does_not_escape_thread()) {
3179         // The allocated object does not escape.
3180         eliminate = true;
3181       }
3182     }
3183     if (eliminate) {
3184       // Replace MemBar projections by its inputs.
3185       PhaseIterGVN* igvn = phase->is_IterGVN();
3186       remove(igvn);
3187       // Must return either the original node (now dead) or a new node
3188       // (Do not return a top here, since that would break the uniqueness of top.)
3189       return new ConINode(TypeInt::ZERO);
3190     }
3191   }
3192   return progress ? this : NULL;
3193 }
3194 
3195 //------------------------------Value------------------------------------------
3196 const Type* MemBarNode::Value(PhaseGVN* phase) const {
3197   if( !in(0) ) return Type::TOP;
3198   if( phase->type(in(0)) == Type::TOP )
3199     return Type::TOP;
3200   return TypeTuple::MEMBAR;
3201 }
3202 
3203 //------------------------------match------------------------------------------
3204 // Construct projections for memory.
3205 Node *MemBarNode::match( const ProjNode *proj, const Matcher *m ) {
3206   switch (proj->_con) {
3207   case TypeFunc::Control:
3208   case TypeFunc::Memory:
3209     return new MachProjNode(this,proj->_con,RegMask::Empty,MachProjNode::unmatched_proj);
3210   }
3211   ShouldNotReachHere();
3212   return NULL;
3213 }
3214 
3215 void MemBarNode::set_store_pair(MemBarNode* leading, MemBarNode* trailing) {
3216   trailing->_kind = TrailingStore;
3217   leading->_kind = LeadingStore;
3218 #ifdef ASSERT
3219   trailing->_pair_idx = leading->_idx;
3220   leading->_pair_idx = leading->_idx;
3221 #endif
3222 }
3223 
3224 void MemBarNode::set_load_store_pair(MemBarNode* leading, MemBarNode* trailing) {
3225   trailing->_kind = TrailingLoadStore;
3226   leading->_kind = LeadingLoadStore;
3227 #ifdef ASSERT
3228   trailing->_pair_idx = leading->_idx;
3229   leading->_pair_idx = leading->_idx;
3230 #endif
3231 }
3232 
3233 MemBarNode* MemBarNode::trailing_membar() const {
3234   ResourceMark rm;
3235   Node* trailing = (Node*)this;
3236   VectorSet seen(Thread::current()->resource_area());
3237   Node_Stack multis(0);
3238   do {
3239     Node* c = trailing;
3240     uint i = 0;
3241     do {
3242       trailing = NULL;
3243       for (; i < c->outcnt(); i++) {
3244         Node* next = c->raw_out(i);
3245         if (next != c && next->is_CFG()) {
3246           if (c->is_MultiBranch()) {
3247             if (multis.node() == c) {
3248               multis.set_index(i+1);
3249             } else {
3250               multis.push(c, i+1);
3251             }
3252           }
3253           trailing = next;
3254           break;
3255         }
3256       }
3257       if (trailing != NULL && !seen.test_set(trailing->_idx)) {
3258         break;
3259       }
3260       while (multis.size() > 0) {
3261         c = multis.node();
3262         i = multis.index();
3263         if (i < c->req()) {
3264           break;
3265         }
3266         multis.pop();
3267       }
3268     } while (multis.size() > 0);
3269   } while (!trailing->is_MemBar() || !trailing->as_MemBar()->trailing());
3270 
3271   MemBarNode* mb = trailing->as_MemBar();
3272   assert((mb->_kind == TrailingStore && _kind == LeadingStore) ||
3273          (mb->_kind == TrailingLoadStore && _kind == LeadingLoadStore), "bad trailing membar");
3274   assert(mb->_pair_idx == _pair_idx, "bad trailing membar");
3275   return mb;
3276 }
3277 
3278 MemBarNode* MemBarNode::leading_membar() const {
3279   ResourceMark rm;
3280   VectorSet seen(Thread::current()->resource_area());
3281   Node_Stack regions(0);
3282   Node* leading = in(0);
3283   while (leading != NULL && (!leading->is_MemBar() || !leading->as_MemBar()->leading())) {
3284     while (leading == NULL || leading->is_top() || seen.test_set(leading->_idx)) {
3285       leading = NULL;
3286       while (regions.size() > 0 && leading == NULL) {
3287         Node* r = regions.node();
3288         uint i = regions.index();
3289         if (i < r->req()) {
3290           leading = r->in(i);
3291           regions.set_index(i+1);
3292         } else {
3293           regions.pop();
3294         }
3295       }
3296       if (leading == NULL) {
3297         assert(regions.size() == 0, "all paths should have been tried");
3298         return NULL;
3299       }
3300     }
3301     if (leading->is_Region()) {
3302       regions.push(leading, 2);
3303       leading = leading->in(1);
3304     } else {
3305       leading = leading->in(0);
3306     }
3307   }
3308 #ifdef ASSERT
3309   Unique_Node_List wq;
3310   wq.push((Node*)this);
3311   uint found = 0;
3312   for (uint i = 0; i < wq.size(); i++) {
3313     Node* n = wq.at(i);
3314     if (n->is_Region()) {
3315       for (uint j = 1; j < n->req(); j++) {
3316         Node* in = n->in(j);
3317         if (in != NULL && !in->is_top()) {
3318           wq.push(in);
3319         }
3320       }
3321     } else {
3322       if (n->is_MemBar() && n->as_MemBar()->leading()) {
3323         assert(n == leading, "consistency check failed");
3324         found++;
3325       } else {
3326         Node* in = n->in(0);
3327         if (in != NULL && !in->is_top()) {
3328           wq.push(in);
3329         }
3330       }
3331     }
3332   }
3333   assert(found == 1 || (found == 0 && leading == NULL), "consistency check failed");
3334 #endif
3335   if (leading == NULL) {
3336     return NULL;
3337   }
3338   MemBarNode* mb = leading->as_MemBar();
3339   assert((mb->_kind == LeadingStore && _kind == TrailingStore) ||
3340          (mb->_kind == LeadingLoadStore && _kind == TrailingLoadStore), "bad leading membar");
3341   assert(mb->_pair_idx == _pair_idx, "bad leading membar");
3342   return mb;
3343 }
3344 
3345 //===========================InitializeNode====================================
3346 // SUMMARY:
3347 // This node acts as a memory barrier on raw memory, after some raw stores.
3348 // The 'cooked' oop value feeds from the Initialize, not the Allocation.
3349 // The Initialize can 'capture' suitably constrained stores as raw inits.
3350 // It can coalesce related raw stores into larger units (called 'tiles').
3351 // It can avoid zeroing new storage for memory units which have raw inits.
3352 // At macro-expansion, it is marked 'complete', and does not optimize further.
3353 //
3354 // EXAMPLE:
3355 // The object 'new short[2]' occupies 16 bytes in a 32-bit machine.
3356 //   ctl = incoming control; mem* = incoming memory
3357 // (Note:  A star * on a memory edge denotes I/O and other standard edges.)
3358 // First allocate uninitialized memory and fill in the header:
3359 //   alloc = (Allocate ctl mem* 16 #short[].klass ...)
3360 //   ctl := alloc.Control; mem* := alloc.Memory*
3361 //   rawmem = alloc.Memory; rawoop = alloc.RawAddress
3362 // Then initialize to zero the non-header parts of the raw memory block:
3363 //   init = (Initialize alloc.Control alloc.Memory* alloc.RawAddress)
3364 //   ctl := init.Control; mem.SLICE(#short[*]) := init.Memory
3365 // After the initialize node executes, the object is ready for service:
3366 //   oop := (CheckCastPP init.Control alloc.RawAddress #short[])
3367 // Suppose its body is immediately initialized as {1,2}:
3368 //   store1 = (StoreC init.Control init.Memory (+ oop 12) 1)
3369 //   store2 = (StoreC init.Control store1      (+ oop 14) 2)
3370 //   mem.SLICE(#short[*]) := store2
3371 //
3372 // DETAILS:
3373 // An InitializeNode collects and isolates object initialization after
3374 // an AllocateNode and before the next possible safepoint.  As a
3375 // memory barrier (MemBarNode), it keeps critical stores from drifting
3376 // down past any safepoint or any publication of the allocation.
3377 // Before this barrier, a newly-allocated object may have uninitialized bits.
3378 // After this barrier, it may be treated as a real oop, and GC is allowed.
3379 //
3380 // The semantics of the InitializeNode include an implicit zeroing of
3381 // the new object from object header to the end of the object.
3382 // (The object header and end are determined by the AllocateNode.)
3383 //
3384 // Certain stores may be added as direct inputs to the InitializeNode.
3385 // These stores must update raw memory, and they must be to addresses
3386 // derived from the raw address produced by AllocateNode, and with
3387 // a constant offset.  They must be ordered by increasing offset.
3388 // The first one is at in(RawStores), the last at in(req()-1).
3389 // Unlike most memory operations, they are not linked in a chain,
3390 // but are displayed in parallel as users of the rawmem output of
3391 // the allocation.
3392 //
3393 // (See comments in InitializeNode::capture_store, which continue
3394 // the example given above.)
3395 //
3396 // When the associated Allocate is macro-expanded, the InitializeNode
3397 // may be rewritten to optimize collected stores.  A ClearArrayNode
3398 // may also be created at that point to represent any required zeroing.
3399 // The InitializeNode is then marked 'complete', prohibiting further
3400 // capturing of nearby memory operations.
3401 //
3402 // During macro-expansion, all captured initializations which store
3403 // constant values of 32 bits or smaller are coalesced (if advantageous)
3404 // into larger 'tiles' 32 or 64 bits.  This allows an object to be
3405 // initialized in fewer memory operations.  Memory words which are
3406 // covered by neither tiles nor non-constant stores are pre-zeroed
3407 // by explicit stores of zero.  (The code shape happens to do all
3408 // zeroing first, then all other stores, with both sequences occurring
3409 // in order of ascending offsets.)
3410 //
3411 // Alternatively, code may be inserted between an AllocateNode and its
3412 // InitializeNode, to perform arbitrary initialization of the new object.
3413 // E.g., the object copying intrinsics insert complex data transfers here.
3414 // The initialization must then be marked as 'complete' disable the
3415 // built-in zeroing semantics and the collection of initializing stores.
3416 //
3417 // While an InitializeNode is incomplete, reads from the memory state
3418 // produced by it are optimizable if they match the control edge and
3419 // new oop address associated with the allocation/initialization.
3420 // They return a stored value (if the offset matches) or else zero.
3421 // A write to the memory state, if it matches control and address,
3422 // and if it is to a constant offset, may be 'captured' by the
3423 // InitializeNode.  It is cloned as a raw memory operation and rewired
3424 // inside the initialization, to the raw oop produced by the allocation.
3425 // Operations on addresses which are provably distinct (e.g., to
3426 // other AllocateNodes) are allowed to bypass the initialization.
3427 //
3428 // The effect of all this is to consolidate object initialization
3429 // (both arrays and non-arrays, both piecewise and bulk) into a
3430 // single location, where it can be optimized as a unit.
3431 //
3432 // Only stores with an offset less than TrackedInitializationLimit words
3433 // will be considered for capture by an InitializeNode.  This puts a
3434 // reasonable limit on the complexity of optimized initializations.
3435 
3436 //---------------------------InitializeNode------------------------------------
3437 InitializeNode::InitializeNode(Compile* C, int adr_type, Node* rawoop)
3438   : _is_complete(Incomplete), _does_not_escape(false),
3439     MemBarNode(C, adr_type, rawoop)
3440 {
3441   init_class_id(Class_Initialize);
3442 
3443   assert(adr_type == Compile::AliasIdxRaw, "only valid atp");
3444   assert(in(RawAddress) == rawoop, "proper init");
3445   // Note:  allocation() can be NULL, for secondary initialization barriers
3446 }
3447 
3448 // Since this node is not matched, it will be processed by the
3449 // register allocator.  Declare that there are no constraints
3450 // on the allocation of the RawAddress edge.
3451 const RegMask &InitializeNode::in_RegMask(uint idx) const {
3452   // This edge should be set to top, by the set_complete.  But be conservative.
3453   if (idx == InitializeNode::RawAddress)
3454     return *(Compile::current()->matcher()->idealreg2spillmask[in(idx)->ideal_reg()]);
3455   return RegMask::Empty;
3456 }
3457 
3458 Node* InitializeNode::memory(uint alias_idx) {
3459   Node* mem = in(Memory);
3460   if (mem->is_MergeMem()) {
3461     return mem->as_MergeMem()->memory_at(alias_idx);
3462   } else {
3463     // incoming raw memory is not split
3464     return mem;
3465   }
3466 }
3467 
3468 bool InitializeNode::is_non_zero() {
3469   if (is_complete())  return false;
3470   remove_extra_zeroes();
3471   return (req() > RawStores);
3472 }
3473 
3474 void InitializeNode::set_complete(PhaseGVN* phase) {
3475   assert(!is_complete(), "caller responsibility");
3476   _is_complete = Complete;
3477 
3478   // After this node is complete, it contains a bunch of
3479   // raw-memory initializations.  There is no need for
3480   // it to have anything to do with non-raw memory effects.
3481   // Therefore, tell all non-raw users to re-optimize themselves,
3482   // after skipping the memory effects of this initialization.
3483   PhaseIterGVN* igvn = phase->is_IterGVN();
3484   if (igvn)  igvn->add_users_to_worklist(this);
3485 }
3486 
3487 // convenience function
3488 // return false if the init contains any stores already
3489 bool AllocateNode::maybe_set_complete(PhaseGVN* phase) {
3490   InitializeNode* init = initialization();
3491   if (init == NULL || init->is_complete())  return false;
3492   init->remove_extra_zeroes();
3493   // for now, if this allocation has already collected any inits, bail:
3494   if (init->is_non_zero())  return false;
3495   init->set_complete(phase);
3496   return true;
3497 }
3498 
3499 void InitializeNode::remove_extra_zeroes() {
3500   if (req() == RawStores)  return;
3501   Node* zmem = zero_memory();
3502   uint fill = RawStores;
3503   for (uint i = fill; i < req(); i++) {
3504     Node* n = in(i);
3505     if (n->is_top() || n == zmem)  continue;  // skip
3506     if (fill < i)  set_req(fill, n);          // compact
3507     ++fill;
3508   }
3509   // delete any empty spaces created:
3510   while (fill < req()) {
3511     del_req(fill);
3512   }
3513 }
3514 
3515 // Helper for remembering which stores go with which offsets.
3516 intptr_t InitializeNode::get_store_offset(Node* st, PhaseTransform* phase) {
3517   if (!st->is_Store())  return -1;  // can happen to dead code via subsume_node
3518   intptr_t offset = -1;
3519   Node* base = AddPNode::Ideal_base_and_offset(st->in(MemNode::Address),
3520                                                phase, offset);
3521   if (base == NULL)     return -1;  // something is dead,
3522   if (offset < 0)       return -1;  //        dead, dead
3523   return offset;
3524 }
3525 
3526 // Helper for proving that an initialization expression is
3527 // "simple enough" to be folded into an object initialization.
3528 // Attempts to prove that a store's initial value 'n' can be captured
3529 // within the initialization without creating a vicious cycle, such as:
3530 //     { Foo p = new Foo(); p.next = p; }
3531 // True for constants and parameters and small combinations thereof.
3532 bool InitializeNode::detect_init_independence(Node* n, int& count) {
3533   if (n == NULL)      return true;   // (can this really happen?)
3534   if (n->is_Proj())   n = n->in(0);
3535   if (n == this)      return false;  // found a cycle
3536   if (n->is_Con())    return true;
3537   if (n->is_Start())  return true;   // params, etc., are OK
3538   if (n->is_Root())   return true;   // even better
3539 
3540   Node* ctl = n->in(0);
3541   if (ctl != NULL && !ctl->is_top()) {
3542     if (ctl->is_Proj())  ctl = ctl->in(0);
3543     if (ctl == this)  return false;
3544 
3545     // If we already know that the enclosing memory op is pinned right after
3546     // the init, then any control flow that the store has picked up
3547     // must have preceded the init, or else be equal to the init.
3548     // Even after loop optimizations (which might change control edges)
3549     // a store is never pinned *before* the availability of its inputs.
3550     if (!MemNode::all_controls_dominate(n, this))
3551       return false;                  // failed to prove a good control
3552   }
3553 
3554   // Check data edges for possible dependencies on 'this'.
3555   if ((count += 1) > 20)  return false;  // complexity limit
3556   for (uint i = 1; i < n->req(); i++) {
3557     Node* m = n->in(i);
3558     if (m == NULL || m == n || m->is_top())  continue;
3559     uint first_i = n->find_edge(m);
3560     if (i != first_i)  continue;  // process duplicate edge just once
3561     if (!detect_init_independence(m, count)) {
3562       return false;
3563     }
3564   }
3565 
3566   return true;
3567 }
3568 
3569 // Here are all the checks a Store must pass before it can be moved into
3570 // an initialization.  Returns zero if a check fails.
3571 // On success, returns the (constant) offset to which the store applies,
3572 // within the initialized memory.
3573 intptr_t InitializeNode::can_capture_store(StoreNode* st, PhaseTransform* phase, bool can_reshape) {
3574   const int FAIL = 0;
3575   if (st->req() != MemNode::ValueIn + 1)
3576     return FAIL;                // an inscrutable StoreNode (card mark?)
3577   Node* ctl = st->in(MemNode::Control);
3578   if (!(ctl != NULL && ctl->is_Proj() && ctl->in(0) == this))
3579     return FAIL;                // must be unconditional after the initialization
3580   Node* mem = st->in(MemNode::Memory);
3581   if (!(mem->is_Proj() && mem->in(0) == this))
3582     return FAIL;                // must not be preceded by other stores
3583   Node* adr = st->in(MemNode::Address);
3584   intptr_t offset;
3585   AllocateNode* alloc = AllocateNode::Ideal_allocation(adr, phase, offset);
3586   if (alloc == NULL)
3587     return FAIL;                // inscrutable address
3588   if (alloc != allocation())
3589     return FAIL;                // wrong allocation!  (store needs to float up)
3590   int size_in_bytes = st->memory_size();
3591   if ((size_in_bytes != 0) && (offset % size_in_bytes) != 0) {
3592     return FAIL;                // mismatched access
3593   }
3594   Node* val = st->in(MemNode::ValueIn);
3595   int complexity_count = 0;
3596   if (!detect_init_independence(val, complexity_count))
3597     return FAIL;                // stored value must be 'simple enough'
3598 
3599   // The Store can be captured only if nothing after the allocation
3600   // and before the Store is using the memory location that the store
3601   // overwrites.
3602   bool failed = false;
3603   // If is_complete_with_arraycopy() is true the shape of the graph is
3604   // well defined and is safe so no need for extra checks.
3605   if (!is_complete_with_arraycopy()) {
3606     // We are going to look at each use of the memory state following
3607     // the allocation to make sure nothing reads the memory that the
3608     // Store writes.
3609     const TypePtr* t_adr = phase->type(adr)->isa_ptr();
3610     int alias_idx = phase->C->get_alias_index(t_adr);
3611     ResourceMark rm;
3612     Unique_Node_List mems;
3613     mems.push(mem);
3614     Node* unique_merge = NULL;
3615     for (uint next = 0; next < mems.size(); ++next) {
3616       Node *m  = mems.at(next);
3617       for (DUIterator_Fast jmax, j = m->fast_outs(jmax); j < jmax; j++) {
3618         Node *n = m->fast_out(j);
3619         if (n->outcnt() == 0) {
3620           continue;
3621         }
3622         if (n == st) {
3623           continue;
3624         } else if (n->in(0) != NULL && n->in(0) != ctl) {
3625           // If the control of this use is different from the control
3626           // of the Store which is right after the InitializeNode then
3627           // this node cannot be between the InitializeNode and the
3628           // Store.
3629           continue;
3630         } else if (n->is_MergeMem()) {
3631           if (n->as_MergeMem()->memory_at(alias_idx) == m) {
3632             // We can hit a MergeMemNode (that will likely go away
3633             // later) that is a direct use of the memory state
3634             // following the InitializeNode on the same slice as the
3635             // store node that we'd like to capture. We need to check
3636             // the uses of the MergeMemNode.
3637             mems.push(n);
3638           }
3639         } else if (n->is_Mem()) {
3640           Node* other_adr = n->in(MemNode::Address);
3641           if (other_adr == adr) {
3642             failed = true;
3643             break;
3644           } else {
3645             const TypePtr* other_t_adr = phase->type(other_adr)->isa_ptr();
3646             if (other_t_adr != NULL) {
3647               int other_alias_idx = phase->C->get_alias_index(other_t_adr);
3648               if (other_alias_idx == alias_idx) {
3649                 // A load from the same memory slice as the store right
3650                 // after the InitializeNode. We check the control of the
3651                 // object/array that is loaded from. If it's the same as
3652                 // the store control then we cannot capture the store.
3653                 assert(!n->is_Store(), "2 stores to same slice on same control?");
3654                 Node* base = other_adr;
3655                 assert(base->is_AddP(), "should be addp but is %s", base->Name());
3656                 base = base->in(AddPNode::Base);
3657                 if (base != NULL) {
3658                   base = base->uncast();
3659                   if (base->is_Proj() && base->in(0) == alloc) {
3660                     failed = true;
3661                     break;
3662                   }
3663                 }
3664               }
3665             }
3666           }
3667         } else {
3668           failed = true;
3669           break;
3670         }
3671       }
3672     }
3673   }
3674   if (failed) {
3675     if (!can_reshape) {
3676       // We decided we couldn't capture the store during parsing. We
3677       // should try again during the next IGVN once the graph is
3678       // cleaner.
3679       phase->C->record_for_igvn(st);
3680     }
3681     return FAIL;
3682   }
3683 
3684   return offset;                // success
3685 }
3686 
3687 // Find the captured store in(i) which corresponds to the range
3688 // [start..start+size) in the initialized object.
3689 // If there is one, return its index i.  If there isn't, return the
3690 // negative of the index where it should be inserted.
3691 // Return 0 if the queried range overlaps an initialization boundary
3692 // or if dead code is encountered.
3693 // If size_in_bytes is zero, do not bother with overlap checks.
3694 int InitializeNode::captured_store_insertion_point(intptr_t start,
3695                                                    int size_in_bytes,
3696                                                    PhaseTransform* phase) {
3697   const int FAIL = 0, MAX_STORE = BytesPerLong;
3698 
3699   if (is_complete())
3700     return FAIL;                // arraycopy got here first; punt
3701 
3702   assert(allocation() != NULL, "must be present");
3703 
3704   // no negatives, no header fields:
3705   if (start < (intptr_t) allocation()->minimum_header_size())  return FAIL;
3706 
3707   // after a certain size, we bail out on tracking all the stores:
3708   intptr_t ti_limit = (TrackedInitializationLimit * HeapWordSize);
3709   if (start >= ti_limit)  return FAIL;
3710 
3711   for (uint i = InitializeNode::RawStores, limit = req(); ; ) {
3712     if (i >= limit)  return -(int)i; // not found; here is where to put it
3713 
3714     Node*    st     = in(i);
3715     intptr_t st_off = get_store_offset(st, phase);
3716     if (st_off < 0) {
3717       if (st != zero_memory()) {
3718         return FAIL;            // bail out if there is dead garbage
3719       }
3720     } else if (st_off > start) {
3721       // ...we are done, since stores are ordered
3722       if (st_off < start + size_in_bytes) {
3723         return FAIL;            // the next store overlaps
3724       }
3725       return -(int)i;           // not found; here is where to put it
3726     } else if (st_off < start) {
3727       if (size_in_bytes != 0 &&
3728           start < st_off + MAX_STORE &&
3729           start < st_off + st->as_Store()->memory_size()) {
3730         return FAIL;            // the previous store overlaps
3731       }
3732     } else {
3733       if (size_in_bytes != 0 &&
3734           st->as_Store()->memory_size() != size_in_bytes) {
3735         return FAIL;            // mismatched store size
3736       }
3737       return i;
3738     }
3739 
3740     ++i;
3741   }
3742 }
3743 
3744 // Look for a captured store which initializes at the offset 'start'
3745 // with the given size.  If there is no such store, and no other
3746 // initialization interferes, then return zero_memory (the memory
3747 // projection of the AllocateNode).
3748 Node* InitializeNode::find_captured_store(intptr_t start, int size_in_bytes,
3749                                           PhaseTransform* phase) {
3750   assert(stores_are_sane(phase), "");
3751   int i = captured_store_insertion_point(start, size_in_bytes, phase);
3752   if (i == 0) {
3753     return NULL;                // something is dead
3754   } else if (i < 0) {
3755     return zero_memory();       // just primordial zero bits here
3756   } else {
3757     Node* st = in(i);           // here is the store at this position
3758     assert(get_store_offset(st->as_Store(), phase) == start, "sanity");
3759     return st;
3760   }
3761 }
3762 
3763 // Create, as a raw pointer, an address within my new object at 'offset'.
3764 Node* InitializeNode::make_raw_address(intptr_t offset,
3765                                        PhaseTransform* phase) {
3766   Node* addr = in(RawAddress);
3767   if (offset != 0) {
3768     Compile* C = phase->C;
3769     addr = phase->transform( new AddPNode(C->top(), addr,
3770                                                  phase->MakeConX(offset)) );
3771   }
3772   return addr;
3773 }
3774 
3775 // Clone the given store, converting it into a raw store
3776 // initializing a field or element of my new object.
3777 // Caller is responsible for retiring the original store,
3778 // with subsume_node or the like.
3779 //
3780 // From the example above InitializeNode::InitializeNode,
3781 // here are the old stores to be captured:
3782 //   store1 = (StoreC init.Control init.Memory (+ oop 12) 1)
3783 //   store2 = (StoreC init.Control store1      (+ oop 14) 2)
3784 //
3785 // Here is the changed code; note the extra edges on init:
3786 //   alloc = (Allocate ...)
3787 //   rawoop = alloc.RawAddress
3788 //   rawstore1 = (StoreC alloc.Control alloc.Memory (+ rawoop 12) 1)
3789 //   rawstore2 = (StoreC alloc.Control alloc.Memory (+ rawoop 14) 2)
3790 //   init = (Initialize alloc.Control alloc.Memory rawoop
3791 //                      rawstore1 rawstore2)
3792 //
3793 Node* InitializeNode::capture_store(StoreNode* st, intptr_t start,
3794                                     PhaseTransform* phase, bool can_reshape) {
3795   assert(stores_are_sane(phase), "");
3796 
3797   if (start < 0)  return NULL;
3798   assert(can_capture_store(st, phase, can_reshape) == start, "sanity");
3799 
3800   Compile* C = phase->C;
3801   int size_in_bytes = st->memory_size();
3802   int i = captured_store_insertion_point(start, size_in_bytes, phase);
3803   if (i == 0)  return NULL;     // bail out
3804   Node* prev_mem = NULL;        // raw memory for the captured store
3805   if (i > 0) {
3806     prev_mem = in(i);           // there is a pre-existing store under this one
3807     set_req(i, C->top());       // temporarily disconnect it
3808     // See StoreNode::Ideal 'st->outcnt() == 1' for the reason to disconnect.
3809   } else {
3810     i = -i;                     // no pre-existing store
3811     prev_mem = zero_memory();   // a slice of the newly allocated object
3812     if (i > InitializeNode::RawStores && in(i-1) == prev_mem)
3813       set_req(--i, C->top());   // reuse this edge; it has been folded away
3814     else
3815       ins_req(i, C->top());     // build a new edge
3816   }
3817   Node* new_st = st->clone();
3818   new_st->set_req(MemNode::Control, in(Control));
3819   new_st->set_req(MemNode::Memory,  prev_mem);
3820   new_st->set_req(MemNode::Address, make_raw_address(start, phase));
3821   new_st = phase->transform(new_st);
3822 
3823   // At this point, new_st might have swallowed a pre-existing store
3824   // at the same offset, or perhaps new_st might have disappeared,
3825   // if it redundantly stored the same value (or zero to fresh memory).
3826 
3827   // In any case, wire it in:
3828   phase->igvn_rehash_node_delayed(this);
3829   set_req(i, new_st);
3830 
3831   // The caller may now kill the old guy.
3832   DEBUG_ONLY(Node* check_st = find_captured_store(start, size_in_bytes, phase));
3833   assert(check_st == new_st || check_st == NULL, "must be findable");
3834   assert(!is_complete(), "");
3835   return new_st;
3836 }
3837 
3838 static bool store_constant(jlong* tiles, int num_tiles,
3839                            intptr_t st_off, int st_size,
3840                            jlong con) {
3841   if ((st_off & (st_size-1)) != 0)
3842     return false;               // strange store offset (assume size==2**N)
3843   address addr = (address)tiles + st_off;
3844   assert(st_off >= 0 && addr+st_size <= (address)&tiles[num_tiles], "oob");
3845   switch (st_size) {
3846   case sizeof(jbyte):  *(jbyte*) addr = (jbyte) con; break;
3847   case sizeof(jchar):  *(jchar*) addr = (jchar) con; break;
3848   case sizeof(jint):   *(jint*)  addr = (jint)  con; break;
3849   case sizeof(jlong):  *(jlong*) addr = (jlong) con; break;
3850   default: return false;        // strange store size (detect size!=2**N here)
3851   }
3852   return true;                  // return success to caller
3853 }
3854 
3855 // Coalesce subword constants into int constants and possibly
3856 // into long constants.  The goal, if the CPU permits,
3857 // is to initialize the object with a small number of 64-bit tiles.
3858 // Also, convert floating-point constants to bit patterns.
3859 // Non-constants are not relevant to this pass.
3860 //
3861 // In terms of the running example on InitializeNode::InitializeNode
3862 // and InitializeNode::capture_store, here is the transformation
3863 // of rawstore1 and rawstore2 into rawstore12:
3864 //   alloc = (Allocate ...)
3865 //   rawoop = alloc.RawAddress
3866 //   tile12 = 0x00010002
3867 //   rawstore12 = (StoreI alloc.Control alloc.Memory (+ rawoop 12) tile12)
3868 //   init = (Initialize alloc.Control alloc.Memory rawoop rawstore12)
3869 //
3870 void
3871 InitializeNode::coalesce_subword_stores(intptr_t header_size,
3872                                         Node* size_in_bytes,
3873                                         PhaseGVN* phase) {
3874   Compile* C = phase->C;
3875 
3876   assert(stores_are_sane(phase), "");
3877   // Note:  After this pass, they are not completely sane,
3878   // since there may be some overlaps.
3879 
3880   int old_subword = 0, old_long = 0, new_int = 0, new_long = 0;
3881 
3882   intptr_t ti_limit = (TrackedInitializationLimit * HeapWordSize);
3883   intptr_t size_limit = phase->find_intptr_t_con(size_in_bytes, ti_limit);
3884   size_limit = MIN2(size_limit, ti_limit);
3885   size_limit = align_up(size_limit, BytesPerLong);
3886   int num_tiles = size_limit / BytesPerLong;
3887 
3888   // allocate space for the tile map:
3889   const int small_len = DEBUG_ONLY(true ? 3 :) 30; // keep stack frames small
3890   jlong  tiles_buf[small_len];
3891   Node*  nodes_buf[small_len];
3892   jlong  inits_buf[small_len];
3893   jlong* tiles = ((num_tiles <= small_len) ? &tiles_buf[0]
3894                   : NEW_RESOURCE_ARRAY(jlong, num_tiles));
3895   Node** nodes = ((num_tiles <= small_len) ? &nodes_buf[0]
3896                   : NEW_RESOURCE_ARRAY(Node*, num_tiles));
3897   jlong* inits = ((num_tiles <= small_len) ? &inits_buf[0]
3898                   : NEW_RESOURCE_ARRAY(jlong, num_tiles));
3899   // tiles: exact bitwise model of all primitive constants
3900   // nodes: last constant-storing node subsumed into the tiles model
3901   // inits: which bytes (in each tile) are touched by any initializations
3902 
3903   //// Pass A: Fill in the tile model with any relevant stores.
3904 
3905   Copy::zero_to_bytes(tiles, sizeof(tiles[0]) * num_tiles);
3906   Copy::zero_to_bytes(nodes, sizeof(nodes[0]) * num_tiles);
3907   Copy::zero_to_bytes(inits, sizeof(inits[0]) * num_tiles);
3908   Node* zmem = zero_memory(); // initially zero memory state
3909   for (uint i = InitializeNode::RawStores, limit = req(); i < limit; i++) {
3910     Node* st = in(i);
3911     intptr_t st_off = get_store_offset(st, phase);
3912 
3913     // Figure out the store's offset and constant value:
3914     if (st_off < header_size)             continue; //skip (ignore header)
3915     if (st->in(MemNode::Memory) != zmem)  continue; //skip (odd store chain)
3916     int st_size = st->as_Store()->memory_size();
3917     if (st_off + st_size > size_limit)    break;
3918 
3919     // Record which bytes are touched, whether by constant or not.
3920     if (!store_constant(inits, num_tiles, st_off, st_size, (jlong) -1))
3921       continue;                 // skip (strange store size)
3922 
3923     const Type* val = phase->type(st->in(MemNode::ValueIn));
3924     if (!val->singleton())                continue; //skip (non-con store)
3925     BasicType type = val->basic_type();
3926 
3927     jlong con = 0;
3928     switch (type) {
3929     case T_INT:    con = val->is_int()->get_con();  break;
3930     case T_LONG:   con = val->is_long()->get_con(); break;
3931     case T_FLOAT:  con = jint_cast(val->getf());    break;
3932     case T_DOUBLE: con = jlong_cast(val->getd());   break;
3933     default:                              continue; //skip (odd store type)
3934     }
3935 
3936     if (type == T_LONG && Matcher::isSimpleConstant64(con) &&
3937         st->Opcode() == Op_StoreL) {
3938       continue;                 // This StoreL is already optimal.
3939     }
3940 
3941     // Store down the constant.
3942     store_constant(tiles, num_tiles, st_off, st_size, con);
3943 
3944     intptr_t j = st_off >> LogBytesPerLong;
3945 
3946     if (type == T_INT && st_size == BytesPerInt
3947         && (st_off & BytesPerInt) == BytesPerInt) {
3948       jlong lcon = tiles[j];
3949       if (!Matcher::isSimpleConstant64(lcon) &&
3950           st->Opcode() == Op_StoreI) {
3951         // This StoreI is already optimal by itself.
3952         jint* intcon = (jint*) &tiles[j];
3953         intcon[1] = 0;  // undo the store_constant()
3954 
3955         // If the previous store is also optimal by itself, back up and
3956         // undo the action of the previous loop iteration... if we can.
3957         // But if we can't, just let the previous half take care of itself.
3958         st = nodes[j];
3959         st_off -= BytesPerInt;
3960         con = intcon[0];
3961         if (con != 0 && st != NULL && st->Opcode() == Op_StoreI) {
3962           assert(st_off >= header_size, "still ignoring header");
3963           assert(get_store_offset(st, phase) == st_off, "must be");
3964           assert(in(i-1) == zmem, "must be");
3965           DEBUG_ONLY(const Type* tcon = phase->type(st->in(MemNode::ValueIn)));
3966           assert(con == tcon->is_int()->get_con(), "must be");
3967           // Undo the effects of the previous loop trip, which swallowed st:
3968           intcon[0] = 0;        // undo store_constant()
3969           set_req(i-1, st);     // undo set_req(i, zmem)
3970           nodes[j] = NULL;      // undo nodes[j] = st
3971           --old_subword;        // undo ++old_subword
3972         }
3973         continue;               // This StoreI is already optimal.
3974       }
3975     }
3976 
3977     // This store is not needed.
3978     set_req(i, zmem);
3979     nodes[j] = st;              // record for the moment
3980     if (st_size < BytesPerLong) // something has changed
3981           ++old_subword;        // includes int/float, but who's counting...
3982     else  ++old_long;
3983   }
3984 
3985   if ((old_subword + old_long) == 0)
3986     return;                     // nothing more to do
3987 
3988   //// Pass B: Convert any non-zero tiles into optimal constant stores.
3989   // Be sure to insert them before overlapping non-constant stores.
3990   // (E.g., byte[] x = { 1,2,y,4 }  =>  x[int 0] = 0x01020004, x[2]=y.)
3991   for (int j = 0; j < num_tiles; j++) {
3992     jlong con  = tiles[j];
3993     jlong init = inits[j];
3994     if (con == 0)  continue;
3995     jint con0,  con1;           // split the constant, address-wise
3996     jint init0, init1;          // split the init map, address-wise
3997     { union { jlong con; jint intcon[2]; } u;
3998       u.con = con;
3999       con0  = u.intcon[0];
4000       con1  = u.intcon[1];
4001       u.con = init;
4002       init0 = u.intcon[0];
4003       init1 = u.intcon[1];
4004     }
4005 
4006     Node* old = nodes[j];
4007     assert(old != NULL, "need the prior store");
4008     intptr_t offset = (j * BytesPerLong);
4009 
4010     bool split = !Matcher::isSimpleConstant64(con);
4011 
4012     if (offset < header_size) {
4013       assert(offset + BytesPerInt >= header_size, "second int counts");
4014       assert(*(jint*)&tiles[j] == 0, "junk in header");
4015       split = true;             // only the second word counts
4016       // Example:  int a[] = { 42 ... }
4017     } else if (con0 == 0 && init0 == -1) {
4018       split = true;             // first word is covered by full inits
4019       // Example:  int a[] = { ... foo(), 42 ... }
4020     } else if (con1 == 0 && init1 == -1) {
4021       split = true;             // second word is covered by full inits
4022       // Example:  int a[] = { ... 42, foo() ... }
4023     }
4024 
4025     // Here's a case where init0 is neither 0 nor -1:
4026     //   byte a[] = { ... 0,0,foo(),0,  0,0,0,42 ... }
4027     // Assuming big-endian memory, init0, init1 are 0x0000FF00, 0x000000FF.
4028     // In this case the tile is not split; it is (jlong)42.
4029     // The big tile is stored down, and then the foo() value is inserted.
4030     // (If there were foo(),foo() instead of foo(),0, init0 would be -1.)
4031 
4032     Node* ctl = old->in(MemNode::Control);
4033     Node* adr = make_raw_address(offset, phase);
4034     const TypePtr* atp = TypeRawPtr::BOTTOM;
4035 
4036     // One or two coalesced stores to plop down.
4037     Node*    st[2];
4038     intptr_t off[2];
4039     int  nst = 0;
4040     if (!split) {
4041       ++new_long;
4042       off[nst] = offset;
4043       st[nst++] = StoreNode::make(*phase, ctl, zmem, adr, atp,
4044                                   phase->longcon(con), T_LONG, MemNode::unordered);
4045     } else {
4046       // Omit either if it is a zero.
4047       if (con0 != 0) {
4048         ++new_int;
4049         off[nst]  = offset;
4050         st[nst++] = StoreNode::make(*phase, ctl, zmem, adr, atp,
4051                                     phase->intcon(con0), T_INT, MemNode::unordered);
4052       }
4053       if (con1 != 0) {
4054         ++new_int;
4055         offset += BytesPerInt;
4056         adr = make_raw_address(offset, phase);
4057         off[nst]  = offset;
4058         st[nst++] = StoreNode::make(*phase, ctl, zmem, adr, atp,
4059                                     phase->intcon(con1), T_INT, MemNode::unordered);
4060       }
4061     }
4062 
4063     // Insert second store first, then the first before the second.
4064     // Insert each one just before any overlapping non-constant stores.
4065     while (nst > 0) {
4066       Node* st1 = st[--nst];
4067       C->copy_node_notes_to(st1, old);
4068       st1 = phase->transform(st1);
4069       offset = off[nst];
4070       assert(offset >= header_size, "do not smash header");
4071       int ins_idx = captured_store_insertion_point(offset, /*size:*/0, phase);
4072       guarantee(ins_idx != 0, "must re-insert constant store");
4073       if (ins_idx < 0)  ins_idx = -ins_idx;  // never overlap
4074       if (ins_idx > InitializeNode::RawStores && in(ins_idx-1) == zmem)
4075         set_req(--ins_idx, st1);
4076       else
4077         ins_req(ins_idx, st1);
4078     }
4079   }
4080 
4081   if (PrintCompilation && WizardMode)
4082     tty->print_cr("Changed %d/%d subword/long constants into %d/%d int/long",
4083                   old_subword, old_long, new_int, new_long);
4084   if (C->log() != NULL)
4085     C->log()->elem("comment that='%d/%d subword/long to %d/%d int/long'",
4086                    old_subword, old_long, new_int, new_long);
4087 
4088   // Clean up any remaining occurrences of zmem:
4089   remove_extra_zeroes();
4090 }
4091 
4092 // Explore forward from in(start) to find the first fully initialized
4093 // word, and return its offset.  Skip groups of subword stores which
4094 // together initialize full words.  If in(start) is itself part of a
4095 // fully initialized word, return the offset of in(start).  If there
4096 // are no following full-word stores, or if something is fishy, return
4097 // a negative value.
4098 intptr_t InitializeNode::find_next_fullword_store(uint start, PhaseGVN* phase) {
4099   int       int_map = 0;
4100   intptr_t  int_map_off = 0;
4101   const int FULL_MAP = right_n_bits(BytesPerInt);  // the int_map we hope for
4102 
4103   for (uint i = start, limit = req(); i < limit; i++) {
4104     Node* st = in(i);
4105 
4106     intptr_t st_off = get_store_offset(st, phase);
4107     if (st_off < 0)  break;  // return conservative answer
4108 
4109     int st_size = st->as_Store()->memory_size();
4110     if (st_size >= BytesPerInt && (st_off % BytesPerInt) == 0) {
4111       return st_off;            // we found a complete word init
4112     }
4113 
4114     // update the map:
4115 
4116     intptr_t this_int_off = align_down(st_off, BytesPerInt);
4117     if (this_int_off != int_map_off) {
4118       // reset the map:
4119       int_map = 0;
4120       int_map_off = this_int_off;
4121     }
4122 
4123     int subword_off = st_off - this_int_off;
4124     int_map |= right_n_bits(st_size) << subword_off;
4125     if ((int_map & FULL_MAP) == FULL_MAP) {
4126       return this_int_off;      // we found a complete word init
4127     }
4128 
4129     // Did this store hit or cross the word boundary?
4130     intptr_t next_int_off = align_down(st_off + st_size, BytesPerInt);
4131     if (next_int_off == this_int_off + BytesPerInt) {
4132       // We passed the current int, without fully initializing it.
4133       int_map_off = next_int_off;
4134       int_map >>= BytesPerInt;
4135     } else if (next_int_off > this_int_off + BytesPerInt) {
4136       // We passed the current and next int.
4137       return this_int_off + BytesPerInt;
4138     }
4139   }
4140 
4141   return -1;
4142 }
4143 
4144 
4145 // Called when the associated AllocateNode is expanded into CFG.
4146 // At this point, we may perform additional optimizations.
4147 // Linearize the stores by ascending offset, to make memory
4148 // activity as coherent as possible.
4149 Node* InitializeNode::complete_stores(Node* rawctl, Node* rawmem, Node* rawptr,
4150                                       intptr_t header_size,
4151                                       Node* size_in_bytes,
4152                                       PhaseIterGVN* phase) {
4153   assert(!is_complete(), "not already complete");
4154   assert(stores_are_sane(phase), "");
4155   assert(allocation() != NULL, "must be present");
4156 
4157   remove_extra_zeroes();
4158 
4159   if (ReduceFieldZeroing || ReduceBulkZeroing)
4160     // reduce instruction count for common initialization patterns
4161     coalesce_subword_stores(header_size, size_in_bytes, phase);
4162 
4163   Node* zmem = zero_memory();   // initially zero memory state
4164   Node* inits = zmem;           // accumulating a linearized chain of inits
4165   #ifdef ASSERT
4166   intptr_t first_offset = allocation()->minimum_header_size();
4167   intptr_t last_init_off = first_offset;  // previous init offset
4168   intptr_t last_init_end = first_offset;  // previous init offset+size
4169   intptr_t last_tile_end = first_offset;  // previous tile offset+size
4170   #endif
4171   intptr_t zeroes_done = header_size;
4172 
4173   bool do_zeroing = true;       // we might give up if inits are very sparse
4174   int  big_init_gaps = 0;       // how many large gaps have we seen?
4175 
4176   if (UseTLAB && ZeroTLAB)  do_zeroing = false;
4177   if (!ReduceFieldZeroing && !ReduceBulkZeroing)  do_zeroing = false;
4178 
4179   for (uint i = InitializeNode::RawStores, limit = req(); i < limit; i++) {
4180     Node* st = in(i);
4181     intptr_t st_off = get_store_offset(st, phase);
4182     if (st_off < 0)
4183       break;                    // unknown junk in the inits
4184     if (st->in(MemNode::Memory) != zmem)
4185       break;                    // complicated store chains somehow in list
4186 
4187     int st_size = st->as_Store()->memory_size();
4188     intptr_t next_init_off = st_off + st_size;
4189 
4190     if (do_zeroing && zeroes_done < next_init_off) {
4191       // See if this store needs a zero before it or under it.
4192       intptr_t zeroes_needed = st_off;
4193 
4194       if (st_size < BytesPerInt) {
4195         // Look for subword stores which only partially initialize words.
4196         // If we find some, we must lay down some word-level zeroes first,
4197         // underneath the subword stores.
4198         //
4199         // Examples:
4200         //   byte[] a = { p,q,r,s }  =>  a[0]=p,a[1]=q,a[2]=r,a[3]=s
4201         //   byte[] a = { x,y,0,0 }  =>  a[0..3] = 0, a[0]=x,a[1]=y
4202         //   byte[] a = { 0,0,z,0 }  =>  a[0..3] = 0, a[2]=z
4203         //
4204         // Note:  coalesce_subword_stores may have already done this,
4205         // if it was prompted by constant non-zero subword initializers.
4206         // But this case can still arise with non-constant stores.
4207 
4208         intptr_t next_full_store = find_next_fullword_store(i, phase);
4209 
4210         // In the examples above:
4211         //   in(i)          p   q   r   s     x   y     z
4212         //   st_off        12  13  14  15    12  13    14
4213         //   st_size        1   1   1   1     1   1     1
4214         //   next_full_s.  12  16  16  16    16  16    16
4215         //   z's_done      12  16  16  16    12  16    12
4216         //   z's_needed    12  16  16  16    16  16    16
4217         //   zsize          0   0   0   0     4   0     4
4218         if (next_full_store < 0) {
4219           // Conservative tack:  Zero to end of current word.
4220           zeroes_needed = align_up(zeroes_needed, BytesPerInt);
4221         } else {
4222           // Zero to beginning of next fully initialized word.
4223           // Or, don't zero at all, if we are already in that word.
4224           assert(next_full_store >= zeroes_needed, "must go forward");
4225           assert((next_full_store & (BytesPerInt-1)) == 0, "even boundary");
4226           zeroes_needed = next_full_store;
4227         }
4228       }
4229 
4230       if (zeroes_needed > zeroes_done) {
4231         intptr_t zsize = zeroes_needed - zeroes_done;
4232         // Do some incremental zeroing on rawmem, in parallel with inits.
4233         zeroes_done = align_down(zeroes_done, BytesPerInt);
4234         rawmem = ClearArrayNode::clear_memory(rawctl, rawmem, rawptr,
4235                                               zeroes_done, zeroes_needed,
4236                                               phase);
4237         zeroes_done = zeroes_needed;
4238         if (zsize > InitArrayShortSize && ++big_init_gaps > 2)
4239           do_zeroing = false;   // leave the hole, next time
4240       }
4241     }
4242 
4243     // Collect the store and move on:
4244     phase->replace_input_of(st, MemNode::Memory, inits);
4245     inits = st;                 // put it on the linearized chain
4246     set_req(i, zmem);           // unhook from previous position
4247 
4248     if (zeroes_done == st_off)
4249       zeroes_done = next_init_off;
4250 
4251     assert(!do_zeroing || zeroes_done >= next_init_off, "don't miss any");
4252 
4253     #ifdef ASSERT
4254     // Various order invariants.  Weaker than stores_are_sane because
4255     // a large constant tile can be filled in by smaller non-constant stores.
4256     assert(st_off >= last_init_off, "inits do not reverse");
4257     last_init_off = st_off;
4258     const Type* val = NULL;
4259     if (st_size >= BytesPerInt &&
4260         (val = phase->type(st->in(MemNode::ValueIn)))->singleton() &&
4261         (int)val->basic_type() < (int)T_OBJECT) {
4262       assert(st_off >= last_tile_end, "tiles do not overlap");
4263       assert(st_off >= last_init_end, "tiles do not overwrite inits");
4264       last_tile_end = MAX2(last_tile_end, next_init_off);
4265     } else {
4266       intptr_t st_tile_end = align_up(next_init_off, BytesPerLong);
4267       assert(st_tile_end >= last_tile_end, "inits stay with tiles");
4268       assert(st_off      >= last_init_end, "inits do not overlap");
4269       last_init_end = next_init_off;  // it's a non-tile
4270     }
4271     #endif //ASSERT
4272   }
4273 
4274   remove_extra_zeroes();        // clear out all the zmems left over
4275   add_req(inits);
4276 
4277   if (!(UseTLAB && ZeroTLAB)) {
4278     // If anything remains to be zeroed, zero it all now.
4279     zeroes_done = align_down(zeroes_done, BytesPerInt);
4280     // if it is the last unused 4 bytes of an instance, forget about it
4281     intptr_t size_limit = phase->find_intptr_t_con(size_in_bytes, max_jint);
4282     if (zeroes_done + BytesPerLong >= size_limit) {
4283       AllocateNode* alloc = allocation();
4284       assert(alloc != NULL, "must be present");
4285       if (alloc != NULL && alloc->Opcode() == Op_Allocate) {
4286         Node* klass_node = alloc->in(AllocateNode::KlassNode);
4287         ciKlass* k = phase->type(klass_node)->is_klassptr()->klass();
4288         if (zeroes_done == k->layout_helper())
4289           zeroes_done = size_limit;
4290       }
4291     }
4292     if (zeroes_done < size_limit) {
4293       rawmem = ClearArrayNode::clear_memory(rawctl, rawmem, rawptr,
4294                                             zeroes_done, size_in_bytes, phase);
4295     }
4296   }
4297 
4298   set_complete(phase);
4299   return rawmem;
4300 }
4301 
4302 
4303 #ifdef ASSERT
4304 bool InitializeNode::stores_are_sane(PhaseTransform* phase) {
4305   if (is_complete())
4306     return true;                // stores could be anything at this point
4307   assert(allocation() != NULL, "must be present");
4308   intptr_t last_off = allocation()->minimum_header_size();
4309   for (uint i = InitializeNode::RawStores; i < req(); i++) {
4310     Node* st = in(i);
4311     intptr_t st_off = get_store_offset(st, phase);
4312     if (st_off < 0)  continue;  // ignore dead garbage
4313     if (last_off > st_off) {
4314       tty->print_cr("*** bad store offset at %d: " INTX_FORMAT " > " INTX_FORMAT, i, last_off, st_off);
4315       this->dump(2);
4316       assert(false, "ascending store offsets");
4317       return false;
4318     }
4319     last_off = st_off + st->as_Store()->memory_size();
4320   }
4321   return true;
4322 }
4323 #endif //ASSERT
4324 
4325 
4326 
4327 
4328 //============================MergeMemNode=====================================
4329 //
4330 // SEMANTICS OF MEMORY MERGES:  A MergeMem is a memory state assembled from several
4331 // contributing store or call operations.  Each contributor provides the memory
4332 // state for a particular "alias type" (see Compile::alias_type).  For example,
4333 // if a MergeMem has an input X for alias category #6, then any memory reference
4334 // to alias category #6 may use X as its memory state input, as an exact equivalent
4335 // to using the MergeMem as a whole.
4336 //   Load<6>( MergeMem(<6>: X, ...), p ) <==> Load<6>(X,p)
4337 //
4338 // (Here, the <N> notation gives the index of the relevant adr_type.)
4339 //
4340 // In one special case (and more cases in the future), alias categories overlap.
4341 // The special alias category "Bot" (Compile::AliasIdxBot) includes all memory
4342 // states.  Therefore, if a MergeMem has only one contributing input W for Bot,
4343 // it is exactly equivalent to that state W:
4344 //   MergeMem(<Bot>: W) <==> W
4345 //
4346 // Usually, the merge has more than one input.  In that case, where inputs
4347 // overlap (i.e., one is Bot), the narrower alias type determines the memory
4348 // state for that type, and the wider alias type (Bot) fills in everywhere else:
4349 //   Load<5>( MergeMem(<Bot>: W, <6>: X), p ) <==> Load<5>(W,p)
4350 //   Load<6>( MergeMem(<Bot>: W, <6>: X), p ) <==> Load<6>(X,p)
4351 //
4352 // A merge can take a "wide" memory state as one of its narrow inputs.
4353 // This simply means that the merge observes out only the relevant parts of
4354 // the wide input.  That is, wide memory states arriving at narrow merge inputs
4355 // are implicitly "filtered" or "sliced" as necessary.  (This is rare.)
4356 //
4357 // These rules imply that MergeMem nodes may cascade (via their <Bot> links),
4358 // and that memory slices "leak through":
4359 //   MergeMem(<Bot>: MergeMem(<Bot>: W, <7>: Y)) <==> MergeMem(<Bot>: W, <7>: Y)
4360 //
4361 // But, in such a cascade, repeated memory slices can "block the leak":
4362 //   MergeMem(<Bot>: MergeMem(<Bot>: W, <7>: Y), <7>: Y') <==> MergeMem(<Bot>: W, <7>: Y')
4363 //
4364 // In the last example, Y is not part of the combined memory state of the
4365 // outermost MergeMem.  The system must, of course, prevent unschedulable
4366 // memory states from arising, so you can be sure that the state Y is somehow
4367 // a precursor to state Y'.
4368 //
4369 //
4370 // REPRESENTATION OF MEMORY MERGES: The indexes used to address the Node::in array
4371 // of each MergeMemNode array are exactly the numerical alias indexes, including
4372 // but not limited to AliasIdxTop, AliasIdxBot, and AliasIdxRaw.  The functions
4373 // Compile::alias_type (and kin) produce and manage these indexes.
4374 //
4375 // By convention, the value of in(AliasIdxTop) (i.e., in(1)) is always the top node.
4376 // (Note that this provides quick access to the top node inside MergeMem methods,
4377 // without the need to reach out via TLS to Compile::current.)
4378 //
4379 // As a consequence of what was just described, a MergeMem that represents a full
4380 // memory state has an edge in(AliasIdxBot) which is a "wide" memory state,
4381 // containing all alias categories.
4382 //
4383 // MergeMem nodes never (?) have control inputs, so in(0) is NULL.
4384 //
4385 // All other edges in(N) (including in(AliasIdxRaw), which is in(3)) are either
4386 // a memory state for the alias type <N>, or else the top node, meaning that
4387 // there is no particular input for that alias type.  Note that the length of
4388 // a MergeMem is variable, and may be extended at any time to accommodate new
4389 // memory states at larger alias indexes.  When merges grow, they are of course
4390 // filled with "top" in the unused in() positions.
4391 //
4392 // This use of top is named "empty_memory()", or "empty_mem" (no-memory) as a variable.
4393 // (Top was chosen because it works smoothly with passes like GCM.)
4394 //
4395 // For convenience, we hardwire the alias index for TypeRawPtr::BOTTOM.  (It is
4396 // the type of random VM bits like TLS references.)  Since it is always the
4397 // first non-Bot memory slice, some low-level loops use it to initialize an
4398 // index variable:  for (i = AliasIdxRaw; i < req(); i++).
4399 //
4400 //
4401 // ACCESSORS:  There is a special accessor MergeMemNode::base_memory which returns
4402 // the distinguished "wide" state.  The accessor MergeMemNode::memory_at(N) returns
4403 // the memory state for alias type <N>, or (if there is no particular slice at <N>,
4404 // it returns the base memory.  To prevent bugs, memory_at does not accept <Top>
4405 // or <Bot> indexes.  The iterator MergeMemStream provides robust iteration over
4406 // MergeMem nodes or pairs of such nodes, ensuring that the non-top edges are visited.
4407 //
4408 // %%%% We may get rid of base_memory as a separate accessor at some point; it isn't
4409 // really that different from the other memory inputs.  An abbreviation called
4410 // "bot_memory()" for "memory_at(AliasIdxBot)" would keep code tidy.
4411 //
4412 //
4413 // PARTIAL MEMORY STATES:  During optimization, MergeMem nodes may arise that represent
4414 // partial memory states.  When a Phi splits through a MergeMem, the copy of the Phi
4415 // that "emerges though" the base memory will be marked as excluding the alias types
4416 // of the other (narrow-memory) copies which "emerged through" the narrow edges:
4417 //
4418 //   Phi<Bot>(U, MergeMem(<Bot>: W, <8>: Y))
4419 //     ==Ideal=>  MergeMem(<Bot>: Phi<Bot-8>(U, W), Phi<8>(U, Y))
4420 //
4421 // This strange "subtraction" effect is necessary to ensure IGVN convergence.
4422 // (It is currently unimplemented.)  As you can see, the resulting merge is
4423 // actually a disjoint union of memory states, rather than an overlay.
4424 //
4425 
4426 //------------------------------MergeMemNode-----------------------------------
4427 Node* MergeMemNode::make_empty_memory() {
4428   Node* empty_memory = (Node*) Compile::current()->top();
4429   assert(empty_memory->is_top(), "correct sentinel identity");
4430   return empty_memory;
4431 }
4432 
4433 MergeMemNode::MergeMemNode(Node *new_base) : Node(1+Compile::AliasIdxRaw) {
4434   init_class_id(Class_MergeMem);
4435   // all inputs are nullified in Node::Node(int)
4436   // set_input(0, NULL);  // no control input
4437 
4438   // Initialize the edges uniformly to top, for starters.
4439   Node* empty_mem = make_empty_memory();
4440   for (uint i = Compile::AliasIdxTop; i < req(); i++) {
4441     init_req(i,empty_mem);
4442   }
4443   assert(empty_memory() == empty_mem, "");
4444 
4445   if( new_base != NULL && new_base->is_MergeMem() ) {
4446     MergeMemNode* mdef = new_base->as_MergeMem();
4447     assert(mdef->empty_memory() == empty_mem, "consistent sentinels");
4448     for (MergeMemStream mms(this, mdef); mms.next_non_empty2(); ) {
4449       mms.set_memory(mms.memory2());
4450     }
4451     assert(base_memory() == mdef->base_memory(), "");
4452   } else {
4453     set_base_memory(new_base);
4454   }
4455 }
4456 
4457 // Make a new, untransformed MergeMem with the same base as 'mem'.
4458 // If mem is itself a MergeMem, populate the result with the same edges.
4459 MergeMemNode* MergeMemNode::make(Node* mem) {
4460   return new MergeMemNode(mem);
4461 }
4462 
4463 //------------------------------cmp--------------------------------------------
4464 uint MergeMemNode::hash() const { return NO_HASH; }
4465 uint MergeMemNode::cmp( const Node &n ) const {
4466   return (&n == this);          // Always fail except on self
4467 }
4468 
4469 //------------------------------Identity---------------------------------------
4470 Node* MergeMemNode::Identity(PhaseGVN* phase) {
4471   // Identity if this merge point does not record any interesting memory
4472   // disambiguations.
4473   Node* base_mem = base_memory();
4474   Node* empty_mem = empty_memory();
4475   if (base_mem != empty_mem) {  // Memory path is not dead?
4476     for (uint i = Compile::AliasIdxRaw; i < req(); i++) {
4477       Node* mem = in(i);
4478       if (mem != empty_mem && mem != base_mem) {
4479         return this;            // Many memory splits; no change
4480       }
4481     }
4482   }
4483   return base_mem;              // No memory splits; ID on the one true input
4484 }
4485 
4486 //------------------------------Ideal------------------------------------------
4487 // This method is invoked recursively on chains of MergeMem nodes
4488 Node *MergeMemNode::Ideal(PhaseGVN *phase, bool can_reshape) {
4489   // Remove chain'd MergeMems
4490   //
4491   // This is delicate, because the each "in(i)" (i >= Raw) is interpreted
4492   // relative to the "in(Bot)".  Since we are patching both at the same time,
4493   // we have to be careful to read each "in(i)" relative to the old "in(Bot)",
4494   // but rewrite each "in(i)" relative to the new "in(Bot)".
4495   Node *progress = NULL;
4496 
4497 
4498   Node* old_base = base_memory();
4499   Node* empty_mem = empty_memory();
4500   if (old_base == empty_mem)
4501     return NULL; // Dead memory path.
4502 
4503   MergeMemNode* old_mbase;
4504   if (old_base != NULL && old_base->is_MergeMem())
4505     old_mbase = old_base->as_MergeMem();
4506   else
4507     old_mbase = NULL;
4508   Node* new_base = old_base;
4509 
4510   // simplify stacked MergeMems in base memory
4511   if (old_mbase)  new_base = old_mbase->base_memory();
4512 
4513   // the base memory might contribute new slices beyond my req()
4514   if (old_mbase)  grow_to_match(old_mbase);
4515 
4516   // Look carefully at the base node if it is a phi.
4517   PhiNode* phi_base;
4518   if (new_base != NULL && new_base->is_Phi())
4519     phi_base = new_base->as_Phi();
4520   else
4521     phi_base = NULL;
4522 
4523   Node*    phi_reg = NULL;
4524   uint     phi_len = (uint)-1;
4525   if (phi_base != NULL && !phi_base->is_copy()) {
4526     // do not examine phi if degraded to a copy
4527     phi_reg = phi_base->region();
4528     phi_len = phi_base->req();
4529     // see if the phi is unfinished
4530     for (uint i = 1; i < phi_len; i++) {
4531       if (phi_base->in(i) == NULL) {
4532         // incomplete phi; do not look at it yet!
4533         phi_reg = NULL;
4534         phi_len = (uint)-1;
4535         break;
4536       }
4537     }
4538   }
4539 
4540   // Note:  We do not call verify_sparse on entry, because inputs
4541   // can normalize to the base_memory via subsume_node or similar
4542   // mechanisms.  This method repairs that damage.
4543 
4544   assert(!old_mbase || old_mbase->is_empty_memory(empty_mem), "consistent sentinels");
4545 
4546   // Look at each slice.
4547   for (uint i = Compile::AliasIdxRaw; i < req(); i++) {
4548     Node* old_in = in(i);
4549     // calculate the old memory value
4550     Node* old_mem = old_in;
4551     if (old_mem == empty_mem)  old_mem = old_base;
4552     assert(old_mem == memory_at(i), "");
4553 
4554     // maybe update (reslice) the old memory value
4555 
4556     // simplify stacked MergeMems
4557     Node* new_mem = old_mem;
4558     MergeMemNode* old_mmem;
4559     if (old_mem != NULL && old_mem->is_MergeMem())
4560       old_mmem = old_mem->as_MergeMem();
4561     else
4562       old_mmem = NULL;
4563     if (old_mmem == this) {
4564       // This can happen if loops break up and safepoints disappear.
4565       // A merge of BotPtr (default) with a RawPtr memory derived from a
4566       // safepoint can be rewritten to a merge of the same BotPtr with
4567       // the BotPtr phi coming into the loop.  If that phi disappears
4568       // also, we can end up with a self-loop of the mergemem.
4569       // In general, if loops degenerate and memory effects disappear,
4570       // a mergemem can be left looking at itself.  This simply means
4571       // that the mergemem's default should be used, since there is
4572       // no longer any apparent effect on this slice.
4573       // Note: If a memory slice is a MergeMem cycle, it is unreachable
4574       //       from start.  Update the input to TOP.
4575       new_mem = (new_base == this || new_base == empty_mem)? empty_mem : new_base;
4576     }
4577     else if (old_mmem != NULL) {
4578       new_mem = old_mmem->memory_at(i);
4579     }
4580     // else preceding memory was not a MergeMem
4581 
4582     // replace equivalent phis (unfortunately, they do not GVN together)
4583     if (new_mem != NULL && new_mem != new_base &&
4584         new_mem->req() == phi_len && new_mem->in(0) == phi_reg) {
4585       if (new_mem->is_Phi()) {
4586         PhiNode* phi_mem = new_mem->as_Phi();
4587         for (uint i = 1; i < phi_len; i++) {
4588           if (phi_base->in(i) != phi_mem->in(i)) {
4589             phi_mem = NULL;
4590             break;
4591           }
4592         }
4593         if (phi_mem != NULL) {
4594           // equivalent phi nodes; revert to the def
4595           new_mem = new_base;
4596         }
4597       }
4598     }
4599 
4600     // maybe store down a new value
4601     Node* new_in = new_mem;
4602     if (new_in == new_base)  new_in = empty_mem;
4603 
4604     if (new_in != old_in) {
4605       // Warning:  Do not combine this "if" with the previous "if"
4606       // A memory slice might have be be rewritten even if it is semantically
4607       // unchanged, if the base_memory value has changed.
4608       set_req(i, new_in);
4609       progress = this;          // Report progress
4610     }
4611   }
4612 
4613   if (new_base != old_base) {
4614     set_req(Compile::AliasIdxBot, new_base);
4615     // Don't use set_base_memory(new_base), because we need to update du.
4616     assert(base_memory() == new_base, "");
4617     progress = this;
4618   }
4619 
4620   if( base_memory() == this ) {
4621     // a self cycle indicates this memory path is dead
4622     set_req(Compile::AliasIdxBot, empty_mem);
4623   }
4624 
4625   // Resolve external cycles by calling Ideal on a MergeMem base_memory
4626   // Recursion must occur after the self cycle check above
4627   if( base_memory()->is_MergeMem() ) {
4628     MergeMemNode *new_mbase = base_memory()->as_MergeMem();
4629     Node *m = phase->transform(new_mbase);  // Rollup any cycles
4630     if( m != NULL &&
4631         (m->is_top() ||
4632          (m->is_MergeMem() && m->as_MergeMem()->base_memory() == empty_mem)) ) {
4633       // propagate rollup of dead cycle to self
4634       set_req(Compile::AliasIdxBot, empty_mem);
4635     }
4636   }
4637 
4638   if( base_memory() == empty_mem ) {
4639     progress = this;
4640     // Cut inputs during Parse phase only.
4641     // During Optimize phase a dead MergeMem node will be subsumed by Top.
4642     if( !can_reshape ) {
4643       for (uint i = Compile::AliasIdxRaw; i < req(); i++) {
4644         if( in(i) != empty_mem ) { set_req(i, empty_mem); }
4645       }
4646     }
4647   }
4648 
4649   if( !progress && base_memory()->is_Phi() && can_reshape ) {
4650     // Check if PhiNode::Ideal's "Split phis through memory merges"
4651     // transform should be attempted. Look for this->phi->this cycle.
4652     uint merge_width = req();
4653     if (merge_width > Compile::AliasIdxRaw) {
4654       PhiNode* phi = base_memory()->as_Phi();
4655       for( uint i = 1; i < phi->req(); ++i ) {// For all paths in
4656         if (phi->in(i) == this) {
4657           phase->is_IterGVN()->_worklist.push(phi);
4658           break;
4659         }
4660       }
4661     }
4662   }
4663 
4664   assert(progress || verify_sparse(), "please, no dups of base");
4665   return progress;
4666 }
4667 
4668 //-------------------------set_base_memory-------------------------------------
4669 void MergeMemNode::set_base_memory(Node *new_base) {
4670   Node* empty_mem = empty_memory();
4671   set_req(Compile::AliasIdxBot, new_base);
4672   assert(memory_at(req()) == new_base, "must set default memory");
4673   // Clear out other occurrences of new_base:
4674   if (new_base != empty_mem) {
4675     for (uint i = Compile::AliasIdxRaw; i < req(); i++) {
4676       if (in(i) == new_base)  set_req(i, empty_mem);
4677     }
4678   }
4679 }
4680 
4681 //------------------------------out_RegMask------------------------------------
4682 const RegMask &MergeMemNode::out_RegMask() const {
4683   return RegMask::Empty;
4684 }
4685 
4686 //------------------------------dump_spec--------------------------------------
4687 #ifndef PRODUCT
4688 void MergeMemNode::dump_spec(outputStream *st) const {
4689   st->print(" {");
4690   Node* base_mem = base_memory();
4691   for( uint i = Compile::AliasIdxRaw; i < req(); i++ ) {
4692     Node* mem = (in(i) != NULL) ? memory_at(i) : base_mem;
4693     if (mem == base_mem) { st->print(" -"); continue; }
4694     st->print( " N%d:", mem->_idx );
4695     Compile::current()->get_adr_type(i)->dump_on(st);
4696   }
4697   st->print(" }");
4698 }
4699 #endif // !PRODUCT
4700 
4701 
4702 #ifdef ASSERT
4703 static bool might_be_same(Node* a, Node* b) {
4704   if (a == b)  return true;
4705   if (!(a->is_Phi() || b->is_Phi()))  return false;
4706   // phis shift around during optimization
4707   return true;  // pretty stupid...
4708 }
4709 
4710 // verify a narrow slice (either incoming or outgoing)
4711 static void verify_memory_slice(const MergeMemNode* m, int alias_idx, Node* n) {
4712   if (!VerifyAliases)                return;  // don't bother to verify unless requested
4713   if (VMError::is_error_reported())  return;  // muzzle asserts when debugging an error
4714   if (Node::in_dump())               return;  // muzzle asserts when printing
4715   assert(alias_idx >= Compile::AliasIdxRaw, "must not disturb base_memory or sentinel");
4716   assert(n != NULL, "");
4717   // Elide intervening MergeMem's
4718   while (n->is_MergeMem()) {
4719     n = n->as_MergeMem()->memory_at(alias_idx);
4720   }
4721   Compile* C = Compile::current();
4722   const TypePtr* n_adr_type = n->adr_type();
4723   if (n == m->empty_memory()) {
4724     // Implicit copy of base_memory()
4725   } else if (n_adr_type != TypePtr::BOTTOM) {
4726     assert(n_adr_type != NULL, "new memory must have a well-defined adr_type");
4727     assert(C->must_alias(n_adr_type, alias_idx), "new memory must match selected slice");
4728   } else {
4729     // A few places like make_runtime_call "know" that VM calls are narrow,
4730     // and can be used to update only the VM bits stored as TypeRawPtr::BOTTOM.
4731     bool expected_wide_mem = false;
4732     if (n == m->base_memory()) {
4733       expected_wide_mem = true;
4734     } else if (alias_idx == Compile::AliasIdxRaw ||
4735                n == m->memory_at(Compile::AliasIdxRaw)) {
4736       expected_wide_mem = true;
4737     } else if (!C->alias_type(alias_idx)->is_rewritable()) {
4738       // memory can "leak through" calls on channels that
4739       // are write-once.  Allow this also.
4740       expected_wide_mem = true;
4741     }
4742     assert(expected_wide_mem, "expected narrow slice replacement");
4743   }
4744 }
4745 #else // !ASSERT
4746 #define verify_memory_slice(m,i,n) (void)(0)  // PRODUCT version is no-op
4747 #endif
4748 
4749 
4750 //-----------------------------memory_at---------------------------------------
4751 Node* MergeMemNode::memory_at(uint alias_idx) const {
4752   assert(alias_idx >= Compile::AliasIdxRaw ||
4753          alias_idx == Compile::AliasIdxBot && Compile::current()->AliasLevel() == 0,
4754          "must avoid base_memory and AliasIdxTop");
4755 
4756   // Otherwise, it is a narrow slice.
4757   Node* n = alias_idx < req() ? in(alias_idx) : empty_memory();
4758   Compile *C = Compile::current();
4759   if (is_empty_memory(n)) {
4760     // the array is sparse; empty slots are the "top" node
4761     n = base_memory();
4762     assert(Node::in_dump()
4763            || n == NULL || n->bottom_type() == Type::TOP
4764            || n->adr_type() == NULL // address is TOP
4765            || n->adr_type() == TypePtr::BOTTOM
4766            || n->adr_type() == TypeRawPtr::BOTTOM
4767            || Compile::current()->AliasLevel() == 0,
4768            "must be a wide memory");
4769     // AliasLevel == 0 if we are organizing the memory states manually.
4770     // See verify_memory_slice for comments on TypeRawPtr::BOTTOM.
4771   } else {
4772     // make sure the stored slice is sane
4773     #ifdef ASSERT
4774     if (VMError::is_error_reported() || Node::in_dump()) {
4775     } else if (might_be_same(n, base_memory())) {
4776       // Give it a pass:  It is a mostly harmless repetition of the base.
4777       // This can arise normally from node subsumption during optimization.
4778     } else {
4779       verify_memory_slice(this, alias_idx, n);
4780     }
4781     #endif
4782   }
4783   return n;
4784 }
4785 
4786 //---------------------------set_memory_at-------------------------------------
4787 void MergeMemNode::set_memory_at(uint alias_idx, Node *n) {
4788   verify_memory_slice(this, alias_idx, n);
4789   Node* empty_mem = empty_memory();
4790   if (n == base_memory())  n = empty_mem;  // collapse default
4791   uint need_req = alias_idx+1;
4792   if (req() < need_req) {
4793     if (n == empty_mem)  return;  // already the default, so do not grow me
4794     // grow the sparse array
4795     do {
4796       add_req(empty_mem);
4797     } while (req() < need_req);
4798   }
4799   set_req( alias_idx, n );
4800 }
4801 
4802 
4803 
4804 //--------------------------iteration_setup------------------------------------
4805 void MergeMemNode::iteration_setup(const MergeMemNode* other) {
4806   if (other != NULL) {
4807     grow_to_match(other);
4808     // invariant:  the finite support of mm2 is within mm->req()
4809     #ifdef ASSERT
4810     for (uint i = req(); i < other->req(); i++) {
4811       assert(other->is_empty_memory(other->in(i)), "slice left uncovered");
4812     }
4813     #endif
4814   }
4815   // Replace spurious copies of base_memory by top.
4816   Node* base_mem = base_memory();
4817   if (base_mem != NULL && !base_mem->is_top()) {
4818     for (uint i = Compile::AliasIdxBot+1, imax = req(); i < imax; i++) {
4819       if (in(i) == base_mem)
4820         set_req(i, empty_memory());
4821     }
4822   }
4823 }
4824 
4825 //---------------------------grow_to_match-------------------------------------
4826 void MergeMemNode::grow_to_match(const MergeMemNode* other) {
4827   Node* empty_mem = empty_memory();
4828   assert(other->is_empty_memory(empty_mem), "consistent sentinels");
4829   // look for the finite support of the other memory
4830   for (uint i = other->req(); --i >= req(); ) {
4831     if (other->in(i) != empty_mem) {
4832       uint new_len = i+1;
4833       while (req() < new_len)  add_req(empty_mem);
4834       break;
4835     }
4836   }
4837 }
4838 
4839 //---------------------------verify_sparse-------------------------------------
4840 #ifndef PRODUCT
4841 bool MergeMemNode::verify_sparse() const {
4842   assert(is_empty_memory(make_empty_memory()), "sane sentinel");
4843   Node* base_mem = base_memory();
4844   // The following can happen in degenerate cases, since empty==top.
4845   if (is_empty_memory(base_mem))  return true;
4846   for (uint i = Compile::AliasIdxRaw; i < req(); i++) {
4847     assert(in(i) != NULL, "sane slice");
4848     if (in(i) == base_mem)  return false;  // should have been the sentinel value!
4849   }
4850   return true;
4851 }
4852 
4853 bool MergeMemStream::match_memory(Node* mem, const MergeMemNode* mm, int idx) {
4854   Node* n;
4855   n = mm->in(idx);
4856   if (mem == n)  return true;  // might be empty_memory()
4857   n = (idx == Compile::AliasIdxBot)? mm->base_memory(): mm->memory_at(idx);
4858   if (mem == n)  return true;
4859   while (n->is_Phi() && (n = n->as_Phi()->is_copy()) != NULL) {
4860     if (mem == n)  return true;
4861     if (n == NULL)  break;
4862   }
4863   return false;
4864 }
4865 #endif // !PRODUCT