1 /*
   2  * Copyright (c) 1997, 2016, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "gc/shared/barrierSet.hpp"
  27 #include "gc/shared/c2/barrierSetC2.hpp"
  28 #include "libadt/vectset.hpp"
  29 #include "memory/allocation.inline.hpp"
  30 #include "memory/resourceArea.hpp"
  31 #include "opto/castnode.hpp"
  32 #include "opto/cfgnode.hpp"
  33 #include "opto/connode.hpp"
  34 #include "opto/loopnode.hpp"
  35 #include "opto/machnode.hpp"
  36 #include "opto/matcher.hpp"
  37 #include "opto/node.hpp"
  38 #include "opto/opcodes.hpp"
  39 #include "opto/regmask.hpp"
  40 #include "opto/rootnode.hpp"
  41 #include "opto/type.hpp"
  42 #include "utilities/copy.hpp"
  43 #include "utilities/macros.hpp"
  44 
  45 class RegMask;
  46 // #include "phase.hpp"
  47 class PhaseTransform;
  48 class PhaseGVN;
  49 
  50 // Arena we are currently building Nodes in
  51 const uint Node::NotAMachineReg = 0xffff0000;
  52 
  53 #ifndef PRODUCT
  54 extern int nodes_created;
  55 #endif
  56 #ifdef __clang__
  57 #pragma clang diagnostic push
  58 #pragma GCC diagnostic ignored "-Wuninitialized"
  59 #endif
  60 
  61 #ifdef ASSERT
  62 
  63 //-------------------------- construct_node------------------------------------
  64 // Set a breakpoint here to identify where a particular node index is built.
  65 void Node::verify_construction() {
  66   _debug_orig = NULL;
  67   int old_debug_idx = Compile::debug_idx();
  68   int new_debug_idx = old_debug_idx+1;
  69   if (new_debug_idx > 0) {
  70     // Arrange that the lowest five decimal digits of _debug_idx
  71     // will repeat those of _idx. In case this is somehow pathological,
  72     // we continue to assign negative numbers (!) consecutively.
  73     const int mod = 100000;
  74     int bump = (int)(_idx - new_debug_idx) % mod;
  75     if (bump < 0)  bump += mod;
  76     assert(bump >= 0 && bump < mod, "");
  77     new_debug_idx += bump;
  78   }
  79   Compile::set_debug_idx(new_debug_idx);
  80   set_debug_idx( new_debug_idx );
  81   assert(Compile::current()->unique() < (INT_MAX - 1), "Node limit exceeded INT_MAX");
  82   assert(Compile::current()->live_nodes() < Compile::current()->max_node_limit(), "Live Node limit exceeded limit");
  83   if (BreakAtNode != 0 && (_debug_idx == BreakAtNode || (int)_idx == BreakAtNode)) {
  84     tty->print_cr("BreakAtNode: _idx=%d _debug_idx=%d", _idx, _debug_idx);
  85     BREAKPOINT;
  86   }
  87 #if OPTO_DU_ITERATOR_ASSERT
  88   _last_del = NULL;
  89   _del_tick = 0;
  90 #endif
  91   _hash_lock = 0;
  92 }
  93 
  94 
  95 // #ifdef ASSERT ...
  96 
  97 #if OPTO_DU_ITERATOR_ASSERT
  98 void DUIterator_Common::sample(const Node* node) {
  99   _vdui     = VerifyDUIterators;
 100   _node     = node;
 101   _outcnt   = node->_outcnt;
 102   _del_tick = node->_del_tick;
 103   _last     = NULL;
 104 }
 105 
 106 void DUIterator_Common::verify(const Node* node, bool at_end_ok) {
 107   assert(_node     == node, "consistent iterator source");
 108   assert(_del_tick == node->_del_tick, "no unexpected deletions allowed");
 109 }
 110 
 111 void DUIterator_Common::verify_resync() {
 112   // Ensure that the loop body has just deleted the last guy produced.
 113   const Node* node = _node;
 114   // Ensure that at least one copy of the last-seen edge was deleted.
 115   // Note:  It is OK to delete multiple copies of the last-seen edge.
 116   // Unfortunately, we have no way to verify that all the deletions delete
 117   // that same edge.  On this point we must use the Honor System.
 118   assert(node->_del_tick >= _del_tick+1, "must have deleted an edge");
 119   assert(node->_last_del == _last, "must have deleted the edge just produced");
 120   // We liked this deletion, so accept the resulting outcnt and tick.
 121   _outcnt   = node->_outcnt;
 122   _del_tick = node->_del_tick;
 123 }
 124 
 125 void DUIterator_Common::reset(const DUIterator_Common& that) {
 126   if (this == &that)  return;  // ignore assignment to self
 127   if (!_vdui) {
 128     // We need to initialize everything, overwriting garbage values.
 129     _last = that._last;
 130     _vdui = that._vdui;
 131   }
 132   // Note:  It is legal (though odd) for an iterator over some node x
 133   // to be reassigned to iterate over another node y.  Some doubly-nested
 134   // progress loops depend on being able to do this.
 135   const Node* node = that._node;
 136   // Re-initialize everything, except _last.
 137   _node     = node;
 138   _outcnt   = node->_outcnt;
 139   _del_tick = node->_del_tick;
 140 }
 141 
 142 void DUIterator::sample(const Node* node) {
 143   DUIterator_Common::sample(node);      // Initialize the assertion data.
 144   _refresh_tick = 0;                    // No refreshes have happened, as yet.
 145 }
 146 
 147 void DUIterator::verify(const Node* node, bool at_end_ok) {
 148   DUIterator_Common::verify(node, at_end_ok);
 149   assert(_idx      <  node->_outcnt + (uint)at_end_ok, "idx in range");
 150 }
 151 
 152 void DUIterator::verify_increment() {
 153   if (_refresh_tick & 1) {
 154     // We have refreshed the index during this loop.
 155     // Fix up _idx to meet asserts.
 156     if (_idx > _outcnt)  _idx = _outcnt;
 157   }
 158   verify(_node, true);
 159 }
 160 
 161 void DUIterator::verify_resync() {
 162   // Note:  We do not assert on _outcnt, because insertions are OK here.
 163   DUIterator_Common::verify_resync();
 164   // Make sure we are still in sync, possibly with no more out-edges:
 165   verify(_node, true);
 166 }
 167 
 168 void DUIterator::reset(const DUIterator& that) {
 169   if (this == &that)  return;  // self assignment is always a no-op
 170   assert(that._refresh_tick == 0, "assign only the result of Node::outs()");
 171   assert(that._idx          == 0, "assign only the result of Node::outs()");
 172   assert(_idx               == that._idx, "already assigned _idx");
 173   if (!_vdui) {
 174     // We need to initialize everything, overwriting garbage values.
 175     sample(that._node);
 176   } else {
 177     DUIterator_Common::reset(that);
 178     if (_refresh_tick & 1) {
 179       _refresh_tick++;                  // Clear the "was refreshed" flag.
 180     }
 181     assert(_refresh_tick < 2*100000, "DU iteration must converge quickly");
 182   }
 183 }
 184 
 185 void DUIterator::refresh() {
 186   DUIterator_Common::sample(_node);     // Re-fetch assertion data.
 187   _refresh_tick |= 1;                   // Set the "was refreshed" flag.
 188 }
 189 
 190 void DUIterator::verify_finish() {
 191   // If the loop has killed the node, do not require it to re-run.
 192   if (_node->_outcnt == 0)  _refresh_tick &= ~1;
 193   // If this assert triggers, it means that a loop used refresh_out_pos
 194   // to re-synch an iteration index, but the loop did not correctly
 195   // re-run itself, using a "while (progress)" construct.
 196   // This iterator enforces the rule that you must keep trying the loop
 197   // until it "runs clean" without any need for refreshing.
 198   assert(!(_refresh_tick & 1), "the loop must run once with no refreshing");
 199 }
 200 
 201 
 202 void DUIterator_Fast::verify(const Node* node, bool at_end_ok) {
 203   DUIterator_Common::verify(node, at_end_ok);
 204   Node** out    = node->_out;
 205   uint   cnt    = node->_outcnt;
 206   assert(cnt == _outcnt, "no insertions allowed");
 207   assert(_outp >= out && _outp <= out + cnt - !at_end_ok, "outp in range");
 208   // This last check is carefully designed to work for NO_OUT_ARRAY.
 209 }
 210 
 211 void DUIterator_Fast::verify_limit() {
 212   const Node* node = _node;
 213   verify(node, true);
 214   assert(_outp == node->_out + node->_outcnt, "limit still correct");
 215 }
 216 
 217 void DUIterator_Fast::verify_resync() {
 218   const Node* node = _node;
 219   if (_outp == node->_out + _outcnt) {
 220     // Note that the limit imax, not the pointer i, gets updated with the
 221     // exact count of deletions.  (For the pointer it's always "--i".)
 222     assert(node->_outcnt+node->_del_tick == _outcnt+_del_tick, "no insertions allowed with deletion(s)");
 223     // This is a limit pointer, with a name like "imax".
 224     // Fudge the _last field so that the common assert will be happy.
 225     _last = (Node*) node->_last_del;
 226     DUIterator_Common::verify_resync();
 227   } else {
 228     assert(node->_outcnt < _outcnt, "no insertions allowed with deletion(s)");
 229     // A normal internal pointer.
 230     DUIterator_Common::verify_resync();
 231     // Make sure we are still in sync, possibly with no more out-edges:
 232     verify(node, true);
 233   }
 234 }
 235 
 236 void DUIterator_Fast::verify_relimit(uint n) {
 237   const Node* node = _node;
 238   assert((int)n > 0, "use imax -= n only with a positive count");
 239   // This must be a limit pointer, with a name like "imax".
 240   assert(_outp == node->_out + node->_outcnt, "apply -= only to a limit (imax)");
 241   // The reported number of deletions must match what the node saw.
 242   assert(node->_del_tick == _del_tick + n, "must have deleted n edges");
 243   // Fudge the _last field so that the common assert will be happy.
 244   _last = (Node*) node->_last_del;
 245   DUIterator_Common::verify_resync();
 246 }
 247 
 248 void DUIterator_Fast::reset(const DUIterator_Fast& that) {
 249   assert(_outp              == that._outp, "already assigned _outp");
 250   DUIterator_Common::reset(that);
 251 }
 252 
 253 void DUIterator_Last::verify(const Node* node, bool at_end_ok) {
 254   // at_end_ok means the _outp is allowed to underflow by 1
 255   _outp += at_end_ok;
 256   DUIterator_Fast::verify(node, at_end_ok);  // check _del_tick, etc.
 257   _outp -= at_end_ok;
 258   assert(_outp == (node->_out + node->_outcnt) - 1, "pointer must point to end of nodes");
 259 }
 260 
 261 void DUIterator_Last::verify_limit() {
 262   // Do not require the limit address to be resynched.
 263   //verify(node, true);
 264   assert(_outp == _node->_out, "limit still correct");
 265 }
 266 
 267 void DUIterator_Last::verify_step(uint num_edges) {
 268   assert((int)num_edges > 0, "need non-zero edge count for loop progress");
 269   _outcnt   -= num_edges;
 270   _del_tick += num_edges;
 271   // Make sure we are still in sync, possibly with no more out-edges:
 272   const Node* node = _node;
 273   verify(node, true);
 274   assert(node->_last_del == _last, "must have deleted the edge just produced");
 275 }
 276 
 277 #endif //OPTO_DU_ITERATOR_ASSERT
 278 
 279 
 280 #endif //ASSERT
 281 
 282 
 283 // This constant used to initialize _out may be any non-null value.
 284 // The value NULL is reserved for the top node only.
 285 #define NO_OUT_ARRAY ((Node**)-1)
 286 
 287 // Out-of-line code from node constructors.
 288 // Executed only when extra debug info. is being passed around.
 289 static void init_node_notes(Compile* C, int idx, Node_Notes* nn) {
 290   C->set_node_notes_at(idx, nn);
 291 }
 292 
 293 // Shared initialization code.
 294 inline int Node::Init(int req) {
 295   Compile* C = Compile::current();
 296   int idx = C->next_unique();
 297 
 298   // Allocate memory for the necessary number of edges.
 299   if (req > 0) {
 300     // Allocate space for _in array to have double alignment.
 301     _in = (Node **) ((char *) (C->node_arena()->Amalloc_D(req * sizeof(void*))));
 302   }
 303   // If there are default notes floating around, capture them:
 304   Node_Notes* nn = C->default_node_notes();
 305   if (nn != NULL)  init_node_notes(C, idx, nn);
 306 
 307   // Note:  At this point, C is dead,
 308   // and we begin to initialize the new Node.
 309 
 310   _cnt = _max = req;
 311   _outcnt = _outmax = 0;
 312   _class_id = Class_Node;
 313   _flags = 0;
 314   _out = NO_OUT_ARRAY;
 315   return idx;
 316 }
 317 
 318 //------------------------------Node-------------------------------------------
 319 // Create a Node, with a given number of required edges.
 320 Node::Node(uint req)
 321   : _idx(Init(req))
 322 #ifdef ASSERT
 323   , _parse_idx(_idx)
 324 #endif
 325 {
 326   assert( req < Compile::current()->max_node_limit() - NodeLimitFudgeFactor, "Input limit exceeded" );
 327   debug_only( verify_construction() );
 328   NOT_PRODUCT(nodes_created++);
 329   if (req == 0) {
 330     _in = NULL;
 331   } else {
 332     Node** to = _in;
 333     for(uint i = 0; i < req; i++) {
 334       to[i] = NULL;
 335     }
 336   }
 337 }
 338 
 339 //------------------------------Node-------------------------------------------
 340 Node::Node(Node *n0)
 341   : _idx(Init(1))
 342 #ifdef ASSERT
 343   , _parse_idx(_idx)
 344 #endif
 345 {
 346   debug_only( verify_construction() );
 347   NOT_PRODUCT(nodes_created++);
 348   assert( is_not_dead(n0), "can not use dead node");
 349   _in[0] = n0; if (n0 != NULL) n0->add_out((Node *)this);
 350 }
 351 
 352 //------------------------------Node-------------------------------------------
 353 Node::Node(Node *n0, Node *n1)
 354   : _idx(Init(2))
 355 #ifdef ASSERT
 356   , _parse_idx(_idx)
 357 #endif
 358 {
 359   debug_only( verify_construction() );
 360   NOT_PRODUCT(nodes_created++);
 361   assert( is_not_dead(n0), "can not use dead node");
 362   assert( is_not_dead(n1), "can not use dead node");
 363   _in[0] = n0; if (n0 != NULL) n0->add_out((Node *)this);
 364   _in[1] = n1; if (n1 != NULL) n1->add_out((Node *)this);
 365 }
 366 
 367 //------------------------------Node-------------------------------------------
 368 Node::Node(Node *n0, Node *n1, Node *n2)
 369   : _idx(Init(3))
 370 #ifdef ASSERT
 371   , _parse_idx(_idx)
 372 #endif
 373 {
 374   debug_only( verify_construction() );
 375   NOT_PRODUCT(nodes_created++);
 376   assert( is_not_dead(n0), "can not use dead node");
 377   assert( is_not_dead(n1), "can not use dead node");
 378   assert( is_not_dead(n2), "can not use dead node");
 379   _in[0] = n0; if (n0 != NULL) n0->add_out((Node *)this);
 380   _in[1] = n1; if (n1 != NULL) n1->add_out((Node *)this);
 381   _in[2] = n2; if (n2 != NULL) n2->add_out((Node *)this);
 382 }
 383 
 384 //------------------------------Node-------------------------------------------
 385 Node::Node(Node *n0, Node *n1, Node *n2, Node *n3)
 386   : _idx(Init(4))
 387 #ifdef ASSERT
 388   , _parse_idx(_idx)
 389 #endif
 390 {
 391   debug_only( verify_construction() );
 392   NOT_PRODUCT(nodes_created++);
 393   assert( is_not_dead(n0), "can not use dead node");
 394   assert( is_not_dead(n1), "can not use dead node");
 395   assert( is_not_dead(n2), "can not use dead node");
 396   assert( is_not_dead(n3), "can not use dead node");
 397   _in[0] = n0; if (n0 != NULL) n0->add_out((Node *)this);
 398   _in[1] = n1; if (n1 != NULL) n1->add_out((Node *)this);
 399   _in[2] = n2; if (n2 != NULL) n2->add_out((Node *)this);
 400   _in[3] = n3; if (n3 != NULL) n3->add_out((Node *)this);
 401 }
 402 
 403 //------------------------------Node-------------------------------------------
 404 Node::Node(Node *n0, Node *n1, Node *n2, Node *n3, Node *n4)
 405   : _idx(Init(5))
 406 #ifdef ASSERT
 407   , _parse_idx(_idx)
 408 #endif
 409 {
 410   debug_only( verify_construction() );
 411   NOT_PRODUCT(nodes_created++);
 412   assert( is_not_dead(n0), "can not use dead node");
 413   assert( is_not_dead(n1), "can not use dead node");
 414   assert( is_not_dead(n2), "can not use dead node");
 415   assert( is_not_dead(n3), "can not use dead node");
 416   assert( is_not_dead(n4), "can not use dead node");
 417   _in[0] = n0; if (n0 != NULL) n0->add_out((Node *)this);
 418   _in[1] = n1; if (n1 != NULL) n1->add_out((Node *)this);
 419   _in[2] = n2; if (n2 != NULL) n2->add_out((Node *)this);
 420   _in[3] = n3; if (n3 != NULL) n3->add_out((Node *)this);
 421   _in[4] = n4; if (n4 != NULL) n4->add_out((Node *)this);
 422 }
 423 
 424 //------------------------------Node-------------------------------------------
 425 Node::Node(Node *n0, Node *n1, Node *n2, Node *n3,
 426                      Node *n4, Node *n5)
 427   : _idx(Init(6))
 428 #ifdef ASSERT
 429   , _parse_idx(_idx)
 430 #endif
 431 {
 432   debug_only( verify_construction() );
 433   NOT_PRODUCT(nodes_created++);
 434   assert( is_not_dead(n0), "can not use dead node");
 435   assert( is_not_dead(n1), "can not use dead node");
 436   assert( is_not_dead(n2), "can not use dead node");
 437   assert( is_not_dead(n3), "can not use dead node");
 438   assert( is_not_dead(n4), "can not use dead node");
 439   assert( is_not_dead(n5), "can not use dead node");
 440   _in[0] = n0; if (n0 != NULL) n0->add_out((Node *)this);
 441   _in[1] = n1; if (n1 != NULL) n1->add_out((Node *)this);
 442   _in[2] = n2; if (n2 != NULL) n2->add_out((Node *)this);
 443   _in[3] = n3; if (n3 != NULL) n3->add_out((Node *)this);
 444   _in[4] = n4; if (n4 != NULL) n4->add_out((Node *)this);
 445   _in[5] = n5; if (n5 != NULL) n5->add_out((Node *)this);
 446 }
 447 
 448 //------------------------------Node-------------------------------------------
 449 Node::Node(Node *n0, Node *n1, Node *n2, Node *n3,
 450                      Node *n4, Node *n5, Node *n6)
 451   : _idx(Init(7))
 452 #ifdef ASSERT
 453   , _parse_idx(_idx)
 454 #endif
 455 {
 456   debug_only( verify_construction() );
 457   NOT_PRODUCT(nodes_created++);
 458   assert( is_not_dead(n0), "can not use dead node");
 459   assert( is_not_dead(n1), "can not use dead node");
 460   assert( is_not_dead(n2), "can not use dead node");
 461   assert( is_not_dead(n3), "can not use dead node");
 462   assert( is_not_dead(n4), "can not use dead node");
 463   assert( is_not_dead(n5), "can not use dead node");
 464   assert( is_not_dead(n6), "can not use dead node");
 465   _in[0] = n0; if (n0 != NULL) n0->add_out((Node *)this);
 466   _in[1] = n1; if (n1 != NULL) n1->add_out((Node *)this);
 467   _in[2] = n2; if (n2 != NULL) n2->add_out((Node *)this);
 468   _in[3] = n3; if (n3 != NULL) n3->add_out((Node *)this);
 469   _in[4] = n4; if (n4 != NULL) n4->add_out((Node *)this);
 470   _in[5] = n5; if (n5 != NULL) n5->add_out((Node *)this);
 471   _in[6] = n6; if (n6 != NULL) n6->add_out((Node *)this);
 472 }
 473 
 474 #ifdef __clang__
 475 #pragma clang diagnostic pop
 476 #endif
 477 
 478 
 479 //------------------------------clone------------------------------------------
 480 // Clone a Node.
 481 Node *Node::clone() const {
 482   Compile* C = Compile::current();
 483   uint s = size_of();           // Size of inherited Node
 484   Node *n = (Node*)C->node_arena()->Amalloc_D(size_of() + _max*sizeof(Node*));
 485   Copy::conjoint_words_to_lower((HeapWord*)this, (HeapWord*)n, s);
 486   // Set the new input pointer array
 487   n->_in = (Node**)(((char*)n)+s);
 488   // Cannot share the old output pointer array, so kill it
 489   n->_out = NO_OUT_ARRAY;
 490   // And reset the counters to 0
 491   n->_outcnt = 0;
 492   n->_outmax = 0;
 493   // Unlock this guy, since he is not in any hash table.
 494   debug_only(n->_hash_lock = 0);
 495   // Walk the old node's input list to duplicate its edges
 496   uint i;
 497   for( i = 0; i < len(); i++ ) {
 498     Node *x = in(i);
 499     n->_in[i] = x;
 500     if (x != NULL) x->add_out(n);
 501   }
 502   if (is_macro())
 503     C->add_macro_node(n);
 504   if (is_expensive())
 505     C->add_expensive_node(n);
 506   BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
 507   bs->register_potential_barrier_node(n);
 508   // If the cloned node is a range check dependent CastII, add it to the list.
 509   CastIINode* cast = n->isa_CastII();
 510   if (cast != NULL && cast->has_range_check()) {
 511     C->add_range_check_cast(cast);
 512   }
 513   if (n->Opcode() == Op_Opaque4) {
 514     C->add_opaque4_node(n);
 515   }
 516 
 517   n->set_idx(C->next_unique()); // Get new unique index as well
 518   debug_only( n->verify_construction() );
 519   NOT_PRODUCT(nodes_created++);
 520   // Do not patch over the debug_idx of a clone, because it makes it
 521   // impossible to break on the clone's moment of creation.
 522   //debug_only( n->set_debug_idx( debug_idx() ) );
 523 
 524   C->copy_node_notes_to(n, (Node*) this);
 525 
 526   // MachNode clone
 527   uint nopnds;
 528   if (this->is_Mach() && (nopnds = this->as_Mach()->num_opnds()) > 0) {
 529     MachNode *mach  = n->as_Mach();
 530     MachNode *mthis = this->as_Mach();
 531     // Get address of _opnd_array.
 532     // It should be the same offset since it is the clone of this node.
 533     MachOper **from = mthis->_opnds;
 534     MachOper **to = (MachOper **)((size_t)(&mach->_opnds) +
 535                     pointer_delta((const void*)from,
 536                                   (const void*)(&mthis->_opnds), 1));
 537     mach->_opnds = to;
 538     for ( uint i = 0; i < nopnds; ++i ) {
 539       to[i] = from[i]->clone();
 540     }
 541   }
 542   // cloning CallNode may need to clone JVMState
 543   if (n->is_Call()) {
 544     n->as_Call()->clone_jvms(C);
 545   }
 546   if (n->is_SafePoint()) {
 547     n->as_SafePoint()->clone_replaced_nodes();
 548   }
 549   return n;                     // Return the clone
 550 }
 551 
 552 //---------------------------setup_is_top--------------------------------------
 553 // Call this when changing the top node, to reassert the invariants
 554 // required by Node::is_top.  See Compile::set_cached_top_node.
 555 void Node::setup_is_top() {
 556   if (this == (Node*)Compile::current()->top()) {
 557     // This node has just become top.  Kill its out array.
 558     _outcnt = _outmax = 0;
 559     _out = NULL;                           // marker value for top
 560     assert(is_top(), "must be top");
 561   } else {
 562     if (_out == NULL)  _out = NO_OUT_ARRAY;
 563     assert(!is_top(), "must not be top");
 564   }
 565 }
 566 
 567 
 568 //------------------------------~Node------------------------------------------
 569 // Fancy destructor; eagerly attempt to reclaim Node numberings and storage
 570 void Node::destruct() {
 571   // Eagerly reclaim unique Node numberings
 572   Compile* compile = Compile::current();
 573   if ((uint)_idx+1 == compile->unique()) {
 574     compile->set_unique(compile->unique()-1);
 575   }
 576   // Clear debug info:
 577   Node_Notes* nn = compile->node_notes_at(_idx);
 578   if (nn != NULL)  nn->clear();
 579   // Walk the input array, freeing the corresponding output edges
 580   _cnt = _max;  // forget req/prec distinction
 581   uint i;
 582   for( i = 0; i < _max; i++ ) {
 583     set_req(i, NULL);
 584     //assert(def->out(def->outcnt()-1) == (Node *)this,"bad def-use hacking in reclaim");
 585   }
 586   assert(outcnt() == 0, "deleting a node must not leave a dangling use");
 587   // See if the input array was allocated just prior to the object
 588   int edge_size = _max*sizeof(void*);
 589   int out_edge_size = _outmax*sizeof(void*);
 590   char *edge_end = ((char*)_in) + edge_size;
 591   char *out_array = (char*)(_out == NO_OUT_ARRAY? NULL: _out);
 592   int node_size = size_of();
 593 
 594   // Free the output edge array
 595   if (out_edge_size > 0) {
 596     compile->node_arena()->Afree(out_array, out_edge_size);
 597   }
 598 
 599   // Free the input edge array and the node itself
 600   if( edge_end == (char*)this ) {
 601     // It was; free the input array and object all in one hit
 602 #ifndef ASSERT
 603     compile->node_arena()->Afree(_in,edge_size+node_size);
 604 #endif
 605   } else {
 606     // Free just the input array
 607     compile->node_arena()->Afree(_in,edge_size);
 608 
 609     // Free just the object
 610 #ifndef ASSERT
 611     compile->node_arena()->Afree(this,node_size);
 612 #endif
 613   }
 614   if (is_macro()) {
 615     compile->remove_macro_node(this);
 616   }
 617   if (is_expensive()) {
 618     compile->remove_expensive_node(this);
 619   }
 620   CastIINode* cast = isa_CastII();
 621   if (cast != NULL && cast->has_range_check()) {
 622     compile->remove_range_check_cast(cast);
 623   }
 624   if (Opcode() == Op_Opaque4) {
 625     compile->remove_opaque4_node(this);
 626   }
 627 
 628   if (is_SafePoint()) {
 629     as_SafePoint()->delete_replaced_nodes();
 630   }
 631   BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
 632   bs->unregister_potential_barrier_node(this);
 633 #ifdef ASSERT
 634   // We will not actually delete the storage, but we'll make the node unusable.
 635   *(address*)this = badAddress;  // smash the C++ vtbl, probably
 636   _in = _out = (Node**) badAddress;
 637   _max = _cnt = _outmax = _outcnt = 0;
 638   compile->remove_modified_node(this);
 639 #endif
 640 }
 641 
 642 //------------------------------grow-------------------------------------------
 643 // Grow the input array, making space for more edges
 644 void Node::grow( uint len ) {
 645   Arena* arena = Compile::current()->node_arena();
 646   uint new_max = _max;
 647   if( new_max == 0 ) {
 648     _max = 4;
 649     _in = (Node**)arena->Amalloc(4*sizeof(Node*));
 650     Node** to = _in;
 651     to[0] = NULL;
 652     to[1] = NULL;
 653     to[2] = NULL;
 654     to[3] = NULL;
 655     return;
 656   }
 657   while( new_max <= len ) new_max <<= 1; // Find next power-of-2
 658   // Trimming to limit allows a uint8 to handle up to 255 edges.
 659   // Previously I was using only powers-of-2 which peaked at 128 edges.
 660   //if( new_max >= limit ) new_max = limit-1;
 661   _in = (Node**)arena->Arealloc(_in, _max*sizeof(Node*), new_max*sizeof(Node*));
 662   Copy::zero_to_bytes(&_in[_max], (new_max-_max)*sizeof(Node*)); // NULL all new space
 663   _max = new_max;               // Record new max length
 664   // This assertion makes sure that Node::_max is wide enough to
 665   // represent the numerical value of new_max.
 666   assert(_max == new_max && _max > len, "int width of _max is too small");
 667 }
 668 
 669 //-----------------------------out_grow----------------------------------------
 670 // Grow the input array, making space for more edges
 671 void Node::out_grow( uint len ) {
 672   assert(!is_top(), "cannot grow a top node's out array");
 673   Arena* arena = Compile::current()->node_arena();
 674   uint new_max = _outmax;
 675   if( new_max == 0 ) {
 676     _outmax = 4;
 677     _out = (Node **)arena->Amalloc(4*sizeof(Node*));
 678     return;
 679   }
 680   while( new_max <= len ) new_max <<= 1; // Find next power-of-2
 681   // Trimming to limit allows a uint8 to handle up to 255 edges.
 682   // Previously I was using only powers-of-2 which peaked at 128 edges.
 683   //if( new_max >= limit ) new_max = limit-1;
 684   assert(_out != NULL && _out != NO_OUT_ARRAY, "out must have sensible value");
 685   _out = (Node**)arena->Arealloc(_out,_outmax*sizeof(Node*),new_max*sizeof(Node*));
 686   //Copy::zero_to_bytes(&_out[_outmax], (new_max-_outmax)*sizeof(Node*)); // NULL all new space
 687   _outmax = new_max;               // Record new max length
 688   // This assertion makes sure that Node::_max is wide enough to
 689   // represent the numerical value of new_max.
 690   assert(_outmax == new_max && _outmax > len, "int width of _outmax is too small");
 691 }
 692 
 693 #ifdef ASSERT
 694 //------------------------------is_dead----------------------------------------
 695 bool Node::is_dead() const {
 696   // Mach and pinch point nodes may look like dead.
 697   if( is_top() || is_Mach() || (Opcode() == Op_Node && _outcnt > 0) )
 698     return false;
 699   for( uint i = 0; i < _max; i++ )
 700     if( _in[i] != NULL )
 701       return false;
 702   dump();
 703   return true;
 704 }
 705 
 706 bool Node::is_reachable_from_root() const {
 707   ResourceMark rm;
 708   Unique_Node_List wq;
 709   wq.push((Node*)this);
 710   RootNode* root = Compile::current()->root();
 711   for (uint i = 0; i < wq.size(); i++) {
 712     Node* m = wq.at(i);
 713     if (m == root) {
 714       return true;
 715     }
 716     for (DUIterator_Fast jmax, j = m->fast_outs(jmax); j < jmax; j++) {
 717       Node* u = m->fast_out(j);
 718       wq.push(u);
 719     }
 720   }
 721   return false;
 722 }
 723 #endif
 724 
 725 //------------------------------is_unreachable---------------------------------
 726 bool Node::is_unreachable(PhaseIterGVN &igvn) const {
 727   assert(!is_Mach(), "doesn't work with MachNodes");
 728   return outcnt() == 0 || igvn.type(this) == Type::TOP || (in(0) != NULL && in(0)->is_top());
 729 }
 730 
 731 //------------------------------add_req----------------------------------------
 732 // Add a new required input at the end
 733 void Node::add_req( Node *n ) {
 734   assert( is_not_dead(n), "can not use dead node");
 735 
 736   // Look to see if I can move precedence down one without reallocating
 737   if( (_cnt >= _max) || (in(_max-1) != NULL) )
 738     grow( _max+1 );
 739 
 740   // Find a precedence edge to move
 741   if( in(_cnt) != NULL ) {       // Next precedence edge is busy?
 742     uint i;
 743     for( i=_cnt; i<_max; i++ )
 744       if( in(i) == NULL )       // Find the NULL at end of prec edge list
 745         break;                  // There must be one, since we grew the array
 746     _in[i] = in(_cnt);          // Move prec over, making space for req edge
 747   }
 748   _in[_cnt++] = n;            // Stuff over old prec edge
 749   if (n != NULL) n->add_out((Node *)this);
 750 }
 751 
 752 //---------------------------add_req_batch-------------------------------------
 753 // Add a new required input at the end
 754 void Node::add_req_batch( Node *n, uint m ) {
 755   assert( is_not_dead(n), "can not use dead node");
 756   // check various edge cases
 757   if ((int)m <= 1) {
 758     assert((int)m >= 0, "oob");
 759     if (m != 0)  add_req(n);
 760     return;
 761   }
 762 
 763   // Look to see if I can move precedence down one without reallocating
 764   if( (_cnt+m) > _max || _in[_max-m] )
 765     grow( _max+m );
 766 
 767   // Find a precedence edge to move
 768   if( _in[_cnt] != NULL ) {     // Next precedence edge is busy?
 769     uint i;
 770     for( i=_cnt; i<_max; i++ )
 771       if( _in[i] == NULL )      // Find the NULL at end of prec edge list
 772         break;                  // There must be one, since we grew the array
 773     // Slide all the precs over by m positions (assume #prec << m).
 774     Copy::conjoint_words_to_higher((HeapWord*)&_in[_cnt], (HeapWord*)&_in[_cnt+m], ((i-_cnt)*sizeof(Node*)));
 775   }
 776 
 777   // Stuff over the old prec edges
 778   for(uint i=0; i<m; i++ ) {
 779     _in[_cnt++] = n;
 780   }
 781 
 782   // Insert multiple out edges on the node.
 783   if (n != NULL && !n->is_top()) {
 784     for(uint i=0; i<m; i++ ) {
 785       n->add_out((Node *)this);
 786     }
 787   }
 788 }
 789 
 790 //------------------------------del_req----------------------------------------
 791 // Delete the required edge and compact the edge array
 792 void Node::del_req( uint idx ) {
 793   assert( idx < _cnt, "oob");
 794   assert( !VerifyHashTableKeys || _hash_lock == 0,
 795           "remove node from hash table before modifying it");
 796   // First remove corresponding def-use edge
 797   Node *n = in(idx);
 798   if (n != NULL) n->del_out((Node *)this);
 799   _in[idx] = in(--_cnt); // Compact the array
 800   // Avoid spec violation: Gap in prec edges.
 801   close_prec_gap_at(_cnt);
 802   Compile::current()->record_modified_node(this);
 803 }
 804 
 805 //------------------------------del_req_ordered--------------------------------
 806 // Delete the required edge and compact the edge array with preserved order
 807 void Node::del_req_ordered( uint idx ) {
 808   assert( idx < _cnt, "oob");
 809   assert( !VerifyHashTableKeys || _hash_lock == 0,
 810           "remove node from hash table before modifying it");
 811   // First remove corresponding def-use edge
 812   Node *n = in(idx);
 813   if (n != NULL) n->del_out((Node *)this);
 814   if (idx < --_cnt) {    // Not last edge ?
 815     Copy::conjoint_words_to_lower((HeapWord*)&_in[idx+1], (HeapWord*)&_in[idx], ((_cnt-idx)*sizeof(Node*)));
 816   }
 817   // Avoid spec violation: Gap in prec edges.
 818   close_prec_gap_at(_cnt);
 819   Compile::current()->record_modified_node(this);
 820 }
 821 
 822 //------------------------------ins_req----------------------------------------
 823 // Insert a new required input at the end
 824 void Node::ins_req( uint idx, Node *n ) {
 825   assert( is_not_dead(n), "can not use dead node");
 826   add_req(NULL);                // Make space
 827   assert( idx < _max, "Must have allocated enough space");
 828   // Slide over
 829   if(_cnt-idx-1 > 0) {
 830     Copy::conjoint_words_to_higher((HeapWord*)&_in[idx], (HeapWord*)&_in[idx+1], ((_cnt-idx-1)*sizeof(Node*)));
 831   }
 832   _in[idx] = n;                            // Stuff over old required edge
 833   if (n != NULL) n->add_out((Node *)this); // Add reciprocal def-use edge
 834 }
 835 
 836 //-----------------------------find_edge---------------------------------------
 837 int Node::find_edge(Node* n) {
 838   for (uint i = 0; i < len(); i++) {
 839     if (_in[i] == n)  return i;
 840   }
 841   return -1;
 842 }
 843 
 844 //----------------------------replace_edge-------------------------------------
 845 int Node::replace_edge(Node* old, Node* neww) {
 846   if (old == neww)  return 0;  // nothing to do
 847   uint nrep = 0;
 848   for (uint i = 0; i < len(); i++) {
 849     if (in(i) == old) {
 850       if (i < req()) {
 851         set_req(i, neww);
 852       } else {
 853         assert(find_prec_edge(neww) == -1, "spec violation: duplicated prec edge (node %d -> %d)", _idx, neww->_idx);
 854         set_prec(i, neww);
 855       }
 856       nrep++;
 857     }
 858   }
 859   return nrep;
 860 }
 861 
 862 /**
 863  * Replace input edges in the range pointing to 'old' node.
 864  */
 865 int Node::replace_edges_in_range(Node* old, Node* neww, int start, int end) {
 866   if (old == neww)  return 0;  // nothing to do
 867   uint nrep = 0;
 868   for (int i = start; i < end; i++) {
 869     if (in(i) == old) {
 870       set_req(i, neww);
 871       nrep++;
 872     }
 873   }
 874   return nrep;
 875 }
 876 
 877 //-------------------------disconnect_inputs-----------------------------------
 878 // NULL out all inputs to eliminate incoming Def-Use edges.
 879 // Return the number of edges between 'n' and 'this'
 880 int Node::disconnect_inputs(Node *n, Compile* C) {
 881   int edges_to_n = 0;
 882 
 883   uint cnt = req();
 884   for( uint i = 0; i < cnt; ++i ) {
 885     if( in(i) == 0 ) continue;
 886     if( in(i) == n ) ++edges_to_n;
 887     set_req(i, NULL);
 888   }
 889   // Remove precedence edges if any exist
 890   // Note: Safepoints may have precedence edges, even during parsing
 891   if( (req() != len()) && (in(req()) != NULL) ) {
 892     uint max = len();
 893     for( uint i = 0; i < max; ++i ) {
 894       if( in(i) == 0 ) continue;
 895       if( in(i) == n ) ++edges_to_n;
 896       set_prec(i, NULL);
 897     }
 898   }
 899 
 900   // Node::destruct requires all out edges be deleted first
 901   // debug_only(destruct();)   // no reuse benefit expected
 902   if (edges_to_n == 0) {
 903     C->record_dead_node(_idx);
 904   }
 905   return edges_to_n;
 906 }
 907 
 908 //-----------------------------uncast---------------------------------------
 909 // %%% Temporary, until we sort out CheckCastPP vs. CastPP.
 910 // Strip away casting.  (It is depth-limited.)
 911 Node* Node::uncast() const {
 912   // Should be inline:
 913   //return is_ConstraintCast() ? uncast_helper(this) : (Node*) this;
 914   if (is_ConstraintCast())
 915     return uncast_helper(this);
 916   else
 917     return (Node*) this;
 918 }
 919 
 920 // Find out of current node that matches opcode.
 921 Node* Node::find_out_with(int opcode) {
 922   for (DUIterator_Fast imax, i = fast_outs(imax); i < imax; i++) {
 923     Node* use = fast_out(i);
 924     if (use->Opcode() == opcode) {
 925       return use;
 926     }
 927   }
 928   return NULL;
 929 }
 930 
 931 // Return true if the current node has an out that matches opcode.
 932 bool Node::has_out_with(int opcode) {
 933   return (find_out_with(opcode) != NULL);
 934 }
 935 
 936 // Return true if the current node has an out that matches any of the opcodes.
 937 bool Node::has_out_with(int opcode1, int opcode2, int opcode3, int opcode4) {
 938   for (DUIterator_Fast imax, i = fast_outs(imax); i < imax; i++) {
 939       int opcode = fast_out(i)->Opcode();
 940       if (opcode == opcode1 || opcode == opcode2 || opcode == opcode3 || opcode == opcode4) {
 941         return true;
 942       }
 943   }
 944   return false;
 945 }
 946 
 947 
 948 //---------------------------uncast_helper-------------------------------------
 949 Node* Node::uncast_helper(const Node* p) {
 950 #ifdef ASSERT
 951   uint depth_count = 0;
 952   const Node* orig_p = p;
 953 #endif
 954 
 955   while (true) {
 956 #ifdef ASSERT
 957     if (depth_count >= K) {
 958       orig_p->dump(4);
 959       if (p != orig_p)
 960         p->dump(1);
 961     }
 962     assert(depth_count++ < K, "infinite loop in Node::uncast_helper");
 963 #endif
 964     if (p == NULL || p->req() != 2) {
 965       break;
 966     } else if (p->is_ConstraintCast()) {
 967       p = p->in(1);
 968     } else {
 969       break;
 970     }
 971   }
 972   return (Node*) p;
 973 }
 974 
 975 //------------------------------add_prec---------------------------------------
 976 // Add a new precedence input.  Precedence inputs are unordered, with
 977 // duplicates removed and NULLs packed down at the end.
 978 void Node::add_prec( Node *n ) {
 979   assert( is_not_dead(n), "can not use dead node");
 980 
 981   // Check for NULL at end
 982   if( _cnt >= _max || in(_max-1) )
 983     grow( _max+1 );
 984 
 985   // Find a precedence edge to move
 986   uint i = _cnt;
 987   while( in(i) != NULL ) {
 988     if (in(i) == n) return; // Avoid spec violation: duplicated prec edge.
 989     i++;
 990   }
 991   _in[i] = n;                                // Stuff prec edge over NULL
 992   if ( n != NULL) n->add_out((Node *)this);  // Add mirror edge
 993 
 994 #ifdef ASSERT
 995   while ((++i)<_max) { assert(_in[i] == NULL, "spec violation: Gap in prec edges (node %d)", _idx); }
 996 #endif
 997 }
 998 
 999 //------------------------------rm_prec----------------------------------------
1000 // Remove a precedence input.  Precedence inputs are unordered, with
1001 // duplicates removed and NULLs packed down at the end.
1002 void Node::rm_prec( uint j ) {
1003   assert(j < _max, "oob: i=%d, _max=%d", j, _max);
1004   assert(j >= _cnt, "not a precedence edge");
1005   if (_in[j] == NULL) return;   // Avoid spec violation: Gap in prec edges.
1006   _in[j]->del_out((Node *)this);
1007   close_prec_gap_at(j);
1008 }
1009 
1010 //------------------------------size_of----------------------------------------
1011 uint Node::size_of() const { return sizeof(*this); }
1012 
1013 //------------------------------ideal_reg--------------------------------------
1014 uint Node::ideal_reg() const { return 0; }
1015 
1016 //------------------------------jvms-------------------------------------------
1017 JVMState* Node::jvms() const { return NULL; }
1018 
1019 #ifdef ASSERT
1020 //------------------------------jvms-------------------------------------------
1021 bool Node::verify_jvms(const JVMState* using_jvms) const {
1022   for (JVMState* jvms = this->jvms(); jvms != NULL; jvms = jvms->caller()) {
1023     if (jvms == using_jvms)  return true;
1024   }
1025   return false;
1026 }
1027 
1028 //------------------------------init_NodeProperty------------------------------
1029 void Node::init_NodeProperty() {
1030   assert(_max_classes <= max_jushort, "too many NodeProperty classes");
1031   assert(_max_flags <= max_jushort, "too many NodeProperty flags");
1032 }
1033 #endif
1034 
1035 //------------------------------format-----------------------------------------
1036 // Print as assembly
1037 void Node::format( PhaseRegAlloc *, outputStream *st ) const {}
1038 //------------------------------emit-------------------------------------------
1039 // Emit bytes starting at parameter 'ptr'.
1040 void Node::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {}
1041 //------------------------------size-------------------------------------------
1042 // Size of instruction in bytes
1043 uint Node::size(PhaseRegAlloc *ra_) const { return 0; }
1044 
1045 //------------------------------CFG Construction-------------------------------
1046 // Nodes that end basic blocks, e.g. IfTrue/IfFalse, JumpProjNode, Root,
1047 // Goto and Return.
1048 const Node *Node::is_block_proj() const { return 0; }
1049 
1050 // Minimum guaranteed type
1051 const Type *Node::bottom_type() const { return Type::BOTTOM; }
1052 
1053 
1054 //------------------------------raise_bottom_type------------------------------
1055 // Get the worst-case Type output for this Node.
1056 void Node::raise_bottom_type(const Type* new_type) {
1057   if (is_Type()) {
1058     TypeNode *n = this->as_Type();
1059     if (VerifyAliases) {
1060       assert(new_type->higher_equal_speculative(n->type()), "new type must refine old type");
1061     }
1062     n->set_type(new_type);
1063   } else if (is_Load()) {
1064     LoadNode *n = this->as_Load();
1065     if (VerifyAliases) {
1066       assert(new_type->higher_equal_speculative(n->type()), "new type must refine old type");
1067     }
1068     n->set_type(new_type);
1069   }
1070 }
1071 
1072 //------------------------------Identity---------------------------------------
1073 // Return a node that the given node is equivalent to.
1074 Node* Node::Identity(PhaseGVN* phase) {
1075   return this;                  // Default to no identities
1076 }
1077 
1078 //------------------------------Value------------------------------------------
1079 // Compute a new Type for a node using the Type of the inputs.
1080 const Type* Node::Value(PhaseGVN* phase) const {
1081   return bottom_type();         // Default to worst-case Type
1082 }
1083 
1084 //------------------------------Ideal------------------------------------------
1085 //
1086 // 'Idealize' the graph rooted at this Node.
1087 //
1088 // In order to be efficient and flexible there are some subtle invariants
1089 // these Ideal calls need to hold.  Running with '+VerifyIterativeGVN' checks
1090 // these invariants, although its too slow to have on by default.  If you are
1091 // hacking an Ideal call, be sure to test with +VerifyIterativeGVN!
1092 //
1093 // The Ideal call almost arbitrarily reshape the graph rooted at the 'this'
1094 // pointer.  If ANY change is made, it must return the root of the reshaped
1095 // graph - even if the root is the same Node.  Example: swapping the inputs
1096 // to an AddINode gives the same answer and same root, but you still have to
1097 // return the 'this' pointer instead of NULL.
1098 //
1099 // You cannot return an OLD Node, except for the 'this' pointer.  Use the
1100 // Identity call to return an old Node; basically if Identity can find
1101 // another Node have the Ideal call make no change and return NULL.
1102 // Example: AddINode::Ideal must check for add of zero; in this case it
1103 // returns NULL instead of doing any graph reshaping.
1104 //
1105 // You cannot modify any old Nodes except for the 'this' pointer.  Due to
1106 // sharing there may be other users of the old Nodes relying on their current
1107 // semantics.  Modifying them will break the other users.
1108 // Example: when reshape "(X+3)+4" into "X+7" you must leave the Node for
1109 // "X+3" unchanged in case it is shared.
1110 //
1111 // If you modify the 'this' pointer's inputs, you should use
1112 // 'set_req'.  If you are making a new Node (either as the new root or
1113 // some new internal piece) you may use 'init_req' to set the initial
1114 // value.  You can make a new Node with either 'new' or 'clone'.  In
1115 // either case, def-use info is correctly maintained.
1116 //
1117 // Example: reshape "(X+3)+4" into "X+7":
1118 //    set_req(1, in(1)->in(1));
1119 //    set_req(2, phase->intcon(7));
1120 //    return this;
1121 // Example: reshape "X*4" into "X<<2"
1122 //    return new LShiftINode(in(1), phase->intcon(2));
1123 //
1124 // You must call 'phase->transform(X)' on any new Nodes X you make, except
1125 // for the returned root node.  Example: reshape "X*31" with "(X<<5)-X".
1126 //    Node *shift=phase->transform(new LShiftINode(in(1),phase->intcon(5)));
1127 //    return new AddINode(shift, in(1));
1128 //
1129 // When making a Node for a constant use 'phase->makecon' or 'phase->intcon'.
1130 // These forms are faster than 'phase->transform(new ConNode())' and Do
1131 // The Right Thing with def-use info.
1132 //
1133 // You cannot bury the 'this' Node inside of a graph reshape.  If the reshaped
1134 // graph uses the 'this' Node it must be the root.  If you want a Node with
1135 // the same Opcode as the 'this' pointer use 'clone'.
1136 //
1137 Node *Node::Ideal(PhaseGVN *phase, bool can_reshape) {
1138   return NULL;                  // Default to being Ideal already
1139 }
1140 
1141 // Some nodes have specific Ideal subgraph transformations only if they are
1142 // unique users of specific nodes. Such nodes should be put on IGVN worklist
1143 // for the transformations to happen.
1144 bool Node::has_special_unique_user() const {
1145   assert(outcnt() == 1, "match only for unique out");
1146   Node* n = unique_out();
1147   int op  = Opcode();
1148   if (this->is_Store()) {
1149     // Condition for back-to-back stores folding.
1150     return n->Opcode() == op && n->in(MemNode::Memory) == this;
1151   } else if (this->is_Load() || this->is_DecodeN() || this->is_Phi()) {
1152     // Condition for removing an unused LoadNode or DecodeNNode from the MemBarAcquire precedence input
1153     return n->Opcode() == Op_MemBarAcquire;
1154   } else if (op == Op_AddL) {
1155     // Condition for convL2I(addL(x,y)) ==> addI(convL2I(x),convL2I(y))
1156     return n->Opcode() == Op_ConvL2I && n->in(1) == this;
1157   } else if (op == Op_SubI || op == Op_SubL) {
1158     // Condition for subI(x,subI(y,z)) ==> subI(addI(x,z),y)
1159     return n->Opcode() == op && n->in(2) == this;
1160   } else if (is_If() && (n->is_IfFalse() || n->is_IfTrue())) {
1161     // See IfProjNode::Identity()
1162     return true;
1163   }
1164   return false;
1165 };
1166 
1167 //--------------------------find_exact_control---------------------------------
1168 // Skip Proj and CatchProj nodes chains. Check for Null and Top.
1169 Node* Node::find_exact_control(Node* ctrl) {
1170   if (ctrl == NULL && this->is_Region())
1171     ctrl = this->as_Region()->is_copy();
1172 
1173   if (ctrl != NULL && ctrl->is_CatchProj()) {
1174     if (ctrl->as_CatchProj()->_con == CatchProjNode::fall_through_index)
1175       ctrl = ctrl->in(0);
1176     if (ctrl != NULL && !ctrl->is_top())
1177       ctrl = ctrl->in(0);
1178   }
1179 
1180   if (ctrl != NULL && ctrl->is_Proj())
1181     ctrl = ctrl->in(0);
1182 
1183   return ctrl;
1184 }
1185 
1186 //--------------------------dominates------------------------------------------
1187 // Helper function for MemNode::all_controls_dominate().
1188 // Check if 'this' control node dominates or equal to 'sub' control node.
1189 // We already know that if any path back to Root or Start reaches 'this',
1190 // then all paths so, so this is a simple search for one example,
1191 // not an exhaustive search for a counterexample.
1192 bool Node::dominates(Node* sub, Node_List &nlist) {
1193   assert(this->is_CFG(), "expecting control");
1194   assert(sub != NULL && sub->is_CFG(), "expecting control");
1195 
1196   // detect dead cycle without regions
1197   int iterations_without_region_limit = DominatorSearchLimit;
1198 
1199   Node* orig_sub = sub;
1200   Node* dom      = this;
1201   bool  met_dom  = false;
1202   nlist.clear();
1203 
1204   // Walk 'sub' backward up the chain to 'dom', watching for regions.
1205   // After seeing 'dom', continue up to Root or Start.
1206   // If we hit a region (backward split point), it may be a loop head.
1207   // Keep going through one of the region's inputs.  If we reach the
1208   // same region again, go through a different input.  Eventually we
1209   // will either exit through the loop head, or give up.
1210   // (If we get confused, break out and return a conservative 'false'.)
1211   while (sub != NULL) {
1212     if (sub->is_top())  break; // Conservative answer for dead code.
1213     if (sub == dom) {
1214       if (nlist.size() == 0) {
1215         // No Region nodes except loops were visited before and the EntryControl
1216         // path was taken for loops: it did not walk in a cycle.
1217         return true;
1218       } else if (met_dom) {
1219         break;          // already met before: walk in a cycle
1220       } else {
1221         // Region nodes were visited. Continue walk up to Start or Root
1222         // to make sure that it did not walk in a cycle.
1223         met_dom = true; // first time meet
1224         iterations_without_region_limit = DominatorSearchLimit; // Reset
1225      }
1226     }
1227     if (sub->is_Start() || sub->is_Root()) {
1228       // Success if we met 'dom' along a path to Start or Root.
1229       // We assume there are no alternative paths that avoid 'dom'.
1230       // (This assumption is up to the caller to ensure!)
1231       return met_dom;
1232     }
1233     Node* up = sub->in(0);
1234     // Normalize simple pass-through regions and projections:
1235     up = sub->find_exact_control(up);
1236     // If sub == up, we found a self-loop.  Try to push past it.
1237     if (sub == up && sub->is_Loop()) {
1238       // Take loop entry path on the way up to 'dom'.
1239       up = sub->in(1); // in(LoopNode::EntryControl);
1240     } else if (sub == up && sub->is_Region() && sub->req() != 3) {
1241       // Always take in(1) path on the way up to 'dom' for clone regions
1242       // (with only one input) or regions which merge > 2 paths
1243       // (usually used to merge fast/slow paths).
1244       up = sub->in(1);
1245     } else if (sub == up && sub->is_Region()) {
1246       // Try both paths for Regions with 2 input paths (it may be a loop head).
1247       // It could give conservative 'false' answer without information
1248       // which region's input is the entry path.
1249       iterations_without_region_limit = DominatorSearchLimit; // Reset
1250 
1251       bool region_was_visited_before = false;
1252       // Was this Region node visited before?
1253       // If so, we have reached it because we accidentally took a
1254       // loop-back edge from 'sub' back into the body of the loop,
1255       // and worked our way up again to the loop header 'sub'.
1256       // So, take the first unexplored path on the way up to 'dom'.
1257       for (int j = nlist.size() - 1; j >= 0; j--) {
1258         intptr_t ni = (intptr_t)nlist.at(j);
1259         Node* visited = (Node*)(ni & ~1);
1260         bool  visited_twice_already = ((ni & 1) != 0);
1261         if (visited == sub) {
1262           if (visited_twice_already) {
1263             // Visited 2 paths, but still stuck in loop body.  Give up.
1264             return false;
1265           }
1266           // The Region node was visited before only once.
1267           // (We will repush with the low bit set, below.)
1268           nlist.remove(j);
1269           // We will find a new edge and re-insert.
1270           region_was_visited_before = true;
1271           break;
1272         }
1273       }
1274 
1275       // Find an incoming edge which has not been seen yet; walk through it.
1276       assert(up == sub, "");
1277       uint skip = region_was_visited_before ? 1 : 0;
1278       for (uint i = 1; i < sub->req(); i++) {
1279         Node* in = sub->in(i);
1280         if (in != NULL && !in->is_top() && in != sub) {
1281           if (skip == 0) {
1282             up = in;
1283             break;
1284           }
1285           --skip;               // skip this nontrivial input
1286         }
1287       }
1288 
1289       // Set 0 bit to indicate that both paths were taken.
1290       nlist.push((Node*)((intptr_t)sub + (region_was_visited_before ? 1 : 0)));
1291     }
1292 
1293     if (up == sub) {
1294       break;    // some kind of tight cycle
1295     }
1296     if (up == orig_sub && met_dom) {
1297       // returned back after visiting 'dom'
1298       break;    // some kind of cycle
1299     }
1300     if (--iterations_without_region_limit < 0) {
1301       break;    // dead cycle
1302     }
1303     sub = up;
1304   }
1305 
1306   // Did not meet Root or Start node in pred. chain.
1307   // Conservative answer for dead code.
1308   return false;
1309 }
1310 
1311 //------------------------------remove_dead_region-----------------------------
1312 // This control node is dead.  Follow the subgraph below it making everything
1313 // using it dead as well.  This will happen normally via the usual IterGVN
1314 // worklist but this call is more efficient.  Do not update use-def info
1315 // inside the dead region, just at the borders.
1316 static void kill_dead_code( Node *dead, PhaseIterGVN *igvn ) {
1317   // Con's are a popular node to re-hit in the hash table again.
1318   if( dead->is_Con() ) return;
1319 
1320   // Can't put ResourceMark here since igvn->_worklist uses the same arena
1321   // for verify pass with +VerifyOpto and we add/remove elements in it here.
1322   Node_List  nstack(Thread::current()->resource_area());
1323 
1324   Node *top = igvn->C->top();
1325   nstack.push(dead);
1326   bool has_irreducible_loop = igvn->C->has_irreducible_loop();
1327 
1328   while (nstack.size() > 0) {
1329     dead = nstack.pop();
1330     if (dead->Opcode() == Op_SafePoint) {
1331       dead->as_SafePoint()->disconnect_from_root(igvn);
1332     }
1333     if (dead->outcnt() > 0) {
1334       // Keep dead node on stack until all uses are processed.
1335       nstack.push(dead);
1336       // For all Users of the Dead...    ;-)
1337       for (DUIterator_Last kmin, k = dead->last_outs(kmin); k >= kmin; ) {
1338         Node* use = dead->last_out(k);
1339         igvn->hash_delete(use);       // Yank from hash table prior to mod
1340         if (use->in(0) == dead) {     // Found another dead node
1341           assert (!use->is_Con(), "Control for Con node should be Root node.");
1342           use->set_req(0, top);       // Cut dead edge to prevent processing
1343           nstack.push(use);           // the dead node again.
1344         } else if (!has_irreducible_loop && // Backedge could be alive in irreducible loop
1345                    use->is_Loop() && !use->is_Root() &&       // Don't kill Root (RootNode extends LoopNode)
1346                    use->in(LoopNode::EntryControl) == dead) { // Dead loop if its entry is dead
1347           use->set_req(LoopNode::EntryControl, top);          // Cut dead edge to prevent processing
1348           use->set_req(0, top);       // Cut self edge
1349           nstack.push(use);
1350         } else {                      // Else found a not-dead user
1351           // Dead if all inputs are top or null
1352           bool dead_use = !use->is_Root(); // Keep empty graph alive
1353           for (uint j = 1; j < use->req(); j++) {
1354             Node* in = use->in(j);
1355             if (in == dead) {         // Turn all dead inputs into TOP
1356               use->set_req(j, top);
1357             } else if (in != NULL && !in->is_top()) {
1358               dead_use = false;
1359             }
1360           }
1361           if (dead_use) {
1362             if (use->is_Region()) {
1363               use->set_req(0, top);   // Cut self edge
1364             }
1365             nstack.push(use);
1366           } else {
1367             igvn->_worklist.push(use);
1368           }
1369         }
1370         // Refresh the iterator, since any number of kills might have happened.
1371         k = dead->last_outs(kmin);
1372       }
1373     } else { // (dead->outcnt() == 0)
1374       // Done with outputs.
1375       igvn->hash_delete(dead);
1376       igvn->_worklist.remove(dead);
1377       igvn->C->remove_modified_node(dead);
1378       igvn->set_type(dead, Type::TOP);
1379       if (dead->is_macro()) {
1380         igvn->C->remove_macro_node(dead);
1381       }
1382       if (dead->is_expensive()) {
1383         igvn->C->remove_expensive_node(dead);
1384       }
1385       CastIINode* cast = dead->isa_CastII();
1386       if (cast != NULL && cast->has_range_check()) {
1387         igvn->C->remove_range_check_cast(cast);
1388       }
1389       if (dead->Opcode() == Op_Opaque4) {
1390         igvn->C->remove_opaque4_node(dead);
1391       }
1392       BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
1393       bs->unregister_potential_barrier_node(dead);
1394       igvn->C->record_dead_node(dead->_idx);
1395       // Kill all inputs to the dead guy
1396       for (uint i=0; i < dead->req(); i++) {
1397         Node *n = dead->in(i);      // Get input to dead guy
1398         if (n != NULL && !n->is_top()) { // Input is valid?
1399           dead->set_req(i, top);    // Smash input away
1400           if (n->outcnt() == 0) {   // Input also goes dead?
1401             if (!n->is_Con())
1402               nstack.push(n);       // Clear it out as well
1403           } else if (n->outcnt() == 1 &&
1404                      n->has_special_unique_user()) {
1405             igvn->add_users_to_worklist( n );
1406           } else if (n->outcnt() <= 2 && n->is_Store()) {
1407             // Push store's uses on worklist to enable folding optimization for
1408             // store/store and store/load to the same address.
1409             // The restriction (outcnt() <= 2) is the same as in set_req_X()
1410             // and remove_globally_dead_node().
1411             igvn->add_users_to_worklist( n );
1412           } else {
1413             BarrierSet::barrier_set()->barrier_set_c2()->enqueue_useful_gc_barrier(igvn, n);
1414           }
1415         }
1416       }
1417     } // (dead->outcnt() == 0)
1418   }   // while (nstack.size() > 0) for outputs
1419   return;
1420 }
1421 
1422 //------------------------------remove_dead_region-----------------------------
1423 bool Node::remove_dead_region(PhaseGVN *phase, bool can_reshape) {
1424   Node *n = in(0);
1425   if( !n ) return false;
1426   // Lost control into this guy?  I.e., it became unreachable?
1427   // Aggressively kill all unreachable code.
1428   if (can_reshape && n->is_top()) {
1429     kill_dead_code(this, phase->is_IterGVN());
1430     return false; // Node is dead.
1431   }
1432 
1433   if( n->is_Region() && n->as_Region()->is_copy() ) {
1434     Node *m = n->nonnull_req();
1435     set_req(0, m);
1436     return true;
1437   }
1438   return false;
1439 }
1440 
1441 //------------------------------hash-------------------------------------------
1442 // Hash function over Nodes.
1443 uint Node::hash() const {
1444   uint sum = 0;
1445   for( uint i=0; i<_cnt; i++ )  // Add in all inputs
1446     sum = (sum<<1)-(uintptr_t)in(i);        // Ignore embedded NULLs
1447   return (sum>>2) + _cnt + Opcode();
1448 }
1449 
1450 //------------------------------cmp--------------------------------------------
1451 // Compare special parts of simple Nodes
1452 uint Node::cmp( const Node &n ) const {
1453   return 1;                     // Must be same
1454 }
1455 
1456 //------------------------------rematerialize-----------------------------------
1457 // Should we clone rather than spill this instruction?
1458 bool Node::rematerialize() const {
1459   if ( is_Mach() )
1460     return this->as_Mach()->rematerialize();
1461   else
1462     return (_flags & Flag_rematerialize) != 0;
1463 }
1464 
1465 //------------------------------needs_anti_dependence_check---------------------
1466 // Nodes which use memory without consuming it, hence need antidependences.
1467 bool Node::needs_anti_dependence_check() const {
1468   if( req() < 2 || (_flags & Flag_needs_anti_dependence_check) == 0 )
1469     return false;
1470   else
1471     return in(1)->bottom_type()->has_memory();
1472 }
1473 
1474 
1475 // Get an integer constant from a ConNode (or CastIINode).
1476 // Return a default value if there is no apparent constant here.
1477 const TypeInt* Node::find_int_type() const {
1478   if (this->is_Type()) {
1479     return this->as_Type()->type()->isa_int();
1480   } else if (this->is_Con()) {
1481     assert(is_Mach(), "should be ConNode(TypeNode) or else a MachNode");
1482     return this->bottom_type()->isa_int();
1483   }
1484   return NULL;
1485 }
1486 
1487 // Get a pointer constant from a ConstNode.
1488 // Returns the constant if it is a pointer ConstNode
1489 intptr_t Node::get_ptr() const {
1490   assert( Opcode() == Op_ConP, "" );
1491   return ((ConPNode*)this)->type()->is_ptr()->get_con();
1492 }
1493 
1494 // Get a narrow oop constant from a ConNNode.
1495 intptr_t Node::get_narrowcon() const {
1496   assert( Opcode() == Op_ConN, "" );
1497   return ((ConNNode*)this)->type()->is_narrowoop()->get_con();
1498 }
1499 
1500 // Get a long constant from a ConNode.
1501 // Return a default value if there is no apparent constant here.
1502 const TypeLong* Node::find_long_type() const {
1503   if (this->is_Type()) {
1504     return this->as_Type()->type()->isa_long();
1505   } else if (this->is_Con()) {
1506     assert(is_Mach(), "should be ConNode(TypeNode) or else a MachNode");
1507     return this->bottom_type()->isa_long();
1508   }
1509   return NULL;
1510 }
1511 
1512 
1513 /**
1514  * Return a ptr type for nodes which should have it.
1515  */
1516 const TypePtr* Node::get_ptr_type() const {
1517   const TypePtr* tp = this->bottom_type()->make_ptr();
1518 #ifdef ASSERT
1519   if (tp == NULL) {
1520     this->dump(1);
1521     assert((tp != NULL), "unexpected node type");
1522   }
1523 #endif
1524   return tp;
1525 }
1526 
1527 // Get a double constant from a ConstNode.
1528 // Returns the constant if it is a double ConstNode
1529 jdouble Node::getd() const {
1530   assert( Opcode() == Op_ConD, "" );
1531   return ((ConDNode*)this)->type()->is_double_constant()->getd();
1532 }
1533 
1534 // Get a float constant from a ConstNode.
1535 // Returns the constant if it is a float ConstNode
1536 jfloat Node::getf() const {
1537   assert( Opcode() == Op_ConF, "" );
1538   return ((ConFNode*)this)->type()->is_float_constant()->getf();
1539 }
1540 
1541 #ifndef PRODUCT
1542 
1543 //------------------------------find------------------------------------------
1544 // Find a neighbor of this Node with the given _idx
1545 // If idx is negative, find its absolute value, following both _in and _out.
1546 static void find_recur(Compile* C,  Node* &result, Node *n, int idx, bool only_ctrl,
1547                         VectorSet* old_space, VectorSet* new_space ) {
1548   int node_idx = (idx >= 0) ? idx : -idx;
1549   if (NotANode(n))  return;  // Gracefully handle NULL, -1, 0xabababab, etc.
1550   // Contained in new_space or old_space?   Check old_arena first since it's mostly empty.
1551   VectorSet *v = C->old_arena()->contains(n) ? old_space : new_space;
1552   if( v->test(n->_idx) ) return;
1553   if( (int)n->_idx == node_idx
1554       debug_only(|| n->debug_idx() == node_idx) ) {
1555     if (result != NULL)
1556       tty->print("find: " INTPTR_FORMAT " and " INTPTR_FORMAT " both have idx==%d\n",
1557                  (uintptr_t)result, (uintptr_t)n, node_idx);
1558     result = n;
1559   }
1560   v->set(n->_idx);
1561   for( uint i=0; i<n->len(); i++ ) {
1562     if( only_ctrl && !(n->is_Region()) && (n->Opcode() != Op_Root) && (i != TypeFunc::Control) ) continue;
1563     find_recur(C, result, n->in(i), idx, only_ctrl, old_space, new_space );
1564   }
1565   // Search along forward edges also:
1566   if (idx < 0 && !only_ctrl) {
1567     for( uint j=0; j<n->outcnt(); j++ ) {
1568       find_recur(C, result, n->raw_out(j), idx, only_ctrl, old_space, new_space );
1569     }
1570   }
1571 #ifdef ASSERT
1572   // Search along debug_orig edges last, checking for cycles
1573   Node* orig = n->debug_orig();
1574   if (orig != NULL) {
1575     do {
1576       if (NotANode(orig))  break;
1577       find_recur(C, result, orig, idx, only_ctrl, old_space, new_space );
1578       orig = orig->debug_orig();
1579     } while (orig != NULL && orig != n->debug_orig());
1580   }
1581 #endif //ASSERT
1582 }
1583 
1584 // call this from debugger:
1585 Node* find_node(Node* n, int idx) {
1586   return n->find(idx);
1587 }
1588 
1589 //------------------------------find-------------------------------------------
1590 Node* Node::find(int idx) const {
1591   ResourceArea *area = Thread::current()->resource_area();
1592   VectorSet old_space(area), new_space(area);
1593   Node* result = NULL;
1594   find_recur(Compile::current(), result, (Node*) this, idx, false, &old_space, &new_space );
1595   return result;
1596 }
1597 
1598 //------------------------------find_ctrl--------------------------------------
1599 // Find an ancestor to this node in the control history with given _idx
1600 Node* Node::find_ctrl(int idx) const {
1601   ResourceArea *area = Thread::current()->resource_area();
1602   VectorSet old_space(area), new_space(area);
1603   Node* result = NULL;
1604   find_recur(Compile::current(), result, (Node*) this, idx, true, &old_space, &new_space );
1605   return result;
1606 }
1607 #endif
1608 
1609 
1610 
1611 #ifndef PRODUCT
1612 
1613 // -----------------------------Name-------------------------------------------
1614 extern const char *NodeClassNames[];
1615 const char *Node::Name() const { return NodeClassNames[Opcode()]; }
1616 
1617 static bool is_disconnected(const Node* n) {
1618   for (uint i = 0; i < n->req(); i++) {
1619     if (n->in(i) != NULL)  return false;
1620   }
1621   return true;
1622 }
1623 
1624 #ifdef ASSERT
1625 static void dump_orig(Node* orig, outputStream *st) {
1626   Compile* C = Compile::current();
1627   if (NotANode(orig)) orig = NULL;
1628   if (orig != NULL && !C->node_arena()->contains(orig)) orig = NULL;
1629   if (orig == NULL) return;
1630   st->print(" !orig=");
1631   Node* fast = orig->debug_orig(); // tortoise & hare algorithm to detect loops
1632   if (NotANode(fast)) fast = NULL;
1633   while (orig != NULL) {
1634     bool discon = is_disconnected(orig);  // if discon, print [123] else 123
1635     if (discon) st->print("[");
1636     if (!Compile::current()->node_arena()->contains(orig))
1637       st->print("o");
1638     st->print("%d", orig->_idx);
1639     if (discon) st->print("]");
1640     orig = orig->debug_orig();
1641     if (NotANode(orig)) orig = NULL;
1642     if (orig != NULL && !C->node_arena()->contains(orig)) orig = NULL;
1643     if (orig != NULL) st->print(",");
1644     if (fast != NULL) {
1645       // Step fast twice for each single step of orig:
1646       fast = fast->debug_orig();
1647       if (NotANode(fast)) fast = NULL;
1648       if (fast != NULL && fast != orig) {
1649         fast = fast->debug_orig();
1650         if (NotANode(fast)) fast = NULL;
1651       }
1652       if (fast == orig) {
1653         st->print("...");
1654         break;
1655       }
1656     }
1657   }
1658 }
1659 
1660 void Node::set_debug_orig(Node* orig) {
1661   _debug_orig = orig;
1662   if (BreakAtNode == 0)  return;
1663   if (NotANode(orig))  orig = NULL;
1664   int trip = 10;
1665   while (orig != NULL) {
1666     if (orig->debug_idx() == BreakAtNode || (int)orig->_idx == BreakAtNode) {
1667       tty->print_cr("BreakAtNode: _idx=%d _debug_idx=%d orig._idx=%d orig._debug_idx=%d",
1668                     this->_idx, this->debug_idx(), orig->_idx, orig->debug_idx());
1669       BREAKPOINT;
1670     }
1671     orig = orig->debug_orig();
1672     if (NotANode(orig))  orig = NULL;
1673     if (trip-- <= 0)  break;
1674   }
1675 }
1676 #endif //ASSERT
1677 
1678 //------------------------------dump------------------------------------------
1679 // Dump a Node
1680 void Node::dump(const char* suffix, bool mark, outputStream *st) const {
1681   Compile* C = Compile::current();
1682   bool is_new = C->node_arena()->contains(this);
1683   C->_in_dump_cnt++;
1684   st->print("%c%d%s\t%s\t=== ", is_new ? ' ' : 'o', _idx, mark ? " >" : "", Name());
1685 
1686   // Dump the required and precedence inputs
1687   dump_req(st);
1688   dump_prec(st);
1689   // Dump the outputs
1690   dump_out(st);
1691 
1692   if (is_disconnected(this)) {
1693 #ifdef ASSERT
1694     st->print("  [%d]",debug_idx());
1695     dump_orig(debug_orig(), st);
1696 #endif
1697     st->cr();
1698     C->_in_dump_cnt--;
1699     return;                     // don't process dead nodes
1700   }
1701 
1702   if (C->clone_map().value(_idx) != 0) {
1703     C->clone_map().dump(_idx);
1704   }
1705   // Dump node-specific info
1706   dump_spec(st);
1707 #ifdef ASSERT
1708   // Dump the non-reset _debug_idx
1709   if (Verbose && WizardMode) {
1710     st->print("  [%d]",debug_idx());
1711   }
1712 #endif
1713 
1714   const Type *t = bottom_type();
1715 
1716   if (t != NULL && (t->isa_instptr() || t->isa_klassptr())) {
1717     const TypeInstPtr  *toop = t->isa_instptr();
1718     const TypeKlassPtr *tkls = t->isa_klassptr();
1719     ciKlass*           klass = toop ? toop->klass() : (tkls ? tkls->klass() : NULL );
1720     if (klass && klass->is_loaded() && klass->is_interface()) {
1721       st->print("  Interface:");
1722     } else if (toop) {
1723       st->print("  Oop:");
1724     } else if (tkls) {
1725       st->print("  Klass:");
1726     }
1727     t->dump_on(st);
1728   } else if (t == Type::MEMORY) {
1729     st->print("  Memory:");
1730     MemNode::dump_adr_type(this, adr_type(), st);
1731   } else if (Verbose || WizardMode) {
1732     st->print("  Type:");
1733     if (t) {
1734       t->dump_on(st);
1735     } else {
1736       st->print("no type");
1737     }
1738   } else if (t->isa_vect() && this->is_MachSpillCopy()) {
1739     // Dump MachSpillcopy vector type.
1740     t->dump_on(st);
1741   }
1742   if (is_new) {
1743     debug_only(dump_orig(debug_orig(), st));
1744     Node_Notes* nn = C->node_notes_at(_idx);
1745     if (nn != NULL && !nn->is_clear()) {
1746       if (nn->jvms() != NULL) {
1747         st->print(" !jvms:");
1748         nn->jvms()->dump_spec(st);
1749       }
1750     }
1751   }
1752   if (suffix) st->print("%s", suffix);
1753   C->_in_dump_cnt--;
1754 }
1755 
1756 //------------------------------dump_req--------------------------------------
1757 void Node::dump_req(outputStream *st) const {
1758   // Dump the required input edges
1759   for (uint i = 0; i < req(); i++) {    // For all required inputs
1760     Node* d = in(i);
1761     if (d == NULL) {
1762       st->print("_ ");
1763     } else if (NotANode(d)) {
1764       st->print("NotANode ");  // uninitialized, sentinel, garbage, etc.
1765     } else {
1766       st->print("%c%d ", Compile::current()->node_arena()->contains(d) ? ' ' : 'o', d->_idx);
1767     }
1768   }
1769 }
1770 
1771 
1772 //------------------------------dump_prec-------------------------------------
1773 void Node::dump_prec(outputStream *st) const {
1774   // Dump the precedence edges
1775   int any_prec = 0;
1776   for (uint i = req(); i < len(); i++) {       // For all precedence inputs
1777     Node* p = in(i);
1778     if (p != NULL) {
1779       if (!any_prec++) st->print(" |");
1780       if (NotANode(p)) { st->print("NotANode "); continue; }
1781       st->print("%c%d ", Compile::current()->node_arena()->contains(in(i)) ? ' ' : 'o', in(i)->_idx);
1782     }
1783   }
1784 }
1785 
1786 //------------------------------dump_out--------------------------------------
1787 void Node::dump_out(outputStream *st) const {
1788   // Delimit the output edges
1789   st->print(" [[");
1790   // Dump the output edges
1791   for (uint i = 0; i < _outcnt; i++) {    // For all outputs
1792     Node* u = _out[i];
1793     if (u == NULL) {
1794       st->print("_ ");
1795     } else if (NotANode(u)) {
1796       st->print("NotANode ");
1797     } else {
1798       st->print("%c%d ", Compile::current()->node_arena()->contains(u) ? ' ' : 'o', u->_idx);
1799     }
1800   }
1801   st->print("]] ");
1802 }
1803 
1804 //----------------------------collect_nodes_i----------------------------------
1805 // Collects nodes from an Ideal graph, starting from a given start node and
1806 // moving in a given direction until a certain depth (distance from the start
1807 // node) is reached. Duplicates are ignored.
1808 // Arguments:
1809 //   nstack:        the nodes are collected into this array.
1810 //   start:         the node at which to start collecting.
1811 //   direction:     if this is a positive number, collect input nodes; if it is
1812 //                  a negative number, collect output nodes.
1813 //   depth:         collect nodes up to this distance from the start node.
1814 //   include_start: whether to include the start node in the result collection.
1815 //   only_ctrl:     whether to regard control edges only during traversal.
1816 //   only_data:     whether to regard data edges only during traversal.
1817 static void collect_nodes_i(GrowableArray<Node*> *nstack, const Node* start, int direction, uint depth, bool include_start, bool only_ctrl, bool only_data) {
1818   Node* s = (Node*) start; // remove const
1819   nstack->append(s);
1820   int begin = 0;
1821   int end = 0;
1822   for(uint i = 0; i < depth; i++) {
1823     end = nstack->length();
1824     for(int j = begin; j < end; j++) {
1825       Node* tp  = nstack->at(j);
1826       uint limit = direction > 0 ? tp->len() : tp->outcnt();
1827       for(uint k = 0; k < limit; k++) {
1828         Node* n = direction > 0 ? tp->in(k) : tp->raw_out(k);
1829 
1830         if (NotANode(n))  continue;
1831         // do not recurse through top or the root (would reach unrelated stuff)
1832         if (n->is_Root() || n->is_top()) continue;
1833         if (only_ctrl && !n->is_CFG()) continue;
1834         if (only_data && n->is_CFG()) continue;
1835 
1836         bool on_stack = nstack->contains(n);
1837         if (!on_stack) {
1838           nstack->append(n);
1839         }
1840       }
1841     }
1842     begin = end;
1843   }
1844   if (!include_start) {
1845     nstack->remove(s);
1846   }
1847 }
1848 
1849 //------------------------------dump_nodes-------------------------------------
1850 static void dump_nodes(const Node* start, int d, bool only_ctrl) {
1851   if (NotANode(start)) return;
1852 
1853   GrowableArray <Node *> nstack(Compile::current()->live_nodes());
1854   collect_nodes_i(&nstack, start, d, (uint) ABS(d), true, only_ctrl, false);
1855 
1856   int end = nstack.length();
1857   if (d > 0) {
1858     for(int j = end-1; j >= 0; j--) {
1859       nstack.at(j)->dump();
1860     }
1861   } else {
1862     for(int j = 0; j < end; j++) {
1863       nstack.at(j)->dump();
1864     }
1865   }
1866 }
1867 
1868 //------------------------------dump-------------------------------------------
1869 void Node::dump(int d) const {
1870   dump_nodes(this, d, false);
1871 }
1872 
1873 //------------------------------dump_ctrl--------------------------------------
1874 // Dump a Node's control history to depth
1875 void Node::dump_ctrl(int d) const {
1876   dump_nodes(this, d, true);
1877 }
1878 
1879 //-----------------------------dump_compact------------------------------------
1880 void Node::dump_comp() const {
1881   this->dump_comp("\n");
1882 }
1883 
1884 //-----------------------------dump_compact------------------------------------
1885 // Dump a Node in compact representation, i.e., just print its name and index.
1886 // Nodes can specify additional specifics to print in compact representation by
1887 // implementing dump_compact_spec.
1888 void Node::dump_comp(const char* suffix, outputStream *st) const {
1889   Compile* C = Compile::current();
1890   C->_in_dump_cnt++;
1891   st->print("%s(%d)", Name(), _idx);
1892   this->dump_compact_spec(st);
1893   if (suffix) {
1894     st->print("%s", suffix);
1895   }
1896   C->_in_dump_cnt--;
1897 }
1898 
1899 //----------------------------dump_related-------------------------------------
1900 // Dump a Node's related nodes - the notion of "related" depends on the Node at
1901 // hand and is determined by the implementation of the virtual method rel.
1902 void Node::dump_related() const {
1903   Compile* C = Compile::current();
1904   GrowableArray <Node *> in_rel(C->unique());
1905   GrowableArray <Node *> out_rel(C->unique());
1906   this->related(&in_rel, &out_rel, false);
1907   for (int i = in_rel.length() - 1; i >= 0; i--) {
1908     in_rel.at(i)->dump();
1909   }
1910   this->dump("\n", true);
1911   for (int i = 0; i < out_rel.length(); i++) {
1912     out_rel.at(i)->dump();
1913   }
1914 }
1915 
1916 //----------------------------dump_related-------------------------------------
1917 // Dump a Node's related nodes up to a given depth (distance from the start
1918 // node).
1919 // Arguments:
1920 //   d_in:  depth for input nodes.
1921 //   d_out: depth for output nodes (note: this also is a positive number).
1922 void Node::dump_related(uint d_in, uint d_out) const {
1923   Compile* C = Compile::current();
1924   GrowableArray <Node *> in_rel(C->unique());
1925   GrowableArray <Node *> out_rel(C->unique());
1926 
1927   // call collect_nodes_i directly
1928   collect_nodes_i(&in_rel, this, 1, d_in, false, false, false);
1929   collect_nodes_i(&out_rel, this, -1, d_out, false, false, false);
1930 
1931   for (int i = in_rel.length() - 1; i >= 0; i--) {
1932     in_rel.at(i)->dump();
1933   }
1934   this->dump("\n", true);
1935   for (int i = 0; i < out_rel.length(); i++) {
1936     out_rel.at(i)->dump();
1937   }
1938 }
1939 
1940 //------------------------dump_related_compact---------------------------------
1941 // Dump a Node's related nodes in compact representation. The notion of
1942 // "related" depends on the Node at hand and is determined by the implementation
1943 // of the virtual method rel.
1944 void Node::dump_related_compact() const {
1945   Compile* C = Compile::current();
1946   GrowableArray <Node *> in_rel(C->unique());
1947   GrowableArray <Node *> out_rel(C->unique());
1948   this->related(&in_rel, &out_rel, true);
1949   int n_in = in_rel.length();
1950   int n_out = out_rel.length();
1951 
1952   this->dump_comp(n_in == 0 ? "\n" : "  ");
1953   for (int i = 0; i < n_in; i++) {
1954     in_rel.at(i)->dump_comp(i == n_in - 1 ? "\n" : "  ");
1955   }
1956   for (int i = 0; i < n_out; i++) {
1957     out_rel.at(i)->dump_comp(i == n_out - 1 ? "\n" : "  ");
1958   }
1959 }
1960 
1961 //------------------------------related----------------------------------------
1962 // Collect a Node's related nodes. The default behaviour just collects the
1963 // inputs and outputs at depth 1, including both control and data flow edges,
1964 // regardless of whether the presentation is compact or not. For data nodes,
1965 // the default is to collect all data inputs (till level 1 if compact), and
1966 // outputs till level 1.
1967 void Node::related(GrowableArray<Node*> *in_rel, GrowableArray<Node*> *out_rel, bool compact) const {
1968   if (this->is_CFG()) {
1969     collect_nodes_i(in_rel, this, 1, 1, false, false, false);
1970     collect_nodes_i(out_rel, this, -1, 1, false, false, false);
1971   } else {
1972     if (compact) {
1973       this->collect_nodes(in_rel, 1, false, true);
1974     } else {
1975       this->collect_nodes_in_all_data(in_rel, false);
1976     }
1977     this->collect_nodes(out_rel, -1, false, false);
1978   }
1979 }
1980 
1981 //---------------------------collect_nodes-------------------------------------
1982 // An entry point to the low-level node collection facility, to start from a
1983 // given node in the graph. The start node is by default not included in the
1984 // result.
1985 // Arguments:
1986 //   ns:   collect the nodes into this data structure.
1987 //   d:    the depth (distance from start node) to which nodes should be
1988 //         collected. A value >0 indicates input nodes, a value <0, output
1989 //         nodes.
1990 //   ctrl: include only control nodes.
1991 //   data: include only data nodes.
1992 void Node::collect_nodes(GrowableArray<Node*> *ns, int d, bool ctrl, bool data) const {
1993   if (ctrl && data) {
1994     // ignore nonsensical combination
1995     return;
1996   }
1997   collect_nodes_i(ns, this, d, (uint) ABS(d), false, ctrl, data);
1998 }
1999 
2000 //--------------------------collect_nodes_in-----------------------------------
2001 static void collect_nodes_in(Node* start, GrowableArray<Node*> *ns, bool primary_is_data, bool collect_secondary) {
2002   // The maximum depth is determined using a BFS that visits all primary (data
2003   // or control) inputs and increments the depth at each level.
2004   uint d_in = 0;
2005   GrowableArray<Node*> nodes(Compile::current()->unique());
2006   nodes.push(start);
2007   int nodes_at_current_level = 1;
2008   int n_idx = 0;
2009   while (nodes_at_current_level > 0) {
2010     // Add all primary inputs reachable from the current level to the list, and
2011     // increase the depth if there were any.
2012     int nodes_at_next_level = 0;
2013     bool nodes_added = false;
2014     while (nodes_at_current_level > 0) {
2015       nodes_at_current_level--;
2016       Node* current = nodes.at(n_idx++);
2017       for (uint i = 0; i < current->len(); i++) {
2018         Node* n = current->in(i);
2019         if (NotANode(n)) {
2020           continue;
2021         }
2022         if ((primary_is_data && n->is_CFG()) || (!primary_is_data && !n->is_CFG())) {
2023           continue;
2024         }
2025         if (!nodes.contains(n)) {
2026           nodes.push(n);
2027           nodes_added = true;
2028           nodes_at_next_level++;
2029         }
2030       }
2031     }
2032     if (nodes_added) {
2033       d_in++;
2034     }
2035     nodes_at_current_level = nodes_at_next_level;
2036   }
2037   start->collect_nodes(ns, d_in, !primary_is_data, primary_is_data);
2038   if (collect_secondary) {
2039     // Now, iterate over the secondary nodes in ns and add the respective
2040     // boundary reachable from them.
2041     GrowableArray<Node*> sns(Compile::current()->unique());
2042     for (GrowableArrayIterator<Node*> it = ns->begin(); it != ns->end(); ++it) {
2043       Node* n = *it;
2044       n->collect_nodes(&sns, 1, primary_is_data, !primary_is_data);
2045       for (GrowableArrayIterator<Node*> d = sns.begin(); d != sns.end(); ++d) {
2046         ns->append_if_missing(*d);
2047       }
2048       sns.clear();
2049     }
2050   }
2051 }
2052 
2053 //---------------------collect_nodes_in_all_data-------------------------------
2054 // Collect the entire data input graph. Include the control boundary if
2055 // requested.
2056 // Arguments:
2057 //   ns:   collect the nodes into this data structure.
2058 //   ctrl: if true, include the control boundary.
2059 void Node::collect_nodes_in_all_data(GrowableArray<Node*> *ns, bool ctrl) const {
2060   collect_nodes_in((Node*) this, ns, true, ctrl);
2061 }
2062 
2063 //--------------------------collect_nodes_in_all_ctrl--------------------------
2064 // Collect the entire control input graph. Include the data boundary if
2065 // requested.
2066 //   ns:   collect the nodes into this data structure.
2067 //   data: if true, include the control boundary.
2068 void Node::collect_nodes_in_all_ctrl(GrowableArray<Node*> *ns, bool data) const {
2069   collect_nodes_in((Node*) this, ns, false, data);
2070 }
2071 
2072 //------------------collect_nodes_out_all_ctrl_boundary------------------------
2073 // Collect the entire output graph until hitting control node boundaries, and
2074 // include those.
2075 void Node::collect_nodes_out_all_ctrl_boundary(GrowableArray<Node*> *ns) const {
2076   // Perform a BFS and stop at control nodes.
2077   GrowableArray<Node*> nodes(Compile::current()->unique());
2078   nodes.push((Node*) this);
2079   while (nodes.length() > 0) {
2080     Node* current = nodes.pop();
2081     if (NotANode(current)) {
2082       continue;
2083     }
2084     ns->append_if_missing(current);
2085     if (!current->is_CFG()) {
2086       for (DUIterator i = current->outs(); current->has_out(i); i++) {
2087         nodes.push(current->out(i));
2088       }
2089     }
2090   }
2091   ns->remove((Node*) this);
2092 }
2093 
2094 // VERIFICATION CODE
2095 // For each input edge to a node (ie - for each Use-Def edge), verify that
2096 // there is a corresponding Def-Use edge.
2097 //------------------------------verify_edges-----------------------------------
2098 void Node::verify_edges(Unique_Node_List &visited) {
2099   uint i, j, idx;
2100   int  cnt;
2101   Node *n;
2102 
2103   // Recursive termination test
2104   if (visited.member(this))  return;
2105   visited.push(this);
2106 
2107   // Walk over all input edges, checking for correspondence
2108   for( i = 0; i < len(); i++ ) {
2109     n = in(i);
2110     if (n != NULL && !n->is_top()) {
2111       // Count instances of (Node *)this
2112       cnt = 0;
2113       for (idx = 0; idx < n->_outcnt; idx++ ) {
2114         if (n->_out[idx] == (Node *)this)  cnt++;
2115       }
2116       assert( cnt > 0,"Failed to find Def-Use edge." );
2117       // Check for duplicate edges
2118       // walk the input array downcounting the input edges to n
2119       for( j = 0; j < len(); j++ ) {
2120         if( in(j) == n ) cnt--;
2121       }
2122       assert( cnt == 0,"Mismatched edge count.");
2123     } else if (n == NULL) {
2124       assert(i >= req() || i == 0 || is_Region() || is_Phi() || is_ArrayCopy()
2125               || (is_Unlock() && i == req()-1), "only region, phi, arraycopy or unlock nodes have null data edges");
2126     } else {
2127       assert(n->is_top(), "sanity");
2128       // Nothing to check.
2129     }
2130   }
2131   // Recursive walk over all input edges
2132   for( i = 0; i < len(); i++ ) {
2133     n = in(i);
2134     if( n != NULL )
2135       in(i)->verify_edges(visited);
2136   }
2137 }
2138 
2139 void Node::verify_recur(const Node *n, int verify_depth,
2140                         VectorSet &old_space, VectorSet &new_space) {
2141   if ( verify_depth == 0 )  return;
2142   if (verify_depth > 0)  --verify_depth;
2143 
2144   Compile* C = Compile::current();
2145 
2146   // Contained in new_space or old_space?
2147   VectorSet *v = C->node_arena()->contains(n) ? &new_space : &old_space;
2148   // Check for visited in the proper space.  Numberings are not unique
2149   // across spaces so we need a separate VectorSet for each space.
2150   if( v->test_set(n->_idx) ) return;
2151 
2152   if (n->is_Con() && n->bottom_type() == Type::TOP) {
2153     if (C->cached_top_node() == NULL)
2154       C->set_cached_top_node((Node*)n);
2155     assert(C->cached_top_node() == n, "TOP node must be unique");
2156   }
2157 
2158   for( uint i = 0; i < n->len(); i++ ) {
2159     Node *x = n->in(i);
2160     if (!x || x->is_top()) continue;
2161 
2162     // Verify my input has a def-use edge to me
2163     if (true /*VerifyDefUse*/) {
2164       // Count use-def edges from n to x
2165       int cnt = 0;
2166       for( uint j = 0; j < n->len(); j++ )
2167         if( n->in(j) == x )
2168           cnt++;
2169       // Count def-use edges from x to n
2170       uint max = x->_outcnt;
2171       for( uint k = 0; k < max; k++ )
2172         if (x->_out[k] == n)
2173           cnt--;
2174       assert( cnt == 0, "mismatched def-use edge counts" );
2175     }
2176 
2177     verify_recur(x, verify_depth, old_space, new_space);
2178   }
2179 
2180 }
2181 
2182 //------------------------------verify-----------------------------------------
2183 // Check Def-Use info for my subgraph
2184 void Node::verify() const {
2185   Compile* C = Compile::current();
2186   Node* old_top = C->cached_top_node();
2187   ResourceMark rm;
2188   ResourceArea *area = Thread::current()->resource_area();
2189   VectorSet old_space(area), new_space(area);
2190   verify_recur(this, -1, old_space, new_space);
2191   C->set_cached_top_node(old_top);
2192 }
2193 #endif
2194 
2195 
2196 //------------------------------walk-------------------------------------------
2197 // Graph walk, with both pre-order and post-order functions
2198 void Node::walk(NFunc pre, NFunc post, void *env) {
2199   VectorSet visited(Thread::current()->resource_area()); // Setup for local walk
2200   walk_(pre, post, env, visited);
2201 }
2202 
2203 void Node::walk_(NFunc pre, NFunc post, void *env, VectorSet &visited) {
2204   if( visited.test_set(_idx) ) return;
2205   pre(*this,env);               // Call the pre-order walk function
2206   for( uint i=0; i<_max; i++ )
2207     if( in(i) )                 // Input exists and is not walked?
2208       in(i)->walk_(pre,post,env,visited); // Walk it with pre & post functions
2209   post(*this,env);              // Call the post-order walk function
2210 }
2211 
2212 void Node::nop(Node &, void*) {}
2213 
2214 //------------------------------Registers--------------------------------------
2215 // Do we Match on this edge index or not?  Generally false for Control
2216 // and true for everything else.  Weird for calls & returns.
2217 uint Node::match_edge(uint idx) const {
2218   return idx;                   // True for other than index 0 (control)
2219 }
2220 
2221 static RegMask _not_used_at_all;
2222 // Register classes are defined for specific machines
2223 const RegMask &Node::out_RegMask() const {
2224   ShouldNotCallThis();
2225   return _not_used_at_all;
2226 }
2227 
2228 const RegMask &Node::in_RegMask(uint) const {
2229   ShouldNotCallThis();
2230   return _not_used_at_all;
2231 }
2232 
2233 //=============================================================================
2234 //-----------------------------------------------------------------------------
2235 void Node_Array::reset( Arena *new_arena ) {
2236   _a->Afree(_nodes,_max*sizeof(Node*));
2237   _max   = 0;
2238   _nodes = NULL;
2239   _a     = new_arena;
2240 }
2241 
2242 //------------------------------clear------------------------------------------
2243 // Clear all entries in _nodes to NULL but keep storage
2244 void Node_Array::clear() {
2245   Copy::zero_to_bytes( _nodes, _max*sizeof(Node*) );
2246 }
2247 
2248 //-----------------------------------------------------------------------------
2249 void Node_Array::grow( uint i ) {
2250   if( !_max ) {
2251     _max = 1;
2252     _nodes = (Node**)_a->Amalloc( _max * sizeof(Node*) );
2253     _nodes[0] = NULL;
2254   }
2255   uint old = _max;
2256   while( i >= _max ) _max <<= 1;        // Double to fit
2257   _nodes = (Node**)_a->Arealloc( _nodes, old*sizeof(Node*),_max*sizeof(Node*));
2258   Copy::zero_to_bytes( &_nodes[old], (_max-old)*sizeof(Node*) );
2259 }
2260 
2261 //-----------------------------------------------------------------------------
2262 void Node_Array::insert( uint i, Node *n ) {
2263   if( _nodes[_max-1] ) grow(_max);      // Get more space if full
2264   Copy::conjoint_words_to_higher((HeapWord*)&_nodes[i], (HeapWord*)&_nodes[i+1], ((_max-i-1)*sizeof(Node*)));
2265   _nodes[i] = n;
2266 }
2267 
2268 //-----------------------------------------------------------------------------
2269 void Node_Array::remove( uint i ) {
2270   Copy::conjoint_words_to_lower((HeapWord*)&_nodes[i+1], (HeapWord*)&_nodes[i], ((_max-i-1)*sizeof(Node*)));
2271   _nodes[_max-1] = NULL;
2272 }
2273 
2274 //-----------------------------------------------------------------------------
2275 void Node_Array::sort( C_sort_func_t func) {
2276   qsort( _nodes, _max, sizeof( Node* ), func );
2277 }
2278 
2279 //-----------------------------------------------------------------------------
2280 void Node_Array::dump() const {
2281 #ifndef PRODUCT
2282   for( uint i = 0; i < _max; i++ ) {
2283     Node *nn = _nodes[i];
2284     if( nn != NULL ) {
2285       tty->print("%5d--> ",i); nn->dump();
2286     }
2287   }
2288 #endif
2289 }
2290 
2291 //--------------------------is_iteratively_computed------------------------------
2292 // Operation appears to be iteratively computed (such as an induction variable)
2293 // It is possible for this operation to return false for a loop-varying
2294 // value, if it appears (by local graph inspection) to be computed by a simple conditional.
2295 bool Node::is_iteratively_computed() {
2296   if (ideal_reg()) { // does operation have a result register?
2297     for (uint i = 1; i < req(); i++) {
2298       Node* n = in(i);
2299       if (n != NULL && n->is_Phi()) {
2300         for (uint j = 1; j < n->req(); j++) {
2301           if (n->in(j) == this) {
2302             return true;
2303           }
2304         }
2305       }
2306     }
2307   }
2308   return false;
2309 }
2310 
2311 //--------------------------find_similar------------------------------
2312 // Return a node with opcode "opc" and same inputs as "this" if one can
2313 // be found; Otherwise return NULL;
2314 Node* Node::find_similar(int opc) {
2315   if (req() >= 2) {
2316     Node* def = in(1);
2317     if (def && def->outcnt() >= 2) {
2318       for (DUIterator_Fast dmax, i = def->fast_outs(dmax); i < dmax; i++) {
2319         Node* use = def->fast_out(i);
2320         if (use != this &&
2321             use->Opcode() == opc &&
2322             use->req() == req()) {
2323           uint j;
2324           for (j = 0; j < use->req(); j++) {
2325             if (use->in(j) != in(j)) {
2326               break;
2327             }
2328           }
2329           if (j == use->req()) {
2330             return use;
2331           }
2332         }
2333       }
2334     }
2335   }
2336   return NULL;
2337 }
2338 
2339 
2340 //--------------------------unique_ctrl_out------------------------------
2341 // Return the unique control out if only one. Null if none or more than one.
2342 Node* Node::unique_ctrl_out() const {
2343   Node* found = NULL;
2344   for (uint i = 0; i < outcnt(); i++) {
2345     Node* use = raw_out(i);
2346     if (use->is_CFG() && use != this) {
2347       if (found != NULL) return NULL;
2348       found = use;
2349     }
2350   }
2351   return found;
2352 }
2353 
2354 void Node::ensure_control_or_add_prec(Node* c) {
2355   if (in(0) == NULL) {
2356     set_req(0, c);
2357   } else if (in(0) != c) {
2358     add_prec(c);
2359   }
2360 }
2361 
2362 //=============================================================================
2363 //------------------------------yank-------------------------------------------
2364 // Find and remove
2365 void Node_List::yank( Node *n ) {
2366   uint i;
2367   for( i = 0; i < _cnt; i++ )
2368     if( _nodes[i] == n )
2369       break;
2370 
2371   if( i < _cnt )
2372     _nodes[i] = _nodes[--_cnt];
2373 }
2374 
2375 //------------------------------dump-------------------------------------------
2376 void Node_List::dump() const {
2377 #ifndef PRODUCT
2378   for( uint i = 0; i < _cnt; i++ )
2379     if( _nodes[i] ) {
2380       tty->print("%5d--> ",i);
2381       _nodes[i]->dump();
2382     }
2383 #endif
2384 }
2385 
2386 void Node_List::dump_simple() const {
2387 #ifndef PRODUCT
2388   for( uint i = 0; i < _cnt; i++ )
2389     if( _nodes[i] ) {
2390       tty->print(" %d", _nodes[i]->_idx);
2391     } else {
2392       tty->print(" NULL");
2393     }
2394 #endif
2395 }
2396 
2397 //=============================================================================
2398 //------------------------------remove-----------------------------------------
2399 void Unique_Node_List::remove( Node *n ) {
2400   if( _in_worklist[n->_idx] ) {
2401     for( uint i = 0; i < size(); i++ )
2402       if( _nodes[i] == n ) {
2403         map(i,Node_List::pop());
2404         _in_worklist >>= n->_idx;
2405         return;
2406       }
2407     ShouldNotReachHere();
2408   }
2409 }
2410 
2411 //-----------------------remove_useless_nodes----------------------------------
2412 // Remove useless nodes from worklist
2413 void Unique_Node_List::remove_useless_nodes(VectorSet &useful) {
2414 
2415   for( uint i = 0; i < size(); ++i ) {
2416     Node *n = at(i);
2417     assert( n != NULL, "Did not expect null entries in worklist");
2418     if( ! useful.test(n->_idx) ) {
2419       _in_worklist >>= n->_idx;
2420       map(i,Node_List::pop());
2421       // Node *replacement = Node_List::pop();
2422       // if( i != size() ) { // Check if removing last entry
2423       //   _nodes[i] = replacement;
2424       // }
2425       --i;  // Visit popped node
2426       // If it was last entry, loop terminates since size() was also reduced
2427     }
2428   }
2429 }
2430 
2431 //=============================================================================
2432 void Node_Stack::grow() {
2433   size_t old_top = pointer_delta(_inode_top,_inodes,sizeof(INode)); // save _top
2434   size_t old_max = pointer_delta(_inode_max,_inodes,sizeof(INode));
2435   size_t max = old_max << 1;             // max * 2
2436   _inodes = REALLOC_ARENA_ARRAY(_a, INode, _inodes, old_max, max);
2437   _inode_max = _inodes + max;
2438   _inode_top = _inodes + old_top;        // restore _top
2439 }
2440 
2441 // Node_Stack is used to map nodes.
2442 Node* Node_Stack::find(uint idx) const {
2443   uint sz = size();
2444   for (uint i=0; i < sz; i++) {
2445     if (idx == index_at(i) )
2446       return node_at(i);
2447   }
2448   return NULL;
2449 }
2450 
2451 //=============================================================================
2452 uint TypeNode::size_of() const { return sizeof(*this); }
2453 #ifndef PRODUCT
2454 void TypeNode::dump_spec(outputStream *st) const {
2455   if( !Verbose && !WizardMode ) {
2456     // standard dump does this in Verbose and WizardMode
2457     st->print(" #"); _type->dump_on(st);
2458   }
2459 }
2460 
2461 void TypeNode::dump_compact_spec(outputStream *st) const {
2462   st->print("#");
2463   _type->dump_on(st);
2464 }
2465 #endif
2466 uint TypeNode::hash() const {
2467   return Node::hash() + _type->hash();
2468 }
2469 uint TypeNode::cmp( const Node &n ) const
2470 { return !Type::cmp( _type, ((TypeNode&)n)._type ); }
2471 const Type *TypeNode::bottom_type() const { return _type; }
2472 const Type* TypeNode::Value(PhaseGVN* phase) const { return _type; }
2473 
2474 //------------------------------ideal_reg--------------------------------------
2475 uint TypeNode::ideal_reg() const {
2476   return _type->ideal_reg();
2477 }