1 /*
   2  * Copyright (c) 2000, 2011, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "c1/c1_Compilation.hpp"
  27 #include "c1/c1_LIRAssembler.hpp"
  28 #include "c1/c1_MacroAssembler.hpp"
  29 #include "c1/c1_Runtime1.hpp"
  30 #include "c1/c1_ValueStack.hpp"
  31 #include "ci/ciArrayKlass.hpp"
  32 #include "ci/ciInstance.hpp"
  33 #include "gc_interface/collectedHeap.hpp"
  34 #include "memory/barrierSet.hpp"
  35 #include "memory/cardTableModRefBS.hpp"
  36 #include "nativeInst_sparc.hpp"
  37 #include "oops/objArrayKlass.hpp"
  38 #include "runtime/sharedRuntime.hpp"
  39 
  40 #define __ _masm->
  41 
  42 
  43 //------------------------------------------------------------
  44 
  45 
  46 bool LIR_Assembler::is_small_constant(LIR_Opr opr) {
  47   if (opr->is_constant()) {
  48     LIR_Const* constant = opr->as_constant_ptr();
  49     switch (constant->type()) {
  50       case T_INT: {
  51         jint value = constant->as_jint();
  52         return Assembler::is_simm13(value);
  53       }
  54 
  55       default:
  56         return false;
  57     }
  58   }
  59   return false;
  60 }
  61 
  62 
  63 bool LIR_Assembler::is_single_instruction(LIR_Op* op) {
  64   switch (op->code()) {
  65     case lir_null_check:
  66     return true;
  67 
  68 
  69     case lir_add:
  70     case lir_ushr:
  71     case lir_shr:
  72     case lir_shl:
  73       // integer shifts and adds are always one instruction
  74       return op->result_opr()->is_single_cpu();
  75 
  76 
  77     case lir_move: {
  78       LIR_Op1* op1 = op->as_Op1();
  79       LIR_Opr src = op1->in_opr();
  80       LIR_Opr dst = op1->result_opr();
  81 
  82       if (src == dst) {
  83         NEEDS_CLEANUP;
  84         // this works around a problem where moves with the same src and dst
  85         // end up in the delay slot and then the assembler swallows the mov
  86         // since it has no effect and then it complains because the delay slot
  87         // is empty.  returning false stops the optimizer from putting this in
  88         // the delay slot
  89         return false;
  90       }
  91 
  92       // don't put moves involving oops into the delay slot since the VerifyOops code
  93       // will make it much larger than a single instruction.
  94       if (VerifyOops) {
  95         return false;
  96       }
  97 
  98       if (src->is_double_cpu() || dst->is_double_cpu() || op1->patch_code() != lir_patch_none ||
  99           ((src->is_double_fpu() || dst->is_double_fpu()) && op1->move_kind() != lir_move_normal)) {
 100         return false;
 101       }
 102 
 103       if (UseCompressedOops) {
 104         if (dst->is_address() && !dst->is_stack() && (dst->type() == T_OBJECT || dst->type() == T_ARRAY)) return false;
 105         if (src->is_address() && !src->is_stack() && (src->type() == T_OBJECT || src->type() == T_ARRAY)) return false;
 106       }
 107 
 108       if (dst->is_register()) {
 109         if (src->is_address() && Assembler::is_simm13(src->as_address_ptr()->disp())) {
 110           return !PatchALot;
 111         } else if (src->is_single_stack()) {
 112           return true;
 113         }
 114       }
 115 
 116       if (src->is_register()) {
 117         if (dst->is_address() && Assembler::is_simm13(dst->as_address_ptr()->disp())) {
 118           return !PatchALot;
 119         } else if (dst->is_single_stack()) {
 120           return true;
 121         }
 122       }
 123 
 124       if (dst->is_register() &&
 125           ((src->is_register() && src->is_single_word() && src->is_same_type(dst)) ||
 126            (src->is_constant() && LIR_Assembler::is_small_constant(op->as_Op1()->in_opr())))) {
 127         return true;
 128       }
 129 
 130       return false;
 131     }
 132 
 133     default:
 134       return false;
 135   }
 136   ShouldNotReachHere();
 137 }
 138 
 139 
 140 LIR_Opr LIR_Assembler::receiverOpr() {
 141   return FrameMap::O0_oop_opr;
 142 }
 143 
 144 
 145 LIR_Opr LIR_Assembler::osrBufferPointer() {
 146   return FrameMap::I0_opr;
 147 }
 148 
 149 
 150 int LIR_Assembler::initial_frame_size_in_bytes() {
 151   return in_bytes(frame_map()->framesize_in_bytes());
 152 }
 153 
 154 
 155 // inline cache check: the inline cached class is in G5_inline_cache_reg(G5);
 156 // we fetch the class of the receiver (O0) and compare it with the cached class.
 157 // If they do not match we jump to slow case.
 158 int LIR_Assembler::check_icache() {
 159   int offset = __ offset();
 160   __ inline_cache_check(O0, G5_inline_cache_reg);
 161   return offset;
 162 }
 163 
 164 
 165 void LIR_Assembler::osr_entry() {
 166   // On-stack-replacement entry sequence (interpreter frame layout described in interpreter_sparc.cpp):
 167   //
 168   //   1. Create a new compiled activation.
 169   //   2. Initialize local variables in the compiled activation.  The expression stack must be empty
 170   //      at the osr_bci; it is not initialized.
 171   //   3. Jump to the continuation address in compiled code to resume execution.
 172 
 173   // OSR entry point
 174   offsets()->set_value(CodeOffsets::OSR_Entry, code_offset());
 175   BlockBegin* osr_entry = compilation()->hir()->osr_entry();
 176   ValueStack* entry_state = osr_entry->end()->state();
 177   int number_of_locks = entry_state->locks_size();
 178 
 179   // Create a frame for the compiled activation.
 180   __ build_frame(initial_frame_size_in_bytes());
 181 
 182   // OSR buffer is
 183   //
 184   // locals[nlocals-1..0]
 185   // monitors[number_of_locks-1..0]
 186   //
 187   // locals is a direct copy of the interpreter frame so in the osr buffer
 188   // so first slot in the local array is the last local from the interpreter
 189   // and last slot is local[0] (receiver) from the interpreter
 190   //
 191   // Similarly with locks. The first lock slot in the osr buffer is the nth lock
 192   // from the interpreter frame, the nth lock slot in the osr buffer is 0th lock
 193   // in the interpreter frame (the method lock if a sync method)
 194 
 195   // Initialize monitors in the compiled activation.
 196   //   I0: pointer to osr buffer
 197   //
 198   // All other registers are dead at this point and the locals will be
 199   // copied into place by code emitted in the IR.
 200 
 201   Register OSR_buf = osrBufferPointer()->as_register();
 202   { assert(frame::interpreter_frame_monitor_size() == BasicObjectLock::size(), "adjust code below");
 203     int monitor_offset = BytesPerWord * method()->max_locals() +
 204       (2 * BytesPerWord) * (number_of_locks - 1);
 205     // SharedRuntime::OSR_migration_begin() packs BasicObjectLocks in
 206     // the OSR buffer using 2 word entries: first the lock and then
 207     // the oop.
 208     for (int i = 0; i < number_of_locks; i++) {
 209       int slot_offset = monitor_offset - ((i * 2) * BytesPerWord);
 210 #ifdef ASSERT
 211       // verify the interpreter's monitor has a non-null object
 212       {
 213         Label L;
 214         __ ld_ptr(OSR_buf, slot_offset + 1*BytesPerWord, O7);
 215         __ cmp_and_br_short(O7, G0, Assembler::notEqual, Assembler::pt, L);
 216         __ stop("locked object is NULL");
 217         __ bind(L);
 218       }
 219 #endif // ASSERT
 220       // Copy the lock field into the compiled activation.
 221       __ ld_ptr(OSR_buf, slot_offset + 0, O7);
 222       __ st_ptr(O7, frame_map()->address_for_monitor_lock(i));
 223       __ ld_ptr(OSR_buf, slot_offset + 1*BytesPerWord, O7);
 224       __ st_ptr(O7, frame_map()->address_for_monitor_object(i));
 225     }
 226   }
 227 }
 228 
 229 
 230 // Optimized Library calls
 231 // This is the fast version of java.lang.String.compare; it has not
 232 // OSR-entry and therefore, we generate a slow version for OSR's
 233 void LIR_Assembler::emit_string_compare(LIR_Opr left, LIR_Opr right, LIR_Opr dst, CodeEmitInfo* info) {
 234   Register str0 = left->as_register();
 235   Register str1 = right->as_register();
 236 
 237   Label Ldone;
 238 
 239   Register result = dst->as_register();
 240   {
 241     // Get a pointer to the first character of string0 in tmp0 and get string0.count in str0
 242     // Get a pointer to the first character of string1 in tmp1 and get string1.count in str1
 243     // Also, get string0.count-string1.count in o7 and get the condition code set
 244     // Note: some instructions have been hoisted for better instruction scheduling
 245 
 246     Register tmp0 = L0;
 247     Register tmp1 = L1;
 248     Register tmp2 = L2;
 249 
 250     int  value_offset = java_lang_String:: value_offset_in_bytes(); // char array
 251     int offset_offset = java_lang_String::offset_offset_in_bytes(); // first character position
 252     int  count_offset = java_lang_String:: count_offset_in_bytes();
 253 
 254     __ load_heap_oop(str0, value_offset, tmp0);
 255     __ ld(str0, offset_offset, tmp2);
 256     __ add(tmp0, arrayOopDesc::base_offset_in_bytes(T_CHAR), tmp0);
 257     __ ld(str0, count_offset, str0);
 258     __ sll(tmp2, exact_log2(sizeof(jchar)), tmp2);
 259 
 260     // str1 may be null
 261     add_debug_info_for_null_check_here(info);
 262 
 263     __ load_heap_oop(str1, value_offset, tmp1);
 264     __ add(tmp0, tmp2, tmp0);
 265 
 266     __ ld(str1, offset_offset, tmp2);
 267     __ add(tmp1, arrayOopDesc::base_offset_in_bytes(T_CHAR), tmp1);
 268     __ ld(str1, count_offset, str1);
 269     __ sll(tmp2, exact_log2(sizeof(jchar)), tmp2);
 270     __ subcc(str0, str1, O7);
 271     __ add(tmp1, tmp2, tmp1);
 272   }
 273 
 274   {
 275     // Compute the minimum of the string lengths, scale it and store it in limit
 276     Register count0 = I0;
 277     Register count1 = I1;
 278     Register limit  = L3;
 279 
 280     Label Lskip;
 281     __ sll(count0, exact_log2(sizeof(jchar)), limit);             // string0 is shorter
 282     __ br(Assembler::greater, true, Assembler::pt, Lskip);
 283     __ delayed()->sll(count1, exact_log2(sizeof(jchar)), limit);  // string1 is shorter
 284     __ bind(Lskip);
 285 
 286     // If either string is empty (or both of them) the result is the difference in lengths
 287     __ cmp(limit, 0);
 288     __ br(Assembler::equal, true, Assembler::pn, Ldone);
 289     __ delayed()->mov(O7, result);  // result is difference in lengths
 290   }
 291 
 292   {
 293     // Neither string is empty
 294     Label Lloop;
 295 
 296     Register base0 = L0;
 297     Register base1 = L1;
 298     Register chr0  = I0;
 299     Register chr1  = I1;
 300     Register limit = L3;
 301 
 302     // Shift base0 and base1 to the end of the arrays, negate limit
 303     __ add(base0, limit, base0);
 304     __ add(base1, limit, base1);
 305     __ neg(limit);  // limit = -min{string0.count, strin1.count}
 306 
 307     __ lduh(base0, limit, chr0);
 308     __ bind(Lloop);
 309     __ lduh(base1, limit, chr1);
 310     __ subcc(chr0, chr1, chr0);
 311     __ br(Assembler::notZero, false, Assembler::pn, Ldone);
 312     assert(chr0 == result, "result must be pre-placed");
 313     __ delayed()->inccc(limit, sizeof(jchar));
 314     __ br(Assembler::notZero, true, Assembler::pt, Lloop);
 315     __ delayed()->lduh(base0, limit, chr0);
 316   }
 317 
 318   // If strings are equal up to min length, return the length difference.
 319   __ mov(O7, result);
 320 
 321   // Otherwise, return the difference between the first mismatched chars.
 322   __ bind(Ldone);
 323 }
 324 
 325 
 326 // --------------------------------------------------------------------------------------------
 327 
 328 void LIR_Assembler::monitorexit(LIR_Opr obj_opr, LIR_Opr lock_opr, Register hdr, int monitor_no) {
 329   if (!GenerateSynchronizationCode) return;
 330 
 331   Register obj_reg = obj_opr->as_register();
 332   Register lock_reg = lock_opr->as_register();
 333 
 334   Address mon_addr = frame_map()->address_for_monitor_lock(monitor_no);
 335   Register reg = mon_addr.base();
 336   int offset = mon_addr.disp();
 337   // compute pointer to BasicLock
 338   if (mon_addr.is_simm13()) {
 339     __ add(reg, offset, lock_reg);
 340   }
 341   else {
 342     __ set(offset, lock_reg);
 343     __ add(reg, lock_reg, lock_reg);
 344   }
 345   // unlock object
 346   MonitorAccessStub* slow_case = new MonitorExitStub(lock_opr, UseFastLocking, monitor_no);
 347   // _slow_case_stubs->append(slow_case);
 348   // temporary fix: must be created after exceptionhandler, therefore as call stub
 349   _slow_case_stubs->append(slow_case);
 350   if (UseFastLocking) {
 351     // try inlined fast unlocking first, revert to slow locking if it fails
 352     // note: lock_reg points to the displaced header since the displaced header offset is 0!
 353     assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
 354     __ unlock_object(hdr, obj_reg, lock_reg, *slow_case->entry());
 355   } else {
 356     // always do slow unlocking
 357     // note: the slow unlocking code could be inlined here, however if we use
 358     //       slow unlocking, speed doesn't matter anyway and this solution is
 359     //       simpler and requires less duplicated code - additionally, the
 360     //       slow unlocking code is the same in either case which simplifies
 361     //       debugging
 362     __ br(Assembler::always, false, Assembler::pt, *slow_case->entry());
 363     __ delayed()->nop();
 364   }
 365   // done
 366   __ bind(*slow_case->continuation());
 367 }
 368 
 369 
 370 int LIR_Assembler::emit_exception_handler() {
 371   // if the last instruction is a call (typically to do a throw which
 372   // is coming at the end after block reordering) the return address
 373   // must still point into the code area in order to avoid assertion
 374   // failures when searching for the corresponding bci => add a nop
 375   // (was bug 5/14/1999 - gri)
 376   __ nop();
 377 
 378   // generate code for exception handler
 379   ciMethod* method = compilation()->method();
 380 
 381   address handler_base = __ start_a_stub(exception_handler_size);
 382 
 383   if (handler_base == NULL) {
 384     // not enough space left for the handler
 385     bailout("exception handler overflow");
 386     return -1;
 387   }
 388 
 389   int offset = code_offset();
 390 
 391   __ call(Runtime1::entry_for(Runtime1::handle_exception_from_callee_id), relocInfo::runtime_call_type);
 392   __ delayed()->nop();
 393   __ should_not_reach_here();
 394   assert(code_offset() - offset <= exception_handler_size, "overflow");
 395   __ end_a_stub();
 396 
 397   return offset;
 398 }
 399 
 400 
 401 // Emit the code to remove the frame from the stack in the exception
 402 // unwind path.
 403 int LIR_Assembler::emit_unwind_handler() {
 404 #ifndef PRODUCT
 405   if (CommentedAssembly) {
 406     _masm->block_comment("Unwind handler");
 407   }
 408 #endif
 409 
 410   int offset = code_offset();
 411 
 412   // Fetch the exception from TLS and clear out exception related thread state
 413   __ ld_ptr(G2_thread, in_bytes(JavaThread::exception_oop_offset()), O0);
 414   __ st_ptr(G0, G2_thread, in_bytes(JavaThread::exception_oop_offset()));
 415   __ st_ptr(G0, G2_thread, in_bytes(JavaThread::exception_pc_offset()));
 416 
 417   __ bind(_unwind_handler_entry);
 418   __ verify_not_null_oop(O0);
 419   if (method()->is_synchronized() || compilation()->env()->dtrace_method_probes()) {
 420     __ mov(O0, I0);  // Preserve the exception
 421   }
 422 
 423   // Preform needed unlocking
 424   MonitorExitStub* stub = NULL;
 425   if (method()->is_synchronized()) {
 426     monitor_address(0, FrameMap::I1_opr);
 427     stub = new MonitorExitStub(FrameMap::I1_opr, true, 0);
 428     __ unlock_object(I3, I2, I1, *stub->entry());
 429     __ bind(*stub->continuation());
 430   }
 431 
 432   if (compilation()->env()->dtrace_method_probes()) {
 433     __ mov(G2_thread, O0);
 434     jobject2reg(method()->constant_encoding(), O1);
 435     __ call(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit), relocInfo::runtime_call_type);
 436     __ delayed()->nop();
 437   }
 438 
 439   if (method()->is_synchronized() || compilation()->env()->dtrace_method_probes()) {
 440     __ mov(I0, O0);  // Restore the exception
 441   }
 442 
 443   // dispatch to the unwind logic
 444   __ call(Runtime1::entry_for(Runtime1::unwind_exception_id), relocInfo::runtime_call_type);
 445   __ delayed()->nop();
 446 
 447   // Emit the slow path assembly
 448   if (stub != NULL) {
 449     stub->emit_code(this);
 450   }
 451 
 452   return offset;
 453 }
 454 
 455 
 456 int LIR_Assembler::emit_deopt_handler() {
 457   // if the last instruction is a call (typically to do a throw which
 458   // is coming at the end after block reordering) the return address
 459   // must still point into the code area in order to avoid assertion
 460   // failures when searching for the corresponding bci => add a nop
 461   // (was bug 5/14/1999 - gri)
 462   __ nop();
 463 
 464   // generate code for deopt handler
 465   ciMethod* method = compilation()->method();
 466   address handler_base = __ start_a_stub(deopt_handler_size);
 467   if (handler_base == NULL) {
 468     // not enough space left for the handler
 469     bailout("deopt handler overflow");
 470     return -1;
 471   }
 472 
 473   int offset = code_offset();
 474   AddressLiteral deopt_blob(SharedRuntime::deopt_blob()->unpack());
 475   __ JUMP(deopt_blob, G3_scratch, 0); // sethi;jmp
 476   __ delayed()->nop();
 477   assert(code_offset() - offset <= deopt_handler_size, "overflow");
 478   debug_only(__ stop("should have gone to the caller");)
 479   __ end_a_stub();
 480 
 481   return offset;
 482 }
 483 
 484 
 485 void LIR_Assembler::jobject2reg(jobject o, Register reg) {
 486   if (o == NULL) {
 487     __ set(NULL_WORD, reg);
 488   } else {
 489     int oop_index = __ oop_recorder()->find_index(o);
 490     RelocationHolder rspec = oop_Relocation::spec(oop_index);
 491     __ set(NULL_WORD, reg, rspec); // Will be set when the nmethod is created
 492   }
 493 }
 494 
 495 
 496 void LIR_Assembler::jobject2reg_with_patching(Register reg, CodeEmitInfo *info) {
 497   // Allocate a new index in oop table to hold the oop once it's been patched
 498   int oop_index = __ oop_recorder()->allocate_index((jobject)NULL);
 499   PatchingStub* patch = new PatchingStub(_masm, PatchingStub::load_klass_id, oop_index);
 500 
 501   AddressLiteral addrlit(NULL, oop_Relocation::spec(oop_index));
 502   assert(addrlit.rspec().type() == relocInfo::oop_type, "must be an oop reloc");
 503   // It may not seem necessary to use a sethi/add pair to load a NULL into dest, but the
 504   // NULL will be dynamically patched later and the patched value may be large.  We must
 505   // therefore generate the sethi/add as a placeholders
 506   __ patchable_set(addrlit, reg);
 507 
 508   patching_epilog(patch, lir_patch_normal, reg, info);
 509 }
 510 
 511 
 512 void LIR_Assembler::emit_op3(LIR_Op3* op) {
 513   Register Rdividend = op->in_opr1()->as_register();
 514   Register Rdivisor  = noreg;
 515   Register Rscratch  = op->in_opr3()->as_register();
 516   Register Rresult   = op->result_opr()->as_register();
 517   int divisor = -1;
 518 
 519   if (op->in_opr2()->is_register()) {
 520     Rdivisor = op->in_opr2()->as_register();
 521   } else {
 522     divisor = op->in_opr2()->as_constant_ptr()->as_jint();
 523     assert(Assembler::is_simm13(divisor), "can only handle simm13");
 524   }
 525 
 526   assert(Rdividend != Rscratch, "");
 527   assert(Rdivisor  != Rscratch, "");
 528   assert(op->code() == lir_idiv || op->code() == lir_irem, "Must be irem or idiv");
 529 
 530   if (Rdivisor == noreg && is_power_of_2(divisor)) {
 531     // convert division by a power of two into some shifts and logical operations
 532     if (op->code() == lir_idiv) {
 533       if (divisor == 2) {
 534         __ srl(Rdividend, 31, Rscratch);
 535       } else {
 536         __ sra(Rdividend, 31, Rscratch);
 537         __ and3(Rscratch, divisor - 1, Rscratch);
 538       }
 539       __ add(Rdividend, Rscratch, Rscratch);
 540       __ sra(Rscratch, log2_intptr(divisor), Rresult);
 541       return;
 542     } else {
 543       if (divisor == 2) {
 544         __ srl(Rdividend, 31, Rscratch);
 545       } else {
 546         __ sra(Rdividend, 31, Rscratch);
 547         __ and3(Rscratch, divisor - 1,Rscratch);
 548       }
 549       __ add(Rdividend, Rscratch, Rscratch);
 550       __ andn(Rscratch, divisor - 1,Rscratch);
 551       __ sub(Rdividend, Rscratch, Rresult);
 552       return;
 553     }
 554   }
 555 
 556   __ sra(Rdividend, 31, Rscratch);
 557   __ wry(Rscratch);
 558   if (!VM_Version::v9_instructions_work()) {
 559     // v9 doesn't require these nops
 560     __ nop();
 561     __ nop();
 562     __ nop();
 563     __ nop();
 564   }
 565 
 566   add_debug_info_for_div0_here(op->info());
 567 
 568   if (Rdivisor != noreg) {
 569     __ sdivcc(Rdividend, Rdivisor, (op->code() == lir_idiv ? Rresult : Rscratch));
 570   } else {
 571     assert(Assembler::is_simm13(divisor), "can only handle simm13");
 572     __ sdivcc(Rdividend, divisor, (op->code() == lir_idiv ? Rresult : Rscratch));
 573   }
 574 
 575   Label skip;
 576   __ br(Assembler::overflowSet, true, Assembler::pn, skip);
 577   __ delayed()->Assembler::sethi(0x80000000, (op->code() == lir_idiv ? Rresult : Rscratch));
 578   __ bind(skip);
 579 
 580   if (op->code() == lir_irem) {
 581     if (Rdivisor != noreg) {
 582       __ smul(Rscratch, Rdivisor, Rscratch);
 583     } else {
 584       __ smul(Rscratch, divisor, Rscratch);
 585     }
 586     __ sub(Rdividend, Rscratch, Rresult);
 587   }
 588 }
 589 
 590 
 591 void LIR_Assembler::emit_opBranch(LIR_OpBranch* op) {
 592 #ifdef ASSERT
 593   assert(op->block() == NULL || op->block()->label() == op->label(), "wrong label");
 594   if (op->block() != NULL)  _branch_target_blocks.append(op->block());
 595   if (op->ublock() != NULL) _branch_target_blocks.append(op->ublock());
 596 #endif
 597   assert(op->info() == NULL, "shouldn't have CodeEmitInfo");
 598 
 599   if (op->cond() == lir_cond_always) {
 600     __ br(Assembler::always, false, Assembler::pt, *(op->label()));
 601   } else if (op->code() == lir_cond_float_branch) {
 602     assert(op->ublock() != NULL, "must have unordered successor");
 603     bool is_unordered = (op->ublock() == op->block());
 604     Assembler::Condition acond;
 605     switch (op->cond()) {
 606       case lir_cond_equal:         acond = Assembler::f_equal;    break;
 607       case lir_cond_notEqual:      acond = Assembler::f_notEqual; break;
 608       case lir_cond_less:          acond = (is_unordered ? Assembler::f_unorderedOrLess          : Assembler::f_less);           break;
 609       case lir_cond_greater:       acond = (is_unordered ? Assembler::f_unorderedOrGreater       : Assembler::f_greater);        break;
 610       case lir_cond_lessEqual:     acond = (is_unordered ? Assembler::f_unorderedOrLessOrEqual   : Assembler::f_lessOrEqual);    break;
 611       case lir_cond_greaterEqual:  acond = (is_unordered ? Assembler::f_unorderedOrGreaterOrEqual: Assembler::f_greaterOrEqual); break;
 612       default :                         ShouldNotReachHere();
 613     };
 614 
 615     if (!VM_Version::v9_instructions_work()) {
 616       __ nop();
 617     }
 618     __ fb( acond, false, Assembler::pn, *(op->label()));
 619   } else {
 620     assert (op->code() == lir_branch, "just checking");
 621 
 622     Assembler::Condition acond;
 623     switch (op->cond()) {
 624       case lir_cond_equal:        acond = Assembler::equal;                break;
 625       case lir_cond_notEqual:     acond = Assembler::notEqual;             break;
 626       case lir_cond_less:         acond = Assembler::less;                 break;
 627       case lir_cond_lessEqual:    acond = Assembler::lessEqual;            break;
 628       case lir_cond_greaterEqual: acond = Assembler::greaterEqual;         break;
 629       case lir_cond_greater:      acond = Assembler::greater;              break;
 630       case lir_cond_aboveEqual:   acond = Assembler::greaterEqualUnsigned; break;
 631       case lir_cond_belowEqual:   acond = Assembler::lessEqualUnsigned;    break;
 632       default:                         ShouldNotReachHere();
 633     };
 634 
 635     // sparc has different condition codes for testing 32-bit
 636     // vs. 64-bit values.  We could always test xcc is we could
 637     // guarantee that 32-bit loads always sign extended but that isn't
 638     // true and since sign extension isn't free, it would impose a
 639     // slight cost.
 640 #ifdef _LP64
 641     if  (op->type() == T_INT) {
 642       __ br(acond, false, Assembler::pn, *(op->label()));
 643     } else
 644 #endif
 645       __ brx(acond, false, Assembler::pn, *(op->label()));
 646   }
 647   // The peephole pass fills the delay slot
 648 }
 649 
 650 
 651 void LIR_Assembler::emit_opConvert(LIR_OpConvert* op) {
 652   Bytecodes::Code code = op->bytecode();
 653   LIR_Opr dst = op->result_opr();
 654 
 655   switch(code) {
 656     case Bytecodes::_i2l: {
 657       Register rlo  = dst->as_register_lo();
 658       Register rhi  = dst->as_register_hi();
 659       Register rval = op->in_opr()->as_register();
 660 #ifdef _LP64
 661       __ sra(rval, 0, rlo);
 662 #else
 663       __ mov(rval, rlo);
 664       __ sra(rval, BitsPerInt-1, rhi);
 665 #endif
 666       break;
 667     }
 668     case Bytecodes::_i2d:
 669     case Bytecodes::_i2f: {
 670       bool is_double = (code == Bytecodes::_i2d);
 671       FloatRegister rdst = is_double ? dst->as_double_reg() : dst->as_float_reg();
 672       FloatRegisterImpl::Width w = is_double ? FloatRegisterImpl::D : FloatRegisterImpl::S;
 673       FloatRegister rsrc = op->in_opr()->as_float_reg();
 674       if (rsrc != rdst) {
 675         __ fmov(FloatRegisterImpl::S, rsrc, rdst);
 676       }
 677       __ fitof(w, rdst, rdst);
 678       break;
 679     }
 680     case Bytecodes::_f2i:{
 681       FloatRegister rsrc = op->in_opr()->as_float_reg();
 682       Address       addr = frame_map()->address_for_slot(dst->single_stack_ix());
 683       Label L;
 684       // result must be 0 if value is NaN; test by comparing value to itself
 685       __ fcmp(FloatRegisterImpl::S, Assembler::fcc0, rsrc, rsrc);
 686       if (!VM_Version::v9_instructions_work()) {
 687         __ nop();
 688       }
 689       __ fb(Assembler::f_unordered, true, Assembler::pn, L);
 690       __ delayed()->st(G0, addr); // annuled if contents of rsrc is not NaN
 691       __ ftoi(FloatRegisterImpl::S, rsrc, rsrc);
 692       // move integer result from float register to int register
 693       __ stf(FloatRegisterImpl::S, rsrc, addr.base(), addr.disp());
 694       __ bind (L);
 695       break;
 696     }
 697     case Bytecodes::_l2i: {
 698       Register rlo  = op->in_opr()->as_register_lo();
 699       Register rhi  = op->in_opr()->as_register_hi();
 700       Register rdst = dst->as_register();
 701 #ifdef _LP64
 702       __ sra(rlo, 0, rdst);
 703 #else
 704       __ mov(rlo, rdst);
 705 #endif
 706       break;
 707     }
 708     case Bytecodes::_d2f:
 709     case Bytecodes::_f2d: {
 710       bool is_double = (code == Bytecodes::_f2d);
 711       assert((!is_double && dst->is_single_fpu()) || (is_double && dst->is_double_fpu()), "check");
 712       LIR_Opr val = op->in_opr();
 713       FloatRegister rval = (code == Bytecodes::_d2f) ? val->as_double_reg() : val->as_float_reg();
 714       FloatRegister rdst = is_double ? dst->as_double_reg() : dst->as_float_reg();
 715       FloatRegisterImpl::Width vw = is_double ? FloatRegisterImpl::S : FloatRegisterImpl::D;
 716       FloatRegisterImpl::Width dw = is_double ? FloatRegisterImpl::D : FloatRegisterImpl::S;
 717       __ ftof(vw, dw, rval, rdst);
 718       break;
 719     }
 720     case Bytecodes::_i2s:
 721     case Bytecodes::_i2b: {
 722       Register rval = op->in_opr()->as_register();
 723       Register rdst = dst->as_register();
 724       int shift = (code == Bytecodes::_i2b) ? (BitsPerInt - T_BYTE_aelem_bytes * BitsPerByte) : (BitsPerInt - BitsPerShort);
 725       __ sll (rval, shift, rdst);
 726       __ sra (rdst, shift, rdst);
 727       break;
 728     }
 729     case Bytecodes::_i2c: {
 730       Register rval = op->in_opr()->as_register();
 731       Register rdst = dst->as_register();
 732       int shift = BitsPerInt - T_CHAR_aelem_bytes * BitsPerByte;
 733       __ sll (rval, shift, rdst);
 734       __ srl (rdst, shift, rdst);
 735       break;
 736     }
 737 
 738     default: ShouldNotReachHere();
 739   }
 740 }
 741 
 742 
 743 void LIR_Assembler::align_call(LIR_Code) {
 744   // do nothing since all instructions are word aligned on sparc
 745 }
 746 
 747 
 748 void LIR_Assembler::call(LIR_OpJavaCall* op, relocInfo::relocType rtype) {
 749   __ call(op->addr(), rtype);
 750   // The peephole pass fills the delay slot, add_call_info is done in
 751   // LIR_Assembler::emit_delay.
 752 }
 753 
 754 
 755 void LIR_Assembler::ic_call(LIR_OpJavaCall* op) {
 756   RelocationHolder rspec = virtual_call_Relocation::spec(pc());
 757   __ set_oop((jobject)Universe::non_oop_word(), G5_inline_cache_reg);
 758   __ relocate(rspec);
 759   __ call(op->addr(), relocInfo::none);
 760   // The peephole pass fills the delay slot, add_call_info is done in
 761   // LIR_Assembler::emit_delay.
 762 }
 763 
 764 
 765 void LIR_Assembler::vtable_call(LIR_OpJavaCall* op) {
 766   add_debug_info_for_null_check_here(op->info());
 767   __ load_klass(O0, G3_scratch);
 768   if (Assembler::is_simm13(op->vtable_offset())) {
 769     __ ld_ptr(G3_scratch, op->vtable_offset(), G5_method);
 770   } else {
 771     // This will generate 2 instructions
 772     __ set(op->vtable_offset(), G5_method);
 773     // ld_ptr, set_hi, set
 774     __ ld_ptr(G3_scratch, G5_method, G5_method);
 775   }
 776   __ ld_ptr(G5_method, methodOopDesc::from_compiled_offset(), G3_scratch);
 777   __ callr(G3_scratch, G0);
 778   // the peephole pass fills the delay slot
 779 }
 780 
 781 int LIR_Assembler::store(LIR_Opr from_reg, Register base, int offset, BasicType type, bool wide, bool unaligned) {
 782   int store_offset;
 783   if (!Assembler::is_simm13(offset + (type == T_LONG) ? wordSize : 0)) {
 784     assert(!unaligned, "can't handle this");
 785     // for offsets larger than a simm13 we setup the offset in O7
 786     __ set(offset, O7);
 787     store_offset = store(from_reg, base, O7, type, wide);
 788   } else {
 789     if (type == T_ARRAY || type == T_OBJECT) {
 790       __ verify_oop(from_reg->as_register());
 791     }
 792     store_offset = code_offset();
 793     switch (type) {
 794       case T_BOOLEAN: // fall through
 795       case T_BYTE  : __ stb(from_reg->as_register(), base, offset); break;
 796       case T_CHAR  : __ sth(from_reg->as_register(), base, offset); break;
 797       case T_SHORT : __ sth(from_reg->as_register(), base, offset); break;
 798       case T_INT   : __ stw(from_reg->as_register(), base, offset); break;
 799       case T_LONG  :
 800 #ifdef _LP64
 801         if (unaligned || PatchALot) {
 802           __ srax(from_reg->as_register_lo(), 32, O7);
 803           __ stw(from_reg->as_register_lo(), base, offset + lo_word_offset_in_bytes);
 804           __ stw(O7,                         base, offset + hi_word_offset_in_bytes);
 805         } else {
 806           __ stx(from_reg->as_register_lo(), base, offset);
 807         }
 808 #else
 809         assert(Assembler::is_simm13(offset + 4), "must be");
 810         __ stw(from_reg->as_register_lo(), base, offset + lo_word_offset_in_bytes);
 811         __ stw(from_reg->as_register_hi(), base, offset + hi_word_offset_in_bytes);
 812 #endif
 813         break;
 814       case T_ADDRESS:
 815         __ st_ptr(from_reg->as_register(), base, offset);
 816         break;
 817       case T_ARRAY : // fall through
 818       case T_OBJECT:
 819         {
 820           if (UseCompressedOops && !wide) {
 821             __ encode_heap_oop(from_reg->as_register(), G3_scratch);
 822             store_offset = code_offset();
 823             __ stw(G3_scratch, base, offset);
 824           } else {
 825             __ st_ptr(from_reg->as_register(), base, offset);
 826           }
 827           break;
 828         }
 829 
 830       case T_FLOAT : __ stf(FloatRegisterImpl::S, from_reg->as_float_reg(), base, offset); break;
 831       case T_DOUBLE:
 832         {
 833           FloatRegister reg = from_reg->as_double_reg();
 834           // split unaligned stores
 835           if (unaligned || PatchALot) {
 836             assert(Assembler::is_simm13(offset + 4), "must be");
 837             __ stf(FloatRegisterImpl::S, reg->successor(), base, offset + 4);
 838             __ stf(FloatRegisterImpl::S, reg,              base, offset);
 839           } else {
 840             __ stf(FloatRegisterImpl::D, reg, base, offset);
 841           }
 842           break;
 843         }
 844       default      : ShouldNotReachHere();
 845     }
 846   }
 847   return store_offset;
 848 }
 849 
 850 
 851 int LIR_Assembler::store(LIR_Opr from_reg, Register base, Register disp, BasicType type, bool wide) {
 852   if (type == T_ARRAY || type == T_OBJECT) {
 853     __ verify_oop(from_reg->as_register());
 854   }
 855   int store_offset = code_offset();
 856   switch (type) {
 857     case T_BOOLEAN: // fall through
 858     case T_BYTE  : __ stb(from_reg->as_register(), base, disp); break;
 859     case T_CHAR  : __ sth(from_reg->as_register(), base, disp); break;
 860     case T_SHORT : __ sth(from_reg->as_register(), base, disp); break;
 861     case T_INT   : __ stw(from_reg->as_register(), base, disp); break;
 862     case T_LONG  :
 863 #ifdef _LP64
 864       __ stx(from_reg->as_register_lo(), base, disp);
 865 #else
 866       assert(from_reg->as_register_hi()->successor() == from_reg->as_register_lo(), "must match");
 867       __ std(from_reg->as_register_hi(), base, disp);
 868 #endif
 869       break;
 870     case T_ADDRESS:
 871       __ st_ptr(from_reg->as_register(), base, disp);
 872       break;
 873     case T_ARRAY : // fall through
 874     case T_OBJECT:
 875       {
 876         if (UseCompressedOops && !wide) {
 877           __ encode_heap_oop(from_reg->as_register(), G3_scratch);
 878           store_offset = code_offset();
 879           __ stw(G3_scratch, base, disp);
 880         } else {
 881           __ st_ptr(from_reg->as_register(), base, disp);
 882         }
 883         break;
 884       }
 885     case T_FLOAT : __ stf(FloatRegisterImpl::S, from_reg->as_float_reg(), base, disp); break;
 886     case T_DOUBLE: __ stf(FloatRegisterImpl::D, from_reg->as_double_reg(), base, disp); break;
 887     default      : ShouldNotReachHere();
 888   }
 889   return store_offset;
 890 }
 891 
 892 
 893 int LIR_Assembler::load(Register base, int offset, LIR_Opr to_reg, BasicType type, bool wide, bool unaligned) {
 894   int load_offset;
 895   if (!Assembler::is_simm13(offset + (type == T_LONG) ? wordSize : 0)) {
 896     assert(base != O7, "destroying register");
 897     assert(!unaligned, "can't handle this");
 898     // for offsets larger than a simm13 we setup the offset in O7
 899     __ set(offset, O7);
 900     load_offset = load(base, O7, to_reg, type, wide);
 901   } else {
 902     load_offset = code_offset();
 903     switch(type) {
 904       case T_BOOLEAN: // fall through
 905       case T_BYTE  : __ ldsb(base, offset, to_reg->as_register()); break;
 906       case T_CHAR  : __ lduh(base, offset, to_reg->as_register()); break;
 907       case T_SHORT : __ ldsh(base, offset, to_reg->as_register()); break;
 908       case T_INT   : __ ld(base, offset, to_reg->as_register()); break;
 909       case T_LONG  :
 910         if (!unaligned) {
 911 #ifdef _LP64
 912           __ ldx(base, offset, to_reg->as_register_lo());
 913 #else
 914           assert(to_reg->as_register_hi()->successor() == to_reg->as_register_lo(),
 915                  "must be sequential");
 916           __ ldd(base, offset, to_reg->as_register_hi());
 917 #endif
 918         } else {
 919 #ifdef _LP64
 920           assert(base != to_reg->as_register_lo(), "can't handle this");
 921           assert(O7 != to_reg->as_register_lo(), "can't handle this");
 922           __ ld(base, offset + hi_word_offset_in_bytes, to_reg->as_register_lo());
 923           __ lduw(base, offset + lo_word_offset_in_bytes, O7); // in case O7 is base or offset, use it last
 924           __ sllx(to_reg->as_register_lo(), 32, to_reg->as_register_lo());
 925           __ or3(to_reg->as_register_lo(), O7, to_reg->as_register_lo());
 926 #else
 927           if (base == to_reg->as_register_lo()) {
 928             __ ld(base, offset + hi_word_offset_in_bytes, to_reg->as_register_hi());
 929             __ ld(base, offset + lo_word_offset_in_bytes, to_reg->as_register_lo());
 930           } else {
 931             __ ld(base, offset + lo_word_offset_in_bytes, to_reg->as_register_lo());
 932             __ ld(base, offset + hi_word_offset_in_bytes, to_reg->as_register_hi());
 933           }
 934 #endif
 935         }
 936         break;
 937       case T_ADDRESS:  __ ld_ptr(base, offset, to_reg->as_register()); break;
 938       case T_ARRAY : // fall through
 939       case T_OBJECT:
 940         {
 941           if (UseCompressedOops && !wide) {
 942             __ lduw(base, offset, to_reg->as_register());
 943             __ decode_heap_oop(to_reg->as_register());
 944           } else {
 945             __ ld_ptr(base, offset, to_reg->as_register());
 946           }
 947           break;
 948         }
 949       case T_FLOAT:  __ ldf(FloatRegisterImpl::S, base, offset, to_reg->as_float_reg()); break;
 950       case T_DOUBLE:
 951         {
 952           FloatRegister reg = to_reg->as_double_reg();
 953           // split unaligned loads
 954           if (unaligned || PatchALot) {
 955             __ ldf(FloatRegisterImpl::S, base, offset + 4, reg->successor());
 956             __ ldf(FloatRegisterImpl::S, base, offset,     reg);
 957           } else {
 958             __ ldf(FloatRegisterImpl::D, base, offset, to_reg->as_double_reg());
 959           }
 960           break;
 961         }
 962       default      : ShouldNotReachHere();
 963     }
 964     if (type == T_ARRAY || type == T_OBJECT) {
 965       __ verify_oop(to_reg->as_register());
 966     }
 967   }
 968   return load_offset;
 969 }
 970 
 971 
 972 int LIR_Assembler::load(Register base, Register disp, LIR_Opr to_reg, BasicType type, bool wide) {
 973   int load_offset = code_offset();
 974   switch(type) {
 975     case T_BOOLEAN: // fall through
 976     case T_BYTE  :  __ ldsb(base, disp, to_reg->as_register()); break;
 977     case T_CHAR  :  __ lduh(base, disp, to_reg->as_register()); break;
 978     case T_SHORT :  __ ldsh(base, disp, to_reg->as_register()); break;
 979     case T_INT   :  __ ld(base, disp, to_reg->as_register()); break;
 980     case T_ADDRESS: __ ld_ptr(base, disp, to_reg->as_register()); break;
 981     case T_ARRAY : // fall through
 982     case T_OBJECT:
 983       {
 984           if (UseCompressedOops && !wide) {
 985             __ lduw(base, disp, to_reg->as_register());
 986             __ decode_heap_oop(to_reg->as_register());
 987           } else {
 988             __ ld_ptr(base, disp, to_reg->as_register());
 989           }
 990           break;
 991       }
 992     case T_FLOAT:  __ ldf(FloatRegisterImpl::S, base, disp, to_reg->as_float_reg()); break;
 993     case T_DOUBLE: __ ldf(FloatRegisterImpl::D, base, disp, to_reg->as_double_reg()); break;
 994     case T_LONG  :
 995 #ifdef _LP64
 996       __ ldx(base, disp, to_reg->as_register_lo());
 997 #else
 998       assert(to_reg->as_register_hi()->successor() == to_reg->as_register_lo(),
 999              "must be sequential");
1000       __ ldd(base, disp, to_reg->as_register_hi());
1001 #endif
1002       break;
1003     default      : ShouldNotReachHere();
1004   }
1005   if (type == T_ARRAY || type == T_OBJECT) {
1006     __ verify_oop(to_reg->as_register());
1007   }
1008   return load_offset;
1009 }
1010 
1011 void LIR_Assembler::const2stack(LIR_Opr src, LIR_Opr dest) {
1012   LIR_Const* c = src->as_constant_ptr();
1013   switch (c->type()) {
1014     case T_INT:
1015     case T_FLOAT: {
1016       Register src_reg = O7;
1017       int value = c->as_jint_bits();
1018       if (value == 0) {
1019         src_reg = G0;
1020       } else {
1021         __ set(value, O7);
1022       }
1023       Address addr = frame_map()->address_for_slot(dest->single_stack_ix());
1024       __ stw(src_reg, addr.base(), addr.disp());
1025       break;
1026     }
1027     case T_ADDRESS: {
1028       Register src_reg = O7;
1029       int value = c->as_jint_bits();
1030       if (value == 0) {
1031         src_reg = G0;
1032       } else {
1033         __ set(value, O7);
1034       }
1035       Address addr = frame_map()->address_for_slot(dest->single_stack_ix());
1036       __ st_ptr(src_reg, addr.base(), addr.disp());
1037       break;
1038     }
1039     case T_OBJECT: {
1040       Register src_reg = O7;
1041       jobject2reg(c->as_jobject(), src_reg);
1042       Address addr = frame_map()->address_for_slot(dest->single_stack_ix());
1043       __ st_ptr(src_reg, addr.base(), addr.disp());
1044       break;
1045     }
1046     case T_LONG:
1047     case T_DOUBLE: {
1048       Address addr = frame_map()->address_for_double_slot(dest->double_stack_ix());
1049 
1050       Register tmp = O7;
1051       int value_lo = c->as_jint_lo_bits();
1052       if (value_lo == 0) {
1053         tmp = G0;
1054       } else {
1055         __ set(value_lo, O7);
1056       }
1057       __ stw(tmp, addr.base(), addr.disp() + lo_word_offset_in_bytes);
1058       int value_hi = c->as_jint_hi_bits();
1059       if (value_hi == 0) {
1060         tmp = G0;
1061       } else {
1062         __ set(value_hi, O7);
1063       }
1064       __ stw(tmp, addr.base(), addr.disp() + hi_word_offset_in_bytes);
1065       break;
1066     }
1067     default:
1068       Unimplemented();
1069   }
1070 }
1071 
1072 
1073 void LIR_Assembler::const2mem(LIR_Opr src, LIR_Opr dest, BasicType type, CodeEmitInfo* info, bool wide) {
1074   LIR_Const* c = src->as_constant_ptr();
1075   LIR_Address* addr     = dest->as_address_ptr();
1076   Register base = addr->base()->as_pointer_register();
1077   int offset = -1;
1078 
1079   switch (c->type()) {
1080     case T_INT:
1081     case T_FLOAT:
1082     case T_ADDRESS: {
1083       LIR_Opr tmp = FrameMap::O7_opr;
1084       int value = c->as_jint_bits();
1085       if (value == 0) {
1086         tmp = FrameMap::G0_opr;
1087       } else if (Assembler::is_simm13(value)) {
1088         __ set(value, O7);
1089       }
1090       if (addr->index()->is_valid()) {
1091         assert(addr->disp() == 0, "must be zero");
1092         offset = store(tmp, base, addr->index()->as_pointer_register(), type, wide);
1093       } else {
1094         assert(Assembler::is_simm13(addr->disp()), "can't handle larger addresses");
1095         offset = store(tmp, base, addr->disp(), type, wide, false);
1096       }
1097       break;
1098     }
1099     case T_LONG:
1100     case T_DOUBLE: {
1101       assert(!addr->index()->is_valid(), "can't handle reg reg address here");
1102       assert(Assembler::is_simm13(addr->disp()) &&
1103              Assembler::is_simm13(addr->disp() + 4), "can't handle larger addresses");
1104 
1105       LIR_Opr tmp = FrameMap::O7_opr;
1106       int value_lo = c->as_jint_lo_bits();
1107       if (value_lo == 0) {
1108         tmp = FrameMap::G0_opr;
1109       } else {
1110         __ set(value_lo, O7);
1111       }
1112       offset = store(tmp, base, addr->disp() + lo_word_offset_in_bytes, T_INT, wide, false);
1113       int value_hi = c->as_jint_hi_bits();
1114       if (value_hi == 0) {
1115         tmp = FrameMap::G0_opr;
1116       } else {
1117         __ set(value_hi, O7);
1118       }
1119       store(tmp, base, addr->disp() + hi_word_offset_in_bytes, T_INT, wide, false);
1120       break;
1121     }
1122     case T_OBJECT: {
1123       jobject obj = c->as_jobject();
1124       LIR_Opr tmp;
1125       if (obj == NULL) {
1126         tmp = FrameMap::G0_opr;
1127       } else {
1128         tmp = FrameMap::O7_opr;
1129         jobject2reg(c->as_jobject(), O7);
1130       }
1131       // handle either reg+reg or reg+disp address
1132       if (addr->index()->is_valid()) {
1133         assert(addr->disp() == 0, "must be zero");
1134         offset = store(tmp, base, addr->index()->as_pointer_register(), type, wide);
1135       } else {
1136         assert(Assembler::is_simm13(addr->disp()), "can't handle larger addresses");
1137         offset = store(tmp, base, addr->disp(), type, wide, false);
1138       }
1139 
1140       break;
1141     }
1142     default:
1143       Unimplemented();
1144   }
1145   if (info != NULL) {
1146     assert(offset != -1, "offset should've been set");
1147     add_debug_info_for_null_check(offset, info);
1148   }
1149 }
1150 
1151 
1152 void LIR_Assembler::const2reg(LIR_Opr src, LIR_Opr dest, LIR_PatchCode patch_code, CodeEmitInfo* info) {
1153   LIR_Const* c = src->as_constant_ptr();
1154   LIR_Opr to_reg = dest;
1155 
1156   switch (c->type()) {
1157     case T_INT:
1158     case T_ADDRESS:
1159       {
1160         jint con = c->as_jint();
1161         if (to_reg->is_single_cpu()) {
1162           assert(patch_code == lir_patch_none, "no patching handled here");
1163           __ set(con, to_reg->as_register());
1164         } else {
1165           ShouldNotReachHere();
1166           assert(to_reg->is_single_fpu(), "wrong register kind");
1167 
1168           __ set(con, O7);
1169           Address temp_slot(SP, (frame::register_save_words * wordSize) + STACK_BIAS);
1170           __ st(O7, temp_slot);
1171           __ ldf(FloatRegisterImpl::S, temp_slot, to_reg->as_float_reg());
1172         }
1173       }
1174       break;
1175 
1176     case T_LONG:
1177       {
1178         jlong con = c->as_jlong();
1179 
1180         if (to_reg->is_double_cpu()) {
1181 #ifdef _LP64
1182           __ set(con,  to_reg->as_register_lo());
1183 #else
1184           __ set(low(con),  to_reg->as_register_lo());
1185           __ set(high(con), to_reg->as_register_hi());
1186 #endif
1187 #ifdef _LP64
1188         } else if (to_reg->is_single_cpu()) {
1189           __ set(con, to_reg->as_register());
1190 #endif
1191         } else {
1192           ShouldNotReachHere();
1193           assert(to_reg->is_double_fpu(), "wrong register kind");
1194           Address temp_slot_lo(SP, ((frame::register_save_words  ) * wordSize) + STACK_BIAS);
1195           Address temp_slot_hi(SP, ((frame::register_save_words) * wordSize) + (longSize/2) + STACK_BIAS);
1196           __ set(low(con),  O7);
1197           __ st(O7, temp_slot_lo);
1198           __ set(high(con), O7);
1199           __ st(O7, temp_slot_hi);
1200           __ ldf(FloatRegisterImpl::D, temp_slot_lo, to_reg->as_double_reg());
1201         }
1202       }
1203       break;
1204 
1205     case T_OBJECT:
1206       {
1207         if (patch_code == lir_patch_none) {
1208           jobject2reg(c->as_jobject(), to_reg->as_register());
1209         } else {
1210           jobject2reg_with_patching(to_reg->as_register(), info);
1211         }
1212       }
1213       break;
1214 
1215     case T_FLOAT:
1216       {
1217         address const_addr = __ float_constant(c->as_jfloat());
1218         if (const_addr == NULL) {
1219           bailout("const section overflow");
1220           break;
1221         }
1222         RelocationHolder rspec = internal_word_Relocation::spec(const_addr);
1223         AddressLiteral const_addrlit(const_addr, rspec);
1224         if (to_reg->is_single_fpu()) {
1225           __ patchable_sethi(const_addrlit, O7);
1226           __ relocate(rspec);
1227           __ ldf(FloatRegisterImpl::S, O7, const_addrlit.low10(), to_reg->as_float_reg());
1228 
1229         } else {
1230           assert(to_reg->is_single_cpu(), "Must be a cpu register.");
1231 
1232           __ set(const_addrlit, O7);
1233           __ ld(O7, 0, to_reg->as_register());
1234         }
1235       }
1236       break;
1237 
1238     case T_DOUBLE:
1239       {
1240         address const_addr = __ double_constant(c->as_jdouble());
1241         if (const_addr == NULL) {
1242           bailout("const section overflow");
1243           break;
1244         }
1245         RelocationHolder rspec = internal_word_Relocation::spec(const_addr);
1246 
1247         if (to_reg->is_double_fpu()) {
1248           AddressLiteral const_addrlit(const_addr, rspec);
1249           __ patchable_sethi(const_addrlit, O7);
1250           __ relocate(rspec);
1251           __ ldf (FloatRegisterImpl::D, O7, const_addrlit.low10(), to_reg->as_double_reg());
1252         } else {
1253           assert(to_reg->is_double_cpu(), "Must be a long register.");
1254 #ifdef _LP64
1255           __ set(jlong_cast(c->as_jdouble()), to_reg->as_register_lo());
1256 #else
1257           __ set(low(jlong_cast(c->as_jdouble())), to_reg->as_register_lo());
1258           __ set(high(jlong_cast(c->as_jdouble())), to_reg->as_register_hi());
1259 #endif
1260         }
1261 
1262       }
1263       break;
1264 
1265     default:
1266       ShouldNotReachHere();
1267   }
1268 }
1269 
1270 Address LIR_Assembler::as_Address(LIR_Address* addr) {
1271   Register reg = addr->base()->as_register();
1272   return Address(reg, addr->disp());
1273 }
1274 
1275 
1276 void LIR_Assembler::stack2stack(LIR_Opr src, LIR_Opr dest, BasicType type) {
1277   switch (type) {
1278     case T_INT:
1279     case T_FLOAT: {
1280       Register tmp = O7;
1281       Address from = frame_map()->address_for_slot(src->single_stack_ix());
1282       Address to   = frame_map()->address_for_slot(dest->single_stack_ix());
1283       __ lduw(from.base(), from.disp(), tmp);
1284       __ stw(tmp, to.base(), to.disp());
1285       break;
1286     }
1287     case T_OBJECT: {
1288       Register tmp = O7;
1289       Address from = frame_map()->address_for_slot(src->single_stack_ix());
1290       Address to   = frame_map()->address_for_slot(dest->single_stack_ix());
1291       __ ld_ptr(from.base(), from.disp(), tmp);
1292       __ st_ptr(tmp, to.base(), to.disp());
1293       break;
1294     }
1295     case T_LONG:
1296     case T_DOUBLE: {
1297       Register tmp = O7;
1298       Address from = frame_map()->address_for_double_slot(src->double_stack_ix());
1299       Address to   = frame_map()->address_for_double_slot(dest->double_stack_ix());
1300       __ lduw(from.base(), from.disp(), tmp);
1301       __ stw(tmp, to.base(), to.disp());
1302       __ lduw(from.base(), from.disp() + 4, tmp);
1303       __ stw(tmp, to.base(), to.disp() + 4);
1304       break;
1305     }
1306 
1307     default:
1308       ShouldNotReachHere();
1309   }
1310 }
1311 
1312 
1313 Address LIR_Assembler::as_Address_hi(LIR_Address* addr) {
1314   Address base = as_Address(addr);
1315   return Address(base.base(), base.disp() + hi_word_offset_in_bytes);
1316 }
1317 
1318 
1319 Address LIR_Assembler::as_Address_lo(LIR_Address* addr) {
1320   Address base = as_Address(addr);
1321   return Address(base.base(), base.disp() + lo_word_offset_in_bytes);
1322 }
1323 
1324 
1325 void LIR_Assembler::mem2reg(LIR_Opr src_opr, LIR_Opr dest, BasicType type,
1326                             LIR_PatchCode patch_code, CodeEmitInfo* info, bool wide, bool unaligned) {
1327 
1328   LIR_Address* addr = src_opr->as_address_ptr();
1329   LIR_Opr to_reg = dest;
1330 
1331   Register src = addr->base()->as_pointer_register();
1332   Register disp_reg = noreg;
1333   int disp_value = addr->disp();
1334   bool needs_patching = (patch_code != lir_patch_none);
1335 
1336   if (addr->base()->type() == T_OBJECT) {
1337     __ verify_oop(src);
1338   }
1339 
1340   PatchingStub* patch = NULL;
1341   if (needs_patching) {
1342     patch = new PatchingStub(_masm, PatchingStub::access_field_id);
1343     assert(!to_reg->is_double_cpu() ||
1344            patch_code == lir_patch_none ||
1345            patch_code == lir_patch_normal, "patching doesn't match register");
1346   }
1347 
1348   if (addr->index()->is_illegal()) {
1349     if (!Assembler::is_simm13(disp_value) && (!unaligned || Assembler::is_simm13(disp_value + 4))) {
1350       if (needs_patching) {
1351         __ patchable_set(0, O7);
1352       } else {
1353         __ set(disp_value, O7);
1354       }
1355       disp_reg = O7;
1356     }
1357   } else if (unaligned || PatchALot) {
1358     __ add(src, addr->index()->as_register(), O7);
1359     src = O7;
1360   } else {
1361     disp_reg = addr->index()->as_pointer_register();
1362     assert(disp_value == 0, "can't handle 3 operand addresses");
1363   }
1364 
1365   // remember the offset of the load.  The patching_epilog must be done
1366   // before the call to add_debug_info, otherwise the PcDescs don't get
1367   // entered in increasing order.
1368   int offset = code_offset();
1369 
1370   assert(disp_reg != noreg || Assembler::is_simm13(disp_value), "should have set this up");
1371   if (disp_reg == noreg) {
1372     offset = load(src, disp_value, to_reg, type, wide, unaligned);
1373   } else {
1374     assert(!unaligned, "can't handle this");
1375     offset = load(src, disp_reg, to_reg, type, wide);
1376   }
1377 
1378   if (patch != NULL) {
1379     patching_epilog(patch, patch_code, src, info);
1380   }
1381   if (info != NULL) add_debug_info_for_null_check(offset, info);
1382 }
1383 
1384 
1385 void LIR_Assembler::prefetchr(LIR_Opr src) {
1386   LIR_Address* addr = src->as_address_ptr();
1387   Address from_addr = as_Address(addr);
1388 
1389   if (VM_Version::has_v9()) {
1390     __ prefetch(from_addr, Assembler::severalReads);
1391   }
1392 }
1393 
1394 
1395 void LIR_Assembler::prefetchw(LIR_Opr src) {
1396   LIR_Address* addr = src->as_address_ptr();
1397   Address from_addr = as_Address(addr);
1398 
1399   if (VM_Version::has_v9()) {
1400     __ prefetch(from_addr, Assembler::severalWritesAndPossiblyReads);
1401   }
1402 }
1403 
1404 
1405 void LIR_Assembler::stack2reg(LIR_Opr src, LIR_Opr dest, BasicType type) {
1406   Address addr;
1407   if (src->is_single_word()) {
1408     addr = frame_map()->address_for_slot(src->single_stack_ix());
1409   } else if (src->is_double_word())  {
1410     addr = frame_map()->address_for_double_slot(src->double_stack_ix());
1411   }
1412 
1413   bool unaligned = (addr.disp() - STACK_BIAS) % 8 != 0;
1414   load(addr.base(), addr.disp(), dest, dest->type(), true /*wide*/, unaligned);
1415 }
1416 
1417 
1418 void LIR_Assembler::reg2stack(LIR_Opr from_reg, LIR_Opr dest, BasicType type, bool pop_fpu_stack) {
1419   Address addr;
1420   if (dest->is_single_word()) {
1421     addr = frame_map()->address_for_slot(dest->single_stack_ix());
1422   } else if (dest->is_double_word())  {
1423     addr = frame_map()->address_for_slot(dest->double_stack_ix());
1424   }
1425   bool unaligned = (addr.disp() - STACK_BIAS) % 8 != 0;
1426   store(from_reg, addr.base(), addr.disp(), from_reg->type(), true /*wide*/, unaligned);
1427 }
1428 
1429 
1430 void LIR_Assembler::reg2reg(LIR_Opr from_reg, LIR_Opr to_reg) {
1431   if (from_reg->is_float_kind() && to_reg->is_float_kind()) {
1432     if (from_reg->is_double_fpu()) {
1433       // double to double moves
1434       assert(to_reg->is_double_fpu(), "should match");
1435       __ fmov(FloatRegisterImpl::D, from_reg->as_double_reg(), to_reg->as_double_reg());
1436     } else {
1437       // float to float moves
1438       assert(to_reg->is_single_fpu(), "should match");
1439       __ fmov(FloatRegisterImpl::S, from_reg->as_float_reg(), to_reg->as_float_reg());
1440     }
1441   } else if (!from_reg->is_float_kind() && !to_reg->is_float_kind()) {
1442     if (from_reg->is_double_cpu()) {
1443 #ifdef _LP64
1444       __ mov(from_reg->as_pointer_register(), to_reg->as_pointer_register());
1445 #else
1446       assert(to_reg->is_double_cpu() &&
1447              from_reg->as_register_hi() != to_reg->as_register_lo() &&
1448              from_reg->as_register_lo() != to_reg->as_register_hi(),
1449              "should both be long and not overlap");
1450       // long to long moves
1451       __ mov(from_reg->as_register_hi(), to_reg->as_register_hi());
1452       __ mov(from_reg->as_register_lo(), to_reg->as_register_lo());
1453 #endif
1454 #ifdef _LP64
1455     } else if (to_reg->is_double_cpu()) {
1456       // int to int moves
1457       __ mov(from_reg->as_register(), to_reg->as_register_lo());
1458 #endif
1459     } else {
1460       // int to int moves
1461       __ mov(from_reg->as_register(), to_reg->as_register());
1462     }
1463   } else {
1464     ShouldNotReachHere();
1465   }
1466   if (to_reg->type() == T_OBJECT || to_reg->type() == T_ARRAY) {
1467     __ verify_oop(to_reg->as_register());
1468   }
1469 }
1470 
1471 
1472 void LIR_Assembler::reg2mem(LIR_Opr from_reg, LIR_Opr dest, BasicType type,
1473                             LIR_PatchCode patch_code, CodeEmitInfo* info, bool pop_fpu_stack,
1474                             bool wide, bool unaligned) {
1475   LIR_Address* addr = dest->as_address_ptr();
1476 
1477   Register src = addr->base()->as_pointer_register();
1478   Register disp_reg = noreg;
1479   int disp_value = addr->disp();
1480   bool needs_patching = (patch_code != lir_patch_none);
1481 
1482   if (addr->base()->is_oop_register()) {
1483     __ verify_oop(src);
1484   }
1485 
1486   PatchingStub* patch = NULL;
1487   if (needs_patching) {
1488     patch = new PatchingStub(_masm, PatchingStub::access_field_id);
1489     assert(!from_reg->is_double_cpu() ||
1490            patch_code == lir_patch_none ||
1491            patch_code == lir_patch_normal, "patching doesn't match register");
1492   }
1493 
1494   if (addr->index()->is_illegal()) {
1495     if (!Assembler::is_simm13(disp_value) && (!unaligned || Assembler::is_simm13(disp_value + 4))) {
1496       if (needs_patching) {
1497         __ patchable_set(0, O7);
1498       } else {
1499         __ set(disp_value, O7);
1500       }
1501       disp_reg = O7;
1502     }
1503   } else if (unaligned || PatchALot) {
1504     __ add(src, addr->index()->as_register(), O7);
1505     src = O7;
1506   } else {
1507     disp_reg = addr->index()->as_pointer_register();
1508     assert(disp_value == 0, "can't handle 3 operand addresses");
1509   }
1510 
1511   // remember the offset of the store.  The patching_epilog must be done
1512   // before the call to add_debug_info_for_null_check, otherwise the PcDescs don't get
1513   // entered in increasing order.
1514   int offset;
1515 
1516   assert(disp_reg != noreg || Assembler::is_simm13(disp_value), "should have set this up");
1517   if (disp_reg == noreg) {
1518     offset = store(from_reg, src, disp_value, type, wide, unaligned);
1519   } else {
1520     assert(!unaligned, "can't handle this");
1521     offset = store(from_reg, src, disp_reg, type, wide);
1522   }
1523 
1524   if (patch != NULL) {
1525     patching_epilog(patch, patch_code, src, info);
1526   }
1527 
1528   if (info != NULL) add_debug_info_for_null_check(offset, info);
1529 }
1530 
1531 
1532 void LIR_Assembler::return_op(LIR_Opr result) {
1533   // the poll may need a register so just pick one that isn't the return register
1534 #if defined(TIERED) && !defined(_LP64)
1535   if (result->type_field() == LIR_OprDesc::long_type) {
1536     // Must move the result to G1
1537     // Must leave proper result in O0,O1 and G1 (TIERED only)
1538     __ sllx(I0, 32, G1);          // Shift bits into high G1
1539     __ srl (I1, 0, I1);           // Zero extend O1 (harmless?)
1540     __ or3 (I1, G1, G1);          // OR 64 bits into G1
1541 #ifdef ASSERT
1542     // mangle it so any problems will show up
1543     __ set(0xdeadbeef, I0);
1544     __ set(0xdeadbeef, I1);
1545 #endif
1546   }
1547 #endif // TIERED
1548   __ set((intptr_t)os::get_polling_page(), L0);
1549   __ relocate(relocInfo::poll_return_type);
1550   __ ld_ptr(L0, 0, G0);
1551   __ ret();
1552   __ delayed()->restore();
1553 }
1554 
1555 
1556 int LIR_Assembler::safepoint_poll(LIR_Opr tmp, CodeEmitInfo* info) {
1557   __ set((intptr_t)os::get_polling_page(), tmp->as_register());
1558   if (info != NULL) {
1559     add_debug_info_for_branch(info);
1560   } else {
1561     __ relocate(relocInfo::poll_type);
1562   }
1563 
1564   int offset = __ offset();
1565   __ ld_ptr(tmp->as_register(), 0, G0);
1566 
1567   return offset;
1568 }
1569 
1570 
1571 void LIR_Assembler::emit_static_call_stub() {
1572   address call_pc = __ pc();
1573   address stub = __ start_a_stub(call_stub_size);
1574   if (stub == NULL) {
1575     bailout("static call stub overflow");
1576     return;
1577   }
1578 
1579   int start = __ offset();
1580   __ relocate(static_stub_Relocation::spec(call_pc));
1581 
1582   __ set_oop(NULL, G5);
1583   // must be set to -1 at code generation time
1584   AddressLiteral addrlit(-1);
1585   __ jump_to(addrlit, G3);
1586   __ delayed()->nop();
1587 
1588   assert(__ offset() - start <= call_stub_size, "stub too big");
1589   __ end_a_stub();
1590 }
1591 
1592 
1593 void LIR_Assembler::comp_op(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Op2* op) {
1594   if (opr1->is_single_fpu()) {
1595     __ fcmp(FloatRegisterImpl::S, Assembler::fcc0, opr1->as_float_reg(), opr2->as_float_reg());
1596   } else if (opr1->is_double_fpu()) {
1597     __ fcmp(FloatRegisterImpl::D, Assembler::fcc0, opr1->as_double_reg(), opr2->as_double_reg());
1598   } else if (opr1->is_single_cpu()) {
1599     if (opr2->is_constant()) {
1600       switch (opr2->as_constant_ptr()->type()) {
1601         case T_INT:
1602           { jint con = opr2->as_constant_ptr()->as_jint();
1603             if (Assembler::is_simm13(con)) {
1604               __ cmp(opr1->as_register(), con);
1605             } else {
1606               __ set(con, O7);
1607               __ cmp(opr1->as_register(), O7);
1608             }
1609           }
1610           break;
1611 
1612         case T_OBJECT:
1613           // there are only equal/notequal comparisions on objects
1614           { jobject con = opr2->as_constant_ptr()->as_jobject();
1615             if (con == NULL) {
1616               __ cmp(opr1->as_register(), 0);
1617             } else {
1618               jobject2reg(con, O7);
1619               __ cmp(opr1->as_register(), O7);
1620             }
1621           }
1622           break;
1623 
1624         default:
1625           ShouldNotReachHere();
1626           break;
1627       }
1628     } else {
1629       if (opr2->is_address()) {
1630         LIR_Address * addr = opr2->as_address_ptr();
1631         BasicType type = addr->type();
1632         if ( type == T_OBJECT ) __ ld_ptr(as_Address(addr), O7);
1633         else                    __ ld(as_Address(addr), O7);
1634         __ cmp(opr1->as_register(), O7);
1635       } else {
1636         __ cmp(opr1->as_register(), opr2->as_register());
1637       }
1638     }
1639   } else if (opr1->is_double_cpu()) {
1640     Register xlo = opr1->as_register_lo();
1641     Register xhi = opr1->as_register_hi();
1642     if (opr2->is_constant() && opr2->as_jlong() == 0) {
1643       assert(condition == lir_cond_equal || condition == lir_cond_notEqual, "only handles these cases");
1644 #ifdef _LP64
1645       __ orcc(xhi, G0, G0);
1646 #else
1647       __ orcc(xhi, xlo, G0);
1648 #endif
1649     } else if (opr2->is_register()) {
1650       Register ylo = opr2->as_register_lo();
1651       Register yhi = opr2->as_register_hi();
1652 #ifdef _LP64
1653       __ cmp(xlo, ylo);
1654 #else
1655       __ subcc(xlo, ylo, xlo);
1656       __ subccc(xhi, yhi, xhi);
1657       if (condition == lir_cond_equal || condition == lir_cond_notEqual) {
1658         __ orcc(xhi, xlo, G0);
1659       }
1660 #endif
1661     } else {
1662       ShouldNotReachHere();
1663     }
1664   } else if (opr1->is_address()) {
1665     LIR_Address * addr = opr1->as_address_ptr();
1666     BasicType type = addr->type();
1667     assert (opr2->is_constant(), "Checking");
1668     if ( type == T_OBJECT ) __ ld_ptr(as_Address(addr), O7);
1669     else                    __ ld(as_Address(addr), O7);
1670     __ cmp(O7, opr2->as_constant_ptr()->as_jint());
1671   } else {
1672     ShouldNotReachHere();
1673   }
1674 }
1675 
1676 
1677 void LIR_Assembler::comp_fl2i(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dst, LIR_Op2* op){
1678   if (code == lir_cmp_fd2i || code == lir_ucmp_fd2i) {
1679     bool is_unordered_less = (code == lir_ucmp_fd2i);
1680     if (left->is_single_fpu()) {
1681       __ float_cmp(true, is_unordered_less ? -1 : 1, left->as_float_reg(), right->as_float_reg(), dst->as_register());
1682     } else if (left->is_double_fpu()) {
1683       __ float_cmp(false, is_unordered_less ? -1 : 1, left->as_double_reg(), right->as_double_reg(), dst->as_register());
1684     } else {
1685       ShouldNotReachHere();
1686     }
1687   } else if (code == lir_cmp_l2i) {
1688 #ifdef _LP64
1689     __ lcmp(left->as_register_lo(), right->as_register_lo(), dst->as_register());
1690 #else
1691     __ lcmp(left->as_register_hi(),  left->as_register_lo(),
1692             right->as_register_hi(), right->as_register_lo(),
1693             dst->as_register());
1694 #endif
1695   } else {
1696     ShouldNotReachHere();
1697   }
1698 }
1699 
1700 
1701 void LIR_Assembler::cmove(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Opr result, BasicType type) {
1702   Assembler::Condition acond;
1703   switch (condition) {
1704     case lir_cond_equal:        acond = Assembler::equal;        break;
1705     case lir_cond_notEqual:     acond = Assembler::notEqual;     break;
1706     case lir_cond_less:         acond = Assembler::less;         break;
1707     case lir_cond_lessEqual:    acond = Assembler::lessEqual;    break;
1708     case lir_cond_greaterEqual: acond = Assembler::greaterEqual; break;
1709     case lir_cond_greater:      acond = Assembler::greater;      break;
1710     case lir_cond_aboveEqual:   acond = Assembler::greaterEqualUnsigned;      break;
1711     case lir_cond_belowEqual:   acond = Assembler::lessEqualUnsigned;      break;
1712     default:                         ShouldNotReachHere();
1713   };
1714 
1715   if (opr1->is_constant() && opr1->type() == T_INT) {
1716     Register dest = result->as_register();
1717     // load up first part of constant before branch
1718     // and do the rest in the delay slot.
1719     if (!Assembler::is_simm13(opr1->as_jint())) {
1720       __ sethi(opr1->as_jint(), dest);
1721     }
1722   } else if (opr1->is_constant()) {
1723     const2reg(opr1, result, lir_patch_none, NULL);
1724   } else if (opr1->is_register()) {
1725     reg2reg(opr1, result);
1726   } else if (opr1->is_stack()) {
1727     stack2reg(opr1, result, result->type());
1728   } else {
1729     ShouldNotReachHere();
1730   }
1731   Label skip;
1732 #ifdef _LP64
1733     if  (type == T_INT) {
1734       __ br(acond, false, Assembler::pt, skip);
1735     } else
1736 #endif
1737       __ brx(acond, false, Assembler::pt, skip); // checks icc on 32bit and xcc on 64bit
1738   if (opr1->is_constant() && opr1->type() == T_INT) {
1739     Register dest = result->as_register();
1740     if (Assembler::is_simm13(opr1->as_jint())) {
1741       __ delayed()->or3(G0, opr1->as_jint(), dest);
1742     } else {
1743       // the sethi has been done above, so just put in the low 10 bits
1744       __ delayed()->or3(dest, opr1->as_jint() & 0x3ff, dest);
1745     }
1746   } else {
1747     // can't do anything useful in the delay slot
1748     __ delayed()->nop();
1749   }
1750   if (opr2->is_constant()) {
1751     const2reg(opr2, result, lir_patch_none, NULL);
1752   } else if (opr2->is_register()) {
1753     reg2reg(opr2, result);
1754   } else if (opr2->is_stack()) {
1755     stack2reg(opr2, result, result->type());
1756   } else {
1757     ShouldNotReachHere();
1758   }
1759   __ bind(skip);
1760 }
1761 
1762 
1763 void LIR_Assembler::arith_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dest, CodeEmitInfo* info, bool pop_fpu_stack) {
1764   assert(info == NULL, "unused on this code path");
1765   assert(left->is_register(), "wrong items state");
1766   assert(dest->is_register(), "wrong items state");
1767 
1768   if (right->is_register()) {
1769     if (dest->is_float_kind()) {
1770 
1771       FloatRegister lreg, rreg, res;
1772       FloatRegisterImpl::Width w;
1773       if (right->is_single_fpu()) {
1774         w = FloatRegisterImpl::S;
1775         lreg = left->as_float_reg();
1776         rreg = right->as_float_reg();
1777         res  = dest->as_float_reg();
1778       } else {
1779         w = FloatRegisterImpl::D;
1780         lreg = left->as_double_reg();
1781         rreg = right->as_double_reg();
1782         res  = dest->as_double_reg();
1783       }
1784 
1785       switch (code) {
1786         case lir_add: __ fadd(w, lreg, rreg, res); break;
1787         case lir_sub: __ fsub(w, lreg, rreg, res); break;
1788         case lir_mul: // fall through
1789         case lir_mul_strictfp: __ fmul(w, lreg, rreg, res); break;
1790         case lir_div: // fall through
1791         case lir_div_strictfp: __ fdiv(w, lreg, rreg, res); break;
1792         default: ShouldNotReachHere();
1793       }
1794 
1795     } else if (dest->is_double_cpu()) {
1796 #ifdef _LP64
1797       Register dst_lo = dest->as_register_lo();
1798       Register op1_lo = left->as_pointer_register();
1799       Register op2_lo = right->as_pointer_register();
1800 
1801       switch (code) {
1802         case lir_add:
1803           __ add(op1_lo, op2_lo, dst_lo);
1804           break;
1805 
1806         case lir_sub:
1807           __ sub(op1_lo, op2_lo, dst_lo);
1808           break;
1809 
1810         default: ShouldNotReachHere();
1811       }
1812 #else
1813       Register op1_lo = left->as_register_lo();
1814       Register op1_hi = left->as_register_hi();
1815       Register op2_lo = right->as_register_lo();
1816       Register op2_hi = right->as_register_hi();
1817       Register dst_lo = dest->as_register_lo();
1818       Register dst_hi = dest->as_register_hi();
1819 
1820       switch (code) {
1821         case lir_add:
1822           __ addcc(op1_lo, op2_lo, dst_lo);
1823           __ addc (op1_hi, op2_hi, dst_hi);
1824           break;
1825 
1826         case lir_sub:
1827           __ subcc(op1_lo, op2_lo, dst_lo);
1828           __ subc (op1_hi, op2_hi, dst_hi);
1829           break;
1830 
1831         default: ShouldNotReachHere();
1832       }
1833 #endif
1834     } else {
1835       assert (right->is_single_cpu(), "Just Checking");
1836 
1837       Register lreg = left->as_register();
1838       Register res  = dest->as_register();
1839       Register rreg = right->as_register();
1840       switch (code) {
1841         case lir_add:  __ add  (lreg, rreg, res); break;
1842         case lir_sub:  __ sub  (lreg, rreg, res); break;
1843         case lir_mul:  __ mult (lreg, rreg, res); break;
1844         default: ShouldNotReachHere();
1845       }
1846     }
1847   } else {
1848     assert (right->is_constant(), "must be constant");
1849 
1850     if (dest->is_single_cpu()) {
1851       Register lreg = left->as_register();
1852       Register res  = dest->as_register();
1853       int    simm13 = right->as_constant_ptr()->as_jint();
1854 
1855       switch (code) {
1856         case lir_add:  __ add  (lreg, simm13, res); break;
1857         case lir_sub:  __ sub  (lreg, simm13, res); break;
1858         case lir_mul:  __ mult (lreg, simm13, res); break;
1859         default: ShouldNotReachHere();
1860       }
1861     } else {
1862       Register lreg = left->as_pointer_register();
1863       Register res  = dest->as_register_lo();
1864       long con = right->as_constant_ptr()->as_jlong();
1865       assert(Assembler::is_simm13(con), "must be simm13");
1866 
1867       switch (code) {
1868         case lir_add:  __ add  (lreg, (int)con, res); break;
1869         case lir_sub:  __ sub  (lreg, (int)con, res); break;
1870         case lir_mul:  __ mult (lreg, (int)con, res); break;
1871         default: ShouldNotReachHere();
1872       }
1873     }
1874   }
1875 }
1876 
1877 
1878 void LIR_Assembler::fpop() {
1879   // do nothing
1880 }
1881 
1882 
1883 void LIR_Assembler::intrinsic_op(LIR_Code code, LIR_Opr value, LIR_Opr thread, LIR_Opr dest, LIR_Op* op) {
1884   switch (code) {
1885     case lir_sin:
1886     case lir_tan:
1887     case lir_cos: {
1888       assert(thread->is_valid(), "preserve the thread object for performance reasons");
1889       assert(dest->as_double_reg() == F0, "the result will be in f0/f1");
1890       break;
1891     }
1892     case lir_sqrt: {
1893       assert(!thread->is_valid(), "there is no need for a thread_reg for dsqrt");
1894       FloatRegister src_reg = value->as_double_reg();
1895       FloatRegister dst_reg = dest->as_double_reg();
1896       __ fsqrt(FloatRegisterImpl::D, src_reg, dst_reg);
1897       break;
1898     }
1899     case lir_abs: {
1900       assert(!thread->is_valid(), "there is no need for a thread_reg for fabs");
1901       FloatRegister src_reg = value->as_double_reg();
1902       FloatRegister dst_reg = dest->as_double_reg();
1903       __ fabs(FloatRegisterImpl::D, src_reg, dst_reg);
1904       break;
1905     }
1906     default: {
1907       ShouldNotReachHere();
1908       break;
1909     }
1910   }
1911 }
1912 
1913 
1914 void LIR_Assembler::logic_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dest) {
1915   if (right->is_constant()) {
1916     if (dest->is_single_cpu()) {
1917       int simm13 = right->as_constant_ptr()->as_jint();
1918       switch (code) {
1919         case lir_logic_and:   __ and3 (left->as_register(), simm13, dest->as_register()); break;
1920         case lir_logic_or:    __ or3  (left->as_register(), simm13, dest->as_register()); break;
1921         case lir_logic_xor:   __ xor3 (left->as_register(), simm13, dest->as_register()); break;
1922         default: ShouldNotReachHere();
1923       }
1924     } else {
1925       long c = right->as_constant_ptr()->as_jlong();
1926       assert(c == (int)c && Assembler::is_simm13(c), "out of range");
1927       int simm13 = (int)c;
1928       switch (code) {
1929         case lir_logic_and:
1930 #ifndef _LP64
1931           __ and3 (left->as_register_hi(), 0,      dest->as_register_hi());
1932 #endif
1933           __ and3 (left->as_register_lo(), simm13, dest->as_register_lo());
1934           break;
1935 
1936         case lir_logic_or:
1937 #ifndef _LP64
1938           __ or3 (left->as_register_hi(), 0,      dest->as_register_hi());
1939 #endif
1940           __ or3 (left->as_register_lo(), simm13, dest->as_register_lo());
1941           break;
1942 
1943         case lir_logic_xor:
1944 #ifndef _LP64
1945           __ xor3 (left->as_register_hi(), 0,      dest->as_register_hi());
1946 #endif
1947           __ xor3 (left->as_register_lo(), simm13, dest->as_register_lo());
1948           break;
1949 
1950         default: ShouldNotReachHere();
1951       }
1952     }
1953   } else {
1954     assert(right->is_register(), "right should be in register");
1955 
1956     if (dest->is_single_cpu()) {
1957       switch (code) {
1958         case lir_logic_and:   __ and3 (left->as_register(), right->as_register(), dest->as_register()); break;
1959         case lir_logic_or:    __ or3  (left->as_register(), right->as_register(), dest->as_register()); break;
1960         case lir_logic_xor:   __ xor3 (left->as_register(), right->as_register(), dest->as_register()); break;
1961         default: ShouldNotReachHere();
1962       }
1963     } else {
1964 #ifdef _LP64
1965       Register l = (left->is_single_cpu() && left->is_oop_register()) ? left->as_register() :
1966                                                                         left->as_register_lo();
1967       Register r = (right->is_single_cpu() && right->is_oop_register()) ? right->as_register() :
1968                                                                           right->as_register_lo();
1969 
1970       switch (code) {
1971         case lir_logic_and: __ and3 (l, r, dest->as_register_lo()); break;
1972         case lir_logic_or:  __ or3  (l, r, dest->as_register_lo()); break;
1973         case lir_logic_xor: __ xor3 (l, r, dest->as_register_lo()); break;
1974         default: ShouldNotReachHere();
1975       }
1976 #else
1977       switch (code) {
1978         case lir_logic_and:
1979           __ and3 (left->as_register_hi(), right->as_register_hi(), dest->as_register_hi());
1980           __ and3 (left->as_register_lo(), right->as_register_lo(), dest->as_register_lo());
1981           break;
1982 
1983         case lir_logic_or:
1984           __ or3 (left->as_register_hi(), right->as_register_hi(), dest->as_register_hi());
1985           __ or3 (left->as_register_lo(), right->as_register_lo(), dest->as_register_lo());
1986           break;
1987 
1988         case lir_logic_xor:
1989           __ xor3 (left->as_register_hi(), right->as_register_hi(), dest->as_register_hi());
1990           __ xor3 (left->as_register_lo(), right->as_register_lo(), dest->as_register_lo());
1991           break;
1992 
1993         default: ShouldNotReachHere();
1994       }
1995 #endif
1996     }
1997   }
1998 }
1999 
2000 
2001 int LIR_Assembler::shift_amount(BasicType t) {
2002   int elem_size = type2aelembytes(t);
2003   switch (elem_size) {
2004     case 1 : return 0;
2005     case 2 : return 1;
2006     case 4 : return 2;
2007     case 8 : return 3;
2008   }
2009   ShouldNotReachHere();
2010   return -1;
2011 }
2012 
2013 
2014 void LIR_Assembler::throw_op(LIR_Opr exceptionPC, LIR_Opr exceptionOop, CodeEmitInfo* info) {
2015   assert(exceptionOop->as_register() == Oexception, "should match");
2016   assert(exceptionPC->as_register() == Oissuing_pc, "should match");
2017 
2018   info->add_register_oop(exceptionOop);
2019 
2020   // reuse the debug info from the safepoint poll for the throw op itself
2021   address pc_for_athrow  = __ pc();
2022   int pc_for_athrow_offset = __ offset();
2023   RelocationHolder rspec = internal_word_Relocation::spec(pc_for_athrow);
2024   __ set(pc_for_athrow, Oissuing_pc, rspec);
2025   add_call_info(pc_for_athrow_offset, info); // for exception handler
2026 
2027   __ call(Runtime1::entry_for(Runtime1::handle_exception_id), relocInfo::runtime_call_type);
2028   __ delayed()->nop();
2029 }
2030 
2031 
2032 void LIR_Assembler::unwind_op(LIR_Opr exceptionOop) {
2033   assert(exceptionOop->as_register() == Oexception, "should match");
2034 
2035   __ br(Assembler::always, false, Assembler::pt, _unwind_handler_entry);
2036   __ delayed()->nop();
2037 }
2038 
2039 
2040 void LIR_Assembler::emit_arraycopy(LIR_OpArrayCopy* op) {
2041   Register src = op->src()->as_register();
2042   Register dst = op->dst()->as_register();
2043   Register src_pos = op->src_pos()->as_register();
2044   Register dst_pos = op->dst_pos()->as_register();
2045   Register length  = op->length()->as_register();
2046   Register tmp = op->tmp()->as_register();
2047   Register tmp2 = O7;
2048 
2049   int flags = op->flags();
2050   ciArrayKlass* default_type = op->expected_type();
2051   BasicType basic_type = default_type != NULL ? default_type->element_type()->basic_type() : T_ILLEGAL;
2052   if (basic_type == T_ARRAY) basic_type = T_OBJECT;
2053 
2054 #ifdef _LP64
2055   // higher 32bits must be null
2056   __ sra(dst_pos, 0, dst_pos);
2057   __ sra(src_pos, 0, src_pos);
2058   __ sra(length, 0, length);
2059 #endif
2060 
2061   // set up the arraycopy stub information
2062   ArrayCopyStub* stub = op->stub();
2063 
2064   // always do stub if no type information is available.  it's ok if
2065   // the known type isn't loaded since the code sanity checks
2066   // in debug mode and the type isn't required when we know the exact type
2067   // also check that the type is an array type.
2068   if (op->expected_type() == NULL) {
2069     __ mov(src,     O0);
2070     __ mov(src_pos, O1);
2071     __ mov(dst,     O2);
2072     __ mov(dst_pos, O3);
2073     __ mov(length,  O4);
2074     address copyfunc_addr = StubRoutines::generic_arraycopy();
2075 
2076     if (copyfunc_addr == NULL) { // Use C version if stub was not generated
2077       __ call_VM_leaf(tmp, CAST_FROM_FN_PTR(address, Runtime1::arraycopy));
2078     } else {
2079 #ifndef PRODUCT
2080       if (PrintC1Statistics) {
2081         address counter = (address)&Runtime1::_generic_arraycopystub_cnt;
2082         __ inc_counter(counter, G1, G3);
2083       }
2084 #endif
2085       __ call_VM_leaf(tmp, copyfunc_addr);
2086     }
2087 
2088     if (copyfunc_addr != NULL) {
2089       __ xor3(O0, -1, tmp);
2090       __ sub(length, tmp, length);
2091       __ add(src_pos, tmp, src_pos);
2092       __ cmp_zero_and_br(Assembler::less, O0, *stub->entry());
2093       __ delayed()->add(dst_pos, tmp, dst_pos);
2094     } else {
2095       __ cmp_zero_and_br(Assembler::less, O0, *stub->entry());
2096       __ delayed()->nop();
2097     }
2098     __ bind(*stub->continuation());
2099     return;
2100   }
2101 
2102   assert(default_type != NULL && default_type->is_array_klass(), "must be true at this point");
2103 
2104   // make sure src and dst are non-null and load array length
2105   if (flags & LIR_OpArrayCopy::src_null_check) {
2106     __ tst(src);
2107     __ brx(Assembler::equal, false, Assembler::pn, *stub->entry());
2108     __ delayed()->nop();
2109   }
2110 
2111   if (flags & LIR_OpArrayCopy::dst_null_check) {
2112     __ tst(dst);
2113     __ brx(Assembler::equal, false, Assembler::pn, *stub->entry());
2114     __ delayed()->nop();
2115   }
2116 
2117   if (flags & LIR_OpArrayCopy::src_pos_positive_check) {
2118     // test src_pos register
2119     __ cmp_zero_and_br(Assembler::less, src_pos, *stub->entry());
2120     __ delayed()->nop();
2121   }
2122 
2123   if (flags & LIR_OpArrayCopy::dst_pos_positive_check) {
2124     // test dst_pos register
2125     __ cmp_zero_and_br(Assembler::less, dst_pos, *stub->entry());
2126     __ delayed()->nop();
2127   }
2128 
2129   if (flags & LIR_OpArrayCopy::length_positive_check) {
2130     // make sure length isn't negative
2131     __ cmp_zero_and_br(Assembler::less, length, *stub->entry());
2132     __ delayed()->nop();
2133   }
2134 
2135   if (flags & LIR_OpArrayCopy::src_range_check) {
2136     __ ld(src, arrayOopDesc::length_offset_in_bytes(), tmp2);
2137     __ add(length, src_pos, tmp);
2138     __ cmp(tmp2, tmp);
2139     __ br(Assembler::carrySet, false, Assembler::pn, *stub->entry());
2140     __ delayed()->nop();
2141   }
2142 
2143   if (flags & LIR_OpArrayCopy::dst_range_check) {
2144     __ ld(dst, arrayOopDesc::length_offset_in_bytes(), tmp2);
2145     __ add(length, dst_pos, tmp);
2146     __ cmp(tmp2, tmp);
2147     __ br(Assembler::carrySet, false, Assembler::pn, *stub->entry());
2148     __ delayed()->nop();
2149   }
2150 
2151   int shift = shift_amount(basic_type);
2152 
2153   if (flags & LIR_OpArrayCopy::type_check) {
2154     // We don't know the array types are compatible
2155     if (basic_type != T_OBJECT) {
2156       // Simple test for basic type arrays
2157       if (UseCompressedOops) {
2158         // We don't need decode because we just need to compare
2159         __ lduw(src, oopDesc::klass_offset_in_bytes(), tmp);
2160         __ lduw(dst, oopDesc::klass_offset_in_bytes(), tmp2);
2161         __ cmp(tmp, tmp2);
2162         __ br(Assembler::notEqual, false, Assembler::pt, *stub->entry());
2163       } else {
2164         __ ld_ptr(src, oopDesc::klass_offset_in_bytes(), tmp);
2165         __ ld_ptr(dst, oopDesc::klass_offset_in_bytes(), tmp2);
2166         __ cmp(tmp, tmp2);
2167         __ brx(Assembler::notEqual, false, Assembler::pt, *stub->entry());
2168       }
2169       __ delayed()->nop();
2170     } else {
2171       // For object arrays, if src is a sub class of dst then we can
2172       // safely do the copy.
2173       address copyfunc_addr = StubRoutines::checkcast_arraycopy();
2174 
2175       Label cont, slow;
2176       assert_different_registers(tmp, tmp2, G3, G1);
2177 
2178       __ load_klass(src, G3);
2179       __ load_klass(dst, G1);
2180 
2181       __ check_klass_subtype_fast_path(G3, G1, tmp, tmp2, &cont, copyfunc_addr == NULL ? stub->entry() : &slow, NULL);
2182 
2183       __ call(Runtime1::entry_for(Runtime1::slow_subtype_check_id), relocInfo::runtime_call_type);
2184       __ delayed()->nop();
2185 
2186       __ cmp(G3, 0);
2187       if (copyfunc_addr != NULL) { // use stub if available
2188         // src is not a sub class of dst so we have to do a
2189         // per-element check.
2190         __ br(Assembler::notEqual, false, Assembler::pt, cont);
2191         __ delayed()->nop();
2192 
2193         __ bind(slow);
2194 
2195         int mask = LIR_OpArrayCopy::src_objarray|LIR_OpArrayCopy::dst_objarray;
2196         if ((flags & mask) != mask) {
2197           // Check that at least both of them object arrays.
2198           assert(flags & mask, "one of the two should be known to be an object array");
2199 
2200           if (!(flags & LIR_OpArrayCopy::src_objarray)) {
2201             __ load_klass(src, tmp);
2202           } else if (!(flags & LIR_OpArrayCopy::dst_objarray)) {
2203             __ load_klass(dst, tmp);
2204           }
2205           int lh_offset = klassOopDesc::header_size() * HeapWordSize +
2206             Klass::layout_helper_offset_in_bytes();
2207 
2208           __ lduw(tmp, lh_offset, tmp2);
2209 
2210           jint objArray_lh = Klass::array_layout_helper(T_OBJECT);
2211           __ set(objArray_lh, tmp);
2212           __ cmp(tmp, tmp2);
2213           __ br(Assembler::notEqual, false, Assembler::pt,  *stub->entry());
2214           __ delayed()->nop();
2215         }
2216 
2217         Register src_ptr = O0;
2218         Register dst_ptr = O1;
2219         Register len     = O2;
2220         Register chk_off = O3;
2221         Register super_k = O4;
2222 
2223         __ add(src, arrayOopDesc::base_offset_in_bytes(basic_type), src_ptr);
2224         if (shift == 0) {
2225           __ add(src_ptr, src_pos, src_ptr);
2226         } else {
2227           __ sll(src_pos, shift, tmp);
2228           __ add(src_ptr, tmp, src_ptr);
2229         }
2230 
2231         __ add(dst, arrayOopDesc::base_offset_in_bytes(basic_type), dst_ptr);
2232         if (shift == 0) {
2233           __ add(dst_ptr, dst_pos, dst_ptr);
2234         } else {
2235           __ sll(dst_pos, shift, tmp);
2236           __ add(dst_ptr, tmp, dst_ptr);
2237         }
2238         __ mov(length, len);
2239         __ load_klass(dst, tmp);
2240 
2241         int ek_offset = (klassOopDesc::header_size() * HeapWordSize +
2242                          objArrayKlass::element_klass_offset_in_bytes());
2243         __ ld_ptr(tmp, ek_offset, super_k);
2244 
2245         int sco_offset = (klassOopDesc::header_size() * HeapWordSize +
2246                           Klass::super_check_offset_offset_in_bytes());
2247         __ lduw(super_k, sco_offset, chk_off);
2248 
2249         __ call_VM_leaf(tmp, copyfunc_addr);
2250 
2251 #ifndef PRODUCT
2252         if (PrintC1Statistics) {
2253           Label failed;
2254           __ br_notnull_short(O0, Assembler::pn, failed);
2255           __ inc_counter((address)&Runtime1::_arraycopy_checkcast_cnt, G1, G3);
2256           __ bind(failed);
2257         }
2258 #endif
2259 
2260         __ br_null(O0, false, Assembler::pt,  *stub->continuation());
2261         __ delayed()->xor3(O0, -1, tmp);
2262 
2263 #ifndef PRODUCT
2264         if (PrintC1Statistics) {
2265           __ inc_counter((address)&Runtime1::_arraycopy_checkcast_attempt_cnt, G1, G3);
2266         }
2267 #endif
2268 
2269         __ sub(length, tmp, length);
2270         __ add(src_pos, tmp, src_pos);
2271         __ br(Assembler::always, false, Assembler::pt, *stub->entry());
2272         __ delayed()->add(dst_pos, tmp, dst_pos);
2273 
2274         __ bind(cont);
2275       } else {
2276         __ br(Assembler::equal, false, Assembler::pn, *stub->entry());
2277         __ delayed()->nop();
2278         __ bind(cont);
2279       }
2280     }
2281   }
2282 
2283 #ifdef ASSERT
2284   if (basic_type != T_OBJECT || !(flags & LIR_OpArrayCopy::type_check)) {
2285     // Sanity check the known type with the incoming class.  For the
2286     // primitive case the types must match exactly with src.klass and
2287     // dst.klass each exactly matching the default type.  For the
2288     // object array case, if no type check is needed then either the
2289     // dst type is exactly the expected type and the src type is a
2290     // subtype which we can't check or src is the same array as dst
2291     // but not necessarily exactly of type default_type.
2292     Label known_ok, halt;
2293     jobject2reg(op->expected_type()->constant_encoding(), tmp);
2294     if (UseCompressedOops) {
2295       // tmp holds the default type. It currently comes uncompressed after the
2296       // load of a constant, so encode it.
2297       __ encode_heap_oop(tmp);
2298       // load the raw value of the dst klass, since we will be comparing
2299       // uncompressed values directly.
2300       __ lduw(dst, oopDesc::klass_offset_in_bytes(), tmp2);
2301       if (basic_type != T_OBJECT) {
2302         __ cmp(tmp, tmp2);
2303         __ br(Assembler::notEqual, false, Assembler::pn, halt);
2304         // load the raw value of the src klass.
2305         __ delayed()->lduw(src, oopDesc::klass_offset_in_bytes(), tmp2);
2306         __ cmp_and_br_short(tmp, tmp2, Assembler::equal, Assembler::pn, known_ok);
2307       } else {
2308         __ cmp(tmp, tmp2);
2309         __ br(Assembler::equal, false, Assembler::pn, known_ok);
2310         __ delayed()->cmp(src, dst);
2311         __ brx(Assembler::equal, false, Assembler::pn, known_ok);
2312         __ delayed()->nop();
2313       }
2314     } else {
2315       __ ld_ptr(dst, oopDesc::klass_offset_in_bytes(), tmp2);
2316       if (basic_type != T_OBJECT) {
2317         __ cmp(tmp, tmp2);
2318         __ brx(Assembler::notEqual, false, Assembler::pn, halt);
2319         __ delayed()->ld_ptr(src, oopDesc::klass_offset_in_bytes(), tmp2);
2320         __ cmp_and_brx_short(tmp, tmp2, Assembler::equal, Assembler::pn, known_ok);
2321       } else {
2322         __ cmp(tmp, tmp2);
2323         __ brx(Assembler::equal, false, Assembler::pn, known_ok);
2324         __ delayed()->cmp(src, dst);
2325         __ brx(Assembler::equal, false, Assembler::pn, known_ok);
2326         __ delayed()->nop();
2327       }
2328     }
2329     __ bind(halt);
2330     __ stop("incorrect type information in arraycopy");
2331     __ bind(known_ok);
2332   }
2333 #endif
2334 
2335 #ifndef PRODUCT
2336   if (PrintC1Statistics) {
2337     address counter = Runtime1::arraycopy_count_address(basic_type);
2338     __ inc_counter(counter, G1, G3);
2339   }
2340 #endif
2341 
2342   Register src_ptr = O0;
2343   Register dst_ptr = O1;
2344   Register len     = O2;
2345 
2346   __ add(src, arrayOopDesc::base_offset_in_bytes(basic_type), src_ptr);
2347   if (shift == 0) {
2348     __ add(src_ptr, src_pos, src_ptr);
2349   } else {
2350     __ sll(src_pos, shift, tmp);
2351     __ add(src_ptr, tmp, src_ptr);
2352   }
2353 
2354   __ add(dst, arrayOopDesc::base_offset_in_bytes(basic_type), dst_ptr);
2355   if (shift == 0) {
2356     __ add(dst_ptr, dst_pos, dst_ptr);
2357   } else {
2358     __ sll(dst_pos, shift, tmp);
2359     __ add(dst_ptr, tmp, dst_ptr);
2360   }
2361 
2362   bool disjoint = (flags & LIR_OpArrayCopy::overlapping) == 0;
2363   bool aligned = (flags & LIR_OpArrayCopy::unaligned) == 0;
2364   const char *name;
2365   address entry = StubRoutines::select_arraycopy_function(basic_type, aligned, disjoint, name, false);
2366 
2367   // arraycopy stubs takes a length in number of elements, so don't scale it.
2368   __ mov(length, len);
2369   __ call_VM_leaf(tmp, entry);
2370 
2371   __ bind(*stub->continuation());
2372 }
2373 
2374 
2375 void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, LIR_Opr count, LIR_Opr dest, LIR_Opr tmp) {
2376   if (dest->is_single_cpu()) {
2377 #ifdef _LP64
2378     if (left->type() == T_OBJECT) {
2379       switch (code) {
2380         case lir_shl:  __ sllx  (left->as_register(), count->as_register(), dest->as_register()); break;
2381         case lir_shr:  __ srax  (left->as_register(), count->as_register(), dest->as_register()); break;
2382         case lir_ushr: __ srl   (left->as_register(), count->as_register(), dest->as_register()); break;
2383         default: ShouldNotReachHere();
2384       }
2385     } else
2386 #endif
2387       switch (code) {
2388         case lir_shl:  __ sll   (left->as_register(), count->as_register(), dest->as_register()); break;
2389         case lir_shr:  __ sra   (left->as_register(), count->as_register(), dest->as_register()); break;
2390         case lir_ushr: __ srl   (left->as_register(), count->as_register(), dest->as_register()); break;
2391         default: ShouldNotReachHere();
2392       }
2393   } else {
2394 #ifdef _LP64
2395     switch (code) {
2396       case lir_shl:  __ sllx  (left->as_register_lo(), count->as_register(), dest->as_register_lo()); break;
2397       case lir_shr:  __ srax  (left->as_register_lo(), count->as_register(), dest->as_register_lo()); break;
2398       case lir_ushr: __ srlx  (left->as_register_lo(), count->as_register(), dest->as_register_lo()); break;
2399       default: ShouldNotReachHere();
2400     }
2401 #else
2402     switch (code) {
2403       case lir_shl:  __ lshl  (left->as_register_hi(), left->as_register_lo(), count->as_register(), dest->as_register_hi(), dest->as_register_lo(), G3_scratch); break;
2404       case lir_shr:  __ lshr  (left->as_register_hi(), left->as_register_lo(), count->as_register(), dest->as_register_hi(), dest->as_register_lo(), G3_scratch); break;
2405       case lir_ushr: __ lushr (left->as_register_hi(), left->as_register_lo(), count->as_register(), dest->as_register_hi(), dest->as_register_lo(), G3_scratch); break;
2406       default: ShouldNotReachHere();
2407     }
2408 #endif
2409   }
2410 }
2411 
2412 
2413 void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, jint count, LIR_Opr dest) {
2414 #ifdef _LP64
2415   if (left->type() == T_OBJECT) {
2416     count = count & 63;  // shouldn't shift by more than sizeof(intptr_t)
2417     Register l = left->as_register();
2418     Register d = dest->as_register_lo();
2419     switch (code) {
2420       case lir_shl:  __ sllx  (l, count, d); break;
2421       case lir_shr:  __ srax  (l, count, d); break;
2422       case lir_ushr: __ srlx  (l, count, d); break;
2423       default: ShouldNotReachHere();
2424     }
2425     return;
2426   }
2427 #endif
2428 
2429   if (dest->is_single_cpu()) {
2430     count = count & 0x1F; // Java spec
2431     switch (code) {
2432       case lir_shl:  __ sll   (left->as_register(), count, dest->as_register()); break;
2433       case lir_shr:  __ sra   (left->as_register(), count, dest->as_register()); break;
2434       case lir_ushr: __ srl   (left->as_register(), count, dest->as_register()); break;
2435       default: ShouldNotReachHere();
2436     }
2437   } else if (dest->is_double_cpu()) {
2438     count = count & 63; // Java spec
2439     switch (code) {
2440       case lir_shl:  __ sllx  (left->as_pointer_register(), count, dest->as_pointer_register()); break;
2441       case lir_shr:  __ srax  (left->as_pointer_register(), count, dest->as_pointer_register()); break;
2442       case lir_ushr: __ srlx  (left->as_pointer_register(), count, dest->as_pointer_register()); break;
2443       default: ShouldNotReachHere();
2444     }
2445   } else {
2446     ShouldNotReachHere();
2447   }
2448 }
2449 
2450 
2451 void LIR_Assembler::emit_alloc_obj(LIR_OpAllocObj* op) {
2452   assert(op->tmp1()->as_register()  == G1 &&
2453          op->tmp2()->as_register()  == G3 &&
2454          op->tmp3()->as_register()  == G4 &&
2455          op->obj()->as_register()   == O0 &&
2456          op->klass()->as_register() == G5, "must be");
2457   if (op->init_check()) {
2458     __ ld(op->klass()->as_register(),
2459           instanceKlass::init_state_offset_in_bytes() + sizeof(oopDesc),
2460           op->tmp1()->as_register());
2461     add_debug_info_for_null_check_here(op->stub()->info());
2462     __ cmp(op->tmp1()->as_register(), instanceKlass::fully_initialized);
2463     __ br(Assembler::notEqual, false, Assembler::pn, *op->stub()->entry());
2464     __ delayed()->nop();
2465   }
2466   __ allocate_object(op->obj()->as_register(),
2467                      op->tmp1()->as_register(),
2468                      op->tmp2()->as_register(),
2469                      op->tmp3()->as_register(),
2470                      op->header_size(),
2471                      op->object_size(),
2472                      op->klass()->as_register(),
2473                      *op->stub()->entry());
2474   __ bind(*op->stub()->continuation());
2475   __ verify_oop(op->obj()->as_register());
2476 }
2477 
2478 
2479 void LIR_Assembler::emit_alloc_array(LIR_OpAllocArray* op) {
2480   assert(op->tmp1()->as_register()  == G1 &&
2481          op->tmp2()->as_register()  == G3 &&
2482          op->tmp3()->as_register()  == G4 &&
2483          op->tmp4()->as_register()  == O1 &&
2484          op->klass()->as_register() == G5, "must be");
2485 
2486   LP64_ONLY( __ signx(op->len()->as_register()); )
2487   if (UseSlowPath ||
2488       (!UseFastNewObjectArray && (op->type() == T_OBJECT || op->type() == T_ARRAY)) ||
2489       (!UseFastNewTypeArray   && (op->type() != T_OBJECT && op->type() != T_ARRAY))) {
2490     __ br(Assembler::always, false, Assembler::pt, *op->stub()->entry());
2491     __ delayed()->nop();
2492   } else {
2493     __ allocate_array(op->obj()->as_register(),
2494                       op->len()->as_register(),
2495                       op->tmp1()->as_register(),
2496                       op->tmp2()->as_register(),
2497                       op->tmp3()->as_register(),
2498                       arrayOopDesc::header_size(op->type()),
2499                       type2aelembytes(op->type()),
2500                       op->klass()->as_register(),
2501                       *op->stub()->entry());
2502   }
2503   __ bind(*op->stub()->continuation());
2504 }
2505 
2506 
2507 void LIR_Assembler::type_profile_helper(Register mdo, int mdo_offset_bias,
2508                                         ciMethodData *md, ciProfileData *data,
2509                                         Register recv, Register tmp1, Label* update_done) {
2510   uint i;
2511   for (i = 0; i < VirtualCallData::row_limit(); i++) {
2512     Label next_test;
2513     // See if the receiver is receiver[n].
2514     Address receiver_addr(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_offset(i)) -
2515                           mdo_offset_bias);
2516     __ ld_ptr(receiver_addr, tmp1);
2517     __ verify_oop(tmp1);
2518     __ cmp_and_brx_short(recv, tmp1, Assembler::notEqual, Assembler::pt, next_test);
2519     Address data_addr(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_count_offset(i)) -
2520                       mdo_offset_bias);
2521     __ ld_ptr(data_addr, tmp1);
2522     __ add(tmp1, DataLayout::counter_increment, tmp1);
2523     __ st_ptr(tmp1, data_addr);
2524     __ ba(*update_done);
2525     __ delayed()->nop();
2526     __ bind(next_test);
2527   }
2528 
2529   // Didn't find receiver; find next empty slot and fill it in
2530   for (i = 0; i < VirtualCallData::row_limit(); i++) {
2531     Label next_test;
2532     Address recv_addr(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_offset(i)) -
2533                       mdo_offset_bias);
2534     __ ld_ptr(recv_addr, tmp1);
2535     __ br_notnull_short(tmp1, Assembler::pt, next_test);
2536     __ st_ptr(recv, recv_addr);
2537     __ set(DataLayout::counter_increment, tmp1);
2538     __ st_ptr(tmp1, mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_count_offset(i)) -
2539               mdo_offset_bias);
2540     __ ba(*update_done);
2541     __ delayed()->nop();
2542     __ bind(next_test);
2543   }
2544 }
2545 
2546 
2547 void LIR_Assembler::setup_md_access(ciMethod* method, int bci,
2548                                     ciMethodData*& md, ciProfileData*& data, int& mdo_offset_bias) {
2549   md = method->method_data_or_null();
2550   assert(md != NULL, "Sanity");
2551   data = md->bci_to_data(bci);
2552   assert(data != NULL,       "need data for checkcast");
2553   assert(data->is_ReceiverTypeData(), "need ReceiverTypeData for type check");
2554   if (!Assembler::is_simm13(md->byte_offset_of_slot(data, DataLayout::header_offset()) + data->size_in_bytes())) {
2555     // The offset is large so bias the mdo by the base of the slot so
2556     // that the ld can use simm13s to reference the slots of the data
2557     mdo_offset_bias = md->byte_offset_of_slot(data, DataLayout::header_offset());
2558   }
2559 }
2560 
2561 void LIR_Assembler::emit_typecheck_helper(LIR_OpTypeCheck *op, Label* success, Label* failure, Label* obj_is_null) {
2562   // we always need a stub for the failure case.
2563   CodeStub* stub = op->stub();
2564   Register obj = op->object()->as_register();
2565   Register k_RInfo = op->tmp1()->as_register();
2566   Register klass_RInfo = op->tmp2()->as_register();
2567   Register dst = op->result_opr()->as_register();
2568   Register Rtmp1 = op->tmp3()->as_register();
2569   ciKlass* k = op->klass();
2570 
2571 
2572   if (obj == k_RInfo) {
2573     k_RInfo = klass_RInfo;
2574     klass_RInfo = obj;
2575   }
2576 
2577   ciMethodData* md;
2578   ciProfileData* data;
2579   int mdo_offset_bias = 0;
2580   if (op->should_profile()) {
2581     ciMethod* method = op->profiled_method();
2582     assert(method != NULL, "Should have method");
2583     setup_md_access(method, op->profiled_bci(), md, data, mdo_offset_bias);
2584 
2585     Label not_null;
2586     __ br_notnull_short(obj, Assembler::pn, not_null);
2587     Register mdo      = k_RInfo;
2588     Register data_val = Rtmp1;
2589     jobject2reg(md->constant_encoding(), mdo);
2590     if (mdo_offset_bias > 0) {
2591       __ set(mdo_offset_bias, data_val);
2592       __ add(mdo, data_val, mdo);
2593     }
2594     Address flags_addr(mdo, md->byte_offset_of_slot(data, DataLayout::flags_offset()) - mdo_offset_bias);
2595     __ ldub(flags_addr, data_val);
2596     __ or3(data_val, BitData::null_seen_byte_constant(), data_val);
2597     __ stb(data_val, flags_addr);
2598     __ ba(*obj_is_null);
2599     __ delayed()->nop();
2600     __ bind(not_null);
2601   } else {
2602     __ br_null(obj, false, Assembler::pn, *obj_is_null);
2603     __ delayed()->nop();
2604   }
2605 
2606   Label profile_cast_failure, profile_cast_success;
2607   Label *failure_target = op->should_profile() ? &profile_cast_failure : failure;
2608   Label *success_target = op->should_profile() ? &profile_cast_success : success;
2609 
2610   // patching may screw with our temporaries on sparc,
2611   // so let's do it before loading the class
2612   if (k->is_loaded()) {
2613     jobject2reg(k->constant_encoding(), k_RInfo);
2614   } else {
2615     jobject2reg_with_patching(k_RInfo, op->info_for_patch());
2616   }
2617   assert(obj != k_RInfo, "must be different");
2618 
2619   // get object class
2620   // not a safepoint as obj null check happens earlier
2621   __ load_klass(obj, klass_RInfo);
2622   if (op->fast_check()) {
2623     assert_different_registers(klass_RInfo, k_RInfo);
2624     __ cmp(k_RInfo, klass_RInfo);
2625     __ brx(Assembler::notEqual, false, Assembler::pt, *failure_target);
2626     __ delayed()->nop();
2627   } else {
2628     bool need_slow_path = true;
2629     if (k->is_loaded()) {
2630       if (k->super_check_offset() != sizeof(oopDesc) + Klass::secondary_super_cache_offset_in_bytes())
2631         need_slow_path = false;
2632       // perform the fast part of the checking logic
2633       __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, noreg,
2634                                        (need_slow_path ? success_target : NULL),
2635                                        failure_target, NULL,
2636                                        RegisterOrConstant(k->super_check_offset()));
2637     } else {
2638       // perform the fast part of the checking logic
2639       __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, O7, success_target,
2640                                        failure_target, NULL);
2641     }
2642     if (need_slow_path) {
2643       // call out-of-line instance of __ check_klass_subtype_slow_path(...):
2644       assert(klass_RInfo == G3 && k_RInfo == G1, "incorrect call setup");
2645       __ call(Runtime1::entry_for(Runtime1::slow_subtype_check_id), relocInfo::runtime_call_type);
2646       __ delayed()->nop();
2647       __ cmp(G3, 0);
2648       __ br(Assembler::equal, false, Assembler::pn, *failure_target);
2649       __ delayed()->nop();
2650       // Fall through to success case
2651     }
2652   }
2653 
2654   if (op->should_profile()) {
2655     Register mdo  = klass_RInfo, recv = k_RInfo, tmp1 = Rtmp1;
2656     assert_different_registers(obj, mdo, recv, tmp1);
2657     __ bind(profile_cast_success);
2658     jobject2reg(md->constant_encoding(), mdo);
2659     if (mdo_offset_bias > 0) {
2660       __ set(mdo_offset_bias, tmp1);
2661       __ add(mdo, tmp1, mdo);
2662     }
2663     __ load_klass(obj, recv);
2664     type_profile_helper(mdo, mdo_offset_bias, md, data, recv, tmp1, success);
2665     // Jump over the failure case
2666     __ ba(*success);
2667     __ delayed()->nop();
2668     // Cast failure case
2669     __ bind(profile_cast_failure);
2670     jobject2reg(md->constant_encoding(), mdo);
2671     if (mdo_offset_bias > 0) {
2672       __ set(mdo_offset_bias, tmp1);
2673       __ add(mdo, tmp1, mdo);
2674     }
2675     Address data_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()) - mdo_offset_bias);
2676     __ ld_ptr(data_addr, tmp1);
2677     __ sub(tmp1, DataLayout::counter_increment, tmp1);
2678     __ st_ptr(tmp1, data_addr);
2679     __ ba(*failure);
2680     __ delayed()->nop();
2681   }
2682   __ ba(*success);
2683   __ delayed()->nop();
2684 }
2685 
2686 void LIR_Assembler::emit_opTypeCheck(LIR_OpTypeCheck* op) {
2687   LIR_Code code = op->code();
2688   if (code == lir_store_check) {
2689     Register value = op->object()->as_register();
2690     Register array = op->array()->as_register();
2691     Register k_RInfo = op->tmp1()->as_register();
2692     Register klass_RInfo = op->tmp2()->as_register();
2693     Register Rtmp1 = op->tmp3()->as_register();
2694 
2695     __ verify_oop(value);
2696     CodeStub* stub = op->stub();
2697     // check if it needs to be profiled
2698     ciMethodData* md;
2699     ciProfileData* data;
2700     int mdo_offset_bias = 0;
2701     if (op->should_profile()) {
2702       ciMethod* method = op->profiled_method();
2703       assert(method != NULL, "Should have method");
2704       setup_md_access(method, op->profiled_bci(), md, data, mdo_offset_bias);
2705     }
2706     Label profile_cast_success, profile_cast_failure, done;
2707     Label *success_target = op->should_profile() ? &profile_cast_success : &done;
2708     Label *failure_target = op->should_profile() ? &profile_cast_failure : stub->entry();
2709 
2710     if (op->should_profile()) {
2711       Label not_null;
2712       __ br_notnull_short(value, Assembler::pn, not_null);
2713       Register mdo      = k_RInfo;
2714       Register data_val = Rtmp1;
2715       jobject2reg(md->constant_encoding(), mdo);
2716       if (mdo_offset_bias > 0) {
2717         __ set(mdo_offset_bias, data_val);
2718         __ add(mdo, data_val, mdo);
2719       }
2720       Address flags_addr(mdo, md->byte_offset_of_slot(data, DataLayout::flags_offset()) - mdo_offset_bias);
2721       __ ldub(flags_addr, data_val);
2722       __ or3(data_val, BitData::null_seen_byte_constant(), data_val);
2723       __ stb(data_val, flags_addr);
2724       __ ba_short(done);
2725       __ bind(not_null);
2726     } else {
2727       __ br_null_short(value, Assembler::pn, done);
2728     }
2729     add_debug_info_for_null_check_here(op->info_for_exception());
2730     __ load_klass(array, k_RInfo);
2731     __ load_klass(value, klass_RInfo);
2732 
2733     // get instance klass
2734     __ ld_ptr(Address(k_RInfo, objArrayKlass::element_klass_offset_in_bytes() + sizeof(oopDesc)), k_RInfo);
2735     // perform the fast part of the checking logic
2736     __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, O7, success_target, failure_target, NULL);
2737 
2738     // call out-of-line instance of __ check_klass_subtype_slow_path(...):
2739     assert(klass_RInfo == G3 && k_RInfo == G1, "incorrect call setup");
2740     __ call(Runtime1::entry_for(Runtime1::slow_subtype_check_id), relocInfo::runtime_call_type);
2741     __ delayed()->nop();
2742     __ cmp(G3, 0);
2743     __ br(Assembler::equal, false, Assembler::pn, *failure_target);
2744     __ delayed()->nop();
2745     // fall through to the success case
2746 
2747     if (op->should_profile()) {
2748       Register mdo  = klass_RInfo, recv = k_RInfo, tmp1 = Rtmp1;
2749       assert_different_registers(value, mdo, recv, tmp1);
2750       __ bind(profile_cast_success);
2751       jobject2reg(md->constant_encoding(), mdo);
2752       if (mdo_offset_bias > 0) {
2753         __ set(mdo_offset_bias, tmp1);
2754         __ add(mdo, tmp1, mdo);
2755       }
2756       __ load_klass(value, recv);
2757       type_profile_helper(mdo, mdo_offset_bias, md, data, recv, tmp1, &done);
2758       __ ba_short(done);
2759       // Cast failure case
2760       __ bind(profile_cast_failure);
2761       jobject2reg(md->constant_encoding(), mdo);
2762       if (mdo_offset_bias > 0) {
2763         __ set(mdo_offset_bias, tmp1);
2764         __ add(mdo, tmp1, mdo);
2765       }
2766       Address data_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()) - mdo_offset_bias);
2767       __ ld_ptr(data_addr, tmp1);
2768       __ sub(tmp1, DataLayout::counter_increment, tmp1);
2769       __ st_ptr(tmp1, data_addr);
2770       __ ba(*stub->entry());
2771       __ delayed()->nop();
2772     }
2773     __ bind(done);
2774   } else if (code == lir_checkcast) {
2775     Register obj = op->object()->as_register();
2776     Register dst = op->result_opr()->as_register();
2777     Label success;
2778     emit_typecheck_helper(op, &success, op->stub()->entry(), &success);
2779     __ bind(success);
2780     __ mov(obj, dst);
2781   } else if (code == lir_instanceof) {
2782     Register obj = op->object()->as_register();
2783     Register dst = op->result_opr()->as_register();
2784     Label success, failure, done;
2785     emit_typecheck_helper(op, &success, &failure, &failure);
2786     __ bind(failure);
2787     __ set(0, dst);
2788     __ ba_short(done);
2789     __ bind(success);
2790     __ set(1, dst);
2791     __ bind(done);
2792   } else {
2793     ShouldNotReachHere();
2794   }
2795 
2796 }
2797 
2798 
2799 void LIR_Assembler::emit_compare_and_swap(LIR_OpCompareAndSwap* op) {
2800   if (op->code() == lir_cas_long) {
2801     assert(VM_Version::supports_cx8(), "wrong machine");
2802     Register addr = op->addr()->as_pointer_register();
2803     Register cmp_value_lo = op->cmp_value()->as_register_lo();
2804     Register cmp_value_hi = op->cmp_value()->as_register_hi();
2805     Register new_value_lo = op->new_value()->as_register_lo();
2806     Register new_value_hi = op->new_value()->as_register_hi();
2807     Register t1 = op->tmp1()->as_register();
2808     Register t2 = op->tmp2()->as_register();
2809 #ifdef _LP64
2810     __ mov(cmp_value_lo, t1);
2811     __ mov(new_value_lo, t2);
2812     // perform the compare and swap operation
2813     __ casx(addr, t1, t2);
2814     // generate condition code - if the swap succeeded, t2 ("new value" reg) was
2815     // overwritten with the original value in "addr" and will be equal to t1.
2816     __ cmp(t1, t2);
2817 #else
2818     // move high and low halves of long values into single registers
2819     __ sllx(cmp_value_hi, 32, t1);         // shift high half into temp reg
2820     __ srl(cmp_value_lo, 0, cmp_value_lo); // clear upper 32 bits of low half
2821     __ or3(t1, cmp_value_lo, t1);          // t1 holds 64-bit compare value
2822     __ sllx(new_value_hi, 32, t2);
2823     __ srl(new_value_lo, 0, new_value_lo);
2824     __ or3(t2, new_value_lo, t2);          // t2 holds 64-bit value to swap
2825     // perform the compare and swap operation
2826     __ casx(addr, t1, t2);
2827     // generate condition code - if the swap succeeded, t2 ("new value" reg) was
2828     // overwritten with the original value in "addr" and will be equal to t1.
2829     // Produce icc flag for 32bit.
2830     __ sub(t1, t2, t2);
2831     __ srlx(t2, 32, t1);
2832     __ orcc(t2, t1, G0);
2833 #endif
2834   } else if (op->code() == lir_cas_int || op->code() == lir_cas_obj) {
2835     Register addr = op->addr()->as_pointer_register();
2836     Register cmp_value = op->cmp_value()->as_register();
2837     Register new_value = op->new_value()->as_register();
2838     Register t1 = op->tmp1()->as_register();
2839     Register t2 = op->tmp2()->as_register();
2840     __ mov(cmp_value, t1);
2841     __ mov(new_value, t2);
2842     if (op->code() == lir_cas_obj) {
2843       if (UseCompressedOops) {
2844         __ encode_heap_oop(t1);
2845         __ encode_heap_oop(t2);
2846         __ cas(addr, t1, t2);
2847       } else {
2848         __ cas_ptr(addr, t1, t2);
2849       }
2850     } else {
2851       __ cas(addr, t1, t2);
2852     }
2853     __ cmp(t1, t2);
2854   } else {
2855     Unimplemented();
2856   }
2857 }
2858 
2859 void LIR_Assembler::set_24bit_FPU() {
2860   Unimplemented();
2861 }
2862 
2863 
2864 void LIR_Assembler::reset_FPU() {
2865   Unimplemented();
2866 }
2867 
2868 
2869 void LIR_Assembler::breakpoint() {
2870   __ breakpoint_trap();
2871 }
2872 
2873 
2874 void LIR_Assembler::push(LIR_Opr opr) {
2875   Unimplemented();
2876 }
2877 
2878 
2879 void LIR_Assembler::pop(LIR_Opr opr) {
2880   Unimplemented();
2881 }
2882 
2883 
2884 void LIR_Assembler::monitor_address(int monitor_no, LIR_Opr dst_opr) {
2885   Address mon_addr = frame_map()->address_for_monitor_lock(monitor_no);
2886   Register dst = dst_opr->as_register();
2887   Register reg = mon_addr.base();
2888   int offset = mon_addr.disp();
2889   // compute pointer to BasicLock
2890   if (mon_addr.is_simm13()) {
2891     __ add(reg, offset, dst);
2892   } else {
2893     __ set(offset, dst);
2894     __ add(dst, reg, dst);
2895   }
2896 }
2897 
2898 
2899 void LIR_Assembler::emit_lock(LIR_OpLock* op) {
2900   Register obj = op->obj_opr()->as_register();
2901   Register hdr = op->hdr_opr()->as_register();
2902   Register lock = op->lock_opr()->as_register();
2903 
2904   // obj may not be an oop
2905   if (op->code() == lir_lock) {
2906     MonitorEnterStub* stub = (MonitorEnterStub*)op->stub();
2907     if (UseFastLocking) {
2908       assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
2909       // add debug info for NullPointerException only if one is possible
2910       if (op->info() != NULL) {
2911         add_debug_info_for_null_check_here(op->info());
2912       }
2913       __ lock_object(hdr, obj, lock, op->scratch_opr()->as_register(), *op->stub()->entry());
2914     } else {
2915       // always do slow locking
2916       // note: the slow locking code could be inlined here, however if we use
2917       //       slow locking, speed doesn't matter anyway and this solution is
2918       //       simpler and requires less duplicated code - additionally, the
2919       //       slow locking code is the same in either case which simplifies
2920       //       debugging
2921       __ br(Assembler::always, false, Assembler::pt, *op->stub()->entry());
2922       __ delayed()->nop();
2923     }
2924   } else {
2925     assert (op->code() == lir_unlock, "Invalid code, expected lir_unlock");
2926     if (UseFastLocking) {
2927       assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
2928       __ unlock_object(hdr, obj, lock, *op->stub()->entry());
2929     } else {
2930       // always do slow unlocking
2931       // note: the slow unlocking code could be inlined here, however if we use
2932       //       slow unlocking, speed doesn't matter anyway and this solution is
2933       //       simpler and requires less duplicated code - additionally, the
2934       //       slow unlocking code is the same in either case which simplifies
2935       //       debugging
2936       __ br(Assembler::always, false, Assembler::pt, *op->stub()->entry());
2937       __ delayed()->nop();
2938     }
2939   }
2940   __ bind(*op->stub()->continuation());
2941 }
2942 
2943 
2944 void LIR_Assembler::emit_profile_call(LIR_OpProfileCall* op) {
2945   ciMethod* method = op->profiled_method();
2946   int bci          = op->profiled_bci();
2947 
2948   // Update counter for all call types
2949   ciMethodData* md = method->method_data_or_null();
2950   assert(md != NULL, "Sanity");
2951   ciProfileData* data = md->bci_to_data(bci);
2952   assert(data->is_CounterData(), "need CounterData for calls");
2953   assert(op->mdo()->is_single_cpu(),  "mdo must be allocated");
2954   Register mdo  = op->mdo()->as_register();
2955 #ifdef _LP64
2956   assert(op->tmp1()->is_double_cpu(), "tmp1 must be allocated");
2957   Register tmp1 = op->tmp1()->as_register_lo();
2958 #else
2959   assert(op->tmp1()->is_single_cpu(), "tmp1 must be allocated");
2960   Register tmp1 = op->tmp1()->as_register();
2961 #endif
2962   jobject2reg(md->constant_encoding(), mdo);
2963   int mdo_offset_bias = 0;
2964   if (!Assembler::is_simm13(md->byte_offset_of_slot(data, CounterData::count_offset()) +
2965                             data->size_in_bytes())) {
2966     // The offset is large so bias the mdo by the base of the slot so
2967     // that the ld can use simm13s to reference the slots of the data
2968     mdo_offset_bias = md->byte_offset_of_slot(data, CounterData::count_offset());
2969     __ set(mdo_offset_bias, O7);
2970     __ add(mdo, O7, mdo);
2971   }
2972 
2973   Address counter_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()) - mdo_offset_bias);
2974   Bytecodes::Code bc = method->java_code_at_bci(bci);
2975   // Perform additional virtual call profiling for invokevirtual and
2976   // invokeinterface bytecodes
2977   if ((bc == Bytecodes::_invokevirtual || bc == Bytecodes::_invokeinterface) &&
2978       C1ProfileVirtualCalls) {
2979     assert(op->recv()->is_single_cpu(), "recv must be allocated");
2980     Register recv = op->recv()->as_register();
2981     assert_different_registers(mdo, tmp1, recv);
2982     assert(data->is_VirtualCallData(), "need VirtualCallData for virtual calls");
2983     ciKlass* known_klass = op->known_holder();
2984     if (C1OptimizeVirtualCallProfiling && known_klass != NULL) {
2985       // We know the type that will be seen at this call site; we can
2986       // statically update the methodDataOop rather than needing to do
2987       // dynamic tests on the receiver type
2988 
2989       // NOTE: we should probably put a lock around this search to
2990       // avoid collisions by concurrent compilations
2991       ciVirtualCallData* vc_data = (ciVirtualCallData*) data;
2992       uint i;
2993       for (i = 0; i < VirtualCallData::row_limit(); i++) {
2994         ciKlass* receiver = vc_data->receiver(i);
2995         if (known_klass->equals(receiver)) {
2996           Address data_addr(mdo, md->byte_offset_of_slot(data,
2997                                                          VirtualCallData::receiver_count_offset(i)) -
2998                             mdo_offset_bias);
2999           __ ld_ptr(data_addr, tmp1);
3000           __ add(tmp1, DataLayout::counter_increment, tmp1);
3001           __ st_ptr(tmp1, data_addr);
3002           return;
3003         }
3004       }
3005 
3006       // Receiver type not found in profile data; select an empty slot
3007 
3008       // Note that this is less efficient than it should be because it
3009       // always does a write to the receiver part of the
3010       // VirtualCallData rather than just the first time
3011       for (i = 0; i < VirtualCallData::row_limit(); i++) {
3012         ciKlass* receiver = vc_data->receiver(i);
3013         if (receiver == NULL) {
3014           Address recv_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_offset(i)) -
3015                             mdo_offset_bias);
3016           jobject2reg(known_klass->constant_encoding(), tmp1);
3017           __ st_ptr(tmp1, recv_addr);
3018           Address data_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i)) -
3019                             mdo_offset_bias);
3020           __ ld_ptr(data_addr, tmp1);
3021           __ add(tmp1, DataLayout::counter_increment, tmp1);
3022           __ st_ptr(tmp1, data_addr);
3023           return;
3024         }
3025       }
3026     } else {
3027       __ load_klass(recv, recv);
3028       Label update_done;
3029       type_profile_helper(mdo, mdo_offset_bias, md, data, recv, tmp1, &update_done);
3030       // Receiver did not match any saved receiver and there is no empty row for it.
3031       // Increment total counter to indicate polymorphic case.
3032       __ ld_ptr(counter_addr, tmp1);
3033       __ add(tmp1, DataLayout::counter_increment, tmp1);
3034       __ st_ptr(tmp1, counter_addr);
3035 
3036       __ bind(update_done);
3037     }
3038   } else {
3039     // Static call
3040     __ ld_ptr(counter_addr, tmp1);
3041     __ add(tmp1, DataLayout::counter_increment, tmp1);
3042     __ st_ptr(tmp1, counter_addr);
3043   }
3044 }
3045 
3046 void LIR_Assembler::align_backward_branch_target() {
3047   __ align(OptoLoopAlignment);
3048 }
3049 
3050 
3051 void LIR_Assembler::emit_delay(LIR_OpDelay* op) {
3052   // make sure we are expecting a delay
3053   // this has the side effect of clearing the delay state
3054   // so we can use _masm instead of _masm->delayed() to do the
3055   // code generation.
3056   __ delayed();
3057 
3058   // make sure we only emit one instruction
3059   int offset = code_offset();
3060   op->delay_op()->emit_code(this);
3061 #ifdef ASSERT
3062   if (code_offset() - offset != NativeInstruction::nop_instruction_size) {
3063     op->delay_op()->print();
3064   }
3065   assert(code_offset() - offset == NativeInstruction::nop_instruction_size,
3066          "only one instruction can go in a delay slot");
3067 #endif
3068 
3069   // we may also be emitting the call info for the instruction
3070   // which we are the delay slot of.
3071   CodeEmitInfo* call_info = op->call_info();
3072   if (call_info) {
3073     add_call_info(code_offset(), call_info);
3074   }
3075 
3076   if (VerifyStackAtCalls) {
3077     _masm->sub(FP, SP, O7);
3078     _masm->cmp(O7, initial_frame_size_in_bytes());
3079     _masm->trap(Assembler::notEqual, Assembler::ptr_cc, G0, ST_RESERVED_FOR_USER_0+2 );
3080   }
3081 }
3082 
3083 
3084 void LIR_Assembler::negate(LIR_Opr left, LIR_Opr dest) {
3085   assert(left->is_register(), "can only handle registers");
3086 
3087   if (left->is_single_cpu()) {
3088     __ neg(left->as_register(), dest->as_register());
3089   } else if (left->is_single_fpu()) {
3090     __ fneg(FloatRegisterImpl::S, left->as_float_reg(), dest->as_float_reg());
3091   } else if (left->is_double_fpu()) {
3092     __ fneg(FloatRegisterImpl::D, left->as_double_reg(), dest->as_double_reg());
3093   } else {
3094     assert (left->is_double_cpu(), "Must be a long");
3095     Register Rlow = left->as_register_lo();
3096     Register Rhi = left->as_register_hi();
3097 #ifdef _LP64
3098     __ sub(G0, Rlow, dest->as_register_lo());
3099 #else
3100     __ subcc(G0, Rlow, dest->as_register_lo());
3101     __ subc (G0, Rhi,  dest->as_register_hi());
3102 #endif
3103   }
3104 }
3105 
3106 
3107 void LIR_Assembler::fxch(int i) {
3108   Unimplemented();
3109 }
3110 
3111 void LIR_Assembler::fld(int i) {
3112   Unimplemented();
3113 }
3114 
3115 void LIR_Assembler::ffree(int i) {
3116   Unimplemented();
3117 }
3118 
3119 void LIR_Assembler::rt_call(LIR_Opr result, address dest,
3120                             const LIR_OprList* args, LIR_Opr tmp, CodeEmitInfo* info) {
3121 
3122   // if tmp is invalid, then the function being called doesn't destroy the thread
3123   if (tmp->is_valid()) {
3124     __ save_thread(tmp->as_register());
3125   }
3126   __ call(dest, relocInfo::runtime_call_type);
3127   __ delayed()->nop();
3128   if (info != NULL) {
3129     add_call_info_here(info);
3130   }
3131   if (tmp->is_valid()) {
3132     __ restore_thread(tmp->as_register());
3133   }
3134 
3135 #ifdef ASSERT
3136   __ verify_thread();
3137 #endif // ASSERT
3138 }
3139 
3140 
3141 void LIR_Assembler::volatile_move_op(LIR_Opr src, LIR_Opr dest, BasicType type, CodeEmitInfo* info) {
3142 #ifdef _LP64
3143   ShouldNotReachHere();
3144 #endif
3145 
3146   NEEDS_CLEANUP;
3147   if (type == T_LONG) {
3148     LIR_Address* mem_addr = dest->is_address() ? dest->as_address_ptr() : src->as_address_ptr();
3149 
3150     // (extended to allow indexed as well as constant displaced for JSR-166)
3151     Register idx = noreg; // contains either constant offset or index
3152 
3153     int disp = mem_addr->disp();
3154     if (mem_addr->index() == LIR_OprFact::illegalOpr) {
3155       if (!Assembler::is_simm13(disp)) {
3156         idx = O7;
3157         __ set(disp, idx);
3158       }
3159     } else {
3160       assert(disp == 0, "not both indexed and disp");
3161       idx = mem_addr->index()->as_register();
3162     }
3163 
3164     int null_check_offset = -1;
3165 
3166     Register base = mem_addr->base()->as_register();
3167     if (src->is_register() && dest->is_address()) {
3168       // G4 is high half, G5 is low half
3169       if (VM_Version::v9_instructions_work()) {
3170         // clear the top bits of G5, and scale up G4
3171         __ srl (src->as_register_lo(),  0, G5);
3172         __ sllx(src->as_register_hi(), 32, G4);
3173         // combine the two halves into the 64 bits of G4
3174         __ or3(G4, G5, G4);
3175         null_check_offset = __ offset();
3176         if (idx == noreg) {
3177           __ stx(G4, base, disp);
3178         } else {
3179           __ stx(G4, base, idx);
3180         }
3181       } else {
3182         __ mov (src->as_register_hi(), G4);
3183         __ mov (src->as_register_lo(), G5);
3184         null_check_offset = __ offset();
3185         if (idx == noreg) {
3186           __ std(G4, base, disp);
3187         } else {
3188           __ std(G4, base, idx);
3189         }
3190       }
3191     } else if (src->is_address() && dest->is_register()) {
3192       null_check_offset = __ offset();
3193       if (VM_Version::v9_instructions_work()) {
3194         if (idx == noreg) {
3195           __ ldx(base, disp, G5);
3196         } else {
3197           __ ldx(base, idx, G5);
3198         }
3199         __ srax(G5, 32, dest->as_register_hi()); // fetch the high half into hi
3200         __ mov (G5, dest->as_register_lo());     // copy low half into lo
3201       } else {
3202         if (idx == noreg) {
3203           __ ldd(base, disp, G4);
3204         } else {
3205           __ ldd(base, idx, G4);
3206         }
3207         // G4 is high half, G5 is low half
3208         __ mov (G4, dest->as_register_hi());
3209         __ mov (G5, dest->as_register_lo());
3210       }
3211     } else {
3212       Unimplemented();
3213     }
3214     if (info != NULL) {
3215       add_debug_info_for_null_check(null_check_offset, info);
3216     }
3217 
3218   } else {
3219     // use normal move for all other volatiles since they don't need
3220     // special handling to remain atomic.
3221     move_op(src, dest, type, lir_patch_none, info, false, false, false);
3222   }
3223 }
3224 
3225 void LIR_Assembler::membar() {
3226   // only StoreLoad membars are ever explicitly needed on sparcs in TSO mode
3227   __ membar( Assembler::Membar_mask_bits(Assembler::StoreLoad) );
3228 }
3229 
3230 void LIR_Assembler::membar_acquire() {
3231   // no-op on TSO
3232 }
3233 
3234 void LIR_Assembler::membar_release() {
3235   // no-op on TSO
3236 }
3237 
3238 // Pack two sequential registers containing 32 bit values
3239 // into a single 64 bit register.
3240 // src and src->successor() are packed into dst
3241 // src and dst may be the same register.
3242 // Note: src is destroyed
3243 void LIR_Assembler::pack64(LIR_Opr src, LIR_Opr dst) {
3244   Register rs = src->as_register();
3245   Register rd = dst->as_register_lo();
3246   __ sllx(rs, 32, rs);
3247   __ srl(rs->successor(), 0, rs->successor());
3248   __ or3(rs, rs->successor(), rd);
3249 }
3250 
3251 // Unpack a 64 bit value in a register into
3252 // two sequential registers.
3253 // src is unpacked into dst and dst->successor()
3254 void LIR_Assembler::unpack64(LIR_Opr src, LIR_Opr dst) {
3255   Register rs = src->as_register_lo();
3256   Register rd = dst->as_register_hi();
3257   assert_different_registers(rs, rd, rd->successor());
3258   __ srlx(rs, 32, rd);
3259   __ srl (rs,  0, rd->successor());
3260 }
3261 
3262 
3263 void LIR_Assembler::leal(LIR_Opr addr_opr, LIR_Opr dest) {
3264   LIR_Address* addr = addr_opr->as_address_ptr();
3265   assert(addr->index()->is_illegal() && addr->scale() == LIR_Address::times_1 && Assembler::is_simm13(addr->disp()), "can't handle complex addresses yet");
3266 
3267   __ add(addr->base()->as_pointer_register(), addr->disp(), dest->as_pointer_register());
3268 }
3269 
3270 
3271 void LIR_Assembler::get_thread(LIR_Opr result_reg) {
3272   assert(result_reg->is_register(), "check");
3273   __ mov(G2_thread, result_reg->as_register());
3274 }
3275 
3276 
3277 void LIR_Assembler::peephole(LIR_List* lir) {
3278   LIR_OpList* inst = lir->instructions_list();
3279   for (int i = 0; i < inst->length(); i++) {
3280     LIR_Op* op = inst->at(i);
3281     switch (op->code()) {
3282       case lir_cond_float_branch:
3283       case lir_branch: {
3284         LIR_OpBranch* branch = op->as_OpBranch();
3285         assert(branch->info() == NULL, "shouldn't be state on branches anymore");
3286         LIR_Op* delay_op = NULL;
3287         // we'd like to be able to pull following instructions into
3288         // this slot but we don't know enough to do it safely yet so
3289         // only optimize block to block control flow.
3290         if (LIRFillDelaySlots && branch->block()) {
3291           LIR_Op* prev = inst->at(i - 1);
3292           if (prev && LIR_Assembler::is_single_instruction(prev) && prev->info() == NULL) {
3293             // swap previous instruction into delay slot
3294             inst->at_put(i - 1, op);
3295             inst->at_put(i, new LIR_OpDelay(prev, op->info()));
3296 #ifndef PRODUCT
3297             if (LIRTracePeephole) {
3298               tty->print_cr("delayed");
3299               inst->at(i - 1)->print();
3300               inst->at(i)->print();
3301               tty->cr();
3302             }
3303 #endif
3304             continue;
3305           }
3306         }
3307 
3308         if (!delay_op) {
3309           delay_op = new LIR_OpDelay(new LIR_Op0(lir_nop), NULL);
3310         }
3311         inst->insert_before(i + 1, delay_op);
3312         break;
3313       }
3314       case lir_static_call:
3315       case lir_virtual_call:
3316       case lir_icvirtual_call:
3317       case lir_optvirtual_call:
3318       case lir_dynamic_call: {
3319         LIR_Op* prev = inst->at(i - 1);
3320         if (LIRFillDelaySlots && prev && prev->code() == lir_move && prev->info() == NULL &&
3321             (op->code() != lir_virtual_call ||
3322              !prev->result_opr()->is_single_cpu() ||
3323              prev->result_opr()->as_register() != O0) &&
3324             LIR_Assembler::is_single_instruction(prev)) {
3325           // Only moves without info can be put into the delay slot.
3326           // Also don't allow the setup of the receiver in the delay
3327           // slot for vtable calls.
3328           inst->at_put(i - 1, op);
3329           inst->at_put(i, new LIR_OpDelay(prev, op->info()));
3330 #ifndef PRODUCT
3331           if (LIRTracePeephole) {
3332             tty->print_cr("delayed");
3333             inst->at(i - 1)->print();
3334             inst->at(i)->print();
3335             tty->cr();
3336           }
3337 #endif
3338         } else {
3339           LIR_Op* delay_op = new LIR_OpDelay(new LIR_Op0(lir_nop), op->as_OpJavaCall()->info());
3340           inst->insert_before(i + 1, delay_op);
3341           i++;
3342         }
3343 
3344 #if defined(TIERED) && !defined(_LP64)
3345         // fixup the return value from G1 to O0/O1 for long returns.
3346         // It's done here instead of in LIRGenerator because there's
3347         // such a mismatch between the single reg and double reg
3348         // calling convention.
3349         LIR_OpJavaCall* callop = op->as_OpJavaCall();
3350         if (callop->result_opr() == FrameMap::out_long_opr) {
3351           LIR_OpJavaCall* call;
3352           LIR_OprList* arguments = new LIR_OprList(callop->arguments()->length());
3353           for (int a = 0; a < arguments->length(); a++) {
3354             arguments[a] = callop->arguments()[a];
3355           }
3356           if (op->code() == lir_virtual_call) {
3357             call = new LIR_OpJavaCall(op->code(), callop->method(), callop->receiver(), FrameMap::g1_long_single_opr,
3358                                       callop->vtable_offset(), arguments, callop->info());
3359           } else {
3360             call = new LIR_OpJavaCall(op->code(), callop->method(), callop->receiver(), FrameMap::g1_long_single_opr,
3361                                       callop->addr(), arguments, callop->info());
3362           }
3363           inst->at_put(i - 1, call);
3364           inst->insert_before(i + 1, new LIR_Op1(lir_unpack64, FrameMap::g1_long_single_opr, callop->result_opr(),
3365                                                  T_LONG, lir_patch_none, NULL));
3366         }
3367 #endif
3368         break;
3369       }
3370     }
3371   }
3372 }
3373 
3374 
3375 
3376 
3377 #undef __