1 /*
   2  * Copyright (c) 2000, 2011, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "asm/assembler.hpp"
  27 #include "c1/c1_Compilation.hpp"
  28 #include "c1/c1_LIRAssembler.hpp"
  29 #include "c1/c1_MacroAssembler.hpp"
  30 #include "c1/c1_Runtime1.hpp"
  31 #include "c1/c1_ValueStack.hpp"
  32 #include "ci/ciArrayKlass.hpp"
  33 #include "ci/ciInstance.hpp"
  34 #include "gc_interface/collectedHeap.hpp"
  35 #include "memory/barrierSet.hpp"
  36 #include "memory/cardTableModRefBS.hpp"
  37 #include "nativeInst_x86.hpp"
  38 #include "oops/objArrayKlass.hpp"
  39 #include "runtime/sharedRuntime.hpp"
  40 
  41 
  42 // These masks are used to provide 128-bit aligned bitmasks to the XMM
  43 // instructions, to allow sign-masking or sign-bit flipping.  They allow
  44 // fast versions of NegF/NegD and AbsF/AbsD.
  45 
  46 // Note: 'double' and 'long long' have 32-bits alignment on x86.
  47 static jlong* double_quadword(jlong *adr, jlong lo, jlong hi) {
  48   // Use the expression (adr)&(~0xF) to provide 128-bits aligned address
  49   // of 128-bits operands for SSE instructions.
  50   jlong *operand = (jlong*)(((intptr_t)adr) & ((intptr_t)(~0xF)));
  51   // Store the value to a 128-bits operand.
  52   operand[0] = lo;
  53   operand[1] = hi;
  54   return operand;
  55 }
  56 
  57 // Buffer for 128-bits masks used by SSE instructions.
  58 static jlong fp_signmask_pool[(4+1)*2]; // 4*128bits(data) + 128bits(alignment)
  59 
  60 // Static initialization during VM startup.
  61 static jlong *float_signmask_pool  = double_quadword(&fp_signmask_pool[1*2], CONST64(0x7FFFFFFF7FFFFFFF), CONST64(0x7FFFFFFF7FFFFFFF));
  62 static jlong *double_signmask_pool = double_quadword(&fp_signmask_pool[2*2], CONST64(0x7FFFFFFFFFFFFFFF), CONST64(0x7FFFFFFFFFFFFFFF));
  63 static jlong *float_signflip_pool  = double_quadword(&fp_signmask_pool[3*2], CONST64(0x8000000080000000), CONST64(0x8000000080000000));
  64 static jlong *double_signflip_pool = double_quadword(&fp_signmask_pool[4*2], CONST64(0x8000000000000000), CONST64(0x8000000000000000));
  65 
  66 
  67 
  68 NEEDS_CLEANUP // remove this definitions ?
  69 const Register IC_Klass    = rax;   // where the IC klass is cached
  70 const Register SYNC_header = rax;   // synchronization header
  71 const Register SHIFT_count = rcx;   // where count for shift operations must be
  72 
  73 #define __ _masm->
  74 
  75 
  76 static void select_different_registers(Register preserve,
  77                                        Register extra,
  78                                        Register &tmp1,
  79                                        Register &tmp2) {
  80   if (tmp1 == preserve) {
  81     assert_different_registers(tmp1, tmp2, extra);
  82     tmp1 = extra;
  83   } else if (tmp2 == preserve) {
  84     assert_different_registers(tmp1, tmp2, extra);
  85     tmp2 = extra;
  86   }
  87   assert_different_registers(preserve, tmp1, tmp2);
  88 }
  89 
  90 
  91 
  92 static void select_different_registers(Register preserve,
  93                                        Register extra,
  94                                        Register &tmp1,
  95                                        Register &tmp2,
  96                                        Register &tmp3) {
  97   if (tmp1 == preserve) {
  98     assert_different_registers(tmp1, tmp2, tmp3, extra);
  99     tmp1 = extra;
 100   } else if (tmp2 == preserve) {
 101     assert_different_registers(tmp1, tmp2, tmp3, extra);
 102     tmp2 = extra;
 103   } else if (tmp3 == preserve) {
 104     assert_different_registers(tmp1, tmp2, tmp3, extra);
 105     tmp3 = extra;
 106   }
 107   assert_different_registers(preserve, tmp1, tmp2, tmp3);
 108 }
 109 
 110 
 111 
 112 bool LIR_Assembler::is_small_constant(LIR_Opr opr) {
 113   if (opr->is_constant()) {
 114     LIR_Const* constant = opr->as_constant_ptr();
 115     switch (constant->type()) {
 116       case T_INT: {
 117         return true;
 118       }
 119 
 120       default:
 121         return false;
 122     }
 123   }
 124   return false;
 125 }
 126 
 127 
 128 LIR_Opr LIR_Assembler::receiverOpr() {
 129   return FrameMap::receiver_opr;
 130 }
 131 
 132 LIR_Opr LIR_Assembler::osrBufferPointer() {
 133   return FrameMap::as_pointer_opr(receiverOpr()->as_register());
 134 }
 135 
 136 //--------------fpu register translations-----------------------
 137 
 138 
 139 address LIR_Assembler::float_constant(float f) {
 140   address const_addr = __ float_constant(f);
 141   if (const_addr == NULL) {
 142     bailout("const section overflow");
 143     return __ code()->consts()->start();
 144   } else {
 145     return const_addr;
 146   }
 147 }
 148 
 149 
 150 address LIR_Assembler::double_constant(double d) {
 151   address const_addr = __ double_constant(d);
 152   if (const_addr == NULL) {
 153     bailout("const section overflow");
 154     return __ code()->consts()->start();
 155   } else {
 156     return const_addr;
 157   }
 158 }
 159 
 160 
 161 void LIR_Assembler::set_24bit_FPU() {
 162   __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_24()));
 163 }
 164 
 165 void LIR_Assembler::reset_FPU() {
 166   __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
 167 }
 168 
 169 void LIR_Assembler::fpop() {
 170   __ fpop();
 171 }
 172 
 173 void LIR_Assembler::fxch(int i) {
 174   __ fxch(i);
 175 }
 176 
 177 void LIR_Assembler::fld(int i) {
 178   __ fld_s(i);
 179 }
 180 
 181 void LIR_Assembler::ffree(int i) {
 182   __ ffree(i);
 183 }
 184 
 185 void LIR_Assembler::breakpoint() {
 186   __ int3();
 187 }
 188 
 189 void LIR_Assembler::push(LIR_Opr opr) {
 190   if (opr->is_single_cpu()) {
 191     __ push_reg(opr->as_register());
 192   } else if (opr->is_double_cpu()) {
 193     NOT_LP64(__ push_reg(opr->as_register_hi()));
 194     __ push_reg(opr->as_register_lo());
 195   } else if (opr->is_stack()) {
 196     __ push_addr(frame_map()->address_for_slot(opr->single_stack_ix()));
 197   } else if (opr->is_constant()) {
 198     LIR_Const* const_opr = opr->as_constant_ptr();
 199     if (const_opr->type() == T_OBJECT) {
 200       __ push_oop(const_opr->as_jobject());
 201     } else if (const_opr->type() == T_INT) {
 202       __ push_jint(const_opr->as_jint());
 203     } else {
 204       ShouldNotReachHere();
 205     }
 206 
 207   } else {
 208     ShouldNotReachHere();
 209   }
 210 }
 211 
 212 void LIR_Assembler::pop(LIR_Opr opr) {
 213   if (opr->is_single_cpu()) {
 214     __ pop_reg(opr->as_register());
 215   } else {
 216     ShouldNotReachHere();
 217   }
 218 }
 219 
 220 bool LIR_Assembler::is_literal_address(LIR_Address* addr) {
 221   return addr->base()->is_illegal() && addr->index()->is_illegal();
 222 }
 223 
 224 //-------------------------------------------
 225 
 226 Address LIR_Assembler::as_Address(LIR_Address* addr) {
 227   return as_Address(addr, rscratch1);
 228 }
 229 
 230 Address LIR_Assembler::as_Address(LIR_Address* addr, Register tmp) {
 231   if (addr->base()->is_illegal()) {
 232     assert(addr->index()->is_illegal(), "must be illegal too");
 233     AddressLiteral laddr((address)addr->disp(), relocInfo::none);
 234     if (! __ reachable(laddr)) {
 235       __ movptr(tmp, laddr.addr());
 236       Address res(tmp, 0);
 237       return res;
 238     } else {
 239       return __ as_Address(laddr);
 240     }
 241   }
 242 
 243   Register base = addr->base()->as_pointer_register();
 244 
 245   if (addr->index()->is_illegal()) {
 246     return Address( base, addr->disp());
 247   } else if (addr->index()->is_cpu_register()) {
 248     Register index = addr->index()->as_pointer_register();
 249     return Address(base, index, (Address::ScaleFactor) addr->scale(), addr->disp());
 250   } else if (addr->index()->is_constant()) {
 251     intptr_t addr_offset = (addr->index()->as_constant_ptr()->as_jint() << addr->scale()) + addr->disp();
 252     assert(Assembler::is_simm32(addr_offset), "must be");
 253 
 254     return Address(base, addr_offset);
 255   } else {
 256     Unimplemented();
 257     return Address();
 258   }
 259 }
 260 
 261 
 262 Address LIR_Assembler::as_Address_hi(LIR_Address* addr) {
 263   Address base = as_Address(addr);
 264   return Address(base._base, base._index, base._scale, base._disp + BytesPerWord);
 265 }
 266 
 267 
 268 Address LIR_Assembler::as_Address_lo(LIR_Address* addr) {
 269   return as_Address(addr);
 270 }
 271 
 272 
 273 void LIR_Assembler::osr_entry() {
 274   offsets()->set_value(CodeOffsets::OSR_Entry, code_offset());
 275   BlockBegin* osr_entry = compilation()->hir()->osr_entry();
 276   ValueStack* entry_state = osr_entry->state();
 277   int number_of_locks = entry_state->locks_size();
 278 
 279   // we jump here if osr happens with the interpreter
 280   // state set up to continue at the beginning of the
 281   // loop that triggered osr - in particular, we have
 282   // the following registers setup:
 283   //
 284   // rcx: osr buffer
 285   //
 286 
 287   // build frame
 288   ciMethod* m = compilation()->method();
 289   __ build_frame(initial_frame_size_in_bytes());
 290 
 291   // OSR buffer is
 292   //
 293   // locals[nlocals-1..0]
 294   // monitors[0..number_of_locks]
 295   //
 296   // locals is a direct copy of the interpreter frame so in the osr buffer
 297   // so first slot in the local array is the last local from the interpreter
 298   // and last slot is local[0] (receiver) from the interpreter
 299   //
 300   // Similarly with locks. The first lock slot in the osr buffer is the nth lock
 301   // from the interpreter frame, the nth lock slot in the osr buffer is 0th lock
 302   // in the interpreter frame (the method lock if a sync method)
 303 
 304   // Initialize monitors in the compiled activation.
 305   //   rcx: pointer to osr buffer
 306   //
 307   // All other registers are dead at this point and the locals will be
 308   // copied into place by code emitted in the IR.
 309 
 310   Register OSR_buf = osrBufferPointer()->as_pointer_register();
 311   { assert(frame::interpreter_frame_monitor_size() == BasicObjectLock::size(), "adjust code below");
 312     int monitor_offset = BytesPerWord * method()->max_locals() +
 313       (2 * BytesPerWord) * (number_of_locks - 1);
 314     // SharedRuntime::OSR_migration_begin() packs BasicObjectLocks in
 315     // the OSR buffer using 2 word entries: first the lock and then
 316     // the oop.
 317     for (int i = 0; i < number_of_locks; i++) {
 318       int slot_offset = monitor_offset - ((i * 2) * BytesPerWord);
 319 #ifdef ASSERT
 320       // verify the interpreter's monitor has a non-null object
 321       {
 322         Label L;
 323         __ cmpptr(Address(OSR_buf, slot_offset + 1*BytesPerWord), (int32_t)NULL_WORD);
 324         __ jcc(Assembler::notZero, L);
 325         __ stop("locked object is NULL");
 326         __ bind(L);
 327       }
 328 #endif
 329       __ movptr(rbx, Address(OSR_buf, slot_offset + 0));
 330       __ movptr(frame_map()->address_for_monitor_lock(i), rbx);
 331       __ movptr(rbx, Address(OSR_buf, slot_offset + 1*BytesPerWord));
 332       __ movptr(frame_map()->address_for_monitor_object(i), rbx);
 333     }
 334   }
 335 }
 336 
 337 
 338 // inline cache check; done before the frame is built.
 339 int LIR_Assembler::check_icache() {
 340   Register receiver = FrameMap::receiver_opr->as_register();
 341   Register ic_klass = IC_Klass;
 342   const int ic_cmp_size = LP64_ONLY(10) NOT_LP64(9);
 343   const bool do_post_padding = VerifyOops || UseCompressedOops;
 344   if (!do_post_padding) {
 345     // insert some nops so that the verified entry point is aligned on CodeEntryAlignment
 346     while ((__ offset() + ic_cmp_size) % CodeEntryAlignment != 0) {
 347       __ nop();
 348     }
 349   }
 350   int offset = __ offset();
 351   __ inline_cache_check(receiver, IC_Klass);
 352   assert(__ offset() % CodeEntryAlignment == 0 || do_post_padding, "alignment must be correct");
 353   if (do_post_padding) {
 354     // force alignment after the cache check.
 355     // It's been verified to be aligned if !VerifyOops
 356     __ align(CodeEntryAlignment);
 357   }
 358   return offset;
 359 }
 360 
 361 
 362 void LIR_Assembler::jobject2reg_with_patching(Register reg, CodeEmitInfo* info) {
 363   jobject o = NULL;
 364   PatchingStub* patch = new PatchingStub(_masm, PatchingStub::load_klass_id);
 365   __ movoop(reg, o);
 366   patching_epilog(patch, lir_patch_normal, reg, info);
 367 }
 368 
 369 
 370 // This specifies the rsp decrement needed to build the frame
 371 int LIR_Assembler::initial_frame_size_in_bytes() {
 372   // if rounding, must let FrameMap know!
 373 
 374   // The frame_map records size in slots (32bit word)
 375 
 376   // subtract two words to account for return address and link
 377   return (frame_map()->framesize() - (2*VMRegImpl::slots_per_word))  * VMRegImpl::stack_slot_size;
 378 }
 379 
 380 
 381 int LIR_Assembler::emit_exception_handler() {
 382   // if the last instruction is a call (typically to do a throw which
 383   // is coming at the end after block reordering) the return address
 384   // must still point into the code area in order to avoid assertion
 385   // failures when searching for the corresponding bci => add a nop
 386   // (was bug 5/14/1999 - gri)
 387   __ nop();
 388 
 389   // generate code for exception handler
 390   address handler_base = __ start_a_stub(exception_handler_size);
 391   if (handler_base == NULL) {
 392     // not enough space left for the handler
 393     bailout("exception handler overflow");
 394     return -1;
 395   }
 396 
 397   int offset = code_offset();
 398 
 399   // the exception oop and pc are in rax, and rdx
 400   // no other registers need to be preserved, so invalidate them
 401   __ invalidate_registers(false, true, true, false, true, true);
 402 
 403   // check that there is really an exception
 404   __ verify_not_null_oop(rax);
 405 
 406   // search an exception handler (rax: exception oop, rdx: throwing pc)
 407   __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::handle_exception_from_callee_id)));
 408   __ should_not_reach_here();
 409   assert(code_offset() - offset <= exception_handler_size, "overflow");
 410   __ end_a_stub();
 411 
 412   return offset;
 413 }
 414 
 415 
 416 // Emit the code to remove the frame from the stack in the exception
 417 // unwind path.
 418 int LIR_Assembler::emit_unwind_handler() {
 419 #ifndef PRODUCT
 420   if (CommentedAssembly) {
 421     _masm->block_comment("Unwind handler");
 422   }
 423 #endif
 424 
 425   int offset = code_offset();
 426 
 427   // Fetch the exception from TLS and clear out exception related thread state
 428   __ get_thread(rsi);
 429   __ movptr(rax, Address(rsi, JavaThread::exception_oop_offset()));
 430   __ movptr(Address(rsi, JavaThread::exception_oop_offset()), (intptr_t)NULL_WORD);
 431   __ movptr(Address(rsi, JavaThread::exception_pc_offset()), (intptr_t)NULL_WORD);
 432 
 433   __ bind(_unwind_handler_entry);
 434   __ verify_not_null_oop(rax);
 435   if (method()->is_synchronized() || compilation()->env()->dtrace_method_probes()) {
 436     __ mov(rsi, rax);  // Preserve the exception
 437   }
 438 
 439   // Preform needed unlocking
 440   MonitorExitStub* stub = NULL;
 441   if (method()->is_synchronized()) {
 442     monitor_address(0, FrameMap::rax_opr);
 443     stub = new MonitorExitStub(FrameMap::rax_opr, true, 0);
 444     __ unlock_object(rdi, rbx, rax, *stub->entry());
 445     __ bind(*stub->continuation());
 446   }
 447 
 448   if (compilation()->env()->dtrace_method_probes()) {
 449     __ get_thread(rax);
 450     __ movptr(Address(rsp, 0), rax);
 451     __ movoop(Address(rsp, sizeof(void*)), method()->constant_encoding());
 452     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit)));
 453   }
 454 
 455   if (method()->is_synchronized() || compilation()->env()->dtrace_method_probes()) {
 456     __ mov(rax, rsi);  // Restore the exception
 457   }
 458 
 459   // remove the activation and dispatch to the unwind handler
 460   __ remove_frame(initial_frame_size_in_bytes());
 461   __ jump(RuntimeAddress(Runtime1::entry_for(Runtime1::unwind_exception_id)));
 462 
 463   // Emit the slow path assembly
 464   if (stub != NULL) {
 465     stub->emit_code(this);
 466   }
 467 
 468   return offset;
 469 }
 470 
 471 
 472 int LIR_Assembler::emit_deopt_handler() {
 473   // if the last instruction is a call (typically to do a throw which
 474   // is coming at the end after block reordering) the return address
 475   // must still point into the code area in order to avoid assertion
 476   // failures when searching for the corresponding bci => add a nop
 477   // (was bug 5/14/1999 - gri)
 478   __ nop();
 479 
 480   // generate code for exception handler
 481   address handler_base = __ start_a_stub(deopt_handler_size);
 482   if (handler_base == NULL) {
 483     // not enough space left for the handler
 484     bailout("deopt handler overflow");
 485     return -1;
 486   }
 487 
 488   int offset = code_offset();
 489   InternalAddress here(__ pc());
 490 
 491   __ pushptr(here.addr());
 492   __ jump(RuntimeAddress(SharedRuntime::deopt_blob()->unpack()));
 493 
 494   assert(code_offset() - offset <= deopt_handler_size, "overflow");
 495   __ end_a_stub();
 496 
 497   return offset;
 498 }
 499 
 500 
 501 // This is the fast version of java.lang.String.compare; it has not
 502 // OSR-entry and therefore, we generate a slow version for OSR's
 503 void LIR_Assembler::emit_string_compare(LIR_Opr arg0, LIR_Opr arg1, LIR_Opr dst, CodeEmitInfo* info) {
 504   __ movptr (rbx, rcx); // receiver is in rcx
 505   __ movptr (rax, arg1->as_register());
 506 
 507   // Get addresses of first characters from both Strings
 508   __ load_heap_oop(rsi, Address(rax, java_lang_String::value_offset_in_bytes()));
 509   __ movptr       (rcx, Address(rax, java_lang_String::offset_offset_in_bytes()));
 510   __ lea          (rsi, Address(rsi, rcx, Address::times_2, arrayOopDesc::base_offset_in_bytes(T_CHAR)));
 511 
 512 
 513   // rbx, may be NULL
 514   add_debug_info_for_null_check_here(info);
 515   __ load_heap_oop(rdi, Address(rbx, java_lang_String::value_offset_in_bytes()));
 516   __ movptr       (rcx, Address(rbx, java_lang_String::offset_offset_in_bytes()));
 517   __ lea          (rdi, Address(rdi, rcx, Address::times_2, arrayOopDesc::base_offset_in_bytes(T_CHAR)));
 518 
 519   // compute minimum length (in rax) and difference of lengths (on top of stack)
 520   __ movl  (rbx, Address(rbx, java_lang_String::count_offset_in_bytes()));
 521   __ movl  (rax, Address(rax, java_lang_String::count_offset_in_bytes()));
 522   __ mov   (rcx, rbx);
 523   __ subptr(rbx, rax); // subtract lengths
 524   __ push  (rbx);      // result
 525   __ cmov  (Assembler::lessEqual, rax, rcx);
 526 
 527   // is minimum length 0?
 528   Label noLoop, haveResult;
 529   __ testptr (rax, rax);
 530   __ jcc (Assembler::zero, noLoop);
 531 
 532   // compare first characters
 533   __ load_unsigned_short(rcx, Address(rdi, 0));
 534   __ load_unsigned_short(rbx, Address(rsi, 0));
 535   __ subl(rcx, rbx);
 536   __ jcc(Assembler::notZero, haveResult);
 537   // starting loop
 538   __ decrement(rax); // we already tested index: skip one
 539   __ jcc(Assembler::zero, noLoop);
 540 
 541   // set rsi.edi to the end of the arrays (arrays have same length)
 542   // negate the index
 543 
 544   __ lea(rsi, Address(rsi, rax, Address::times_2, type2aelembytes(T_CHAR)));
 545   __ lea(rdi, Address(rdi, rax, Address::times_2, type2aelembytes(T_CHAR)));
 546   __ negptr(rax);
 547 
 548   // compare the strings in a loop
 549 
 550   Label loop;
 551   __ align(wordSize);
 552   __ bind(loop);
 553   __ load_unsigned_short(rcx, Address(rdi, rax, Address::times_2, 0));
 554   __ load_unsigned_short(rbx, Address(rsi, rax, Address::times_2, 0));
 555   __ subl(rcx, rbx);
 556   __ jcc(Assembler::notZero, haveResult);
 557   __ increment(rax);
 558   __ jcc(Assembler::notZero, loop);
 559 
 560   // strings are equal up to min length
 561 
 562   __ bind(noLoop);
 563   __ pop(rax);
 564   return_op(LIR_OprFact::illegalOpr);
 565 
 566   __ bind(haveResult);
 567   // leave instruction is going to discard the TOS value
 568   __ mov (rax, rcx); // result of call is in rax,
 569 }
 570 
 571 
 572 void LIR_Assembler::return_op(LIR_Opr result) {
 573   assert(result->is_illegal() || !result->is_single_cpu() || result->as_register() == rax, "word returns are in rax,");
 574   if (!result->is_illegal() && result->is_float_kind() && !result->is_xmm_register()) {
 575     assert(result->fpu() == 0, "result must already be on TOS");
 576   }
 577 
 578   // Pop the stack before the safepoint code
 579   __ remove_frame(initial_frame_size_in_bytes());
 580 
 581   bool result_is_oop = result->is_valid() ? result->is_oop() : false;
 582 
 583   // Note: we do not need to round double result; float result has the right precision
 584   // the poll sets the condition code, but no data registers
 585   AddressLiteral polling_page(os::get_polling_page() + (SafepointPollOffset % os::vm_page_size()),
 586                               relocInfo::poll_return_type);
 587 
 588   if (Assembler::is_polling_page_far()) {
 589     __ lea(rscratch1, polling_page);
 590     __ relocate(relocInfo::poll_return_type);
 591     __ testl(rax, Address(rscratch1, 0));
 592   } else {
 593     __ testl(rax, polling_page);
 594   }
 595   __ ret(0);
 596 }
 597 
 598 
 599 int LIR_Assembler::safepoint_poll(LIR_Opr tmp, CodeEmitInfo* info) {
 600   AddressLiteral polling_page(os::get_polling_page() + (SafepointPollOffset % os::vm_page_size()),
 601                               relocInfo::poll_type);
 602   guarantee(info != NULL, "Shouldn't be NULL");
 603   int offset = __ offset();
 604   if (Assembler::is_polling_page_far()) {
 605     __ lea(rscratch1, polling_page);
 606     offset = __ offset();
 607     add_debug_info_for_branch(info);
 608     __ testl(rax, Address(rscratch1, 0));
 609   } else {
 610     add_debug_info_for_branch(info);
 611     __ testl(rax, polling_page);
 612   }
 613   return offset;
 614 }
 615 
 616 
 617 void LIR_Assembler::move_regs(Register from_reg, Register to_reg) {
 618   if (from_reg != to_reg) __ mov(to_reg, from_reg);
 619 }
 620 
 621 void LIR_Assembler::swap_reg(Register a, Register b) {
 622   __ xchgptr(a, b);
 623 }
 624 
 625 
 626 void LIR_Assembler::const2reg(LIR_Opr src, LIR_Opr dest, LIR_PatchCode patch_code, CodeEmitInfo* info) {
 627   assert(src->is_constant(), "should not call otherwise");
 628   assert(dest->is_register(), "should not call otherwise");
 629   LIR_Const* c = src->as_constant_ptr();
 630 
 631   switch (c->type()) {
 632     case T_INT: {
 633       assert(patch_code == lir_patch_none, "no patching handled here");
 634       __ movl(dest->as_register(), c->as_jint());
 635       break;
 636     }
 637 
 638     case T_ADDRESS: {
 639       assert(patch_code == lir_patch_none, "no patching handled here");
 640       __ movptr(dest->as_register(), c->as_jint());
 641       break;
 642     }
 643 
 644     case T_LONG: {
 645       assert(patch_code == lir_patch_none, "no patching handled here");
 646 #ifdef _LP64
 647       __ movptr(dest->as_register_lo(), (intptr_t)c->as_jlong());
 648 #else
 649       __ movptr(dest->as_register_lo(), c->as_jint_lo());
 650       __ movptr(dest->as_register_hi(), c->as_jint_hi());
 651 #endif // _LP64
 652       break;
 653     }
 654 
 655     case T_OBJECT: {
 656       if (patch_code != lir_patch_none) {
 657         jobject2reg_with_patching(dest->as_register(), info);
 658       } else {
 659         __ movoop(dest->as_register(), c->as_jobject());
 660       }
 661       break;
 662     }
 663 
 664     case T_FLOAT: {
 665       if (dest->is_single_xmm()) {
 666         if (c->is_zero_float()) {
 667           __ xorps(dest->as_xmm_float_reg(), dest->as_xmm_float_reg());
 668         } else {
 669           __ movflt(dest->as_xmm_float_reg(),
 670                    InternalAddress(float_constant(c->as_jfloat())));
 671         }
 672       } else {
 673         assert(dest->is_single_fpu(), "must be");
 674         assert(dest->fpu_regnr() == 0, "dest must be TOS");
 675         if (c->is_zero_float()) {
 676           __ fldz();
 677         } else if (c->is_one_float()) {
 678           __ fld1();
 679         } else {
 680           __ fld_s (InternalAddress(float_constant(c->as_jfloat())));
 681         }
 682       }
 683       break;
 684     }
 685 
 686     case T_DOUBLE: {
 687       if (dest->is_double_xmm()) {
 688         if (c->is_zero_double()) {
 689           __ xorpd(dest->as_xmm_double_reg(), dest->as_xmm_double_reg());
 690         } else {
 691           __ movdbl(dest->as_xmm_double_reg(),
 692                     InternalAddress(double_constant(c->as_jdouble())));
 693         }
 694       } else {
 695         assert(dest->is_double_fpu(), "must be");
 696         assert(dest->fpu_regnrLo() == 0, "dest must be TOS");
 697         if (c->is_zero_double()) {
 698           __ fldz();
 699         } else if (c->is_one_double()) {
 700           __ fld1();
 701         } else {
 702           __ fld_d (InternalAddress(double_constant(c->as_jdouble())));
 703         }
 704       }
 705       break;
 706     }
 707 
 708     default:
 709       ShouldNotReachHere();
 710   }
 711 }
 712 
 713 void LIR_Assembler::const2stack(LIR_Opr src, LIR_Opr dest) {
 714   assert(src->is_constant(), "should not call otherwise");
 715   assert(dest->is_stack(), "should not call otherwise");
 716   LIR_Const* c = src->as_constant_ptr();
 717 
 718   switch (c->type()) {
 719     case T_INT:  // fall through
 720     case T_FLOAT:
 721       __ movl(frame_map()->address_for_slot(dest->single_stack_ix()), c->as_jint_bits());
 722       break;
 723 
 724     case T_ADDRESS:
 725       __ movptr(frame_map()->address_for_slot(dest->single_stack_ix()), c->as_jint_bits());
 726       break;
 727 
 728     case T_OBJECT:
 729       __ movoop(frame_map()->address_for_slot(dest->single_stack_ix()), c->as_jobject());
 730       break;
 731 
 732     case T_LONG:  // fall through
 733     case T_DOUBLE:
 734 #ifdef _LP64
 735       __ movptr(frame_map()->address_for_slot(dest->double_stack_ix(),
 736                                             lo_word_offset_in_bytes), (intptr_t)c->as_jlong_bits());
 737 #else
 738       __ movptr(frame_map()->address_for_slot(dest->double_stack_ix(),
 739                                               lo_word_offset_in_bytes), c->as_jint_lo_bits());
 740       __ movptr(frame_map()->address_for_slot(dest->double_stack_ix(),
 741                                               hi_word_offset_in_bytes), c->as_jint_hi_bits());
 742 #endif // _LP64
 743       break;
 744 
 745     default:
 746       ShouldNotReachHere();
 747   }
 748 }
 749 
 750 void LIR_Assembler::const2mem(LIR_Opr src, LIR_Opr dest, BasicType type, CodeEmitInfo* info, bool wide) {
 751   assert(src->is_constant(), "should not call otherwise");
 752   assert(dest->is_address(), "should not call otherwise");
 753   LIR_Const* c = src->as_constant_ptr();
 754   LIR_Address* addr = dest->as_address_ptr();
 755 
 756   int null_check_here = code_offset();
 757   switch (type) {
 758     case T_INT:    // fall through
 759     case T_FLOAT:
 760       __ movl(as_Address(addr), c->as_jint_bits());
 761       break;
 762 
 763     case T_ADDRESS:
 764       __ movptr(as_Address(addr), c->as_jint_bits());
 765       break;
 766 
 767     case T_OBJECT:  // fall through
 768     case T_ARRAY:
 769       if (c->as_jobject() == NULL) {
 770         if (UseCompressedOops && !wide) {
 771           __ movl(as_Address(addr), (int32_t)NULL_WORD);
 772         } else {
 773           __ movptr(as_Address(addr), NULL_WORD);
 774         }
 775       } else {
 776         if (is_literal_address(addr)) {
 777           ShouldNotReachHere();
 778           __ movoop(as_Address(addr, noreg), c->as_jobject());
 779         } else {
 780 #ifdef _LP64
 781           __ movoop(rscratch1, c->as_jobject());
 782           if (UseCompressedOops && !wide) {
 783             __ encode_heap_oop(rscratch1);
 784             null_check_here = code_offset();
 785             __ movl(as_Address_lo(addr), rscratch1);
 786           } else {
 787             null_check_here = code_offset();
 788             __ movptr(as_Address_lo(addr), rscratch1);
 789           }
 790 #else
 791           __ movoop(as_Address(addr), c->as_jobject());
 792 #endif
 793         }
 794       }
 795       break;
 796 
 797     case T_LONG:    // fall through
 798     case T_DOUBLE:
 799 #ifdef _LP64
 800       if (is_literal_address(addr)) {
 801         ShouldNotReachHere();
 802         __ movptr(as_Address(addr, r15_thread), (intptr_t)c->as_jlong_bits());
 803       } else {
 804         __ movptr(r10, (intptr_t)c->as_jlong_bits());
 805         null_check_here = code_offset();
 806         __ movptr(as_Address_lo(addr), r10);
 807       }
 808 #else
 809       // Always reachable in 32bit so this doesn't produce useless move literal
 810       __ movptr(as_Address_hi(addr), c->as_jint_hi_bits());
 811       __ movptr(as_Address_lo(addr), c->as_jint_lo_bits());
 812 #endif // _LP64
 813       break;
 814 
 815     case T_BOOLEAN: // fall through
 816     case T_BYTE:
 817       __ movb(as_Address(addr), c->as_jint() & 0xFF);
 818       break;
 819 
 820     case T_CHAR:    // fall through
 821     case T_SHORT:
 822       __ movw(as_Address(addr), c->as_jint() & 0xFFFF);
 823       break;
 824 
 825     default:
 826       ShouldNotReachHere();
 827   };
 828 
 829   if (info != NULL) {
 830     add_debug_info_for_null_check(null_check_here, info);
 831   }
 832 }
 833 
 834 
 835 void LIR_Assembler::reg2reg(LIR_Opr src, LIR_Opr dest) {
 836   assert(src->is_register(), "should not call otherwise");
 837   assert(dest->is_register(), "should not call otherwise");
 838 
 839   // move between cpu-registers
 840   if (dest->is_single_cpu()) {
 841 #ifdef _LP64
 842     if (src->type() == T_LONG) {
 843       // Can do LONG -> OBJECT
 844       move_regs(src->as_register_lo(), dest->as_register());
 845       return;
 846     }
 847 #endif
 848     assert(src->is_single_cpu(), "must match");
 849     if (src->type() == T_OBJECT) {
 850       __ verify_oop(src->as_register());
 851     }
 852     move_regs(src->as_register(), dest->as_register());
 853 
 854   } else if (dest->is_double_cpu()) {
 855 #ifdef _LP64
 856     if (src->type() == T_OBJECT || src->type() == T_ARRAY) {
 857       // Surprising to me but we can see move of a long to t_object
 858       __ verify_oop(src->as_register());
 859       move_regs(src->as_register(), dest->as_register_lo());
 860       return;
 861     }
 862 #endif
 863     assert(src->is_double_cpu(), "must match");
 864     Register f_lo = src->as_register_lo();
 865     Register f_hi = src->as_register_hi();
 866     Register t_lo = dest->as_register_lo();
 867     Register t_hi = dest->as_register_hi();
 868 #ifdef _LP64
 869     assert(f_hi == f_lo, "must be same");
 870     assert(t_hi == t_lo, "must be same");
 871     move_regs(f_lo, t_lo);
 872 #else
 873     assert(f_lo != f_hi && t_lo != t_hi, "invalid register allocation");
 874 
 875 
 876     if (f_lo == t_hi && f_hi == t_lo) {
 877       swap_reg(f_lo, f_hi);
 878     } else if (f_hi == t_lo) {
 879       assert(f_lo != t_hi, "overwriting register");
 880       move_regs(f_hi, t_hi);
 881       move_regs(f_lo, t_lo);
 882     } else {
 883       assert(f_hi != t_lo, "overwriting register");
 884       move_regs(f_lo, t_lo);
 885       move_regs(f_hi, t_hi);
 886     }
 887 #endif // LP64
 888 
 889     // special moves from fpu-register to xmm-register
 890     // necessary for method results
 891   } else if (src->is_single_xmm() && !dest->is_single_xmm()) {
 892     __ movflt(Address(rsp, 0), src->as_xmm_float_reg());
 893     __ fld_s(Address(rsp, 0));
 894   } else if (src->is_double_xmm() && !dest->is_double_xmm()) {
 895     __ movdbl(Address(rsp, 0), src->as_xmm_double_reg());
 896     __ fld_d(Address(rsp, 0));
 897   } else if (dest->is_single_xmm() && !src->is_single_xmm()) {
 898     __ fstp_s(Address(rsp, 0));
 899     __ movflt(dest->as_xmm_float_reg(), Address(rsp, 0));
 900   } else if (dest->is_double_xmm() && !src->is_double_xmm()) {
 901     __ fstp_d(Address(rsp, 0));
 902     __ movdbl(dest->as_xmm_double_reg(), Address(rsp, 0));
 903 
 904     // move between xmm-registers
 905   } else if (dest->is_single_xmm()) {
 906     assert(src->is_single_xmm(), "must match");
 907     __ movflt(dest->as_xmm_float_reg(), src->as_xmm_float_reg());
 908   } else if (dest->is_double_xmm()) {
 909     assert(src->is_double_xmm(), "must match");
 910     __ movdbl(dest->as_xmm_double_reg(), src->as_xmm_double_reg());
 911 
 912     // move between fpu-registers (no instruction necessary because of fpu-stack)
 913   } else if (dest->is_single_fpu() || dest->is_double_fpu()) {
 914     assert(src->is_single_fpu() || src->is_double_fpu(), "must match");
 915     assert(src->fpu() == dest->fpu(), "currently should be nothing to do");
 916   } else {
 917     ShouldNotReachHere();
 918   }
 919 }
 920 
 921 void LIR_Assembler::reg2stack(LIR_Opr src, LIR_Opr dest, BasicType type, bool pop_fpu_stack) {
 922   assert(src->is_register(), "should not call otherwise");
 923   assert(dest->is_stack(), "should not call otherwise");
 924 
 925   if (src->is_single_cpu()) {
 926     Address dst = frame_map()->address_for_slot(dest->single_stack_ix());
 927     if (type == T_OBJECT || type == T_ARRAY) {
 928       __ verify_oop(src->as_register());
 929       __ movptr (dst, src->as_register());
 930     } else {
 931       __ movl (dst, src->as_register());
 932     }
 933 
 934   } else if (src->is_double_cpu()) {
 935     Address dstLO = frame_map()->address_for_slot(dest->double_stack_ix(), lo_word_offset_in_bytes);
 936     Address dstHI = frame_map()->address_for_slot(dest->double_stack_ix(), hi_word_offset_in_bytes);
 937     __ movptr (dstLO, src->as_register_lo());
 938     NOT_LP64(__ movptr (dstHI, src->as_register_hi()));
 939 
 940   } else if (src->is_single_xmm()) {
 941     Address dst_addr = frame_map()->address_for_slot(dest->single_stack_ix());
 942     __ movflt(dst_addr, src->as_xmm_float_reg());
 943 
 944   } else if (src->is_double_xmm()) {
 945     Address dst_addr = frame_map()->address_for_slot(dest->double_stack_ix());
 946     __ movdbl(dst_addr, src->as_xmm_double_reg());
 947 
 948   } else if (src->is_single_fpu()) {
 949     assert(src->fpu_regnr() == 0, "argument must be on TOS");
 950     Address dst_addr = frame_map()->address_for_slot(dest->single_stack_ix());
 951     if (pop_fpu_stack)     __ fstp_s (dst_addr);
 952     else                   __ fst_s  (dst_addr);
 953 
 954   } else if (src->is_double_fpu()) {
 955     assert(src->fpu_regnrLo() == 0, "argument must be on TOS");
 956     Address dst_addr = frame_map()->address_for_slot(dest->double_stack_ix());
 957     if (pop_fpu_stack)     __ fstp_d (dst_addr);
 958     else                   __ fst_d  (dst_addr);
 959 
 960   } else {
 961     ShouldNotReachHere();
 962   }
 963 }
 964 
 965 
 966 void LIR_Assembler::reg2mem(LIR_Opr src, LIR_Opr dest, BasicType type, LIR_PatchCode patch_code, CodeEmitInfo* info, bool pop_fpu_stack, bool wide, bool /* unaligned */) {
 967   LIR_Address* to_addr = dest->as_address_ptr();
 968   PatchingStub* patch = NULL;
 969   Register compressed_src = rscratch1;
 970 
 971   if (type == T_ARRAY || type == T_OBJECT) {
 972     __ verify_oop(src->as_register());
 973 #ifdef _LP64
 974     if (UseCompressedOops && !wide) {
 975       __ movptr(compressed_src, src->as_register());
 976       __ encode_heap_oop(compressed_src);
 977     }
 978 #endif
 979   }
 980 
 981   if (patch_code != lir_patch_none) {
 982     patch = new PatchingStub(_masm, PatchingStub::access_field_id);
 983     Address toa = as_Address(to_addr);
 984     assert(toa.disp() != 0, "must have");
 985   }
 986 
 987   int null_check_here = code_offset();
 988   switch (type) {
 989     case T_FLOAT: {
 990       if (src->is_single_xmm()) {
 991         __ movflt(as_Address(to_addr), src->as_xmm_float_reg());
 992       } else {
 993         assert(src->is_single_fpu(), "must be");
 994         assert(src->fpu_regnr() == 0, "argument must be on TOS");
 995         if (pop_fpu_stack)      __ fstp_s(as_Address(to_addr));
 996         else                    __ fst_s (as_Address(to_addr));
 997       }
 998       break;
 999     }
1000 
1001     case T_DOUBLE: {
1002       if (src->is_double_xmm()) {
1003         __ movdbl(as_Address(to_addr), src->as_xmm_double_reg());
1004       } else {
1005         assert(src->is_double_fpu(), "must be");
1006         assert(src->fpu_regnrLo() == 0, "argument must be on TOS");
1007         if (pop_fpu_stack)      __ fstp_d(as_Address(to_addr));
1008         else                    __ fst_d (as_Address(to_addr));
1009       }
1010       break;
1011     }
1012 
1013     case T_ARRAY:   // fall through
1014     case T_OBJECT:  // fall through
1015       if (UseCompressedOops && !wide) {
1016         __ movl(as_Address(to_addr), compressed_src);
1017       } else {
1018         __ movptr(as_Address(to_addr), src->as_register());
1019       }
1020       break;
1021     case T_ADDRESS:
1022       __ movptr(as_Address(to_addr), src->as_register());
1023       break;
1024     case T_INT:
1025       __ movl(as_Address(to_addr), src->as_register());
1026       break;
1027 
1028     case T_LONG: {
1029       Register from_lo = src->as_register_lo();
1030       Register from_hi = src->as_register_hi();
1031 #ifdef _LP64
1032       __ movptr(as_Address_lo(to_addr), from_lo);
1033 #else
1034       Register base = to_addr->base()->as_register();
1035       Register index = noreg;
1036       if (to_addr->index()->is_register()) {
1037         index = to_addr->index()->as_register();
1038       }
1039       if (base == from_lo || index == from_lo) {
1040         assert(base != from_hi, "can't be");
1041         assert(index == noreg || (index != base && index != from_hi), "can't handle this");
1042         __ movl(as_Address_hi(to_addr), from_hi);
1043         if (patch != NULL) {
1044           patching_epilog(patch, lir_patch_high, base, info);
1045           patch = new PatchingStub(_masm, PatchingStub::access_field_id);
1046           patch_code = lir_patch_low;
1047         }
1048         __ movl(as_Address_lo(to_addr), from_lo);
1049       } else {
1050         assert(index == noreg || (index != base && index != from_lo), "can't handle this");
1051         __ movl(as_Address_lo(to_addr), from_lo);
1052         if (patch != NULL) {
1053           patching_epilog(patch, lir_patch_low, base, info);
1054           patch = new PatchingStub(_masm, PatchingStub::access_field_id);
1055           patch_code = lir_patch_high;
1056         }
1057         __ movl(as_Address_hi(to_addr), from_hi);
1058       }
1059 #endif // _LP64
1060       break;
1061     }
1062 
1063     case T_BYTE:    // fall through
1064     case T_BOOLEAN: {
1065       Register src_reg = src->as_register();
1066       Address dst_addr = as_Address(to_addr);
1067       assert(VM_Version::is_P6() || src_reg->has_byte_register(), "must use byte registers if not P6");
1068       __ movb(dst_addr, src_reg);
1069       break;
1070     }
1071 
1072     case T_CHAR:    // fall through
1073     case T_SHORT:
1074       __ movw(as_Address(to_addr), src->as_register());
1075       break;
1076 
1077     default:
1078       ShouldNotReachHere();
1079   }
1080   if (info != NULL) {
1081     add_debug_info_for_null_check(null_check_here, info);
1082   }
1083 
1084   if (patch_code != lir_patch_none) {
1085     patching_epilog(patch, patch_code, to_addr->base()->as_register(), info);
1086   }
1087 }
1088 
1089 
1090 void LIR_Assembler::stack2reg(LIR_Opr src, LIR_Opr dest, BasicType type) {
1091   assert(src->is_stack(), "should not call otherwise");
1092   assert(dest->is_register(), "should not call otherwise");
1093 
1094   if (dest->is_single_cpu()) {
1095     if (type == T_ARRAY || type == T_OBJECT) {
1096       __ movptr(dest->as_register(), frame_map()->address_for_slot(src->single_stack_ix()));
1097       __ verify_oop(dest->as_register());
1098     } else {
1099       __ movl(dest->as_register(), frame_map()->address_for_slot(src->single_stack_ix()));
1100     }
1101 
1102   } else if (dest->is_double_cpu()) {
1103     Address src_addr_LO = frame_map()->address_for_slot(src->double_stack_ix(), lo_word_offset_in_bytes);
1104     Address src_addr_HI = frame_map()->address_for_slot(src->double_stack_ix(), hi_word_offset_in_bytes);
1105     __ movptr(dest->as_register_lo(), src_addr_LO);
1106     NOT_LP64(__ movptr(dest->as_register_hi(), src_addr_HI));
1107 
1108   } else if (dest->is_single_xmm()) {
1109     Address src_addr = frame_map()->address_for_slot(src->single_stack_ix());
1110     __ movflt(dest->as_xmm_float_reg(), src_addr);
1111 
1112   } else if (dest->is_double_xmm()) {
1113     Address src_addr = frame_map()->address_for_slot(src->double_stack_ix());
1114     __ movdbl(dest->as_xmm_double_reg(), src_addr);
1115 
1116   } else if (dest->is_single_fpu()) {
1117     assert(dest->fpu_regnr() == 0, "dest must be TOS");
1118     Address src_addr = frame_map()->address_for_slot(src->single_stack_ix());
1119     __ fld_s(src_addr);
1120 
1121   } else if (dest->is_double_fpu()) {
1122     assert(dest->fpu_regnrLo() == 0, "dest must be TOS");
1123     Address src_addr = frame_map()->address_for_slot(src->double_stack_ix());
1124     __ fld_d(src_addr);
1125 
1126   } else {
1127     ShouldNotReachHere();
1128   }
1129 }
1130 
1131 
1132 void LIR_Assembler::stack2stack(LIR_Opr src, LIR_Opr dest, BasicType type) {
1133   if (src->is_single_stack()) {
1134     if (type == T_OBJECT || type == T_ARRAY) {
1135       __ pushptr(frame_map()->address_for_slot(src ->single_stack_ix()));
1136       __ popptr (frame_map()->address_for_slot(dest->single_stack_ix()));
1137     } else {
1138 #ifndef _LP64
1139       __ pushl(frame_map()->address_for_slot(src ->single_stack_ix()));
1140       __ popl (frame_map()->address_for_slot(dest->single_stack_ix()));
1141 #else
1142       //no pushl on 64bits
1143       __ movl(rscratch1, frame_map()->address_for_slot(src ->single_stack_ix()));
1144       __ movl(frame_map()->address_for_slot(dest->single_stack_ix()), rscratch1);
1145 #endif
1146     }
1147 
1148   } else if (src->is_double_stack()) {
1149 #ifdef _LP64
1150     __ pushptr(frame_map()->address_for_slot(src ->double_stack_ix()));
1151     __ popptr (frame_map()->address_for_slot(dest->double_stack_ix()));
1152 #else
1153     __ pushl(frame_map()->address_for_slot(src ->double_stack_ix(), 0));
1154     // push and pop the part at src + wordSize, adding wordSize for the previous push
1155     __ pushl(frame_map()->address_for_slot(src ->double_stack_ix(), 2 * wordSize));
1156     __ popl (frame_map()->address_for_slot(dest->double_stack_ix(), 2 * wordSize));
1157     __ popl (frame_map()->address_for_slot(dest->double_stack_ix(), 0));
1158 #endif // _LP64
1159 
1160   } else {
1161     ShouldNotReachHere();
1162   }
1163 }
1164 
1165 
1166 void LIR_Assembler::mem2reg(LIR_Opr src, LIR_Opr dest, BasicType type, LIR_PatchCode patch_code, CodeEmitInfo* info, bool wide, bool /* unaligned */) {
1167   assert(src->is_address(), "should not call otherwise");
1168   assert(dest->is_register(), "should not call otherwise");
1169 
1170   LIR_Address* addr = src->as_address_ptr();
1171   Address from_addr = as_Address(addr);
1172 
1173   switch (type) {
1174     case T_BOOLEAN: // fall through
1175     case T_BYTE:    // fall through
1176     case T_CHAR:    // fall through
1177     case T_SHORT:
1178       if (!VM_Version::is_P6() && !from_addr.uses(dest->as_register())) {
1179         // on pre P6 processors we may get partial register stalls
1180         // so blow away the value of to_rinfo before loading a
1181         // partial word into it.  Do it here so that it precedes
1182         // the potential patch point below.
1183         __ xorptr(dest->as_register(), dest->as_register());
1184       }
1185       break;
1186   }
1187 
1188   PatchingStub* patch = NULL;
1189   if (patch_code != lir_patch_none) {
1190     patch = new PatchingStub(_masm, PatchingStub::access_field_id);
1191     assert(from_addr.disp() != 0, "must have");
1192   }
1193   if (info != NULL) {
1194     add_debug_info_for_null_check_here(info);
1195   }
1196 
1197   switch (type) {
1198     case T_FLOAT: {
1199       if (dest->is_single_xmm()) {
1200         __ movflt(dest->as_xmm_float_reg(), from_addr);
1201       } else {
1202         assert(dest->is_single_fpu(), "must be");
1203         assert(dest->fpu_regnr() == 0, "dest must be TOS");
1204         __ fld_s(from_addr);
1205       }
1206       break;
1207     }
1208 
1209     case T_DOUBLE: {
1210       if (dest->is_double_xmm()) {
1211         __ movdbl(dest->as_xmm_double_reg(), from_addr);
1212       } else {
1213         assert(dest->is_double_fpu(), "must be");
1214         assert(dest->fpu_regnrLo() == 0, "dest must be TOS");
1215         __ fld_d(from_addr);
1216       }
1217       break;
1218     }
1219 
1220     case T_OBJECT:  // fall through
1221     case T_ARRAY:   // fall through
1222       if (UseCompressedOops && !wide) {
1223         __ movl(dest->as_register(), from_addr);
1224       } else {
1225         __ movptr(dest->as_register(), from_addr);
1226       }
1227       break;
1228 
1229     case T_ADDRESS:
1230       __ movptr(dest->as_register(), from_addr);
1231       break;
1232     case T_INT:
1233       __ movl(dest->as_register(), from_addr);
1234       break;
1235 
1236     case T_LONG: {
1237       Register to_lo = dest->as_register_lo();
1238       Register to_hi = dest->as_register_hi();
1239 #ifdef _LP64
1240       __ movptr(to_lo, as_Address_lo(addr));
1241 #else
1242       Register base = addr->base()->as_register();
1243       Register index = noreg;
1244       if (addr->index()->is_register()) {
1245         index = addr->index()->as_register();
1246       }
1247       if ((base == to_lo && index == to_hi) ||
1248           (base == to_hi && index == to_lo)) {
1249         // addresses with 2 registers are only formed as a result of
1250         // array access so this code will never have to deal with
1251         // patches or null checks.
1252         assert(info == NULL && patch == NULL, "must be");
1253         __ lea(to_hi, as_Address(addr));
1254         __ movl(to_lo, Address(to_hi, 0));
1255         __ movl(to_hi, Address(to_hi, BytesPerWord));
1256       } else if (base == to_lo || index == to_lo) {
1257         assert(base != to_hi, "can't be");
1258         assert(index == noreg || (index != base && index != to_hi), "can't handle this");
1259         __ movl(to_hi, as_Address_hi(addr));
1260         if (patch != NULL) {
1261           patching_epilog(patch, lir_patch_high, base, info);
1262           patch = new PatchingStub(_masm, PatchingStub::access_field_id);
1263           patch_code = lir_patch_low;
1264         }
1265         __ movl(to_lo, as_Address_lo(addr));
1266       } else {
1267         assert(index == noreg || (index != base && index != to_lo), "can't handle this");
1268         __ movl(to_lo, as_Address_lo(addr));
1269         if (patch != NULL) {
1270           patching_epilog(patch, lir_patch_low, base, info);
1271           patch = new PatchingStub(_masm, PatchingStub::access_field_id);
1272           patch_code = lir_patch_high;
1273         }
1274         __ movl(to_hi, as_Address_hi(addr));
1275       }
1276 #endif // _LP64
1277       break;
1278     }
1279 
1280     case T_BOOLEAN: // fall through
1281     case T_BYTE: {
1282       Register dest_reg = dest->as_register();
1283       assert(VM_Version::is_P6() || dest_reg->has_byte_register(), "must use byte registers if not P6");
1284       if (VM_Version::is_P6() || from_addr.uses(dest_reg)) {
1285         __ movsbl(dest_reg, from_addr);
1286       } else {
1287         __ movb(dest_reg, from_addr);
1288         __ shll(dest_reg, 24);
1289         __ sarl(dest_reg, 24);
1290       }
1291       break;
1292     }
1293 
1294     case T_CHAR: {
1295       Register dest_reg = dest->as_register();
1296       assert(VM_Version::is_P6() || dest_reg->has_byte_register(), "must use byte registers if not P6");
1297       if (VM_Version::is_P6() || from_addr.uses(dest_reg)) {
1298         __ movzwl(dest_reg, from_addr);
1299       } else {
1300         __ movw(dest_reg, from_addr);
1301       }
1302       break;
1303     }
1304 
1305     case T_SHORT: {
1306       Register dest_reg = dest->as_register();
1307       if (VM_Version::is_P6() || from_addr.uses(dest_reg)) {
1308         __ movswl(dest_reg, from_addr);
1309       } else {
1310         __ movw(dest_reg, from_addr);
1311         __ shll(dest_reg, 16);
1312         __ sarl(dest_reg, 16);
1313       }
1314       break;
1315     }
1316 
1317     default:
1318       ShouldNotReachHere();
1319   }
1320 
1321   if (patch != NULL) {
1322     patching_epilog(patch, patch_code, addr->base()->as_register(), info);
1323   }
1324 
1325   if (type == T_ARRAY || type == T_OBJECT) {
1326 #ifdef _LP64
1327     if (UseCompressedOops && !wide) {
1328       __ decode_heap_oop(dest->as_register());
1329     }
1330 #endif
1331     __ verify_oop(dest->as_register());
1332   }
1333 }
1334 
1335 
1336 void LIR_Assembler::prefetchr(LIR_Opr src) {
1337   LIR_Address* addr = src->as_address_ptr();
1338   Address from_addr = as_Address(addr);
1339 
1340   if (VM_Version::supports_sse()) {
1341     switch (ReadPrefetchInstr) {
1342       case 0:
1343         __ prefetchnta(from_addr); break;
1344       case 1:
1345         __ prefetcht0(from_addr); break;
1346       case 2:
1347         __ prefetcht2(from_addr); break;
1348       default:
1349         ShouldNotReachHere(); break;
1350     }
1351   } else if (VM_Version::supports_3dnow_prefetch()) {
1352     __ prefetchr(from_addr);
1353   }
1354 }
1355 
1356 
1357 void LIR_Assembler::prefetchw(LIR_Opr src) {
1358   LIR_Address* addr = src->as_address_ptr();
1359   Address from_addr = as_Address(addr);
1360 
1361   if (VM_Version::supports_sse()) {
1362     switch (AllocatePrefetchInstr) {
1363       case 0:
1364         __ prefetchnta(from_addr); break;
1365       case 1:
1366         __ prefetcht0(from_addr); break;
1367       case 2:
1368         __ prefetcht2(from_addr); break;
1369       case 3:
1370         __ prefetchw(from_addr); break;
1371       default:
1372         ShouldNotReachHere(); break;
1373     }
1374   } else if (VM_Version::supports_3dnow_prefetch()) {
1375     __ prefetchw(from_addr);
1376   }
1377 }
1378 
1379 
1380 NEEDS_CLEANUP; // This could be static?
1381 Address::ScaleFactor LIR_Assembler::array_element_size(BasicType type) const {
1382   int elem_size = type2aelembytes(type);
1383   switch (elem_size) {
1384     case 1: return Address::times_1;
1385     case 2: return Address::times_2;
1386     case 4: return Address::times_4;
1387     case 8: return Address::times_8;
1388   }
1389   ShouldNotReachHere();
1390   return Address::no_scale;
1391 }
1392 
1393 
1394 void LIR_Assembler::emit_op3(LIR_Op3* op) {
1395   switch (op->code()) {
1396     case lir_idiv:
1397     case lir_irem:
1398       arithmetic_idiv(op->code(),
1399                       op->in_opr1(),
1400                       op->in_opr2(),
1401                       op->in_opr3(),
1402                       op->result_opr(),
1403                       op->info());
1404       break;
1405     default:      ShouldNotReachHere(); break;
1406   }
1407 }
1408 
1409 void LIR_Assembler::emit_opBranch(LIR_OpBranch* op) {
1410 #ifdef ASSERT
1411   assert(op->block() == NULL || op->block()->label() == op->label(), "wrong label");
1412   if (op->block() != NULL)  _branch_target_blocks.append(op->block());
1413   if (op->ublock() != NULL) _branch_target_blocks.append(op->ublock());
1414 #endif
1415 
1416   if (op->cond() == lir_cond_always) {
1417     if (op->info() != NULL) add_debug_info_for_branch(op->info());
1418     __ jmp (*(op->label()));
1419   } else {
1420     Assembler::Condition acond = Assembler::zero;
1421     if (op->code() == lir_cond_float_branch) {
1422       assert(op->ublock() != NULL, "must have unordered successor");
1423       __ jcc(Assembler::parity, *(op->ublock()->label()));
1424       switch(op->cond()) {
1425         case lir_cond_equal:        acond = Assembler::equal;      break;
1426         case lir_cond_notEqual:     acond = Assembler::notEqual;   break;
1427         case lir_cond_less:         acond = Assembler::below;      break;
1428         case lir_cond_lessEqual:    acond = Assembler::belowEqual; break;
1429         case lir_cond_greaterEqual: acond = Assembler::aboveEqual; break;
1430         case lir_cond_greater:      acond = Assembler::above;      break;
1431         default:                         ShouldNotReachHere();
1432       }
1433     } else {
1434       switch (op->cond()) {
1435         case lir_cond_equal:        acond = Assembler::equal;       break;
1436         case lir_cond_notEqual:     acond = Assembler::notEqual;    break;
1437         case lir_cond_less:         acond = Assembler::less;        break;
1438         case lir_cond_lessEqual:    acond = Assembler::lessEqual;   break;
1439         case lir_cond_greaterEqual: acond = Assembler::greaterEqual;break;
1440         case lir_cond_greater:      acond = Assembler::greater;     break;
1441         case lir_cond_belowEqual:   acond = Assembler::belowEqual;  break;
1442         case lir_cond_aboveEqual:   acond = Assembler::aboveEqual;  break;
1443         default:                         ShouldNotReachHere();
1444       }
1445     }
1446     __ jcc(acond,*(op->label()));
1447   }
1448 }
1449 
1450 void LIR_Assembler::emit_opConvert(LIR_OpConvert* op) {
1451   LIR_Opr src  = op->in_opr();
1452   LIR_Opr dest = op->result_opr();
1453 
1454   switch (op->bytecode()) {
1455     case Bytecodes::_i2l:
1456 #ifdef _LP64
1457       __ movl2ptr(dest->as_register_lo(), src->as_register());
1458 #else
1459       move_regs(src->as_register(), dest->as_register_lo());
1460       move_regs(src->as_register(), dest->as_register_hi());
1461       __ sarl(dest->as_register_hi(), 31);
1462 #endif // LP64
1463       break;
1464 
1465     case Bytecodes::_l2i:
1466       move_regs(src->as_register_lo(), dest->as_register());
1467       break;
1468 
1469     case Bytecodes::_i2b:
1470       move_regs(src->as_register(), dest->as_register());
1471       __ sign_extend_byte(dest->as_register());
1472       break;
1473 
1474     case Bytecodes::_i2c:
1475       move_regs(src->as_register(), dest->as_register());
1476       __ andl(dest->as_register(), 0xFFFF);
1477       break;
1478 
1479     case Bytecodes::_i2s:
1480       move_regs(src->as_register(), dest->as_register());
1481       __ sign_extend_short(dest->as_register());
1482       break;
1483 
1484 
1485     case Bytecodes::_f2d:
1486     case Bytecodes::_d2f:
1487       if (dest->is_single_xmm()) {
1488         __ cvtsd2ss(dest->as_xmm_float_reg(), src->as_xmm_double_reg());
1489       } else if (dest->is_double_xmm()) {
1490         __ cvtss2sd(dest->as_xmm_double_reg(), src->as_xmm_float_reg());
1491       } else {
1492         assert(src->fpu() == dest->fpu(), "register must be equal");
1493         // do nothing (float result is rounded later through spilling)
1494       }
1495       break;
1496 
1497     case Bytecodes::_i2f:
1498     case Bytecodes::_i2d:
1499       if (dest->is_single_xmm()) {
1500         __ cvtsi2ssl(dest->as_xmm_float_reg(), src->as_register());
1501       } else if (dest->is_double_xmm()) {
1502         __ cvtsi2sdl(dest->as_xmm_double_reg(), src->as_register());
1503       } else {
1504         assert(dest->fpu() == 0, "result must be on TOS");
1505         __ movl(Address(rsp, 0), src->as_register());
1506         __ fild_s(Address(rsp, 0));
1507       }
1508       break;
1509 
1510     case Bytecodes::_f2i:
1511     case Bytecodes::_d2i:
1512       if (src->is_single_xmm()) {
1513         __ cvttss2sil(dest->as_register(), src->as_xmm_float_reg());
1514       } else if (src->is_double_xmm()) {
1515         __ cvttsd2sil(dest->as_register(), src->as_xmm_double_reg());
1516       } else {
1517         assert(src->fpu() == 0, "input must be on TOS");
1518         __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_trunc()));
1519         __ fist_s(Address(rsp, 0));
1520         __ movl(dest->as_register(), Address(rsp, 0));
1521         __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
1522       }
1523 
1524       // IA32 conversion instructions do not match JLS for overflow, underflow and NaN -> fixup in stub
1525       assert(op->stub() != NULL, "stub required");
1526       __ cmpl(dest->as_register(), 0x80000000);
1527       __ jcc(Assembler::equal, *op->stub()->entry());
1528       __ bind(*op->stub()->continuation());
1529       break;
1530 
1531     case Bytecodes::_l2f:
1532     case Bytecodes::_l2d:
1533       assert(!dest->is_xmm_register(), "result in xmm register not supported (no SSE instruction present)");
1534       assert(dest->fpu() == 0, "result must be on TOS");
1535 
1536       __ movptr(Address(rsp, 0),            src->as_register_lo());
1537       NOT_LP64(__ movl(Address(rsp, BytesPerWord), src->as_register_hi()));
1538       __ fild_d(Address(rsp, 0));
1539       // float result is rounded later through spilling
1540       break;
1541 
1542     case Bytecodes::_f2l:
1543     case Bytecodes::_d2l:
1544       assert(!src->is_xmm_register(), "input in xmm register not supported (no SSE instruction present)");
1545       assert(src->fpu() == 0, "input must be on TOS");
1546       assert(dest == FrameMap::long0_opr, "runtime stub places result in these registers");
1547 
1548       // instruction sequence too long to inline it here
1549       {
1550         __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::fpu2long_stub_id)));
1551       }
1552       break;
1553 
1554     default: ShouldNotReachHere();
1555   }
1556 }
1557 
1558 void LIR_Assembler::emit_alloc_obj(LIR_OpAllocObj* op) {
1559   if (op->init_check()) {
1560     __ cmpl(Address(op->klass()->as_register(),
1561                     instanceKlass::init_state_offset_in_bytes() + sizeof(oopDesc)),
1562             instanceKlass::fully_initialized);
1563     add_debug_info_for_null_check_here(op->stub()->info());
1564     __ jcc(Assembler::notEqual, *op->stub()->entry());
1565   }
1566   __ allocate_object(op->obj()->as_register(),
1567                      op->tmp1()->as_register(),
1568                      op->tmp2()->as_register(),
1569                      op->header_size(),
1570                      op->object_size(),
1571                      op->klass()->as_register(),
1572                      *op->stub()->entry());
1573   __ bind(*op->stub()->continuation());
1574 }
1575 
1576 void LIR_Assembler::emit_alloc_array(LIR_OpAllocArray* op) {
1577   Register len =  op->len()->as_register();
1578   LP64_ONLY( __ movslq(len, len); )
1579 
1580   if (UseSlowPath ||
1581       (!UseFastNewObjectArray && (op->type() == T_OBJECT || op->type() == T_ARRAY)) ||
1582       (!UseFastNewTypeArray   && (op->type() != T_OBJECT && op->type() != T_ARRAY))) {
1583     __ jmp(*op->stub()->entry());
1584   } else {
1585     Register tmp1 = op->tmp1()->as_register();
1586     Register tmp2 = op->tmp2()->as_register();
1587     Register tmp3 = op->tmp3()->as_register();
1588     if (len == tmp1) {
1589       tmp1 = tmp3;
1590     } else if (len == tmp2) {
1591       tmp2 = tmp3;
1592     } else if (len == tmp3) {
1593       // everything is ok
1594     } else {
1595       __ mov(tmp3, len);
1596     }
1597     __ allocate_array(op->obj()->as_register(),
1598                       len,
1599                       tmp1,
1600                       tmp2,
1601                       arrayOopDesc::header_size(op->type()),
1602                       array_element_size(op->type()),
1603                       op->klass()->as_register(),
1604                       *op->stub()->entry());
1605   }
1606   __ bind(*op->stub()->continuation());
1607 }
1608 
1609 void LIR_Assembler::type_profile_helper(Register mdo,
1610                                         ciMethodData *md, ciProfileData *data,
1611                                         Register recv, Label* update_done) {
1612   for (uint i = 0; i < ReceiverTypeData::row_limit(); i++) {
1613     Label next_test;
1614     // See if the receiver is receiver[n].
1615     __ cmpptr(recv, Address(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_offset(i))));
1616     __ jccb(Assembler::notEqual, next_test);
1617     Address data_addr(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_count_offset(i)));
1618     __ addptr(data_addr, DataLayout::counter_increment);
1619     __ jmp(*update_done);
1620     __ bind(next_test);
1621   }
1622 
1623   // Didn't find receiver; find next empty slot and fill it in
1624   for (uint i = 0; i < ReceiverTypeData::row_limit(); i++) {
1625     Label next_test;
1626     Address recv_addr(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_offset(i)));
1627     __ cmpptr(recv_addr, (intptr_t)NULL_WORD);
1628     __ jccb(Assembler::notEqual, next_test);
1629     __ movptr(recv_addr, recv);
1630     __ movptr(Address(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_count_offset(i))), DataLayout::counter_increment);
1631     __ jmp(*update_done);
1632     __ bind(next_test);
1633   }
1634 }
1635 
1636 void LIR_Assembler::emit_typecheck_helper(LIR_OpTypeCheck *op, Label* success, Label* failure, Label* obj_is_null) {
1637   // we always need a stub for the failure case.
1638   CodeStub* stub = op->stub();
1639   Register obj = op->object()->as_register();
1640   Register k_RInfo = op->tmp1()->as_register();
1641   Register klass_RInfo = op->tmp2()->as_register();
1642   Register dst = op->result_opr()->as_register();
1643   ciKlass* k = op->klass();
1644   Register Rtmp1 = noreg;
1645 
1646   // check if it needs to be profiled
1647   ciMethodData* md;
1648   ciProfileData* data;
1649 
1650   if (op->should_profile()) {
1651     ciMethod* method = op->profiled_method();
1652     assert(method != NULL, "Should have method");
1653     int bci = op->profiled_bci();
1654     md = method->method_data_or_null();
1655     assert(md != NULL, "Sanity");
1656     data = md->bci_to_data(bci);
1657     assert(data != NULL,                "need data for type check");
1658     assert(data->is_ReceiverTypeData(), "need ReceiverTypeData for type check");
1659   }
1660   Label profile_cast_success, profile_cast_failure;
1661   Label *success_target = op->should_profile() ? &profile_cast_success : success;
1662   Label *failure_target = op->should_profile() ? &profile_cast_failure : failure;
1663 
1664   if (obj == k_RInfo) {
1665     k_RInfo = dst;
1666   } else if (obj == klass_RInfo) {
1667     klass_RInfo = dst;
1668   }
1669   if (k->is_loaded() && !UseCompressedOops) {
1670     select_different_registers(obj, dst, k_RInfo, klass_RInfo);
1671   } else {
1672     Rtmp1 = op->tmp3()->as_register();
1673     select_different_registers(obj, dst, k_RInfo, klass_RInfo, Rtmp1);
1674   }
1675 
1676   assert_different_registers(obj, k_RInfo, klass_RInfo);
1677   if (!k->is_loaded()) {
1678     jobject2reg_with_patching(k_RInfo, op->info_for_patch());
1679   } else {
1680 #ifdef _LP64
1681     __ movoop(k_RInfo, k->constant_encoding());
1682 #endif // _LP64
1683   }
1684   assert(obj != k_RInfo, "must be different");
1685 
1686   __ cmpptr(obj, (int32_t)NULL_WORD);
1687   if (op->should_profile()) {
1688     Label not_null;
1689     __ jccb(Assembler::notEqual, not_null);
1690     // Object is null; update MDO and exit
1691     Register mdo  = klass_RInfo;
1692     __ movoop(mdo, md->constant_encoding());
1693     Address data_addr(mdo, md->byte_offset_of_slot(data, DataLayout::header_offset()));
1694     int header_bits = DataLayout::flag_mask_to_header_mask(BitData::null_seen_byte_constant());
1695     __ orl(data_addr, header_bits);
1696     __ jmp(*obj_is_null);
1697     __ bind(not_null);
1698   } else {
1699     __ jcc(Assembler::equal, *obj_is_null);
1700   }
1701   __ verify_oop(obj);
1702 
1703   if (op->fast_check()) {
1704     // get object class
1705     // not a safepoint as obj null check happens earlier
1706 #ifdef _LP64
1707     if (UseCompressedOops) {
1708       __ load_klass(Rtmp1, obj);
1709       __ cmpptr(k_RInfo, Rtmp1);
1710     } else {
1711       __ cmpptr(k_RInfo, Address(obj, oopDesc::klass_offset_in_bytes()));
1712     }
1713 #else
1714     if (k->is_loaded()) {
1715       __ cmpoop(Address(obj, oopDesc::klass_offset_in_bytes()), k->constant_encoding());
1716     } else {
1717       __ cmpptr(k_RInfo, Address(obj, oopDesc::klass_offset_in_bytes()));
1718     }
1719 #endif
1720     __ jcc(Assembler::notEqual, *failure_target);
1721     // successful cast, fall through to profile or jump
1722   } else {
1723     // get object class
1724     // not a safepoint as obj null check happens earlier
1725     __ load_klass(klass_RInfo, obj);
1726     if (k->is_loaded()) {
1727       // See if we get an immediate positive hit
1728 #ifdef _LP64
1729       __ cmpptr(k_RInfo, Address(klass_RInfo, k->super_check_offset()));
1730 #else
1731       __ cmpoop(Address(klass_RInfo, k->super_check_offset()), k->constant_encoding());
1732 #endif // _LP64
1733       if (sizeof(oopDesc) + Klass::secondary_super_cache_offset_in_bytes() != k->super_check_offset()) {
1734         __ jcc(Assembler::notEqual, *failure_target);
1735         // successful cast, fall through to profile or jump
1736       } else {
1737         // See if we get an immediate positive hit
1738         __ jcc(Assembler::equal, *success_target);
1739         // check for self
1740 #ifdef _LP64
1741         __ cmpptr(klass_RInfo, k_RInfo);
1742 #else
1743         __ cmpoop(klass_RInfo, k->constant_encoding());
1744 #endif // _LP64
1745         __ jcc(Assembler::equal, *success_target);
1746 
1747         __ push(klass_RInfo);
1748 #ifdef _LP64
1749         __ push(k_RInfo);
1750 #else
1751         __ pushoop(k->constant_encoding());
1752 #endif // _LP64
1753         __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::slow_subtype_check_id)));
1754         __ pop(klass_RInfo);
1755         __ pop(klass_RInfo);
1756         // result is a boolean
1757         __ cmpl(klass_RInfo, 0);
1758         __ jcc(Assembler::equal, *failure_target);
1759         // successful cast, fall through to profile or jump
1760       }
1761     } else {
1762       // perform the fast part of the checking logic
1763       __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, success_target, failure_target, NULL);
1764       // call out-of-line instance of __ check_klass_subtype_slow_path(...):
1765       __ push(klass_RInfo);
1766       __ push(k_RInfo);
1767       __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::slow_subtype_check_id)));
1768       __ pop(klass_RInfo);
1769       __ pop(k_RInfo);
1770       // result is a boolean
1771       __ cmpl(k_RInfo, 0);
1772       __ jcc(Assembler::equal, *failure_target);
1773       // successful cast, fall through to profile or jump
1774     }
1775   }
1776   if (op->should_profile()) {
1777     Register mdo  = klass_RInfo, recv = k_RInfo;
1778     __ bind(profile_cast_success);
1779     __ movoop(mdo, md->constant_encoding());
1780     __ load_klass(recv, obj);
1781     Label update_done;
1782     type_profile_helper(mdo, md, data, recv, success);
1783     __ jmp(*success);
1784 
1785     __ bind(profile_cast_failure);
1786     __ movoop(mdo, md->constant_encoding());
1787     Address counter_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()));
1788     __ subptr(counter_addr, DataLayout::counter_increment);
1789     __ jmp(*failure);
1790   }
1791   __ jmp(*success);
1792 }
1793 
1794 
1795 void LIR_Assembler::emit_opTypeCheck(LIR_OpTypeCheck* op) {
1796   LIR_Code code = op->code();
1797   if (code == lir_store_check) {
1798     Register value = op->object()->as_register();
1799     Register array = op->array()->as_register();
1800     Register k_RInfo = op->tmp1()->as_register();
1801     Register klass_RInfo = op->tmp2()->as_register();
1802     Register Rtmp1 = op->tmp3()->as_register();
1803 
1804     CodeStub* stub = op->stub();
1805 
1806     // check if it needs to be profiled
1807     ciMethodData* md;
1808     ciProfileData* data;
1809 
1810     if (op->should_profile()) {
1811       ciMethod* method = op->profiled_method();
1812       assert(method != NULL, "Should have method");
1813       int bci = op->profiled_bci();
1814       md = method->method_data_or_null();
1815       assert(md != NULL, "Sanity");
1816       data = md->bci_to_data(bci);
1817       assert(data != NULL,                "need data for type check");
1818       assert(data->is_ReceiverTypeData(), "need ReceiverTypeData for type check");
1819     }
1820     Label profile_cast_success, profile_cast_failure, done;
1821     Label *success_target = op->should_profile() ? &profile_cast_success : &done;
1822     Label *failure_target = op->should_profile() ? &profile_cast_failure : stub->entry();
1823 
1824     __ cmpptr(value, (int32_t)NULL_WORD);
1825     if (op->should_profile()) {
1826       Label not_null;
1827       __ jccb(Assembler::notEqual, not_null);
1828       // Object is null; update MDO and exit
1829       Register mdo  = klass_RInfo;
1830       __ movoop(mdo, md->constant_encoding());
1831       Address data_addr(mdo, md->byte_offset_of_slot(data, DataLayout::header_offset()));
1832       int header_bits = DataLayout::flag_mask_to_header_mask(BitData::null_seen_byte_constant());
1833       __ orl(data_addr, header_bits);
1834       __ jmp(done);
1835       __ bind(not_null);
1836     } else {
1837       __ jcc(Assembler::equal, done);
1838     }
1839 
1840     add_debug_info_for_null_check_here(op->info_for_exception());
1841     __ load_klass(k_RInfo, array);
1842     __ load_klass(klass_RInfo, value);
1843 
1844     // get instance klass (it's already uncompressed)
1845     __ movptr(k_RInfo, Address(k_RInfo, objArrayKlass::element_klass_offset_in_bytes() + sizeof(oopDesc)));
1846     // perform the fast part of the checking logic
1847     __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, success_target, failure_target, NULL);
1848     // call out-of-line instance of __ check_klass_subtype_slow_path(...):
1849     __ push(klass_RInfo);
1850     __ push(k_RInfo);
1851     __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::slow_subtype_check_id)));
1852     __ pop(klass_RInfo);
1853     __ pop(k_RInfo);
1854     // result is a boolean
1855     __ cmpl(k_RInfo, 0);
1856     __ jcc(Assembler::equal, *failure_target);
1857     // fall through to the success case
1858 
1859     if (op->should_profile()) {
1860       Register mdo  = klass_RInfo, recv = k_RInfo;
1861       __ bind(profile_cast_success);
1862       __ movoop(mdo, md->constant_encoding());
1863       __ load_klass(recv, value);
1864       Label update_done;
1865       type_profile_helper(mdo, md, data, recv, &done);
1866       __ jmpb(done);
1867 
1868       __ bind(profile_cast_failure);
1869       __ movoop(mdo, md->constant_encoding());
1870       Address counter_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()));
1871       __ subptr(counter_addr, DataLayout::counter_increment);
1872       __ jmp(*stub->entry());
1873     }
1874 
1875     __ bind(done);
1876   } else
1877     if (code == lir_checkcast) {
1878       Register obj = op->object()->as_register();
1879       Register dst = op->result_opr()->as_register();
1880       Label success;
1881       emit_typecheck_helper(op, &success, op->stub()->entry(), &success);
1882       __ bind(success);
1883       if (dst != obj) {
1884         __ mov(dst, obj);
1885       }
1886     } else
1887       if (code == lir_instanceof) {
1888         Register obj = op->object()->as_register();
1889         Register dst = op->result_opr()->as_register();
1890         Label success, failure, done;
1891         emit_typecheck_helper(op, &success, &failure, &failure);
1892         __ bind(failure);
1893         __ xorptr(dst, dst);
1894         __ jmpb(done);
1895         __ bind(success);
1896         __ movptr(dst, 1);
1897         __ bind(done);
1898       } else {
1899         ShouldNotReachHere();
1900       }
1901 
1902 }
1903 
1904 
1905 void LIR_Assembler::emit_compare_and_swap(LIR_OpCompareAndSwap* op) {
1906   if (LP64_ONLY(false &&) op->code() == lir_cas_long && VM_Version::supports_cx8()) {
1907     assert(op->cmp_value()->as_register_lo() == rax, "wrong register");
1908     assert(op->cmp_value()->as_register_hi() == rdx, "wrong register");
1909     assert(op->new_value()->as_register_lo() == rbx, "wrong register");
1910     assert(op->new_value()->as_register_hi() == rcx, "wrong register");
1911     Register addr = op->addr()->as_register();
1912     if (os::is_MP()) {
1913       __ lock();
1914     }
1915     NOT_LP64(__ cmpxchg8(Address(addr, 0)));
1916 
1917   } else if (op->code() == lir_cas_int || op->code() == lir_cas_obj ) {
1918     NOT_LP64(assert(op->addr()->is_single_cpu(), "must be single");)
1919     Register addr = (op->addr()->is_single_cpu() ? op->addr()->as_register() : op->addr()->as_register_lo());
1920     Register newval = op->new_value()->as_register();
1921     Register cmpval = op->cmp_value()->as_register();
1922     assert(cmpval == rax, "wrong register");
1923     assert(newval != NULL, "new val must be register");
1924     assert(cmpval != newval, "cmp and new values must be in different registers");
1925     assert(cmpval != addr, "cmp and addr must be in different registers");
1926     assert(newval != addr, "new value and addr must be in different registers");
1927 
1928     if ( op->code() == lir_cas_obj) {
1929 #ifdef _LP64
1930       if (UseCompressedOops) {
1931         __ encode_heap_oop(cmpval);
1932         __ mov(rscratch1, newval);
1933         __ encode_heap_oop(rscratch1);
1934         if (os::is_MP()) {
1935           __ lock();
1936         }
1937         // cmpval (rax) is implicitly used by this instruction
1938         __ cmpxchgl(rscratch1, Address(addr, 0));
1939       } else
1940 #endif
1941       {
1942         if (os::is_MP()) {
1943           __ lock();
1944         }
1945         __ cmpxchgptr(newval, Address(addr, 0));
1946       }
1947     } else {
1948       assert(op->code() == lir_cas_int, "lir_cas_int expected");
1949       if (os::is_MP()) {
1950         __ lock();
1951       }
1952       __ cmpxchgl(newval, Address(addr, 0));
1953     }
1954 #ifdef _LP64
1955   } else if (op->code() == lir_cas_long) {
1956     Register addr = (op->addr()->is_single_cpu() ? op->addr()->as_register() : op->addr()->as_register_lo());
1957     Register newval = op->new_value()->as_register_lo();
1958     Register cmpval = op->cmp_value()->as_register_lo();
1959     assert(cmpval == rax, "wrong register");
1960     assert(newval != NULL, "new val must be register");
1961     assert(cmpval != newval, "cmp and new values must be in different registers");
1962     assert(cmpval != addr, "cmp and addr must be in different registers");
1963     assert(newval != addr, "new value and addr must be in different registers");
1964     if (os::is_MP()) {
1965       __ lock();
1966     }
1967     __ cmpxchgq(newval, Address(addr, 0));
1968 #endif // _LP64
1969   } else {
1970     Unimplemented();
1971   }
1972 }
1973 
1974 void LIR_Assembler::cmove(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Opr result, BasicType type) {
1975   Assembler::Condition acond, ncond;
1976   switch (condition) {
1977     case lir_cond_equal:        acond = Assembler::equal;        ncond = Assembler::notEqual;     break;
1978     case lir_cond_notEqual:     acond = Assembler::notEqual;     ncond = Assembler::equal;        break;
1979     case lir_cond_less:         acond = Assembler::less;         ncond = Assembler::greaterEqual; break;
1980     case lir_cond_lessEqual:    acond = Assembler::lessEqual;    ncond = Assembler::greater;      break;
1981     case lir_cond_greaterEqual: acond = Assembler::greaterEqual; ncond = Assembler::less;         break;
1982     case lir_cond_greater:      acond = Assembler::greater;      ncond = Assembler::lessEqual;    break;
1983     case lir_cond_belowEqual:   acond = Assembler::belowEqual;   ncond = Assembler::above;        break;
1984     case lir_cond_aboveEqual:   acond = Assembler::aboveEqual;   ncond = Assembler::below;        break;
1985     default:                    ShouldNotReachHere();
1986   }
1987 
1988   if (opr1->is_cpu_register()) {
1989     reg2reg(opr1, result);
1990   } else if (opr1->is_stack()) {
1991     stack2reg(opr1, result, result->type());
1992   } else if (opr1->is_constant()) {
1993     const2reg(opr1, result, lir_patch_none, NULL);
1994   } else {
1995     ShouldNotReachHere();
1996   }
1997 
1998   if (VM_Version::supports_cmov() && !opr2->is_constant()) {
1999     // optimized version that does not require a branch
2000     if (opr2->is_single_cpu()) {
2001       assert(opr2->cpu_regnr() != result->cpu_regnr(), "opr2 already overwritten by previous move");
2002       __ cmov(ncond, result->as_register(), opr2->as_register());
2003     } else if (opr2->is_double_cpu()) {
2004       assert(opr2->cpu_regnrLo() != result->cpu_regnrLo() && opr2->cpu_regnrLo() != result->cpu_regnrHi(), "opr2 already overwritten by previous move");
2005       assert(opr2->cpu_regnrHi() != result->cpu_regnrLo() && opr2->cpu_regnrHi() != result->cpu_regnrHi(), "opr2 already overwritten by previous move");
2006       __ cmovptr(ncond, result->as_register_lo(), opr2->as_register_lo());
2007       NOT_LP64(__ cmovptr(ncond, result->as_register_hi(), opr2->as_register_hi());)
2008     } else if (opr2->is_single_stack()) {
2009       __ cmovl(ncond, result->as_register(), frame_map()->address_for_slot(opr2->single_stack_ix()));
2010     } else if (opr2->is_double_stack()) {
2011       __ cmovptr(ncond, result->as_register_lo(), frame_map()->address_for_slot(opr2->double_stack_ix(), lo_word_offset_in_bytes));
2012       NOT_LP64(__ cmovptr(ncond, result->as_register_hi(), frame_map()->address_for_slot(opr2->double_stack_ix(), hi_word_offset_in_bytes));)
2013     } else {
2014       ShouldNotReachHere();
2015     }
2016 
2017   } else {
2018     Label skip;
2019     __ jcc (acond, skip);
2020     if (opr2->is_cpu_register()) {
2021       reg2reg(opr2, result);
2022     } else if (opr2->is_stack()) {
2023       stack2reg(opr2, result, result->type());
2024     } else if (opr2->is_constant()) {
2025       const2reg(opr2, result, lir_patch_none, NULL);
2026     } else {
2027       ShouldNotReachHere();
2028     }
2029     __ bind(skip);
2030   }
2031 }
2032 
2033 
2034 void LIR_Assembler::arith_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dest, CodeEmitInfo* info, bool pop_fpu_stack) {
2035   assert(info == NULL, "should never be used, idiv/irem and ldiv/lrem not handled by this method");
2036 
2037   if (left->is_single_cpu()) {
2038     assert(left == dest, "left and dest must be equal");
2039     Register lreg = left->as_register();
2040 
2041     if (right->is_single_cpu()) {
2042       // cpu register - cpu register
2043       Register rreg = right->as_register();
2044       switch (code) {
2045         case lir_add: __ addl (lreg, rreg); break;
2046         case lir_sub: __ subl (lreg, rreg); break;
2047         case lir_mul: __ imull(lreg, rreg); break;
2048         default:      ShouldNotReachHere();
2049       }
2050 
2051     } else if (right->is_stack()) {
2052       // cpu register - stack
2053       Address raddr = frame_map()->address_for_slot(right->single_stack_ix());
2054       switch (code) {
2055         case lir_add: __ addl(lreg, raddr); break;
2056         case lir_sub: __ subl(lreg, raddr); break;
2057         default:      ShouldNotReachHere();
2058       }
2059 
2060     } else if (right->is_constant()) {
2061       // cpu register - constant
2062       jint c = right->as_constant_ptr()->as_jint();
2063       switch (code) {
2064         case lir_add: {
2065           __ incrementl(lreg, c);
2066           break;
2067         }
2068         case lir_sub: {
2069           __ decrementl(lreg, c);
2070           break;
2071         }
2072         default: ShouldNotReachHere();
2073       }
2074 
2075     } else {
2076       ShouldNotReachHere();
2077     }
2078 
2079   } else if (left->is_double_cpu()) {
2080     assert(left == dest, "left and dest must be equal");
2081     Register lreg_lo = left->as_register_lo();
2082     Register lreg_hi = left->as_register_hi();
2083 
2084     if (right->is_double_cpu()) {
2085       // cpu register - cpu register
2086       Register rreg_lo = right->as_register_lo();
2087       Register rreg_hi = right->as_register_hi();
2088       NOT_LP64(assert_different_registers(lreg_lo, lreg_hi, rreg_lo, rreg_hi));
2089       LP64_ONLY(assert_different_registers(lreg_lo, rreg_lo));
2090       switch (code) {
2091         case lir_add:
2092           __ addptr(lreg_lo, rreg_lo);
2093           NOT_LP64(__ adcl(lreg_hi, rreg_hi));
2094           break;
2095         case lir_sub:
2096           __ subptr(lreg_lo, rreg_lo);
2097           NOT_LP64(__ sbbl(lreg_hi, rreg_hi));
2098           break;
2099         case lir_mul:
2100 #ifdef _LP64
2101           __ imulq(lreg_lo, rreg_lo);
2102 #else
2103           assert(lreg_lo == rax && lreg_hi == rdx, "must be");
2104           __ imull(lreg_hi, rreg_lo);
2105           __ imull(rreg_hi, lreg_lo);
2106           __ addl (rreg_hi, lreg_hi);
2107           __ mull (rreg_lo);
2108           __ addl (lreg_hi, rreg_hi);
2109 #endif // _LP64
2110           break;
2111         default:
2112           ShouldNotReachHere();
2113       }
2114 
2115     } else if (right->is_constant()) {
2116       // cpu register - constant
2117 #ifdef _LP64
2118       jlong c = right->as_constant_ptr()->as_jlong_bits();
2119       __ movptr(r10, (intptr_t) c);
2120       switch (code) {
2121         case lir_add:
2122           __ addptr(lreg_lo, r10);
2123           break;
2124         case lir_sub:
2125           __ subptr(lreg_lo, r10);
2126           break;
2127         default:
2128           ShouldNotReachHere();
2129       }
2130 #else
2131       jint c_lo = right->as_constant_ptr()->as_jint_lo();
2132       jint c_hi = right->as_constant_ptr()->as_jint_hi();
2133       switch (code) {
2134         case lir_add:
2135           __ addptr(lreg_lo, c_lo);
2136           __ adcl(lreg_hi, c_hi);
2137           break;
2138         case lir_sub:
2139           __ subptr(lreg_lo, c_lo);
2140           __ sbbl(lreg_hi, c_hi);
2141           break;
2142         default:
2143           ShouldNotReachHere();
2144       }
2145 #endif // _LP64
2146 
2147     } else {
2148       ShouldNotReachHere();
2149     }
2150 
2151   } else if (left->is_single_xmm()) {
2152     assert(left == dest, "left and dest must be equal");
2153     XMMRegister lreg = left->as_xmm_float_reg();
2154 
2155     if (right->is_single_xmm()) {
2156       XMMRegister rreg = right->as_xmm_float_reg();
2157       switch (code) {
2158         case lir_add: __ addss(lreg, rreg);  break;
2159         case lir_sub: __ subss(lreg, rreg);  break;
2160         case lir_mul_strictfp: // fall through
2161         case lir_mul: __ mulss(lreg, rreg);  break;
2162         case lir_div_strictfp: // fall through
2163         case lir_div: __ divss(lreg, rreg);  break;
2164         default: ShouldNotReachHere();
2165       }
2166     } else {
2167       Address raddr;
2168       if (right->is_single_stack()) {
2169         raddr = frame_map()->address_for_slot(right->single_stack_ix());
2170       } else if (right->is_constant()) {
2171         // hack for now
2172         raddr = __ as_Address(InternalAddress(float_constant(right->as_jfloat())));
2173       } else {
2174         ShouldNotReachHere();
2175       }
2176       switch (code) {
2177         case lir_add: __ addss(lreg, raddr);  break;
2178         case lir_sub: __ subss(lreg, raddr);  break;
2179         case lir_mul_strictfp: // fall through
2180         case lir_mul: __ mulss(lreg, raddr);  break;
2181         case lir_div_strictfp: // fall through
2182         case lir_div: __ divss(lreg, raddr);  break;
2183         default: ShouldNotReachHere();
2184       }
2185     }
2186 
2187   } else if (left->is_double_xmm()) {
2188     assert(left == dest, "left and dest must be equal");
2189 
2190     XMMRegister lreg = left->as_xmm_double_reg();
2191     if (right->is_double_xmm()) {
2192       XMMRegister rreg = right->as_xmm_double_reg();
2193       switch (code) {
2194         case lir_add: __ addsd(lreg, rreg);  break;
2195         case lir_sub: __ subsd(lreg, rreg);  break;
2196         case lir_mul_strictfp: // fall through
2197         case lir_mul: __ mulsd(lreg, rreg);  break;
2198         case lir_div_strictfp: // fall through
2199         case lir_div: __ divsd(lreg, rreg);  break;
2200         default: ShouldNotReachHere();
2201       }
2202     } else {
2203       Address raddr;
2204       if (right->is_double_stack()) {
2205         raddr = frame_map()->address_for_slot(right->double_stack_ix());
2206       } else if (right->is_constant()) {
2207         // hack for now
2208         raddr = __ as_Address(InternalAddress(double_constant(right->as_jdouble())));
2209       } else {
2210         ShouldNotReachHere();
2211       }
2212       switch (code) {
2213         case lir_add: __ addsd(lreg, raddr);  break;
2214         case lir_sub: __ subsd(lreg, raddr);  break;
2215         case lir_mul_strictfp: // fall through
2216         case lir_mul: __ mulsd(lreg, raddr);  break;
2217         case lir_div_strictfp: // fall through
2218         case lir_div: __ divsd(lreg, raddr);  break;
2219         default: ShouldNotReachHere();
2220       }
2221     }
2222 
2223   } else if (left->is_single_fpu()) {
2224     assert(dest->is_single_fpu(),  "fpu stack allocation required");
2225 
2226     if (right->is_single_fpu()) {
2227       arith_fpu_implementation(code, left->fpu_regnr(), right->fpu_regnr(), dest->fpu_regnr(), pop_fpu_stack);
2228 
2229     } else {
2230       assert(left->fpu_regnr() == 0, "left must be on TOS");
2231       assert(dest->fpu_regnr() == 0, "dest must be on TOS");
2232 
2233       Address raddr;
2234       if (right->is_single_stack()) {
2235         raddr = frame_map()->address_for_slot(right->single_stack_ix());
2236       } else if (right->is_constant()) {
2237         address const_addr = float_constant(right->as_jfloat());
2238         assert(const_addr != NULL, "incorrect float/double constant maintainance");
2239         // hack for now
2240         raddr = __ as_Address(InternalAddress(const_addr));
2241       } else {
2242         ShouldNotReachHere();
2243       }
2244 
2245       switch (code) {
2246         case lir_add: __ fadd_s(raddr); break;
2247         case lir_sub: __ fsub_s(raddr); break;
2248         case lir_mul_strictfp: // fall through
2249         case lir_mul: __ fmul_s(raddr); break;
2250         case lir_div_strictfp: // fall through
2251         case lir_div: __ fdiv_s(raddr); break;
2252         default:      ShouldNotReachHere();
2253       }
2254     }
2255 
2256   } else if (left->is_double_fpu()) {
2257     assert(dest->is_double_fpu(),  "fpu stack allocation required");
2258 
2259     if (code == lir_mul_strictfp || code == lir_div_strictfp) {
2260       // Double values require special handling for strictfp mul/div on x86
2261       __ fld_x(ExternalAddress(StubRoutines::addr_fpu_subnormal_bias1()));
2262       __ fmulp(left->fpu_regnrLo() + 1);
2263     }
2264 
2265     if (right->is_double_fpu()) {
2266       arith_fpu_implementation(code, left->fpu_regnrLo(), right->fpu_regnrLo(), dest->fpu_regnrLo(), pop_fpu_stack);
2267 
2268     } else {
2269       assert(left->fpu_regnrLo() == 0, "left must be on TOS");
2270       assert(dest->fpu_regnrLo() == 0, "dest must be on TOS");
2271 
2272       Address raddr;
2273       if (right->is_double_stack()) {
2274         raddr = frame_map()->address_for_slot(right->double_stack_ix());
2275       } else if (right->is_constant()) {
2276         // hack for now
2277         raddr = __ as_Address(InternalAddress(double_constant(right->as_jdouble())));
2278       } else {
2279         ShouldNotReachHere();
2280       }
2281 
2282       switch (code) {
2283         case lir_add: __ fadd_d(raddr); break;
2284         case lir_sub: __ fsub_d(raddr); break;
2285         case lir_mul_strictfp: // fall through
2286         case lir_mul: __ fmul_d(raddr); break;
2287         case lir_div_strictfp: // fall through
2288         case lir_div: __ fdiv_d(raddr); break;
2289         default: ShouldNotReachHere();
2290       }
2291     }
2292 
2293     if (code == lir_mul_strictfp || code == lir_div_strictfp) {
2294       // Double values require special handling for strictfp mul/div on x86
2295       __ fld_x(ExternalAddress(StubRoutines::addr_fpu_subnormal_bias2()));
2296       __ fmulp(dest->fpu_regnrLo() + 1);
2297     }
2298 
2299   } else if (left->is_single_stack() || left->is_address()) {
2300     assert(left == dest, "left and dest must be equal");
2301 
2302     Address laddr;
2303     if (left->is_single_stack()) {
2304       laddr = frame_map()->address_for_slot(left->single_stack_ix());
2305     } else if (left->is_address()) {
2306       laddr = as_Address(left->as_address_ptr());
2307     } else {
2308       ShouldNotReachHere();
2309     }
2310 
2311     if (right->is_single_cpu()) {
2312       Register rreg = right->as_register();
2313       switch (code) {
2314         case lir_add: __ addl(laddr, rreg); break;
2315         case lir_sub: __ subl(laddr, rreg); break;
2316         default:      ShouldNotReachHere();
2317       }
2318     } else if (right->is_constant()) {
2319       jint c = right->as_constant_ptr()->as_jint();
2320       switch (code) {
2321         case lir_add: {
2322           __ incrementl(laddr, c);
2323           break;
2324         }
2325         case lir_sub: {
2326           __ decrementl(laddr, c);
2327           break;
2328         }
2329         default: ShouldNotReachHere();
2330       }
2331     } else {
2332       ShouldNotReachHere();
2333     }
2334 
2335   } else {
2336     ShouldNotReachHere();
2337   }
2338 }
2339 
2340 void LIR_Assembler::arith_fpu_implementation(LIR_Code code, int left_index, int right_index, int dest_index, bool pop_fpu_stack) {
2341   assert(pop_fpu_stack  || (left_index     == dest_index || right_index     == dest_index), "invalid LIR");
2342   assert(!pop_fpu_stack || (left_index - 1 == dest_index || right_index - 1 == dest_index), "invalid LIR");
2343   assert(left_index == 0 || right_index == 0, "either must be on top of stack");
2344 
2345   bool left_is_tos = (left_index == 0);
2346   bool dest_is_tos = (dest_index == 0);
2347   int non_tos_index = (left_is_tos ? right_index : left_index);
2348 
2349   switch (code) {
2350     case lir_add:
2351       if (pop_fpu_stack)       __ faddp(non_tos_index);
2352       else if (dest_is_tos)    __ fadd (non_tos_index);
2353       else                     __ fadda(non_tos_index);
2354       break;
2355 
2356     case lir_sub:
2357       if (left_is_tos) {
2358         if (pop_fpu_stack)     __ fsubrp(non_tos_index);
2359         else if (dest_is_tos)  __ fsub  (non_tos_index);
2360         else                   __ fsubra(non_tos_index);
2361       } else {
2362         if (pop_fpu_stack)     __ fsubp (non_tos_index);
2363         else if (dest_is_tos)  __ fsubr (non_tos_index);
2364         else                   __ fsuba (non_tos_index);
2365       }
2366       break;
2367 
2368     case lir_mul_strictfp: // fall through
2369     case lir_mul:
2370       if (pop_fpu_stack)       __ fmulp(non_tos_index);
2371       else if (dest_is_tos)    __ fmul (non_tos_index);
2372       else                     __ fmula(non_tos_index);
2373       break;
2374 
2375     case lir_div_strictfp: // fall through
2376     case lir_div:
2377       if (left_is_tos) {
2378         if (pop_fpu_stack)     __ fdivrp(non_tos_index);
2379         else if (dest_is_tos)  __ fdiv  (non_tos_index);
2380         else                   __ fdivra(non_tos_index);
2381       } else {
2382         if (pop_fpu_stack)     __ fdivp (non_tos_index);
2383         else if (dest_is_tos)  __ fdivr (non_tos_index);
2384         else                   __ fdiva (non_tos_index);
2385       }
2386       break;
2387 
2388     case lir_rem:
2389       assert(left_is_tos && dest_is_tos && right_index == 1, "must be guaranteed by FPU stack allocation");
2390       __ fremr(noreg);
2391       break;
2392 
2393     default:
2394       ShouldNotReachHere();
2395   }
2396 }
2397 
2398 
2399 void LIR_Assembler::intrinsic_op(LIR_Code code, LIR_Opr value, LIR_Opr unused, LIR_Opr dest, LIR_Op* op) {
2400   if (value->is_double_xmm()) {
2401     switch(code) {
2402       case lir_abs :
2403         {
2404           if (dest->as_xmm_double_reg() != value->as_xmm_double_reg()) {
2405             __ movdbl(dest->as_xmm_double_reg(), value->as_xmm_double_reg());
2406           }
2407           __ andpd(dest->as_xmm_double_reg(),
2408                     ExternalAddress((address)double_signmask_pool));
2409         }
2410         break;
2411 
2412       case lir_sqrt: __ sqrtsd(dest->as_xmm_double_reg(), value->as_xmm_double_reg()); break;
2413       // all other intrinsics are not available in the SSE instruction set, so FPU is used
2414       default      : ShouldNotReachHere();
2415     }
2416 
2417   } else if (value->is_double_fpu()) {
2418     assert(value->fpu_regnrLo() == 0 && dest->fpu_regnrLo() == 0, "both must be on TOS");
2419     switch(code) {
2420       case lir_log   : __ flog() ; break;
2421       case lir_log10 : __ flog10() ; break;
2422       case lir_abs   : __ fabs() ; break;
2423       case lir_sqrt  : __ fsqrt(); break;
2424       case lir_sin   :
2425         // Should consider not saving rbx, if not necessary
2426         __ trigfunc('s', op->as_Op2()->fpu_stack_size());
2427         break;
2428       case lir_cos :
2429         // Should consider not saving rbx, if not necessary
2430         assert(op->as_Op2()->fpu_stack_size() <= 6, "sin and cos need two free stack slots");
2431         __ trigfunc('c', op->as_Op2()->fpu_stack_size());
2432         break;
2433       case lir_tan :
2434         // Should consider not saving rbx, if not necessary
2435         __ trigfunc('t', op->as_Op2()->fpu_stack_size());
2436         break;
2437       default      : ShouldNotReachHere();
2438     }
2439   } else {
2440     Unimplemented();
2441   }
2442 }
2443 
2444 void LIR_Assembler::logic_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dst) {
2445   // assert(left->destroys_register(), "check");
2446   if (left->is_single_cpu()) {
2447     Register reg = left->as_register();
2448     if (right->is_constant()) {
2449       int val = right->as_constant_ptr()->as_jint();
2450       switch (code) {
2451         case lir_logic_and: __ andl (reg, val); break;
2452         case lir_logic_or:  __ orl  (reg, val); break;
2453         case lir_logic_xor: __ xorl (reg, val); break;
2454         default: ShouldNotReachHere();
2455       }
2456     } else if (right->is_stack()) {
2457       // added support for stack operands
2458       Address raddr = frame_map()->address_for_slot(right->single_stack_ix());
2459       switch (code) {
2460         case lir_logic_and: __ andl (reg, raddr); break;
2461         case lir_logic_or:  __ orl  (reg, raddr); break;
2462         case lir_logic_xor: __ xorl (reg, raddr); break;
2463         default: ShouldNotReachHere();
2464       }
2465     } else {
2466       Register rright = right->as_register();
2467       switch (code) {
2468         case lir_logic_and: __ andptr (reg, rright); break;
2469         case lir_logic_or : __ orptr  (reg, rright); break;
2470         case lir_logic_xor: __ xorptr (reg, rright); break;
2471         default: ShouldNotReachHere();
2472       }
2473     }
2474     move_regs(reg, dst->as_register());
2475   } else {
2476     Register l_lo = left->as_register_lo();
2477     Register l_hi = left->as_register_hi();
2478     if (right->is_constant()) {
2479 #ifdef _LP64
2480       __ mov64(rscratch1, right->as_constant_ptr()->as_jlong());
2481       switch (code) {
2482         case lir_logic_and:
2483           __ andq(l_lo, rscratch1);
2484           break;
2485         case lir_logic_or:
2486           __ orq(l_lo, rscratch1);
2487           break;
2488         case lir_logic_xor:
2489           __ xorq(l_lo, rscratch1);
2490           break;
2491         default: ShouldNotReachHere();
2492       }
2493 #else
2494       int r_lo = right->as_constant_ptr()->as_jint_lo();
2495       int r_hi = right->as_constant_ptr()->as_jint_hi();
2496       switch (code) {
2497         case lir_logic_and:
2498           __ andl(l_lo, r_lo);
2499           __ andl(l_hi, r_hi);
2500           break;
2501         case lir_logic_or:
2502           __ orl(l_lo, r_lo);
2503           __ orl(l_hi, r_hi);
2504           break;
2505         case lir_logic_xor:
2506           __ xorl(l_lo, r_lo);
2507           __ xorl(l_hi, r_hi);
2508           break;
2509         default: ShouldNotReachHere();
2510       }
2511 #endif // _LP64
2512     } else {
2513 #ifdef _LP64
2514       Register r_lo;
2515       if (right->type() == T_OBJECT || right->type() == T_ARRAY) {
2516         r_lo = right->as_register();
2517       } else {
2518         r_lo = right->as_register_lo();
2519       }
2520 #else
2521       Register r_lo = right->as_register_lo();
2522       Register r_hi = right->as_register_hi();
2523       assert(l_lo != r_hi, "overwriting registers");
2524 #endif
2525       switch (code) {
2526         case lir_logic_and:
2527           __ andptr(l_lo, r_lo);
2528           NOT_LP64(__ andptr(l_hi, r_hi);)
2529           break;
2530         case lir_logic_or:
2531           __ orptr(l_lo, r_lo);
2532           NOT_LP64(__ orptr(l_hi, r_hi);)
2533           break;
2534         case lir_logic_xor:
2535           __ xorptr(l_lo, r_lo);
2536           NOT_LP64(__ xorptr(l_hi, r_hi);)
2537           break;
2538         default: ShouldNotReachHere();
2539       }
2540     }
2541 
2542     Register dst_lo = dst->as_register_lo();
2543     Register dst_hi = dst->as_register_hi();
2544 
2545 #ifdef _LP64
2546     move_regs(l_lo, dst_lo);
2547 #else
2548     if (dst_lo == l_hi) {
2549       assert(dst_hi != l_lo, "overwriting registers");
2550       move_regs(l_hi, dst_hi);
2551       move_regs(l_lo, dst_lo);
2552     } else {
2553       assert(dst_lo != l_hi, "overwriting registers");
2554       move_regs(l_lo, dst_lo);
2555       move_regs(l_hi, dst_hi);
2556     }
2557 #endif // _LP64
2558   }
2559 }
2560 
2561 
2562 // we assume that rax, and rdx can be overwritten
2563 void LIR_Assembler::arithmetic_idiv(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr temp, LIR_Opr result, CodeEmitInfo* info) {
2564 
2565   assert(left->is_single_cpu(),   "left must be register");
2566   assert(right->is_single_cpu() || right->is_constant(),  "right must be register or constant");
2567   assert(result->is_single_cpu(), "result must be register");
2568 
2569   //  assert(left->destroys_register(), "check");
2570   //  assert(right->destroys_register(), "check");
2571 
2572   Register lreg = left->as_register();
2573   Register dreg = result->as_register();
2574 
2575   if (right->is_constant()) {
2576     int divisor = right->as_constant_ptr()->as_jint();
2577     assert(divisor > 0 && is_power_of_2(divisor), "must be");
2578     if (code == lir_idiv) {
2579       assert(lreg == rax, "must be rax,");
2580       assert(temp->as_register() == rdx, "tmp register must be rdx");
2581       __ cdql(); // sign extend into rdx:rax
2582       if (divisor == 2) {
2583         __ subl(lreg, rdx);
2584       } else {
2585         __ andl(rdx, divisor - 1);
2586         __ addl(lreg, rdx);
2587       }
2588       __ sarl(lreg, log2_intptr(divisor));
2589       move_regs(lreg, dreg);
2590     } else if (code == lir_irem) {
2591       Label done;
2592       __ mov(dreg, lreg);
2593       __ andl(dreg, 0x80000000 | (divisor - 1));
2594       __ jcc(Assembler::positive, done);
2595       __ decrement(dreg);
2596       __ orl(dreg, ~(divisor - 1));
2597       __ increment(dreg);
2598       __ bind(done);
2599     } else {
2600       ShouldNotReachHere();
2601     }
2602   } else {
2603     Register rreg = right->as_register();
2604     assert(lreg == rax, "left register must be rax,");
2605     assert(rreg != rdx, "right register must not be rdx");
2606     assert(temp->as_register() == rdx, "tmp register must be rdx");
2607 
2608     move_regs(lreg, rax);
2609 
2610     int idivl_offset = __ corrected_idivl(rreg);
2611     add_debug_info_for_div0(idivl_offset, info);
2612     if (code == lir_irem) {
2613       move_regs(rdx, dreg); // result is in rdx
2614     } else {
2615       move_regs(rax, dreg);
2616     }
2617   }
2618 }
2619 
2620 
2621 void LIR_Assembler::comp_op(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Op2* op) {
2622   if (opr1->is_single_cpu()) {
2623     Register reg1 = opr1->as_register();
2624     if (opr2->is_single_cpu()) {
2625       // cpu register - cpu register
2626       if (opr1->type() == T_OBJECT || opr1->type() == T_ARRAY) {
2627         __ cmpptr(reg1, opr2->as_register());
2628       } else {
2629         assert(opr2->type() != T_OBJECT && opr2->type() != T_ARRAY, "cmp int, oop?");
2630         __ cmpl(reg1, opr2->as_register());
2631       }
2632     } else if (opr2->is_stack()) {
2633       // cpu register - stack
2634       if (opr1->type() == T_OBJECT || opr1->type() == T_ARRAY) {
2635         __ cmpptr(reg1, frame_map()->address_for_slot(opr2->single_stack_ix()));
2636       } else {
2637         __ cmpl(reg1, frame_map()->address_for_slot(opr2->single_stack_ix()));
2638       }
2639     } else if (opr2->is_constant()) {
2640       // cpu register - constant
2641       LIR_Const* c = opr2->as_constant_ptr();
2642       if (c->type() == T_INT) {
2643         __ cmpl(reg1, c->as_jint());
2644       } else if (c->type() == T_OBJECT || c->type() == T_ARRAY) {
2645         // In 64bit oops are single register
2646         jobject o = c->as_jobject();
2647         if (o == NULL) {
2648           __ cmpptr(reg1, (int32_t)NULL_WORD);
2649         } else {
2650 #ifdef _LP64
2651           __ movoop(rscratch1, o);
2652           __ cmpptr(reg1, rscratch1);
2653 #else
2654           __ cmpoop(reg1, c->as_jobject());
2655 #endif // _LP64
2656         }
2657       } else {
2658         ShouldNotReachHere();
2659       }
2660       // cpu register - address
2661     } else if (opr2->is_address()) {
2662       if (op->info() != NULL) {
2663         add_debug_info_for_null_check_here(op->info());
2664       }
2665       __ cmpl(reg1, as_Address(opr2->as_address_ptr()));
2666     } else {
2667       ShouldNotReachHere();
2668     }
2669 
2670   } else if(opr1->is_double_cpu()) {
2671     Register xlo = opr1->as_register_lo();
2672     Register xhi = opr1->as_register_hi();
2673     if (opr2->is_double_cpu()) {
2674 #ifdef _LP64
2675       __ cmpptr(xlo, opr2->as_register_lo());
2676 #else
2677       // cpu register - cpu register
2678       Register ylo = opr2->as_register_lo();
2679       Register yhi = opr2->as_register_hi();
2680       __ subl(xlo, ylo);
2681       __ sbbl(xhi, yhi);
2682       if (condition == lir_cond_equal || condition == lir_cond_notEqual) {
2683         __ orl(xhi, xlo);
2684       }
2685 #endif // _LP64
2686     } else if (opr2->is_constant()) {
2687       // cpu register - constant 0
2688       assert(opr2->as_jlong() == (jlong)0, "only handles zero");
2689 #ifdef _LP64
2690       __ cmpptr(xlo, (int32_t)opr2->as_jlong());
2691 #else
2692       assert(condition == lir_cond_equal || condition == lir_cond_notEqual, "only handles equals case");
2693       __ orl(xhi, xlo);
2694 #endif // _LP64
2695     } else {
2696       ShouldNotReachHere();
2697     }
2698 
2699   } else if (opr1->is_single_xmm()) {
2700     XMMRegister reg1 = opr1->as_xmm_float_reg();
2701     if (opr2->is_single_xmm()) {
2702       // xmm register - xmm register
2703       __ ucomiss(reg1, opr2->as_xmm_float_reg());
2704     } else if (opr2->is_stack()) {
2705       // xmm register - stack
2706       __ ucomiss(reg1, frame_map()->address_for_slot(opr2->single_stack_ix()));
2707     } else if (opr2->is_constant()) {
2708       // xmm register - constant
2709       __ ucomiss(reg1, InternalAddress(float_constant(opr2->as_jfloat())));
2710     } else if (opr2->is_address()) {
2711       // xmm register - address
2712       if (op->info() != NULL) {
2713         add_debug_info_for_null_check_here(op->info());
2714       }
2715       __ ucomiss(reg1, as_Address(opr2->as_address_ptr()));
2716     } else {
2717       ShouldNotReachHere();
2718     }
2719 
2720   } else if (opr1->is_double_xmm()) {
2721     XMMRegister reg1 = opr1->as_xmm_double_reg();
2722     if (opr2->is_double_xmm()) {
2723       // xmm register - xmm register
2724       __ ucomisd(reg1, opr2->as_xmm_double_reg());
2725     } else if (opr2->is_stack()) {
2726       // xmm register - stack
2727       __ ucomisd(reg1, frame_map()->address_for_slot(opr2->double_stack_ix()));
2728     } else if (opr2->is_constant()) {
2729       // xmm register - constant
2730       __ ucomisd(reg1, InternalAddress(double_constant(opr2->as_jdouble())));
2731     } else if (opr2->is_address()) {
2732       // xmm register - address
2733       if (op->info() != NULL) {
2734         add_debug_info_for_null_check_here(op->info());
2735       }
2736       __ ucomisd(reg1, as_Address(opr2->pointer()->as_address()));
2737     } else {
2738       ShouldNotReachHere();
2739     }
2740 
2741   } else if(opr1->is_single_fpu() || opr1->is_double_fpu()) {
2742     assert(opr1->is_fpu_register() && opr1->fpu() == 0, "currently left-hand side must be on TOS (relax this restriction)");
2743     assert(opr2->is_fpu_register(), "both must be registers");
2744     __ fcmp(noreg, opr2->fpu(), op->fpu_pop_count() > 0, op->fpu_pop_count() > 1);
2745 
2746   } else if (opr1->is_address() && opr2->is_constant()) {
2747     LIR_Const* c = opr2->as_constant_ptr();
2748 #ifdef _LP64
2749     if (c->type() == T_OBJECT || c->type() == T_ARRAY) {
2750       assert(condition == lir_cond_equal || condition == lir_cond_notEqual, "need to reverse");
2751       __ movoop(rscratch1, c->as_jobject());
2752     }
2753 #endif // LP64
2754     if (op->info() != NULL) {
2755       add_debug_info_for_null_check_here(op->info());
2756     }
2757     // special case: address - constant
2758     LIR_Address* addr = opr1->as_address_ptr();
2759     if (c->type() == T_INT) {
2760       __ cmpl(as_Address(addr), c->as_jint());
2761     } else if (c->type() == T_OBJECT || c->type() == T_ARRAY) {
2762 #ifdef _LP64
2763       // %%% Make this explode if addr isn't reachable until we figure out a
2764       // better strategy by giving noreg as the temp for as_Address
2765       __ cmpptr(rscratch1, as_Address(addr, noreg));
2766 #else
2767       __ cmpoop(as_Address(addr), c->as_jobject());
2768 #endif // _LP64
2769     } else {
2770       ShouldNotReachHere();
2771     }
2772 
2773   } else {
2774     ShouldNotReachHere();
2775   }
2776 }
2777 
2778 void LIR_Assembler::comp_fl2i(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dst, LIR_Op2* op) {
2779   if (code == lir_cmp_fd2i || code == lir_ucmp_fd2i) {
2780     if (left->is_single_xmm()) {
2781       assert(right->is_single_xmm(), "must match");
2782       __ cmpss2int(left->as_xmm_float_reg(), right->as_xmm_float_reg(), dst->as_register(), code == lir_ucmp_fd2i);
2783     } else if (left->is_double_xmm()) {
2784       assert(right->is_double_xmm(), "must match");
2785       __ cmpsd2int(left->as_xmm_double_reg(), right->as_xmm_double_reg(), dst->as_register(), code == lir_ucmp_fd2i);
2786 
2787     } else {
2788       assert(left->is_single_fpu() || left->is_double_fpu(), "must be");
2789       assert(right->is_single_fpu() || right->is_double_fpu(), "must match");
2790 
2791       assert(left->fpu() == 0, "left must be on TOS");
2792       __ fcmp2int(dst->as_register(), code == lir_ucmp_fd2i, right->fpu(),
2793                   op->fpu_pop_count() > 0, op->fpu_pop_count() > 1);
2794     }
2795   } else {
2796     assert(code == lir_cmp_l2i, "check");
2797 #ifdef _LP64
2798     Label done;
2799     Register dest = dst->as_register();
2800     __ cmpptr(left->as_register_lo(), right->as_register_lo());
2801     __ movl(dest, -1);
2802     __ jccb(Assembler::less, done);
2803     __ set_byte_if_not_zero(dest);
2804     __ movzbl(dest, dest);
2805     __ bind(done);
2806 #else
2807     __ lcmp2int(left->as_register_hi(),
2808                 left->as_register_lo(),
2809                 right->as_register_hi(),
2810                 right->as_register_lo());
2811     move_regs(left->as_register_hi(), dst->as_register());
2812 #endif // _LP64
2813   }
2814 }
2815 
2816 
2817 void LIR_Assembler::align_call(LIR_Code code) {
2818   if (os::is_MP()) {
2819     // make sure that the displacement word of the call ends up word aligned
2820     int offset = __ offset();
2821     switch (code) {
2822       case lir_static_call:
2823       case lir_optvirtual_call:
2824       case lir_dynamic_call:
2825         offset += NativeCall::displacement_offset;
2826         break;
2827       case lir_icvirtual_call:
2828         offset += NativeCall::displacement_offset + NativeMovConstReg::instruction_size;
2829       break;
2830       case lir_virtual_call:  // currently, sparc-specific for niagara
2831       default: ShouldNotReachHere();
2832     }
2833     while (offset++ % BytesPerWord != 0) {
2834       __ nop();
2835     }
2836   }
2837 }
2838 
2839 
2840 void LIR_Assembler::call(LIR_OpJavaCall* op, relocInfo::relocType rtype) {
2841   assert(!os::is_MP() || (__ offset() + NativeCall::displacement_offset) % BytesPerWord == 0,
2842          "must be aligned");
2843   __ call(AddressLiteral(op->addr(), rtype));
2844   add_call_info(code_offset(), op->info());
2845 }
2846 
2847 
2848 void LIR_Assembler::ic_call(LIR_OpJavaCall* op) {
2849   RelocationHolder rh = virtual_call_Relocation::spec(pc());
2850   __ movoop(IC_Klass, (jobject)Universe::non_oop_word());
2851   assert(!os::is_MP() ||
2852          (__ offset() + NativeCall::displacement_offset) % BytesPerWord == 0,
2853          "must be aligned");
2854   __ call(AddressLiteral(op->addr(), rh));
2855   add_call_info(code_offset(), op->info());
2856 }
2857 
2858 
2859 /* Currently, vtable-dispatch is only enabled for sparc platforms */
2860 void LIR_Assembler::vtable_call(LIR_OpJavaCall* op) {
2861   ShouldNotReachHere();
2862 }
2863 
2864 
2865 void LIR_Assembler::emit_static_call_stub() {
2866   address call_pc = __ pc();
2867   address stub = __ start_a_stub(call_stub_size);
2868   if (stub == NULL) {
2869     bailout("static call stub overflow");
2870     return;
2871   }
2872 
2873   int start = __ offset();
2874   if (os::is_MP()) {
2875     // make sure that the displacement word of the call ends up word aligned
2876     int offset = __ offset() + NativeMovConstReg::instruction_size + NativeCall::displacement_offset;
2877     while (offset++ % BytesPerWord != 0) {
2878       __ nop();
2879     }
2880   }
2881   __ relocate(static_stub_Relocation::spec(call_pc));
2882   __ movoop(rbx, (jobject)NULL);
2883   // must be set to -1 at code generation time
2884   assert(!os::is_MP() || ((__ offset() + 1) % BytesPerWord) == 0, "must be aligned on MP");
2885   // On 64bit this will die since it will take a movq & jmp, must be only a jmp
2886   __ jump(RuntimeAddress(__ pc()));
2887 
2888   assert(__ offset() - start <= call_stub_size, "stub too big");
2889   __ end_a_stub();
2890 }
2891 
2892 
2893 void LIR_Assembler::throw_op(LIR_Opr exceptionPC, LIR_Opr exceptionOop, CodeEmitInfo* info) {
2894   assert(exceptionOop->as_register() == rax, "must match");
2895   assert(exceptionPC->as_register() == rdx, "must match");
2896 
2897   // exception object is not added to oop map by LinearScan
2898   // (LinearScan assumes that no oops are in fixed registers)
2899   info->add_register_oop(exceptionOop);
2900   Runtime1::StubID unwind_id;
2901 
2902   // get current pc information
2903   // pc is only needed if the method has an exception handler, the unwind code does not need it.
2904   int pc_for_athrow_offset = __ offset();
2905   InternalAddress pc_for_athrow(__ pc());
2906   __ lea(exceptionPC->as_register(), pc_for_athrow);
2907   add_call_info(pc_for_athrow_offset, info); // for exception handler
2908 
2909   __ verify_not_null_oop(rax);
2910   // search an exception handler (rax: exception oop, rdx: throwing pc)
2911   if (compilation()->has_fpu_code()) {
2912     unwind_id = Runtime1::handle_exception_id;
2913   } else {
2914     unwind_id = Runtime1::handle_exception_nofpu_id;
2915   }
2916   __ call(RuntimeAddress(Runtime1::entry_for(unwind_id)));
2917 
2918   // enough room for two byte trap
2919   __ nop();
2920 }
2921 
2922 
2923 void LIR_Assembler::unwind_op(LIR_Opr exceptionOop) {
2924   assert(exceptionOop->as_register() == rax, "must match");
2925 
2926   __ jmp(_unwind_handler_entry);
2927 }
2928 
2929 
2930 void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, LIR_Opr count, LIR_Opr dest, LIR_Opr tmp) {
2931 
2932   // optimized version for linear scan:
2933   // * count must be already in ECX (guaranteed by LinearScan)
2934   // * left and dest must be equal
2935   // * tmp must be unused
2936   assert(count->as_register() == SHIFT_count, "count must be in ECX");
2937   assert(left == dest, "left and dest must be equal");
2938   assert(tmp->is_illegal(), "wasting a register if tmp is allocated");
2939 
2940   if (left->is_single_cpu()) {
2941     Register value = left->as_register();
2942     assert(value != SHIFT_count, "left cannot be ECX");
2943 
2944     switch (code) {
2945       case lir_shl:  __ shll(value); break;
2946       case lir_shr:  __ sarl(value); break;
2947       case lir_ushr: __ shrl(value); break;
2948       default: ShouldNotReachHere();
2949     }
2950   } else if (left->is_double_cpu()) {
2951     Register lo = left->as_register_lo();
2952     Register hi = left->as_register_hi();
2953     assert(lo != SHIFT_count && hi != SHIFT_count, "left cannot be ECX");
2954 #ifdef _LP64
2955     switch (code) {
2956       case lir_shl:  __ shlptr(lo);        break;
2957       case lir_shr:  __ sarptr(lo);        break;
2958       case lir_ushr: __ shrptr(lo);        break;
2959       default: ShouldNotReachHere();
2960     }
2961 #else
2962 
2963     switch (code) {
2964       case lir_shl:  __ lshl(hi, lo);        break;
2965       case lir_shr:  __ lshr(hi, lo, true);  break;
2966       case lir_ushr: __ lshr(hi, lo, false); break;
2967       default: ShouldNotReachHere();
2968     }
2969 #endif // LP64
2970   } else {
2971     ShouldNotReachHere();
2972   }
2973 }
2974 
2975 
2976 void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, jint count, LIR_Opr dest) {
2977   if (dest->is_single_cpu()) {
2978     // first move left into dest so that left is not destroyed by the shift
2979     Register value = dest->as_register();
2980     count = count & 0x1F; // Java spec
2981 
2982     move_regs(left->as_register(), value);
2983     switch (code) {
2984       case lir_shl:  __ shll(value, count); break;
2985       case lir_shr:  __ sarl(value, count); break;
2986       case lir_ushr: __ shrl(value, count); break;
2987       default: ShouldNotReachHere();
2988     }
2989   } else if (dest->is_double_cpu()) {
2990 #ifndef _LP64
2991     Unimplemented();
2992 #else
2993     // first move left into dest so that left is not destroyed by the shift
2994     Register value = dest->as_register_lo();
2995     count = count & 0x1F; // Java spec
2996 
2997     move_regs(left->as_register_lo(), value);
2998     switch (code) {
2999       case lir_shl:  __ shlptr(value, count); break;
3000       case lir_shr:  __ sarptr(value, count); break;
3001       case lir_ushr: __ shrptr(value, count); break;
3002       default: ShouldNotReachHere();
3003     }
3004 #endif // _LP64
3005   } else {
3006     ShouldNotReachHere();
3007   }
3008 }
3009 
3010 
3011 void LIR_Assembler::store_parameter(Register r, int offset_from_rsp_in_words) {
3012   assert(offset_from_rsp_in_words >= 0, "invalid offset from rsp");
3013   int offset_from_rsp_in_bytes = offset_from_rsp_in_words * BytesPerWord;
3014   assert(offset_from_rsp_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset");
3015   __ movptr (Address(rsp, offset_from_rsp_in_bytes), r);
3016 }
3017 
3018 
3019 void LIR_Assembler::store_parameter(jint c,     int offset_from_rsp_in_words) {
3020   assert(offset_from_rsp_in_words >= 0, "invalid offset from rsp");
3021   int offset_from_rsp_in_bytes = offset_from_rsp_in_words * BytesPerWord;
3022   assert(offset_from_rsp_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset");
3023   __ movptr (Address(rsp, offset_from_rsp_in_bytes), c);
3024 }
3025 
3026 
3027 void LIR_Assembler::store_parameter(jobject o,  int offset_from_rsp_in_words) {
3028   assert(offset_from_rsp_in_words >= 0, "invalid offset from rsp");
3029   int offset_from_rsp_in_bytes = offset_from_rsp_in_words * BytesPerWord;
3030   assert(offset_from_rsp_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset");
3031   __ movoop (Address(rsp, offset_from_rsp_in_bytes), o);
3032 }
3033 
3034 
3035 // This code replaces a call to arraycopy; no exception may
3036 // be thrown in this code, they must be thrown in the System.arraycopy
3037 // activation frame; we could save some checks if this would not be the case
3038 void LIR_Assembler::emit_arraycopy(LIR_OpArrayCopy* op) {
3039   ciArrayKlass* default_type = op->expected_type();
3040   Register src = op->src()->as_register();
3041   Register dst = op->dst()->as_register();
3042   Register src_pos = op->src_pos()->as_register();
3043   Register dst_pos = op->dst_pos()->as_register();
3044   Register length  = op->length()->as_register();
3045   Register tmp = op->tmp()->as_register();
3046 
3047   CodeStub* stub = op->stub();
3048   int flags = op->flags();
3049   BasicType basic_type = default_type != NULL ? default_type->element_type()->basic_type() : T_ILLEGAL;
3050   if (basic_type == T_ARRAY) basic_type = T_OBJECT;
3051 
3052   // if we don't know anything, just go through the generic arraycopy
3053   if (default_type == NULL) {
3054     Label done;
3055     // save outgoing arguments on stack in case call to System.arraycopy is needed
3056     // HACK ALERT. This code used to push the parameters in a hardwired fashion
3057     // for interpreter calling conventions. Now we have to do it in new style conventions.
3058     // For the moment until C1 gets the new register allocator I just force all the
3059     // args to the right place (except the register args) and then on the back side
3060     // reload the register args properly if we go slow path. Yuck
3061 
3062     // These are proper for the calling convention
3063     store_parameter(length, 2);
3064     store_parameter(dst_pos, 1);
3065     store_parameter(dst, 0);
3066 
3067     // these are just temporary placements until we need to reload
3068     store_parameter(src_pos, 3);
3069     store_parameter(src, 4);
3070     NOT_LP64(assert(src == rcx && src_pos == rdx, "mismatch in calling convention");)
3071 
3072     address C_entry = CAST_FROM_FN_PTR(address, Runtime1::arraycopy);
3073 
3074     address copyfunc_addr = StubRoutines::generic_arraycopy();
3075 
3076     // pass arguments: may push as this is not a safepoint; SP must be fix at each safepoint
3077 #ifdef _LP64
3078     // The arguments are in java calling convention so we can trivially shift them to C
3079     // convention
3080     assert_different_registers(c_rarg0, j_rarg1, j_rarg2, j_rarg3, j_rarg4);
3081     __ mov(c_rarg0, j_rarg0);
3082     assert_different_registers(c_rarg1, j_rarg2, j_rarg3, j_rarg4);
3083     __ mov(c_rarg1, j_rarg1);
3084     assert_different_registers(c_rarg2, j_rarg3, j_rarg4);
3085     __ mov(c_rarg2, j_rarg2);
3086     assert_different_registers(c_rarg3, j_rarg4);
3087     __ mov(c_rarg3, j_rarg3);
3088 #ifdef _WIN64
3089     // Allocate abi space for args but be sure to keep stack aligned
3090     __ subptr(rsp, 6*wordSize);
3091     store_parameter(j_rarg4, 4);
3092     if (copyfunc_addr == NULL) { // Use C version if stub was not generated
3093       __ call(RuntimeAddress(C_entry));
3094     } else {
3095 #ifndef PRODUCT
3096       if (PrintC1Statistics) {
3097         __ incrementl(ExternalAddress((address)&Runtime1::_generic_arraycopystub_cnt));
3098       }
3099 #endif
3100       __ call(RuntimeAddress(copyfunc_addr));
3101     }
3102     __ addptr(rsp, 6*wordSize);
3103 #else
3104     __ mov(c_rarg4, j_rarg4);
3105     if (copyfunc_addr == NULL) { // Use C version if stub was not generated
3106       __ call(RuntimeAddress(C_entry));
3107     } else {
3108 #ifndef PRODUCT
3109       if (PrintC1Statistics) {
3110         __ incrementl(ExternalAddress((address)&Runtime1::_generic_arraycopystub_cnt));
3111       }
3112 #endif
3113       __ call(RuntimeAddress(copyfunc_addr));
3114     }
3115 #endif // _WIN64
3116 #else
3117     __ push(length);
3118     __ push(dst_pos);
3119     __ push(dst);
3120     __ push(src_pos);
3121     __ push(src);
3122 
3123     if (copyfunc_addr == NULL) { // Use C version if stub was not generated
3124       __ call_VM_leaf(C_entry, 5); // removes pushed parameter from the stack
3125     } else {
3126 #ifndef PRODUCT
3127       if (PrintC1Statistics) {
3128         __ incrementl(ExternalAddress((address)&Runtime1::_generic_arraycopystub_cnt));
3129       }
3130 #endif
3131       __ call_VM_leaf(copyfunc_addr, 5); // removes pushed parameter from the stack
3132     }
3133 
3134 #endif // _LP64
3135 
3136     __ cmpl(rax, 0);
3137     __ jcc(Assembler::equal, *stub->continuation());
3138 
3139     if (copyfunc_addr != NULL) {
3140       __ mov(tmp, rax);
3141       __ xorl(tmp, -1);
3142     }
3143 
3144     // Reload values from the stack so they are where the stub
3145     // expects them.
3146     __ movptr   (dst,     Address(rsp, 0*BytesPerWord));
3147     __ movptr   (dst_pos, Address(rsp, 1*BytesPerWord));
3148     __ movptr   (length,  Address(rsp, 2*BytesPerWord));
3149     __ movptr   (src_pos, Address(rsp, 3*BytesPerWord));
3150     __ movptr   (src,     Address(rsp, 4*BytesPerWord));
3151 
3152     if (copyfunc_addr != NULL) {
3153       __ subl(length, tmp);
3154       __ addl(src_pos, tmp);
3155       __ addl(dst_pos, tmp);
3156     }
3157     __ jmp(*stub->entry());
3158 
3159     __ bind(*stub->continuation());
3160     return;
3161   }
3162 
3163   assert(default_type != NULL && default_type->is_array_klass() && default_type->is_loaded(), "must be true at this point");
3164 
3165   int elem_size = type2aelembytes(basic_type);
3166   int shift_amount;
3167   Address::ScaleFactor scale;
3168 
3169   switch (elem_size) {
3170     case 1 :
3171       shift_amount = 0;
3172       scale = Address::times_1;
3173       break;
3174     case 2 :
3175       shift_amount = 1;
3176       scale = Address::times_2;
3177       break;
3178     case 4 :
3179       shift_amount = 2;
3180       scale = Address::times_4;
3181       break;
3182     case 8 :
3183       shift_amount = 3;
3184       scale = Address::times_8;
3185       break;
3186     default:
3187       ShouldNotReachHere();
3188   }
3189 
3190   Address src_length_addr = Address(src, arrayOopDesc::length_offset_in_bytes());
3191   Address dst_length_addr = Address(dst, arrayOopDesc::length_offset_in_bytes());
3192   Address src_klass_addr = Address(src, oopDesc::klass_offset_in_bytes());
3193   Address dst_klass_addr = Address(dst, oopDesc::klass_offset_in_bytes());
3194 
3195   // length and pos's are all sign extended at this point on 64bit
3196 
3197   // test for NULL
3198   if (flags & LIR_OpArrayCopy::src_null_check) {
3199     __ testptr(src, src);
3200     __ jcc(Assembler::zero, *stub->entry());
3201   }
3202   if (flags & LIR_OpArrayCopy::dst_null_check) {
3203     __ testptr(dst, dst);
3204     __ jcc(Assembler::zero, *stub->entry());
3205   }
3206 
3207   // check if negative
3208   if (flags & LIR_OpArrayCopy::src_pos_positive_check) {
3209     __ testl(src_pos, src_pos);
3210     __ jcc(Assembler::less, *stub->entry());
3211   }
3212   if (flags & LIR_OpArrayCopy::dst_pos_positive_check) {
3213     __ testl(dst_pos, dst_pos);
3214     __ jcc(Assembler::less, *stub->entry());
3215   }
3216 
3217   if (flags & LIR_OpArrayCopy::src_range_check) {
3218     __ lea(tmp, Address(src_pos, length, Address::times_1, 0));
3219     __ cmpl(tmp, src_length_addr);
3220     __ jcc(Assembler::above, *stub->entry());
3221   }
3222   if (flags & LIR_OpArrayCopy::dst_range_check) {
3223     __ lea(tmp, Address(dst_pos, length, Address::times_1, 0));
3224     __ cmpl(tmp, dst_length_addr);
3225     __ jcc(Assembler::above, *stub->entry());
3226   }
3227 
3228   if (flags & LIR_OpArrayCopy::length_positive_check) {
3229     __ testl(length, length);
3230     __ jcc(Assembler::less, *stub->entry());
3231     __ jcc(Assembler::zero, *stub->continuation());
3232   }
3233 
3234 #ifdef _LP64
3235   __ movl2ptr(src_pos, src_pos); //higher 32bits must be null
3236   __ movl2ptr(dst_pos, dst_pos); //higher 32bits must be null
3237 #endif
3238 
3239   if (flags & LIR_OpArrayCopy::type_check) {
3240     // We don't know the array types are compatible
3241     if (basic_type != T_OBJECT) {
3242       // Simple test for basic type arrays
3243       if (UseCompressedOops) {
3244         __ movl(tmp, src_klass_addr);
3245         __ cmpl(tmp, dst_klass_addr);
3246       } else {
3247         __ movptr(tmp, src_klass_addr);
3248         __ cmpptr(tmp, dst_klass_addr);
3249       }
3250       __ jcc(Assembler::notEqual, *stub->entry());
3251     } else {
3252       // For object arrays, if src is a sub class of dst then we can
3253       // safely do the copy.
3254       Label cont, slow;
3255 
3256       __ push(src);
3257       __ push(dst);
3258 
3259       __ load_klass(src, src);
3260       __ load_klass(dst, dst);
3261 
3262       __ check_klass_subtype_fast_path(src, dst, tmp, &cont, &slow, NULL);
3263 
3264       __ push(src);
3265       __ push(dst);
3266       __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::slow_subtype_check_id)));
3267       __ pop(dst);
3268       __ pop(src);
3269 
3270       __ cmpl(src, 0);
3271       __ jcc(Assembler::notEqual, cont);
3272 
3273       __ bind(slow);
3274       __ pop(dst);
3275       __ pop(src);
3276 
3277       address copyfunc_addr = StubRoutines::checkcast_arraycopy();
3278       if (copyfunc_addr != NULL) { // use stub if available
3279         // src is not a sub class of dst so we have to do a
3280         // per-element check.
3281 
3282         int mask = LIR_OpArrayCopy::src_objarray|LIR_OpArrayCopy::dst_objarray;
3283         if ((flags & mask) != mask) {
3284           // Check that at least both of them object arrays.
3285           assert(flags & mask, "one of the two should be known to be an object array");
3286 
3287           if (!(flags & LIR_OpArrayCopy::src_objarray)) {
3288             __ load_klass(tmp, src);
3289           } else if (!(flags & LIR_OpArrayCopy::dst_objarray)) {
3290             __ load_klass(tmp, dst);
3291           }
3292           int lh_offset = klassOopDesc::header_size() * HeapWordSize +
3293             Klass::layout_helper_offset_in_bytes();
3294           Address klass_lh_addr(tmp, lh_offset);
3295           jint objArray_lh = Klass::array_layout_helper(T_OBJECT);
3296           __ cmpl(klass_lh_addr, objArray_lh);
3297           __ jcc(Assembler::notEqual, *stub->entry());
3298         }
3299 
3300        // Spill because stubs can use any register they like and it's
3301        // easier to restore just those that we care about.
3302        store_parameter(dst, 0);
3303        store_parameter(dst_pos, 1);
3304        store_parameter(length, 2);
3305        store_parameter(src_pos, 3);
3306        store_parameter(src, 4);
3307 
3308 #ifndef _LP64
3309         __ movptr(tmp, dst_klass_addr);
3310         __ movptr(tmp, Address(tmp, objArrayKlass::element_klass_offset_in_bytes() + sizeof(oopDesc)));
3311         __ push(tmp);
3312         __ movl(tmp, Address(tmp, Klass::super_check_offset_offset_in_bytes() + sizeof(oopDesc)));
3313         __ push(tmp);
3314         __ push(length);
3315         __ lea(tmp, Address(dst, dst_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
3316         __ push(tmp);
3317         __ lea(tmp, Address(src, src_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
3318         __ push(tmp);
3319 
3320         __ call_VM_leaf(copyfunc_addr, 5);
3321 #else
3322         __ movl2ptr(length, length); //higher 32bits must be null
3323 
3324         __ lea(c_rarg0, Address(src, src_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
3325         assert_different_registers(c_rarg0, dst, dst_pos, length);
3326         __ lea(c_rarg1, Address(dst, dst_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
3327         assert_different_registers(c_rarg1, dst, length);
3328 
3329         __ mov(c_rarg2, length);
3330         assert_different_registers(c_rarg2, dst);
3331 
3332 #ifdef _WIN64
3333         // Allocate abi space for args but be sure to keep stack aligned
3334         __ subptr(rsp, 6*wordSize);
3335         __ load_klass(c_rarg3, dst);
3336         __ movptr(c_rarg3, Address(c_rarg3, objArrayKlass::element_klass_offset_in_bytes() + sizeof(oopDesc)));
3337         store_parameter(c_rarg3, 4);
3338         __ movl(c_rarg3, Address(c_rarg3, Klass::super_check_offset_offset_in_bytes() + sizeof(oopDesc)));
3339         __ call(RuntimeAddress(copyfunc_addr));
3340         __ addptr(rsp, 6*wordSize);
3341 #else
3342         __ load_klass(c_rarg4, dst);
3343         __ movptr(c_rarg4, Address(c_rarg4, objArrayKlass::element_klass_offset_in_bytes() + sizeof(oopDesc)));
3344         __ movl(c_rarg3, Address(c_rarg4, Klass::super_check_offset_offset_in_bytes() + sizeof(oopDesc)));
3345         __ call(RuntimeAddress(copyfunc_addr));
3346 #endif
3347 
3348 #endif
3349 
3350 #ifndef PRODUCT
3351         if (PrintC1Statistics) {
3352           Label failed;
3353           __ testl(rax, rax);
3354           __ jcc(Assembler::notZero, failed);
3355           __ incrementl(ExternalAddress((address)&Runtime1::_arraycopy_checkcast_cnt));
3356           __ bind(failed);
3357         }
3358 #endif
3359 
3360         __ testl(rax, rax);
3361         __ jcc(Assembler::zero, *stub->continuation());
3362 
3363 #ifndef PRODUCT
3364         if (PrintC1Statistics) {
3365           __ incrementl(ExternalAddress((address)&Runtime1::_arraycopy_checkcast_attempt_cnt));
3366         }
3367 #endif
3368 
3369         __ mov(tmp, rax);
3370 
3371         __ xorl(tmp, -1);
3372 
3373         // Restore previously spilled arguments
3374         __ movptr   (dst,     Address(rsp, 0*BytesPerWord));
3375         __ movptr   (dst_pos, Address(rsp, 1*BytesPerWord));
3376         __ movptr   (length,  Address(rsp, 2*BytesPerWord));
3377         __ movptr   (src_pos, Address(rsp, 3*BytesPerWord));
3378         __ movptr   (src,     Address(rsp, 4*BytesPerWord));
3379 
3380 
3381         __ subl(length, tmp);
3382         __ addl(src_pos, tmp);
3383         __ addl(dst_pos, tmp);
3384       }
3385 
3386       __ jmp(*stub->entry());
3387 
3388       __ bind(cont);
3389       __ pop(dst);
3390       __ pop(src);
3391     }
3392   }
3393 
3394 #ifdef ASSERT
3395   if (basic_type != T_OBJECT || !(flags & LIR_OpArrayCopy::type_check)) {
3396     // Sanity check the known type with the incoming class.  For the
3397     // primitive case the types must match exactly with src.klass and
3398     // dst.klass each exactly matching the default type.  For the
3399     // object array case, if no type check is needed then either the
3400     // dst type is exactly the expected type and the src type is a
3401     // subtype which we can't check or src is the same array as dst
3402     // but not necessarily exactly of type default_type.
3403     Label known_ok, halt;
3404     __ movoop(tmp, default_type->constant_encoding());
3405 #ifdef _LP64
3406     if (UseCompressedOops) {
3407       __ encode_heap_oop(tmp);
3408     }
3409 #endif
3410 
3411     if (basic_type != T_OBJECT) {
3412 
3413       if (UseCompressedOops) __ cmpl(tmp, dst_klass_addr);
3414       else                   __ cmpptr(tmp, dst_klass_addr);
3415       __ jcc(Assembler::notEqual, halt);
3416       if (UseCompressedOops) __ cmpl(tmp, src_klass_addr);
3417       else                   __ cmpptr(tmp, src_klass_addr);
3418       __ jcc(Assembler::equal, known_ok);
3419     } else {
3420       if (UseCompressedOops) __ cmpl(tmp, dst_klass_addr);
3421       else                   __ cmpptr(tmp, dst_klass_addr);
3422       __ jcc(Assembler::equal, known_ok);
3423       __ cmpptr(src, dst);
3424       __ jcc(Assembler::equal, known_ok);
3425     }
3426     __ bind(halt);
3427     __ stop("incorrect type information in arraycopy");
3428     __ bind(known_ok);
3429   }
3430 #endif
3431 
3432 #ifndef PRODUCT
3433   if (PrintC1Statistics) {
3434     __ incrementl(ExternalAddress(Runtime1::arraycopy_count_address(basic_type)));
3435   }
3436 #endif
3437 
3438 #ifdef _LP64
3439   assert_different_registers(c_rarg0, dst, dst_pos, length);
3440   __ lea(c_rarg0, Address(src, src_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
3441   assert_different_registers(c_rarg1, length);
3442   __ lea(c_rarg1, Address(dst, dst_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
3443   __ mov(c_rarg2, length);
3444 
3445 #else
3446   __ lea(tmp, Address(src, src_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
3447   store_parameter(tmp, 0);
3448   __ lea(tmp, Address(dst, dst_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
3449   store_parameter(tmp, 1);
3450   store_parameter(length, 2);
3451 #endif // _LP64
3452 
3453   bool disjoint = (flags & LIR_OpArrayCopy::overlapping) == 0;
3454   bool aligned = (flags & LIR_OpArrayCopy::unaligned) == 0;
3455   const char *name;
3456   address entry = StubRoutines::select_arraycopy_function(basic_type, aligned, disjoint, name, false);
3457   __ call_VM_leaf(entry, 0);
3458 
3459   __ bind(*stub->continuation());
3460 }
3461 
3462 
3463 void LIR_Assembler::emit_lock(LIR_OpLock* op) {
3464   Register obj = op->obj_opr()->as_register();  // may not be an oop
3465   Register hdr = op->hdr_opr()->as_register();
3466   Register lock = op->lock_opr()->as_register();
3467   if (!UseFastLocking) {
3468     __ jmp(*op->stub()->entry());
3469   } else if (op->code() == lir_lock) {
3470     Register scratch = noreg;
3471     if (UseBiasedLocking) {
3472       scratch = op->scratch_opr()->as_register();
3473     }
3474     assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
3475     // add debug info for NullPointerException only if one is possible
3476     int null_check_offset = __ lock_object(hdr, obj, lock, scratch, *op->stub()->entry());
3477     if (op->info() != NULL) {
3478       add_debug_info_for_null_check(null_check_offset, op->info());
3479     }
3480     // done
3481   } else if (op->code() == lir_unlock) {
3482     assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
3483     __ unlock_object(hdr, obj, lock, *op->stub()->entry());
3484   } else {
3485     Unimplemented();
3486   }
3487   __ bind(*op->stub()->continuation());
3488 }
3489 
3490 
3491 void LIR_Assembler::emit_profile_call(LIR_OpProfileCall* op) {
3492   ciMethod* method = op->profiled_method();
3493   int bci          = op->profiled_bci();
3494 
3495   // Update counter for all call types
3496   ciMethodData* md = method->method_data_or_null();
3497   assert(md != NULL, "Sanity");
3498   ciProfileData* data = md->bci_to_data(bci);
3499   assert(data->is_CounterData(), "need CounterData for calls");
3500   assert(op->mdo()->is_single_cpu(),  "mdo must be allocated");
3501   Register mdo  = op->mdo()->as_register();
3502   __ movoop(mdo, md->constant_encoding());
3503   Address counter_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()));
3504   Bytecodes::Code bc = method->java_code_at_bci(bci);
3505   // Perform additional virtual call profiling for invokevirtual and
3506   // invokeinterface bytecodes
3507   if ((bc == Bytecodes::_invokevirtual || bc == Bytecodes::_invokeinterface) &&
3508       C1ProfileVirtualCalls) {
3509     assert(op->recv()->is_single_cpu(), "recv must be allocated");
3510     Register recv = op->recv()->as_register();
3511     assert_different_registers(mdo, recv);
3512     assert(data->is_VirtualCallData(), "need VirtualCallData for virtual calls");
3513     ciKlass* known_klass = op->known_holder();
3514     if (C1OptimizeVirtualCallProfiling && known_klass != NULL) {
3515       // We know the type that will be seen at this call site; we can
3516       // statically update the methodDataOop rather than needing to do
3517       // dynamic tests on the receiver type
3518 
3519       // NOTE: we should probably put a lock around this search to
3520       // avoid collisions by concurrent compilations
3521       ciVirtualCallData* vc_data = (ciVirtualCallData*) data;
3522       uint i;
3523       for (i = 0; i < VirtualCallData::row_limit(); i++) {
3524         ciKlass* receiver = vc_data->receiver(i);
3525         if (known_klass->equals(receiver)) {
3526           Address data_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i)));
3527           __ addptr(data_addr, DataLayout::counter_increment);
3528           return;
3529         }
3530       }
3531 
3532       // Receiver type not found in profile data; select an empty slot
3533 
3534       // Note that this is less efficient than it should be because it
3535       // always does a write to the receiver part of the
3536       // VirtualCallData rather than just the first time
3537       for (i = 0; i < VirtualCallData::row_limit(); i++) {
3538         ciKlass* receiver = vc_data->receiver(i);
3539         if (receiver == NULL) {
3540           Address recv_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_offset(i)));
3541           __ movoop(recv_addr, known_klass->constant_encoding());
3542           Address data_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i)));
3543           __ addptr(data_addr, DataLayout::counter_increment);
3544           return;
3545         }
3546       }
3547     } else {
3548       __ load_klass(recv, recv);
3549       Label update_done;
3550       type_profile_helper(mdo, md, data, recv, &update_done);
3551       // Receiver did not match any saved receiver and there is no empty row for it.
3552       // Increment total counter to indicate polymorphic case.
3553       __ addptr(counter_addr, DataLayout::counter_increment);
3554 
3555       __ bind(update_done);
3556     }
3557   } else {
3558     // Static call
3559     __ addptr(counter_addr, DataLayout::counter_increment);
3560   }
3561 }
3562 
3563 void LIR_Assembler::emit_delay(LIR_OpDelay*) {
3564   Unimplemented();
3565 }
3566 
3567 
3568 void LIR_Assembler::monitor_address(int monitor_no, LIR_Opr dst) {
3569   __ lea(dst->as_register(), frame_map()->address_for_monitor_lock(monitor_no));
3570 }
3571 
3572 
3573 void LIR_Assembler::align_backward_branch_target() {
3574   __ align(BytesPerWord);
3575 }
3576 
3577 
3578 void LIR_Assembler::negate(LIR_Opr left, LIR_Opr dest) {
3579   if (left->is_single_cpu()) {
3580     __ negl(left->as_register());
3581     move_regs(left->as_register(), dest->as_register());
3582 
3583   } else if (left->is_double_cpu()) {
3584     Register lo = left->as_register_lo();
3585 #ifdef _LP64
3586     Register dst = dest->as_register_lo();
3587     __ movptr(dst, lo);
3588     __ negptr(dst);
3589 #else
3590     Register hi = left->as_register_hi();
3591     __ lneg(hi, lo);
3592     if (dest->as_register_lo() == hi) {
3593       assert(dest->as_register_hi() != lo, "destroying register");
3594       move_regs(hi, dest->as_register_hi());
3595       move_regs(lo, dest->as_register_lo());
3596     } else {
3597       move_regs(lo, dest->as_register_lo());
3598       move_regs(hi, dest->as_register_hi());
3599     }
3600 #endif // _LP64
3601 
3602   } else if (dest->is_single_xmm()) {
3603     if (left->as_xmm_float_reg() != dest->as_xmm_float_reg()) {
3604       __ movflt(dest->as_xmm_float_reg(), left->as_xmm_float_reg());
3605     }
3606     __ xorps(dest->as_xmm_float_reg(),
3607              ExternalAddress((address)float_signflip_pool));
3608 
3609   } else if (dest->is_double_xmm()) {
3610     if (left->as_xmm_double_reg() != dest->as_xmm_double_reg()) {
3611       __ movdbl(dest->as_xmm_double_reg(), left->as_xmm_double_reg());
3612     }
3613     __ xorpd(dest->as_xmm_double_reg(),
3614              ExternalAddress((address)double_signflip_pool));
3615 
3616   } else if (left->is_single_fpu() || left->is_double_fpu()) {
3617     assert(left->fpu() == 0, "arg must be on TOS");
3618     assert(dest->fpu() == 0, "dest must be TOS");
3619     __ fchs();
3620 
3621   } else {
3622     ShouldNotReachHere();
3623   }
3624 }
3625 
3626 
3627 void LIR_Assembler::leal(LIR_Opr addr, LIR_Opr dest) {
3628   assert(addr->is_address() && dest->is_register(), "check");
3629   Register reg;
3630   reg = dest->as_pointer_register();
3631   __ lea(reg, as_Address(addr->as_address_ptr()));
3632 }
3633 
3634 
3635 
3636 void LIR_Assembler::rt_call(LIR_Opr result, address dest, const LIR_OprList* args, LIR_Opr tmp, CodeEmitInfo* info) {
3637   assert(!tmp->is_valid(), "don't need temporary");
3638   __ call(RuntimeAddress(dest));
3639   if (info != NULL) {
3640     add_call_info_here(info);
3641   }
3642 }
3643 
3644 
3645 void LIR_Assembler::volatile_move_op(LIR_Opr src, LIR_Opr dest, BasicType type, CodeEmitInfo* info) {
3646   assert(type == T_LONG, "only for volatile long fields");
3647 
3648   if (info != NULL) {
3649     add_debug_info_for_null_check_here(info);
3650   }
3651 
3652   if (src->is_double_xmm()) {
3653     if (dest->is_double_cpu()) {
3654 #ifdef _LP64
3655       __ movdq(dest->as_register_lo(), src->as_xmm_double_reg());
3656 #else
3657       __ movdl(dest->as_register_lo(), src->as_xmm_double_reg());
3658       __ psrlq(src->as_xmm_double_reg(), 32);
3659       __ movdl(dest->as_register_hi(), src->as_xmm_double_reg());
3660 #endif // _LP64
3661     } else if (dest->is_double_stack()) {
3662       __ movdbl(frame_map()->address_for_slot(dest->double_stack_ix()), src->as_xmm_double_reg());
3663     } else if (dest->is_address()) {
3664       __ movdbl(as_Address(dest->as_address_ptr()), src->as_xmm_double_reg());
3665     } else {
3666       ShouldNotReachHere();
3667     }
3668 
3669   } else if (dest->is_double_xmm()) {
3670     if (src->is_double_stack()) {
3671       __ movdbl(dest->as_xmm_double_reg(), frame_map()->address_for_slot(src->double_stack_ix()));
3672     } else if (src->is_address()) {
3673       __ movdbl(dest->as_xmm_double_reg(), as_Address(src->as_address_ptr()));
3674     } else {
3675       ShouldNotReachHere();
3676     }
3677 
3678   } else if (src->is_double_fpu()) {
3679     assert(src->fpu_regnrLo() == 0, "must be TOS");
3680     if (dest->is_double_stack()) {
3681       __ fistp_d(frame_map()->address_for_slot(dest->double_stack_ix()));
3682     } else if (dest->is_address()) {
3683       __ fistp_d(as_Address(dest->as_address_ptr()));
3684     } else {
3685       ShouldNotReachHere();
3686     }
3687 
3688   } else if (dest->is_double_fpu()) {
3689     assert(dest->fpu_regnrLo() == 0, "must be TOS");
3690     if (src->is_double_stack()) {
3691       __ fild_d(frame_map()->address_for_slot(src->double_stack_ix()));
3692     } else if (src->is_address()) {
3693       __ fild_d(as_Address(src->as_address_ptr()));
3694     } else {
3695       ShouldNotReachHere();
3696     }
3697   } else {
3698     ShouldNotReachHere();
3699   }
3700 }
3701 
3702 
3703 void LIR_Assembler::membar() {
3704   // QQQ sparc TSO uses this,
3705   __ membar( Assembler::Membar_mask_bits(Assembler::StoreLoad));
3706 }
3707 
3708 void LIR_Assembler::membar_acquire() {
3709   // No x86 machines currently require load fences
3710   // __ load_fence();
3711 }
3712 
3713 void LIR_Assembler::membar_release() {
3714   // No x86 machines currently require store fences
3715   // __ store_fence();
3716 }
3717 
3718 void LIR_Assembler::get_thread(LIR_Opr result_reg) {
3719   assert(result_reg->is_register(), "check");
3720 #ifdef _LP64
3721   // __ get_thread(result_reg->as_register_lo());
3722   __ mov(result_reg->as_register(), r15_thread);
3723 #else
3724   __ get_thread(result_reg->as_register());
3725 #endif // _LP64
3726 }
3727 
3728 
3729 void LIR_Assembler::peephole(LIR_List*) {
3730   // do nothing for now
3731 }
3732 
3733 
3734 #undef __