1 /*
   2  * Copyright (c) 1999, 2010, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "c1/c1_Compilation.hpp"
  27 #include "c1/c1_FrameMap.hpp"
  28 #include "c1/c1_GraphBuilder.hpp"
  29 #include "c1/c1_IR.hpp"
  30 #include "c1/c1_InstructionPrinter.hpp"
  31 #include "c1/c1_Optimizer.hpp"
  32 #include "utilities/bitMap.inline.hpp"
  33 
  34 
  35 // Implementation of XHandlers
  36 //
  37 // Note: This code could eventually go away if we are
  38 //       just using the ciExceptionHandlerStream.
  39 
  40 XHandlers::XHandlers(ciMethod* method) : _list(method->exception_table_length()) {
  41   ciExceptionHandlerStream s(method);
  42   while (!s.is_done()) {
  43     _list.append(new XHandler(s.handler()));
  44     s.next();
  45   }
  46   assert(s.count() == method->exception_table_length(), "exception table lengths inconsistent");
  47 }
  48 
  49 // deep copy of all XHandler contained in list
  50 XHandlers::XHandlers(XHandlers* other) :
  51   _list(other->length())
  52 {
  53   for (int i = 0; i < other->length(); i++) {
  54     _list.append(new XHandler(other->handler_at(i)));
  55   }
  56 }
  57 
  58 // Returns whether a particular exception type can be caught.  Also
  59 // returns true if klass is unloaded or any exception handler
  60 // classes are unloaded.  type_is_exact indicates whether the throw
  61 // is known to be exactly that class or it might throw a subtype.
  62 bool XHandlers::could_catch(ciInstanceKlass* klass, bool type_is_exact) const {
  63   // the type is unknown so be conservative
  64   if (!klass->is_loaded()) {
  65     return true;
  66   }
  67 
  68   for (int i = 0; i < length(); i++) {
  69     XHandler* handler = handler_at(i);
  70     if (handler->is_catch_all()) {
  71       // catch of ANY
  72       return true;
  73     }
  74     ciInstanceKlass* handler_klass = handler->catch_klass();
  75     // if it's unknown it might be catchable
  76     if (!handler_klass->is_loaded()) {
  77       return true;
  78     }
  79     // if the throw type is definitely a subtype of the catch type
  80     // then it can be caught.
  81     if (klass->is_subtype_of(handler_klass)) {
  82       return true;
  83     }
  84     if (!type_is_exact) {
  85       // If the type isn't exactly known then it can also be caught by
  86       // catch statements where the inexact type is a subtype of the
  87       // catch type.
  88       // given: foo extends bar extends Exception
  89       // throw bar can be caught by catch foo, catch bar, and catch
  90       // Exception, however it can't be caught by any handlers without
  91       // bar in its type hierarchy.
  92       if (handler_klass->is_subtype_of(klass)) {
  93         return true;
  94       }
  95     }
  96   }
  97 
  98   return false;
  99 }
 100 
 101 
 102 bool XHandlers::equals(XHandlers* others) const {
 103   if (others == NULL) return false;
 104   if (length() != others->length()) return false;
 105 
 106   for (int i = 0; i < length(); i++) {
 107     if (!handler_at(i)->equals(others->handler_at(i))) return false;
 108   }
 109   return true;
 110 }
 111 
 112 bool XHandler::equals(XHandler* other) const {
 113   assert(entry_pco() != -1 && other->entry_pco() != -1, "must have entry_pco");
 114 
 115   if (entry_pco() != other->entry_pco()) return false;
 116   if (scope_count() != other->scope_count()) return false;
 117   if (_desc != other->_desc) return false;
 118 
 119   assert(entry_block() == other->entry_block(), "entry_block must be equal when entry_pco is equal");
 120   return true;
 121 }
 122 
 123 
 124 // Implementation of IRScope
 125 BlockBegin* IRScope::build_graph(Compilation* compilation, int osr_bci) {
 126   GraphBuilder gm(compilation, this);
 127   NOT_PRODUCT(if (PrintValueNumbering && Verbose) gm.print_stats());
 128   if (compilation->bailed_out()) return NULL;
 129   return gm.start();
 130 }
 131 
 132 
 133 IRScope::IRScope(Compilation* compilation, IRScope* caller, int caller_bci, ciMethod* method, int osr_bci, bool create_graph)
 134 : _callees(2)
 135 , _compilation(compilation)
 136 , _requires_phi_function(method->max_locals())
 137 {
 138   _caller             = caller;
 139   _level              = caller == NULL ?  0 : caller->level() + 1;
 140   _method             = method;
 141   _xhandlers          = new XHandlers(method);
 142   _number_of_locks    = 0;
 143   _monitor_pairing_ok = method->has_balanced_monitors();
 144   _start              = NULL;
 145 
 146   if (osr_bci == -1) {
 147     _requires_phi_function.clear();
 148   } else {
 149         // selective creation of phi functions is not possibel in osr-methods
 150     _requires_phi_function.set_range(0, method->max_locals());
 151   }
 152 
 153   assert(method->holder()->is_loaded() , "method holder must be loaded");
 154 
 155   // build graph if monitor pairing is ok
 156   if (create_graph && monitor_pairing_ok()) _start = build_graph(compilation, osr_bci);
 157 }
 158 
 159 
 160 int IRScope::max_stack() const {
 161   int my_max = method()->max_stack();
 162   int callee_max = 0;
 163   for (int i = 0; i < number_of_callees(); i++) {
 164     callee_max = MAX2(callee_max, callee_no(i)->max_stack());
 165   }
 166   return my_max + callee_max;
 167 }
 168 
 169 
 170 bool IRScopeDebugInfo::should_reexecute() {
 171   ciMethod* cur_method = scope()->method();
 172   int       cur_bci    = bci();
 173   if (cur_method != NULL && cur_bci != SynchronizationEntryBCI) {
 174     Bytecodes::Code code = cur_method->java_code_at_bci(cur_bci);
 175     return Interpreter::bytecode_should_reexecute(code);
 176   } else
 177     return false;
 178 }
 179 
 180 
 181 // Implementation of CodeEmitInfo
 182 
 183 // Stack must be NON-null
 184 CodeEmitInfo::CodeEmitInfo(ValueStack* stack, XHandlers* exception_handlers)
 185   : _scope(stack->scope())
 186   , _scope_debug_info(NULL)
 187   , _oop_map(NULL)
 188   , _stack(stack)
 189   , _exception_handlers(exception_handlers)
 190   , _is_method_handle_invoke(false) {
 191   assert(_stack != NULL, "must be non null");
 192 }
 193 
 194 
 195 CodeEmitInfo::CodeEmitInfo(CodeEmitInfo* info, ValueStack* stack)
 196   : _scope(info->_scope)
 197   , _exception_handlers(NULL)
 198   , _scope_debug_info(NULL)
 199   , _oop_map(NULL)
 200   , _stack(stack == NULL ? info->_stack : stack)
 201   , _is_method_handle_invoke(info->_is_method_handle_invoke) {
 202 
 203   // deep copy of exception handlers
 204   if (info->_exception_handlers != NULL) {
 205     _exception_handlers = new XHandlers(info->_exception_handlers);
 206   }
 207 }
 208 
 209 
 210 void CodeEmitInfo::record_debug_info(DebugInformationRecorder* recorder, int pc_offset) {
 211   // record the safepoint before recording the debug info for enclosing scopes
 212   recorder->add_safepoint(pc_offset, _oop_map->deep_copy());
 213   _scope_debug_info->record_debug_info(recorder, pc_offset, true/*topmost*/, _is_method_handle_invoke);
 214   recorder->end_safepoint(pc_offset);
 215 }
 216 
 217 
 218 void CodeEmitInfo::add_register_oop(LIR_Opr opr) {
 219   assert(_oop_map != NULL, "oop map must already exist");
 220   assert(opr->is_single_cpu(), "should not call otherwise");
 221 
 222   VMReg name = frame_map()->regname(opr);
 223   _oop_map->set_oop(name);
 224 }
 225 
 226 
 227 
 228 
 229 // Implementation of IR
 230 
 231 IR::IR(Compilation* compilation, ciMethod* method, int osr_bci) :
 232     _locals_size(in_WordSize(-1))
 233   , _num_loops(0) {
 234   // setup IR fields
 235   _compilation = compilation;
 236   _top_scope   = new IRScope(compilation, NULL, -1, method, osr_bci, true);
 237   _code        = NULL;
 238 }
 239 
 240 
 241 void IR::optimize() {
 242   Optimizer opt(this);
 243   if (!compilation()->profile_branches()) {
 244     if (DoCEE) {
 245       opt.eliminate_conditional_expressions();
 246 #ifndef PRODUCT
 247       if (PrintCFG || PrintCFG1) { tty->print_cr("CFG after CEE"); print(true); }
 248       if (PrintIR  || PrintIR1 ) { tty->print_cr("IR after CEE"); print(false); }
 249 #endif
 250     }
 251     if (EliminateBlocks) {
 252       opt.eliminate_blocks();
 253 #ifndef PRODUCT
 254       if (PrintCFG || PrintCFG1) { tty->print_cr("CFG after block elimination"); print(true); }
 255       if (PrintIR  || PrintIR1 ) { tty->print_cr("IR after block elimination"); print(false); }
 256 #endif
 257     }
 258   }
 259   if (EliminateNullChecks) {
 260     opt.eliminate_null_checks();
 261 #ifndef PRODUCT
 262     if (PrintCFG || PrintCFG1) { tty->print_cr("CFG after null check elimination"); print(true); }
 263     if (PrintIR  || PrintIR1 ) { tty->print_cr("IR after null check elimination"); print(false); }
 264 #endif
 265   }
 266 }
 267 
 268 
 269 static int sort_pairs(BlockPair** a, BlockPair** b) {
 270   if ((*a)->from() == (*b)->from()) {
 271     return (*a)->to()->block_id() - (*b)->to()->block_id();
 272   } else {
 273     return (*a)->from()->block_id() - (*b)->from()->block_id();
 274   }
 275 }
 276 
 277 
 278 class CriticalEdgeFinder: public BlockClosure {
 279   BlockPairList blocks;
 280   IR*       _ir;
 281 
 282  public:
 283   CriticalEdgeFinder(IR* ir): _ir(ir) {}
 284   void block_do(BlockBegin* bb) {
 285     BlockEnd* be = bb->end();
 286     int nos = be->number_of_sux();
 287     if (nos >= 2) {
 288       for (int i = 0; i < nos; i++) {
 289         BlockBegin* sux = be->sux_at(i);
 290         if (sux->number_of_preds() >= 2) {
 291           blocks.append(new BlockPair(bb, sux));
 292         }
 293       }
 294     }
 295   }
 296 
 297   void split_edges() {
 298     BlockPair* last_pair = NULL;
 299     blocks.sort(sort_pairs);
 300     for (int i = 0; i < blocks.length(); i++) {
 301       BlockPair* pair = blocks.at(i);
 302       if (last_pair != NULL && pair->is_same(last_pair)) continue;
 303       BlockBegin* from = pair->from();
 304       BlockBegin* to = pair->to();
 305       BlockBegin* split = from->insert_block_between(to);
 306 #ifndef PRODUCT
 307       if ((PrintIR || PrintIR1) && Verbose) {
 308         tty->print_cr("Split critical edge B%d -> B%d (new block B%d)",
 309                       from->block_id(), to->block_id(), split->block_id());
 310       }
 311 #endif
 312       last_pair = pair;
 313     }
 314   }
 315 };
 316 
 317 void IR::split_critical_edges() {
 318   CriticalEdgeFinder cef(this);
 319 
 320   iterate_preorder(&cef);
 321   cef.split_edges();
 322 }
 323 
 324 
 325 class UseCountComputer: public ValueVisitor, BlockClosure {
 326  private:
 327   void visit(Value* n) {
 328     // Local instructions and Phis for expression stack values at the
 329     // start of basic blocks are not added to the instruction list
 330     if (!(*n)->is_linked() && (*n)->can_be_linked()) {
 331       assert(false, "a node was not appended to the graph");
 332       Compilation::current()->bailout("a node was not appended to the graph");
 333     }
 334     // use n's input if not visited before
 335     if (!(*n)->is_pinned() && !(*n)->has_uses()) {
 336       // note: a) if the instruction is pinned, it will be handled by compute_use_count
 337       //       b) if the instruction has uses, it was touched before
 338       //       => in both cases we don't need to update n's values
 339       uses_do(n);
 340     }
 341     // use n
 342     (*n)->_use_count++;
 343   }
 344 
 345   Values* worklist;
 346   int depth;
 347   enum {
 348     max_recurse_depth = 20
 349   };
 350 
 351   void uses_do(Value* n) {
 352     depth++;
 353     if (depth > max_recurse_depth) {
 354       // don't allow the traversal to recurse too deeply
 355       worklist->push(*n);
 356     } else {
 357       (*n)->input_values_do(this);
 358       // special handling for some instructions
 359       if ((*n)->as_BlockEnd() != NULL) {
 360         // note on BlockEnd:
 361         //   must 'use' the stack only if the method doesn't
 362         //   terminate, however, in those cases stack is empty
 363         (*n)->state_values_do(this);
 364       }
 365     }
 366     depth--;
 367   }
 368 
 369   void block_do(BlockBegin* b) {
 370     depth = 0;
 371     // process all pinned nodes as the roots of expression trees
 372     for (Instruction* n = b; n != NULL; n = n->next()) {
 373       if (n->is_pinned()) uses_do(&n);
 374     }
 375     assert(depth == 0, "should have counted back down");
 376 
 377     // now process any unpinned nodes which recursed too deeply
 378     while (worklist->length() > 0) {
 379       Value t = worklist->pop();
 380       if (!t->is_pinned()) {
 381         // compute the use count
 382         uses_do(&t);
 383 
 384         // pin the instruction so that LIRGenerator doesn't recurse
 385         // too deeply during it's evaluation.
 386         t->pin();
 387       }
 388     }
 389     assert(depth == 0, "should have counted back down");
 390   }
 391 
 392   UseCountComputer() {
 393     worklist = new Values();
 394     depth = 0;
 395   }
 396 
 397  public:
 398   static void compute(BlockList* blocks) {
 399     UseCountComputer ucc;
 400     blocks->iterate_backward(&ucc);
 401   }
 402 };
 403 
 404 
 405 // helper macro for short definition of trace-output inside code
 406 #ifndef PRODUCT
 407   #define TRACE_LINEAR_SCAN(level, code)       \
 408     if (TraceLinearScanLevel >= level) {       \
 409       code;                                    \
 410     }
 411 #else
 412   #define TRACE_LINEAR_SCAN(level, code)
 413 #endif
 414 
 415 class ComputeLinearScanOrder : public StackObj {
 416  private:
 417   int        _max_block_id;        // the highest block_id of a block
 418   int        _num_blocks;          // total number of blocks (smaller than _max_block_id)
 419   int        _num_loops;           // total number of loops
 420   bool       _iterative_dominators;// method requires iterative computation of dominatiors
 421 
 422   BlockList* _linear_scan_order;   // the resulting list of blocks in correct order
 423 
 424   BitMap     _visited_blocks;      // used for recursive processing of blocks
 425   BitMap     _active_blocks;       // used for recursive processing of blocks
 426   BitMap     _dominator_blocks;    // temproary BitMap used for computation of dominator
 427   intArray   _forward_branches;    // number of incoming forward branches for each block
 428   BlockList  _loop_end_blocks;     // list of all loop end blocks collected during count_edges
 429   BitMap2D   _loop_map;            // two-dimensional bit set: a bit is set if a block is contained in a loop
 430   BlockList  _work_list;           // temporary list (used in mark_loops and compute_order)
 431 
 432   Compilation* _compilation;
 433 
 434   // accessors for _visited_blocks and _active_blocks
 435   void init_visited()                     { _active_blocks.clear(); _visited_blocks.clear(); }
 436   bool is_visited(BlockBegin* b) const    { return _visited_blocks.at(b->block_id()); }
 437   bool is_active(BlockBegin* b) const     { return _active_blocks.at(b->block_id()); }
 438   void set_visited(BlockBegin* b)         { assert(!is_visited(b), "already set"); _visited_blocks.set_bit(b->block_id()); }
 439   void set_active(BlockBegin* b)          { assert(!is_active(b), "already set");  _active_blocks.set_bit(b->block_id()); }
 440   void clear_active(BlockBegin* b)        { assert(is_active(b), "not already");   _active_blocks.clear_bit(b->block_id()); }
 441 
 442   // accessors for _forward_branches
 443   void inc_forward_branches(BlockBegin* b) { _forward_branches.at_put(b->block_id(), _forward_branches.at(b->block_id()) + 1); }
 444   int  dec_forward_branches(BlockBegin* b) { _forward_branches.at_put(b->block_id(), _forward_branches.at(b->block_id()) - 1); return _forward_branches.at(b->block_id()); }
 445 
 446   // accessors for _loop_map
 447   bool is_block_in_loop   (int loop_idx, BlockBegin* b) const { return _loop_map.at(loop_idx, b->block_id()); }
 448   void set_block_in_loop  (int loop_idx, BlockBegin* b)       { _loop_map.set_bit(loop_idx, b->block_id()); }
 449   void clear_block_in_loop(int loop_idx, int block_id)        { _loop_map.clear_bit(loop_idx, block_id); }
 450 
 451   // count edges between blocks
 452   void count_edges(BlockBegin* cur, BlockBegin* parent);
 453 
 454   // loop detection
 455   void mark_loops();
 456   void clear_non_natural_loops(BlockBegin* start_block);
 457   void assign_loop_depth(BlockBegin* start_block);
 458 
 459   // computation of final block order
 460   BlockBegin* common_dominator(BlockBegin* a, BlockBegin* b);
 461   void compute_dominator(BlockBegin* cur, BlockBegin* parent);
 462   int  compute_weight(BlockBegin* cur);
 463   bool ready_for_processing(BlockBegin* cur);
 464   void sort_into_work_list(BlockBegin* b);
 465   void append_block(BlockBegin* cur);
 466   void compute_order(BlockBegin* start_block);
 467 
 468   // fixup of dominators for non-natural loops
 469   bool compute_dominators_iter();
 470   void compute_dominators();
 471 
 472   // debug functions
 473   NOT_PRODUCT(void print_blocks();)
 474   DEBUG_ONLY(void verify();)
 475 
 476   Compilation* compilation() const { return _compilation; }
 477  public:
 478   ComputeLinearScanOrder(Compilation* c, BlockBegin* start_block);
 479 
 480   // accessors for final result
 481   BlockList* linear_scan_order() const    { return _linear_scan_order; }
 482   int        num_loops() const            { return _num_loops; }
 483 };
 484 
 485 
 486 ComputeLinearScanOrder::ComputeLinearScanOrder(Compilation* c, BlockBegin* start_block) :
 487   _max_block_id(BlockBegin::number_of_blocks()),
 488   _num_blocks(0),
 489   _num_loops(0),
 490   _iterative_dominators(false),
 491   _visited_blocks(_max_block_id),
 492   _active_blocks(_max_block_id),
 493   _dominator_blocks(_max_block_id),
 494   _forward_branches(_max_block_id, 0),
 495   _loop_end_blocks(8),
 496   _work_list(8),
 497   _linear_scan_order(NULL), // initialized later with correct size
 498   _loop_map(0, 0),          // initialized later with correct size
 499   _compilation(c)
 500 {
 501   TRACE_LINEAR_SCAN(2, "***** computing linear-scan block order");
 502 
 503   init_visited();
 504   count_edges(start_block, NULL);
 505 
 506   if (compilation()->is_profiling()) {
 507     ciMethod *method = compilation()->method();
 508     if (!method->is_accessor()) {
 509       ciMethodData* md = method->method_data_or_null();
 510       assert(md != NULL, "Sanity");
 511       md->set_compilation_stats(_num_loops, _num_blocks);
 512     }
 513   }
 514 
 515   if (_num_loops > 0) {
 516     mark_loops();
 517     clear_non_natural_loops(start_block);
 518     assign_loop_depth(start_block);
 519   }
 520 
 521   compute_order(start_block);
 522   compute_dominators();
 523 
 524   NOT_PRODUCT(print_blocks());
 525   DEBUG_ONLY(verify());
 526 }
 527 
 528 
 529 // Traverse the CFG:
 530 // * count total number of blocks
 531 // * count all incoming edges and backward incoming edges
 532 // * number loop header blocks
 533 // * create a list with all loop end blocks
 534 void ComputeLinearScanOrder::count_edges(BlockBegin* cur, BlockBegin* parent) {
 535   TRACE_LINEAR_SCAN(3, tty->print_cr("Enter count_edges for block B%d coming from B%d", cur->block_id(), parent != NULL ? parent->block_id() : -1));
 536   assert(cur->dominator() == NULL, "dominator already initialized");
 537 
 538   if (is_active(cur)) {
 539     TRACE_LINEAR_SCAN(3, tty->print_cr("backward branch"));
 540     assert(is_visited(cur), "block must be visisted when block is active");
 541     assert(parent != NULL, "must have parent");
 542 
 543     cur->set(BlockBegin::linear_scan_loop_header_flag);
 544     cur->set(BlockBegin::backward_branch_target_flag);
 545 
 546     parent->set(BlockBegin::linear_scan_loop_end_flag);
 547 
 548     // When a loop header is also the start of an exception handler, then the backward branch is
 549     // an exception edge. Because such edges are usually critical edges which cannot be split, the
 550     // loop must be excluded here from processing.
 551     if (cur->is_set(BlockBegin::exception_entry_flag)) {
 552       // Make sure that dominators are correct in this weird situation
 553       _iterative_dominators = true;
 554       return;
 555     }
 556     assert(parent->number_of_sux() == 1 && parent->sux_at(0) == cur,
 557            "loop end blocks must have one successor (critical edges are split)");
 558 
 559     _loop_end_blocks.append(parent);
 560     return;
 561   }
 562 
 563   // increment number of incoming forward branches
 564   inc_forward_branches(cur);
 565 
 566   if (is_visited(cur)) {
 567     TRACE_LINEAR_SCAN(3, tty->print_cr("block already visited"));
 568     return;
 569   }
 570 
 571   _num_blocks++;
 572   set_visited(cur);
 573   set_active(cur);
 574 
 575   // recursive call for all successors
 576   int i;
 577   for (i = cur->number_of_sux() - 1; i >= 0; i--) {
 578     count_edges(cur->sux_at(i), cur);
 579   }
 580   for (i = cur->number_of_exception_handlers() - 1; i >= 0; i--) {
 581     count_edges(cur->exception_handler_at(i), cur);
 582   }
 583 
 584   clear_active(cur);
 585 
 586   // Each loop has a unique number.
 587   // When multiple loops are nested, assign_loop_depth assumes that the
 588   // innermost loop has the lowest number. This is guaranteed by setting
 589   // the loop number after the recursive calls for the successors above
 590   // have returned.
 591   if (cur->is_set(BlockBegin::linear_scan_loop_header_flag)) {
 592     assert(cur->loop_index() == -1, "cannot set loop-index twice");
 593     TRACE_LINEAR_SCAN(3, tty->print_cr("Block B%d is loop header of loop %d", cur->block_id(), _num_loops));
 594 
 595     cur->set_loop_index(_num_loops);
 596     _num_loops++;
 597   }
 598 
 599   TRACE_LINEAR_SCAN(3, tty->print_cr("Finished count_edges for block B%d", cur->block_id()));
 600 }
 601 
 602 
 603 void ComputeLinearScanOrder::mark_loops() {
 604   TRACE_LINEAR_SCAN(3, tty->print_cr("----- marking loops"));
 605 
 606   _loop_map = BitMap2D(_num_loops, _max_block_id);
 607   _loop_map.clear();
 608 
 609   for (int i = _loop_end_blocks.length() - 1; i >= 0; i--) {
 610     BlockBegin* loop_end   = _loop_end_blocks.at(i);
 611     BlockBegin* loop_start = loop_end->sux_at(0);
 612     int         loop_idx   = loop_start->loop_index();
 613 
 614     TRACE_LINEAR_SCAN(3, tty->print_cr("Processing loop from B%d to B%d (loop %d):", loop_start->block_id(), loop_end->block_id(), loop_idx));
 615     assert(loop_end->is_set(BlockBegin::linear_scan_loop_end_flag), "loop end flag must be set");
 616     assert(loop_end->number_of_sux() == 1, "incorrect number of successors");
 617     assert(loop_start->is_set(BlockBegin::linear_scan_loop_header_flag), "loop header flag must be set");
 618     assert(loop_idx >= 0 && loop_idx < _num_loops, "loop index not set");
 619     assert(_work_list.is_empty(), "work list must be empty before processing");
 620 
 621     // add the end-block of the loop to the working list
 622     _work_list.push(loop_end);
 623     set_block_in_loop(loop_idx, loop_end);
 624     do {
 625       BlockBegin* cur = _work_list.pop();
 626 
 627       TRACE_LINEAR_SCAN(3, tty->print_cr("    processing B%d", cur->block_id()));
 628       assert(is_block_in_loop(loop_idx, cur), "bit in loop map must be set when block is in work list");
 629 
 630       // recursive processing of all predecessors ends when start block of loop is reached
 631       if (cur != loop_start && !cur->is_set(BlockBegin::osr_entry_flag)) {
 632         for (int j = cur->number_of_preds() - 1; j >= 0; j--) {
 633           BlockBegin* pred = cur->pred_at(j);
 634 
 635           if (!is_block_in_loop(loop_idx, pred) /*&& !pred->is_set(BlockBeginosr_entry_flag)*/) {
 636             // this predecessor has not been processed yet, so add it to work list
 637             TRACE_LINEAR_SCAN(3, tty->print_cr("    pushing B%d", pred->block_id()));
 638             _work_list.push(pred);
 639             set_block_in_loop(loop_idx, pred);
 640           }
 641         }
 642       }
 643     } while (!_work_list.is_empty());
 644   }
 645 }
 646 
 647 
 648 // check for non-natural loops (loops where the loop header does not dominate
 649 // all other loop blocks = loops with mulitple entries).
 650 // such loops are ignored
 651 void ComputeLinearScanOrder::clear_non_natural_loops(BlockBegin* start_block) {
 652   for (int i = _num_loops - 1; i >= 0; i--) {
 653     if (is_block_in_loop(i, start_block)) {
 654       // loop i contains the entry block of the method
 655       // -> this is not a natural loop, so ignore it
 656       TRACE_LINEAR_SCAN(2, tty->print_cr("Loop %d is non-natural, so it is ignored", i));
 657 
 658       for (int block_id = _max_block_id - 1; block_id >= 0; block_id--) {
 659         clear_block_in_loop(i, block_id);
 660       }
 661       _iterative_dominators = true;
 662     }
 663   }
 664 }
 665 
 666 void ComputeLinearScanOrder::assign_loop_depth(BlockBegin* start_block) {
 667   TRACE_LINEAR_SCAN(3, "----- computing loop-depth and weight");
 668   init_visited();
 669 
 670   assert(_work_list.is_empty(), "work list must be empty before processing");
 671   _work_list.append(start_block);
 672 
 673   do {
 674     BlockBegin* cur = _work_list.pop();
 675 
 676     if (!is_visited(cur)) {
 677       set_visited(cur);
 678       TRACE_LINEAR_SCAN(4, tty->print_cr("Computing loop depth for block B%d", cur->block_id()));
 679 
 680       // compute loop-depth and loop-index for the block
 681       assert(cur->loop_depth() == 0, "cannot set loop-depth twice");
 682       int i;
 683       int loop_depth = 0;
 684       int min_loop_idx = -1;
 685       for (i = _num_loops - 1; i >= 0; i--) {
 686         if (is_block_in_loop(i, cur)) {
 687           loop_depth++;
 688           min_loop_idx = i;
 689         }
 690       }
 691       cur->set_loop_depth(loop_depth);
 692       cur->set_loop_index(min_loop_idx);
 693 
 694       // append all unvisited successors to work list
 695       for (i = cur->number_of_sux() - 1; i >= 0; i--) {
 696         _work_list.append(cur->sux_at(i));
 697       }
 698       for (i = cur->number_of_exception_handlers() - 1; i >= 0; i--) {
 699         _work_list.append(cur->exception_handler_at(i));
 700       }
 701     }
 702   } while (!_work_list.is_empty());
 703 }
 704 
 705 
 706 BlockBegin* ComputeLinearScanOrder::common_dominator(BlockBegin* a, BlockBegin* b) {
 707   assert(a != NULL && b != NULL, "must have input blocks");
 708 
 709   _dominator_blocks.clear();
 710   while (a != NULL) {
 711     _dominator_blocks.set_bit(a->block_id());
 712     assert(a->dominator() != NULL || a == _linear_scan_order->at(0), "dominator must be initialized");
 713     a = a->dominator();
 714   }
 715   while (b != NULL && !_dominator_blocks.at(b->block_id())) {
 716     assert(b->dominator() != NULL || b == _linear_scan_order->at(0), "dominator must be initialized");
 717     b = b->dominator();
 718   }
 719 
 720   assert(b != NULL, "could not find dominator");
 721   return b;
 722 }
 723 
 724 void ComputeLinearScanOrder::compute_dominator(BlockBegin* cur, BlockBegin* parent) {
 725   if (cur->dominator() == NULL) {
 726     TRACE_LINEAR_SCAN(4, tty->print_cr("DOM: initializing dominator of B%d to B%d", cur->block_id(), parent->block_id()));
 727     cur->set_dominator(parent);
 728 
 729   } else if (!(cur->is_set(BlockBegin::linear_scan_loop_header_flag) && parent->is_set(BlockBegin::linear_scan_loop_end_flag))) {
 730     TRACE_LINEAR_SCAN(4, tty->print_cr("DOM: computing dominator of B%d: common dominator of B%d and B%d is B%d", cur->block_id(), parent->block_id(), cur->dominator()->block_id(), common_dominator(cur->dominator(), parent)->block_id()));
 731     assert(cur->number_of_preds() > 1, "");
 732     cur->set_dominator(common_dominator(cur->dominator(), parent));
 733   }
 734 }
 735 
 736 
 737 int ComputeLinearScanOrder::compute_weight(BlockBegin* cur) {
 738   BlockBegin* single_sux = NULL;
 739   if (cur->number_of_sux() == 1) {
 740     single_sux = cur->sux_at(0);
 741   }
 742 
 743   // limit loop-depth to 15 bit (only for security reason, it will never be so big)
 744   int weight = (cur->loop_depth() & 0x7FFF) << 16;
 745 
 746   // general macro for short definition of weight flags
 747   // the first instance of INC_WEIGHT_IF has the highest priority
 748   int cur_bit = 15;
 749   #define INC_WEIGHT_IF(condition) if ((condition)) { weight |= (1 << cur_bit); } cur_bit--;
 750 
 751   // this is necessery for the (very rare) case that two successing blocks have
 752   // the same loop depth, but a different loop index (can happen for endless loops
 753   // with exception handlers)
 754   INC_WEIGHT_IF(!cur->is_set(BlockBegin::linear_scan_loop_header_flag));
 755 
 756   // loop end blocks (blocks that end with a backward branch) are added
 757   // after all other blocks of the loop.
 758   INC_WEIGHT_IF(!cur->is_set(BlockBegin::linear_scan_loop_end_flag));
 759 
 760   // critical edge split blocks are prefered because than they have a bigger
 761   // proability to be completely empty
 762   INC_WEIGHT_IF(cur->is_set(BlockBegin::critical_edge_split_flag));
 763 
 764   // exceptions should not be thrown in normal control flow, so these blocks
 765   // are added as late as possible
 766   INC_WEIGHT_IF(cur->end()->as_Throw() == NULL  && (single_sux == NULL || single_sux->end()->as_Throw()  == NULL));
 767   INC_WEIGHT_IF(cur->end()->as_Return() == NULL && (single_sux == NULL || single_sux->end()->as_Return() == NULL));
 768 
 769   // exceptions handlers are added as late as possible
 770   INC_WEIGHT_IF(!cur->is_set(BlockBegin::exception_entry_flag));
 771 
 772   // guarantee that weight is > 0
 773   weight |= 1;
 774 
 775   #undef INC_WEIGHT_IF
 776   assert(cur_bit >= 0, "too many flags");
 777   assert(weight > 0, "weight cannot become negative");
 778 
 779   return weight;
 780 }
 781 
 782 bool ComputeLinearScanOrder::ready_for_processing(BlockBegin* cur) {
 783   // Discount the edge just traveled.
 784   // When the number drops to zero, all forward branches were processed
 785   if (dec_forward_branches(cur) != 0) {
 786     return false;
 787   }
 788 
 789   assert(_linear_scan_order->index_of(cur) == -1, "block already processed (block can be ready only once)");
 790   assert(_work_list.index_of(cur) == -1, "block already in work-list (block can be ready only once)");
 791   return true;
 792 }
 793 
 794 void ComputeLinearScanOrder::sort_into_work_list(BlockBegin* cur) {
 795   assert(_work_list.index_of(cur) == -1, "block already in work list");
 796 
 797   int cur_weight = compute_weight(cur);
 798 
 799   // the linear_scan_number is used to cache the weight of a block
 800   cur->set_linear_scan_number(cur_weight);
 801 
 802 #ifndef PRODUCT
 803   if (StressLinearScan) {
 804     _work_list.insert_before(0, cur);
 805     return;
 806   }
 807 #endif
 808 
 809   _work_list.append(NULL); // provide space for new element
 810 
 811   int insert_idx = _work_list.length() - 1;
 812   while (insert_idx > 0 && _work_list.at(insert_idx - 1)->linear_scan_number() > cur_weight) {
 813     _work_list.at_put(insert_idx, _work_list.at(insert_idx - 1));
 814     insert_idx--;
 815   }
 816   _work_list.at_put(insert_idx, cur);
 817 
 818   TRACE_LINEAR_SCAN(3, tty->print_cr("Sorted B%d into worklist. new worklist:", cur->block_id()));
 819   TRACE_LINEAR_SCAN(3, for (int i = 0; i < _work_list.length(); i++) tty->print_cr("%8d B%2d  weight:%6x", i, _work_list.at(i)->block_id(), _work_list.at(i)->linear_scan_number()));
 820 
 821 #ifdef ASSERT
 822   for (int i = 0; i < _work_list.length(); i++) {
 823     assert(_work_list.at(i)->linear_scan_number() > 0, "weight not set");
 824     assert(i == 0 || _work_list.at(i - 1)->linear_scan_number() <= _work_list.at(i)->linear_scan_number(), "incorrect order in worklist");
 825   }
 826 #endif
 827 }
 828 
 829 void ComputeLinearScanOrder::append_block(BlockBegin* cur) {
 830   TRACE_LINEAR_SCAN(3, tty->print_cr("appending block B%d (weight 0x%6x) to linear-scan order", cur->block_id(), cur->linear_scan_number()));
 831   assert(_linear_scan_order->index_of(cur) == -1, "cannot add the same block twice");
 832 
 833   // currently, the linear scan order and code emit order are equal.
 834   // therefore the linear_scan_number and the weight of a block must also
 835   // be equal.
 836   cur->set_linear_scan_number(_linear_scan_order->length());
 837   _linear_scan_order->append(cur);
 838 }
 839 
 840 void ComputeLinearScanOrder::compute_order(BlockBegin* start_block) {
 841   TRACE_LINEAR_SCAN(3, "----- computing final block order");
 842 
 843   // the start block is always the first block in the linear scan order
 844   _linear_scan_order = new BlockList(_num_blocks);
 845   append_block(start_block);
 846 
 847   assert(start_block->end()->as_Base() != NULL, "start block must end with Base-instruction");
 848   BlockBegin* std_entry = ((Base*)start_block->end())->std_entry();
 849   BlockBegin* osr_entry = ((Base*)start_block->end())->osr_entry();
 850 
 851   BlockBegin* sux_of_osr_entry = NULL;
 852   if (osr_entry != NULL) {
 853     // special handling for osr entry:
 854     // ignore the edge between the osr entry and its successor for processing
 855     // the osr entry block is added manually below
 856     assert(osr_entry->number_of_sux() == 1, "osr entry must have exactly one successor");
 857     assert(osr_entry->sux_at(0)->number_of_preds() >= 2, "sucessor of osr entry must have two predecessors (otherwise it is not present in normal control flow");
 858 
 859     sux_of_osr_entry = osr_entry->sux_at(0);
 860     dec_forward_branches(sux_of_osr_entry);
 861 
 862     compute_dominator(osr_entry, start_block);
 863     _iterative_dominators = true;
 864   }
 865   compute_dominator(std_entry, start_block);
 866 
 867   // start processing with standard entry block
 868   assert(_work_list.is_empty(), "list must be empty before processing");
 869 
 870   if (ready_for_processing(std_entry)) {
 871     sort_into_work_list(std_entry);
 872   } else {
 873     assert(false, "the std_entry must be ready for processing (otherwise, the method has no start block)");
 874   }
 875 
 876   do {
 877     BlockBegin* cur = _work_list.pop();
 878 
 879     if (cur == sux_of_osr_entry) {
 880       // the osr entry block is ignored in normal processing, it is never added to the
 881       // work list. Instead, it is added as late as possible manually here.
 882       append_block(osr_entry);
 883       compute_dominator(cur, osr_entry);
 884     }
 885     append_block(cur);
 886 
 887     int i;
 888     int num_sux = cur->number_of_sux();
 889     // changed loop order to get "intuitive" order of if- and else-blocks
 890     for (i = 0; i < num_sux; i++) {
 891       BlockBegin* sux = cur->sux_at(i);
 892       compute_dominator(sux, cur);
 893       if (ready_for_processing(sux)) {
 894         sort_into_work_list(sux);
 895       }
 896     }
 897     num_sux = cur->number_of_exception_handlers();
 898     for (i = 0; i < num_sux; i++) {
 899       BlockBegin* sux = cur->exception_handler_at(i);
 900       compute_dominator(sux, cur);
 901       if (ready_for_processing(sux)) {
 902         sort_into_work_list(sux);
 903       }
 904     }
 905   } while (_work_list.length() > 0);
 906 }
 907 
 908 
 909 bool ComputeLinearScanOrder::compute_dominators_iter() {
 910   bool changed = false;
 911   int num_blocks = _linear_scan_order->length();
 912 
 913   assert(_linear_scan_order->at(0)->dominator() == NULL, "must not have dominator");
 914   assert(_linear_scan_order->at(0)->number_of_preds() == 0, "must not have predecessors");
 915   for (int i = 1; i < num_blocks; i++) {
 916     BlockBegin* block = _linear_scan_order->at(i);
 917 
 918     BlockBegin* dominator = block->pred_at(0);
 919     int num_preds = block->number_of_preds();
 920     for (int i = 1; i < num_preds; i++) {
 921       dominator = common_dominator(dominator, block->pred_at(i));
 922     }
 923 
 924     if (dominator != block->dominator()) {
 925       TRACE_LINEAR_SCAN(4, tty->print_cr("DOM: updating dominator of B%d from B%d to B%d", block->block_id(), block->dominator()->block_id(), dominator->block_id()));
 926 
 927       block->set_dominator(dominator);
 928       changed = true;
 929     }
 930   }
 931   return changed;
 932 }
 933 
 934 void ComputeLinearScanOrder::compute_dominators() {
 935   TRACE_LINEAR_SCAN(3, tty->print_cr("----- computing dominators (iterative computation reqired: %d)", _iterative_dominators));
 936 
 937   // iterative computation of dominators is only required for methods with non-natural loops
 938   // and OSR-methods. For all other methods, the dominators computed when generating the
 939   // linear scan block order are correct.
 940   if (_iterative_dominators) {
 941     do {
 942       TRACE_LINEAR_SCAN(1, tty->print_cr("DOM: next iteration of fix-point calculation"));
 943     } while (compute_dominators_iter());
 944   }
 945 
 946   // check that dominators are correct
 947   assert(!compute_dominators_iter(), "fix point not reached");
 948 }
 949 
 950 
 951 #ifndef PRODUCT
 952 void ComputeLinearScanOrder::print_blocks() {
 953   if (TraceLinearScanLevel >= 2) {
 954     tty->print_cr("----- loop information:");
 955     for (int block_idx = 0; block_idx < _linear_scan_order->length(); block_idx++) {
 956       BlockBegin* cur = _linear_scan_order->at(block_idx);
 957 
 958       tty->print("%4d: B%2d: ", cur->linear_scan_number(), cur->block_id());
 959       for (int loop_idx = 0; loop_idx < _num_loops; loop_idx++) {
 960         tty->print ("%d ", is_block_in_loop(loop_idx, cur));
 961       }
 962       tty->print_cr(" -> loop_index: %2d, loop_depth: %2d", cur->loop_index(), cur->loop_depth());
 963     }
 964   }
 965 
 966   if (TraceLinearScanLevel >= 1) {
 967     tty->print_cr("----- linear-scan block order:");
 968     for (int block_idx = 0; block_idx < _linear_scan_order->length(); block_idx++) {
 969       BlockBegin* cur = _linear_scan_order->at(block_idx);
 970       tty->print("%4d: B%2d    loop: %2d  depth: %2d", cur->linear_scan_number(), cur->block_id(), cur->loop_index(), cur->loop_depth());
 971 
 972       tty->print(cur->is_set(BlockBegin::exception_entry_flag)         ? " ex" : "   ");
 973       tty->print(cur->is_set(BlockBegin::critical_edge_split_flag)     ? " ce" : "   ");
 974       tty->print(cur->is_set(BlockBegin::linear_scan_loop_header_flag) ? " lh" : "   ");
 975       tty->print(cur->is_set(BlockBegin::linear_scan_loop_end_flag)    ? " le" : "   ");
 976 
 977       if (cur->dominator() != NULL) {
 978         tty->print("    dom: B%d ", cur->dominator()->block_id());
 979       } else {
 980         tty->print("    dom: NULL ");
 981       }
 982 
 983       if (cur->number_of_preds() > 0) {
 984         tty->print("    preds: ");
 985         for (int j = 0; j < cur->number_of_preds(); j++) {
 986           BlockBegin* pred = cur->pred_at(j);
 987           tty->print("B%d ", pred->block_id());
 988         }
 989       }
 990       if (cur->number_of_sux() > 0) {
 991         tty->print("    sux: ");
 992         for (int j = 0; j < cur->number_of_sux(); j++) {
 993           BlockBegin* sux = cur->sux_at(j);
 994           tty->print("B%d ", sux->block_id());
 995         }
 996       }
 997       if (cur->number_of_exception_handlers() > 0) {
 998         tty->print("    ex: ");
 999         for (int j = 0; j < cur->number_of_exception_handlers(); j++) {
1000           BlockBegin* ex = cur->exception_handler_at(j);
1001           tty->print("B%d ", ex->block_id());
1002         }
1003       }
1004       tty->cr();
1005     }
1006   }
1007 }
1008 #endif
1009 
1010 #ifdef ASSERT
1011 void ComputeLinearScanOrder::verify() {
1012   assert(_linear_scan_order->length() == _num_blocks, "wrong number of blocks in list");
1013 
1014   if (StressLinearScan) {
1015     // blocks are scrambled when StressLinearScan is used
1016     return;
1017   }
1018 
1019   // check that all successors of a block have a higher linear-scan-number
1020   // and that all predecessors of a block have a lower linear-scan-number
1021   // (only backward branches of loops are ignored)
1022   int i;
1023   for (i = 0; i < _linear_scan_order->length(); i++) {
1024     BlockBegin* cur = _linear_scan_order->at(i);
1025 
1026     assert(cur->linear_scan_number() == i, "incorrect linear_scan_number");
1027     assert(cur->linear_scan_number() >= 0 && cur->linear_scan_number() == _linear_scan_order->index_of(cur), "incorrect linear_scan_number");
1028 
1029     int j;
1030     for (j = cur->number_of_sux() - 1; j >= 0; j--) {
1031       BlockBegin* sux = cur->sux_at(j);
1032 
1033       assert(sux->linear_scan_number() >= 0 && sux->linear_scan_number() == _linear_scan_order->index_of(sux), "incorrect linear_scan_number");
1034       if (!cur->is_set(BlockBegin::linear_scan_loop_end_flag)) {
1035         assert(cur->linear_scan_number() < sux->linear_scan_number(), "invalid order");
1036       }
1037       if (cur->loop_depth() == sux->loop_depth()) {
1038         assert(cur->loop_index() == sux->loop_index() || sux->is_set(BlockBegin::linear_scan_loop_header_flag), "successing blocks with same loop depth must have same loop index");
1039       }
1040     }
1041 
1042     for (j = cur->number_of_preds() - 1; j >= 0; j--) {
1043       BlockBegin* pred = cur->pred_at(j);
1044 
1045       assert(pred->linear_scan_number() >= 0 && pred->linear_scan_number() == _linear_scan_order->index_of(pred), "incorrect linear_scan_number");
1046       if (!cur->is_set(BlockBegin::linear_scan_loop_header_flag)) {
1047         assert(cur->linear_scan_number() > pred->linear_scan_number(), "invalid order");
1048       }
1049       if (cur->loop_depth() == pred->loop_depth()) {
1050         assert(cur->loop_index() == pred->loop_index() || cur->is_set(BlockBegin::linear_scan_loop_header_flag), "successing blocks with same loop depth must have same loop index");
1051       }
1052 
1053       assert(cur->dominator()->linear_scan_number() <= cur->pred_at(j)->linear_scan_number(), "dominator must be before predecessors");
1054     }
1055 
1056     // check dominator
1057     if (i == 0) {
1058       assert(cur->dominator() == NULL, "first block has no dominator");
1059     } else {
1060       assert(cur->dominator() != NULL, "all but first block must have dominator");
1061     }
1062     assert(cur->number_of_preds() != 1 || cur->dominator() == cur->pred_at(0), "Single predecessor must also be dominator");
1063   }
1064 
1065   // check that all loops are continuous
1066   for (int loop_idx = 0; loop_idx < _num_loops; loop_idx++) {
1067     int block_idx = 0;
1068     assert(!is_block_in_loop(loop_idx, _linear_scan_order->at(block_idx)), "the first block must not be present in any loop");
1069 
1070     // skip blocks before the loop
1071     while (block_idx < _num_blocks && !is_block_in_loop(loop_idx, _linear_scan_order->at(block_idx))) {
1072       block_idx++;
1073     }
1074     // skip blocks of loop
1075     while (block_idx < _num_blocks && is_block_in_loop(loop_idx, _linear_scan_order->at(block_idx))) {
1076       block_idx++;
1077     }
1078     // after the first non-loop block, there must not be another loop-block
1079     while (block_idx < _num_blocks) {
1080       assert(!is_block_in_loop(loop_idx, _linear_scan_order->at(block_idx)), "loop not continuous in linear-scan order");
1081       block_idx++;
1082     }
1083   }
1084 }
1085 #endif
1086 
1087 
1088 void IR::compute_code() {
1089   assert(is_valid(), "IR must be valid");
1090 
1091   ComputeLinearScanOrder compute_order(compilation(), start());
1092   _num_loops = compute_order.num_loops();
1093   _code = compute_order.linear_scan_order();
1094 }
1095 
1096 
1097 void IR::compute_use_counts() {
1098   // make sure all values coming out of this block get evaluated.
1099   int num_blocks = _code->length();
1100   for (int i = 0; i < num_blocks; i++) {
1101     _code->at(i)->end()->state()->pin_stack_for_linear_scan();
1102   }
1103 
1104   // compute use counts
1105   UseCountComputer::compute(_code);
1106 }
1107 
1108 
1109 void IR::iterate_preorder(BlockClosure* closure) {
1110   assert(is_valid(), "IR must be valid");
1111   start()->iterate_preorder(closure);
1112 }
1113 
1114 
1115 void IR::iterate_postorder(BlockClosure* closure) {
1116   assert(is_valid(), "IR must be valid");
1117   start()->iterate_postorder(closure);
1118 }
1119 
1120 void IR::iterate_linear_scan_order(BlockClosure* closure) {
1121   linear_scan_order()->iterate_forward(closure);
1122 }
1123 
1124 
1125 #ifndef PRODUCT
1126 class BlockPrinter: public BlockClosure {
1127  private:
1128   InstructionPrinter* _ip;
1129   bool                _cfg_only;
1130   bool                _live_only;
1131 
1132  public:
1133   BlockPrinter(InstructionPrinter* ip, bool cfg_only, bool live_only = false) {
1134     _ip       = ip;
1135     _cfg_only = cfg_only;
1136     _live_only = live_only;
1137   }
1138 
1139   virtual void block_do(BlockBegin* block) {
1140     if (_cfg_only) {
1141       _ip->print_instr(block); tty->cr();
1142     } else {
1143       block->print_block(*_ip, _live_only);
1144     }
1145   }
1146 };
1147 
1148 
1149 void IR::print(BlockBegin* start, bool cfg_only, bool live_only) {
1150   ttyLocker ttyl;
1151   InstructionPrinter ip(!cfg_only);
1152   BlockPrinter bp(&ip, cfg_only, live_only);
1153   start->iterate_preorder(&bp);
1154   tty->cr();
1155 }
1156 
1157 void IR::print(bool cfg_only, bool live_only) {
1158   if (is_valid()) {
1159     print(start(), cfg_only, live_only);
1160   } else {
1161     tty->print_cr("invalid IR");
1162   }
1163 }
1164 
1165 
1166 define_array(BlockListArray, BlockList*)
1167 define_stack(BlockListList, BlockListArray)
1168 
1169 class PredecessorValidator : public BlockClosure {
1170  private:
1171   BlockListList* _predecessors;
1172   BlockList*     _blocks;
1173 
1174   static int cmp(BlockBegin** a, BlockBegin** b) {
1175     return (*a)->block_id() - (*b)->block_id();
1176   }
1177 
1178  public:
1179   PredecessorValidator(IR* hir) {
1180     ResourceMark rm;
1181     _predecessors = new BlockListList(BlockBegin::number_of_blocks(), NULL);
1182     _blocks = new BlockList();
1183 
1184     int i;
1185     hir->start()->iterate_preorder(this);
1186     if (hir->code() != NULL) {
1187       assert(hir->code()->length() == _blocks->length(), "must match");
1188       for (i = 0; i < _blocks->length(); i++) {
1189         assert(hir->code()->contains(_blocks->at(i)), "should be in both lists");
1190       }
1191     }
1192 
1193     for (i = 0; i < _blocks->length(); i++) {
1194       BlockBegin* block = _blocks->at(i);
1195       BlockList* preds = _predecessors->at(block->block_id());
1196       if (preds == NULL) {
1197         assert(block->number_of_preds() == 0, "should be the same");
1198         continue;
1199       }
1200 
1201       // clone the pred list so we can mutate it
1202       BlockList* pred_copy = new BlockList();
1203       int j;
1204       for (j = 0; j < block->number_of_preds(); j++) {
1205         pred_copy->append(block->pred_at(j));
1206       }
1207       // sort them in the same order
1208       preds->sort(cmp);
1209       pred_copy->sort(cmp);
1210       int length = MIN2(preds->length(), block->number_of_preds());
1211       for (j = 0; j < block->number_of_preds(); j++) {
1212         assert(preds->at(j) == pred_copy->at(j), "must match");
1213       }
1214 
1215       assert(preds->length() == block->number_of_preds(), "should be the same");
1216     }
1217   }
1218 
1219   virtual void block_do(BlockBegin* block) {
1220     _blocks->append(block);
1221     BlockEnd* be = block->end();
1222     int n = be->number_of_sux();
1223     int i;
1224     for (i = 0; i < n; i++) {
1225       BlockBegin* sux = be->sux_at(i);
1226       assert(!sux->is_set(BlockBegin::exception_entry_flag), "must not be xhandler");
1227 
1228       BlockList* preds = _predecessors->at_grow(sux->block_id(), NULL);
1229       if (preds == NULL) {
1230         preds = new BlockList();
1231         _predecessors->at_put(sux->block_id(), preds);
1232       }
1233       preds->append(block);
1234     }
1235 
1236     n = block->number_of_exception_handlers();
1237     for (i = 0; i < n; i++) {
1238       BlockBegin* sux = block->exception_handler_at(i);
1239       assert(sux->is_set(BlockBegin::exception_entry_flag), "must be xhandler");
1240 
1241       BlockList* preds = _predecessors->at_grow(sux->block_id(), NULL);
1242       if (preds == NULL) {
1243         preds = new BlockList();
1244         _predecessors->at_put(sux->block_id(), preds);
1245       }
1246       preds->append(block);
1247     }
1248   }
1249 };
1250 
1251 void IR::verify() {
1252 #ifdef ASSERT
1253   PredecessorValidator pv(this);
1254 #endif
1255 }
1256 
1257 #endif // PRODUCT
1258 
1259 void SubstitutionResolver::visit(Value* v) {
1260   Value v0 = *v;
1261   if (v0) {
1262     Value vs = v0->subst();
1263     if (vs != v0) {
1264       *v = v0->subst();
1265     }
1266   }
1267 }
1268 
1269 #ifdef ASSERT
1270 class SubstitutionChecker: public ValueVisitor {
1271   void visit(Value* v) {
1272     Value v0 = *v;
1273     if (v0) {
1274       Value vs = v0->subst();
1275       assert(vs == v0, "missed substitution");
1276     }
1277   }
1278 };
1279 #endif
1280 
1281 
1282 void SubstitutionResolver::block_do(BlockBegin* block) {
1283   Instruction* last = NULL;
1284   for (Instruction* n = block; n != NULL;) {
1285     n->values_do(this);
1286     // need to remove this instruction from the instruction stream
1287     if (n->subst() != n) {
1288       assert(last != NULL, "must have last");
1289       last->set_next(n->next());
1290     } else {
1291       last = n;
1292     }
1293     n = last->next();
1294   }
1295 
1296 #ifdef ASSERT
1297   SubstitutionChecker check_substitute;
1298   if (block->state()) block->state()->values_do(&check_substitute);
1299   block->block_values_do(&check_substitute);
1300   if (block->end() && block->end()->state()) block->end()->state()->values_do(&check_substitute);
1301 #endif
1302 }