1 /*
   2  * Copyright (c) 2000, 2011, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "c1/c1_InstructionPrinter.hpp"
  27 #include "c1/c1_LIR.hpp"
  28 #include "c1/c1_LIRAssembler.hpp"
  29 #include "c1/c1_ValueStack.hpp"
  30 #include "ci/ciInstance.hpp"
  31 #include "runtime/sharedRuntime.hpp"
  32 
  33 Register LIR_OprDesc::as_register() const {
  34   return FrameMap::cpu_rnr2reg(cpu_regnr());
  35 }
  36 
  37 Register LIR_OprDesc::as_register_lo() const {
  38   return FrameMap::cpu_rnr2reg(cpu_regnrLo());
  39 }
  40 
  41 Register LIR_OprDesc::as_register_hi() const {
  42   return FrameMap::cpu_rnr2reg(cpu_regnrHi());
  43 }
  44 
  45 #if defined(X86)
  46 
  47 XMMRegister LIR_OprDesc::as_xmm_float_reg() const {
  48   return FrameMap::nr2xmmreg(xmm_regnr());
  49 }
  50 
  51 XMMRegister LIR_OprDesc::as_xmm_double_reg() const {
  52   assert(xmm_regnrLo() == xmm_regnrHi(), "assumed in calculation");
  53   return FrameMap::nr2xmmreg(xmm_regnrLo());
  54 }
  55 
  56 #endif // X86
  57 
  58 #if defined(SPARC) || defined(PPC)
  59 
  60 FloatRegister LIR_OprDesc::as_float_reg() const {
  61   return FrameMap::nr2floatreg(fpu_regnr());
  62 }
  63 
  64 FloatRegister LIR_OprDesc::as_double_reg() const {
  65   return FrameMap::nr2floatreg(fpu_regnrHi());
  66 }
  67 
  68 #endif
  69 
  70 #ifdef ARM
  71 
  72 FloatRegister LIR_OprDesc::as_float_reg() const {
  73   return as_FloatRegister(fpu_regnr());
  74 }
  75 
  76 FloatRegister LIR_OprDesc::as_double_reg() const {
  77   return as_FloatRegister(fpu_regnrLo());
  78 }
  79 
  80 #endif
  81 
  82 
  83 LIR_Opr LIR_OprFact::illegalOpr = LIR_OprFact::illegal();
  84 
  85 LIR_Opr LIR_OprFact::value_type(ValueType* type) {
  86   ValueTag tag = type->tag();
  87   switch (tag) {
  88   case objectTag : {
  89     ClassConstant* c = type->as_ClassConstant();
  90     if (c != NULL && !c->value()->is_loaded()) {
  91       return LIR_OprFact::oopConst(NULL);
  92     } else {
  93       return LIR_OprFact::oopConst(type->as_ObjectType()->encoding());
  94     }
  95   }
  96   case addressTag: return LIR_OprFact::addressConst(type->as_AddressConstant()->value());
  97   case intTag    : return LIR_OprFact::intConst(type->as_IntConstant()->value());
  98   case floatTag  : return LIR_OprFact::floatConst(type->as_FloatConstant()->value());
  99   case longTag   : return LIR_OprFact::longConst(type->as_LongConstant()->value());
 100   case doubleTag : return LIR_OprFact::doubleConst(type->as_DoubleConstant()->value());
 101   default: ShouldNotReachHere(); return LIR_OprFact::intConst(-1);
 102   }
 103 }
 104 
 105 
 106 LIR_Opr LIR_OprFact::dummy_value_type(ValueType* type) {
 107   switch (type->tag()) {
 108     case objectTag: return LIR_OprFact::oopConst(NULL);
 109     case addressTag:return LIR_OprFact::addressConst(0);
 110     case intTag:    return LIR_OprFact::intConst(0);
 111     case floatTag:  return LIR_OprFact::floatConst(0.0);
 112     case longTag:   return LIR_OprFact::longConst(0);
 113     case doubleTag: return LIR_OprFact::doubleConst(0.0);
 114     default:        ShouldNotReachHere(); return LIR_OprFact::intConst(-1);
 115   }
 116   return illegalOpr;
 117 }
 118 
 119 
 120 
 121 //---------------------------------------------------
 122 
 123 
 124 LIR_Address::Scale LIR_Address::scale(BasicType type) {
 125   int elem_size = type2aelembytes(type);
 126   switch (elem_size) {
 127   case 1: return LIR_Address::times_1;
 128   case 2: return LIR_Address::times_2;
 129   case 4: return LIR_Address::times_4;
 130   case 8: return LIR_Address::times_8;
 131   }
 132   ShouldNotReachHere();
 133   return LIR_Address::times_1;
 134 }
 135 
 136 
 137 #ifndef PRODUCT
 138 void LIR_Address::verify() const {
 139 #if defined(SPARC) || defined(PPC)
 140   assert(scale() == times_1, "Scaled addressing mode not available on SPARC/PPC and should not be used");
 141   assert(disp() == 0 || index()->is_illegal(), "can't have both");
 142 #endif
 143 #ifdef ARM
 144   assert(disp() == 0 || index()->is_illegal(), "can't have both");
 145   // Note: offsets higher than 4096 must not be rejected here. They can
 146   // be handled by the back-end or will be rejected if not.
 147 #endif
 148 #ifdef _LP64
 149   assert(base()->is_cpu_register(), "wrong base operand");
 150   assert(index()->is_illegal() || index()->is_double_cpu(), "wrong index operand");
 151   assert(base()->type() == T_OBJECT || base()->type() == T_LONG,
 152          "wrong type for addresses");
 153 #else
 154   assert(base()->is_single_cpu(), "wrong base operand");
 155   assert(index()->is_illegal() || index()->is_single_cpu(), "wrong index operand");
 156   assert(base()->type() == T_OBJECT || base()->type() == T_INT,
 157          "wrong type for addresses");
 158 #endif
 159 }
 160 #endif
 161 
 162 
 163 //---------------------------------------------------
 164 
 165 char LIR_OprDesc::type_char(BasicType t) {
 166   switch (t) {
 167     case T_ARRAY:
 168       t = T_OBJECT;
 169     case T_BOOLEAN:
 170     case T_CHAR:
 171     case T_FLOAT:
 172     case T_DOUBLE:
 173     case T_BYTE:
 174     case T_SHORT:
 175     case T_INT:
 176     case T_LONG:
 177     case T_OBJECT:
 178     case T_ADDRESS:
 179     case T_VOID:
 180       return ::type2char(t);
 181 
 182     case T_ILLEGAL:
 183       return '?';
 184 
 185     default:
 186       ShouldNotReachHere();
 187       return '?';
 188   }
 189 }
 190 
 191 #ifndef PRODUCT
 192 void LIR_OprDesc::validate_type() const {
 193 
 194 #ifdef ASSERT
 195   if (!is_pointer() && !is_illegal()) {
 196     switch (as_BasicType(type_field())) {
 197     case T_LONG:
 198       assert((kind_field() == cpu_register || kind_field() == stack_value) &&
 199              size_field() == double_size, "must match");
 200       break;
 201     case T_FLOAT:
 202       // FP return values can be also in CPU registers on ARM and PPC (softfp ABI)
 203       assert((kind_field() == fpu_register || kind_field() == stack_value
 204              ARM_ONLY(|| kind_field() == cpu_register)
 205              PPC_ONLY(|| kind_field() == cpu_register) ) &&
 206              size_field() == single_size, "must match");
 207       break;
 208     case T_DOUBLE:
 209       // FP return values can be also in CPU registers on ARM and PPC (softfp ABI)
 210       assert((kind_field() == fpu_register || kind_field() == stack_value
 211              ARM_ONLY(|| kind_field() == cpu_register)
 212              PPC_ONLY(|| kind_field() == cpu_register) ) &&
 213              size_field() == double_size, "must match");
 214       break;
 215     case T_BOOLEAN:
 216     case T_CHAR:
 217     case T_BYTE:
 218     case T_SHORT:
 219     case T_INT:
 220     case T_ADDRESS:
 221     case T_OBJECT:
 222     case T_ARRAY:
 223       assert((kind_field() == cpu_register || kind_field() == stack_value) &&
 224              size_field() == single_size, "must match");
 225       break;
 226 
 227     case T_ILLEGAL:
 228       // XXX TKR also means unknown right now
 229       // assert(is_illegal(), "must match");
 230       break;
 231 
 232     default:
 233       ShouldNotReachHere();
 234     }
 235   }
 236 #endif
 237 
 238 }
 239 #endif // PRODUCT
 240 
 241 
 242 bool LIR_OprDesc::is_oop() const {
 243   if (is_pointer()) {
 244     return pointer()->is_oop_pointer();
 245   } else {
 246     OprType t= type_field();
 247     assert(t != unknown_type, "not set");
 248     return t == object_type;
 249   }
 250 }
 251 
 252 
 253 
 254 void LIR_Op2::verify() const {
 255 #ifdef ASSERT
 256   switch (code()) {
 257     case lir_cmove:
 258       break;
 259 
 260     default:
 261       assert(!result_opr()->is_register() || !result_opr()->is_oop_register(),
 262              "can't produce oops from arith");
 263   }
 264 
 265   if (TwoOperandLIRForm) {
 266     switch (code()) {
 267     case lir_add:
 268     case lir_sub:
 269     case lir_mul:
 270     case lir_mul_strictfp:
 271     case lir_div:
 272     case lir_div_strictfp:
 273     case lir_rem:
 274     case lir_logic_and:
 275     case lir_logic_or:
 276     case lir_logic_xor:
 277     case lir_shl:
 278     case lir_shr:
 279       assert(in_opr1() == result_opr(), "opr1 and result must match");
 280       assert(in_opr1()->is_valid() && in_opr2()->is_valid(), "must be valid");
 281       break;
 282 
 283     // special handling for lir_ushr because of write barriers
 284     case lir_ushr:
 285       assert(in_opr1() == result_opr() || in_opr2()->is_constant(), "opr1 and result must match or shift count is constant");
 286       assert(in_opr1()->is_valid() && in_opr2()->is_valid(), "must be valid");
 287       break;
 288 
 289     }
 290   }
 291 #endif
 292 }
 293 
 294 
 295 LIR_OpBranch::LIR_OpBranch(LIR_Condition cond, BasicType type, BlockBegin* block)
 296   : LIR_Op(lir_branch, LIR_OprFact::illegalOpr, (CodeEmitInfo*)NULL)
 297   , _cond(cond)
 298   , _type(type)
 299   , _label(block->label())
 300   , _block(block)
 301   , _ublock(NULL)
 302   , _stub(NULL) {
 303 }
 304 
 305 LIR_OpBranch::LIR_OpBranch(LIR_Condition cond, BasicType type, CodeStub* stub) :
 306   LIR_Op(lir_branch, LIR_OprFact::illegalOpr, (CodeEmitInfo*)NULL)
 307   , _cond(cond)
 308   , _type(type)
 309   , _label(stub->entry())
 310   , _block(NULL)
 311   , _ublock(NULL)
 312   , _stub(stub) {
 313 }
 314 
 315 LIR_OpBranch::LIR_OpBranch(LIR_Condition cond, BasicType type, BlockBegin* block, BlockBegin* ublock)
 316   : LIR_Op(lir_cond_float_branch, LIR_OprFact::illegalOpr, (CodeEmitInfo*)NULL)
 317   , _cond(cond)
 318   , _type(type)
 319   , _label(block->label())
 320   , _block(block)
 321   , _ublock(ublock)
 322   , _stub(NULL)
 323 {
 324 }
 325 
 326 void LIR_OpBranch::change_block(BlockBegin* b) {
 327   assert(_block != NULL, "must have old block");
 328   assert(_block->label() == label(), "must be equal");
 329 
 330   _block = b;
 331   _label = b->label();
 332 }
 333 
 334 void LIR_OpBranch::change_ublock(BlockBegin* b) {
 335   assert(_ublock != NULL, "must have old block");
 336   _ublock = b;
 337 }
 338 
 339 void LIR_OpBranch::negate_cond() {
 340   switch (_cond) {
 341     case lir_cond_equal:        _cond = lir_cond_notEqual;     break;
 342     case lir_cond_notEqual:     _cond = lir_cond_equal;        break;
 343     case lir_cond_less:         _cond = lir_cond_greaterEqual; break;
 344     case lir_cond_lessEqual:    _cond = lir_cond_greater;      break;
 345     case lir_cond_greaterEqual: _cond = lir_cond_less;         break;
 346     case lir_cond_greater:      _cond = lir_cond_lessEqual;    break;
 347     default: ShouldNotReachHere();
 348   }
 349 }
 350 
 351 
 352 LIR_OpTypeCheck::LIR_OpTypeCheck(LIR_Code code, LIR_Opr result, LIR_Opr object, ciKlass* klass,
 353                                  LIR_Opr tmp1, LIR_Opr tmp2, LIR_Opr tmp3,
 354                                  bool fast_check, CodeEmitInfo* info_for_patch,
 355                                  CodeStub* stub)
 356 
 357   : LIR_Op(code, result, NULL)
 358   , _object(object)
 359   , _array(LIR_OprFact::illegalOpr)
 360   , _klass(klass)
 361   , _tmp1(tmp1)
 362   , _tmp2(tmp2)
 363   , _tmp3(tmp3)
 364   , _fast_check(fast_check)
 365   , _stub(stub)
 366   , _info_for_patch(info_for_patch)
 367   , _info_for_exception(NULL)
 368   , _profiled_method(NULL)
 369   , _profiled_bci(-1)
 370   , _should_profile(false)
 371 {
 372   assert (code == lir_checkcast ||code == lir_instanceof, "expects checkcast or instanceof only");
 373 }
 374 
 375 
 376 
 377 LIR_OpTypeCheck::LIR_OpTypeCheck(LIR_Code code, LIR_Opr object, LIR_Opr array, LIR_Opr tmp1, LIR_Opr tmp2, LIR_Opr tmp3, CodeEmitInfo* info_for_exception)
 378   : LIR_Op(code, LIR_OprFact::illegalOpr, NULL)
 379   , _object(object)
 380   , _array(array)
 381   , _klass(NULL)
 382   , _tmp1(tmp1)
 383   , _tmp2(tmp2)
 384   , _tmp3(tmp3)
 385   , _fast_check(false)
 386   , _stub(NULL)
 387   , _info_for_patch(NULL)
 388   , _info_for_exception(info_for_exception)
 389   , _profiled_method(NULL)
 390   , _profiled_bci(-1)
 391   , _should_profile(false)
 392 {
 393   if (code == lir_store_check) {
 394     _stub = new ArrayStoreExceptionStub(object, info_for_exception);
 395     assert(info_for_exception != NULL, "store_check throws exceptions");
 396   } else {
 397     ShouldNotReachHere();
 398   }
 399 }
 400 
 401 
 402 LIR_OpArrayCopy::LIR_OpArrayCopy(LIR_Opr src, LIR_Opr src_pos, LIR_Opr dst, LIR_Opr dst_pos, LIR_Opr length,
 403                                  LIR_Opr tmp, ciArrayKlass* expected_type, int flags, CodeEmitInfo* info)
 404   : LIR_Op(lir_arraycopy, LIR_OprFact::illegalOpr, info)
 405   , _tmp(tmp)
 406   , _src(src)
 407   , _src_pos(src_pos)
 408   , _dst(dst)
 409   , _dst_pos(dst_pos)
 410   , _flags(flags)
 411   , _expected_type(expected_type)
 412   , _length(length) {
 413   _stub = new ArrayCopyStub(this);
 414 }
 415 
 416 
 417 //-------------------verify--------------------------
 418 
 419 void LIR_Op1::verify() const {
 420   switch(code()) {
 421   case lir_move:
 422     assert(in_opr()->is_valid() && result_opr()->is_valid(), "must be");
 423     break;
 424   case lir_null_check:
 425     assert(in_opr()->is_register(), "must be");
 426     break;
 427   case lir_return:
 428     assert(in_opr()->is_register() || in_opr()->is_illegal(), "must be");
 429     break;
 430   }
 431 }
 432 
 433 void LIR_OpRTCall::verify() const {
 434   assert(strcmp(Runtime1::name_for_address(addr()), "<unknown function>") != 0, "unknown function");
 435 }
 436 
 437 //-------------------visits--------------------------
 438 
 439 // complete rework of LIR instruction visitor.
 440 // The virtual calls for each instruction type is replaced by a big
 441 // switch that adds the operands for each instruction
 442 
 443 void LIR_OpVisitState::visit(LIR_Op* op) {
 444   // copy information from the LIR_Op
 445   reset();
 446   set_op(op);
 447 
 448   switch (op->code()) {
 449 
 450 // LIR_Op0
 451     case lir_word_align:               // result and info always invalid
 452     case lir_backwardbranch_target:    // result and info always invalid
 453     case lir_build_frame:              // result and info always invalid
 454     case lir_fpop_raw:                 // result and info always invalid
 455     case lir_24bit_FPU:                // result and info always invalid
 456     case lir_reset_FPU:                // result and info always invalid
 457     case lir_breakpoint:               // result and info always invalid
 458     case lir_membar:                   // result and info always invalid
 459     case lir_membar_acquire:           // result and info always invalid
 460     case lir_membar_release:           // result and info always invalid
 461     {
 462       assert(op->as_Op0() != NULL, "must be");
 463       assert(op->_info == NULL, "info not used by this instruction");
 464       assert(op->_result->is_illegal(), "not used");
 465       break;
 466     }
 467 
 468     case lir_nop:                      // may have info, result always invalid
 469     case lir_std_entry:                // may have result, info always invalid
 470     case lir_osr_entry:                // may have result, info always invalid
 471     case lir_get_thread:               // may have result, info always invalid
 472     {
 473       assert(op->as_Op0() != NULL, "must be");
 474       if (op->_info != NULL)           do_info(op->_info);
 475       if (op->_result->is_valid())     do_output(op->_result);
 476       break;
 477     }
 478 
 479 
 480 // LIR_OpLabel
 481     case lir_label:                    // result and info always invalid
 482     {
 483       assert(op->as_OpLabel() != NULL, "must be");
 484       assert(op->_info == NULL, "info not used by this instruction");
 485       assert(op->_result->is_illegal(), "not used");
 486       break;
 487     }
 488 
 489 
 490 // LIR_Op1
 491     case lir_fxch:           // input always valid, result and info always invalid
 492     case lir_fld:            // input always valid, result and info always invalid
 493     case lir_ffree:          // input always valid, result and info always invalid
 494     case lir_push:           // input always valid, result and info always invalid
 495     case lir_pop:            // input always valid, result and info always invalid
 496     case lir_return:         // input always valid, result and info always invalid
 497     case lir_leal:           // input and result always valid, info always invalid
 498     case lir_neg:            // input and result always valid, info always invalid
 499     case lir_monaddr:        // input and result always valid, info always invalid
 500     case lir_null_check:     // input and info always valid, result always invalid
 501     case lir_move:           // input and result always valid, may have info
 502     case lir_pack64:         // input and result always valid
 503     case lir_unpack64:       // input and result always valid
 504     case lir_prefetchr:      // input always valid, result and info always invalid
 505     case lir_prefetchw:      // input always valid, result and info always invalid
 506     {
 507       assert(op->as_Op1() != NULL, "must be");
 508       LIR_Op1* op1 = (LIR_Op1*)op;
 509 
 510       if (op1->_info)                  do_info(op1->_info);
 511       if (op1->_opr->is_valid())       do_input(op1->_opr);
 512       if (op1->_result->is_valid())    do_output(op1->_result);
 513 
 514       break;
 515     }
 516 
 517     case lir_safepoint:
 518     {
 519       assert(op->as_Op1() != NULL, "must be");
 520       LIR_Op1* op1 = (LIR_Op1*)op;
 521 
 522       assert(op1->_info != NULL, "");  do_info(op1->_info);
 523       if (op1->_opr->is_valid())       do_temp(op1->_opr); // safepoints on SPARC need temporary register
 524       assert(op1->_result->is_illegal(), "safepoint does not produce value");
 525 
 526       break;
 527     }
 528 
 529 // LIR_OpConvert;
 530     case lir_convert:        // input and result always valid, info always invalid
 531     {
 532       assert(op->as_OpConvert() != NULL, "must be");
 533       LIR_OpConvert* opConvert = (LIR_OpConvert*)op;
 534 
 535       assert(opConvert->_info == NULL, "must be");
 536       if (opConvert->_opr->is_valid())       do_input(opConvert->_opr);
 537       if (opConvert->_result->is_valid())    do_output(opConvert->_result);
 538 #ifdef PPC
 539       if (opConvert->_tmp1->is_valid())      do_temp(opConvert->_tmp1);
 540       if (opConvert->_tmp2->is_valid())      do_temp(opConvert->_tmp2);
 541 #endif
 542       do_stub(opConvert->_stub);
 543 
 544       break;
 545     }
 546 
 547 // LIR_OpBranch;
 548     case lir_branch:                   // may have info, input and result register always invalid
 549     case lir_cond_float_branch:        // may have info, input and result register always invalid
 550     {
 551       assert(op->as_OpBranch() != NULL, "must be");
 552       LIR_OpBranch* opBranch = (LIR_OpBranch*)op;
 553 
 554       if (opBranch->_info != NULL)     do_info(opBranch->_info);
 555       assert(opBranch->_result->is_illegal(), "not used");
 556       if (opBranch->_stub != NULL)     opBranch->stub()->visit(this);
 557 
 558       break;
 559     }
 560 
 561 
 562 // LIR_OpAllocObj
 563     case lir_alloc_object:
 564     {
 565       assert(op->as_OpAllocObj() != NULL, "must be");
 566       LIR_OpAllocObj* opAllocObj = (LIR_OpAllocObj*)op;
 567 
 568       if (opAllocObj->_info)                     do_info(opAllocObj->_info);
 569       if (opAllocObj->_opr->is_valid()) {        do_input(opAllocObj->_opr);
 570                                                  do_temp(opAllocObj->_opr);
 571                                         }
 572       if (opAllocObj->_tmp1->is_valid())         do_temp(opAllocObj->_tmp1);
 573       if (opAllocObj->_tmp2->is_valid())         do_temp(opAllocObj->_tmp2);
 574       if (opAllocObj->_tmp3->is_valid())         do_temp(opAllocObj->_tmp3);
 575       if (opAllocObj->_tmp4->is_valid())         do_temp(opAllocObj->_tmp4);
 576       if (opAllocObj->_result->is_valid())       do_output(opAllocObj->_result);
 577                                                  do_stub(opAllocObj->_stub);
 578       break;
 579     }
 580 
 581 
 582 // LIR_OpRoundFP;
 583     case lir_roundfp: {
 584       assert(op->as_OpRoundFP() != NULL, "must be");
 585       LIR_OpRoundFP* opRoundFP = (LIR_OpRoundFP*)op;
 586 
 587       assert(op->_info == NULL, "info not used by this instruction");
 588       assert(opRoundFP->_tmp->is_illegal(), "not used");
 589       do_input(opRoundFP->_opr);
 590       do_output(opRoundFP->_result);
 591 
 592       break;
 593     }
 594 
 595 
 596 // LIR_Op2
 597     case lir_cmp:
 598     case lir_cmp_l2i:
 599     case lir_ucmp_fd2i:
 600     case lir_cmp_fd2i:
 601     case lir_add:
 602     case lir_sub:
 603     case lir_mul:
 604     case lir_div:
 605     case lir_rem:
 606     case lir_sqrt:
 607     case lir_abs:
 608     case lir_logic_and:
 609     case lir_logic_or:
 610     case lir_logic_xor:
 611     case lir_shl:
 612     case lir_shr:
 613     case lir_ushr:
 614     {
 615       assert(op->as_Op2() != NULL, "must be");
 616       LIR_Op2* op2 = (LIR_Op2*)op;
 617 
 618       if (op2->_info)                     do_info(op2->_info);
 619       if (op2->_opr1->is_valid())         do_input(op2->_opr1);
 620       if (op2->_opr2->is_valid())         do_input(op2->_opr2);
 621       if (op2->_tmp->is_valid())          do_temp(op2->_tmp);
 622       if (op2->_result->is_valid())       do_output(op2->_result);
 623 
 624       break;
 625     }
 626 
 627     // special handling for cmove: right input operand must not be equal
 628     // to the result operand, otherwise the backend fails
 629     case lir_cmove:
 630     {
 631       assert(op->as_Op2() != NULL, "must be");
 632       LIR_Op2* op2 = (LIR_Op2*)op;
 633 
 634       assert(op2->_info == NULL && op2->_tmp->is_illegal(), "not used");
 635       assert(op2->_opr1->is_valid() && op2->_opr2->is_valid() && op2->_result->is_valid(), "used");
 636 
 637       do_input(op2->_opr1);
 638       do_input(op2->_opr2);
 639       do_temp(op2->_opr2);
 640       do_output(op2->_result);
 641 
 642       break;
 643     }
 644 
 645     // vspecial handling for strict operations: register input operands
 646     // as temp to guarantee that they do not overlap with other
 647     // registers
 648     case lir_mul_strictfp:
 649     case lir_div_strictfp:
 650     {
 651       assert(op->as_Op2() != NULL, "must be");
 652       LIR_Op2* op2 = (LIR_Op2*)op;
 653 
 654       assert(op2->_info == NULL, "not used");
 655       assert(op2->_opr1->is_valid(), "used");
 656       assert(op2->_opr2->is_valid(), "used");
 657       assert(op2->_result->is_valid(), "used");
 658 
 659       do_input(op2->_opr1); do_temp(op2->_opr1);
 660       do_input(op2->_opr2); do_temp(op2->_opr2);
 661       if (op2->_tmp->is_valid()) do_temp(op2->_tmp);
 662       do_output(op2->_result);
 663 
 664       break;
 665     }
 666 
 667     case lir_throw: {
 668       assert(op->as_Op2() != NULL, "must be");
 669       LIR_Op2* op2 = (LIR_Op2*)op;
 670 
 671       if (op2->_info)                     do_info(op2->_info);
 672       if (op2->_opr1->is_valid())         do_temp(op2->_opr1);
 673       if (op2->_opr2->is_valid())         do_input(op2->_opr2); // exception object is input parameter
 674       assert(op2->_result->is_illegal(), "no result");
 675 
 676       break;
 677     }
 678 
 679     case lir_unwind: {
 680       assert(op->as_Op1() != NULL, "must be");
 681       LIR_Op1* op1 = (LIR_Op1*)op;
 682 
 683       assert(op1->_info == NULL, "no info");
 684       assert(op1->_opr->is_valid(), "exception oop");         do_input(op1->_opr);
 685       assert(op1->_result->is_illegal(), "no result");
 686 
 687       break;
 688     }
 689 
 690 
 691     case lir_tan:
 692     case lir_sin:
 693     case lir_cos:
 694     case lir_log:
 695     case lir_log10: {
 696       assert(op->as_Op2() != NULL, "must be");
 697       LIR_Op2* op2 = (LIR_Op2*)op;
 698 
 699       // On x86 tan/sin/cos need two temporary fpu stack slots and
 700       // log/log10 need one so handle opr2 and tmp as temp inputs.
 701       // Register input operand as temp to guarantee that it doesn't
 702       // overlap with the input.
 703       assert(op2->_info == NULL, "not used");
 704       assert(op2->_opr1->is_valid(), "used");
 705       do_input(op2->_opr1); do_temp(op2->_opr1);
 706 
 707       if (op2->_opr2->is_valid())         do_temp(op2->_opr2);
 708       if (op2->_tmp->is_valid())          do_temp(op2->_tmp);
 709       if (op2->_result->is_valid())       do_output(op2->_result);
 710 
 711       break;
 712     }
 713 
 714 
 715 // LIR_Op3
 716     case lir_idiv:
 717     case lir_irem: {
 718       assert(op->as_Op3() != NULL, "must be");
 719       LIR_Op3* op3= (LIR_Op3*)op;
 720 
 721       if (op3->_info)                     do_info(op3->_info);
 722       if (op3->_opr1->is_valid())         do_input(op3->_opr1);
 723 
 724       // second operand is input and temp, so ensure that second operand
 725       // and third operand get not the same register
 726       if (op3->_opr2->is_valid())         do_input(op3->_opr2);
 727       if (op3->_opr2->is_valid())         do_temp(op3->_opr2);
 728       if (op3->_opr3->is_valid())         do_temp(op3->_opr3);
 729 
 730       if (op3->_result->is_valid())       do_output(op3->_result);
 731 
 732       break;
 733     }
 734 
 735 
 736 // LIR_OpJavaCall
 737     case lir_static_call:
 738     case lir_optvirtual_call:
 739     case lir_icvirtual_call:
 740     case lir_virtual_call:
 741     case lir_dynamic_call: {
 742       LIR_OpJavaCall* opJavaCall = op->as_OpJavaCall();
 743       assert(opJavaCall != NULL, "must be");
 744 
 745       if (opJavaCall->_receiver->is_valid())     do_input(opJavaCall->_receiver);
 746 
 747       // only visit register parameters
 748       int n = opJavaCall->_arguments->length();
 749       for (int i = 0; i < n; i++) {
 750         if (!opJavaCall->_arguments->at(i)->is_pointer()) {
 751           do_input(*opJavaCall->_arguments->adr_at(i));
 752         }
 753       }
 754 
 755       if (opJavaCall->_info)                     do_info(opJavaCall->_info);
 756       if (opJavaCall->is_method_handle_invoke()) {
 757         opJavaCall->_method_handle_invoke_SP_save_opr = FrameMap::method_handle_invoke_SP_save_opr();
 758         do_temp(opJavaCall->_method_handle_invoke_SP_save_opr);
 759       }
 760       do_call();
 761       if (opJavaCall->_result->is_valid())       do_output(opJavaCall->_result);
 762 
 763       break;
 764     }
 765 
 766 
 767 // LIR_OpRTCall
 768     case lir_rtcall: {
 769       assert(op->as_OpRTCall() != NULL, "must be");
 770       LIR_OpRTCall* opRTCall = (LIR_OpRTCall*)op;
 771 
 772       // only visit register parameters
 773       int n = opRTCall->_arguments->length();
 774       for (int i = 0; i < n; i++) {
 775         if (!opRTCall->_arguments->at(i)->is_pointer()) {
 776           do_input(*opRTCall->_arguments->adr_at(i));
 777         }
 778       }
 779       if (opRTCall->_info)                     do_info(opRTCall->_info);
 780       if (opRTCall->_tmp->is_valid())          do_temp(opRTCall->_tmp);
 781       do_call();
 782       if (opRTCall->_result->is_valid())       do_output(opRTCall->_result);
 783 
 784       break;
 785     }
 786 
 787 
 788 // LIR_OpArrayCopy
 789     case lir_arraycopy: {
 790       assert(op->as_OpArrayCopy() != NULL, "must be");
 791       LIR_OpArrayCopy* opArrayCopy = (LIR_OpArrayCopy*)op;
 792 
 793       assert(opArrayCopy->_result->is_illegal(), "unused");
 794       assert(opArrayCopy->_src->is_valid(), "used");          do_input(opArrayCopy->_src);     do_temp(opArrayCopy->_src);
 795       assert(opArrayCopy->_src_pos->is_valid(), "used");      do_input(opArrayCopy->_src_pos); do_temp(opArrayCopy->_src_pos);
 796       assert(opArrayCopy->_dst->is_valid(), "used");          do_input(opArrayCopy->_dst);     do_temp(opArrayCopy->_dst);
 797       assert(opArrayCopy->_dst_pos->is_valid(), "used");      do_input(opArrayCopy->_dst_pos); do_temp(opArrayCopy->_dst_pos);
 798       assert(opArrayCopy->_length->is_valid(), "used");       do_input(opArrayCopy->_length);  do_temp(opArrayCopy->_length);
 799       assert(opArrayCopy->_tmp->is_valid(), "used");          do_temp(opArrayCopy->_tmp);
 800       if (opArrayCopy->_info)                     do_info(opArrayCopy->_info);
 801 
 802       // the implementation of arraycopy always has a call into the runtime
 803       do_call();
 804 
 805       break;
 806     }
 807 
 808 
 809 // LIR_OpLock
 810     case lir_lock:
 811     case lir_unlock: {
 812       assert(op->as_OpLock() != NULL, "must be");
 813       LIR_OpLock* opLock = (LIR_OpLock*)op;
 814 
 815       if (opLock->_info)                          do_info(opLock->_info);
 816 
 817       // TODO: check if these operands really have to be temp
 818       // (or if input is sufficient). This may have influence on the oop map!
 819       assert(opLock->_lock->is_valid(), "used");  do_temp(opLock->_lock);
 820       assert(opLock->_hdr->is_valid(),  "used");  do_temp(opLock->_hdr);
 821       assert(opLock->_obj->is_valid(),  "used");  do_temp(opLock->_obj);
 822 
 823       if (opLock->_scratch->is_valid())           do_temp(opLock->_scratch);
 824       assert(opLock->_result->is_illegal(), "unused");
 825 
 826       do_stub(opLock->_stub);
 827 
 828       break;
 829     }
 830 
 831 
 832 // LIR_OpDelay
 833     case lir_delay_slot: {
 834       assert(op->as_OpDelay() != NULL, "must be");
 835       LIR_OpDelay* opDelay = (LIR_OpDelay*)op;
 836 
 837       visit(opDelay->delay_op());
 838       break;
 839     }
 840 
 841 // LIR_OpTypeCheck
 842     case lir_instanceof:
 843     case lir_checkcast:
 844     case lir_store_check: {
 845       assert(op->as_OpTypeCheck() != NULL, "must be");
 846       LIR_OpTypeCheck* opTypeCheck = (LIR_OpTypeCheck*)op;
 847 
 848       if (opTypeCheck->_info_for_exception)       do_info(opTypeCheck->_info_for_exception);
 849       if (opTypeCheck->_info_for_patch)           do_info(opTypeCheck->_info_for_patch);
 850       if (opTypeCheck->_object->is_valid())       do_input(opTypeCheck->_object);
 851       if (opTypeCheck->_array->is_valid())        do_input(opTypeCheck->_array);
 852       if (opTypeCheck->_tmp1->is_valid())         do_temp(opTypeCheck->_tmp1);
 853       if (opTypeCheck->_tmp2->is_valid())         do_temp(opTypeCheck->_tmp2);
 854       if (opTypeCheck->_tmp3->is_valid())         do_temp(opTypeCheck->_tmp3);
 855       if (opTypeCheck->_result->is_valid())       do_output(opTypeCheck->_result);
 856                                                   do_stub(opTypeCheck->_stub);
 857       break;
 858     }
 859 
 860 // LIR_OpCompareAndSwap
 861     case lir_cas_long:
 862     case lir_cas_obj:
 863     case lir_cas_int: {
 864       assert(op->as_OpCompareAndSwap() != NULL, "must be");
 865       LIR_OpCompareAndSwap* opCompareAndSwap = (LIR_OpCompareAndSwap*)op;
 866 
 867       assert(opCompareAndSwap->_addr->is_valid(),      "used");
 868       assert(opCompareAndSwap->_cmp_value->is_valid(), "used");
 869       assert(opCompareAndSwap->_new_value->is_valid(), "used");
 870       if (opCompareAndSwap->_info)                    do_info(opCompareAndSwap->_info);
 871                                                       do_input(opCompareAndSwap->_addr);
 872                                                       do_temp(opCompareAndSwap->_addr);
 873                                                       do_input(opCompareAndSwap->_cmp_value);
 874                                                       do_temp(opCompareAndSwap->_cmp_value);
 875                                                       do_input(opCompareAndSwap->_new_value);
 876                                                       do_temp(opCompareAndSwap->_new_value);
 877       if (opCompareAndSwap->_tmp1->is_valid())        do_temp(opCompareAndSwap->_tmp1);
 878       if (opCompareAndSwap->_tmp2->is_valid())        do_temp(opCompareAndSwap->_tmp2);
 879       if (opCompareAndSwap->_result->is_valid())      do_output(opCompareAndSwap->_result);
 880 
 881       break;
 882     }
 883 
 884 
 885 // LIR_OpAllocArray;
 886     case lir_alloc_array: {
 887       assert(op->as_OpAllocArray() != NULL, "must be");
 888       LIR_OpAllocArray* opAllocArray = (LIR_OpAllocArray*)op;
 889 
 890       if (opAllocArray->_info)                        do_info(opAllocArray->_info);
 891       if (opAllocArray->_klass->is_valid())           do_input(opAllocArray->_klass); do_temp(opAllocArray->_klass);
 892       if (opAllocArray->_len->is_valid())             do_input(opAllocArray->_len);   do_temp(opAllocArray->_len);
 893       if (opAllocArray->_tmp1->is_valid())            do_temp(opAllocArray->_tmp1);
 894       if (opAllocArray->_tmp2->is_valid())            do_temp(opAllocArray->_tmp2);
 895       if (opAllocArray->_tmp3->is_valid())            do_temp(opAllocArray->_tmp3);
 896       if (opAllocArray->_tmp4->is_valid())            do_temp(opAllocArray->_tmp4);
 897       if (opAllocArray->_result->is_valid())          do_output(opAllocArray->_result);
 898                                                       do_stub(opAllocArray->_stub);
 899       break;
 900     }
 901 
 902 // LIR_OpProfileCall:
 903     case lir_profile_call: {
 904       assert(op->as_OpProfileCall() != NULL, "must be");
 905       LIR_OpProfileCall* opProfileCall = (LIR_OpProfileCall*)op;
 906 
 907       if (opProfileCall->_recv->is_valid())              do_temp(opProfileCall->_recv);
 908       assert(opProfileCall->_mdo->is_valid(), "used");   do_temp(opProfileCall->_mdo);
 909       assert(opProfileCall->_tmp1->is_valid(), "used");  do_temp(opProfileCall->_tmp1);
 910       break;
 911     }
 912   default:
 913     ShouldNotReachHere();
 914   }
 915 }
 916 
 917 
 918 void LIR_OpVisitState::do_stub(CodeStub* stub) {
 919   if (stub != NULL) {
 920     stub->visit(this);
 921   }
 922 }
 923 
 924 XHandlers* LIR_OpVisitState::all_xhandler() {
 925   XHandlers* result = NULL;
 926 
 927   int i;
 928   for (i = 0; i < info_count(); i++) {
 929     if (info_at(i)->exception_handlers() != NULL) {
 930       result = info_at(i)->exception_handlers();
 931       break;
 932     }
 933   }
 934 
 935 #ifdef ASSERT
 936   for (i = 0; i < info_count(); i++) {
 937     assert(info_at(i)->exception_handlers() == NULL ||
 938            info_at(i)->exception_handlers() == result,
 939            "only one xhandler list allowed per LIR-operation");
 940   }
 941 #endif
 942 
 943   if (result != NULL) {
 944     return result;
 945   } else {
 946     return new XHandlers();
 947   }
 948 
 949   return result;
 950 }
 951 
 952 
 953 #ifdef ASSERT
 954 bool LIR_OpVisitState::no_operands(LIR_Op* op) {
 955   visit(op);
 956 
 957   return opr_count(inputMode) == 0 &&
 958          opr_count(outputMode) == 0 &&
 959          opr_count(tempMode) == 0 &&
 960          info_count() == 0 &&
 961          !has_call() &&
 962          !has_slow_case();
 963 }
 964 #endif
 965 
 966 //---------------------------------------------------
 967 
 968 
 969 void LIR_OpJavaCall::emit_code(LIR_Assembler* masm) {
 970   masm->emit_call(this);
 971 }
 972 
 973 void LIR_OpRTCall::emit_code(LIR_Assembler* masm) {
 974   masm->emit_rtcall(this);
 975 }
 976 
 977 void LIR_OpLabel::emit_code(LIR_Assembler* masm) {
 978   masm->emit_opLabel(this);
 979 }
 980 
 981 void LIR_OpArrayCopy::emit_code(LIR_Assembler* masm) {
 982   masm->emit_arraycopy(this);
 983   masm->emit_code_stub(stub());
 984 }
 985 
 986 void LIR_Op0::emit_code(LIR_Assembler* masm) {
 987   masm->emit_op0(this);
 988 }
 989 
 990 void LIR_Op1::emit_code(LIR_Assembler* masm) {
 991   masm->emit_op1(this);
 992 }
 993 
 994 void LIR_OpAllocObj::emit_code(LIR_Assembler* masm) {
 995   masm->emit_alloc_obj(this);
 996   masm->emit_code_stub(stub());
 997 }
 998 
 999 void LIR_OpBranch::emit_code(LIR_Assembler* masm) {
1000   masm->emit_opBranch(this);
1001   if (stub()) {
1002     masm->emit_code_stub(stub());
1003   }
1004 }
1005 
1006 void LIR_OpConvert::emit_code(LIR_Assembler* masm) {
1007   masm->emit_opConvert(this);
1008   if (stub() != NULL) {
1009     masm->emit_code_stub(stub());
1010   }
1011 }
1012 
1013 void LIR_Op2::emit_code(LIR_Assembler* masm) {
1014   masm->emit_op2(this);
1015 }
1016 
1017 void LIR_OpAllocArray::emit_code(LIR_Assembler* masm) {
1018   masm->emit_alloc_array(this);
1019   masm->emit_code_stub(stub());
1020 }
1021 
1022 void LIR_OpTypeCheck::emit_code(LIR_Assembler* masm) {
1023   masm->emit_opTypeCheck(this);
1024   if (stub()) {
1025     masm->emit_code_stub(stub());
1026   }
1027 }
1028 
1029 void LIR_OpCompareAndSwap::emit_code(LIR_Assembler* masm) {
1030   masm->emit_compare_and_swap(this);
1031 }
1032 
1033 void LIR_Op3::emit_code(LIR_Assembler* masm) {
1034   masm->emit_op3(this);
1035 }
1036 
1037 void LIR_OpLock::emit_code(LIR_Assembler* masm) {
1038   masm->emit_lock(this);
1039   if (stub()) {
1040     masm->emit_code_stub(stub());
1041   }
1042 }
1043 
1044 
1045 void LIR_OpDelay::emit_code(LIR_Assembler* masm) {
1046   masm->emit_delay(this);
1047 }
1048 
1049 void LIR_OpProfileCall::emit_code(LIR_Assembler* masm) {
1050   masm->emit_profile_call(this);
1051 }
1052 
1053 // LIR_List
1054 LIR_List::LIR_List(Compilation* compilation, BlockBegin* block)
1055   : _operations(8)
1056   , _compilation(compilation)
1057 #ifndef PRODUCT
1058   , _block(block)
1059 #endif
1060 #ifdef ASSERT
1061   , _file(NULL)
1062   , _line(0)
1063 #endif
1064 { }
1065 
1066 
1067 #ifdef ASSERT
1068 void LIR_List::set_file_and_line(const char * file, int line) {
1069   const char * f = strrchr(file, '/');
1070   if (f == NULL) f = strrchr(file, '\\');
1071   if (f == NULL) {
1072     f = file;
1073   } else {
1074     f++;
1075   }
1076   _file = f;
1077   _line = line;
1078 }
1079 #endif
1080 
1081 
1082 void LIR_List::append(LIR_InsertionBuffer* buffer) {
1083   assert(this == buffer->lir_list(), "wrong lir list");
1084   const int n = _operations.length();
1085 
1086   if (buffer->number_of_ops() > 0) {
1087     // increase size of instructions list
1088     _operations.at_grow(n + buffer->number_of_ops() - 1, NULL);
1089     // insert ops from buffer into instructions list
1090     int op_index = buffer->number_of_ops() - 1;
1091     int ip_index = buffer->number_of_insertion_points() - 1;
1092     int from_index = n - 1;
1093     int to_index = _operations.length() - 1;
1094     for (; ip_index >= 0; ip_index --) {
1095       int index = buffer->index_at(ip_index);
1096       // make room after insertion point
1097       while (index < from_index) {
1098         _operations.at_put(to_index --, _operations.at(from_index --));
1099       }
1100       // insert ops from buffer
1101       for (int i = buffer->count_at(ip_index); i > 0; i --) {
1102         _operations.at_put(to_index --, buffer->op_at(op_index --));
1103       }
1104     }
1105   }
1106 
1107   buffer->finish();
1108 }
1109 
1110 
1111 void LIR_List::oop2reg_patch(jobject o, LIR_Opr reg, CodeEmitInfo* info) {
1112   append(new LIR_Op1(lir_move, LIR_OprFact::oopConst(o),  reg, T_OBJECT, lir_patch_normal, info));
1113 }
1114 
1115 
1116 void LIR_List::load(LIR_Address* addr, LIR_Opr src, CodeEmitInfo* info, LIR_PatchCode patch_code) {
1117   append(new LIR_Op1(
1118             lir_move,
1119             LIR_OprFact::address(addr),
1120             src,
1121             addr->type(),
1122             patch_code,
1123             info));
1124 }
1125 
1126 
1127 void LIR_List::volatile_load_mem_reg(LIR_Address* address, LIR_Opr dst, CodeEmitInfo* info, LIR_PatchCode patch_code) {
1128   append(new LIR_Op1(
1129             lir_move,
1130             LIR_OprFact::address(address),
1131             dst,
1132             address->type(),
1133             patch_code,
1134             info, lir_move_volatile));
1135 }
1136 
1137 void LIR_List::volatile_load_unsafe_reg(LIR_Opr base, LIR_Opr offset, LIR_Opr dst, BasicType type, CodeEmitInfo* info, LIR_PatchCode patch_code) {
1138   append(new LIR_Op1(
1139             lir_move,
1140             LIR_OprFact::address(new LIR_Address(base, offset, type)),
1141             dst,
1142             type,
1143             patch_code,
1144             info, lir_move_volatile));
1145 }
1146 
1147 
1148 void LIR_List::prefetch(LIR_Address* addr, bool is_store) {
1149   append(new LIR_Op1(
1150             is_store ? lir_prefetchw : lir_prefetchr,
1151             LIR_OprFact::address(addr)));
1152 }
1153 
1154 
1155 void LIR_List::store_mem_int(jint v, LIR_Opr base, int offset_in_bytes, BasicType type, CodeEmitInfo* info, LIR_PatchCode patch_code) {
1156   append(new LIR_Op1(
1157             lir_move,
1158             LIR_OprFact::intConst(v),
1159             LIR_OprFact::address(new LIR_Address(base, offset_in_bytes, type)),
1160             type,
1161             patch_code,
1162             info));
1163 }
1164 
1165 
1166 void LIR_List::store_mem_oop(jobject o, LIR_Opr base, int offset_in_bytes, BasicType type, CodeEmitInfo* info, LIR_PatchCode patch_code) {
1167   append(new LIR_Op1(
1168             lir_move,
1169             LIR_OprFact::oopConst(o),
1170             LIR_OprFact::address(new LIR_Address(base, offset_in_bytes, type)),
1171             type,
1172             patch_code,
1173             info));
1174 }
1175 
1176 
1177 void LIR_List::store(LIR_Opr src, LIR_Address* addr, CodeEmitInfo* info, LIR_PatchCode patch_code) {
1178   append(new LIR_Op1(
1179             lir_move,
1180             src,
1181             LIR_OprFact::address(addr),
1182             addr->type(),
1183             patch_code,
1184             info));
1185 }
1186 
1187 
1188 void LIR_List::volatile_store_mem_reg(LIR_Opr src, LIR_Address* addr, CodeEmitInfo* info, LIR_PatchCode patch_code) {
1189   append(new LIR_Op1(
1190             lir_move,
1191             src,
1192             LIR_OprFact::address(addr),
1193             addr->type(),
1194             patch_code,
1195             info,
1196             lir_move_volatile));
1197 }
1198 
1199 void LIR_List::volatile_store_unsafe_reg(LIR_Opr src, LIR_Opr base, LIR_Opr offset, BasicType type, CodeEmitInfo* info, LIR_PatchCode patch_code) {
1200   append(new LIR_Op1(
1201             lir_move,
1202             src,
1203             LIR_OprFact::address(new LIR_Address(base, offset, type)),
1204             type,
1205             patch_code,
1206             info, lir_move_volatile));
1207 }
1208 
1209 
1210 void LIR_List::idiv(LIR_Opr left, LIR_Opr right, LIR_Opr res, LIR_Opr tmp, CodeEmitInfo* info) {
1211   append(new LIR_Op3(
1212                     lir_idiv,
1213                     left,
1214                     right,
1215                     tmp,
1216                     res,
1217                     info));
1218 }
1219 
1220 
1221 void LIR_List::idiv(LIR_Opr left, int right, LIR_Opr res, LIR_Opr tmp, CodeEmitInfo* info) {
1222   append(new LIR_Op3(
1223                     lir_idiv,
1224                     left,
1225                     LIR_OprFact::intConst(right),
1226                     tmp,
1227                     res,
1228                     info));
1229 }
1230 
1231 
1232 void LIR_List::irem(LIR_Opr left, LIR_Opr right, LIR_Opr res, LIR_Opr tmp, CodeEmitInfo* info) {
1233   append(new LIR_Op3(
1234                     lir_irem,
1235                     left,
1236                     right,
1237                     tmp,
1238                     res,
1239                     info));
1240 }
1241 
1242 
1243 void LIR_List::irem(LIR_Opr left, int right, LIR_Opr res, LIR_Opr tmp, CodeEmitInfo* info) {
1244   append(new LIR_Op3(
1245                     lir_irem,
1246                     left,
1247                     LIR_OprFact::intConst(right),
1248                     tmp,
1249                     res,
1250                     info));
1251 }
1252 
1253 
1254 void LIR_List::cmp_mem_int(LIR_Condition condition, LIR_Opr base, int disp, int c, CodeEmitInfo* info) {
1255   append(new LIR_Op2(
1256                     lir_cmp,
1257                     condition,
1258                     LIR_OprFact::address(new LIR_Address(base, disp, T_INT)),
1259                     LIR_OprFact::intConst(c),
1260                     info));
1261 }
1262 
1263 
1264 void LIR_List::cmp_reg_mem(LIR_Condition condition, LIR_Opr reg, LIR_Address* addr, CodeEmitInfo* info) {
1265   append(new LIR_Op2(
1266                     lir_cmp,
1267                     condition,
1268                     reg,
1269                     LIR_OprFact::address(addr),
1270                     info));
1271 }
1272 
1273 void LIR_List::allocate_object(LIR_Opr dst, LIR_Opr t1, LIR_Opr t2, LIR_Opr t3, LIR_Opr t4,
1274                                int header_size, int object_size, LIR_Opr klass, bool init_check, CodeStub* stub) {
1275   append(new LIR_OpAllocObj(
1276                            klass,
1277                            dst,
1278                            t1,
1279                            t2,
1280                            t3,
1281                            t4,
1282                            header_size,
1283                            object_size,
1284                            init_check,
1285                            stub));
1286 }
1287 
1288 void LIR_List::allocate_array(LIR_Opr dst, LIR_Opr len, LIR_Opr t1,LIR_Opr t2, LIR_Opr t3,LIR_Opr t4, BasicType type, LIR_Opr klass, CodeStub* stub) {
1289   append(new LIR_OpAllocArray(
1290                            klass,
1291                            len,
1292                            dst,
1293                            t1,
1294                            t2,
1295                            t3,
1296                            t4,
1297                            type,
1298                            stub));
1299 }
1300 
1301 void LIR_List::shift_left(LIR_Opr value, LIR_Opr count, LIR_Opr dst, LIR_Opr tmp) {
1302  append(new LIR_Op2(
1303                     lir_shl,
1304                     value,
1305                     count,
1306                     dst,
1307                     tmp));
1308 }
1309 
1310 void LIR_List::shift_right(LIR_Opr value, LIR_Opr count, LIR_Opr dst, LIR_Opr tmp) {
1311  append(new LIR_Op2(
1312                     lir_shr,
1313                     value,
1314                     count,
1315                     dst,
1316                     tmp));
1317 }
1318 
1319 
1320 void LIR_List::unsigned_shift_right(LIR_Opr value, LIR_Opr count, LIR_Opr dst, LIR_Opr tmp) {
1321  append(new LIR_Op2(
1322                     lir_ushr,
1323                     value,
1324                     count,
1325                     dst,
1326                     tmp));
1327 }
1328 
1329 void LIR_List::fcmp2int(LIR_Opr left, LIR_Opr right, LIR_Opr dst, bool is_unordered_less) {
1330   append(new LIR_Op2(is_unordered_less ? lir_ucmp_fd2i : lir_cmp_fd2i,
1331                      left,
1332                      right,
1333                      dst));
1334 }
1335 
1336 void LIR_List::lock_object(LIR_Opr hdr, LIR_Opr obj, LIR_Opr lock, LIR_Opr scratch, CodeStub* stub, CodeEmitInfo* info) {
1337   append(new LIR_OpLock(
1338                     lir_lock,
1339                     hdr,
1340                     obj,
1341                     lock,
1342                     scratch,
1343                     stub,
1344                     info));
1345 }
1346 
1347 void LIR_List::unlock_object(LIR_Opr hdr, LIR_Opr obj, LIR_Opr lock, LIR_Opr scratch, CodeStub* stub) {
1348   append(new LIR_OpLock(
1349                     lir_unlock,
1350                     hdr,
1351                     obj,
1352                     lock,
1353                     scratch,
1354                     stub,
1355                     NULL));
1356 }
1357 
1358 
1359 void check_LIR() {
1360   // cannot do the proper checking as PRODUCT and other modes return different results
1361   // guarantee(sizeof(LIR_OprDesc) == wordSize, "may not have a v-table");
1362 }
1363 
1364 
1365 
1366 void LIR_List::checkcast (LIR_Opr result, LIR_Opr object, ciKlass* klass,
1367                           LIR_Opr tmp1, LIR_Opr tmp2, LIR_Opr tmp3, bool fast_check,
1368                           CodeEmitInfo* info_for_patch, CodeStub* stub,
1369                           ciMethod* profiled_method, int profiled_bci) {
1370   LIR_OpTypeCheck* c = new LIR_OpTypeCheck(lir_checkcast, result, object, klass,
1371                                            tmp1, tmp2, tmp3, fast_check, info_for_patch, stub);
1372   if (profiled_method != NULL) {
1373     c->set_profiled_method(profiled_method);
1374     c->set_profiled_bci(profiled_bci);
1375     c->set_should_profile(true);
1376   }
1377   append(c);
1378 }
1379 
1380 void LIR_List::instanceof(LIR_Opr result, LIR_Opr object, ciKlass* klass, LIR_Opr tmp1, LIR_Opr tmp2, LIR_Opr tmp3, bool fast_check, CodeEmitInfo* info_for_patch, ciMethod* profiled_method, int profiled_bci) {
1381   LIR_OpTypeCheck* c = new LIR_OpTypeCheck(lir_instanceof, result, object, klass, tmp1, tmp2, tmp3, fast_check, info_for_patch, NULL);
1382   if (profiled_method != NULL) {
1383     c->set_profiled_method(profiled_method);
1384     c->set_profiled_bci(profiled_bci);
1385     c->set_should_profile(true);
1386   }
1387   append(c);
1388 }
1389 
1390 
1391 void LIR_List::store_check(LIR_Opr object, LIR_Opr array, LIR_Opr tmp1, LIR_Opr tmp2, LIR_Opr tmp3,
1392                            CodeEmitInfo* info_for_exception, ciMethod* profiled_method, int profiled_bci) {
1393   LIR_OpTypeCheck* c = new LIR_OpTypeCheck(lir_store_check, object, array, tmp1, tmp2, tmp3, info_for_exception);
1394   if (profiled_method != NULL) {
1395     c->set_profiled_method(profiled_method);
1396     c->set_profiled_bci(profiled_bci);
1397     c->set_should_profile(true);
1398   }
1399   append(c);
1400 }
1401 
1402 
1403 void LIR_List::cas_long(LIR_Opr addr, LIR_Opr cmp_value, LIR_Opr new_value,
1404                         LIR_Opr t1, LIR_Opr t2, LIR_Opr result) {
1405   append(new LIR_OpCompareAndSwap(lir_cas_long, addr, cmp_value, new_value, t1, t2, result));
1406 }
1407 
1408 void LIR_List::cas_obj(LIR_Opr addr, LIR_Opr cmp_value, LIR_Opr new_value,
1409                        LIR_Opr t1, LIR_Opr t2, LIR_Opr result) {
1410   append(new LIR_OpCompareAndSwap(lir_cas_obj, addr, cmp_value, new_value, t1, t2, result));
1411 }
1412 
1413 void LIR_List::cas_int(LIR_Opr addr, LIR_Opr cmp_value, LIR_Opr new_value,
1414                        LIR_Opr t1, LIR_Opr t2, LIR_Opr result) {
1415   append(new LIR_OpCompareAndSwap(lir_cas_int, addr, cmp_value, new_value, t1, t2, result));
1416 }
1417 
1418 
1419 #ifdef PRODUCT
1420 
1421 void print_LIR(BlockList* blocks) {
1422 }
1423 
1424 #else
1425 // LIR_OprDesc
1426 void LIR_OprDesc::print() const {
1427   print(tty);
1428 }
1429 
1430 void LIR_OprDesc::print(outputStream* out) const {
1431   if (is_illegal()) {
1432     return;
1433   }
1434 
1435   out->print("[");
1436   if (is_pointer()) {
1437     pointer()->print_value_on(out);
1438   } else if (is_single_stack()) {
1439     out->print("stack:%d", single_stack_ix());
1440   } else if (is_double_stack()) {
1441     out->print("dbl_stack:%d",double_stack_ix());
1442   } else if (is_virtual()) {
1443     out->print("R%d", vreg_number());
1444   } else if (is_single_cpu()) {
1445     out->print(as_register()->name());
1446   } else if (is_double_cpu()) {
1447     out->print(as_register_hi()->name());
1448     out->print(as_register_lo()->name());
1449 #if defined(X86)
1450   } else if (is_single_xmm()) {
1451     out->print(as_xmm_float_reg()->name());
1452   } else if (is_double_xmm()) {
1453     out->print(as_xmm_double_reg()->name());
1454   } else if (is_single_fpu()) {
1455     out->print("fpu%d", fpu_regnr());
1456   } else if (is_double_fpu()) {
1457     out->print("fpu%d", fpu_regnrLo());
1458 #elif defined(ARM)
1459   } else if (is_single_fpu()) {
1460     out->print("s%d", fpu_regnr());
1461   } else if (is_double_fpu()) {
1462     out->print("d%d", fpu_regnrLo() >> 1);
1463 #else
1464   } else if (is_single_fpu()) {
1465     out->print(as_float_reg()->name());
1466   } else if (is_double_fpu()) {
1467     out->print(as_double_reg()->name());
1468 #endif
1469 
1470   } else if (is_illegal()) {
1471     out->print("-");
1472   } else {
1473     out->print("Unknown Operand");
1474   }
1475   if (!is_illegal()) {
1476     out->print("|%c", type_char());
1477   }
1478   if (is_register() && is_last_use()) {
1479     out->print("(last_use)");
1480   }
1481   out->print("]");
1482 }
1483 
1484 
1485 // LIR_Address
1486 void LIR_Const::print_value_on(outputStream* out) const {
1487   switch (type()) {
1488     case T_ADDRESS:out->print("address:%d",as_jint());          break;
1489     case T_INT:    out->print("int:%d",   as_jint());           break;
1490     case T_LONG:   out->print("lng:%lld", as_jlong());          break;
1491     case T_FLOAT:  out->print("flt:%f",   as_jfloat());         break;
1492     case T_DOUBLE: out->print("dbl:%f",   as_jdouble());        break;
1493     case T_OBJECT: out->print("obj:0x%x", as_jobject());        break;
1494     default:       out->print("%3d:0x%x",type(), as_jdouble()); break;
1495   }
1496 }
1497 
1498 // LIR_Address
1499 void LIR_Address::print_value_on(outputStream* out) const {
1500   out->print("Base:"); _base->print(out);
1501   if (!_index->is_illegal()) {
1502     out->print(" Index:"); _index->print(out);
1503     switch (scale()) {
1504     case times_1: break;
1505     case times_2: out->print(" * 2"); break;
1506     case times_4: out->print(" * 4"); break;
1507     case times_8: out->print(" * 8"); break;
1508     }
1509   }
1510   out->print(" Disp: %d", _disp);
1511 }
1512 
1513 // debug output of block header without InstructionPrinter
1514 //       (because phi functions are not necessary for LIR)
1515 static void print_block(BlockBegin* x) {
1516   // print block id
1517   BlockEnd* end = x->end();
1518   tty->print("B%d ", x->block_id());
1519 
1520   // print flags
1521   if (x->is_set(BlockBegin::std_entry_flag))               tty->print("std ");
1522   if (x->is_set(BlockBegin::osr_entry_flag))               tty->print("osr ");
1523   if (x->is_set(BlockBegin::exception_entry_flag))         tty->print("ex ");
1524   if (x->is_set(BlockBegin::subroutine_entry_flag))        tty->print("jsr ");
1525   if (x->is_set(BlockBegin::backward_branch_target_flag))  tty->print("bb ");
1526   if (x->is_set(BlockBegin::linear_scan_loop_header_flag)) tty->print("lh ");
1527   if (x->is_set(BlockBegin::linear_scan_loop_end_flag))    tty->print("le ");
1528 
1529   // print block bci range
1530   tty->print("[%d, %d] ", x->bci(), (end == NULL ? -1 : end->printable_bci()));
1531 
1532   // print predecessors and successors
1533   if (x->number_of_preds() > 0) {
1534     tty->print("preds: ");
1535     for (int i = 0; i < x->number_of_preds(); i ++) {
1536       tty->print("B%d ", x->pred_at(i)->block_id());
1537     }
1538   }
1539 
1540   if (x->number_of_sux() > 0) {
1541     tty->print("sux: ");
1542     for (int i = 0; i < x->number_of_sux(); i ++) {
1543       tty->print("B%d ", x->sux_at(i)->block_id());
1544     }
1545   }
1546 
1547   // print exception handlers
1548   if (x->number_of_exception_handlers() > 0) {
1549     tty->print("xhandler: ");
1550     for (int i = 0; i < x->number_of_exception_handlers();  i++) {
1551       tty->print("B%d ", x->exception_handler_at(i)->block_id());
1552     }
1553   }
1554 
1555   tty->cr();
1556 }
1557 
1558 void print_LIR(BlockList* blocks) {
1559   tty->print_cr("LIR:");
1560   int i;
1561   for (i = 0; i < blocks->length(); i++) {
1562     BlockBegin* bb = blocks->at(i);
1563     print_block(bb);
1564     tty->print("__id_Instruction___________________________________________"); tty->cr();
1565     bb->lir()->print_instructions();
1566   }
1567 }
1568 
1569 void LIR_List::print_instructions() {
1570   for (int i = 0; i < _operations.length(); i++) {
1571     _operations.at(i)->print(); tty->cr();
1572   }
1573   tty->cr();
1574 }
1575 
1576 // LIR_Ops printing routines
1577 // LIR_Op
1578 void LIR_Op::print_on(outputStream* out) const {
1579   if (id() != -1 || PrintCFGToFile) {
1580     out->print("%4d ", id());
1581   } else {
1582     out->print("     ");
1583   }
1584   out->print(name()); out->print(" ");
1585   print_instr(out);
1586   if (info() != NULL) out->print(" [bci:%d]", info()->stack()->bci());
1587 #ifdef ASSERT
1588   if (Verbose && _file != NULL) {
1589     out->print(" (%s:%d)", _file, _line);
1590   }
1591 #endif
1592 }
1593 
1594 const char * LIR_Op::name() const {
1595   const char* s = NULL;
1596   switch(code()) {
1597      // LIR_Op0
1598      case lir_membar:                s = "membar";        break;
1599      case lir_membar_acquire:        s = "membar_acquire"; break;
1600      case lir_membar_release:        s = "membar_release"; break;
1601      case lir_word_align:            s = "word_align";    break;
1602      case lir_label:                 s = "label";         break;
1603      case lir_nop:                   s = "nop";           break;
1604      case lir_backwardbranch_target: s = "backbranch";    break;
1605      case lir_std_entry:             s = "std_entry";     break;
1606      case lir_osr_entry:             s = "osr_entry";     break;
1607      case lir_build_frame:           s = "build_frm";     break;
1608      case lir_fpop_raw:              s = "fpop_raw";      break;
1609      case lir_24bit_FPU:             s = "24bit_FPU";     break;
1610      case lir_reset_FPU:             s = "reset_FPU";     break;
1611      case lir_breakpoint:            s = "breakpoint";    break;
1612      case lir_get_thread:            s = "get_thread";    break;
1613      // LIR_Op1
1614      case lir_fxch:                  s = "fxch";          break;
1615      case lir_fld:                   s = "fld";           break;
1616      case lir_ffree:                 s = "ffree";         break;
1617      case lir_push:                  s = "push";          break;
1618      case lir_pop:                   s = "pop";           break;
1619      case lir_null_check:            s = "null_check";    break;
1620      case lir_return:                s = "return";        break;
1621      case lir_safepoint:             s = "safepoint";     break;
1622      case lir_neg:                   s = "neg";           break;
1623      case lir_leal:                  s = "leal";          break;
1624      case lir_branch:                s = "branch";        break;
1625      case lir_cond_float_branch:     s = "flt_cond_br";   break;
1626      case lir_move:                  s = "move";          break;
1627      case lir_roundfp:               s = "roundfp";       break;
1628      case lir_rtcall:                s = "rtcall";        break;
1629      case lir_throw:                 s = "throw";         break;
1630      case lir_unwind:                s = "unwind";        break;
1631      case lir_convert:               s = "convert";       break;
1632      case lir_alloc_object:          s = "alloc_obj";     break;
1633      case lir_monaddr:               s = "mon_addr";      break;
1634      case lir_pack64:                s = "pack64";        break;
1635      case lir_unpack64:              s = "unpack64";      break;
1636      // LIR_Op2
1637      case lir_cmp:                   s = "cmp";           break;
1638      case lir_cmp_l2i:               s = "cmp_l2i";       break;
1639      case lir_ucmp_fd2i:             s = "ucomp_fd2i";    break;
1640      case lir_cmp_fd2i:              s = "comp_fd2i";     break;
1641      case lir_cmove:                 s = "cmove";         break;
1642      case lir_add:                   s = "add";           break;
1643      case lir_sub:                   s = "sub";           break;
1644      case lir_mul:                   s = "mul";           break;
1645      case lir_mul_strictfp:          s = "mul_strictfp";  break;
1646      case lir_div:                   s = "div";           break;
1647      case lir_div_strictfp:          s = "div_strictfp";  break;
1648      case lir_rem:                   s = "rem";           break;
1649      case lir_abs:                   s = "abs";           break;
1650      case lir_sqrt:                  s = "sqrt";          break;
1651      case lir_sin:                   s = "sin";           break;
1652      case lir_cos:                   s = "cos";           break;
1653      case lir_tan:                   s = "tan";           break;
1654      case lir_log:                   s = "log";           break;
1655      case lir_log10:                 s = "log10";         break;
1656      case lir_logic_and:             s = "logic_and";     break;
1657      case lir_logic_or:              s = "logic_or";      break;
1658      case lir_logic_xor:             s = "logic_xor";     break;
1659      case lir_shl:                   s = "shift_left";    break;
1660      case lir_shr:                   s = "shift_right";   break;
1661      case lir_ushr:                  s = "ushift_right";  break;
1662      case lir_alloc_array:           s = "alloc_array";   break;
1663      // LIR_Op3
1664      case lir_idiv:                  s = "idiv";          break;
1665      case lir_irem:                  s = "irem";          break;
1666      // LIR_OpJavaCall
1667      case lir_static_call:           s = "static";        break;
1668      case lir_optvirtual_call:       s = "optvirtual";    break;
1669      case lir_icvirtual_call:        s = "icvirtual";     break;
1670      case lir_virtual_call:          s = "virtual";       break;
1671      case lir_dynamic_call:          s = "dynamic";       break;
1672      // LIR_OpArrayCopy
1673      case lir_arraycopy:             s = "arraycopy";     break;
1674      // LIR_OpLock
1675      case lir_lock:                  s = "lock";          break;
1676      case lir_unlock:                s = "unlock";        break;
1677      // LIR_OpDelay
1678      case lir_delay_slot:            s = "delay";         break;
1679      // LIR_OpTypeCheck
1680      case lir_instanceof:            s = "instanceof";    break;
1681      case lir_checkcast:             s = "checkcast";     break;
1682      case lir_store_check:           s = "store_check";   break;
1683      // LIR_OpCompareAndSwap
1684      case lir_cas_long:              s = "cas_long";      break;
1685      case lir_cas_obj:               s = "cas_obj";      break;
1686      case lir_cas_int:               s = "cas_int";      break;
1687      // LIR_OpProfileCall
1688      case lir_profile_call:          s = "profile_call";  break;
1689      case lir_none:                  ShouldNotReachHere();break;
1690     default:                         s = "illegal_op";    break;
1691   }
1692   return s;
1693 }
1694 
1695 // LIR_OpJavaCall
1696 void LIR_OpJavaCall::print_instr(outputStream* out) const {
1697   out->print("call: ");
1698   out->print("[addr: 0x%x]", address());
1699   if (receiver()->is_valid()) {
1700     out->print(" [recv: ");   receiver()->print(out);   out->print("]");
1701   }
1702   if (result_opr()->is_valid()) {
1703     out->print(" [result: "); result_opr()->print(out); out->print("]");
1704   }
1705 }
1706 
1707 // LIR_OpLabel
1708 void LIR_OpLabel::print_instr(outputStream* out) const {
1709   out->print("[label:0x%x]", _label);
1710 }
1711 
1712 // LIR_OpArrayCopy
1713 void LIR_OpArrayCopy::print_instr(outputStream* out) const {
1714   src()->print(out);     out->print(" ");
1715   src_pos()->print(out); out->print(" ");
1716   dst()->print(out);     out->print(" ");
1717   dst_pos()->print(out); out->print(" ");
1718   length()->print(out);  out->print(" ");
1719   tmp()->print(out);     out->print(" ");
1720 }
1721 
1722 // LIR_OpCompareAndSwap
1723 void LIR_OpCompareAndSwap::print_instr(outputStream* out) const {
1724   addr()->print(out);      out->print(" ");
1725   cmp_value()->print(out); out->print(" ");
1726   new_value()->print(out); out->print(" ");
1727   tmp1()->print(out);      out->print(" ");
1728   tmp2()->print(out);      out->print(" ");
1729 
1730 }
1731 
1732 // LIR_Op0
1733 void LIR_Op0::print_instr(outputStream* out) const {
1734   result_opr()->print(out);
1735 }
1736 
1737 // LIR_Op1
1738 const char * LIR_Op1::name() const {
1739   if (code() == lir_move) {
1740     switch (move_kind()) {
1741     case lir_move_normal:
1742       return "move";
1743     case lir_move_unaligned:
1744       return "unaligned move";
1745     case lir_move_volatile:
1746       return "volatile_move";
1747     case lir_move_wide:
1748       return "wide_move";
1749     default:
1750       ShouldNotReachHere();
1751     return "illegal_op";
1752     }
1753   } else {
1754     return LIR_Op::name();
1755   }
1756 }
1757 
1758 
1759 void LIR_Op1::print_instr(outputStream* out) const {
1760   _opr->print(out);         out->print(" ");
1761   result_opr()->print(out); out->print(" ");
1762   print_patch_code(out, patch_code());
1763 }
1764 
1765 
1766 // LIR_Op1
1767 void LIR_OpRTCall::print_instr(outputStream* out) const {
1768   intx a = (intx)addr();
1769   out->print(Runtime1::name_for_address(addr()));
1770   out->print(" ");
1771   tmp()->print(out);
1772 }
1773 
1774 void LIR_Op1::print_patch_code(outputStream* out, LIR_PatchCode code) {
1775   switch(code) {
1776     case lir_patch_none:                                 break;
1777     case lir_patch_low:    out->print("[patch_low]");    break;
1778     case lir_patch_high:   out->print("[patch_high]");   break;
1779     case lir_patch_normal: out->print("[patch_normal]"); break;
1780     default: ShouldNotReachHere();
1781   }
1782 }
1783 
1784 // LIR_OpBranch
1785 void LIR_OpBranch::print_instr(outputStream* out) const {
1786   print_condition(out, cond());             out->print(" ");
1787   if (block() != NULL) {
1788     out->print("[B%d] ", block()->block_id());
1789   } else if (stub() != NULL) {
1790     out->print("[");
1791     stub()->print_name(out);
1792     out->print(": 0x%x]", stub());
1793     if (stub()->info() != NULL) out->print(" [bci:%d]", stub()->info()->stack()->bci());
1794   } else {
1795     out->print("[label:0x%x] ", label());
1796   }
1797   if (ublock() != NULL) {
1798     out->print("unordered: [B%d] ", ublock()->block_id());
1799   }
1800 }
1801 
1802 void LIR_Op::print_condition(outputStream* out, LIR_Condition cond) {
1803   switch(cond) {
1804     case lir_cond_equal:           out->print("[EQ]");      break;
1805     case lir_cond_notEqual:        out->print("[NE]");      break;
1806     case lir_cond_less:            out->print("[LT]");      break;
1807     case lir_cond_lessEqual:       out->print("[LE]");      break;
1808     case lir_cond_greaterEqual:    out->print("[GE]");      break;
1809     case lir_cond_greater:         out->print("[GT]");      break;
1810     case lir_cond_belowEqual:      out->print("[BE]");      break;
1811     case lir_cond_aboveEqual:      out->print("[AE]");      break;
1812     case lir_cond_always:          out->print("[AL]");      break;
1813     default:                       out->print("[%d]",cond); break;
1814   }
1815 }
1816 
1817 // LIR_OpConvert
1818 void LIR_OpConvert::print_instr(outputStream* out) const {
1819   print_bytecode(out, bytecode());
1820   in_opr()->print(out);                  out->print(" ");
1821   result_opr()->print(out);              out->print(" ");
1822 #ifdef PPC
1823   if(tmp1()->is_valid()) {
1824     tmp1()->print(out); out->print(" ");
1825     tmp2()->print(out); out->print(" ");
1826   }
1827 #endif
1828 }
1829 
1830 void LIR_OpConvert::print_bytecode(outputStream* out, Bytecodes::Code code) {
1831   switch(code) {
1832     case Bytecodes::_d2f: out->print("[d2f] "); break;
1833     case Bytecodes::_d2i: out->print("[d2i] "); break;
1834     case Bytecodes::_d2l: out->print("[d2l] "); break;
1835     case Bytecodes::_f2d: out->print("[f2d] "); break;
1836     case Bytecodes::_f2i: out->print("[f2i] "); break;
1837     case Bytecodes::_f2l: out->print("[f2l] "); break;
1838     case Bytecodes::_i2b: out->print("[i2b] "); break;
1839     case Bytecodes::_i2c: out->print("[i2c] "); break;
1840     case Bytecodes::_i2d: out->print("[i2d] "); break;
1841     case Bytecodes::_i2f: out->print("[i2f] "); break;
1842     case Bytecodes::_i2l: out->print("[i2l] "); break;
1843     case Bytecodes::_i2s: out->print("[i2s] "); break;
1844     case Bytecodes::_l2i: out->print("[l2i] "); break;
1845     case Bytecodes::_l2f: out->print("[l2f] "); break;
1846     case Bytecodes::_l2d: out->print("[l2d] "); break;
1847     default:
1848       out->print("[?%d]",code);
1849     break;
1850   }
1851 }
1852 
1853 void LIR_OpAllocObj::print_instr(outputStream* out) const {
1854   klass()->print(out);                      out->print(" ");
1855   obj()->print(out);                        out->print(" ");
1856   tmp1()->print(out);                       out->print(" ");
1857   tmp2()->print(out);                       out->print(" ");
1858   tmp3()->print(out);                       out->print(" ");
1859   tmp4()->print(out);                       out->print(" ");
1860   out->print("[hdr:%d]", header_size()); out->print(" ");
1861   out->print("[obj:%d]", object_size()); out->print(" ");
1862   out->print("[lbl:0x%x]", stub()->entry());
1863 }
1864 
1865 void LIR_OpRoundFP::print_instr(outputStream* out) const {
1866   _opr->print(out);         out->print(" ");
1867   tmp()->print(out);        out->print(" ");
1868   result_opr()->print(out); out->print(" ");
1869 }
1870 
1871 // LIR_Op2
1872 void LIR_Op2::print_instr(outputStream* out) const {
1873   if (code() == lir_cmove) {
1874     print_condition(out, condition());         out->print(" ");
1875   }
1876   in_opr1()->print(out);    out->print(" ");
1877   in_opr2()->print(out);    out->print(" ");
1878   if (tmp_opr()->is_valid()) { tmp_opr()->print(out);    out->print(" "); }
1879   result_opr()->print(out);
1880 }
1881 
1882 void LIR_OpAllocArray::print_instr(outputStream* out) const {
1883   klass()->print(out);                   out->print(" ");
1884   len()->print(out);                     out->print(" ");
1885   obj()->print(out);                     out->print(" ");
1886   tmp1()->print(out);                    out->print(" ");
1887   tmp2()->print(out);                    out->print(" ");
1888   tmp3()->print(out);                    out->print(" ");
1889   tmp4()->print(out);                    out->print(" ");
1890   out->print("[type:0x%x]", type());     out->print(" ");
1891   out->print("[label:0x%x]", stub()->entry());
1892 }
1893 
1894 
1895 void LIR_OpTypeCheck::print_instr(outputStream* out) const {
1896   object()->print(out);                  out->print(" ");
1897   if (code() == lir_store_check) {
1898     array()->print(out);                 out->print(" ");
1899   }
1900   if (code() != lir_store_check) {
1901     klass()->print_name_on(out);         out->print(" ");
1902     if (fast_check())                 out->print("fast_check ");
1903   }
1904   tmp1()->print(out);                    out->print(" ");
1905   tmp2()->print(out);                    out->print(" ");
1906   tmp3()->print(out);                    out->print(" ");
1907   result_opr()->print(out);              out->print(" ");
1908   if (info_for_exception() != NULL) out->print(" [bci:%d]", info_for_exception()->stack()->bci());
1909 }
1910 
1911 
1912 // LIR_Op3
1913 void LIR_Op3::print_instr(outputStream* out) const {
1914   in_opr1()->print(out);    out->print(" ");
1915   in_opr2()->print(out);    out->print(" ");
1916   in_opr3()->print(out);    out->print(" ");
1917   result_opr()->print(out);
1918 }
1919 
1920 
1921 void LIR_OpLock::print_instr(outputStream* out) const {
1922   hdr_opr()->print(out);   out->print(" ");
1923   obj_opr()->print(out);   out->print(" ");
1924   lock_opr()->print(out);  out->print(" ");
1925   if (_scratch->is_valid()) {
1926     _scratch->print(out);  out->print(" ");
1927   }
1928   out->print("[lbl:0x%x]", stub()->entry());
1929 }
1930 
1931 
1932 void LIR_OpDelay::print_instr(outputStream* out) const {
1933   _op->print_on(out);
1934 }
1935 
1936 
1937 // LIR_OpProfileCall
1938 void LIR_OpProfileCall::print_instr(outputStream* out) const {
1939   profiled_method()->name()->print_symbol_on(out);
1940   out->print(".");
1941   profiled_method()->holder()->name()->print_symbol_on(out);
1942   out->print(" @ %d ", profiled_bci());
1943   mdo()->print(out);           out->print(" ");
1944   recv()->print(out);          out->print(" ");
1945   tmp1()->print(out);          out->print(" ");
1946 }
1947 
1948 #endif // PRODUCT
1949 
1950 // Implementation of LIR_InsertionBuffer
1951 
1952 void LIR_InsertionBuffer::append(int index, LIR_Op* op) {
1953   assert(_index_and_count.length() % 2 == 0, "must have a count for each index");
1954 
1955   int i = number_of_insertion_points() - 1;
1956   if (i < 0 || index_at(i) < index) {
1957     append_new(index, 1);
1958   } else {
1959     assert(index_at(i) == index, "can append LIR_Ops in ascending order only");
1960     assert(count_at(i) > 0, "check");
1961     set_count_at(i, count_at(i) + 1);
1962   }
1963   _ops.push(op);
1964 
1965   DEBUG_ONLY(verify());
1966 }
1967 
1968 #ifdef ASSERT
1969 void LIR_InsertionBuffer::verify() {
1970   int sum = 0;
1971   int prev_idx = -1;
1972 
1973   for (int i = 0; i < number_of_insertion_points(); i++) {
1974     assert(prev_idx < index_at(i), "index must be ordered ascending");
1975     sum += count_at(i);
1976   }
1977   assert(sum == number_of_ops(), "wrong total sum");
1978 }
1979 #endif