1 /*
   2  * Copyright (c) 1999, 2011, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "asm/codeBuffer.hpp"
  27 #include "c1/c1_CodeStubs.hpp"
  28 #include "c1/c1_Defs.hpp"
  29 #include "c1/c1_FrameMap.hpp"
  30 #include "c1/c1_LIRAssembler.hpp"
  31 #include "c1/c1_MacroAssembler.hpp"
  32 #include "c1/c1_Runtime1.hpp"
  33 #include "classfile/systemDictionary.hpp"
  34 #include "classfile/vmSymbols.hpp"
  35 #include "code/codeBlob.hpp"
  36 #include "code/compiledIC.hpp"
  37 #include "code/pcDesc.hpp"
  38 #include "code/scopeDesc.hpp"
  39 #include "code/vtableStubs.hpp"
  40 #include "compiler/disassembler.hpp"
  41 #include "gc_interface/collectedHeap.hpp"
  42 #include "interpreter/bytecode.hpp"
  43 #include "interpreter/interpreter.hpp"
  44 #include "memory/allocation.inline.hpp"
  45 #include "memory/barrierSet.hpp"
  46 #include "memory/oopFactory.hpp"
  47 #include "memory/resourceArea.hpp"
  48 #include "oops/objArrayKlass.hpp"
  49 #include "oops/oop.inline.hpp"
  50 #include "runtime/biasedLocking.hpp"
  51 #include "runtime/compilationPolicy.hpp"
  52 #include "runtime/interfaceSupport.hpp"
  53 #include "runtime/javaCalls.hpp"
  54 #include "runtime/sharedRuntime.hpp"
  55 #include "runtime/threadCritical.hpp"
  56 #include "runtime/vframe.hpp"
  57 #include "runtime/vframeArray.hpp"
  58 #include "utilities/copy.hpp"
  59 #include "utilities/events.hpp"
  60 
  61 
  62 // Implementation of StubAssembler
  63 
  64 StubAssembler::StubAssembler(CodeBuffer* code, const char * name, int stub_id) : C1_MacroAssembler(code) {
  65   _name = name;
  66   _must_gc_arguments = false;
  67   _frame_size = no_frame_size;
  68   _num_rt_args = 0;
  69   _stub_id = stub_id;
  70 }
  71 
  72 
  73 void StubAssembler::set_info(const char* name, bool must_gc_arguments) {
  74   _name = name;
  75   _must_gc_arguments = must_gc_arguments;
  76 }
  77 
  78 
  79 void StubAssembler::set_frame_size(int size) {
  80   if (_frame_size == no_frame_size) {
  81     _frame_size = size;
  82   }
  83   assert(_frame_size == size, "can't change the frame size");
  84 }
  85 
  86 
  87 void StubAssembler::set_num_rt_args(int args) {
  88   if (_num_rt_args == 0) {
  89     _num_rt_args = args;
  90   }
  91   assert(_num_rt_args == args, "can't change the number of args");
  92 }
  93 
  94 // Implementation of Runtime1
  95 
  96 CodeBlob* Runtime1::_blobs[Runtime1::number_of_ids];
  97 const char *Runtime1::_blob_names[] = {
  98   RUNTIME1_STUBS(STUB_NAME, LAST_STUB_NAME)
  99 };
 100 
 101 #ifndef PRODUCT
 102 // statistics
 103 int Runtime1::_generic_arraycopy_cnt = 0;
 104 int Runtime1::_primitive_arraycopy_cnt = 0;
 105 int Runtime1::_oop_arraycopy_cnt = 0;
 106 int Runtime1::_generic_arraycopystub_cnt = 0;
 107 int Runtime1::_arraycopy_slowcase_cnt = 0;
 108 int Runtime1::_arraycopy_checkcast_cnt = 0;
 109 int Runtime1::_arraycopy_checkcast_attempt_cnt = 0;
 110 int Runtime1::_new_type_array_slowcase_cnt = 0;
 111 int Runtime1::_new_object_array_slowcase_cnt = 0;
 112 int Runtime1::_new_instance_slowcase_cnt = 0;
 113 int Runtime1::_new_multi_array_slowcase_cnt = 0;
 114 int Runtime1::_monitorenter_slowcase_cnt = 0;
 115 int Runtime1::_monitorexit_slowcase_cnt = 0;
 116 int Runtime1::_patch_code_slowcase_cnt = 0;
 117 int Runtime1::_throw_range_check_exception_count = 0;
 118 int Runtime1::_throw_index_exception_count = 0;
 119 int Runtime1::_throw_div0_exception_count = 0;
 120 int Runtime1::_throw_null_pointer_exception_count = 0;
 121 int Runtime1::_throw_class_cast_exception_count = 0;
 122 int Runtime1::_throw_incompatible_class_change_error_count = 0;
 123 int Runtime1::_throw_array_store_exception_count = 0;
 124 int Runtime1::_throw_count = 0;
 125 
 126 static int _byte_arraycopy_cnt = 0;
 127 static int _short_arraycopy_cnt = 0;
 128 static int _int_arraycopy_cnt = 0;
 129 static int _long_arraycopy_cnt = 0;
 130 static int _oop_arraycopy_cnt = 0;
 131 
 132 address Runtime1::arraycopy_count_address(BasicType type) {
 133   switch (type) {
 134   case T_BOOLEAN:
 135   case T_BYTE:   return (address)&_byte_arraycopy_cnt;
 136   case T_CHAR:
 137   case T_SHORT:  return (address)&_short_arraycopy_cnt;
 138   case T_FLOAT:
 139   case T_INT:    return (address)&_int_arraycopy_cnt;
 140   case T_DOUBLE:
 141   case T_LONG:   return (address)&_long_arraycopy_cnt;
 142   case T_ARRAY:
 143   case T_OBJECT: return (address)&_oop_arraycopy_cnt;
 144   default:
 145     ShouldNotReachHere();
 146     return NULL;
 147   }
 148 }
 149 
 150 
 151 #endif
 152 
 153 // Simple helper to see if the caller of a runtime stub which
 154 // entered the VM has been deoptimized
 155 
 156 static bool caller_is_deopted() {
 157   JavaThread* thread = JavaThread::current();
 158   RegisterMap reg_map(thread, false);
 159   frame runtime_frame = thread->last_frame();
 160   frame caller_frame = runtime_frame.sender(&reg_map);
 161   assert(caller_frame.is_compiled_frame(), "must be compiled");
 162   return caller_frame.is_deoptimized_frame();
 163 }
 164 
 165 // Stress deoptimization
 166 static void deopt_caller() {
 167   if ( !caller_is_deopted()) {
 168     JavaThread* thread = JavaThread::current();
 169     RegisterMap reg_map(thread, false);
 170     frame runtime_frame = thread->last_frame();
 171     frame caller_frame = runtime_frame.sender(&reg_map);
 172     Deoptimization::deoptimize_frame(thread, caller_frame.id());
 173     assert(caller_is_deopted(), "Must be deoptimized");
 174   }
 175 }
 176 
 177 
 178 void Runtime1::generate_blob_for(BufferBlob* buffer_blob, StubID id) {
 179   assert(0 <= id && id < number_of_ids, "illegal stub id");
 180   ResourceMark rm;
 181   // create code buffer for code storage
 182   CodeBuffer code(buffer_blob);
 183 
 184   Compilation::setup_code_buffer(&code, 0);
 185 
 186   // create assembler for code generation
 187   StubAssembler* sasm = new StubAssembler(&code, name_for(id), id);
 188   // generate code for runtime stub
 189   OopMapSet* oop_maps;
 190   oop_maps = generate_code_for(id, sasm);
 191   assert(oop_maps == NULL || sasm->frame_size() != no_frame_size,
 192          "if stub has an oop map it must have a valid frame size");
 193 
 194 #ifdef ASSERT
 195   // Make sure that stubs that need oopmaps have them
 196   switch (id) {
 197     // These stubs don't need to have an oopmap
 198     case dtrace_object_alloc_id:
 199     case g1_pre_barrier_slow_id:
 200     case g1_post_barrier_slow_id:
 201     case slow_subtype_check_id:
 202     case fpu2long_stub_id:
 203     case unwind_exception_id:
 204     case counter_overflow_id:
 205 #if defined(SPARC) || defined(PPC)
 206     case handle_exception_nofpu_id:  // Unused on sparc
 207 #endif
 208       break;
 209 
 210     // All other stubs should have oopmaps
 211     default:
 212       assert(oop_maps != NULL, "must have an oopmap");
 213   }
 214 #endif
 215 
 216   // align so printing shows nop's instead of random code at the end (SimpleStubs are aligned)
 217   sasm->align(BytesPerWord);
 218   // make sure all code is in code buffer
 219   sasm->flush();
 220   // create blob - distinguish a few special cases
 221   CodeBlob* blob = RuntimeStub::new_runtime_stub(name_for(id),
 222                                                  &code,
 223                                                  CodeOffsets::frame_never_safe,
 224                                                  sasm->frame_size(),
 225                                                  oop_maps,
 226                                                  sasm->must_gc_arguments());
 227   // install blob
 228   assert(blob != NULL, "blob must exist");
 229   _blobs[id] = blob;
 230 }
 231 
 232 
 233 void Runtime1::initialize(BufferBlob* blob) {
 234   // platform-dependent initialization
 235   initialize_pd();
 236   // generate stubs
 237   for (int id = 0; id < number_of_ids; id++) generate_blob_for(blob, (StubID)id);
 238   // printing
 239 #ifndef PRODUCT
 240   if (PrintSimpleStubs) {
 241     ResourceMark rm;
 242     for (int id = 0; id < number_of_ids; id++) {
 243       _blobs[id]->print();
 244       if (_blobs[id]->oop_maps() != NULL) {
 245         _blobs[id]->oop_maps()->print();
 246       }
 247     }
 248   }
 249 #endif
 250 }
 251 
 252 
 253 CodeBlob* Runtime1::blob_for(StubID id) {
 254   assert(0 <= id && id < number_of_ids, "illegal stub id");
 255   return _blobs[id];
 256 }
 257 
 258 
 259 const char* Runtime1::name_for(StubID id) {
 260   assert(0 <= id && id < number_of_ids, "illegal stub id");
 261   return _blob_names[id];
 262 }
 263 
 264 const char* Runtime1::name_for_address(address entry) {
 265   for (int id = 0; id < number_of_ids; id++) {
 266     if (entry == entry_for((StubID)id)) return name_for((StubID)id);
 267   }
 268 
 269 #define FUNCTION_CASE(a, f) \
 270   if ((intptr_t)a == CAST_FROM_FN_PTR(intptr_t, f))  return #f
 271 
 272   FUNCTION_CASE(entry, os::javaTimeMillis);
 273   FUNCTION_CASE(entry, os::javaTimeNanos);
 274   FUNCTION_CASE(entry, SharedRuntime::OSR_migration_end);
 275   FUNCTION_CASE(entry, SharedRuntime::d2f);
 276   FUNCTION_CASE(entry, SharedRuntime::d2i);
 277   FUNCTION_CASE(entry, SharedRuntime::d2l);
 278   FUNCTION_CASE(entry, SharedRuntime::dcos);
 279   FUNCTION_CASE(entry, SharedRuntime::dexp);
 280   FUNCTION_CASE(entry, SharedRuntime::dlog);
 281   FUNCTION_CASE(entry, SharedRuntime::dlog10);
 282   FUNCTION_CASE(entry, SharedRuntime::dpow);
 283   FUNCTION_CASE(entry, SharedRuntime::drem);
 284   FUNCTION_CASE(entry, SharedRuntime::dsin);
 285   FUNCTION_CASE(entry, SharedRuntime::dtan);
 286   FUNCTION_CASE(entry, SharedRuntime::f2i);
 287   FUNCTION_CASE(entry, SharedRuntime::f2l);
 288   FUNCTION_CASE(entry, SharedRuntime::frem);
 289   FUNCTION_CASE(entry, SharedRuntime::l2d);
 290   FUNCTION_CASE(entry, SharedRuntime::l2f);
 291   FUNCTION_CASE(entry, SharedRuntime::ldiv);
 292   FUNCTION_CASE(entry, SharedRuntime::lmul);
 293   FUNCTION_CASE(entry, SharedRuntime::lrem);
 294   FUNCTION_CASE(entry, SharedRuntime::lrem);
 295   FUNCTION_CASE(entry, SharedRuntime::dtrace_method_entry);
 296   FUNCTION_CASE(entry, SharedRuntime::dtrace_method_exit);
 297   FUNCTION_CASE(entry, trace_block_entry);
 298 
 299 #undef FUNCTION_CASE
 300 
 301   // Soft float adds more runtime names.
 302   return pd_name_for_address(entry);
 303 }
 304 
 305 
 306 JRT_ENTRY(void, Runtime1::new_instance(JavaThread* thread, klassOopDesc* klass))
 307   NOT_PRODUCT(_new_instance_slowcase_cnt++;)
 308 
 309   assert(oop(klass)->is_klass(), "not a class");
 310   instanceKlassHandle h(thread, klass);
 311   h->check_valid_for_instantiation(true, CHECK);
 312   // make sure klass is initialized
 313   h->initialize(CHECK);
 314   // allocate instance and return via TLS
 315   oop obj = h->allocate_instance(CHECK);
 316   thread->set_vm_result(obj);
 317 JRT_END
 318 
 319 
 320 JRT_ENTRY(void, Runtime1::new_type_array(JavaThread* thread, klassOopDesc* klass, jint length))
 321   NOT_PRODUCT(_new_type_array_slowcase_cnt++;)
 322   // Note: no handle for klass needed since they are not used
 323   //       anymore after new_typeArray() and no GC can happen before.
 324   //       (This may have to change if this code changes!)
 325   assert(oop(klass)->is_klass(), "not a class");
 326   BasicType elt_type = typeArrayKlass::cast(klass)->element_type();
 327   oop obj = oopFactory::new_typeArray(elt_type, length, CHECK);
 328   thread->set_vm_result(obj);
 329   // This is pretty rare but this runtime patch is stressful to deoptimization
 330   // if we deoptimize here so force a deopt to stress the path.
 331   if (DeoptimizeALot) {
 332     deopt_caller();
 333   }
 334 
 335 JRT_END
 336 
 337 
 338 JRT_ENTRY(void, Runtime1::new_object_array(JavaThread* thread, klassOopDesc* array_klass, jint length))
 339   NOT_PRODUCT(_new_object_array_slowcase_cnt++;)
 340 
 341   // Note: no handle for klass needed since they are not used
 342   //       anymore after new_objArray() and no GC can happen before.
 343   //       (This may have to change if this code changes!)
 344   assert(oop(array_klass)->is_klass(), "not a class");
 345   klassOop elem_klass = objArrayKlass::cast(array_klass)->element_klass();
 346   objArrayOop obj = oopFactory::new_objArray(elem_klass, length, CHECK);
 347   thread->set_vm_result(obj);
 348   // This is pretty rare but this runtime patch is stressful to deoptimization
 349   // if we deoptimize here so force a deopt to stress the path.
 350   if (DeoptimizeALot) {
 351     deopt_caller();
 352   }
 353 JRT_END
 354 
 355 
 356 JRT_ENTRY(void, Runtime1::new_multi_array(JavaThread* thread, klassOopDesc* klass, int rank, jint* dims))
 357   NOT_PRODUCT(_new_multi_array_slowcase_cnt++;)
 358 
 359   assert(oop(klass)->is_klass(), "not a class");
 360   assert(rank >= 1, "rank must be nonzero");
 361   oop obj = arrayKlass::cast(klass)->multi_allocate(rank, dims, CHECK);
 362   thread->set_vm_result(obj);
 363 JRT_END
 364 
 365 
 366 JRT_ENTRY(void, Runtime1::unimplemented_entry(JavaThread* thread, StubID id))
 367   tty->print_cr("Runtime1::entry_for(%d) returned unimplemented entry point", id);
 368 JRT_END
 369 
 370 
 371 JRT_ENTRY(void, Runtime1::throw_array_store_exception(JavaThread* thread, oopDesc* obj))
 372   ResourceMark rm(thread);
 373   const char* klass_name = Klass::cast(obj->klass())->external_name();
 374   SharedRuntime::throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_ArrayStoreException(), klass_name);
 375 JRT_END
 376 
 377 
 378 // counter_overflow() is called from within C1-compiled methods. The enclosing method is the method
 379 // associated with the top activation record. The inlinee (that is possibly included in the enclosing
 380 // method) method oop is passed as an argument. In order to do that it is embedded in the code as
 381 // a constant.
 382 static nmethod* counter_overflow_helper(JavaThread* THREAD, int branch_bci, methodOopDesc* m) {
 383   nmethod* osr_nm = NULL;
 384   methodHandle method(THREAD, m);
 385 
 386   RegisterMap map(THREAD, false);
 387   frame fr =  THREAD->last_frame().sender(&map);
 388   nmethod* nm = (nmethod*) fr.cb();
 389   assert(nm!= NULL && nm->is_nmethod(), "Sanity check");
 390   methodHandle enclosing_method(THREAD, nm->method());
 391 
 392   CompLevel level = (CompLevel)nm->comp_level();
 393   int bci = InvocationEntryBci;
 394   if (branch_bci != InvocationEntryBci) {
 395     // Compute desination bci
 396     address pc = method()->code_base() + branch_bci;
 397     Bytecodes::Code branch = Bytecodes::code_at(method(), pc);
 398     int offset = 0;
 399     switch (branch) {
 400       case Bytecodes::_if_icmplt: case Bytecodes::_iflt:
 401       case Bytecodes::_if_icmpgt: case Bytecodes::_ifgt:
 402       case Bytecodes::_if_icmple: case Bytecodes::_ifle:
 403       case Bytecodes::_if_icmpge: case Bytecodes::_ifge:
 404       case Bytecodes::_if_icmpeq: case Bytecodes::_if_acmpeq: case Bytecodes::_ifeq:
 405       case Bytecodes::_if_icmpne: case Bytecodes::_if_acmpne: case Bytecodes::_ifne:
 406       case Bytecodes::_ifnull: case Bytecodes::_ifnonnull: case Bytecodes::_goto:
 407         offset = (int16_t)Bytes::get_Java_u2(pc + 1);
 408         break;
 409       case Bytecodes::_goto_w:
 410         offset = Bytes::get_Java_u4(pc + 1);
 411         break;
 412       default: ;
 413     }
 414     bci = branch_bci + offset;
 415   }
 416 
 417   osr_nm = CompilationPolicy::policy()->event(enclosing_method, method, branch_bci, bci, level, nm, THREAD);
 418   return osr_nm;
 419 }
 420 
 421 JRT_BLOCK_ENTRY(address, Runtime1::counter_overflow(JavaThread* thread, int bci, methodOopDesc* method))
 422   nmethod* osr_nm;
 423   JRT_BLOCK
 424     osr_nm = counter_overflow_helper(thread, bci, method);
 425     if (osr_nm != NULL) {
 426       RegisterMap map(thread, false);
 427       frame fr =  thread->last_frame().sender(&map);
 428       Deoptimization::deoptimize_frame(thread, fr.id());
 429     }
 430   JRT_BLOCK_END
 431   return NULL;
 432 JRT_END
 433 
 434 extern void vm_exit(int code);
 435 
 436 // Enter this method from compiled code handler below. This is where we transition
 437 // to VM mode. This is done as a helper routine so that the method called directly
 438 // from compiled code does not have to transition to VM. This allows the entry
 439 // method to see if the nmethod that we have just looked up a handler for has
 440 // been deoptimized while we were in the vm. This simplifies the assembly code
 441 // cpu directories.
 442 //
 443 // We are entering here from exception stub (via the entry method below)
 444 // If there is a compiled exception handler in this method, we will continue there;
 445 // otherwise we will unwind the stack and continue at the caller of top frame method
 446 // Note: we enter in Java using a special JRT wrapper. This wrapper allows us to
 447 // control the area where we can allow a safepoint. After we exit the safepoint area we can
 448 // check to see if the handler we are going to return is now in a nmethod that has
 449 // been deoptimized. If that is the case we return the deopt blob
 450 // unpack_with_exception entry instead. This makes life for the exception blob easier
 451 // because making that same check and diverting is painful from assembly language.
 452 JRT_ENTRY_NO_ASYNC(static address, exception_handler_for_pc_helper(JavaThread* thread, oopDesc* ex, address pc, nmethod*& nm))
 453   // Reset method handle flag.
 454   thread->set_is_method_handle_return(false);
 455 
 456   Handle exception(thread, ex);
 457   nm = CodeCache::find_nmethod(pc);
 458   assert(nm != NULL, "this is not an nmethod");
 459   // Adjust the pc as needed/
 460   if (nm->is_deopt_pc(pc)) {
 461     RegisterMap map(thread, false);
 462     frame exception_frame = thread->last_frame().sender(&map);
 463     // if the frame isn't deopted then pc must not correspond to the caller of last_frame
 464     assert(exception_frame.is_deoptimized_frame(), "must be deopted");
 465     pc = exception_frame.pc();
 466   }
 467 #ifdef ASSERT
 468   assert(exception.not_null(), "NULL exceptions should be handled by throw_exception");
 469   assert(exception->is_oop(), "just checking");
 470   // Check that exception is a subclass of Throwable, otherwise we have a VerifyError
 471   if (!(exception->is_a(SystemDictionary::Throwable_klass()))) {
 472     if (ExitVMOnVerifyError) vm_exit(-1);
 473     ShouldNotReachHere();
 474   }
 475 #endif
 476 
 477   // Check the stack guard pages and reenable them if necessary and there is
 478   // enough space on the stack to do so.  Use fast exceptions only if the guard
 479   // pages are enabled.
 480   bool guard_pages_enabled = thread->stack_yellow_zone_enabled();
 481   if (!guard_pages_enabled) guard_pages_enabled = thread->reguard_stack();
 482 
 483   if (JvmtiExport::can_post_on_exceptions()) {
 484     // To ensure correct notification of exception catches and throws
 485     // we have to deoptimize here.  If we attempted to notify the
 486     // catches and throws during this exception lookup it's possible
 487     // we could deoptimize on the way out of the VM and end back in
 488     // the interpreter at the throw site.  This would result in double
 489     // notifications since the interpreter would also notify about
 490     // these same catches and throws as it unwound the frame.
 491 
 492     RegisterMap reg_map(thread);
 493     frame stub_frame = thread->last_frame();
 494     frame caller_frame = stub_frame.sender(&reg_map);
 495 
 496     // We don't really want to deoptimize the nmethod itself since we
 497     // can actually continue in the exception handler ourselves but I
 498     // don't see an easy way to have the desired effect.
 499     Deoptimization::deoptimize_frame(thread, caller_frame.id());
 500     assert(caller_is_deopted(), "Must be deoptimized");
 501 
 502     return SharedRuntime::deopt_blob()->unpack_with_exception_in_tls();
 503   }
 504 
 505   // ExceptionCache is used only for exceptions at call sites and not for implicit exceptions
 506   if (guard_pages_enabled) {
 507     address fast_continuation = nm->handler_for_exception_and_pc(exception, pc);
 508     if (fast_continuation != NULL) {
 509       // Set flag if return address is a method handle call site.
 510       thread->set_is_method_handle_return(nm->is_method_handle_return(pc));
 511       return fast_continuation;
 512     }
 513   }
 514 
 515   // If the stack guard pages are enabled, check whether there is a handler in
 516   // the current method.  Otherwise (guard pages disabled), force an unwind and
 517   // skip the exception cache update (i.e., just leave continuation==NULL).
 518   address continuation = NULL;
 519   if (guard_pages_enabled) {
 520 
 521     // New exception handling mechanism can support inlined methods
 522     // with exception handlers since the mappings are from PC to PC
 523 
 524     // debugging support
 525     // tracing
 526     if (TraceExceptions) {
 527       ttyLocker ttyl;
 528       ResourceMark rm;
 529       tty->print_cr("Exception <%s> (0x%x) thrown in compiled method <%s> at PC " PTR_FORMAT " for thread 0x%x",
 530                     exception->print_value_string(), (address)exception(), nm->method()->print_value_string(), pc, thread);
 531     }
 532     // for AbortVMOnException flag
 533     NOT_PRODUCT(Exceptions::debug_check_abort(exception));
 534 
 535     // Clear out the exception oop and pc since looking up an
 536     // exception handler can cause class loading, which might throw an
 537     // exception and those fields are expected to be clear during
 538     // normal bytecode execution.
 539     thread->set_exception_oop(NULL);
 540     thread->set_exception_pc(NULL);
 541 
 542     continuation = SharedRuntime::compute_compiled_exc_handler(nm, pc, exception, false, false);
 543     // If an exception was thrown during exception dispatch, the exception oop may have changed
 544     thread->set_exception_oop(exception());
 545     thread->set_exception_pc(pc);
 546 
 547     // the exception cache is used only by non-implicit exceptions
 548     if (continuation != NULL) {
 549       nm->add_handler_for_exception_and_pc(exception, pc, continuation);
 550     }
 551   }
 552 
 553   thread->set_vm_result(exception());
 554   // Set flag if return address is a method handle call site.
 555   thread->set_is_method_handle_return(nm->is_method_handle_return(pc));
 556 
 557   if (TraceExceptions) {
 558     ttyLocker ttyl;
 559     ResourceMark rm;
 560     tty->print_cr("Thread " PTR_FORMAT " continuing at PC " PTR_FORMAT " for exception thrown at PC " PTR_FORMAT,
 561                   thread, continuation, pc);
 562   }
 563 
 564   return continuation;
 565 JRT_END
 566 
 567 // Enter this method from compiled code only if there is a Java exception handler
 568 // in the method handling the exception.
 569 // We are entering here from exception stub. We don't do a normal VM transition here.
 570 // We do it in a helper. This is so we can check to see if the nmethod we have just
 571 // searched for an exception handler has been deoptimized in the meantime.
 572 address Runtime1::exception_handler_for_pc(JavaThread* thread) {
 573   oop exception = thread->exception_oop();
 574   address pc = thread->exception_pc();
 575   // Still in Java mode
 576   DEBUG_ONLY(ResetNoHandleMark rnhm);
 577   nmethod* nm = NULL;
 578   address continuation = NULL;
 579   {
 580     // Enter VM mode by calling the helper
 581     ResetNoHandleMark rnhm;
 582     continuation = exception_handler_for_pc_helper(thread, exception, pc, nm);
 583   }
 584   // Back in JAVA, use no oops DON'T safepoint
 585 
 586   // Now check to see if the nmethod we were called from is now deoptimized.
 587   // If so we must return to the deopt blob and deoptimize the nmethod
 588   if (nm != NULL && caller_is_deopted()) {
 589     continuation = SharedRuntime::deopt_blob()->unpack_with_exception_in_tls();
 590   }
 591 
 592   assert(continuation != NULL, "no handler found");
 593   return continuation;
 594 }
 595 
 596 
 597 JRT_ENTRY(void, Runtime1::throw_range_check_exception(JavaThread* thread, int index))
 598   NOT_PRODUCT(_throw_range_check_exception_count++;)
 599   Events::log("throw_range_check");
 600   char message[jintAsStringSize];
 601   sprintf(message, "%d", index);
 602   SharedRuntime::throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_ArrayIndexOutOfBoundsException(), message);
 603 JRT_END
 604 
 605 
 606 JRT_ENTRY(void, Runtime1::throw_index_exception(JavaThread* thread, int index))
 607   NOT_PRODUCT(_throw_index_exception_count++;)
 608   Events::log("throw_index");
 609   char message[16];
 610   sprintf(message, "%d", index);
 611   SharedRuntime::throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_IndexOutOfBoundsException(), message);
 612 JRT_END
 613 
 614 
 615 JRT_ENTRY(void, Runtime1::throw_div0_exception(JavaThread* thread))
 616   NOT_PRODUCT(_throw_div0_exception_count++;)
 617   SharedRuntime::throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_ArithmeticException(), "/ by zero");
 618 JRT_END
 619 
 620 
 621 JRT_ENTRY(void, Runtime1::throw_null_pointer_exception(JavaThread* thread))
 622   NOT_PRODUCT(_throw_null_pointer_exception_count++;)
 623   SharedRuntime::throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_NullPointerException());
 624 JRT_END
 625 
 626 
 627 JRT_ENTRY(void, Runtime1::throw_class_cast_exception(JavaThread* thread, oopDesc* object))
 628   NOT_PRODUCT(_throw_class_cast_exception_count++;)
 629   ResourceMark rm(thread);
 630   char* message = SharedRuntime::generate_class_cast_message(
 631     thread, Klass::cast(object->klass())->external_name());
 632   SharedRuntime::throw_and_post_jvmti_exception(
 633     thread, vmSymbols::java_lang_ClassCastException(), message);
 634 JRT_END
 635 
 636 
 637 JRT_ENTRY(void, Runtime1::throw_incompatible_class_change_error(JavaThread* thread))
 638   NOT_PRODUCT(_throw_incompatible_class_change_error_count++;)
 639   ResourceMark rm(thread);
 640   SharedRuntime::throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_IncompatibleClassChangeError());
 641 JRT_END
 642 
 643 JRT_ENTRY(void, Runtime1::invalidate_profile_inlining(JavaThread* thread, oopDesc* obj, klassOopDesc* klass))
 644 {
 645   // The compiler inlines a frequent virtual method if profile data
 646   // suggests a single receiver klass. Correctness is enforced with a
 647   // compiled guard. We get here if the compiled code detects an
 648   // invalid inlining decision. We record the new class in the
 649   // profiling data to prevent the same inlining decision, make the
 650   // nmethod not entrant and then deoptimize the caller.
 651 
 652   ResourceMark rm;
 653 
 654   Handle receiver(obj);
 655   KlassHandle kh(klass);
 656 
 657   assert(receiver->klass() != kh(), "should be different klasses");
 658   
 659   vframeStream vfst(thread);
 660   methodHandle m = methodHandle(vfst.method());
 661   int bci = vfst.bci();
 662 
 663   VirtualCallData* profile = m->method_data()->bci_to_data(bci)->as_VirtualCallData();
 664 
 665   profile->new_receiver(receiver);
 666 
 667   RegisterMap reg_map(thread, false);
 668   frame runtime_frame = thread->last_frame();
 669   frame caller_frame = runtime_frame.sender(&reg_map);
 670   nmethod* nm = CodeCache::find_nmethod(caller_frame.pc());
 671 
 672   if (nm != NULL) {
 673     nm->make_not_entrant();
 674   }
 675   
 676   Deoptimization::deoptimize_frame(thread, caller_frame.id());
 677 
 678   if (TraceC1ProfileInlining) {
 679     ttyLocker ttyl;
 680     tty->print("C1ProfileInlining: invalidate profile deopt");
 681     nm->method()->print_short_name(tty);
 682     tty->print(" because of ");
 683     m->print_short_name(tty);
 684     tty->print(" at bci = %d.", bci);
 685     tty->print_cr(" class is %s. Expected %s", Klass::cast(receiver->klass())->internal_name(), kh->internal_name());
 686   }
 687 }
 688 JRT_END
 689 
 690 JRT_ENTRY_NO_ASYNC(void, Runtime1::monitorenter(JavaThread* thread, oopDesc* obj, BasicObjectLock* lock))
 691   NOT_PRODUCT(_monitorenter_slowcase_cnt++;)
 692   if (PrintBiasedLockingStatistics) {
 693     Atomic::inc(BiasedLocking::slow_path_entry_count_addr());
 694   }
 695   Handle h_obj(thread, obj);
 696   assert(h_obj()->is_oop(), "must be NULL or an object");
 697   if (UseBiasedLocking) {
 698     // Retry fast entry if bias is revoked to avoid unnecessary inflation
 699     ObjectSynchronizer::fast_enter(h_obj, lock->lock(), true, CHECK);
 700   } else {
 701     if (UseFastLocking) {
 702       // When using fast locking, the compiled code has already tried the fast case
 703       assert(obj == lock->obj(), "must match");
 704       ObjectSynchronizer::slow_enter(h_obj, lock->lock(), THREAD);
 705     } else {
 706       lock->set_obj(obj);
 707       ObjectSynchronizer::fast_enter(h_obj, lock->lock(), false, THREAD);
 708     }
 709   }
 710 JRT_END
 711 
 712 
 713 JRT_LEAF(void, Runtime1::monitorexit(JavaThread* thread, BasicObjectLock* lock))
 714   NOT_PRODUCT(_monitorexit_slowcase_cnt++;)
 715   assert(thread == JavaThread::current(), "threads must correspond");
 716   assert(thread->last_Java_sp(), "last_Java_sp must be set");
 717   // monitorexit is non-blocking (leaf routine) => no exceptions can be thrown
 718   EXCEPTION_MARK;
 719 
 720   oop obj = lock->obj();
 721   assert(obj->is_oop(), "must be NULL or an object");
 722   if (UseFastLocking) {
 723     // When using fast locking, the compiled code has already tried the fast case
 724     ObjectSynchronizer::slow_exit(obj, lock->lock(), THREAD);
 725   } else {
 726     ObjectSynchronizer::fast_exit(obj, lock->lock(), THREAD);
 727   }
 728 JRT_END
 729 
 730 // Cf. OptoRuntime::deoptimize_caller_frame
 731 JRT_ENTRY(void, Runtime1::deoptimize(JavaThread* thread))
 732   // Called from within the owner thread, so no need for safepoint
 733   RegisterMap reg_map(thread, false);
 734   frame stub_frame = thread->last_frame();
 735   assert(stub_frame.is_runtime_frame(), "sanity check");
 736   frame caller_frame = stub_frame.sender(&reg_map);
 737 
 738   // We are coming from a compiled method; check this is true.
 739   assert(CodeCache::find_nmethod(caller_frame.pc()) != NULL, "sanity");
 740 
 741   // Deoptimize the caller frame.
 742   Deoptimization::deoptimize_frame(thread, caller_frame.id());
 743 
 744   // Return to the now deoptimized frame.
 745 JRT_END
 746 
 747 
 748 static klassOop resolve_field_return_klass(methodHandle caller, int bci, TRAPS) {
 749   Bytecode_field field_access(caller, bci);
 750   // This can be static or non-static field access
 751   Bytecodes::Code code       = field_access.code();
 752 
 753   // We must load class, initialize class and resolvethe field
 754   FieldAccessInfo result; // initialize class if needed
 755   constantPoolHandle constants(THREAD, caller->constants());
 756   LinkResolver::resolve_field(result, constants, field_access.index(), Bytecodes::java_code(code), false, CHECK_NULL);
 757   return result.klass()();
 758 }
 759 
 760 
 761 //
 762 // This routine patches sites where a class wasn't loaded or
 763 // initialized at the time the code was generated.  It handles
 764 // references to classes, fields and forcing of initialization.  Most
 765 // of the cases are straightforward and involving simply forcing
 766 // resolution of a class, rewriting the instruction stream with the
 767 // needed constant and replacing the call in this function with the
 768 // patched code.  The case for static field is more complicated since
 769 // the thread which is in the process of initializing a class can
 770 // access it's static fields but other threads can't so the code
 771 // either has to deoptimize when this case is detected or execute a
 772 // check that the current thread is the initializing thread.  The
 773 // current
 774 //
 775 // Patches basically look like this:
 776 //
 777 //
 778 // patch_site: jmp patch stub     ;; will be patched
 779 // continue:   ...
 780 //             ...
 781 //             ...
 782 //             ...
 783 //
 784 // They have a stub which looks like this:
 785 //
 786 //             ;; patch body
 787 //             movl <const>, reg           (for class constants)
 788 //        <or> movl [reg1 + <const>], reg  (for field offsets)
 789 //        <or> movl reg, [reg1 + <const>]  (for field offsets)
 790 //             <being_init offset> <bytes to copy> <bytes to skip>
 791 // patch_stub: call Runtime1::patch_code (through a runtime stub)
 792 //             jmp patch_site
 793 //
 794 //
 795 // A normal patch is done by rewriting the patch body, usually a move,
 796 // and then copying it into place over top of the jmp instruction
 797 // being careful to flush caches and doing it in an MP-safe way.  The
 798 // constants following the patch body are used to find various pieces
 799 // of the patch relative to the call site for Runtime1::patch_code.
 800 // The case for getstatic and putstatic is more complicated because
 801 // getstatic and putstatic have special semantics when executing while
 802 // the class is being initialized.  getstatic/putstatic on a class
 803 // which is being_initialized may be executed by the initializing
 804 // thread but other threads have to block when they execute it.  This
 805 // is accomplished in compiled code by executing a test of the current
 806 // thread against the initializing thread of the class.  It's emitted
 807 // as boilerplate in their stub which allows the patched code to be
 808 // executed before it's copied back into the main body of the nmethod.
 809 //
 810 // being_init: get_thread(<tmp reg>
 811 //             cmpl [reg1 + <init_thread_offset>], <tmp reg>
 812 //             jne patch_stub
 813 //             movl [reg1 + <const>], reg  (for field offsets)  <or>
 814 //             movl reg, [reg1 + <const>]  (for field offsets)
 815 //             jmp continue
 816 //             <being_init offset> <bytes to copy> <bytes to skip>
 817 // patch_stub: jmp Runtim1::patch_code (through a runtime stub)
 818 //             jmp patch_site
 819 //
 820 // If the class is being initialized the patch body is rewritten and
 821 // the patch site is rewritten to jump to being_init, instead of
 822 // patch_stub.  Whenever this code is executed it checks the current
 823 // thread against the intializing thread so other threads will enter
 824 // the runtime and end up blocked waiting the class to finish
 825 // initializing inside the calls to resolve_field below.  The
 826 // initializing class will continue on it's way.  Once the class is
 827 // fully_initialized, the intializing_thread of the class becomes
 828 // NULL, so the next thread to execute this code will fail the test,
 829 // call into patch_code and complete the patching process by copying
 830 // the patch body back into the main part of the nmethod and resume
 831 // executing.
 832 //
 833 //
 834 
 835 JRT_ENTRY(void, Runtime1::patch_code(JavaThread* thread, Runtime1::StubID stub_id ))
 836   NOT_PRODUCT(_patch_code_slowcase_cnt++;)
 837 
 838   ResourceMark rm(thread);
 839   RegisterMap reg_map(thread, false);
 840   frame runtime_frame = thread->last_frame();
 841   frame caller_frame = runtime_frame.sender(&reg_map);
 842 
 843   // last java frame on stack
 844   vframeStream vfst(thread, true);
 845   assert(!vfst.at_end(), "Java frame must exist");
 846 
 847   methodHandle caller_method(THREAD, vfst.method());
 848   // Note that caller_method->code() may not be same as caller_code because of OSR's
 849   // Note also that in the presence of inlining it is not guaranteed
 850   // that caller_method() == caller_code->method()
 851 
 852 
 853   int bci = vfst.bci();
 854 
 855   Events::log("patch_code @ " INTPTR_FORMAT , caller_frame.pc());
 856 
 857   Bytecodes::Code code = caller_method()->java_code_at(bci);
 858 
 859 #ifndef PRODUCT
 860   // this is used by assertions in the access_field_patching_id
 861   BasicType patch_field_type = T_ILLEGAL;
 862 #endif // PRODUCT
 863   bool deoptimize_for_volatile = false;
 864   int patch_field_offset = -1;
 865   KlassHandle init_klass(THREAD, klassOop(NULL)); // klass needed by access_field_patching code
 866   Handle load_klass(THREAD, NULL);                // oop needed by load_klass_patching code
 867   if (stub_id == Runtime1::access_field_patching_id) {
 868 
 869     Bytecode_field field_access(caller_method, bci);
 870     FieldAccessInfo result; // initialize class if needed
 871     Bytecodes::Code code = field_access.code();
 872     constantPoolHandle constants(THREAD, caller_method->constants());
 873     LinkResolver::resolve_field(result, constants, field_access.index(), Bytecodes::java_code(code), false, CHECK);
 874     patch_field_offset = result.field_offset();
 875 
 876     // If we're patching a field which is volatile then at compile it
 877     // must not have been know to be volatile, so the generated code
 878     // isn't correct for a volatile reference.  The nmethod has to be
 879     // deoptimized so that the code can be regenerated correctly.
 880     // This check is only needed for access_field_patching since this
 881     // is the path for patching field offsets.  load_klass is only
 882     // used for patching references to oops which don't need special
 883     // handling in the volatile case.
 884     deoptimize_for_volatile = result.access_flags().is_volatile();
 885 
 886 #ifndef PRODUCT
 887     patch_field_type = result.field_type();
 888 #endif
 889   } else if (stub_id == Runtime1::load_klass_patching_id) {
 890     oop k;
 891     switch (code) {
 892       case Bytecodes::_putstatic:
 893       case Bytecodes::_getstatic:
 894         { klassOop klass = resolve_field_return_klass(caller_method, bci, CHECK);
 895           // Save a reference to the class that has to be checked for initialization
 896           init_klass = KlassHandle(THREAD, klass);
 897           k = klass->java_mirror();
 898         }
 899         break;
 900       case Bytecodes::_new:
 901         { Bytecode_new bnew(caller_method(), caller_method->bcp_from(bci));
 902           k = caller_method->constants()->klass_at(bnew.index(), CHECK);
 903         }
 904         break;
 905       case Bytecodes::_multianewarray:
 906         { Bytecode_multianewarray mna(caller_method(), caller_method->bcp_from(bci));
 907           k = caller_method->constants()->klass_at(mna.index(), CHECK);
 908         }
 909         break;
 910       case Bytecodes::_instanceof:
 911         { Bytecode_instanceof io(caller_method(), caller_method->bcp_from(bci));
 912           k = caller_method->constants()->klass_at(io.index(), CHECK);
 913         }
 914         break;
 915       case Bytecodes::_checkcast:
 916         { Bytecode_checkcast cc(caller_method(), caller_method->bcp_from(bci));
 917           k = caller_method->constants()->klass_at(cc.index(), CHECK);
 918         }
 919         break;
 920       case Bytecodes::_anewarray:
 921         { Bytecode_anewarray anew(caller_method(), caller_method->bcp_from(bci));
 922           klassOop ek = caller_method->constants()->klass_at(anew.index(), CHECK);
 923           k = Klass::cast(ek)->array_klass(CHECK);
 924         }
 925         break;
 926       case Bytecodes::_ldc:
 927       case Bytecodes::_ldc_w:
 928         {
 929           Bytecode_loadconstant cc(caller_method, bci);
 930           k = cc.resolve_constant(CHECK);
 931           assert(k != NULL && !k->is_klass(), "must be class mirror or other Java constant");
 932         }
 933         break;
 934       default: Unimplemented();
 935     }
 936     // convert to handle
 937     load_klass = Handle(THREAD, k);
 938   } else {
 939     ShouldNotReachHere();
 940   }
 941 
 942   if (deoptimize_for_volatile) {
 943     // At compile time we assumed the field wasn't volatile but after
 944     // loading it turns out it was volatile so we have to throw the
 945     // compiled code out and let it be regenerated.
 946     if (TracePatching) {
 947       tty->print_cr("Deoptimizing for patching volatile field reference");
 948     }
 949     // It's possible the nmethod was invalidated in the last
 950     // safepoint, but if it's still alive then make it not_entrant.
 951     nmethod* nm = CodeCache::find_nmethod(caller_frame.pc());
 952     if (nm != NULL) {
 953       nm->make_not_entrant();
 954     }
 955 
 956     Deoptimization::deoptimize_frame(thread, caller_frame.id());
 957 
 958     // Return to the now deoptimized frame.
 959   }
 960 
 961   // If we are patching in a non-perm oop, make sure the nmethod
 962   // is on the right list.
 963   if (ScavengeRootsInCode && load_klass.not_null() && load_klass->is_scavengable()) {
 964     MutexLockerEx ml_code (CodeCache_lock, Mutex::_no_safepoint_check_flag);
 965     nmethod* nm = CodeCache::find_nmethod(caller_frame.pc());
 966     guarantee(nm != NULL, "only nmethods can contain non-perm oops");
 967     if (!nm->on_scavenge_root_list())
 968       CodeCache::add_scavenge_root_nmethod(nm);
 969   }
 970 
 971   // Now copy code back
 972 
 973   {
 974     MutexLockerEx ml_patch (Patching_lock, Mutex::_no_safepoint_check_flag);
 975     //
 976     // Deoptimization may have happened while we waited for the lock.
 977     // In that case we don't bother to do any patching we just return
 978     // and let the deopt happen
 979     if (!caller_is_deopted()) {
 980       NativeGeneralJump* jump = nativeGeneralJump_at(caller_frame.pc());
 981       address instr_pc = jump->jump_destination();
 982       NativeInstruction* ni = nativeInstruction_at(instr_pc);
 983       if (ni->is_jump() ) {
 984         // the jump has not been patched yet
 985         // The jump destination is slow case and therefore not part of the stubs
 986         // (stubs are only for StaticCalls)
 987 
 988         // format of buffer
 989         //    ....
 990         //    instr byte 0     <-- copy_buff
 991         //    instr byte 1
 992         //    ..
 993         //    instr byte n-1
 994         //      n
 995         //    ....             <-- call destination
 996 
 997         address stub_location = caller_frame.pc() + PatchingStub::patch_info_offset();
 998         unsigned char* byte_count = (unsigned char*) (stub_location - 1);
 999         unsigned char* byte_skip = (unsigned char*) (stub_location - 2);
1000         unsigned char* being_initialized_entry_offset = (unsigned char*) (stub_location - 3);
1001         address copy_buff = stub_location - *byte_skip - *byte_count;
1002         address being_initialized_entry = stub_location - *being_initialized_entry_offset;
1003         if (TracePatching) {
1004           tty->print_cr(" Patching %s at bci %d at address 0x%x  (%s)", Bytecodes::name(code), bci,
1005                         instr_pc, (stub_id == Runtime1::access_field_patching_id) ? "field" : "klass");
1006           nmethod* caller_code = CodeCache::find_nmethod(caller_frame.pc());
1007           assert(caller_code != NULL, "nmethod not found");
1008 
1009           // NOTE we use pc() not original_pc() because we already know they are
1010           // identical otherwise we'd have never entered this block of code
1011 
1012           OopMap* map = caller_code->oop_map_for_return_address(caller_frame.pc());
1013           assert(map != NULL, "null check");
1014           map->print();
1015           tty->cr();
1016 
1017           Disassembler::decode(copy_buff, copy_buff + *byte_count, tty);
1018         }
1019         // depending on the code below, do_patch says whether to copy the patch body back into the nmethod
1020         bool do_patch = true;
1021         if (stub_id == Runtime1::access_field_patching_id) {
1022           // The offset may not be correct if the class was not loaded at code generation time.
1023           // Set it now.
1024           NativeMovRegMem* n_move = nativeMovRegMem_at(copy_buff);
1025           assert(n_move->offset() == 0 || (n_move->offset() == 4 && (patch_field_type == T_DOUBLE || patch_field_type == T_LONG)), "illegal offset for type");
1026           assert(patch_field_offset >= 0, "illegal offset");
1027           n_move->add_offset_in_bytes(patch_field_offset);
1028         } else if (stub_id == Runtime1::load_klass_patching_id) {
1029           // If a getstatic or putstatic is referencing a klass which
1030           // isn't fully initialized, the patch body isn't copied into
1031           // place until initialization is complete.  In this case the
1032           // patch site is setup so that any threads besides the
1033           // initializing thread are forced to come into the VM and
1034           // block.
1035           do_patch = (code != Bytecodes::_getstatic && code != Bytecodes::_putstatic) ||
1036                      instanceKlass::cast(init_klass())->is_initialized();
1037           NativeGeneralJump* jump = nativeGeneralJump_at(instr_pc);
1038           if (jump->jump_destination() == being_initialized_entry) {
1039             assert(do_patch == true, "initialization must be complete at this point");
1040           } else {
1041             // patch the instruction <move reg, klass>
1042             NativeMovConstReg* n_copy = nativeMovConstReg_at(copy_buff);
1043 
1044             assert(n_copy->data() == 0 ||
1045                    n_copy->data() == (intptr_t)Universe::non_oop_word(),
1046                    "illegal init value");
1047             assert(load_klass() != NULL, "klass not set");
1048             n_copy->set_data((intx) (load_klass()));
1049 
1050             if (TracePatching) {
1051               Disassembler::decode(copy_buff, copy_buff + *byte_count, tty);
1052             }
1053 
1054 #if defined(SPARC) || defined(PPC)
1055             // Update the oop location in the nmethod with the proper
1056             // oop.  When the code was generated, a NULL was stuffed
1057             // in the oop table and that table needs to be update to
1058             // have the right value.  On intel the value is kept
1059             // directly in the instruction instead of in the oop
1060             // table, so set_data above effectively updated the value.
1061             nmethod* nm = CodeCache::find_nmethod(instr_pc);
1062             assert(nm != NULL, "invalid nmethod_pc");
1063             RelocIterator oops(nm, copy_buff, copy_buff + 1);
1064             bool found = false;
1065             while (oops.next() && !found) {
1066               if (oops.type() == relocInfo::oop_type) {
1067                 oop_Relocation* r = oops.oop_reloc();
1068                 oop* oop_adr = r->oop_addr();
1069                 *oop_adr = load_klass();
1070                 r->fix_oop_relocation();
1071                 found = true;
1072               }
1073             }
1074             assert(found, "the oop must exist!");
1075 #endif
1076 
1077           }
1078         } else {
1079           ShouldNotReachHere();
1080         }
1081         if (do_patch) {
1082           // replace instructions
1083           // first replace the tail, then the call
1084 #ifdef ARM
1085           if(stub_id == Runtime1::load_klass_patching_id && !VM_Version::supports_movw()) {
1086             nmethod* nm = CodeCache::find_nmethod(instr_pc);
1087             oop* oop_addr = NULL;
1088             assert(nm != NULL, "invalid nmethod_pc");
1089             RelocIterator oops(nm, copy_buff, copy_buff + 1);
1090             while (oops.next()) {
1091               if (oops.type() == relocInfo::oop_type) {
1092                 oop_Relocation* r = oops.oop_reloc();
1093                 oop_addr = r->oop_addr();
1094                 break;
1095               }
1096             }
1097             assert(oop_addr != NULL, "oop relocation must exist");
1098             copy_buff -= *byte_count;
1099             NativeMovConstReg* n_copy2 = nativeMovConstReg_at(copy_buff);
1100             n_copy2->set_pc_relative_offset((address)oop_addr, instr_pc);
1101           }
1102 #endif
1103 
1104           for (int i = NativeCall::instruction_size; i < *byte_count; i++) {
1105             address ptr = copy_buff + i;
1106             int a_byte = (*ptr) & 0xFF;
1107             address dst = instr_pc + i;
1108             *(unsigned char*)dst = (unsigned char) a_byte;
1109           }
1110           ICache::invalidate_range(instr_pc, *byte_count);
1111           NativeGeneralJump::replace_mt_safe(instr_pc, copy_buff);
1112 
1113           if (stub_id == Runtime1::load_klass_patching_id) {
1114             // update relocInfo to oop
1115             nmethod* nm = CodeCache::find_nmethod(instr_pc);
1116             assert(nm != NULL, "invalid nmethod_pc");
1117 
1118             // The old patch site is now a move instruction so update
1119             // the reloc info so that it will get updated during
1120             // future GCs.
1121             RelocIterator iter(nm, (address)instr_pc, (address)(instr_pc + 1));
1122             relocInfo::change_reloc_info_for_address(&iter, (address) instr_pc,
1123                                                      relocInfo::none, relocInfo::oop_type);
1124 #ifdef SPARC
1125             // Sparc takes two relocations for an oop so update the second one.
1126             address instr_pc2 = instr_pc + NativeMovConstReg::add_offset;
1127             RelocIterator iter2(nm, instr_pc2, instr_pc2 + 1);
1128             relocInfo::change_reloc_info_for_address(&iter2, (address) instr_pc2,
1129                                                      relocInfo::none, relocInfo::oop_type);
1130 #endif
1131 #ifdef PPC
1132           { address instr_pc2 = instr_pc + NativeMovConstReg::lo_offset;
1133             RelocIterator iter2(nm, instr_pc2, instr_pc2 + 1);
1134             relocInfo::change_reloc_info_for_address(&iter2, (address) instr_pc2, relocInfo::none, relocInfo::oop_type);
1135           }
1136 #endif
1137           }
1138 
1139         } else {
1140           ICache::invalidate_range(copy_buff, *byte_count);
1141           NativeGeneralJump::insert_unconditional(instr_pc, being_initialized_entry);
1142         }
1143       }
1144     }
1145   }
1146 JRT_END
1147 
1148 //
1149 // Entry point for compiled code. We want to patch a nmethod.
1150 // We don't do a normal VM transition here because we want to
1151 // know after the patching is complete and any safepoint(s) are taken
1152 // if the calling nmethod was deoptimized. We do this by calling a
1153 // helper method which does the normal VM transition and when it
1154 // completes we can check for deoptimization. This simplifies the
1155 // assembly code in the cpu directories.
1156 //
1157 int Runtime1::move_klass_patching(JavaThread* thread) {
1158 //
1159 // NOTE: we are still in Java
1160 //
1161   Thread* THREAD = thread;
1162   debug_only(NoHandleMark nhm;)
1163   {
1164     // Enter VM mode
1165 
1166     ResetNoHandleMark rnhm;
1167     patch_code(thread, load_klass_patching_id);
1168   }
1169   // Back in JAVA, use no oops DON'T safepoint
1170 
1171   // Return true if calling code is deoptimized
1172 
1173   return caller_is_deopted();
1174 }
1175 
1176 //
1177 // Entry point for compiled code. We want to patch a nmethod.
1178 // We don't do a normal VM transition here because we want to
1179 // know after the patching is complete and any safepoint(s) are taken
1180 // if the calling nmethod was deoptimized. We do this by calling a
1181 // helper method which does the normal VM transition and when it
1182 // completes we can check for deoptimization. This simplifies the
1183 // assembly code in the cpu directories.
1184 //
1185 
1186 int Runtime1::access_field_patching(JavaThread* thread) {
1187 //
1188 // NOTE: we are still in Java
1189 //
1190   Thread* THREAD = thread;
1191   debug_only(NoHandleMark nhm;)
1192   {
1193     // Enter VM mode
1194 
1195     ResetNoHandleMark rnhm;
1196     patch_code(thread, access_field_patching_id);
1197   }
1198   // Back in JAVA, use no oops DON'T safepoint
1199 
1200   // Return true if calling code is deoptimized
1201 
1202   return caller_is_deopted();
1203 JRT_END
1204 
1205 
1206 JRT_LEAF(void, Runtime1::trace_block_entry(jint block_id))
1207   // for now we just print out the block id
1208   tty->print("%d ", block_id);
1209 JRT_END
1210 
1211 
1212 // Array copy return codes.
1213 enum {
1214   ac_failed = -1, // arraycopy failed
1215   ac_ok = 0       // arraycopy succeeded
1216 };
1217 
1218 
1219 // Below length is the # elements copied.
1220 template <class T> int obj_arraycopy_work(oopDesc* src, T* src_addr,
1221                                           oopDesc* dst, T* dst_addr,
1222                                           int length) {
1223 
1224   // For performance reasons, we assume we are using a card marking write
1225   // barrier. The assert will fail if this is not the case.
1226   // Note that we use the non-virtual inlineable variant of write_ref_array.
1227   BarrierSet* bs = Universe::heap()->barrier_set();
1228   assert(bs->has_write_ref_array_opt(), "Barrier set must have ref array opt");
1229   assert(bs->has_write_ref_array_pre_opt(), "For pre-barrier as well.");
1230   if (src == dst) {
1231     // same object, no check
1232     bs->write_ref_array_pre(dst_addr, length);
1233     Copy::conjoint_oops_atomic(src_addr, dst_addr, length);
1234     bs->write_ref_array((HeapWord*)dst_addr, length);
1235     return ac_ok;
1236   } else {
1237     klassOop bound = objArrayKlass::cast(dst->klass())->element_klass();
1238     klassOop stype = objArrayKlass::cast(src->klass())->element_klass();
1239     if (stype == bound || Klass::cast(stype)->is_subtype_of(bound)) {
1240       // Elements are guaranteed to be subtypes, so no check necessary
1241       bs->write_ref_array_pre(dst_addr, length);
1242       Copy::conjoint_oops_atomic(src_addr, dst_addr, length);
1243       bs->write_ref_array((HeapWord*)dst_addr, length);
1244       return ac_ok;
1245     }
1246   }
1247   return ac_failed;
1248 }
1249 
1250 // fast and direct copy of arrays; returning -1, means that an exception may be thrown
1251 // and we did not copy anything
1252 JRT_LEAF(int, Runtime1::arraycopy(oopDesc* src, int src_pos, oopDesc* dst, int dst_pos, int length))
1253 #ifndef PRODUCT
1254   _generic_arraycopy_cnt++;        // Slow-path oop array copy
1255 #endif
1256 
1257   if (src == NULL || dst == NULL || src_pos < 0 || dst_pos < 0 || length < 0) return ac_failed;
1258   if (!dst->is_array() || !src->is_array()) return ac_failed;
1259   if ((unsigned int) arrayOop(src)->length() < (unsigned int)src_pos + (unsigned int)length) return ac_failed;
1260   if ((unsigned int) arrayOop(dst)->length() < (unsigned int)dst_pos + (unsigned int)length) return ac_failed;
1261 
1262   if (length == 0) return ac_ok;
1263   if (src->is_typeArray()) {
1264     const klassOop klass_oop = src->klass();
1265     if (klass_oop != dst->klass()) return ac_failed;
1266     typeArrayKlass* klass = typeArrayKlass::cast(klass_oop);
1267     const int l2es = klass->log2_element_size();
1268     const int ihs = klass->array_header_in_bytes() / wordSize;
1269     char* src_addr = (char*) ((oopDesc**)src + ihs) + (src_pos << l2es);
1270     char* dst_addr = (char*) ((oopDesc**)dst + ihs) + (dst_pos << l2es);
1271     // Potential problem: memmove is not guaranteed to be word atomic
1272     // Revisit in Merlin
1273     memmove(dst_addr, src_addr, length << l2es);
1274     return ac_ok;
1275   } else if (src->is_objArray() && dst->is_objArray()) {
1276     if (UseCompressedOops) {
1277       narrowOop *src_addr  = objArrayOop(src)->obj_at_addr<narrowOop>(src_pos);
1278       narrowOop *dst_addr  = objArrayOop(dst)->obj_at_addr<narrowOop>(dst_pos);
1279       return obj_arraycopy_work(src, src_addr, dst, dst_addr, length);
1280     } else {
1281       oop *src_addr  = objArrayOop(src)->obj_at_addr<oop>(src_pos);
1282       oop *dst_addr  = objArrayOop(dst)->obj_at_addr<oop>(dst_pos);
1283       return obj_arraycopy_work(src, src_addr, dst, dst_addr, length);
1284     }
1285   }
1286   return ac_failed;
1287 JRT_END
1288 
1289 
1290 JRT_LEAF(void, Runtime1::primitive_arraycopy(HeapWord* src, HeapWord* dst, int length))
1291 #ifndef PRODUCT
1292   _primitive_arraycopy_cnt++;
1293 #endif
1294 
1295   if (length == 0) return;
1296   // Not guaranteed to be word atomic, but that doesn't matter
1297   // for anything but an oop array, which is covered by oop_arraycopy.
1298   Copy::conjoint_jbytes(src, dst, length);
1299 JRT_END
1300 
1301 JRT_LEAF(void, Runtime1::oop_arraycopy(HeapWord* src, HeapWord* dst, int num))
1302 #ifndef PRODUCT
1303   _oop_arraycopy_cnt++;
1304 #endif
1305 
1306   if (num == 0) return;
1307   BarrierSet* bs = Universe::heap()->barrier_set();
1308   assert(bs->has_write_ref_array_opt(), "Barrier set must have ref array opt");
1309   assert(bs->has_write_ref_array_pre_opt(), "For pre-barrier as well.");
1310   if (UseCompressedOops) {
1311     bs->write_ref_array_pre((narrowOop*)dst, num);
1312     Copy::conjoint_oops_atomic((narrowOop*) src, (narrowOop*) dst, num);
1313   } else {
1314     bs->write_ref_array_pre((oop*)dst, num);
1315     Copy::conjoint_oops_atomic((oop*) src, (oop*) dst, num);
1316   }
1317   bs->write_ref_array(dst, num);
1318 JRT_END
1319 
1320 
1321 #ifndef PRODUCT
1322 void Runtime1::print_statistics() {
1323   tty->print_cr("C1 Runtime statistics:");
1324   tty->print_cr(" _resolve_invoke_virtual_cnt:     %d", SharedRuntime::_resolve_virtual_ctr);
1325   tty->print_cr(" _resolve_invoke_opt_virtual_cnt: %d", SharedRuntime::_resolve_opt_virtual_ctr);
1326   tty->print_cr(" _resolve_invoke_static_cnt:      %d", SharedRuntime::_resolve_static_ctr);
1327   tty->print_cr(" _handle_wrong_method_cnt:        %d", SharedRuntime::_wrong_method_ctr);
1328   tty->print_cr(" _ic_miss_cnt:                    %d", SharedRuntime::_ic_miss_ctr);
1329   tty->print_cr(" _generic_arraycopy_cnt:          %d", _generic_arraycopy_cnt);
1330   tty->print_cr(" _generic_arraycopystub_cnt:      %d", _generic_arraycopystub_cnt);
1331   tty->print_cr(" _byte_arraycopy_cnt:             %d", _byte_arraycopy_cnt);
1332   tty->print_cr(" _short_arraycopy_cnt:            %d", _short_arraycopy_cnt);
1333   tty->print_cr(" _int_arraycopy_cnt:              %d", _int_arraycopy_cnt);
1334   tty->print_cr(" _long_arraycopy_cnt:             %d", _long_arraycopy_cnt);
1335   tty->print_cr(" _primitive_arraycopy_cnt:        %d", _primitive_arraycopy_cnt);
1336   tty->print_cr(" _oop_arraycopy_cnt (C):          %d", Runtime1::_oop_arraycopy_cnt);
1337   tty->print_cr(" _oop_arraycopy_cnt (stub):       %d", _oop_arraycopy_cnt);
1338   tty->print_cr(" _arraycopy_slowcase_cnt:         %d", _arraycopy_slowcase_cnt);
1339   tty->print_cr(" _arraycopy_checkcast_cnt:        %d", _arraycopy_checkcast_cnt);
1340   tty->print_cr(" _arraycopy_checkcast_attempt_cnt:%d", _arraycopy_checkcast_attempt_cnt);
1341 
1342   tty->print_cr(" _new_type_array_slowcase_cnt:    %d", _new_type_array_slowcase_cnt);
1343   tty->print_cr(" _new_object_array_slowcase_cnt:  %d", _new_object_array_slowcase_cnt);
1344   tty->print_cr(" _new_instance_slowcase_cnt:      %d", _new_instance_slowcase_cnt);
1345   tty->print_cr(" _new_multi_array_slowcase_cnt:   %d", _new_multi_array_slowcase_cnt);
1346   tty->print_cr(" _monitorenter_slowcase_cnt:      %d", _monitorenter_slowcase_cnt);
1347   tty->print_cr(" _monitorexit_slowcase_cnt:       %d", _monitorexit_slowcase_cnt);
1348   tty->print_cr(" _patch_code_slowcase_cnt:        %d", _patch_code_slowcase_cnt);
1349 
1350   tty->print_cr(" _throw_range_check_exception_count:            %d:", _throw_range_check_exception_count);
1351   tty->print_cr(" _throw_index_exception_count:                  %d:", _throw_index_exception_count);
1352   tty->print_cr(" _throw_div0_exception_count:                   %d:", _throw_div0_exception_count);
1353   tty->print_cr(" _throw_null_pointer_exception_count:           %d:", _throw_null_pointer_exception_count);
1354   tty->print_cr(" _throw_class_cast_exception_count:             %d:", _throw_class_cast_exception_count);
1355   tty->print_cr(" _throw_incompatible_class_change_error_count:  %d:", _throw_incompatible_class_change_error_count);
1356   tty->print_cr(" _throw_array_store_exception_count:            %d:", _throw_array_store_exception_count);
1357   tty->print_cr(" _throw_count:                                  %d:", _throw_count);
1358 
1359   SharedRuntime::print_ic_miss_histogram();
1360   tty->cr();
1361 }
1362 #endif // PRODUCT