1 /*
   2  * Copyright (c) 1997, 2011, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "code/compiledIC.hpp"
  27 #include "code/nmethod.hpp"
  28 #include "code/relocInfo.hpp"
  29 #include "memory/resourceArea.hpp"
  30 #include "runtime/stubCodeGenerator.hpp"
  31 #include "utilities/copy.hpp"
  32 #ifdef TARGET_ARCH_x86
  33 # include "assembler_x86.inline.hpp"
  34 # include "nativeInst_x86.hpp"
  35 #endif
  36 #ifdef TARGET_ARCH_sparc
  37 # include "assembler_sparc.inline.hpp"
  38 # include "nativeInst_sparc.hpp"
  39 #endif
  40 #ifdef TARGET_ARCH_zero
  41 # include "assembler_zero.inline.hpp"
  42 # include "nativeInst_zero.hpp"
  43 #endif
  44 #ifdef TARGET_ARCH_arm
  45 # include "assembler_arm.inline.hpp"
  46 # include "nativeInst_arm.hpp"
  47 #endif
  48 #ifdef TARGET_ARCH_ppc
  49 # include "assembler_ppc.inline.hpp"
  50 # include "nativeInst_ppc.hpp"
  51 #endif
  52 
  53 
  54 const RelocationHolder RelocationHolder::none; // its type is relocInfo::none
  55 
  56 
  57 // Implementation of relocInfo
  58 
  59 #ifdef ASSERT
  60 relocInfo::relocInfo(relocType t, int off, int f) {
  61   assert(t != data_prefix_tag, "cannot build a prefix this way");
  62   assert((t & type_mask) == t, "wrong type");
  63   assert((f & format_mask) == f, "wrong format");
  64   assert(off >= 0 && off < offset_limit(), "offset out off bounds");
  65   assert((off & (offset_unit-1)) == 0, "misaligned offset");
  66   (*this) = relocInfo(t, RAW_BITS, off, f);
  67 }
  68 #endif
  69 
  70 void relocInfo::initialize(CodeSection* dest, Relocation* reloc) {
  71   relocInfo* data = this+1;  // here's where the data might go
  72   dest->set_locs_end(data);  // sync end: the next call may read dest.locs_end
  73   reloc->pack_data_to(dest); // maybe write data into locs, advancing locs_end
  74   relocInfo* data_limit = dest->locs_end();
  75   if (data_limit > data) {
  76     relocInfo suffix = (*this);
  77     data_limit = this->finish_prefix((short*) data_limit);
  78     // Finish up with the suffix.  (Hack note: pack_data_to might edit this.)
  79     *data_limit = suffix;
  80     dest->set_locs_end(data_limit+1);
  81   }
  82 }
  83 
  84 relocInfo* relocInfo::finish_prefix(short* prefix_limit) {
  85   assert(sizeof(relocInfo) == sizeof(short), "change this code");
  86   short* p = (short*)(this+1);
  87   assert(prefix_limit >= p, "must be a valid span of data");
  88   int plen = prefix_limit - p;
  89   if (plen == 0) {
  90     debug_only(_value = 0xFFFF);
  91     return this;                         // no data: remove self completely
  92   }
  93   if (plen == 1 && fits_into_immediate(p[0])) {
  94     (*this) = immediate_relocInfo(p[0]); // move data inside self
  95     return this+1;
  96   }
  97   // cannot compact, so just update the count and return the limit pointer
  98   (*this) = prefix_relocInfo(plen);   // write new datalen
  99   assert(data() + datalen() == prefix_limit, "pointers must line up");
 100   return (relocInfo*)prefix_limit;
 101 }
 102 
 103 
 104 void relocInfo::set_type(relocType t) {
 105   int old_offset = addr_offset();
 106   int old_format = format();
 107   (*this) = relocInfo(t, old_offset, old_format);
 108   assert(type()==(int)t, "sanity check");
 109   assert(addr_offset()==old_offset, "sanity check");
 110   assert(format()==old_format, "sanity check");
 111 }
 112 
 113 
 114 void relocInfo::set_format(int f) {
 115   int old_offset = addr_offset();
 116   assert((f & format_mask) == f, "wrong format");
 117   _value = (_value & ~(format_mask << offset_width)) | (f << offset_width);
 118   assert(addr_offset()==old_offset, "sanity check");
 119 }
 120 
 121 
 122 void relocInfo::change_reloc_info_for_address(RelocIterator *itr, address pc, relocType old_type, relocType new_type) {
 123   bool found = false;
 124   while (itr->next() && !found) {
 125     if (itr->addr() == pc) {
 126       assert(itr->type()==old_type, "wrong relocInfo type found");
 127       itr->current()->set_type(new_type);
 128       found=true;
 129     }
 130   }
 131   assert(found, "no relocInfo found for pc");
 132 }
 133 
 134 
 135 void relocInfo::remove_reloc_info_for_address(RelocIterator *itr, address pc, relocType old_type) {
 136   change_reloc_info_for_address(itr, pc, old_type, none);
 137 }
 138 
 139 
 140 // ----------------------------------------------------------------------------------------------------
 141 // Implementation of RelocIterator
 142 
 143 void RelocIterator::initialize(nmethod* nm, address begin, address limit) {
 144   initialize_misc();
 145 
 146   if (nm == NULL && begin != NULL) {
 147     // allow nmethod to be deduced from beginning address
 148     CodeBlob* cb = CodeCache::find_blob(begin);
 149     nm = cb->as_nmethod_or_null();
 150   }
 151   assert(nm != NULL, "must be able to deduce nmethod from other arguments");
 152 
 153   _code    = nm;
 154   _current = nm->relocation_begin() - 1;
 155   _end     = nm->relocation_end();
 156   _addr    = nm->content_begin();
 157 
 158   // Initialize code sections.
 159   _section_start[CodeBuffer::SECT_CONSTS] = nm->consts_begin();
 160   _section_start[CodeBuffer::SECT_INSTS ] = nm->insts_begin() ;
 161   _section_start[CodeBuffer::SECT_STUBS ] = nm->stub_begin()  ;
 162 
 163   _section_end  [CodeBuffer::SECT_CONSTS] = nm->consts_end()  ;
 164   _section_end  [CodeBuffer::SECT_INSTS ] = nm->insts_end()   ;
 165   _section_end  [CodeBuffer::SECT_STUBS ] = nm->stub_end()    ;
 166 
 167   assert(!has_current(), "just checking");
 168   assert(begin == NULL || begin >= nm->code_begin(), "in bounds");
 169   assert(limit == NULL || limit <= nm->code_end(),   "in bounds");
 170   set_limits(begin, limit);
 171 }
 172 
 173 
 174 RelocIterator::RelocIterator(CodeSection* cs, address begin, address limit) {
 175   initialize_misc();
 176 
 177   _current = cs->locs_start()-1;
 178   _end     = cs->locs_end();
 179   _addr    = cs->start();
 180   _code    = NULL; // Not cb->blob();
 181 
 182   CodeBuffer* cb = cs->outer();
 183   assert((int) SECT_LIMIT == CodeBuffer::SECT_LIMIT, "my copy must be equal");
 184   for (int n = (int) CodeBuffer::SECT_FIRST; n < (int) CodeBuffer::SECT_LIMIT; n++) {
 185     CodeSection* cs = cb->code_section(n);
 186     _section_start[n] = cs->start();
 187     _section_end  [n] = cs->end();
 188   }
 189 
 190   assert(!has_current(), "just checking");
 191 
 192   assert(begin == NULL || begin >= cs->start(), "in bounds");
 193   assert(limit == NULL || limit <= cs->end(),   "in bounds");
 194   set_limits(begin, limit);
 195 }
 196 
 197 
 198 enum { indexCardSize = 128 };
 199 struct RelocIndexEntry {
 200   jint addr_offset;          // offset from header_end of an addr()
 201   jint reloc_offset;         // offset from header_end of a relocInfo (prefix)
 202 };
 203 
 204 
 205 bool RelocIterator::addr_in_const() const {
 206   const int n = CodeBuffer::SECT_CONSTS;
 207   return section_start(n) <= addr() && addr() < section_end(n);
 208 }
 209 
 210 
 211 static inline int num_cards(int code_size) {
 212   return (code_size-1) / indexCardSize;
 213 }
 214 
 215 
 216 int RelocIterator::locs_and_index_size(int code_size, int locs_size) {
 217   if (!UseRelocIndex)  return locs_size;   // no index
 218   code_size = round_to(code_size, oopSize);
 219   locs_size = round_to(locs_size, oopSize);
 220   int index_size = num_cards(code_size) * sizeof(RelocIndexEntry);
 221   // format of indexed relocs:
 222   //   relocation_begin:   relocInfo ...
 223   //   index:              (addr,reloc#) ...
 224   //                       indexSize           :relocation_end
 225   return locs_size + index_size + BytesPerInt;
 226 }
 227 
 228 
 229 void RelocIterator::create_index(relocInfo* dest_begin, int dest_count, relocInfo* dest_end) {
 230   address relocation_begin = (address)dest_begin;
 231   address relocation_end   = (address)dest_end;
 232   int     total_size       = relocation_end - relocation_begin;
 233   int     locs_size        = dest_count * sizeof(relocInfo);
 234   if (!UseRelocIndex) {
 235     Copy::fill_to_bytes(relocation_begin + locs_size, total_size-locs_size, 0);
 236     return;
 237   }
 238   int     index_size       = total_size - locs_size - BytesPerInt;      // find out how much space is left
 239   int     ncards           = index_size / sizeof(RelocIndexEntry);
 240   assert(total_size == locs_size + index_size + BytesPerInt, "checkin'");
 241   assert(index_size >= 0 && index_size % sizeof(RelocIndexEntry) == 0, "checkin'");
 242   jint*   index_size_addr  = (jint*)relocation_end - 1;
 243 
 244   assert(sizeof(jint) == BytesPerInt, "change this code");
 245 
 246   *index_size_addr = index_size;
 247   if (index_size != 0) {
 248     assert(index_size > 0, "checkin'");
 249 
 250     RelocIndexEntry* index = (RelocIndexEntry *)(relocation_begin + locs_size);
 251     assert(index == (RelocIndexEntry*)index_size_addr - ncards, "checkin'");
 252 
 253     // walk over the relocations, and fill in index entries as we go
 254     RelocIterator iter;
 255     const address    initial_addr    = NULL;
 256     relocInfo* const initial_current = dest_begin - 1;  // biased by -1 like elsewhere
 257 
 258     iter._code    = NULL;
 259     iter._addr    = initial_addr;
 260     iter._limit   = (address)(intptr_t)(ncards * indexCardSize);
 261     iter._current = initial_current;
 262     iter._end     = dest_begin + dest_count;
 263 
 264     int i = 0;
 265     address next_card_addr = (address)indexCardSize;
 266     int addr_offset = 0;
 267     int reloc_offset = 0;
 268     while (true) {
 269       // Checkpoint the iterator before advancing it.
 270       addr_offset  = iter._addr    - initial_addr;
 271       reloc_offset = iter._current - initial_current;
 272       if (!iter.next())  break;
 273       while (iter.addr() >= next_card_addr) {
 274         index[i].addr_offset  = addr_offset;
 275         index[i].reloc_offset = reloc_offset;
 276         i++;
 277         next_card_addr += indexCardSize;
 278       }
 279     }
 280     while (i < ncards) {
 281       index[i].addr_offset  = addr_offset;
 282       index[i].reloc_offset = reloc_offset;
 283       i++;
 284     }
 285   }
 286 }
 287 
 288 
 289 void RelocIterator::set_limits(address begin, address limit) {
 290   int index_size = 0;
 291   if (UseRelocIndex && _code != NULL) {
 292     index_size = ((jint*)_end)[-1];
 293     _end = (relocInfo*)( (address)_end - index_size - BytesPerInt );
 294   }
 295 
 296   _limit = limit;
 297 
 298   // the limit affects this next stuff:
 299   if (begin != NULL) {
 300 #ifdef ASSERT
 301     // In ASSERT mode we do not actually use the index, but simply
 302     // check that its contents would have led us to the right answer.
 303     address addrCheck = _addr;
 304     relocInfo* infoCheck = _current;
 305 #endif // ASSERT
 306     if (index_size > 0) {
 307       // skip ahead
 308       RelocIndexEntry* index       = (RelocIndexEntry*)_end;
 309       RelocIndexEntry* index_limit = (RelocIndexEntry*)((address)index + index_size);
 310       assert(_addr == _code->code_begin(), "_addr must be unadjusted");
 311       int card = (begin - _addr) / indexCardSize;
 312       if (card > 0) {
 313         if (index+card-1 < index_limit)  index += card-1;
 314         else                             index = index_limit - 1;
 315 #ifdef ASSERT
 316         addrCheck = _addr    + index->addr_offset;
 317         infoCheck = _current + index->reloc_offset;
 318 #else
 319         // Advance the iterator immediately to the last valid state
 320         // for the previous card.  Calling "next" will then advance
 321         // it to the first item on the required card.
 322         _addr    += index->addr_offset;
 323         _current += index->reloc_offset;
 324 #endif // ASSERT
 325       }
 326     }
 327 
 328     relocInfo* backup;
 329     address    backup_addr;
 330     while (true) {
 331       backup      = _current;
 332       backup_addr = _addr;
 333 #ifdef ASSERT
 334       if (backup == infoCheck) {
 335         assert(backup_addr == addrCheck, "must match"); addrCheck = NULL; infoCheck = NULL;
 336       } else {
 337         assert(addrCheck == NULL || backup_addr <= addrCheck, "must not pass addrCheck");
 338       }
 339 #endif // ASSERT
 340       if (!next() || addr() >= begin) break;
 341     }
 342     assert(addrCheck == NULL || addrCheck == backup_addr, "must have matched addrCheck");
 343     assert(infoCheck == NULL || infoCheck == backup,      "must have matched infoCheck");
 344     // At this point, either we are at the first matching record,
 345     // or else there is no such record, and !has_current().
 346     // In either case, revert to the immediatly preceding state.
 347     _current = backup;
 348     _addr    = backup_addr;
 349     set_has_current(false);
 350   }
 351 }
 352 
 353 
 354 void RelocIterator::set_limit(address limit) {
 355   address code_end = (address)code() + code()->size();
 356   assert(limit == NULL || limit <= code_end, "in bounds");
 357   _limit = limit;
 358 }
 359 
 360 
 361 void PatchingRelocIterator:: prepass() {
 362   // turn breakpoints off during patching
 363   _init_state = (*this);        // save cursor
 364   while (next()) {
 365     if (type() == relocInfo::breakpoint_type) {
 366       breakpoint_reloc()->set_active(false);
 367     }
 368   }
 369   (RelocIterator&)(*this) = _init_state;        // reset cursor for client
 370 }
 371 
 372 
 373 void PatchingRelocIterator:: postpass() {
 374   // turn breakpoints back on after patching
 375   (RelocIterator&)(*this) = _init_state;        // reset cursor again
 376   while (next()) {
 377     if (type() == relocInfo::breakpoint_type) {
 378       breakpoint_Relocation* bpt = breakpoint_reloc();
 379       bpt->set_active(bpt->enabled());
 380     }
 381   }
 382 }
 383 
 384 
 385 // All the strange bit-encodings are in here.
 386 // The idea is to encode relocation data which are small integers
 387 // very efficiently (a single extra halfword).  Larger chunks of
 388 // relocation data need a halfword header to hold their size.
 389 void RelocIterator::advance_over_prefix() {
 390   if (_current->is_datalen()) {
 391     _data    = (short*) _current->data();
 392     _datalen =          _current->datalen();
 393     _current += _datalen + 1;   // skip the embedded data & header
 394   } else {
 395     _databuf = _current->immediate();
 396     _data = &_databuf;
 397     _datalen = 1;
 398     _current++;                 // skip the header
 399   }
 400   // The client will see the following relocInfo, whatever that is.
 401   // It is the reloc to which the preceding data applies.
 402 }
 403 
 404 
 405 void RelocIterator::initialize_misc() {
 406   set_has_current(false);
 407   for (int i = (int) CodeBuffer::SECT_FIRST; i < (int) CodeBuffer::SECT_LIMIT; i++) {
 408     _section_start[i] = NULL;  // these will be lazily computed, if needed
 409     _section_end  [i] = NULL;
 410   }
 411 }
 412 
 413 
 414 Relocation* RelocIterator::reloc() {
 415   // (take the "switch" out-of-line)
 416   relocInfo::relocType t = type();
 417   if (false) {}
 418   #define EACH_TYPE(name)                             \
 419   else if (t == relocInfo::name##_type) {             \
 420     return name##_reloc();                            \
 421   }
 422   APPLY_TO_RELOCATIONS(EACH_TYPE);
 423   #undef EACH_TYPE
 424   assert(t == relocInfo::none, "must be padding");
 425   return new(_rh) Relocation();
 426 }
 427 
 428 
 429 //////// Methods for flyweight Relocation types
 430 
 431 
 432 RelocationHolder RelocationHolder::plus(int offset) const {
 433   if (offset != 0) {
 434     switch (type()) {
 435     case relocInfo::none:
 436       break;
 437     case relocInfo::oop_type:
 438       {
 439         oop_Relocation* r = (oop_Relocation*)reloc();
 440         return oop_Relocation::spec(r->oop_index(), r->offset() + offset);
 441       }
 442     default:
 443       ShouldNotReachHere();
 444     }
 445   }
 446   return (*this);
 447 }
 448 
 449 
 450 void Relocation::guarantee_size() {
 451   guarantee(false, "Make _relocbuf bigger!");
 452 }
 453 
 454     // some relocations can compute their own values
 455 address Relocation::value() {
 456   ShouldNotReachHere();
 457   return NULL;
 458 }
 459 
 460 
 461 void Relocation::set_value(address x) {
 462   ShouldNotReachHere();
 463 }
 464 
 465 
 466 RelocationHolder Relocation::spec_simple(relocInfo::relocType rtype) {
 467   if (rtype == relocInfo::none)  return RelocationHolder::none;
 468   relocInfo ri = relocInfo(rtype, 0);
 469   RelocIterator itr;
 470   itr.set_current(ri);
 471   itr.reloc();
 472   return itr._rh;
 473 }
 474 
 475 int32_t Relocation::runtime_address_to_index(address runtime_address) {
 476   assert(!is_reloc_index((intptr_t)runtime_address), "must not look like an index");
 477 
 478   if (runtime_address == NULL)  return 0;
 479 
 480   StubCodeDesc* p = StubCodeDesc::desc_for(runtime_address);
 481   if (p != NULL && p->begin() == runtime_address) {
 482     assert(is_reloc_index(p->index()), "there must not be too many stubs");
 483     return (int32_t)p->index();
 484   } else {
 485     // Known "miscellaneous" non-stub pointers:
 486     // os::get_polling_page(), SafepointSynchronize::address_of_state()
 487     if (PrintRelocations) {
 488       tty->print_cr("random unregistered address in relocInfo: " INTPTR_FORMAT, runtime_address);
 489     }
 490 #ifndef _LP64
 491     return (int32_t) (intptr_t)runtime_address;
 492 #else
 493     // didn't fit return non-index
 494     return -1;
 495 #endif /* _LP64 */
 496   }
 497 }
 498 
 499 
 500 address Relocation::index_to_runtime_address(int32_t index) {
 501   if (index == 0)  return NULL;
 502 
 503   if (is_reloc_index(index)) {
 504     StubCodeDesc* p = StubCodeDesc::desc_for_index(index);
 505     assert(p != NULL, "there must be a stub for this index");
 506     return p->begin();
 507   } else {
 508 #ifndef _LP64
 509     // this only works on 32bit machines
 510     return (address) ((intptr_t) index);
 511 #else
 512     fatal("Relocation::index_to_runtime_address, int32_t not pointer sized");
 513     return NULL;
 514 #endif /* _LP64 */
 515   }
 516 }
 517 
 518 address Relocation::old_addr_for(address newa,
 519                                  const CodeBuffer* src, CodeBuffer* dest) {
 520   int sect = dest->section_index_of(newa);
 521   guarantee(sect != CodeBuffer::SECT_NONE, "lost track of this address");
 522   address ostart = src->code_section(sect)->start();
 523   address nstart = dest->code_section(sect)->start();
 524   return ostart + (newa - nstart);
 525 }
 526 
 527 address Relocation::new_addr_for(address olda,
 528                                  const CodeBuffer* src, CodeBuffer* dest) {
 529   debug_only(const CodeBuffer* src0 = src);
 530   int sect = CodeBuffer::SECT_NONE;
 531   // Look for olda in the source buffer, and all previous incarnations
 532   // if the source buffer has been expanded.
 533   for (; src != NULL; src = src->before_expand()) {
 534     sect = src->section_index_of(olda);
 535     if (sect != CodeBuffer::SECT_NONE)  break;
 536   }
 537   guarantee(sect != CodeBuffer::SECT_NONE, "lost track of this address");
 538   address ostart = src->code_section(sect)->start();
 539   address nstart = dest->code_section(sect)->start();
 540   return nstart + (olda - ostart);
 541 }
 542 
 543 void Relocation::normalize_address(address& addr, const CodeSection* dest, bool allow_other_sections) {
 544   address addr0 = addr;
 545   if (addr0 == NULL || dest->allocates2(addr0))  return;
 546   CodeBuffer* cb = dest->outer();
 547   addr = new_addr_for(addr0, cb, cb);
 548   assert(allow_other_sections || dest->contains2(addr),
 549          "addr must be in required section");
 550 }
 551 
 552 
 553 void CallRelocation::set_destination(address x) {
 554   pd_set_call_destination(x);
 555 }
 556 
 557 void CallRelocation::fix_relocation_after_move(const CodeBuffer* src, CodeBuffer* dest) {
 558   // Usually a self-relative reference to an external routine.
 559   // On some platforms, the reference is absolute (not self-relative).
 560   // The enhanced use of pd_call_destination sorts this all out.
 561   address orig_addr = old_addr_for(addr(), src, dest);
 562   address callee    = pd_call_destination(orig_addr);
 563   // Reassert the callee address, this time in the new copy of the code.
 564   pd_set_call_destination(callee);
 565 }
 566 
 567 
 568 //// pack/unpack methods
 569 
 570 void oop_Relocation::pack_data_to(CodeSection* dest) {
 571   short* p = (short*) dest->locs_end();
 572   p = pack_2_ints_to(p, _oop_index, _offset);
 573   dest->set_locs_end((relocInfo*) p);
 574 }
 575 
 576 
 577 void oop_Relocation::unpack_data() {
 578   unpack_2_ints(_oop_index, _offset);
 579 }
 580 
 581 
 582 void virtual_call_Relocation::pack_data_to(CodeSection* dest) {
 583   short*  p     = (short*) dest->locs_end();
 584   address point =          dest->locs_point();
 585 
 586   // Try to make a pointer NULL first.
 587   if (_oop_limit >= point &&
 588       _oop_limit <= point + NativeCall::instruction_size) {
 589     _oop_limit = NULL;
 590   }
 591   // If the _oop_limit is NULL, it "defaults" to the end of the call.
 592   // See ic_call_Relocation::oop_limit() below.
 593 
 594   normalize_address(_first_oop, dest);
 595   normalize_address(_oop_limit, dest);
 596   jint x0 = scaled_offset_null_special(_first_oop, point);
 597   jint x1 = scaled_offset_null_special(_oop_limit, point);
 598   p = pack_2_ints_to(p, x0, x1);
 599   dest->set_locs_end((relocInfo*) p);
 600 }
 601 
 602 
 603 void virtual_call_Relocation::unpack_data() {
 604   jint x0, x1; unpack_2_ints(x0, x1);
 605   address point = addr();
 606   _first_oop = x0==0? NULL: address_from_scaled_offset(x0, point);
 607   _oop_limit = x1==0? NULL: address_from_scaled_offset(x1, point);
 608 }
 609 
 610 
 611 void static_stub_Relocation::pack_data_to(CodeSection* dest) {
 612   short* p = (short*) dest->locs_end();
 613   CodeSection* insts = dest->outer()->insts();
 614   normalize_address(_static_call, insts);
 615   p = pack_1_int_to(p, scaled_offset(_static_call, insts->start()));
 616   dest->set_locs_end((relocInfo*) p);
 617 }
 618 
 619 void static_stub_Relocation::unpack_data() {
 620   address base = binding()->section_start(CodeBuffer::SECT_INSTS);
 621   _static_call = address_from_scaled_offset(unpack_1_int(), base);
 622 }
 623 
 624 
 625 void external_word_Relocation::pack_data_to(CodeSection* dest) {
 626   short* p = (short*) dest->locs_end();
 627   int32_t index = runtime_address_to_index(_target);
 628 #ifndef _LP64
 629   p = pack_1_int_to(p, index);
 630 #else
 631   if (is_reloc_index(index)) {
 632     p = pack_2_ints_to(p, index, 0);
 633   } else {
 634     jlong t = (jlong) _target;
 635     int32_t lo = low(t);
 636     int32_t hi = high(t);
 637     p = pack_2_ints_to(p, lo, hi);
 638     DEBUG_ONLY(jlong t1 = jlong_from(hi, lo));
 639     assert(!is_reloc_index(t1) && (address) t1 == _target, "not symmetric");
 640   }
 641 #endif /* _LP64 */
 642   dest->set_locs_end((relocInfo*) p);
 643 }
 644 
 645 
 646 void external_word_Relocation::unpack_data() {
 647 #ifndef _LP64
 648   _target = index_to_runtime_address(unpack_1_int());
 649 #else
 650   int32_t lo, hi;
 651   unpack_2_ints(lo, hi);
 652   jlong t = jlong_from(hi, lo);;
 653   if (is_reloc_index(t)) {
 654     _target = index_to_runtime_address(t);
 655   } else {
 656     _target = (address) t;
 657   }
 658 #endif /* _LP64 */
 659 }
 660 
 661 
 662 void internal_word_Relocation::pack_data_to(CodeSection* dest) {
 663   short* p = (short*) dest->locs_end();
 664   normalize_address(_target, dest, true);
 665 
 666   // Check whether my target address is valid within this section.
 667   // If not, strengthen the relocation type to point to another section.
 668   int sindex = _section;
 669   if (sindex == CodeBuffer::SECT_NONE && _target != NULL
 670       && (!dest->allocates(_target) || _target == dest->locs_point())) {
 671     sindex = dest->outer()->section_index_of(_target);
 672     guarantee(sindex != CodeBuffer::SECT_NONE, "must belong somewhere");
 673     relocInfo* base = dest->locs_end() - 1;
 674     assert(base->type() == this->type(), "sanity");
 675     // Change the written type, to be section_word_type instead.
 676     base->set_type(relocInfo::section_word_type);
 677   }
 678 
 679   // Note: An internal_word relocation cannot refer to its own instruction,
 680   // because we reserve "0" to mean that the pointer itself is embedded
 681   // in the code stream.  We use a section_word relocation for such cases.
 682 
 683   if (sindex == CodeBuffer::SECT_NONE) {
 684     assert(type() == relocInfo::internal_word_type, "must be base class");
 685     guarantee(_target == NULL || dest->allocates2(_target), "must be within the given code section");
 686     jint x0 = scaled_offset_null_special(_target, dest->locs_point());
 687     assert(!(x0 == 0 && _target != NULL), "correct encoding of null target");
 688     p = pack_1_int_to(p, x0);
 689   } else {
 690     assert(_target != NULL, "sanity");
 691     CodeSection* sect = dest->outer()->code_section(sindex);
 692     guarantee(sect->allocates2(_target), "must be in correct section");
 693     address base = sect->start();
 694     jint offset = scaled_offset(_target, base);
 695     assert((uint)sindex < (uint)CodeBuffer::SECT_LIMIT, "sanity");
 696     assert(CodeBuffer::SECT_LIMIT <= (1 << section_width), "section_width++");
 697     p = pack_1_int_to(p, (offset << section_width) | sindex);
 698   }
 699 
 700   dest->set_locs_end((relocInfo*) p);
 701 }
 702 
 703 
 704 void internal_word_Relocation::unpack_data() {
 705   jint x0 = unpack_1_int();
 706   _target = x0==0? NULL: address_from_scaled_offset(x0, addr());
 707   _section = CodeBuffer::SECT_NONE;
 708 }
 709 
 710 
 711 void section_word_Relocation::unpack_data() {
 712   jint    x      = unpack_1_int();
 713   jint    offset = (x >> section_width);
 714   int     sindex = (x & ((1<<section_width)-1));
 715   address base   = binding()->section_start(sindex);
 716 
 717   _section = sindex;
 718   _target  = address_from_scaled_offset(offset, base);
 719 }
 720 
 721 
 722 void breakpoint_Relocation::pack_data_to(CodeSection* dest) {
 723   short* p = (short*) dest->locs_end();
 724   address point = dest->locs_point();
 725 
 726   *p++ = _bits;
 727 
 728   assert(_target != NULL, "sanity");
 729 
 730   if (internal())  normalize_address(_target, dest);
 731 
 732   jint target_bits =
 733     (jint)( internal() ? scaled_offset           (_target, point)
 734                        : runtime_address_to_index(_target) );
 735   if (settable()) {
 736     // save space for set_target later
 737     p = add_jint(p, target_bits);
 738   } else {
 739     p = add_var_int(p, target_bits);
 740   }
 741 
 742   for (int i = 0; i < instrlen(); i++) {
 743     // put placeholder words until bytes can be saved
 744     p = add_short(p, (short)0x7777);
 745   }
 746 
 747   dest->set_locs_end((relocInfo*) p);
 748 }
 749 
 750 
 751 void breakpoint_Relocation::unpack_data() {
 752   _bits = live_bits();
 753 
 754   int targetlen = datalen() - 1 - instrlen();
 755   jint target_bits = 0;
 756   if (targetlen == 0)       target_bits = 0;
 757   else if (targetlen == 1)  target_bits = *(data()+1);
 758   else if (targetlen == 2)  target_bits = relocInfo::jint_from_data(data()+1);
 759   else                      { ShouldNotReachHere(); }
 760 
 761   _target = internal() ? address_from_scaled_offset(target_bits, addr())
 762                        : index_to_runtime_address  (target_bits);
 763 }
 764 
 765 
 766 //// miscellaneous methods
 767 oop* oop_Relocation::oop_addr() {
 768   int n = _oop_index;
 769   if (n == 0) {
 770     // oop is stored in the code stream
 771     return (oop*) pd_address_in_code();
 772   } else {
 773     // oop is stored in table at nmethod::oops_begin
 774     return code()->oop_addr_at(n);
 775   }
 776 }
 777 
 778 
 779 oop oop_Relocation::oop_value() {
 780   oop v = *oop_addr();
 781   // clean inline caches store a special pseudo-null
 782   if (v == (oop)Universe::non_oop_word())  v = NULL;
 783   return v;
 784 }
 785 
 786 
 787 void oop_Relocation::fix_oop_relocation() {
 788   if (!oop_is_immediate()) {
 789     // get the oop from the pool, and re-insert it into the instruction:
 790     set_value(value());
 791   }
 792 }
 793 
 794 
 795 void oop_Relocation::verify_oop_relocation() {
 796   if (!oop_is_immediate()) {
 797     // get the oop from the pool, and re-insert it into the instruction:
 798     verify_value(value());
 799   }
 800 }
 801 
 802 
 803 RelocIterator virtual_call_Relocation::parse_ic(nmethod* &nm, address &ic_call, address &first_oop,
 804                                                 oop* &oop_addr, bool *is_optimized) {
 805   assert(ic_call != NULL, "ic_call address must be set");
 806   assert(ic_call != NULL || first_oop != NULL, "must supply a non-null input");
 807   if (nm == NULL) {
 808     CodeBlob* code;
 809     if (ic_call != NULL) {
 810       code = CodeCache::find_blob(ic_call);
 811     } else if (first_oop != NULL) {
 812       code = CodeCache::find_blob(first_oop);
 813     }
 814     nm = code->as_nmethod_or_null();
 815     assert(nm != NULL, "address to parse must be in nmethod");
 816   }
 817   assert(ic_call   == NULL || nm->contains(ic_call),   "must be in nmethod");
 818   assert(first_oop == NULL || nm->contains(first_oop), "must be in nmethod");
 819 
 820   address oop_limit = NULL;
 821 
 822   if (ic_call != NULL) {
 823     // search for the ic_call at the given address
 824     RelocIterator iter(nm, ic_call, ic_call+1);
 825     bool ret = iter.next();
 826     assert(ret == true, "relocInfo must exist at this address");
 827     assert(iter.addr() == ic_call, "must find ic_call");
 828     if (iter.type() == relocInfo::virtual_call_type) {
 829       virtual_call_Relocation* r = iter.virtual_call_reloc();
 830       first_oop = r->first_oop();
 831       oop_limit = r->oop_limit();
 832       *is_optimized = false;
 833     } else {
 834       assert(iter.type() == relocInfo::opt_virtual_call_type, "must be a virtual call");
 835       *is_optimized = true;
 836       oop_addr = NULL;
 837       first_oop = NULL;
 838       return iter;
 839     }
 840   }
 841 
 842   // search for the first_oop, to get its oop_addr
 843   RelocIterator all_oops(nm, first_oop);
 844   RelocIterator iter = all_oops;
 845   iter.set_limit(first_oop+1);
 846   bool found_oop = false;
 847   while (iter.next()) {
 848     if (iter.type() == relocInfo::oop_type) {
 849       assert(iter.addr() == first_oop, "must find first_oop");
 850       oop_addr = iter.oop_reloc()->oop_addr();
 851       found_oop = true;
 852       break;
 853     }
 854   }
 855   assert(found_oop, "must find first_oop");
 856 
 857   bool did_reset = false;
 858   while (ic_call == NULL) {
 859     // search forward for the ic_call matching the given first_oop
 860     while (iter.next()) {
 861       if (iter.type() == relocInfo::virtual_call_type) {
 862         virtual_call_Relocation* r = iter.virtual_call_reloc();
 863         if (r->first_oop() == first_oop) {
 864           ic_call   = r->addr();
 865           oop_limit = r->oop_limit();
 866           break;
 867         }
 868       }
 869     }
 870     guarantee(!did_reset, "cannot find ic_call");
 871     iter = RelocIterator(nm); // search the whole nmethod
 872     did_reset = true;
 873   }
 874 
 875   assert(oop_limit != NULL && first_oop != NULL && ic_call != NULL, "");
 876   all_oops.set_limit(oop_limit);
 877   return all_oops;
 878 }
 879 
 880 
 881 address virtual_call_Relocation::first_oop() {
 882   assert(_first_oop != NULL && _first_oop < addr(), "must precede ic_call");
 883   return _first_oop;
 884 }
 885 
 886 
 887 address virtual_call_Relocation::oop_limit() {
 888   if (_oop_limit == NULL)
 889     return addr() + NativeCall::instruction_size;
 890   else
 891     return _oop_limit;
 892 }
 893 
 894 
 895 
 896 void virtual_call_Relocation::clear_inline_cache() {
 897   // No stubs for ICs
 898   // Clean IC
 899   ResourceMark rm;
 900   CompiledIC* icache = CompiledIC_at(this);
 901   icache->set_to_clean();
 902 }
 903 
 904 
 905 void opt_virtual_call_Relocation::clear_inline_cache() {
 906   // No stubs for ICs
 907   // Clean IC
 908   ResourceMark rm;
 909   CompiledIC* icache = CompiledIC_at(this);
 910   icache->set_to_clean();
 911 }
 912 
 913 
 914 address opt_virtual_call_Relocation::static_stub() {
 915   // search for the static stub who points back to this static call
 916   address static_call_addr = addr();
 917   RelocIterator iter(code());
 918   while (iter.next()) {
 919     if (iter.type() == relocInfo::static_stub_type) {
 920       if (iter.static_stub_reloc()->static_call() == static_call_addr) {
 921         return iter.addr();
 922       }
 923     }
 924   }
 925   return NULL;
 926 }
 927 
 928 
 929 void static_call_Relocation::clear_inline_cache() {
 930   // Safe call site info
 931   CompiledStaticCall* handler = compiledStaticCall_at(this);
 932   handler->set_to_clean();
 933 }
 934 
 935 
 936 address static_call_Relocation::static_stub() {
 937   // search for the static stub who points back to this static call
 938   address static_call_addr = addr();
 939   RelocIterator iter(code());
 940   while (iter.next()) {
 941     if (iter.type() == relocInfo::static_stub_type) {
 942       if (iter.static_stub_reloc()->static_call() == static_call_addr) {
 943         return iter.addr();
 944       }
 945     }
 946   }
 947   return NULL;
 948 }
 949 
 950 
 951 void static_stub_Relocation::clear_inline_cache() {
 952   // Call stub is only used when calling the interpreted code.
 953   // It does not really need to be cleared, except that we want to clean out the methodoop.
 954   CompiledStaticCall::set_stub_to_clean(this);
 955 }
 956 
 957 
 958 void external_word_Relocation::fix_relocation_after_move(const CodeBuffer* src, CodeBuffer* dest) {
 959   address target = _target;
 960   if (target == NULL) {
 961     // An absolute embedded reference to an external location,
 962     // which means there is nothing to fix here.
 963     return;
 964   }
 965   // Probably this reference is absolute, not relative, so the
 966   // following is probably a no-op.
 967   assert(src->section_index_of(target) == CodeBuffer::SECT_NONE, "sanity");
 968   set_value(target);
 969 }
 970 
 971 
 972 address external_word_Relocation::target() {
 973   address target = _target;
 974   if (target == NULL) {
 975     target = pd_get_address_from_code();
 976   }
 977   return target;
 978 }
 979 
 980 
 981 void internal_word_Relocation::fix_relocation_after_move(const CodeBuffer* src, CodeBuffer* dest) {
 982   address target = _target;
 983   if (target == NULL) {
 984     if (addr_in_const()) {
 985       target = new_addr_for(*(address*)addr(), src, dest);
 986     } else {
 987       target = new_addr_for(pd_get_address_from_code(), src, dest);
 988     }
 989   }
 990   set_value(target);
 991 }
 992 
 993 
 994 address internal_word_Relocation::target() {
 995   address target = _target;
 996   if (target == NULL) {
 997     target = pd_get_address_from_code();
 998   }
 999   return target;
1000 }
1001 
1002 
1003 breakpoint_Relocation::breakpoint_Relocation(int kind, address target, bool internal) {
1004   bool active    = false;
1005   bool enabled   = (kind == initialization);
1006   bool removable = (kind != safepoint);
1007   bool settable  = (target == NULL);
1008 
1009   int bits = kind;
1010   if (enabled)    bits |= enabled_state;
1011   if (internal)   bits |= internal_attr;
1012   if (removable)  bits |= removable_attr;
1013   if (settable)   bits |= settable_attr;
1014 
1015   _bits = bits | high_bit;
1016   _target = target;
1017 
1018   assert(this->kind()      == kind,      "kind encoded");
1019   assert(this->enabled()   == enabled,   "enabled encoded");
1020   assert(this->active()    == active,    "active encoded");
1021   assert(this->internal()  == internal,  "internal encoded");
1022   assert(this->removable() == removable, "removable encoded");
1023   assert(this->settable()  == settable,  "settable encoded");
1024 }
1025 
1026 
1027 address breakpoint_Relocation::target() const {
1028   return _target;
1029 }
1030 
1031 
1032 void breakpoint_Relocation::set_target(address x) {
1033   assert(settable(), "must be settable");
1034   jint target_bits =
1035     (jint)(internal() ? scaled_offset           (x, addr())
1036                       : runtime_address_to_index(x));
1037   short* p = &live_bits() + 1;
1038   p = add_jint(p, target_bits);
1039   assert(p == instrs(), "new target must fit");
1040   _target = x;
1041 }
1042 
1043 
1044 void breakpoint_Relocation::set_enabled(bool b) {
1045   if (enabled() == b) return;
1046 
1047   if (b) {
1048     set_bits(bits() | enabled_state);
1049   } else {
1050     set_active(false);          // remove the actual breakpoint insn, if any
1051     set_bits(bits() & ~enabled_state);
1052   }
1053 }
1054 
1055 
1056 void breakpoint_Relocation::set_active(bool b) {
1057   assert(!b || enabled(), "cannot activate a disabled breakpoint");
1058 
1059   if (active() == b) return;
1060 
1061   // %%% should probably seize a lock here (might not be the right lock)
1062   //MutexLockerEx ml_patch(Patching_lock, true);
1063   //if (active() == b)  return;         // recheck state after locking
1064 
1065   if (b) {
1066     set_bits(bits() | active_state);
1067     if (instrlen() == 0)
1068       fatal("breakpoints in original code must be undoable");
1069     pd_swap_in_breakpoint (addr(), instrs(), instrlen());
1070   } else {
1071     set_bits(bits() & ~active_state);
1072     pd_swap_out_breakpoint(addr(), instrs(), instrlen());
1073   }
1074 }
1075 
1076 
1077 //---------------------------------------------------------------------------------
1078 // Non-product code
1079 
1080 #ifndef PRODUCT
1081 
1082 static const char* reloc_type_string(relocInfo::relocType t) {
1083   switch (t) {
1084   #define EACH_CASE(name) \
1085   case relocInfo::name##_type: \
1086     return #name;
1087 
1088   APPLY_TO_RELOCATIONS(EACH_CASE);
1089   #undef EACH_CASE
1090 
1091   case relocInfo::none:
1092     return "none";
1093   case relocInfo::data_prefix_tag:
1094     return "prefix";
1095   default:
1096     return "UNKNOWN RELOC TYPE";
1097   }
1098 }
1099 
1100 
1101 void RelocIterator::print_current() {
1102   if (!has_current()) {
1103     tty->print_cr("(no relocs)");
1104     return;
1105   }
1106   tty->print("relocInfo@" INTPTR_FORMAT " [type=%d(%s) addr=" INTPTR_FORMAT " offset=%d",
1107              _current, type(), reloc_type_string((relocInfo::relocType) type()), _addr, _current->addr_offset());
1108   if (current()->format() != 0)
1109     tty->print(" format=%d", current()->format());
1110   if (datalen() == 1) {
1111     tty->print(" data=%d", data()[0]);
1112   } else if (datalen() > 0) {
1113     tty->print(" data={");
1114     for (int i = 0; i < datalen(); i++) {
1115       tty->print("%04x", data()[i] & 0xFFFF);
1116     }
1117     tty->print("}");
1118   }
1119   tty->print("]");
1120   switch (type()) {
1121   case relocInfo::oop_type:
1122     {
1123       oop_Relocation* r = oop_reloc();
1124       oop* oop_addr  = NULL;
1125       oop  raw_oop   = NULL;
1126       oop  oop_value = NULL;
1127       if (code() != NULL || r->oop_is_immediate()) {
1128         oop_addr  = r->oop_addr();
1129         raw_oop   = *oop_addr;
1130         oop_value = r->oop_value();
1131       }
1132       tty->print(" | [oop_addr=" INTPTR_FORMAT " *=" INTPTR_FORMAT " offset=%d]",
1133                  oop_addr, (address)raw_oop, r->offset());
1134       // Do not print the oop by default--we want this routine to
1135       // work even during GC or other inconvenient times.
1136       if (WizardMode && oop_value != NULL) {
1137         tty->print("oop_value=" INTPTR_FORMAT ": ", (address)oop_value);
1138         oop_value->print_value_on(tty);
1139       }
1140       break;
1141     }
1142   case relocInfo::external_word_type:
1143   case relocInfo::internal_word_type:
1144   case relocInfo::section_word_type:
1145     {
1146       DataRelocation* r = (DataRelocation*) reloc();
1147       tty->print(" | [target=" INTPTR_FORMAT "]", r->value()); //value==target
1148       break;
1149     }
1150   case relocInfo::static_call_type:
1151   case relocInfo::runtime_call_type:
1152     {
1153       CallRelocation* r = (CallRelocation*) reloc();
1154       tty->print(" | [destination=" INTPTR_FORMAT "]", r->destination());
1155       break;
1156     }
1157   case relocInfo::virtual_call_type:
1158     {
1159       virtual_call_Relocation* r = (virtual_call_Relocation*) reloc();
1160       tty->print(" | [destination=" INTPTR_FORMAT " first_oop=" INTPTR_FORMAT " oop_limit=" INTPTR_FORMAT "]",
1161                  r->destination(), r->first_oop(), r->oop_limit());
1162       break;
1163     }
1164   case relocInfo::static_stub_type:
1165     {
1166       static_stub_Relocation* r = (static_stub_Relocation*) reloc();
1167       tty->print(" | [static_call=" INTPTR_FORMAT "]", r->static_call());
1168       break;
1169     }
1170   }
1171   tty->cr();
1172 }
1173 
1174 
1175 void RelocIterator::print() {
1176   RelocIterator save_this = (*this);
1177   relocInfo* scan = _current;
1178   if (!has_current())  scan += 1;  // nothing to scan here!
1179 
1180   bool skip_next = has_current();
1181   bool got_next;
1182   while (true) {
1183     got_next = (skip_next || next());
1184     skip_next = false;
1185 
1186     tty->print("         @" INTPTR_FORMAT ": ", scan);
1187     relocInfo* newscan = _current+1;
1188     if (!has_current())  newscan -= 1;  // nothing to scan here!
1189     while (scan < newscan) {
1190       tty->print("%04x", *(short*)scan & 0xFFFF);
1191       scan++;
1192     }
1193     tty->cr();
1194 
1195     if (!got_next)  break;
1196     print_current();
1197   }
1198 
1199   (*this) = save_this;
1200 }
1201 
1202 // For the debugger:
1203 extern "C"
1204 void print_blob_locs(nmethod* nm) {
1205   nm->print();
1206   RelocIterator iter(nm);
1207   iter.print();
1208 }
1209 extern "C"
1210 void print_buf_locs(CodeBuffer* cb) {
1211   FlagSetting fs(PrintRelocations, true);
1212   cb->print();
1213 }
1214 #endif // !PRODUCT