1 /*
   2  * Copyright (c) 1997, 2011, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/systemDictionary.hpp"
  27 #include "classfile/vmSymbols.hpp"
  28 #include "code/compiledIC.hpp"
  29 #include "code/scopeDesc.hpp"
  30 #include "code/vtableStubs.hpp"
  31 #include "compiler/abstractCompiler.hpp"
  32 #include "compiler/compileBroker.hpp"
  33 #include "compiler/compilerOracle.hpp"
  34 #include "interpreter/interpreter.hpp"
  35 #include "interpreter/interpreterRuntime.hpp"
  36 #include "memory/gcLocker.inline.hpp"
  37 #include "memory/universe.inline.hpp"
  38 #include "oops/oop.inline.hpp"
  39 #include "prims/forte.hpp"
  40 #include "prims/jvmtiExport.hpp"
  41 #include "prims/jvmtiRedefineClassesTrace.hpp"
  42 #include "prims/methodHandles.hpp"
  43 #include "prims/nativeLookup.hpp"
  44 #include "runtime/arguments.hpp"
  45 #include "runtime/biasedLocking.hpp"
  46 #include "runtime/handles.inline.hpp"
  47 #include "runtime/init.hpp"
  48 #include "runtime/interfaceSupport.hpp"
  49 #include "runtime/javaCalls.hpp"
  50 #include "runtime/sharedRuntime.hpp"
  51 #include "runtime/stubRoutines.hpp"
  52 #include "runtime/vframe.hpp"
  53 #include "runtime/vframeArray.hpp"
  54 #include "utilities/copy.hpp"
  55 #include "utilities/dtrace.hpp"
  56 #include "utilities/events.hpp"
  57 #include "utilities/hashtable.inline.hpp"
  58 #include "utilities/xmlstream.hpp"
  59 #ifdef TARGET_ARCH_x86
  60 # include "nativeInst_x86.hpp"
  61 # include "vmreg_x86.inline.hpp"
  62 #endif
  63 #ifdef TARGET_ARCH_sparc
  64 # include "nativeInst_sparc.hpp"
  65 # include "vmreg_sparc.inline.hpp"
  66 #endif
  67 #ifdef TARGET_ARCH_zero
  68 # include "nativeInst_zero.hpp"
  69 # include "vmreg_zero.inline.hpp"
  70 #endif
  71 #ifdef TARGET_ARCH_arm
  72 # include "nativeInst_arm.hpp"
  73 # include "vmreg_arm.inline.hpp"
  74 #endif
  75 #ifdef TARGET_ARCH_ppc
  76 # include "nativeInst_ppc.hpp"
  77 # include "vmreg_ppc.inline.hpp"
  78 #endif
  79 #ifdef COMPILER1
  80 #include "c1/c1_Runtime1.hpp"
  81 #endif
  82 
  83 // Shared stub locations
  84 RuntimeStub*        SharedRuntime::_wrong_method_blob;
  85 RuntimeStub*        SharedRuntime::_ic_miss_blob;
  86 RuntimeStub*        SharedRuntime::_resolve_opt_virtual_call_blob;
  87 RuntimeStub*        SharedRuntime::_resolve_virtual_call_blob;
  88 RuntimeStub*        SharedRuntime::_resolve_static_call_blob;
  89 
  90 DeoptimizationBlob* SharedRuntime::_deopt_blob;
  91 RicochetBlob*       SharedRuntime::_ricochet_blob;
  92 
  93 SafepointBlob*      SharedRuntime::_polling_page_safepoint_handler_blob;
  94 SafepointBlob*      SharedRuntime::_polling_page_return_handler_blob;
  95 
  96 #ifdef COMPILER2
  97 UncommonTrapBlob*   SharedRuntime::_uncommon_trap_blob;
  98 #endif // COMPILER2
  99 
 100 
 101 //----------------------------generate_stubs-----------------------------------
 102 void SharedRuntime::generate_stubs() {
 103   _wrong_method_blob                   = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method),         "wrong_method_stub");
 104   _ic_miss_blob                        = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method_ic_miss), "ic_miss_stub");
 105   _resolve_opt_virtual_call_blob       = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_opt_virtual_call_C),  "resolve_opt_virtual_call");
 106   _resolve_virtual_call_blob           = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_virtual_call_C),      "resolve_virtual_call");
 107   _resolve_static_call_blob            = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_static_call_C),       "resolve_static_call");
 108 
 109   _polling_page_safepoint_handler_blob = generate_handler_blob(CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception), false);
 110   _polling_page_return_handler_blob    = generate_handler_blob(CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception), true);
 111 
 112   generate_ricochet_blob();
 113   generate_deopt_blob();
 114 
 115 #ifdef COMPILER2
 116   generate_uncommon_trap_blob();
 117 #endif // COMPILER2
 118 }
 119 
 120 //----------------------------generate_ricochet_blob---------------------------
 121 void SharedRuntime::generate_ricochet_blob() {
 122   if (!EnableInvokeDynamic)  return;  // leave it as a null
 123 
 124 #ifndef TARGET_ARCH_NYI_6939861
 125   // allocate space for the code
 126   ResourceMark rm;
 127   // setup code generation tools
 128   CodeBuffer buffer("ricochet_blob", 256 LP64_ONLY(+ 256), 256);  // XXX x86 LP64L: 512, 512
 129   MacroAssembler* masm = new MacroAssembler(&buffer);
 130 
 131   int bounce_offset = -1, exception_offset = -1, frame_size_in_words = -1;
 132   MethodHandles::RicochetFrame::generate_ricochet_blob(masm, &bounce_offset, &exception_offset, &frame_size_in_words);
 133 
 134   // -------------
 135   // make sure all code is generated
 136   masm->flush();
 137 
 138   // failed to generate?
 139   if (bounce_offset < 0 || exception_offset < 0 || frame_size_in_words < 0) {
 140     assert(false, "bad ricochet blob");
 141     return;
 142   }
 143 
 144   _ricochet_blob = RicochetBlob::create(&buffer, bounce_offset, exception_offset, frame_size_in_words);
 145 #endif
 146 }
 147 
 148 
 149 #include <math.h>
 150 
 151 #ifndef USDT2
 152 HS_DTRACE_PROBE_DECL4(hotspot, object__alloc, Thread*, char*, int, size_t);
 153 HS_DTRACE_PROBE_DECL7(hotspot, method__entry, int,
 154                       char*, int, char*, int, char*, int);
 155 HS_DTRACE_PROBE_DECL7(hotspot, method__return, int,
 156                       char*, int, char*, int, char*, int);
 157 #endif /* !USDT2 */
 158 
 159 // Implementation of SharedRuntime
 160 
 161 #ifndef PRODUCT
 162 // For statistics
 163 int SharedRuntime::_ic_miss_ctr = 0;
 164 int SharedRuntime::_wrong_method_ctr = 0;
 165 int SharedRuntime::_resolve_static_ctr = 0;
 166 int SharedRuntime::_resolve_virtual_ctr = 0;
 167 int SharedRuntime::_resolve_opt_virtual_ctr = 0;
 168 int SharedRuntime::_implicit_null_throws = 0;
 169 int SharedRuntime::_implicit_div0_throws = 0;
 170 int SharedRuntime::_throw_null_ctr = 0;
 171 
 172 int SharedRuntime::_nof_normal_calls = 0;
 173 int SharedRuntime::_nof_optimized_calls = 0;
 174 int SharedRuntime::_nof_inlined_calls = 0;
 175 int SharedRuntime::_nof_megamorphic_calls = 0;
 176 int SharedRuntime::_nof_static_calls = 0;
 177 int SharedRuntime::_nof_inlined_static_calls = 0;
 178 int SharedRuntime::_nof_interface_calls = 0;
 179 int SharedRuntime::_nof_optimized_interface_calls = 0;
 180 int SharedRuntime::_nof_inlined_interface_calls = 0;
 181 int SharedRuntime::_nof_megamorphic_interface_calls = 0;
 182 int SharedRuntime::_nof_removable_exceptions = 0;
 183 
 184 int SharedRuntime::_new_instance_ctr=0;
 185 int SharedRuntime::_new_array_ctr=0;
 186 int SharedRuntime::_multi1_ctr=0;
 187 int SharedRuntime::_multi2_ctr=0;
 188 int SharedRuntime::_multi3_ctr=0;
 189 int SharedRuntime::_multi4_ctr=0;
 190 int SharedRuntime::_multi5_ctr=0;
 191 int SharedRuntime::_mon_enter_stub_ctr=0;
 192 int SharedRuntime::_mon_exit_stub_ctr=0;
 193 int SharedRuntime::_mon_enter_ctr=0;
 194 int SharedRuntime::_mon_exit_ctr=0;
 195 int SharedRuntime::_partial_subtype_ctr=0;
 196 int SharedRuntime::_jbyte_array_copy_ctr=0;
 197 int SharedRuntime::_jshort_array_copy_ctr=0;
 198 int SharedRuntime::_jint_array_copy_ctr=0;
 199 int SharedRuntime::_jlong_array_copy_ctr=0;
 200 int SharedRuntime::_oop_array_copy_ctr=0;
 201 int SharedRuntime::_checkcast_array_copy_ctr=0;
 202 int SharedRuntime::_unsafe_array_copy_ctr=0;
 203 int SharedRuntime::_generic_array_copy_ctr=0;
 204 int SharedRuntime::_slow_array_copy_ctr=0;
 205 int SharedRuntime::_find_handler_ctr=0;
 206 int SharedRuntime::_rethrow_ctr=0;
 207 
 208 int     SharedRuntime::_ICmiss_index                    = 0;
 209 int     SharedRuntime::_ICmiss_count[SharedRuntime::maxICmiss_count];
 210 address SharedRuntime::_ICmiss_at[SharedRuntime::maxICmiss_count];
 211 
 212 
 213 void SharedRuntime::trace_ic_miss(address at) {
 214   for (int i = 0; i < _ICmiss_index; i++) {
 215     if (_ICmiss_at[i] == at) {
 216       _ICmiss_count[i]++;
 217       return;
 218     }
 219   }
 220   int index = _ICmiss_index++;
 221   if (_ICmiss_index >= maxICmiss_count) _ICmiss_index = maxICmiss_count - 1;
 222   _ICmiss_at[index] = at;
 223   _ICmiss_count[index] = 1;
 224 }
 225 
 226 void SharedRuntime::print_ic_miss_histogram() {
 227   if (ICMissHistogram) {
 228     tty->print_cr ("IC Miss Histogram:");
 229     int tot_misses = 0;
 230     for (int i = 0; i < _ICmiss_index; i++) {
 231       tty->print_cr("  at: " INTPTR_FORMAT "  nof: %d", _ICmiss_at[i], _ICmiss_count[i]);
 232       tot_misses += _ICmiss_count[i];
 233     }
 234     tty->print_cr ("Total IC misses: %7d", tot_misses);
 235   }
 236 }
 237 #endif // PRODUCT
 238 
 239 #ifndef SERIALGC
 240 
 241 // G1 write-barrier pre: executed before a pointer store.
 242 JRT_LEAF(void, SharedRuntime::g1_wb_pre(oopDesc* orig, JavaThread *thread))
 243   if (orig == NULL) {
 244     assert(false, "should be optimized out");
 245     return;
 246   }
 247   assert(orig->is_oop(true /* ignore mark word */), "Error");
 248   // store the original value that was in the field reference
 249   thread->satb_mark_queue().enqueue(orig);
 250 JRT_END
 251 
 252 // G1 write-barrier post: executed after a pointer store.
 253 JRT_LEAF(void, SharedRuntime::g1_wb_post(void* card_addr, JavaThread* thread))
 254   thread->dirty_card_queue().enqueue(card_addr);
 255 JRT_END
 256 
 257 #endif // !SERIALGC
 258 
 259 
 260 JRT_LEAF(jlong, SharedRuntime::lmul(jlong y, jlong x))
 261   return x * y;
 262 JRT_END
 263 
 264 
 265 JRT_LEAF(jlong, SharedRuntime::ldiv(jlong y, jlong x))
 266   if (x == min_jlong && y == CONST64(-1)) {
 267     return x;
 268   } else {
 269     return x / y;
 270   }
 271 JRT_END
 272 
 273 
 274 JRT_LEAF(jlong, SharedRuntime::lrem(jlong y, jlong x))
 275   if (x == min_jlong && y == CONST64(-1)) {
 276     return 0;
 277   } else {
 278     return x % y;
 279   }
 280 JRT_END
 281 
 282 
 283 const juint  float_sign_mask  = 0x7FFFFFFF;
 284 const juint  float_infinity   = 0x7F800000;
 285 const julong double_sign_mask = CONST64(0x7FFFFFFFFFFFFFFF);
 286 const julong double_infinity  = CONST64(0x7FF0000000000000);
 287 
 288 JRT_LEAF(jfloat, SharedRuntime::frem(jfloat  x, jfloat  y))
 289 #ifdef _WIN64
 290   // 64-bit Windows on amd64 returns the wrong values for
 291   // infinity operands.
 292   union { jfloat f; juint i; } xbits, ybits;
 293   xbits.f = x;
 294   ybits.f = y;
 295   // x Mod Infinity == x unless x is infinity
 296   if ( ((xbits.i & float_sign_mask) != float_infinity) &&
 297        ((ybits.i & float_sign_mask) == float_infinity) ) {
 298     return x;
 299   }
 300 #endif
 301   return ((jfloat)fmod((double)x,(double)y));
 302 JRT_END
 303 
 304 
 305 JRT_LEAF(jdouble, SharedRuntime::drem(jdouble x, jdouble y))
 306 #ifdef _WIN64
 307   union { jdouble d; julong l; } xbits, ybits;
 308   xbits.d = x;
 309   ybits.d = y;
 310   // x Mod Infinity == x unless x is infinity
 311   if ( ((xbits.l & double_sign_mask) != double_infinity) &&
 312        ((ybits.l & double_sign_mask) == double_infinity) ) {
 313     return x;
 314   }
 315 #endif
 316   return ((jdouble)fmod((double)x,(double)y));
 317 JRT_END
 318 
 319 #ifdef __SOFTFP__
 320 JRT_LEAF(jfloat, SharedRuntime::fadd(jfloat x, jfloat y))
 321   return x + y;
 322 JRT_END
 323 
 324 JRT_LEAF(jfloat, SharedRuntime::fsub(jfloat x, jfloat y))
 325   return x - y;
 326 JRT_END
 327 
 328 JRT_LEAF(jfloat, SharedRuntime::fmul(jfloat x, jfloat y))
 329   return x * y;
 330 JRT_END
 331 
 332 JRT_LEAF(jfloat, SharedRuntime::fdiv(jfloat x, jfloat y))
 333   return x / y;
 334 JRT_END
 335 
 336 JRT_LEAF(jdouble, SharedRuntime::dadd(jdouble x, jdouble y))
 337   return x + y;
 338 JRT_END
 339 
 340 JRT_LEAF(jdouble, SharedRuntime::dsub(jdouble x, jdouble y))
 341   return x - y;
 342 JRT_END
 343 
 344 JRT_LEAF(jdouble, SharedRuntime::dmul(jdouble x, jdouble y))
 345   return x * y;
 346 JRT_END
 347 
 348 JRT_LEAF(jdouble, SharedRuntime::ddiv(jdouble x, jdouble y))
 349   return x / y;
 350 JRT_END
 351 
 352 JRT_LEAF(jfloat, SharedRuntime::i2f(jint x))
 353   return (jfloat)x;
 354 JRT_END
 355 
 356 JRT_LEAF(jdouble, SharedRuntime::i2d(jint x))
 357   return (jdouble)x;
 358 JRT_END
 359 
 360 JRT_LEAF(jdouble, SharedRuntime::f2d(jfloat x))
 361   return (jdouble)x;
 362 JRT_END
 363 
 364 JRT_LEAF(int,  SharedRuntime::fcmpl(float x, float y))
 365   return x>y ? 1 : (x==y ? 0 : -1);  /* x<y or is_nan*/
 366 JRT_END
 367 
 368 JRT_LEAF(int,  SharedRuntime::fcmpg(float x, float y))
 369   return x<y ? -1 : (x==y ? 0 : 1);  /* x>y or is_nan */
 370 JRT_END
 371 
 372 JRT_LEAF(int,  SharedRuntime::dcmpl(double x, double y))
 373   return x>y ? 1 : (x==y ? 0 : -1); /* x<y or is_nan */
 374 JRT_END
 375 
 376 JRT_LEAF(int,  SharedRuntime::dcmpg(double x, double y))
 377   return x<y ? -1 : (x==y ? 0 : 1);  /* x>y or is_nan */
 378 JRT_END
 379 
 380 // Functions to return the opposite of the aeabi functions for nan.
 381 JRT_LEAF(int, SharedRuntime::unordered_fcmplt(float x, float y))
 382   return (x < y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 383 JRT_END
 384 
 385 JRT_LEAF(int, SharedRuntime::unordered_dcmplt(double x, double y))
 386   return (x < y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 387 JRT_END
 388 
 389 JRT_LEAF(int, SharedRuntime::unordered_fcmple(float x, float y))
 390   return (x <= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 391 JRT_END
 392 
 393 JRT_LEAF(int, SharedRuntime::unordered_dcmple(double x, double y))
 394   return (x <= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 395 JRT_END
 396 
 397 JRT_LEAF(int, SharedRuntime::unordered_fcmpge(float x, float y))
 398   return (x >= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 399 JRT_END
 400 
 401 JRT_LEAF(int, SharedRuntime::unordered_dcmpge(double x, double y))
 402   return (x >= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 403 JRT_END
 404 
 405 JRT_LEAF(int, SharedRuntime::unordered_fcmpgt(float x, float y))
 406   return (x > y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 407 JRT_END
 408 
 409 JRT_LEAF(int, SharedRuntime::unordered_dcmpgt(double x, double y))
 410   return (x > y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 411 JRT_END
 412 
 413 // Intrinsics make gcc generate code for these.
 414 float  SharedRuntime::fneg(float f)   {
 415   return -f;
 416 }
 417 
 418 double SharedRuntime::dneg(double f)  {
 419   return -f;
 420 }
 421 
 422 #endif // __SOFTFP__
 423 
 424 #if defined(__SOFTFP__) || defined(E500V2)
 425 // Intrinsics make gcc generate code for these.
 426 double SharedRuntime::dabs(double f)  {
 427   return (f <= (double)0.0) ? (double)0.0 - f : f;
 428 }
 429 
 430 #endif
 431 
 432 #if defined(__SOFTFP__) || defined(PPC)
 433 double SharedRuntime::dsqrt(double f) {
 434   return sqrt(f);
 435 }
 436 #endif
 437 
 438 JRT_LEAF(jint, SharedRuntime::f2i(jfloat  x))
 439   if (g_isnan(x))
 440     return 0;
 441   if (x >= (jfloat) max_jint)
 442     return max_jint;
 443   if (x <= (jfloat) min_jint)
 444     return min_jint;
 445   return (jint) x;
 446 JRT_END
 447 
 448 
 449 JRT_LEAF(jlong, SharedRuntime::f2l(jfloat  x))
 450   if (g_isnan(x))
 451     return 0;
 452   if (x >= (jfloat) max_jlong)
 453     return max_jlong;
 454   if (x <= (jfloat) min_jlong)
 455     return min_jlong;
 456   return (jlong) x;
 457 JRT_END
 458 
 459 
 460 JRT_LEAF(jint, SharedRuntime::d2i(jdouble x))
 461   if (g_isnan(x))
 462     return 0;
 463   if (x >= (jdouble) max_jint)
 464     return max_jint;
 465   if (x <= (jdouble) min_jint)
 466     return min_jint;
 467   return (jint) x;
 468 JRT_END
 469 
 470 
 471 JRT_LEAF(jlong, SharedRuntime::d2l(jdouble x))
 472   if (g_isnan(x))
 473     return 0;
 474   if (x >= (jdouble) max_jlong)
 475     return max_jlong;
 476   if (x <= (jdouble) min_jlong)
 477     return min_jlong;
 478   return (jlong) x;
 479 JRT_END
 480 
 481 
 482 JRT_LEAF(jfloat, SharedRuntime::d2f(jdouble x))
 483   return (jfloat)x;
 484 JRT_END
 485 
 486 
 487 JRT_LEAF(jfloat, SharedRuntime::l2f(jlong x))
 488   return (jfloat)x;
 489 JRT_END
 490 
 491 
 492 JRT_LEAF(jdouble, SharedRuntime::l2d(jlong x))
 493   return (jdouble)x;
 494 JRT_END
 495 
 496 // Exception handling accross interpreter/compiler boundaries
 497 //
 498 // exception_handler_for_return_address(...) returns the continuation address.
 499 // The continuation address is the entry point of the exception handler of the
 500 // previous frame depending on the return address.
 501 
 502 address SharedRuntime::raw_exception_handler_for_return_address(JavaThread* thread, address return_address) {
 503   assert(frame::verify_return_pc(return_address), err_msg("must be a return address: " INTPTR_FORMAT, return_address));
 504 
 505   // Reset method handle flag.
 506   thread->set_is_method_handle_return(false);
 507 
 508   // The fastest case first
 509   CodeBlob* blob = CodeCache::find_blob(return_address);
 510   nmethod* nm = (blob != NULL) ? blob->as_nmethod_or_null() : NULL;
 511   if (nm != NULL) {
 512     // Set flag if return address is a method handle call site.
 513     thread->set_is_method_handle_return(nm->is_method_handle_return(return_address));
 514     // native nmethods don't have exception handlers
 515     assert(!nm->is_native_method(), "no exception handler");
 516     assert(nm->header_begin() != nm->exception_begin(), "no exception handler");
 517     if (nm->is_deopt_pc(return_address)) {
 518       return SharedRuntime::deopt_blob()->unpack_with_exception();
 519     } else {
 520       return nm->exception_begin();
 521     }
 522   }
 523 
 524   // Entry code
 525   if (StubRoutines::returns_to_call_stub(return_address)) {
 526     return StubRoutines::catch_exception_entry();
 527   }
 528   // Interpreted code
 529   if (Interpreter::contains(return_address)) {
 530     return Interpreter::rethrow_exception_entry();
 531   }
 532   // Ricochet frame unwind code
 533   if (SharedRuntime::ricochet_blob() != NULL && SharedRuntime::ricochet_blob()->returns_to_bounce_addr(return_address)) {
 534     return SharedRuntime::ricochet_blob()->exception_addr();
 535   }
 536 
 537   guarantee(blob == NULL || !blob->is_runtime_stub(), "caller should have skipped stub");
 538   guarantee(!VtableStubs::contains(return_address), "NULL exceptions in vtables should have been handled already!");
 539 
 540 #ifndef PRODUCT
 541   { ResourceMark rm;
 542     tty->print_cr("No exception handler found for exception at " INTPTR_FORMAT " - potential problems:", return_address);
 543     tty->print_cr("a) exception happened in (new?) code stubs/buffers that is not handled here");
 544     tty->print_cr("b) other problem");
 545   }
 546 #endif // PRODUCT
 547 
 548   ShouldNotReachHere();
 549   return NULL;
 550 }
 551 
 552 
 553 JRT_LEAF(address, SharedRuntime::exception_handler_for_return_address(JavaThread* thread, address return_address))
 554   return raw_exception_handler_for_return_address(thread, return_address);
 555 JRT_END
 556 
 557 
 558 address SharedRuntime::get_poll_stub(address pc) {
 559   address stub;
 560   // Look up the code blob
 561   CodeBlob *cb = CodeCache::find_blob(pc);
 562 
 563   // Should be an nmethod
 564   assert( cb && cb->is_nmethod(), "safepoint polling: pc must refer to an nmethod" );
 565 
 566   // Look up the relocation information
 567   assert( ((nmethod*)cb)->is_at_poll_or_poll_return(pc),
 568     "safepoint polling: type must be poll" );
 569 
 570   assert( ((NativeInstruction*)pc)->is_safepoint_poll(),
 571     "Only polling locations are used for safepoint");
 572 
 573   bool at_poll_return = ((nmethod*)cb)->is_at_poll_return(pc);
 574   if (at_poll_return) {
 575     assert(SharedRuntime::polling_page_return_handler_blob() != NULL,
 576            "polling page return stub not created yet");
 577     stub = SharedRuntime::polling_page_return_handler_blob()->entry_point();
 578   } else {
 579     assert(SharedRuntime::polling_page_safepoint_handler_blob() != NULL,
 580            "polling page safepoint stub not created yet");
 581     stub = SharedRuntime::polling_page_safepoint_handler_blob()->entry_point();
 582   }
 583 #ifndef PRODUCT
 584   if( TraceSafepoint ) {
 585     char buf[256];
 586     jio_snprintf(buf, sizeof(buf),
 587                  "... found polling page %s exception at pc = "
 588                  INTPTR_FORMAT ", stub =" INTPTR_FORMAT,
 589                  at_poll_return ? "return" : "loop",
 590                  (intptr_t)pc, (intptr_t)stub);
 591     tty->print_raw_cr(buf);
 592   }
 593 #endif // PRODUCT
 594   return stub;
 595 }
 596 
 597 
 598 oop SharedRuntime::retrieve_receiver( Symbol* sig, frame caller ) {
 599   assert(caller.is_interpreted_frame(), "");
 600   int args_size = ArgumentSizeComputer(sig).size() + 1;
 601   assert(args_size <= caller.interpreter_frame_expression_stack_size(), "receiver must be on interpreter stack");
 602   oop result = (oop) *caller.interpreter_frame_tos_at(args_size - 1);
 603   assert(Universe::heap()->is_in(result) && result->is_oop(), "receiver must be an oop");
 604   return result;
 605 }
 606 
 607 
 608 void SharedRuntime::throw_and_post_jvmti_exception(JavaThread *thread, Handle h_exception) {
 609   if (JvmtiExport::can_post_on_exceptions()) {
 610     vframeStream vfst(thread, true);
 611     methodHandle method = methodHandle(thread, vfst.method());
 612     address bcp = method()->bcp_from(vfst.bci());
 613     JvmtiExport::post_exception_throw(thread, method(), bcp, h_exception());
 614   }
 615   Exceptions::_throw(thread, __FILE__, __LINE__, h_exception);
 616 }
 617 
 618 void SharedRuntime::throw_and_post_jvmti_exception(JavaThread *thread, Symbol* name, const char *message) {
 619   Handle h_exception = Exceptions::new_exception(thread, name, message);
 620   throw_and_post_jvmti_exception(thread, h_exception);
 621 }
 622 
 623 // The interpreter code to call this tracing function is only
 624 // called/generated when TraceRedefineClasses has the right bits
 625 // set. Since obsolete methods are never compiled, we don't have
 626 // to modify the compilers to generate calls to this function.
 627 //
 628 JRT_LEAF(int, SharedRuntime::rc_trace_method_entry(
 629     JavaThread* thread, methodOopDesc* method))
 630   assert(RC_TRACE_IN_RANGE(0x00001000, 0x00002000), "wrong call");
 631 
 632   if (method->is_obsolete()) {
 633     // We are calling an obsolete method, but this is not necessarily
 634     // an error. Our method could have been redefined just after we
 635     // fetched the methodOop from the constant pool.
 636 
 637     // RC_TRACE macro has an embedded ResourceMark
 638     RC_TRACE_WITH_THREAD(0x00001000, thread,
 639                          ("calling obsolete method '%s'",
 640                           method->name_and_sig_as_C_string()));
 641     if (RC_TRACE_ENABLED(0x00002000)) {
 642       // this option is provided to debug calls to obsolete methods
 643       guarantee(false, "faulting at call to an obsolete method.");
 644     }
 645   }
 646   return 0;
 647 JRT_END
 648 
 649 // ret_pc points into caller; we are returning caller's exception handler
 650 // for given exception
 651 address SharedRuntime::compute_compiled_exc_handler(nmethod* nm, address ret_pc, Handle& exception,
 652                                                     bool force_unwind, bool top_frame_only) {
 653   assert(nm != NULL, "must exist");
 654   ResourceMark rm;
 655 
 656   ScopeDesc* sd = nm->scope_desc_at(ret_pc);
 657   // determine handler bci, if any
 658   EXCEPTION_MARK;
 659 
 660   int handler_bci = -1;
 661   int scope_depth = 0;
 662   if (!force_unwind) {
 663     int bci = sd->bci();
 664     bool recursive_exception = false;
 665     do {
 666       bool skip_scope_increment = false;
 667       // exception handler lookup
 668       KlassHandle ek (THREAD, exception->klass());
 669       handler_bci = sd->method()->fast_exception_handler_bci_for(ek, bci, THREAD);
 670       if (HAS_PENDING_EXCEPTION) {
 671         recursive_exception = true;
 672         // We threw an exception while trying to find the exception handler.
 673         // Transfer the new exception to the exception handle which will
 674         // be set into thread local storage, and do another lookup for an
 675         // exception handler for this exception, this time starting at the
 676         // BCI of the exception handler which caused the exception to be
 677         // thrown (bugs 4307310 and 4546590). Set "exception" reference
 678         // argument to ensure that the correct exception is thrown (4870175).
 679         exception = Handle(THREAD, PENDING_EXCEPTION);
 680         CLEAR_PENDING_EXCEPTION;
 681         if (handler_bci >= 0) {
 682           bci = handler_bci;
 683           handler_bci = -1;
 684           skip_scope_increment = true;
 685         }
 686       }
 687       else {
 688         recursive_exception = false;
 689       }
 690       if (!top_frame_only && handler_bci < 0 && !skip_scope_increment) {
 691         sd = sd->sender();
 692         if (sd != NULL) {
 693           bci = sd->bci();
 694         }
 695         ++scope_depth;
 696       }
 697     } while (recursive_exception || (!top_frame_only && handler_bci < 0 && sd != NULL));
 698   }
 699 
 700   // found handling method => lookup exception handler
 701   int catch_pco = ret_pc - nm->code_begin();
 702 
 703   ExceptionHandlerTable table(nm);
 704   HandlerTableEntry *t = table.entry_for(catch_pco, handler_bci, scope_depth);
 705   if (t == NULL && (nm->is_compiled_by_c1() || handler_bci != -1)) {
 706     // Allow abbreviated catch tables.  The idea is to allow a method
 707     // to materialize its exceptions without committing to the exact
 708     // routing of exceptions.  In particular this is needed for adding
 709     // a synthethic handler to unlock monitors when inlining
 710     // synchonized methods since the unlock path isn't represented in
 711     // the bytecodes.
 712     t = table.entry_for(catch_pco, -1, 0);
 713   }
 714 
 715 #ifdef COMPILER1
 716   if (t == NULL && nm->is_compiled_by_c1()) {
 717     assert(nm->unwind_handler_begin() != NULL, "");
 718     return nm->unwind_handler_begin();
 719   }
 720 #endif
 721 
 722   if (t == NULL) {
 723     tty->print_cr("MISSING EXCEPTION HANDLER for pc " INTPTR_FORMAT " and handler bci %d", ret_pc, handler_bci);
 724     tty->print_cr("   Exception:");
 725     exception->print();
 726     tty->cr();
 727     tty->print_cr(" Compiled exception table :");
 728     table.print();
 729     nm->print_code();
 730     guarantee(false, "missing exception handler");
 731     return NULL;
 732   }
 733 
 734   return nm->code_begin() + t->pco();
 735 }
 736 
 737 JRT_ENTRY(void, SharedRuntime::throw_AbstractMethodError(JavaThread* thread))
 738   // These errors occur only at call sites
 739   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_AbstractMethodError());
 740 JRT_END
 741 
 742 JRT_ENTRY(void, SharedRuntime::throw_IncompatibleClassChangeError(JavaThread* thread))
 743   // These errors occur only at call sites
 744   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_IncompatibleClassChangeError(), "vtable stub");
 745 JRT_END
 746 
 747 JRT_ENTRY(void, SharedRuntime::throw_ArithmeticException(JavaThread* thread))
 748   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_ArithmeticException(), "/ by zero");
 749 JRT_END
 750 
 751 JRT_ENTRY(void, SharedRuntime::throw_NullPointerException(JavaThread* thread))
 752   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_NullPointerException());
 753 JRT_END
 754 
 755 JRT_ENTRY(void, SharedRuntime::throw_NullPointerException_at_call(JavaThread* thread))
 756   // This entry point is effectively only used for NullPointerExceptions which occur at inline
 757   // cache sites (when the callee activation is not yet set up) so we are at a call site
 758   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_NullPointerException());
 759 JRT_END
 760 
 761 JRT_ENTRY(void, SharedRuntime::throw_StackOverflowError(JavaThread* thread))
 762   // We avoid using the normal exception construction in this case because
 763   // it performs an upcall to Java, and we're already out of stack space.
 764   klassOop k = SystemDictionary::StackOverflowError_klass();
 765   oop exception_oop = instanceKlass::cast(k)->allocate_instance(CHECK);
 766   Handle exception (thread, exception_oop);
 767   if (StackTraceInThrowable) {
 768     java_lang_Throwable::fill_in_stack_trace(exception);
 769   }
 770   throw_and_post_jvmti_exception(thread, exception);
 771 JRT_END
 772 
 773 JRT_ENTRY(void, SharedRuntime::throw_WrongMethodTypeException(JavaThread* thread, oopDesc* required, oopDesc* actual))
 774   assert(thread == JavaThread::current() && required->is_oop() && actual->is_oop(), "bad args");
 775   ResourceMark rm;
 776   char* message = SharedRuntime::generate_wrong_method_type_message(thread, required, actual);
 777   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_invoke_WrongMethodTypeException(), message);
 778 JRT_END
 779 
 780 address SharedRuntime::continuation_for_implicit_exception(JavaThread* thread,
 781                                                            address pc,
 782                                                            SharedRuntime::ImplicitExceptionKind exception_kind)
 783 {
 784   address target_pc = NULL;
 785 
 786   if (Interpreter::contains(pc)) {
 787 #ifdef CC_INTERP
 788     // C++ interpreter doesn't throw implicit exceptions
 789     ShouldNotReachHere();
 790 #else
 791     switch (exception_kind) {
 792       case IMPLICIT_NULL:           return Interpreter::throw_NullPointerException_entry();
 793       case IMPLICIT_DIVIDE_BY_ZERO: return Interpreter::throw_ArithmeticException_entry();
 794       case STACK_OVERFLOW:          return Interpreter::throw_StackOverflowError_entry();
 795       default:                      ShouldNotReachHere();
 796     }
 797 #endif // !CC_INTERP
 798   } else {
 799     switch (exception_kind) {
 800       case STACK_OVERFLOW: {
 801         // Stack overflow only occurs upon frame setup; the callee is
 802         // going to be unwound. Dispatch to a shared runtime stub
 803         // which will cause the StackOverflowError to be fabricated
 804         // and processed.
 805         // For stack overflow in deoptimization blob, cleanup thread.
 806         if (thread->deopt_mark() != NULL) {
 807           Deoptimization::cleanup_deopt_info(thread, NULL);
 808         }
 809         return StubRoutines::throw_StackOverflowError_entry();
 810       }
 811 
 812       case IMPLICIT_NULL: {
 813         if (VtableStubs::contains(pc)) {
 814           // We haven't yet entered the callee frame. Fabricate an
 815           // exception and begin dispatching it in the caller. Since
 816           // the caller was at a call site, it's safe to destroy all
 817           // caller-saved registers, as these entry points do.
 818           VtableStub* vt_stub = VtableStubs::stub_containing(pc);
 819 
 820           // If vt_stub is NULL, then return NULL to signal handler to report the SEGV error.
 821           if (vt_stub == NULL) return NULL;
 822 
 823           if (vt_stub->is_abstract_method_error(pc)) {
 824             assert(!vt_stub->is_vtable_stub(), "should never see AbstractMethodErrors from vtable-type VtableStubs");
 825             return StubRoutines::throw_AbstractMethodError_entry();
 826           } else {
 827             return StubRoutines::throw_NullPointerException_at_call_entry();
 828           }
 829         } else {
 830           CodeBlob* cb = CodeCache::find_blob(pc);
 831 
 832           // If code blob is NULL, then return NULL to signal handler to report the SEGV error.
 833           if (cb == NULL) return NULL;
 834 
 835           // Exception happened in CodeCache. Must be either:
 836           // 1. Inline-cache check in C2I handler blob,
 837           // 2. Inline-cache check in nmethod, or
 838           // 3. Implict null exception in nmethod
 839 
 840           if (!cb->is_nmethod()) {
 841             guarantee(cb->is_adapter_blob() || cb->is_method_handles_adapter_blob(),
 842                       "exception happened outside interpreter, nmethods and vtable stubs (1)");
 843             // There is no handler here, so we will simply unwind.
 844             return StubRoutines::throw_NullPointerException_at_call_entry();
 845           }
 846 
 847           // Otherwise, it's an nmethod.  Consult its exception handlers.
 848           nmethod* nm = (nmethod*)cb;
 849           if (nm->inlinecache_check_contains(pc)) {
 850             // exception happened inside inline-cache check code
 851             // => the nmethod is not yet active (i.e., the frame
 852             // is not set up yet) => use return address pushed by
 853             // caller => don't push another return address
 854             return StubRoutines::throw_NullPointerException_at_call_entry();
 855           }
 856 
 857 #ifndef PRODUCT
 858           _implicit_null_throws++;
 859 #endif
 860           target_pc = nm->continuation_for_implicit_exception(pc);
 861           // If there's an unexpected fault, target_pc might be NULL,
 862           // in which case we want to fall through into the normal
 863           // error handling code.
 864         }
 865 
 866         break; // fall through
 867       }
 868 
 869 
 870       case IMPLICIT_DIVIDE_BY_ZERO: {
 871         nmethod* nm = CodeCache::find_nmethod(pc);
 872         guarantee(nm != NULL, "must have containing nmethod for implicit division-by-zero exceptions");
 873 #ifndef PRODUCT
 874         _implicit_div0_throws++;
 875 #endif
 876         target_pc = nm->continuation_for_implicit_exception(pc);
 877         // If there's an unexpected fault, target_pc might be NULL,
 878         // in which case we want to fall through into the normal
 879         // error handling code.
 880         break; // fall through
 881       }
 882 
 883       default: ShouldNotReachHere();
 884     }
 885 
 886     assert(exception_kind == IMPLICIT_NULL || exception_kind == IMPLICIT_DIVIDE_BY_ZERO, "wrong implicit exception kind");
 887 
 888     // for AbortVMOnException flag
 889     NOT_PRODUCT(Exceptions::debug_check_abort("java.lang.NullPointerException"));
 890     if (exception_kind == IMPLICIT_NULL) {
 891       Events::log("Implicit null exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, pc, target_pc);
 892     } else {
 893       Events::log("Implicit division by zero exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, pc, target_pc);
 894     }
 895     return target_pc;
 896   }
 897 
 898   ShouldNotReachHere();
 899   return NULL;
 900 }
 901 
 902 
 903 JNI_ENTRY(void, throw_unsatisfied_link_error(JNIEnv* env, ...))
 904 {
 905   THROW(vmSymbols::java_lang_UnsatisfiedLinkError());
 906 }
 907 JNI_END
 908 
 909 
 910 address SharedRuntime::native_method_throw_unsatisfied_link_error_entry() {
 911   return CAST_FROM_FN_PTR(address, &throw_unsatisfied_link_error);
 912 }
 913 
 914 
 915 #ifndef PRODUCT
 916 JRT_ENTRY(intptr_t, SharedRuntime::trace_bytecode(JavaThread* thread, intptr_t preserve_this_value, intptr_t tos, intptr_t tos2))
 917   const frame f = thread->last_frame();
 918   assert(f.is_interpreted_frame(), "must be an interpreted frame");
 919 #ifndef PRODUCT
 920   methodHandle mh(THREAD, f.interpreter_frame_method());
 921   BytecodeTracer::trace(mh, f.interpreter_frame_bcp(), tos, tos2);
 922 #endif // !PRODUCT
 923   return preserve_this_value;
 924 JRT_END
 925 #endif // !PRODUCT
 926 
 927 
 928 JRT_ENTRY(void, SharedRuntime::yield_all(JavaThread* thread, int attempts))
 929   os::yield_all(attempts);
 930 JRT_END
 931 
 932 
 933 JRT_ENTRY_NO_ASYNC(void, SharedRuntime::register_finalizer(JavaThread* thread, oopDesc* obj))
 934   assert(obj->is_oop(), "must be a valid oop");
 935   assert(obj->klass()->klass_part()->has_finalizer(), "shouldn't be here otherwise");
 936   instanceKlass::register_finalizer(instanceOop(obj), CHECK);
 937 JRT_END
 938 
 939 
 940 jlong SharedRuntime::get_java_tid(Thread* thread) {
 941   if (thread != NULL) {
 942     if (thread->is_Java_thread()) {
 943       oop obj = ((JavaThread*)thread)->threadObj();
 944       return (obj == NULL) ? 0 : java_lang_Thread::thread_id(obj);
 945     }
 946   }
 947   return 0;
 948 }
 949 
 950 /**
 951  * This function ought to be a void function, but cannot be because
 952  * it gets turned into a tail-call on sparc, which runs into dtrace bug
 953  * 6254741.  Once that is fixed we can remove the dummy return value.
 954  */
 955 int SharedRuntime::dtrace_object_alloc(oopDesc* o) {
 956   return dtrace_object_alloc_base(Thread::current(), o);
 957 }
 958 
 959 int SharedRuntime::dtrace_object_alloc_base(Thread* thread, oopDesc* o) {
 960   assert(DTraceAllocProbes, "wrong call");
 961   Klass* klass = o->blueprint();
 962   int size = o->size();
 963   Symbol* name = klass->name();
 964 #ifndef USDT2
 965   HS_DTRACE_PROBE4(hotspot, object__alloc, get_java_tid(thread),
 966                    name->bytes(), name->utf8_length(), size * HeapWordSize);
 967 #else /* USDT2 */
 968   HOTSPOT_OBJECT_ALLOC(
 969                    get_java_tid(thread),
 970                    (char *) name->bytes(), name->utf8_length(), size * HeapWordSize);
 971 #endif /* USDT2 */
 972   return 0;
 973 }
 974 
 975 JRT_LEAF(int, SharedRuntime::dtrace_method_entry(
 976     JavaThread* thread, methodOopDesc* method))
 977   assert(DTraceMethodProbes, "wrong call");
 978   Symbol* kname = method->klass_name();
 979   Symbol* name = method->name();
 980   Symbol* sig = method->signature();
 981 #ifndef USDT2
 982   HS_DTRACE_PROBE7(hotspot, method__entry, get_java_tid(thread),
 983       kname->bytes(), kname->utf8_length(),
 984       name->bytes(), name->utf8_length(),
 985       sig->bytes(), sig->utf8_length());
 986 #else /* USDT2 */
 987   HOTSPOT_METHOD_ENTRY(
 988       get_java_tid(thread),
 989       (char *) kname->bytes(), kname->utf8_length(),
 990       (char *) name->bytes(), name->utf8_length(),
 991       (char *) sig->bytes(), sig->utf8_length());
 992 #endif /* USDT2 */
 993   return 0;
 994 JRT_END
 995 
 996 JRT_LEAF(int, SharedRuntime::dtrace_method_exit(
 997     JavaThread* thread, methodOopDesc* method))
 998   assert(DTraceMethodProbes, "wrong call");
 999   Symbol* kname = method->klass_name();
1000   Symbol* name = method->name();
1001   Symbol* sig = method->signature();
1002 #ifndef USDT2
1003   HS_DTRACE_PROBE7(hotspot, method__return, get_java_tid(thread),
1004       kname->bytes(), kname->utf8_length(),
1005       name->bytes(), name->utf8_length(),
1006       sig->bytes(), sig->utf8_length());
1007 #else /* USDT2 */
1008   HOTSPOT_METHOD_RETURN(
1009       get_java_tid(thread),
1010       (char *) kname->bytes(), kname->utf8_length(),
1011       (char *) name->bytes(), name->utf8_length(),
1012       (char *) sig->bytes(), sig->utf8_length());
1013 #endif /* USDT2 */
1014   return 0;
1015 JRT_END
1016 
1017 
1018 // Finds receiver, CallInfo (i.e. receiver method), and calling bytecode)
1019 // for a call current in progress, i.e., arguments has been pushed on stack
1020 // put callee has not been invoked yet.  Used by: resolve virtual/static,
1021 // vtable updates, etc.  Caller frame must be compiled.
1022 Handle SharedRuntime::find_callee_info(JavaThread* thread, Bytecodes::Code& bc, CallInfo& callinfo, TRAPS) {
1023   ResourceMark rm(THREAD);
1024 
1025   // last java frame on stack (which includes native call frames)
1026   vframeStream vfst(thread, true);  // Do not skip and javaCalls
1027 
1028   return find_callee_info_helper(thread, vfst, bc, callinfo, CHECK_(Handle()));
1029 }
1030 
1031 
1032 // Finds receiver, CallInfo (i.e. receiver method), and calling bytecode
1033 // for a call current in progress, i.e., arguments has been pushed on stack
1034 // but callee has not been invoked yet.  Caller frame must be compiled.
1035 Handle SharedRuntime::find_callee_info_helper(JavaThread* thread,
1036                                               vframeStream& vfst,
1037                                               Bytecodes::Code& bc,
1038                                               CallInfo& callinfo, TRAPS) {
1039   Handle receiver;
1040   Handle nullHandle;  //create a handy null handle for exception returns
1041 
1042   assert(!vfst.at_end(), "Java frame must exist");
1043 
1044   // Find caller and bci from vframe
1045   methodHandle caller (THREAD, vfst.method());
1046   int          bci    = vfst.bci();
1047 
1048   // Find bytecode
1049   Bytecode_invoke bytecode(caller, bci);
1050   bc = bytecode.java_code();
1051   int bytecode_index = bytecode.index();
1052 
1053   // Find receiver for non-static call
1054   if (bc != Bytecodes::_invokestatic) {
1055     // This register map must be update since we need to find the receiver for
1056     // compiled frames. The receiver might be in a register.
1057     RegisterMap reg_map2(thread);
1058     frame stubFrame   = thread->last_frame();
1059     // Caller-frame is a compiled frame
1060     frame callerFrame = stubFrame.sender(&reg_map2);
1061 
1062     methodHandle callee = bytecode.static_target(CHECK_(nullHandle));
1063     if (callee.is_null()) {
1064       THROW_(vmSymbols::java_lang_NoSuchMethodException(), nullHandle);
1065     }
1066     // Retrieve from a compiled argument list
1067     receiver = Handle(THREAD, callerFrame.retrieve_receiver(&reg_map2));
1068 
1069     if (receiver.is_null()) {
1070       THROW_(vmSymbols::java_lang_NullPointerException(), nullHandle);
1071     }
1072   }
1073 
1074   // Resolve method. This is parameterized by bytecode.
1075   constantPoolHandle constants (THREAD, caller->constants());
1076   assert (receiver.is_null() || receiver->is_oop(), "wrong receiver");
1077   LinkResolver::resolve_invoke(callinfo, receiver, constants, bytecode_index, bc, CHECK_(nullHandle));
1078 
1079 #ifdef ASSERT
1080   // Check that the receiver klass is of the right subtype and that it is initialized for virtual calls
1081   if (bc != Bytecodes::_invokestatic && bc != Bytecodes::_invokedynamic) {
1082     assert(receiver.not_null(), "should have thrown exception");
1083     KlassHandle receiver_klass (THREAD, receiver->klass());
1084     klassOop rk = constants->klass_ref_at(bytecode_index, CHECK_(nullHandle));
1085                             // klass is already loaded
1086     KlassHandle static_receiver_klass (THREAD, rk);
1087     assert(receiver_klass->is_subtype_of(static_receiver_klass()), "actual receiver must be subclass of static receiver klass");
1088     if (receiver_klass->oop_is_instance()) {
1089       if (instanceKlass::cast(receiver_klass())->is_not_initialized()) {
1090         tty->print_cr("ERROR: Klass not yet initialized!!");
1091         receiver_klass.print();
1092       }
1093       assert (!instanceKlass::cast(receiver_klass())->is_not_initialized(), "receiver_klass must be initialized");
1094     }
1095   }
1096 #endif
1097 
1098   return receiver;
1099 }
1100 
1101 methodHandle SharedRuntime::find_callee_method(JavaThread* thread, TRAPS) {
1102   ResourceMark rm(THREAD);
1103   // We need first to check if any Java activations (compiled, interpreted)
1104   // exist on the stack since last JavaCall.  If not, we need
1105   // to get the target method from the JavaCall wrapper.
1106   vframeStream vfst(thread, true);  // Do not skip any javaCalls
1107   methodHandle callee_method;
1108   if (vfst.at_end()) {
1109     // No Java frames were found on stack since we did the JavaCall.
1110     // Hence the stack can only contain an entry_frame.  We need to
1111     // find the target method from the stub frame.
1112     RegisterMap reg_map(thread, false);
1113     frame fr = thread->last_frame();
1114     assert(fr.is_runtime_frame(), "must be a runtimeStub");
1115     fr = fr.sender(&reg_map);
1116     assert(fr.is_entry_frame(), "must be");
1117     // fr is now pointing to the entry frame.
1118     callee_method = methodHandle(THREAD, fr.entry_frame_call_wrapper()->callee_method());
1119     assert(fr.entry_frame_call_wrapper()->receiver() == NULL || !callee_method->is_static(), "non-null receiver for static call??");
1120   } else {
1121     Bytecodes::Code bc;
1122     CallInfo callinfo;
1123     find_callee_info_helper(thread, vfst, bc, callinfo, CHECK_(methodHandle()));
1124     callee_method = callinfo.selected_method();
1125   }
1126   assert(callee_method()->is_method(), "must be");
1127   return callee_method;
1128 }
1129 
1130 // Resolves a call.
1131 methodHandle SharedRuntime::resolve_helper(JavaThread *thread,
1132                                            bool is_virtual,
1133                                            bool is_optimized, TRAPS) {
1134   methodHandle callee_method;
1135   callee_method = resolve_sub_helper(thread, is_virtual, is_optimized, THREAD);
1136   if (JvmtiExport::can_hotswap_or_post_breakpoint()) {
1137     int retry_count = 0;
1138     while (!HAS_PENDING_EXCEPTION && callee_method->is_old() &&
1139            callee_method->method_holder() != SystemDictionary::Object_klass()) {
1140       // If has a pending exception then there is no need to re-try to
1141       // resolve this method.
1142       // If the method has been redefined, we need to try again.
1143       // Hack: we have no way to update the vtables of arrays, so don't
1144       // require that java.lang.Object has been updated.
1145 
1146       // It is very unlikely that method is redefined more than 100 times
1147       // in the middle of resolve. If it is looping here more than 100 times
1148       // means then there could be a bug here.
1149       guarantee((retry_count++ < 100),
1150                 "Could not resolve to latest version of redefined method");
1151       // method is redefined in the middle of resolve so re-try.
1152       callee_method = resolve_sub_helper(thread, is_virtual, is_optimized, THREAD);
1153     }
1154   }
1155   return callee_method;
1156 }
1157 
1158 // Resolves a call.  The compilers generate code for calls that go here
1159 // and are patched with the real destination of the call.
1160 methodHandle SharedRuntime::resolve_sub_helper(JavaThread *thread,
1161                                            bool is_virtual,
1162                                            bool is_optimized, TRAPS) {
1163 
1164   ResourceMark rm(thread);
1165   RegisterMap cbl_map(thread, false);
1166   frame caller_frame = thread->last_frame().sender(&cbl_map);
1167 
1168   CodeBlob* caller_cb = caller_frame.cb();
1169   guarantee(caller_cb != NULL && caller_cb->is_nmethod(), "must be called from nmethod");
1170   nmethod* caller_nm = caller_cb->as_nmethod_or_null();
1171   // make sure caller is not getting deoptimized
1172   // and removed before we are done with it.
1173   // CLEANUP - with lazy deopt shouldn't need this lock
1174   nmethodLocker caller_lock(caller_nm);
1175 
1176 
1177   // determine call info & receiver
1178   // note: a) receiver is NULL for static calls
1179   //       b) an exception is thrown if receiver is NULL for non-static calls
1180   CallInfo call_info;
1181   Bytecodes::Code invoke_code = Bytecodes::_illegal;
1182   Handle receiver = find_callee_info(thread, invoke_code,
1183                                      call_info, CHECK_(methodHandle()));
1184   methodHandle callee_method = call_info.selected_method();
1185 
1186   assert((!is_virtual && invoke_code == Bytecodes::_invokestatic) ||
1187          ( is_virtual && invoke_code != Bytecodes::_invokestatic), "inconsistent bytecode");
1188 
1189 #ifndef PRODUCT
1190   // tracing/debugging/statistics
1191   int *addr = (is_optimized) ? (&_resolve_opt_virtual_ctr) :
1192                 (is_virtual) ? (&_resolve_virtual_ctr) :
1193                                (&_resolve_static_ctr);
1194   Atomic::inc(addr);
1195 
1196   if (TraceCallFixup) {
1197     ResourceMark rm(thread);
1198     tty->print("resolving %s%s (%s) call to",
1199       (is_optimized) ? "optimized " : "", (is_virtual) ? "virtual" : "static",
1200       Bytecodes::name(invoke_code));
1201     callee_method->print_short_name(tty);
1202     tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
1203   }
1204 #endif
1205 
1206   // JSR 292
1207   // If the resolved method is a MethodHandle invoke target the call
1208   // site must be a MethodHandle call site.
1209   if (callee_method->is_method_handle_invoke()) {
1210     assert(caller_nm->is_method_handle_return(caller_frame.pc()), "must be MH call site");
1211   }
1212 
1213   // Compute entry points. This might require generation of C2I converter
1214   // frames, so we cannot be holding any locks here. Furthermore, the
1215   // computation of the entry points is independent of patching the call.  We
1216   // always return the entry-point, but we only patch the stub if the call has
1217   // not been deoptimized.  Return values: For a virtual call this is an
1218   // (cached_oop, destination address) pair. For a static call/optimized
1219   // virtual this is just a destination address.
1220 
1221   StaticCallInfo static_call_info;
1222   CompiledICInfo virtual_call_info;
1223 
1224   // Make sure the callee nmethod does not get deoptimized and removed before
1225   // we are done patching the code.
1226   nmethod* callee_nm = callee_method->code();
1227   nmethodLocker nl_callee(callee_nm);
1228 #ifdef ASSERT
1229   address dest_entry_point = callee_nm == NULL ? 0 : callee_nm->entry_point(); // used below
1230 #endif
1231 
1232   if (is_virtual) {
1233     assert(receiver.not_null(), "sanity check");
1234     bool static_bound = call_info.resolved_method()->can_be_statically_bound();
1235     KlassHandle h_klass(THREAD, receiver->klass());
1236     CompiledIC::compute_monomorphic_entry(callee_method, h_klass,
1237                      is_optimized, static_bound, virtual_call_info,
1238                      CHECK_(methodHandle()));
1239   } else {
1240     // static call
1241     CompiledStaticCall::compute_entry(callee_method, static_call_info);
1242   }
1243 
1244   // grab lock, check for deoptimization and potentially patch caller
1245   {
1246     MutexLocker ml_patch(CompiledIC_lock);
1247 
1248     // Now that we are ready to patch if the methodOop was redefined then
1249     // don't update call site and let the caller retry.
1250 
1251     if (!callee_method->is_old()) {
1252 #ifdef ASSERT
1253       // We must not try to patch to jump to an already unloaded method.
1254       if (dest_entry_point != 0) {
1255         assert(CodeCache::find_blob(dest_entry_point) != NULL,
1256                "should not unload nmethod while locked");
1257       }
1258 #endif
1259       if (is_virtual) {
1260         CompiledIC* inline_cache = CompiledIC_before(caller_frame.pc());
1261         if (inline_cache->is_clean()) {
1262           inline_cache->set_to_monomorphic(virtual_call_info);
1263         }
1264       } else {
1265         CompiledStaticCall* ssc = compiledStaticCall_before(caller_frame.pc());
1266         if (ssc->is_clean()) ssc->set(static_call_info);
1267       }
1268     }
1269 
1270   } // unlock CompiledIC_lock
1271 
1272   return callee_method;
1273 }
1274 
1275 
1276 // Inline caches exist only in compiled code
1277 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method_ic_miss(JavaThread* thread))
1278 #ifdef ASSERT
1279   RegisterMap reg_map(thread, false);
1280   frame stub_frame = thread->last_frame();
1281   assert(stub_frame.is_runtime_frame(), "sanity check");
1282   frame caller_frame = stub_frame.sender(&reg_map);
1283   assert(!caller_frame.is_interpreted_frame() && !caller_frame.is_entry_frame(), "unexpected frame");
1284   assert(!caller_frame.is_ricochet_frame(), "unexpected frame");
1285 #endif /* ASSERT */
1286 
1287   methodHandle callee_method;
1288   JRT_BLOCK
1289     callee_method = SharedRuntime::handle_ic_miss_helper(thread, CHECK_NULL);
1290     // Return methodOop through TLS
1291     thread->set_vm_result(callee_method());
1292   JRT_BLOCK_END
1293   // return compiled code entry point after potential safepoints
1294   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1295   return callee_method->verified_code_entry();
1296 JRT_END
1297 
1298 
1299 // Handle call site that has been made non-entrant
1300 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method(JavaThread* thread))
1301   // 6243940 We might end up in here if the callee is deoptimized
1302   // as we race to call it.  We don't want to take a safepoint if
1303   // the caller was interpreted because the caller frame will look
1304   // interpreted to the stack walkers and arguments are now
1305   // "compiled" so it is much better to make this transition
1306   // invisible to the stack walking code. The i2c path will
1307   // place the callee method in the callee_target. It is stashed
1308   // there because if we try and find the callee by normal means a
1309   // safepoint is possible and have trouble gc'ing the compiled args.
1310   RegisterMap reg_map(thread, false);
1311   frame stub_frame = thread->last_frame();
1312   assert(stub_frame.is_runtime_frame(), "sanity check");
1313   frame caller_frame = stub_frame.sender(&reg_map);
1314 
1315   // MethodHandle invokes don't have a CompiledIC and should always
1316   // simply redispatch to the callee_target.
1317   address   sender_pc = caller_frame.pc();
1318   CodeBlob* sender_cb = caller_frame.cb();
1319   nmethod*  sender_nm = sender_cb->as_nmethod_or_null();
1320   bool is_mh_invoke_via_adapter = false;  // Direct c2c call or via adapter?
1321   if (sender_nm != NULL && sender_nm->is_method_handle_return(sender_pc)) {
1322     // If the callee_target is set, then we have come here via an i2c
1323     // adapter.
1324     methodOop callee = thread->callee_target();
1325     if (callee != NULL) {
1326       assert(callee->is_method(), "sanity");
1327       is_mh_invoke_via_adapter = true;
1328     }
1329   }
1330 
1331   if (caller_frame.is_interpreted_frame() ||
1332       caller_frame.is_entry_frame()       ||
1333       caller_frame.is_ricochet_frame()    ||
1334       is_mh_invoke_via_adapter) {
1335     methodOop callee = thread->callee_target();
1336     guarantee(callee != NULL && callee->is_method(), "bad handshake");
1337     thread->set_vm_result(callee);
1338     thread->set_callee_target(NULL);
1339     return callee->get_c2i_entry();
1340   }
1341 
1342   // Must be compiled to compiled path which is safe to stackwalk
1343   methodHandle callee_method;
1344   JRT_BLOCK
1345     // Force resolving of caller (if we called from compiled frame)
1346     callee_method = SharedRuntime::reresolve_call_site(thread, CHECK_NULL);
1347     thread->set_vm_result(callee_method());
1348   JRT_BLOCK_END
1349   // return compiled code entry point after potential safepoints
1350   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1351   return callee_method->verified_code_entry();
1352 JRT_END
1353 
1354 
1355 // resolve a static call and patch code
1356 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_static_call_C(JavaThread *thread ))
1357   methodHandle callee_method;
1358   JRT_BLOCK
1359     callee_method = SharedRuntime::resolve_helper(thread, false, false, CHECK_NULL);
1360     thread->set_vm_result(callee_method());
1361   JRT_BLOCK_END
1362   // return compiled code entry point after potential safepoints
1363   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1364   return callee_method->verified_code_entry();
1365 JRT_END
1366 
1367 
1368 // resolve virtual call and update inline cache to monomorphic
1369 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_virtual_call_C(JavaThread *thread ))
1370   methodHandle callee_method;
1371   JRT_BLOCK
1372     callee_method = SharedRuntime::resolve_helper(thread, true, false, CHECK_NULL);
1373     thread->set_vm_result(callee_method());
1374   JRT_BLOCK_END
1375   // return compiled code entry point after potential safepoints
1376   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1377   return callee_method->verified_code_entry();
1378 JRT_END
1379 
1380 
1381 // Resolve a virtual call that can be statically bound (e.g., always
1382 // monomorphic, so it has no inline cache).  Patch code to resolved target.
1383 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_opt_virtual_call_C(JavaThread *thread))
1384   methodHandle callee_method;
1385   JRT_BLOCK
1386     callee_method = SharedRuntime::resolve_helper(thread, true, true, CHECK_NULL);
1387     thread->set_vm_result(callee_method());
1388   JRT_BLOCK_END
1389   // return compiled code entry point after potential safepoints
1390   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1391   return callee_method->verified_code_entry();
1392 JRT_END
1393 
1394 
1395 
1396 
1397 
1398 methodHandle SharedRuntime::handle_ic_miss_helper(JavaThread *thread, TRAPS) {
1399   ResourceMark rm(thread);
1400   CallInfo call_info;
1401   Bytecodes::Code bc;
1402 
1403   // receiver is NULL for static calls. An exception is thrown for NULL
1404   // receivers for non-static calls
1405   Handle receiver = find_callee_info(thread, bc, call_info,
1406                                      CHECK_(methodHandle()));
1407   // Compiler1 can produce virtual call sites that can actually be statically bound
1408   // If we fell thru to below we would think that the site was going megamorphic
1409   // when in fact the site can never miss. Worse because we'd think it was megamorphic
1410   // we'd try and do a vtable dispatch however methods that can be statically bound
1411   // don't have vtable entries (vtable_index < 0) and we'd blow up. So we force a
1412   // reresolution of the  call site (as if we did a handle_wrong_method and not an
1413   // plain ic_miss) and the site will be converted to an optimized virtual call site
1414   // never to miss again. I don't believe C2 will produce code like this but if it
1415   // did this would still be the correct thing to do for it too, hence no ifdef.
1416   //
1417   if (call_info.resolved_method()->can_be_statically_bound()) {
1418     methodHandle callee_method = SharedRuntime::reresolve_call_site(thread, CHECK_(methodHandle()));
1419     if (TraceCallFixup) {
1420       RegisterMap reg_map(thread, false);
1421       frame caller_frame = thread->last_frame().sender(&reg_map);
1422       ResourceMark rm(thread);
1423       tty->print("converting IC miss to reresolve (%s) call to", Bytecodes::name(bc));
1424       callee_method->print_short_name(tty);
1425       tty->print_cr(" from pc: " INTPTR_FORMAT, caller_frame.pc());
1426       tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
1427     }
1428     return callee_method;
1429   }
1430 
1431   methodHandle callee_method = call_info.selected_method();
1432 
1433   bool should_be_mono = false;
1434 
1435 #ifndef PRODUCT
1436   Atomic::inc(&_ic_miss_ctr);
1437 
1438   // Statistics & Tracing
1439   if (TraceCallFixup) {
1440     ResourceMark rm(thread);
1441     tty->print("IC miss (%s) call to", Bytecodes::name(bc));
1442     callee_method->print_short_name(tty);
1443     tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
1444   }
1445 
1446   if (ICMissHistogram) {
1447     MutexLocker m(VMStatistic_lock);
1448     RegisterMap reg_map(thread, false);
1449     frame f = thread->last_frame().real_sender(&reg_map);// skip runtime stub
1450     // produce statistics under the lock
1451     trace_ic_miss(f.pc());
1452   }
1453 #endif
1454 
1455   // install an event collector so that when a vtable stub is created the
1456   // profiler can be notified via a DYNAMIC_CODE_GENERATED event. The
1457   // event can't be posted when the stub is created as locks are held
1458   // - instead the event will be deferred until the event collector goes
1459   // out of scope.
1460   JvmtiDynamicCodeEventCollector event_collector;
1461 
1462   // Update inline cache to megamorphic. Skip update if caller has been
1463   // made non-entrant or we are called from interpreted.
1464   { MutexLocker ml_patch (CompiledIC_lock);
1465     RegisterMap reg_map(thread, false);
1466     frame caller_frame = thread->last_frame().sender(&reg_map);
1467     CodeBlob* cb = caller_frame.cb();
1468     if (cb->is_nmethod() && ((nmethod*)cb)->is_in_use()) {
1469       // Not a non-entrant nmethod, so find inline_cache
1470       CompiledIC* inline_cache = CompiledIC_before(caller_frame.pc());
1471       bool should_be_mono = false;
1472       if (inline_cache->is_optimized()) {
1473         if (TraceCallFixup) {
1474           ResourceMark rm(thread);
1475           tty->print("OPTIMIZED IC miss (%s) call to", Bytecodes::name(bc));
1476           callee_method->print_short_name(tty);
1477           tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
1478         }
1479         should_be_mono = true;
1480       } else {
1481         compiledICHolderOop ic_oop = (compiledICHolderOop) inline_cache->cached_oop();
1482         if ( ic_oop != NULL && ic_oop->is_compiledICHolder()) {
1483 
1484           if (receiver()->klass() == ic_oop->holder_klass()) {
1485             // This isn't a real miss. We must have seen that compiled code
1486             // is now available and we want the call site converted to a
1487             // monomorphic compiled call site.
1488             // We can't assert for callee_method->code() != NULL because it
1489             // could have been deoptimized in the meantime
1490             if (TraceCallFixup) {
1491               ResourceMark rm(thread);
1492               tty->print("FALSE IC miss (%s) converting to compiled call to", Bytecodes::name(bc));
1493               callee_method->print_short_name(tty);
1494               tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
1495             }
1496             should_be_mono = true;
1497           }
1498         }
1499       }
1500 
1501       if (should_be_mono) {
1502 
1503         // We have a path that was monomorphic but was going interpreted
1504         // and now we have (or had) a compiled entry. We correct the IC
1505         // by using a new icBuffer.
1506         CompiledICInfo info;
1507         KlassHandle receiver_klass(THREAD, receiver()->klass());
1508         inline_cache->compute_monomorphic_entry(callee_method,
1509                                                 receiver_klass,
1510                                                 inline_cache->is_optimized(),
1511                                                 false,
1512                                                 info, CHECK_(methodHandle()));
1513         inline_cache->set_to_monomorphic(info);
1514       } else if (!inline_cache->is_megamorphic() && !inline_cache->is_clean()) {
1515         // Change to megamorphic
1516         inline_cache->set_to_megamorphic(&call_info, bc, CHECK_(methodHandle()));
1517       } else {
1518         // Either clean or megamorphic
1519       }
1520     }
1521   } // Release CompiledIC_lock
1522 
1523   return callee_method;
1524 }
1525 
1526 //
1527 // Resets a call-site in compiled code so it will get resolved again.
1528 // This routines handles both virtual call sites, optimized virtual call
1529 // sites, and static call sites. Typically used to change a call sites
1530 // destination from compiled to interpreted.
1531 //
1532 methodHandle SharedRuntime::reresolve_call_site(JavaThread *thread, TRAPS) {
1533   ResourceMark rm(thread);
1534   RegisterMap reg_map(thread, false);
1535   frame stub_frame = thread->last_frame();
1536   assert(stub_frame.is_runtime_frame(), "must be a runtimeStub");
1537   frame caller = stub_frame.sender(&reg_map);
1538 
1539   // Do nothing if the frame isn't a live compiled frame.
1540   // nmethod could be deoptimized by the time we get here
1541   // so no update to the caller is needed.
1542 
1543   if (caller.is_compiled_frame() && !caller.is_deoptimized_frame()) {
1544 
1545     address pc = caller.pc();
1546     Events::log("update call-site at pc " INTPTR_FORMAT, pc);
1547 
1548     // Default call_addr is the location of the "basic" call.
1549     // Determine the address of the call we a reresolving. With
1550     // Inline Caches we will always find a recognizable call.
1551     // With Inline Caches disabled we may or may not find a
1552     // recognizable call. We will always find a call for static
1553     // calls and for optimized virtual calls. For vanilla virtual
1554     // calls it depends on the state of the UseInlineCaches switch.
1555     //
1556     // With Inline Caches disabled we can get here for a virtual call
1557     // for two reasons:
1558     //   1 - calling an abstract method. The vtable for abstract methods
1559     //       will run us thru handle_wrong_method and we will eventually
1560     //       end up in the interpreter to throw the ame.
1561     //   2 - a racing deoptimization. We could be doing a vanilla vtable
1562     //       call and between the time we fetch the entry address and
1563     //       we jump to it the target gets deoptimized. Similar to 1
1564     //       we will wind up in the interprter (thru a c2i with c2).
1565     //
1566     address call_addr = NULL;
1567     {
1568       // Get call instruction under lock because another thread may be
1569       // busy patching it.
1570       MutexLockerEx ml_patch(Patching_lock, Mutex::_no_safepoint_check_flag);
1571       // Location of call instruction
1572       if (NativeCall::is_call_before(pc)) {
1573         NativeCall *ncall = nativeCall_before(pc);
1574         call_addr = ncall->instruction_address();
1575       }
1576     }
1577 
1578     // Check for static or virtual call
1579     bool is_static_call = false;
1580     nmethod* caller_nm = CodeCache::find_nmethod(pc);
1581     // Make sure nmethod doesn't get deoptimized and removed until
1582     // this is done with it.
1583     // CLEANUP - with lazy deopt shouldn't need this lock
1584     nmethodLocker nmlock(caller_nm);
1585 
1586     if (call_addr != NULL) {
1587       RelocIterator iter(caller_nm, call_addr, call_addr+1);
1588       int ret = iter.next(); // Get item
1589       if (ret) {
1590         assert(iter.addr() == call_addr, "must find call");
1591         if (iter.type() == relocInfo::static_call_type) {
1592           is_static_call = true;
1593         } else {
1594           assert(iter.type() == relocInfo::virtual_call_type ||
1595                  iter.type() == relocInfo::opt_virtual_call_type
1596                 , "unexpected relocInfo. type");
1597         }
1598       } else {
1599         assert(!UseInlineCaches, "relocation info. must exist for this address");
1600       }
1601 
1602       // Cleaning the inline cache will force a new resolve. This is more robust
1603       // than directly setting it to the new destination, since resolving of calls
1604       // is always done through the same code path. (experience shows that it
1605       // leads to very hard to track down bugs, if an inline cache gets updated
1606       // to a wrong method). It should not be performance critical, since the
1607       // resolve is only done once.
1608 
1609       MutexLocker ml(CompiledIC_lock);
1610       //
1611       // We do not patch the call site if the nmethod has been made non-entrant
1612       // as it is a waste of time
1613       //
1614       if (caller_nm->is_in_use()) {
1615         if (is_static_call) {
1616           CompiledStaticCall* ssc= compiledStaticCall_at(call_addr);
1617           ssc->set_to_clean();
1618         } else {
1619           // compiled, dispatched call (which used to call an interpreted method)
1620           CompiledIC* inline_cache = CompiledIC_at(call_addr);
1621           inline_cache->set_to_clean();
1622         }
1623       }
1624     }
1625 
1626   }
1627 
1628   methodHandle callee_method = find_callee_method(thread, CHECK_(methodHandle()));
1629 
1630 
1631 #ifndef PRODUCT
1632   Atomic::inc(&_wrong_method_ctr);
1633 
1634   if (TraceCallFixup) {
1635     ResourceMark rm(thread);
1636     tty->print("handle_wrong_method reresolving call to");
1637     callee_method->print_short_name(tty);
1638     tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
1639   }
1640 #endif
1641 
1642   return callee_method;
1643 }
1644 
1645 // ---------------------------------------------------------------------------
1646 // We are calling the interpreter via a c2i. Normally this would mean that
1647 // we were called by a compiled method. However we could have lost a race
1648 // where we went int -> i2c -> c2i and so the caller could in fact be
1649 // interpreted. If the caller is compiled we attempt to patch the caller
1650 // so he no longer calls into the interpreter.
1651 IRT_LEAF(void, SharedRuntime::fixup_callers_callsite(methodOopDesc* method, address caller_pc))
1652   methodOop moop(method);
1653 
1654   address entry_point = moop->from_compiled_entry();
1655 
1656   // It's possible that deoptimization can occur at a call site which hasn't
1657   // been resolved yet, in which case this function will be called from
1658   // an nmethod that has been patched for deopt and we can ignore the
1659   // request for a fixup.
1660   // Also it is possible that we lost a race in that from_compiled_entry
1661   // is now back to the i2c in that case we don't need to patch and if
1662   // we did we'd leap into space because the callsite needs to use
1663   // "to interpreter" stub in order to load up the methodOop. Don't
1664   // ask me how I know this...
1665 
1666   CodeBlob* cb = CodeCache::find_blob(caller_pc);
1667   if (!cb->is_nmethod() || entry_point == moop->get_c2i_entry()) {
1668     return;
1669   }
1670 
1671   // The check above makes sure this is a nmethod.
1672   nmethod* nm = cb->as_nmethod_or_null();
1673   assert(nm, "must be");
1674 
1675   // Get the return PC for the passed caller PC.
1676   address return_pc = caller_pc + frame::pc_return_offset;
1677 
1678   // Don't fixup method handle call sites as the executed method
1679   // handle adapters are doing the required MethodHandle chain work.
1680   if (nm->is_method_handle_return(return_pc)) {
1681     return;
1682   }
1683 
1684   // There is a benign race here. We could be attempting to patch to a compiled
1685   // entry point at the same time the callee is being deoptimized. If that is
1686   // the case then entry_point may in fact point to a c2i and we'd patch the
1687   // call site with the same old data. clear_code will set code() to NULL
1688   // at the end of it. If we happen to see that NULL then we can skip trying
1689   // to patch. If we hit the window where the callee has a c2i in the
1690   // from_compiled_entry and the NULL isn't present yet then we lose the race
1691   // and patch the code with the same old data. Asi es la vida.
1692 
1693   if (moop->code() == NULL) return;
1694 
1695   if (nm->is_in_use()) {
1696 
1697     // Expect to find a native call there (unless it was no-inline cache vtable dispatch)
1698     MutexLockerEx ml_patch(Patching_lock, Mutex::_no_safepoint_check_flag);
1699     if (NativeCall::is_call_before(return_pc)) {
1700       NativeCall *call = nativeCall_before(return_pc);
1701       //
1702       // bug 6281185. We might get here after resolving a call site to a vanilla
1703       // virtual call. Because the resolvee uses the verified entry it may then
1704       // see compiled code and attempt to patch the site by calling us. This would
1705       // then incorrectly convert the call site to optimized and its downhill from
1706       // there. If you're lucky you'll get the assert in the bugid, if not you've
1707       // just made a call site that could be megamorphic into a monomorphic site
1708       // for the rest of its life! Just another racing bug in the life of
1709       // fixup_callers_callsite ...
1710       //
1711       RelocIterator iter(nm, call->instruction_address(), call->next_instruction_address());
1712       iter.next();
1713       assert(iter.has_current(), "must have a reloc at java call site");
1714       relocInfo::relocType typ = iter.reloc()->type();
1715       if ( typ != relocInfo::static_call_type &&
1716            typ != relocInfo::opt_virtual_call_type &&
1717            typ != relocInfo::static_stub_type) {
1718         return;
1719       }
1720       address destination = call->destination();
1721       if (destination != entry_point) {
1722         CodeBlob* callee = CodeCache::find_blob(destination);
1723         // callee == cb seems weird. It means calling interpreter thru stub.
1724         if (callee == cb || callee->is_adapter_blob()) {
1725           // static call or optimized virtual
1726           if (TraceCallFixup) {
1727             tty->print("fixup callsite           at " INTPTR_FORMAT " to compiled code for", caller_pc);
1728             moop->print_short_name(tty);
1729             tty->print_cr(" to " INTPTR_FORMAT, entry_point);
1730           }
1731           call->set_destination_mt_safe(entry_point);
1732         } else {
1733           if (TraceCallFixup) {
1734             tty->print("failed to fixup callsite at " INTPTR_FORMAT " to compiled code for", caller_pc);
1735             moop->print_short_name(tty);
1736             tty->print_cr(" to " INTPTR_FORMAT, entry_point);
1737           }
1738           // assert is too strong could also be resolve destinations.
1739           // assert(InlineCacheBuffer::contains(destination) || VtableStubs::contains(destination), "must be");
1740         }
1741       } else {
1742           if (TraceCallFixup) {
1743             tty->print("already patched callsite at " INTPTR_FORMAT " to compiled code for", caller_pc);
1744             moop->print_short_name(tty);
1745             tty->print_cr(" to " INTPTR_FORMAT, entry_point);
1746           }
1747       }
1748     }
1749   }
1750 IRT_END
1751 
1752 
1753 // same as JVM_Arraycopy, but called directly from compiled code
1754 JRT_ENTRY(void, SharedRuntime::slow_arraycopy_C(oopDesc* src,  jint src_pos,
1755                                                 oopDesc* dest, jint dest_pos,
1756                                                 jint length,
1757                                                 JavaThread* thread)) {
1758 #ifndef PRODUCT
1759   _slow_array_copy_ctr++;
1760 #endif
1761   // Check if we have null pointers
1762   if (src == NULL || dest == NULL) {
1763     THROW(vmSymbols::java_lang_NullPointerException());
1764   }
1765   // Do the copy.  The casts to arrayOop are necessary to the copy_array API,
1766   // even though the copy_array API also performs dynamic checks to ensure
1767   // that src and dest are truly arrays (and are conformable).
1768   // The copy_array mechanism is awkward and could be removed, but
1769   // the compilers don't call this function except as a last resort,
1770   // so it probably doesn't matter.
1771   Klass::cast(src->klass())->copy_array((arrayOopDesc*)src,  src_pos,
1772                                         (arrayOopDesc*)dest, dest_pos,
1773                                         length, thread);
1774 }
1775 JRT_END
1776 
1777 char* SharedRuntime::generate_class_cast_message(
1778     JavaThread* thread, const char* objName) {
1779 
1780   // Get target class name from the checkcast instruction
1781   vframeStream vfst(thread, true);
1782   assert(!vfst.at_end(), "Java frame must exist");
1783   Bytecode_checkcast cc(vfst.method(), vfst.method()->bcp_from(vfst.bci()));
1784   Klass* targetKlass = Klass::cast(vfst.method()->constants()->klass_at(
1785     cc.index(), thread));
1786   return generate_class_cast_message(objName, targetKlass->external_name());
1787 }
1788 
1789 char* SharedRuntime::generate_wrong_method_type_message(JavaThread* thread,
1790                                                         oopDesc* required,
1791                                                         oopDesc* actual) {
1792   if (TraceMethodHandles) {
1793     tty->print_cr("WrongMethodType thread="PTR_FORMAT" req="PTR_FORMAT" act="PTR_FORMAT"",
1794                   thread, required, actual);
1795   }
1796   assert(EnableInvokeDynamic, "");
1797   oop singleKlass = wrong_method_type_is_for_single_argument(thread, required);
1798   char* message = NULL;
1799   if (singleKlass != NULL) {
1800     const char* objName = "argument or return value";
1801     if (actual != NULL) {
1802       // be flexible about the junk passed in:
1803       klassOop ak = (actual->is_klass()
1804                      ? (klassOop)actual
1805                      : actual->klass());
1806       objName = Klass::cast(ak)->external_name();
1807     }
1808     Klass* targetKlass = Klass::cast(required->is_klass()
1809                                      ? (klassOop)required
1810                                      : java_lang_Class::as_klassOop(required));
1811     message = generate_class_cast_message(objName, targetKlass->external_name());
1812   } else {
1813     // %%% need to get the MethodType string, without messing around too much
1814     const char* desc = NULL;
1815     // Get a signature from the invoke instruction
1816     const char* mhName = "method handle";
1817     const char* targetType = "the required signature";
1818     int targetArity = -1, mhArity = -1;
1819     vframeStream vfst(thread, true);
1820     if (!vfst.at_end()) {
1821       Bytecode_invoke call(vfst.method(), vfst.bci());
1822       methodHandle target;
1823       {
1824         EXCEPTION_MARK;
1825         target = call.static_target(THREAD);
1826         if (HAS_PENDING_EXCEPTION) { CLEAR_PENDING_EXCEPTION; }
1827       }
1828       if (target.not_null()
1829           && target->is_method_handle_invoke()
1830           && required == target->method_handle_type()) {
1831         targetType = target->signature()->as_C_string();
1832         targetArity = ArgumentCount(target->signature()).size();
1833       }
1834     }
1835     KlassHandle kignore; int dmf_flags = 0;
1836     methodHandle actual_method = MethodHandles::decode_method(actual, kignore, dmf_flags);
1837     if ((dmf_flags & ~(MethodHandles::_dmf_has_receiver |
1838                        MethodHandles::_dmf_does_dispatch |
1839                        MethodHandles::_dmf_from_interface)) != 0)
1840       actual_method = methodHandle();  // MH does extra binds, drops, etc.
1841     bool has_receiver = ((dmf_flags & MethodHandles::_dmf_has_receiver) != 0);
1842     if (actual_method.not_null()) {
1843       mhName = actual_method->signature()->as_C_string();
1844       mhArity = ArgumentCount(actual_method->signature()).size();
1845       if (!actual_method->is_static())  mhArity += 1;
1846     } else if (java_lang_invoke_MethodHandle::is_instance(actual)) {
1847       oopDesc* mhType = java_lang_invoke_MethodHandle::type(actual);
1848       mhArity = java_lang_invoke_MethodType::ptype_count(mhType);
1849       stringStream st;
1850       java_lang_invoke_MethodType::print_signature(mhType, &st);
1851       mhName = st.as_string();
1852     }
1853     if (targetArity != -1 && targetArity != mhArity) {
1854       if (has_receiver && targetArity == mhArity-1)
1855         desc = " cannot be called without a receiver argument as ";
1856       else
1857         desc = " cannot be called with a different arity as ";
1858     }
1859     message = generate_class_cast_message(mhName, targetType,
1860                                           desc != NULL ? desc :
1861                                           " cannot be called as ");
1862   }
1863   if (TraceMethodHandles) {
1864     tty->print_cr("WrongMethodType => message=%s", message);
1865   }
1866   return message;
1867 }
1868 
1869 oop SharedRuntime::wrong_method_type_is_for_single_argument(JavaThread* thr,
1870                                                             oopDesc* required) {
1871   if (required == NULL)  return NULL;
1872   if (required->klass() == SystemDictionary::Class_klass())
1873     return required;
1874   if (required->is_klass())
1875     return Klass::cast(klassOop(required))->java_mirror();
1876   return NULL;
1877 }
1878 
1879 
1880 char* SharedRuntime::generate_class_cast_message(
1881     const char* objName, const char* targetKlassName, const char* desc) {
1882   size_t msglen = strlen(objName) + strlen(desc) + strlen(targetKlassName) + 1;
1883 
1884   char* message = NEW_RESOURCE_ARRAY(char, msglen);
1885   if (NULL == message) {
1886     // Shouldn't happen, but don't cause even more problems if it does
1887     message = const_cast<char*>(objName);
1888   } else {
1889     jio_snprintf(message, msglen, "%s%s%s", objName, desc, targetKlassName);
1890   }
1891   return message;
1892 }
1893 
1894 JRT_LEAF(void, SharedRuntime::reguard_yellow_pages())
1895   (void) JavaThread::current()->reguard_stack();
1896 JRT_END
1897 
1898 
1899 // Handles the uncommon case in locking, i.e., contention or an inflated lock.
1900 #ifndef PRODUCT
1901 int SharedRuntime::_monitor_enter_ctr=0;
1902 #endif
1903 JRT_ENTRY_NO_ASYNC(void, SharedRuntime::complete_monitor_locking_C(oopDesc* _obj, BasicLock* lock, JavaThread* thread))
1904   oop obj(_obj);
1905 #ifndef PRODUCT
1906   _monitor_enter_ctr++;             // monitor enter slow
1907 #endif
1908   if (PrintBiasedLockingStatistics) {
1909     Atomic::inc(BiasedLocking::slow_path_entry_count_addr());
1910   }
1911   Handle h_obj(THREAD, obj);
1912   if (UseBiasedLocking) {
1913     // Retry fast entry if bias is revoked to avoid unnecessary inflation
1914     ObjectSynchronizer::fast_enter(h_obj, lock, true, CHECK);
1915   } else {
1916     ObjectSynchronizer::slow_enter(h_obj, lock, CHECK);
1917   }
1918   assert(!HAS_PENDING_EXCEPTION, "Should have no exception here");
1919 JRT_END
1920 
1921 #ifndef PRODUCT
1922 int SharedRuntime::_monitor_exit_ctr=0;
1923 #endif
1924 // Handles the uncommon cases of monitor unlocking in compiled code
1925 JRT_LEAF(void, SharedRuntime::complete_monitor_unlocking_C(oopDesc* _obj, BasicLock* lock))
1926    oop obj(_obj);
1927 #ifndef PRODUCT
1928   _monitor_exit_ctr++;              // monitor exit slow
1929 #endif
1930   Thread* THREAD = JavaThread::current();
1931   // I'm not convinced we need the code contained by MIGHT_HAVE_PENDING anymore
1932   // testing was unable to ever fire the assert that guarded it so I have removed it.
1933   assert(!HAS_PENDING_EXCEPTION, "Do we need code below anymore?");
1934 #undef MIGHT_HAVE_PENDING
1935 #ifdef MIGHT_HAVE_PENDING
1936   // Save and restore any pending_exception around the exception mark.
1937   // While the slow_exit must not throw an exception, we could come into
1938   // this routine with one set.
1939   oop pending_excep = NULL;
1940   const char* pending_file;
1941   int pending_line;
1942   if (HAS_PENDING_EXCEPTION) {
1943     pending_excep = PENDING_EXCEPTION;
1944     pending_file  = THREAD->exception_file();
1945     pending_line  = THREAD->exception_line();
1946     CLEAR_PENDING_EXCEPTION;
1947   }
1948 #endif /* MIGHT_HAVE_PENDING */
1949 
1950   {
1951     // Exit must be non-blocking, and therefore no exceptions can be thrown.
1952     EXCEPTION_MARK;
1953     ObjectSynchronizer::slow_exit(obj, lock, THREAD);
1954   }
1955 
1956 #ifdef MIGHT_HAVE_PENDING
1957   if (pending_excep != NULL) {
1958     THREAD->set_pending_exception(pending_excep, pending_file, pending_line);
1959   }
1960 #endif /* MIGHT_HAVE_PENDING */
1961 JRT_END
1962 
1963 #ifndef PRODUCT
1964 
1965 void SharedRuntime::print_statistics() {
1966   ttyLocker ttyl;
1967   if (xtty != NULL)  xtty->head("statistics type='SharedRuntime'");
1968 
1969   if (_monitor_enter_ctr ) tty->print_cr("%5d monitor enter slow",  _monitor_enter_ctr);
1970   if (_monitor_exit_ctr  ) tty->print_cr("%5d monitor exit slow",   _monitor_exit_ctr);
1971   if (_throw_null_ctr) tty->print_cr("%5d implicit null throw", _throw_null_ctr);
1972 
1973   SharedRuntime::print_ic_miss_histogram();
1974 
1975   if (CountRemovableExceptions) {
1976     if (_nof_removable_exceptions > 0) {
1977       Unimplemented(); // this counter is not yet incremented
1978       tty->print_cr("Removable exceptions: %d", _nof_removable_exceptions);
1979     }
1980   }
1981 
1982   // Dump the JRT_ENTRY counters
1983   if( _new_instance_ctr ) tty->print_cr("%5d new instance requires GC", _new_instance_ctr);
1984   if( _new_array_ctr ) tty->print_cr("%5d new array requires GC", _new_array_ctr);
1985   if( _multi1_ctr ) tty->print_cr("%5d multianewarray 1 dim", _multi1_ctr);
1986   if( _multi2_ctr ) tty->print_cr("%5d multianewarray 2 dim", _multi2_ctr);
1987   if( _multi3_ctr ) tty->print_cr("%5d multianewarray 3 dim", _multi3_ctr);
1988   if( _multi4_ctr ) tty->print_cr("%5d multianewarray 4 dim", _multi4_ctr);
1989   if( _multi5_ctr ) tty->print_cr("%5d multianewarray 5 dim", _multi5_ctr);
1990 
1991   tty->print_cr("%5d inline cache miss in compiled", _ic_miss_ctr );
1992   tty->print_cr("%5d wrong method", _wrong_method_ctr );
1993   tty->print_cr("%5d unresolved static call site", _resolve_static_ctr );
1994   tty->print_cr("%5d unresolved virtual call site", _resolve_virtual_ctr );
1995   tty->print_cr("%5d unresolved opt virtual call site", _resolve_opt_virtual_ctr );
1996 
1997   if( _mon_enter_stub_ctr ) tty->print_cr("%5d monitor enter stub", _mon_enter_stub_ctr );
1998   if( _mon_exit_stub_ctr ) tty->print_cr("%5d monitor exit stub", _mon_exit_stub_ctr );
1999   if( _mon_enter_ctr ) tty->print_cr("%5d monitor enter slow", _mon_enter_ctr );
2000   if( _mon_exit_ctr ) tty->print_cr("%5d monitor exit slow", _mon_exit_ctr );
2001   if( _partial_subtype_ctr) tty->print_cr("%5d slow partial subtype", _partial_subtype_ctr );
2002   if( _jbyte_array_copy_ctr ) tty->print_cr("%5d byte array copies", _jbyte_array_copy_ctr );
2003   if( _jshort_array_copy_ctr ) tty->print_cr("%5d short array copies", _jshort_array_copy_ctr );
2004   if( _jint_array_copy_ctr ) tty->print_cr("%5d int array copies", _jint_array_copy_ctr );
2005   if( _jlong_array_copy_ctr ) tty->print_cr("%5d long array copies", _jlong_array_copy_ctr );
2006   if( _oop_array_copy_ctr ) tty->print_cr("%5d oop array copies", _oop_array_copy_ctr );
2007   if( _checkcast_array_copy_ctr ) tty->print_cr("%5d checkcast array copies", _checkcast_array_copy_ctr );
2008   if( _unsafe_array_copy_ctr ) tty->print_cr("%5d unsafe array copies", _unsafe_array_copy_ctr );
2009   if( _generic_array_copy_ctr ) tty->print_cr("%5d generic array copies", _generic_array_copy_ctr );
2010   if( _slow_array_copy_ctr ) tty->print_cr("%5d slow array copies", _slow_array_copy_ctr );
2011   if( _find_handler_ctr ) tty->print_cr("%5d find exception handler", _find_handler_ctr );
2012   if( _rethrow_ctr ) tty->print_cr("%5d rethrow handler", _rethrow_ctr );
2013 
2014   AdapterHandlerLibrary::print_statistics();
2015 
2016   if (xtty != NULL)  xtty->tail("statistics");
2017 }
2018 
2019 inline double percent(int x, int y) {
2020   return 100.0 * x / MAX2(y, 1);
2021 }
2022 
2023 class MethodArityHistogram {
2024  public:
2025   enum { MAX_ARITY = 256 };
2026  private:
2027   static int _arity_histogram[MAX_ARITY];     // histogram of #args
2028   static int _size_histogram[MAX_ARITY];      // histogram of arg size in words
2029   static int _max_arity;                      // max. arity seen
2030   static int _max_size;                       // max. arg size seen
2031 
2032   static void add_method_to_histogram(nmethod* nm) {
2033     methodOop m = nm->method();
2034     ArgumentCount args(m->signature());
2035     int arity   = args.size() + (m->is_static() ? 0 : 1);
2036     int argsize = m->size_of_parameters();
2037     arity   = MIN2(arity, MAX_ARITY-1);
2038     argsize = MIN2(argsize, MAX_ARITY-1);
2039     int count = nm->method()->compiled_invocation_count();
2040     _arity_histogram[arity]  += count;
2041     _size_histogram[argsize] += count;
2042     _max_arity = MAX2(_max_arity, arity);
2043     _max_size  = MAX2(_max_size, argsize);
2044   }
2045 
2046   void print_histogram_helper(int n, int* histo, const char* name) {
2047     const int N = MIN2(5, n);
2048     tty->print_cr("\nHistogram of call arity (incl. rcvr, calls to compiled methods only):");
2049     double sum = 0;
2050     double weighted_sum = 0;
2051     int i;
2052     for (i = 0; i <= n; i++) { sum += histo[i]; weighted_sum += i*histo[i]; }
2053     double rest = sum;
2054     double percent = sum / 100;
2055     for (i = 0; i <= N; i++) {
2056       rest -= histo[i];
2057       tty->print_cr("%4d: %7d (%5.1f%%)", i, histo[i], histo[i] / percent);
2058     }
2059     tty->print_cr("rest: %7d (%5.1f%%))", (int)rest, rest / percent);
2060     tty->print_cr("(avg. %s = %3.1f, max = %d)", name, weighted_sum / sum, n);
2061   }
2062 
2063   void print_histogram() {
2064     tty->print_cr("\nHistogram of call arity (incl. rcvr, calls to compiled methods only):");
2065     print_histogram_helper(_max_arity, _arity_histogram, "arity");
2066     tty->print_cr("\nSame for parameter size (in words):");
2067     print_histogram_helper(_max_size, _size_histogram, "size");
2068     tty->cr();
2069   }
2070 
2071  public:
2072   MethodArityHistogram() {
2073     MutexLockerEx mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
2074     _max_arity = _max_size = 0;
2075     for (int i = 0; i < MAX_ARITY; i++) _arity_histogram[i] = _size_histogram [i] = 0;
2076     CodeCache::nmethods_do(add_method_to_histogram);
2077     print_histogram();
2078   }
2079 };
2080 
2081 int MethodArityHistogram::_arity_histogram[MethodArityHistogram::MAX_ARITY];
2082 int MethodArityHistogram::_size_histogram[MethodArityHistogram::MAX_ARITY];
2083 int MethodArityHistogram::_max_arity;
2084 int MethodArityHistogram::_max_size;
2085 
2086 void SharedRuntime::print_call_statistics(int comp_total) {
2087   tty->print_cr("Calls from compiled code:");
2088   int total  = _nof_normal_calls + _nof_interface_calls + _nof_static_calls;
2089   int mono_c = _nof_normal_calls - _nof_optimized_calls - _nof_megamorphic_calls;
2090   int mono_i = _nof_interface_calls - _nof_optimized_interface_calls - _nof_megamorphic_interface_calls;
2091   tty->print_cr("\t%9d   (%4.1f%%) total non-inlined   ", total, percent(total, total));
2092   tty->print_cr("\t%9d   (%4.1f%%) virtual calls       ", _nof_normal_calls, percent(_nof_normal_calls, total));
2093   tty->print_cr("\t  %9d  (%3.0f%%)   inlined          ", _nof_inlined_calls, percent(_nof_inlined_calls, _nof_normal_calls));
2094   tty->print_cr("\t  %9d  (%3.0f%%)   optimized        ", _nof_optimized_calls, percent(_nof_optimized_calls, _nof_normal_calls));
2095   tty->print_cr("\t  %9d  (%3.0f%%)   monomorphic      ", mono_c, percent(mono_c, _nof_normal_calls));
2096   tty->print_cr("\t  %9d  (%3.0f%%)   megamorphic      ", _nof_megamorphic_calls, percent(_nof_megamorphic_calls, _nof_normal_calls));
2097   tty->print_cr("\t%9d   (%4.1f%%) interface calls     ", _nof_interface_calls, percent(_nof_interface_calls, total));
2098   tty->print_cr("\t  %9d  (%3.0f%%)   inlined          ", _nof_inlined_interface_calls, percent(_nof_inlined_interface_calls, _nof_interface_calls));
2099   tty->print_cr("\t  %9d  (%3.0f%%)   optimized        ", _nof_optimized_interface_calls, percent(_nof_optimized_interface_calls, _nof_interface_calls));
2100   tty->print_cr("\t  %9d  (%3.0f%%)   monomorphic      ", mono_i, percent(mono_i, _nof_interface_calls));
2101   tty->print_cr("\t  %9d  (%3.0f%%)   megamorphic      ", _nof_megamorphic_interface_calls, percent(_nof_megamorphic_interface_calls, _nof_interface_calls));
2102   tty->print_cr("\t%9d   (%4.1f%%) static/special calls", _nof_static_calls, percent(_nof_static_calls, total));
2103   tty->print_cr("\t  %9d  (%3.0f%%)   inlined          ", _nof_inlined_static_calls, percent(_nof_inlined_static_calls, _nof_static_calls));
2104   tty->cr();
2105   tty->print_cr("Note 1: counter updates are not MT-safe.");
2106   tty->print_cr("Note 2: %% in major categories are relative to total non-inlined calls;");
2107   tty->print_cr("        %% in nested categories are relative to their category");
2108   tty->print_cr("        (and thus add up to more than 100%% with inlining)");
2109   tty->cr();
2110 
2111   MethodArityHistogram h;
2112 }
2113 #endif
2114 
2115 
2116 // A simple wrapper class around the calling convention information
2117 // that allows sharing of adapters for the same calling convention.
2118 class AdapterFingerPrint : public CHeapObj {
2119  private:
2120   union {
2121     int  _compact[3];
2122     int* _fingerprint;
2123   } _value;
2124   int _length; // A negative length indicates the fingerprint is in the compact form,
2125                // Otherwise _value._fingerprint is the array.
2126 
2127   // Remap BasicTypes that are handled equivalently by the adapters.
2128   // These are correct for the current system but someday it might be
2129   // necessary to make this mapping platform dependent.
2130   static BasicType adapter_encoding(BasicType in) {
2131     assert((~0xf & in) == 0, "must fit in 4 bits");
2132     switch(in) {
2133       case T_BOOLEAN:
2134       case T_BYTE:
2135       case T_SHORT:
2136       case T_CHAR:
2137         // There are all promoted to T_INT in the calling convention
2138         return T_INT;
2139 
2140       case T_OBJECT:
2141       case T_ARRAY:
2142 #ifdef _LP64
2143         return T_LONG;
2144 #else
2145         return T_INT;
2146 #endif
2147 
2148       case T_INT:
2149       case T_LONG:
2150       case T_FLOAT:
2151       case T_DOUBLE:
2152       case T_VOID:
2153         return in;
2154 
2155       default:
2156         ShouldNotReachHere();
2157         return T_CONFLICT;
2158     }
2159   }
2160 
2161  public:
2162   AdapterFingerPrint(int total_args_passed, BasicType* sig_bt) {
2163     // The fingerprint is based on the BasicType signature encoded
2164     // into an array of ints with eight entries per int.
2165     int* ptr;
2166     int len = (total_args_passed + 7) >> 3;
2167     if (len <= (int)(sizeof(_value._compact) / sizeof(int))) {
2168       _value._compact[0] = _value._compact[1] = _value._compact[2] = 0;
2169       // Storing the signature encoded as signed chars hits about 98%
2170       // of the time.
2171       _length = -len;
2172       ptr = _value._compact;
2173     } else {
2174       _length = len;
2175       _value._fingerprint = NEW_C_HEAP_ARRAY(int, _length);
2176       ptr = _value._fingerprint;
2177     }
2178 
2179     // Now pack the BasicTypes with 8 per int
2180     int sig_index = 0;
2181     for (int index = 0; index < len; index++) {
2182       int value = 0;
2183       for (int byte = 0; byte < 8; byte++) {
2184         if (sig_index < total_args_passed) {
2185           value = (value << 4) | adapter_encoding(sig_bt[sig_index++]);
2186         }
2187       }
2188       ptr[index] = value;
2189     }
2190   }
2191 
2192   ~AdapterFingerPrint() {
2193     if (_length > 0) {
2194       FREE_C_HEAP_ARRAY(int, _value._fingerprint);
2195     }
2196   }
2197 
2198   int value(int index) {
2199     if (_length < 0) {
2200       return _value._compact[index];
2201     }
2202     return _value._fingerprint[index];
2203   }
2204   int length() {
2205     if (_length < 0) return -_length;
2206     return _length;
2207   }
2208 
2209   bool is_compact() {
2210     return _length <= 0;
2211   }
2212 
2213   unsigned int compute_hash() {
2214     int hash = 0;
2215     for (int i = 0; i < length(); i++) {
2216       int v = value(i);
2217       hash = (hash << 8) ^ v ^ (hash >> 5);
2218     }
2219     return (unsigned int)hash;
2220   }
2221 
2222   const char* as_string() {
2223     stringStream st;
2224     st.print("0x");
2225     for (int i = 0; i < length(); i++) {
2226       st.print("%08x", value(i));
2227     }
2228     return st.as_string();
2229   }
2230 
2231   bool equals(AdapterFingerPrint* other) {
2232     if (other->_length != _length) {
2233       return false;
2234     }
2235     if (_length < 0) {
2236       return _value._compact[0] == other->_value._compact[0] &&
2237              _value._compact[1] == other->_value._compact[1] &&
2238              _value._compact[2] == other->_value._compact[2];
2239     } else {
2240       for (int i = 0; i < _length; i++) {
2241         if (_value._fingerprint[i] != other->_value._fingerprint[i]) {
2242           return false;
2243         }
2244       }
2245     }
2246     return true;
2247   }
2248 };
2249 
2250 
2251 // A hashtable mapping from AdapterFingerPrints to AdapterHandlerEntries
2252 class AdapterHandlerTable : public BasicHashtable {
2253   friend class AdapterHandlerTableIterator;
2254 
2255  private:
2256 
2257 #ifndef PRODUCT
2258   static int _lookups; // number of calls to lookup
2259   static int _buckets; // number of buckets checked
2260   static int _equals;  // number of buckets checked with matching hash
2261   static int _hits;    // number of successful lookups
2262   static int _compact; // number of equals calls with compact signature
2263 #endif
2264 
2265   AdapterHandlerEntry* bucket(int i) {
2266     return (AdapterHandlerEntry*)BasicHashtable::bucket(i);
2267   }
2268 
2269  public:
2270   AdapterHandlerTable()
2271     : BasicHashtable(293, sizeof(AdapterHandlerEntry)) { }
2272 
2273   // Create a new entry suitable for insertion in the table
2274   AdapterHandlerEntry* new_entry(AdapterFingerPrint* fingerprint, address i2c_entry, address c2i_entry, address c2i_unverified_entry) {
2275     AdapterHandlerEntry* entry = (AdapterHandlerEntry*)BasicHashtable::new_entry(fingerprint->compute_hash());
2276     entry->init(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry);
2277     return entry;
2278   }
2279 
2280   // Insert an entry into the table
2281   void add(AdapterHandlerEntry* entry) {
2282     int index = hash_to_index(entry->hash());
2283     add_entry(index, entry);
2284   }
2285 
2286   void free_entry(AdapterHandlerEntry* entry) {
2287     entry->deallocate();
2288     BasicHashtable::free_entry(entry);
2289   }
2290 
2291   // Find a entry with the same fingerprint if it exists
2292   AdapterHandlerEntry* lookup(int total_args_passed, BasicType* sig_bt) {
2293     NOT_PRODUCT(_lookups++);
2294     AdapterFingerPrint fp(total_args_passed, sig_bt);
2295     unsigned int hash = fp.compute_hash();
2296     int index = hash_to_index(hash);
2297     for (AdapterHandlerEntry* e = bucket(index); e != NULL; e = e->next()) {
2298       NOT_PRODUCT(_buckets++);
2299       if (e->hash() == hash) {
2300         NOT_PRODUCT(_equals++);
2301         if (fp.equals(e->fingerprint())) {
2302 #ifndef PRODUCT
2303           if (fp.is_compact()) _compact++;
2304           _hits++;
2305 #endif
2306           return e;
2307         }
2308       }
2309     }
2310     return NULL;
2311   }
2312 
2313 #ifndef PRODUCT
2314   void print_statistics() {
2315     ResourceMark rm;
2316     int longest = 0;
2317     int empty = 0;
2318     int total = 0;
2319     int nonempty = 0;
2320     for (int index = 0; index < table_size(); index++) {
2321       int count = 0;
2322       for (AdapterHandlerEntry* e = bucket(index); e != NULL; e = e->next()) {
2323         count++;
2324       }
2325       if (count != 0) nonempty++;
2326       if (count == 0) empty++;
2327       if (count > longest) longest = count;
2328       total += count;
2329     }
2330     tty->print_cr("AdapterHandlerTable: empty %d longest %d total %d average %f",
2331                   empty, longest, total, total / (double)nonempty);
2332     tty->print_cr("AdapterHandlerTable: lookups %d buckets %d equals %d hits %d compact %d",
2333                   _lookups, _buckets, _equals, _hits, _compact);
2334   }
2335 #endif
2336 };
2337 
2338 
2339 #ifndef PRODUCT
2340 
2341 int AdapterHandlerTable::_lookups;
2342 int AdapterHandlerTable::_buckets;
2343 int AdapterHandlerTable::_equals;
2344 int AdapterHandlerTable::_hits;
2345 int AdapterHandlerTable::_compact;
2346 
2347 #endif
2348 
2349 class AdapterHandlerTableIterator : public StackObj {
2350  private:
2351   AdapterHandlerTable* _table;
2352   int _index;
2353   AdapterHandlerEntry* _current;
2354 
2355   void scan() {
2356     while (_index < _table->table_size()) {
2357       AdapterHandlerEntry* a = _table->bucket(_index);
2358       _index++;
2359       if (a != NULL) {
2360         _current = a;
2361         return;
2362       }
2363     }
2364   }
2365 
2366  public:
2367   AdapterHandlerTableIterator(AdapterHandlerTable* table): _table(table), _index(0), _current(NULL) {
2368     scan();
2369   }
2370   bool has_next() {
2371     return _current != NULL;
2372   }
2373   AdapterHandlerEntry* next() {
2374     if (_current != NULL) {
2375       AdapterHandlerEntry* result = _current;
2376       _current = _current->next();
2377       if (_current == NULL) scan();
2378       return result;
2379     } else {
2380       return NULL;
2381     }
2382   }
2383 };
2384 
2385 
2386 // ---------------------------------------------------------------------------
2387 // Implementation of AdapterHandlerLibrary
2388 AdapterHandlerTable* AdapterHandlerLibrary::_adapters = NULL;
2389 AdapterHandlerEntry* AdapterHandlerLibrary::_abstract_method_handler = NULL;
2390 const int AdapterHandlerLibrary_size = 16*K;
2391 BufferBlob* AdapterHandlerLibrary::_buffer = NULL;
2392 
2393 BufferBlob* AdapterHandlerLibrary::buffer_blob() {
2394   // Should be called only when AdapterHandlerLibrary_lock is active.
2395   if (_buffer == NULL) // Initialize lazily
2396       _buffer = BufferBlob::create("adapters", AdapterHandlerLibrary_size);
2397   return _buffer;
2398 }
2399 
2400 void AdapterHandlerLibrary::initialize() {
2401   if (_adapters != NULL) return;
2402   _adapters = new AdapterHandlerTable();
2403 
2404   // Create a special handler for abstract methods.  Abstract methods
2405   // are never compiled so an i2c entry is somewhat meaningless, but
2406   // fill it in with something appropriate just in case.  Pass handle
2407   // wrong method for the c2i transitions.
2408   address wrong_method = SharedRuntime::get_handle_wrong_method_stub();
2409   _abstract_method_handler = AdapterHandlerLibrary::new_entry(new AdapterFingerPrint(0, NULL),
2410                                                               StubRoutines::throw_AbstractMethodError_entry(),
2411                                                               wrong_method, wrong_method);
2412 }
2413 
2414 AdapterHandlerEntry* AdapterHandlerLibrary::new_entry(AdapterFingerPrint* fingerprint,
2415                                                       address i2c_entry,
2416                                                       address c2i_entry,
2417                                                       address c2i_unverified_entry) {
2418   return _adapters->new_entry(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry);
2419 }
2420 
2421 AdapterHandlerEntry* AdapterHandlerLibrary::get_adapter(methodHandle method) {
2422   // Use customized signature handler.  Need to lock around updates to
2423   // the AdapterHandlerTable (it is not safe for concurrent readers
2424   // and a single writer: this could be fixed if it becomes a
2425   // problem).
2426 
2427   // Get the address of the ic_miss handlers before we grab the
2428   // AdapterHandlerLibrary_lock. This fixes bug 6236259 which
2429   // was caused by the initialization of the stubs happening
2430   // while we held the lock and then notifying jvmti while
2431   // holding it. This just forces the initialization to be a little
2432   // earlier.
2433   address ic_miss = SharedRuntime::get_ic_miss_stub();
2434   assert(ic_miss != NULL, "must have handler");
2435 
2436   ResourceMark rm;
2437 
2438   NOT_PRODUCT(int insts_size);
2439   AdapterBlob* B = NULL;
2440   AdapterHandlerEntry* entry = NULL;
2441   AdapterFingerPrint* fingerprint = NULL;
2442   {
2443     MutexLocker mu(AdapterHandlerLibrary_lock);
2444     // make sure data structure is initialized
2445     initialize();
2446 
2447     if (method->is_abstract()) {
2448       return _abstract_method_handler;
2449     }
2450 
2451     // Fill in the signature array, for the calling-convention call.
2452     int total_args_passed = method->size_of_parameters(); // All args on stack
2453 
2454     BasicType* sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_args_passed);
2455     VMRegPair* regs   = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed);
2456     int i = 0;
2457     if (!method->is_static())  // Pass in receiver first
2458       sig_bt[i++] = T_OBJECT;
2459     for (SignatureStream ss(method->signature()); !ss.at_return_type(); ss.next()) {
2460       sig_bt[i++] = ss.type();  // Collect remaining bits of signature
2461       if (ss.type() == T_LONG || ss.type() == T_DOUBLE)
2462         sig_bt[i++] = T_VOID;   // Longs & doubles take 2 Java slots
2463     }
2464     assert(i == total_args_passed, "");
2465 
2466     // Lookup method signature's fingerprint
2467     entry = _adapters->lookup(total_args_passed, sig_bt);
2468 
2469 #ifdef ASSERT
2470     AdapterHandlerEntry* shared_entry = NULL;
2471     if (VerifyAdapterSharing && entry != NULL) {
2472       shared_entry = entry;
2473       entry = NULL;
2474     }
2475 #endif
2476 
2477     if (entry != NULL) {
2478       return entry;
2479     }
2480 
2481     // Get a description of the compiled java calling convention and the largest used (VMReg) stack slot usage
2482     int comp_args_on_stack = SharedRuntime::java_calling_convention(sig_bt, regs, total_args_passed, false);
2483 
2484     // Make a C heap allocated version of the fingerprint to store in the adapter
2485     fingerprint = new AdapterFingerPrint(total_args_passed, sig_bt);
2486 
2487     // Create I2C & C2I handlers
2488 
2489     BufferBlob* buf = buffer_blob(); // the temporary code buffer in CodeCache
2490     if (buf != NULL) {
2491       CodeBuffer buffer(buf);
2492       short buffer_locs[20];
2493       buffer.insts()->initialize_shared_locs((relocInfo*)buffer_locs,
2494                                              sizeof(buffer_locs)/sizeof(relocInfo));
2495       MacroAssembler _masm(&buffer);
2496 
2497       entry = SharedRuntime::generate_i2c2i_adapters(&_masm,
2498                                                      total_args_passed,
2499                                                      comp_args_on_stack,
2500                                                      sig_bt,
2501                                                      regs,
2502                                                      fingerprint);
2503 
2504 #ifdef ASSERT
2505       if (VerifyAdapterSharing) {
2506         if (shared_entry != NULL) {
2507           assert(shared_entry->compare_code(buf->code_begin(), buffer.insts_size(), total_args_passed, sig_bt),
2508                  "code must match");
2509           // Release the one just created and return the original
2510           _adapters->free_entry(entry);
2511           return shared_entry;
2512         } else  {
2513           entry->save_code(buf->code_begin(), buffer.insts_size(), total_args_passed, sig_bt);
2514         }
2515       }
2516 #endif
2517 
2518       B = AdapterBlob::create(&buffer);
2519       NOT_PRODUCT(insts_size = buffer.insts_size());
2520     }
2521     if (B == NULL) {
2522       // CodeCache is full, disable compilation
2523       // Ought to log this but compile log is only per compile thread
2524       // and we're some non descript Java thread.
2525       MutexUnlocker mu(AdapterHandlerLibrary_lock);
2526       CompileBroker::handle_full_code_cache();
2527       return NULL; // Out of CodeCache space
2528     }
2529     entry->relocate(B->content_begin());
2530 #ifndef PRODUCT
2531     // debugging suppport
2532     if (PrintAdapterHandlers) {
2533       tty->cr();
2534       tty->print_cr("i2c argument handler #%d for: %s %s (fingerprint = %s, %d bytes generated)",
2535                     _adapters->number_of_entries(), (method->is_static() ? "static" : "receiver"),
2536                     method->signature()->as_C_string(), fingerprint->as_string(), insts_size );
2537       tty->print_cr("c2i argument handler starts at %p",entry->get_c2i_entry());
2538       Disassembler::decode(entry->get_i2c_entry(), entry->get_i2c_entry() + insts_size);
2539     }
2540 #endif
2541 
2542     _adapters->add(entry);
2543   }
2544   // Outside of the lock
2545   if (B != NULL) {
2546     char blob_id[256];
2547     jio_snprintf(blob_id,
2548                  sizeof(blob_id),
2549                  "%s(%s)@" PTR_FORMAT,
2550                  B->name(),
2551                  fingerprint->as_string(),
2552                  B->content_begin());
2553     Forte::register_stub(blob_id, B->content_begin(), B->content_end());
2554 
2555     if (JvmtiExport::should_post_dynamic_code_generated()) {
2556       JvmtiExport::post_dynamic_code_generated(blob_id, B->content_begin(), B->content_end());
2557     }
2558   }
2559   return entry;
2560 }
2561 
2562 void AdapterHandlerEntry::relocate(address new_base) {
2563     ptrdiff_t delta = new_base - _i2c_entry;
2564     _i2c_entry += delta;
2565     _c2i_entry += delta;
2566     _c2i_unverified_entry += delta;
2567 }
2568 
2569 
2570 void AdapterHandlerEntry::deallocate() {
2571   delete _fingerprint;
2572 #ifdef ASSERT
2573   if (_saved_code) FREE_C_HEAP_ARRAY(unsigned char, _saved_code);
2574   if (_saved_sig)  FREE_C_HEAP_ARRAY(Basictype, _saved_sig);
2575 #endif
2576 }
2577 
2578 
2579 #ifdef ASSERT
2580 // Capture the code before relocation so that it can be compared
2581 // against other versions.  If the code is captured after relocation
2582 // then relative instructions won't be equivalent.
2583 void AdapterHandlerEntry::save_code(unsigned char* buffer, int length, int total_args_passed, BasicType* sig_bt) {
2584   _saved_code = NEW_C_HEAP_ARRAY(unsigned char, length);
2585   _code_length = length;
2586   memcpy(_saved_code, buffer, length);
2587   _total_args_passed = total_args_passed;
2588   _saved_sig = NEW_C_HEAP_ARRAY(BasicType, _total_args_passed);
2589   memcpy(_saved_sig, sig_bt, _total_args_passed * sizeof(BasicType));
2590 }
2591 
2592 
2593 bool AdapterHandlerEntry::compare_code(unsigned char* buffer, int length, int total_args_passed, BasicType* sig_bt) {
2594   if (length != _code_length) {
2595     return false;
2596   }
2597   for (int i = 0; i < length; i++) {
2598     if (buffer[i] != _saved_code[i]) {
2599       return false;
2600     }
2601   }
2602   return true;
2603 }
2604 #endif
2605 
2606 
2607 // Create a native wrapper for this native method.  The wrapper converts the
2608 // java compiled calling convention to the native convention, handlizes
2609 // arguments, and transitions to native.  On return from the native we transition
2610 // back to java blocking if a safepoint is in progress.
2611 nmethod *AdapterHandlerLibrary::create_native_wrapper(methodHandle method, int compile_id) {
2612   ResourceMark rm;
2613   nmethod* nm = NULL;
2614 
2615   assert(method->has_native_function(), "must have something valid to call!");
2616 
2617   {
2618     // perform the work while holding the lock, but perform any printing outside the lock
2619     MutexLocker mu(AdapterHandlerLibrary_lock);
2620     // See if somebody beat us to it
2621     nm = method->code();
2622     if (nm) {
2623       return nm;
2624     }
2625 
2626     ResourceMark rm;
2627 
2628     BufferBlob*  buf = buffer_blob(); // the temporary code buffer in CodeCache
2629     if (buf != NULL) {
2630       CodeBuffer buffer(buf);
2631       double locs_buf[20];
2632       buffer.insts()->initialize_shared_locs((relocInfo*)locs_buf, sizeof(locs_buf) / sizeof(relocInfo));
2633       MacroAssembler _masm(&buffer);
2634 
2635       // Fill in the signature array, for the calling-convention call.
2636       int total_args_passed = method->size_of_parameters();
2637 
2638       BasicType* sig_bt = NEW_RESOURCE_ARRAY(BasicType,total_args_passed);
2639       VMRegPair*   regs = NEW_RESOURCE_ARRAY(VMRegPair,total_args_passed);
2640       int i=0;
2641       if( !method->is_static() )  // Pass in receiver first
2642         sig_bt[i++] = T_OBJECT;
2643       SignatureStream ss(method->signature());
2644       for( ; !ss.at_return_type(); ss.next()) {
2645         sig_bt[i++] = ss.type();  // Collect remaining bits of signature
2646         if( ss.type() == T_LONG || ss.type() == T_DOUBLE )
2647           sig_bt[i++] = T_VOID;   // Longs & doubles take 2 Java slots
2648       }
2649       assert( i==total_args_passed, "" );
2650       BasicType ret_type = ss.type();
2651 
2652       // Now get the compiled-Java layout as input arguments
2653       int comp_args_on_stack;
2654       comp_args_on_stack = SharedRuntime::java_calling_convention(sig_bt, regs, total_args_passed, false);
2655 
2656       // Generate the compiled-to-native wrapper code
2657       nm = SharedRuntime::generate_native_wrapper(&_masm,
2658                                                   method,
2659                                                   compile_id,
2660                                                   total_args_passed,
2661                                                   comp_args_on_stack,
2662                                                   sig_bt,regs,
2663                                                   ret_type);
2664     }
2665   }
2666 
2667   // Must unlock before calling set_code
2668 
2669   // Install the generated code.
2670   if (nm != NULL) {
2671     if (PrintCompilation) {
2672       ttyLocker ttyl;
2673       CompileTask::print_compilation(tty, nm, method->is_static() ? "(static)" : "");
2674     }
2675     method->set_code(method, nm);
2676     nm->post_compiled_method_load_event();
2677   } else {
2678     // CodeCache is full, disable compilation
2679     CompileBroker::handle_full_code_cache();
2680   }
2681   return nm;
2682 }
2683 
2684 #ifdef HAVE_DTRACE_H
2685 // Create a dtrace nmethod for this method.  The wrapper converts the
2686 // java compiled calling convention to the native convention, makes a dummy call
2687 // (actually nops for the size of the call instruction, which become a trap if
2688 // probe is enabled). The returns to the caller. Since this all looks like a
2689 // leaf no thread transition is needed.
2690 
2691 nmethod *AdapterHandlerLibrary::create_dtrace_nmethod(methodHandle method) {
2692   ResourceMark rm;
2693   nmethod* nm = NULL;
2694 
2695   if (PrintCompilation) {
2696     ttyLocker ttyl;
2697     tty->print("---   n%s  ");
2698     method->print_short_name(tty);
2699     if (method->is_static()) {
2700       tty->print(" (static)");
2701     }
2702     tty->cr();
2703   }
2704 
2705   {
2706     // perform the work while holding the lock, but perform any printing
2707     // outside the lock
2708     MutexLocker mu(AdapterHandlerLibrary_lock);
2709     // See if somebody beat us to it
2710     nm = method->code();
2711     if (nm) {
2712       return nm;
2713     }
2714 
2715     ResourceMark rm;
2716 
2717     BufferBlob*  buf = buffer_blob(); // the temporary code buffer in CodeCache
2718     if (buf != NULL) {
2719       CodeBuffer buffer(buf);
2720       // Need a few relocation entries
2721       double locs_buf[20];
2722       buffer.insts()->initialize_shared_locs(
2723         (relocInfo*)locs_buf, sizeof(locs_buf) / sizeof(relocInfo));
2724       MacroAssembler _masm(&buffer);
2725 
2726       // Generate the compiled-to-native wrapper code
2727       nm = SharedRuntime::generate_dtrace_nmethod(&_masm, method);
2728     }
2729   }
2730   return nm;
2731 }
2732 
2733 // the dtrace method needs to convert java lang string to utf8 string.
2734 void SharedRuntime::get_utf(oopDesc* src, address dst) {
2735   typeArrayOop jlsValue  = java_lang_String::value(src);
2736   int          jlsOffset = java_lang_String::offset(src);
2737   int          jlsLen    = java_lang_String::length(src);
2738   jchar*       jlsPos    = (jlsLen == 0) ? NULL :
2739                                            jlsValue->char_at_addr(jlsOffset);
2740   assert(typeArrayKlass::cast(jlsValue->klass())->element_type() == T_CHAR, "compressed string");
2741   (void) UNICODE::as_utf8(jlsPos, jlsLen, (char *)dst, max_dtrace_string_size);
2742 }
2743 #endif // ndef HAVE_DTRACE_H
2744 
2745 // -------------------------------------------------------------------------
2746 // Java-Java calling convention
2747 // (what you use when Java calls Java)
2748 
2749 //------------------------------name_for_receiver----------------------------------
2750 // For a given signature, return the VMReg for parameter 0.
2751 VMReg SharedRuntime::name_for_receiver() {
2752   VMRegPair regs;
2753   BasicType sig_bt = T_OBJECT;
2754   (void) java_calling_convention(&sig_bt, &regs, 1, true);
2755   // Return argument 0 register.  In the LP64 build pointers
2756   // take 2 registers, but the VM wants only the 'main' name.
2757   return regs.first();
2758 }
2759 
2760 VMRegPair *SharedRuntime::find_callee_arguments(Symbol* sig, bool has_receiver, int* arg_size) {
2761   // This method is returning a data structure allocating as a
2762   // ResourceObject, so do not put any ResourceMarks in here.
2763   char *s = sig->as_C_string();
2764   int len = (int)strlen(s);
2765   *s++; len--;                  // Skip opening paren
2766   char *t = s+len;
2767   while( *(--t) != ')' ) ;      // Find close paren
2768 
2769   BasicType *sig_bt = NEW_RESOURCE_ARRAY( BasicType, 256 );
2770   VMRegPair *regs = NEW_RESOURCE_ARRAY( VMRegPair, 256 );
2771   int cnt = 0;
2772   if (has_receiver) {
2773     sig_bt[cnt++] = T_OBJECT; // Receiver is argument 0; not in signature
2774   }
2775 
2776   while( s < t ) {
2777     switch( *s++ ) {            // Switch on signature character
2778     case 'B': sig_bt[cnt++] = T_BYTE;    break;
2779     case 'C': sig_bt[cnt++] = T_CHAR;    break;
2780     case 'D': sig_bt[cnt++] = T_DOUBLE;  sig_bt[cnt++] = T_VOID; break;
2781     case 'F': sig_bt[cnt++] = T_FLOAT;   break;
2782     case 'I': sig_bt[cnt++] = T_INT;     break;
2783     case 'J': sig_bt[cnt++] = T_LONG;    sig_bt[cnt++] = T_VOID; break;
2784     case 'S': sig_bt[cnt++] = T_SHORT;   break;
2785     case 'Z': sig_bt[cnt++] = T_BOOLEAN; break;
2786     case 'V': sig_bt[cnt++] = T_VOID;    break;
2787     case 'L':                   // Oop
2788       while( *s++ != ';'  ) ;   // Skip signature
2789       sig_bt[cnt++] = T_OBJECT;
2790       break;
2791     case '[': {                 // Array
2792       do {                      // Skip optional size
2793         while( *s >= '0' && *s <= '9' ) s++;
2794       } while( *s++ == '[' );   // Nested arrays?
2795       // Skip element type
2796       if( s[-1] == 'L' )
2797         while( *s++ != ';'  ) ; // Skip signature
2798       sig_bt[cnt++] = T_ARRAY;
2799       break;
2800     }
2801     default : ShouldNotReachHere();
2802     }
2803   }
2804   assert( cnt < 256, "grow table size" );
2805 
2806   int comp_args_on_stack;
2807   comp_args_on_stack = java_calling_convention(sig_bt, regs, cnt, true);
2808 
2809   // the calling convention doesn't count out_preserve_stack_slots so
2810   // we must add that in to get "true" stack offsets.
2811 
2812   if (comp_args_on_stack) {
2813     for (int i = 0; i < cnt; i++) {
2814       VMReg reg1 = regs[i].first();
2815       if( reg1->is_stack()) {
2816         // Yuck
2817         reg1 = reg1->bias(out_preserve_stack_slots());
2818       }
2819       VMReg reg2 = regs[i].second();
2820       if( reg2->is_stack()) {
2821         // Yuck
2822         reg2 = reg2->bias(out_preserve_stack_slots());
2823       }
2824       regs[i].set_pair(reg2, reg1);
2825     }
2826   }
2827 
2828   // results
2829   *arg_size = cnt;
2830   return regs;
2831 }
2832 
2833 // OSR Migration Code
2834 //
2835 // This code is used convert interpreter frames into compiled frames.  It is
2836 // called from very start of a compiled OSR nmethod.  A temp array is
2837 // allocated to hold the interesting bits of the interpreter frame.  All
2838 // active locks are inflated to allow them to move.  The displaced headers and
2839 // active interpeter locals are copied into the temp buffer.  Then we return
2840 // back to the compiled code.  The compiled code then pops the current
2841 // interpreter frame off the stack and pushes a new compiled frame.  Then it
2842 // copies the interpreter locals and displaced headers where it wants.
2843 // Finally it calls back to free the temp buffer.
2844 //
2845 // All of this is done NOT at any Safepoint, nor is any safepoint or GC allowed.
2846 
2847 JRT_LEAF(intptr_t*, SharedRuntime::OSR_migration_begin( JavaThread *thread) )
2848 
2849 #ifdef IA64
2850   ShouldNotReachHere(); // NYI
2851 #endif /* IA64 */
2852 
2853   //
2854   // This code is dependent on the memory layout of the interpreter local
2855   // array and the monitors. On all of our platforms the layout is identical
2856   // so this code is shared. If some platform lays the their arrays out
2857   // differently then this code could move to platform specific code or
2858   // the code here could be modified to copy items one at a time using
2859   // frame accessor methods and be platform independent.
2860 
2861   frame fr = thread->last_frame();
2862   assert( fr.is_interpreted_frame(), "" );
2863   assert( fr.interpreter_frame_expression_stack_size()==0, "only handle empty stacks" );
2864 
2865   // Figure out how many monitors are active.
2866   int active_monitor_count = 0;
2867   for( BasicObjectLock *kptr = fr.interpreter_frame_monitor_end();
2868        kptr < fr.interpreter_frame_monitor_begin();
2869        kptr = fr.next_monitor_in_interpreter_frame(kptr) ) {
2870     if( kptr->obj() != NULL ) active_monitor_count++;
2871   }
2872 
2873   // QQQ we could place number of active monitors in the array so that compiled code
2874   // could double check it.
2875 
2876   methodOop moop = fr.interpreter_frame_method();
2877   int max_locals = moop->max_locals();
2878   // Allocate temp buffer, 1 word per local & 2 per active monitor
2879   int buf_size_words = max_locals + active_monitor_count*2;
2880   intptr_t *buf = NEW_C_HEAP_ARRAY(intptr_t,buf_size_words);
2881 
2882   // Copy the locals.  Order is preserved so that loading of longs works.
2883   // Since there's no GC I can copy the oops blindly.
2884   assert( sizeof(HeapWord)==sizeof(intptr_t), "fix this code");
2885   Copy::disjoint_words((HeapWord*)fr.interpreter_frame_local_at(max_locals-1),
2886                        (HeapWord*)&buf[0],
2887                        max_locals);
2888 
2889   // Inflate locks.  Copy the displaced headers.  Be careful, there can be holes.
2890   int i = max_locals;
2891   for( BasicObjectLock *kptr2 = fr.interpreter_frame_monitor_end();
2892        kptr2 < fr.interpreter_frame_monitor_begin();
2893        kptr2 = fr.next_monitor_in_interpreter_frame(kptr2) ) {
2894     if( kptr2->obj() != NULL) {         // Avoid 'holes' in the monitor array
2895       BasicLock *lock = kptr2->lock();
2896       // Inflate so the displaced header becomes position-independent
2897       if (lock->displaced_header()->is_unlocked())
2898         ObjectSynchronizer::inflate_helper(kptr2->obj());
2899       // Now the displaced header is free to move
2900       buf[i++] = (intptr_t)lock->displaced_header();
2901       buf[i++] = (intptr_t)kptr2->obj();
2902     }
2903   }
2904   assert( i - max_locals == active_monitor_count*2, "found the expected number of monitors" );
2905 
2906   return buf;
2907 JRT_END
2908 
2909 JRT_LEAF(void, SharedRuntime::OSR_migration_end( intptr_t* buf) )
2910   FREE_C_HEAP_ARRAY(intptr_t,buf);
2911 JRT_END
2912 
2913 bool AdapterHandlerLibrary::contains(CodeBlob* b) {
2914   AdapterHandlerTableIterator iter(_adapters);
2915   while (iter.has_next()) {
2916     AdapterHandlerEntry* a = iter.next();
2917     if ( b == CodeCache::find_blob(a->get_i2c_entry()) ) return true;
2918   }
2919   return false;
2920 }
2921 
2922 void AdapterHandlerLibrary::print_handler_on(outputStream* st, CodeBlob* b) {
2923   AdapterHandlerTableIterator iter(_adapters);
2924   while (iter.has_next()) {
2925     AdapterHandlerEntry* a = iter.next();
2926     if ( b == CodeCache::find_blob(a->get_i2c_entry()) ) {
2927       st->print("Adapter for signature: ");
2928       st->print_cr("%s i2c: " INTPTR_FORMAT " c2i: " INTPTR_FORMAT " c2iUV: " INTPTR_FORMAT,
2929                    a->fingerprint()->as_string(),
2930                    a->get_i2c_entry(), a->get_c2i_entry(), a->get_c2i_unverified_entry());
2931 
2932       return;
2933     }
2934   }
2935   assert(false, "Should have found handler");
2936 }
2937 
2938 #ifndef PRODUCT
2939 
2940 void AdapterHandlerLibrary::print_statistics() {
2941   _adapters->print_statistics();
2942 }
2943 
2944 #endif /* PRODUCT */