1 /*
   2  * Copyright (c) 1997, 2011, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/systemDictionary.hpp"
  27 #include "classfile/vmSymbols.hpp"
  28 #include "code/compiledIC.hpp"
  29 #include "code/scopeDesc.hpp"
  30 #include "code/vtableStubs.hpp"
  31 #include "compiler/abstractCompiler.hpp"
  32 #include "compiler/compileBroker.hpp"
  33 #include "compiler/compilerOracle.hpp"
  34 #include "interpreter/interpreter.hpp"
  35 #include "interpreter/interpreterRuntime.hpp"
  36 #include "memory/gcLocker.inline.hpp"
  37 #include "memory/universe.inline.hpp"
  38 #include "oops/oop.inline.hpp"
  39 #include "prims/forte.hpp"
  40 #include "prims/jvmtiExport.hpp"
  41 #include "prims/jvmtiRedefineClassesTrace.hpp"
  42 #include "prims/methodHandles.hpp"
  43 #include "prims/nativeLookup.hpp"
  44 #include "runtime/arguments.hpp"
  45 #include "runtime/biasedLocking.hpp"
  46 #include "runtime/handles.inline.hpp"
  47 #include "runtime/init.hpp"
  48 #include "runtime/interfaceSupport.hpp"
  49 #include "runtime/javaCalls.hpp"
  50 #include "runtime/sharedRuntime.hpp"
  51 #include "runtime/stubRoutines.hpp"
  52 #include "runtime/vframe.hpp"
  53 #include "runtime/vframeArray.hpp"
  54 #include "utilities/copy.hpp"
  55 #include "utilities/dtrace.hpp"
  56 #include "utilities/events.hpp"
  57 #include "utilities/hashtable.inline.hpp"
  58 #include "utilities/xmlstream.hpp"
  59 #ifdef TARGET_ARCH_x86
  60 # include "nativeInst_x86.hpp"
  61 # include "vmreg_x86.inline.hpp"
  62 #endif
  63 #ifdef TARGET_ARCH_sparc
  64 # include "nativeInst_sparc.hpp"
  65 # include "vmreg_sparc.inline.hpp"
  66 #endif
  67 #ifdef TARGET_ARCH_zero
  68 # include "nativeInst_zero.hpp"
  69 # include "vmreg_zero.inline.hpp"
  70 #endif
  71 #ifdef TARGET_ARCH_arm
  72 # include "nativeInst_arm.hpp"
  73 # include "vmreg_arm.inline.hpp"
  74 #endif
  75 #ifdef TARGET_ARCH_ppc
  76 # include "nativeInst_ppc.hpp"
  77 # include "vmreg_ppc.inline.hpp"
  78 #endif
  79 #ifdef COMPILER1
  80 #include "c1/c1_Runtime1.hpp"
  81 #include "runtime/compilationPolicy.hpp"
  82 #endif
  83 
  84 // Shared stub locations
  85 RuntimeStub*        SharedRuntime::_wrong_method_blob;
  86 RuntimeStub*        SharedRuntime::_ic_miss_blob;
  87 RuntimeStub*        SharedRuntime::_resolve_opt_virtual_call_blob;
  88 RuntimeStub*        SharedRuntime::_resolve_virtual_call_blob;
  89 RuntimeStub*        SharedRuntime::_resolve_static_call_blob;
  90 #ifdef COMPILER1
  91 RuntimeStub*        SharedRuntime::_resolve_profile_call_blob;
  92 RuntimeStub*        SharedRuntime::_resolve_static_profile_call_blob;
  93 #endif
  94 
  95 DeoptimizationBlob* SharedRuntime::_deopt_blob;
  96 RicochetBlob*       SharedRuntime::_ricochet_blob;
  97 
  98 SafepointBlob*      SharedRuntime::_polling_page_safepoint_handler_blob;
  99 SafepointBlob*      SharedRuntime::_polling_page_return_handler_blob;
 100 
 101 #ifdef COMPILER2
 102 UncommonTrapBlob*   SharedRuntime::_uncommon_trap_blob;
 103 #endif // COMPILER2
 104 
 105 
 106 //----------------------------generate_stubs-----------------------------------
 107 void SharedRuntime::generate_stubs() {
 108   _wrong_method_blob                   = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method),         "wrong_method_stub");
 109   _ic_miss_blob                        = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method_ic_miss), "ic_miss_stub");
 110   _resolve_opt_virtual_call_blob       = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_opt_virtual_call_C),  "resolve_opt_virtual_call");
 111   _resolve_virtual_call_blob           = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_virtual_call_C),      "resolve_virtual_call");
 112   _resolve_static_call_blob            = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_static_call_C),       "resolve_static_call");
 113 #ifdef COMPILER1
 114   _resolve_profile_call_blob           = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_profile_call_C),      "resolve_profile_call");
 115   _resolve_static_profile_call_blob    = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_static_profile_call_C),"resolve_static_profile_call");
 116 #endif
 117 
 118   _polling_page_safepoint_handler_blob = generate_handler_blob(CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception), false);
 119   _polling_page_return_handler_blob    = generate_handler_blob(CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception), true);
 120 
 121   generate_ricochet_blob();
 122   generate_deopt_blob();
 123 
 124 #ifdef COMPILER2
 125   generate_uncommon_trap_blob();
 126 #endif // COMPILER2
 127 }
 128 
 129 //----------------------------generate_ricochet_blob---------------------------
 130 void SharedRuntime::generate_ricochet_blob() {
 131   if (!EnableInvokeDynamic)  return;  // leave it as a null
 132 
 133 #ifndef TARGET_ARCH_NYI_6939861
 134   // allocate space for the code
 135   ResourceMark rm;
 136   // setup code generation tools
 137   CodeBuffer buffer("ricochet_blob", 256 LP64_ONLY(+ 256), 256);  // XXX x86 LP64L: 512, 512
 138   MacroAssembler* masm = new MacroAssembler(&buffer);
 139 
 140   int bounce_offset = -1, exception_offset = -1, frame_size_in_words = -1;
 141   MethodHandles::RicochetFrame::generate_ricochet_blob(masm, &bounce_offset, &exception_offset, &frame_size_in_words);
 142 
 143   // -------------
 144   // make sure all code is generated
 145   masm->flush();
 146 
 147   // failed to generate?
 148   if (bounce_offset < 0 || exception_offset < 0 || frame_size_in_words < 0) {
 149     assert(false, "bad ricochet blob");
 150     return;
 151   }
 152 
 153   _ricochet_blob = RicochetBlob::create(&buffer, bounce_offset, exception_offset, frame_size_in_words);
 154 #endif
 155 }
 156 
 157 
 158 #include <math.h>
 159 
 160 #ifndef USDT2
 161 HS_DTRACE_PROBE_DECL4(hotspot, object__alloc, Thread*, char*, int, size_t);
 162 HS_DTRACE_PROBE_DECL7(hotspot, method__entry, int,
 163                       char*, int, char*, int, char*, int);
 164 HS_DTRACE_PROBE_DECL7(hotspot, method__return, int,
 165                       char*, int, char*, int, char*, int);
 166 #endif /* !USDT2 */
 167 
 168 // Implementation of SharedRuntime
 169 
 170 #ifndef PRODUCT
 171 // For statistics
 172 int SharedRuntime::_ic_miss_ctr = 0;
 173 int SharedRuntime::_wrong_method_ctr = 0;
 174 int SharedRuntime::_resolve_static_ctr = 0;
 175 int SharedRuntime::_resolve_virtual_ctr = 0;
 176 int SharedRuntime::_resolve_opt_virtual_ctr = 0;
 177 int SharedRuntime::_implicit_null_throws = 0;
 178 int SharedRuntime::_implicit_div0_throws = 0;
 179 int SharedRuntime::_throw_null_ctr = 0;
 180 
 181 int SharedRuntime::_nof_normal_calls = 0;
 182 int SharedRuntime::_nof_optimized_calls = 0;
 183 int SharedRuntime::_nof_inlined_calls = 0;
 184 int SharedRuntime::_nof_megamorphic_calls = 0;
 185 int SharedRuntime::_nof_static_calls = 0;
 186 int SharedRuntime::_nof_inlined_static_calls = 0;
 187 int SharedRuntime::_nof_interface_calls = 0;
 188 int SharedRuntime::_nof_optimized_interface_calls = 0;
 189 int SharedRuntime::_nof_inlined_interface_calls = 0;
 190 int SharedRuntime::_nof_megamorphic_interface_calls = 0;
 191 int SharedRuntime::_nof_removable_exceptions = 0;
 192 
 193 int SharedRuntime::_new_instance_ctr=0;
 194 int SharedRuntime::_new_array_ctr=0;
 195 int SharedRuntime::_multi1_ctr=0;
 196 int SharedRuntime::_multi2_ctr=0;
 197 int SharedRuntime::_multi3_ctr=0;
 198 int SharedRuntime::_multi4_ctr=0;
 199 int SharedRuntime::_multi5_ctr=0;
 200 int SharedRuntime::_mon_enter_stub_ctr=0;
 201 int SharedRuntime::_mon_exit_stub_ctr=0;
 202 int SharedRuntime::_mon_enter_ctr=0;
 203 int SharedRuntime::_mon_exit_ctr=0;
 204 int SharedRuntime::_partial_subtype_ctr=0;
 205 int SharedRuntime::_jbyte_array_copy_ctr=0;
 206 int SharedRuntime::_jshort_array_copy_ctr=0;
 207 int SharedRuntime::_jint_array_copy_ctr=0;
 208 int SharedRuntime::_jlong_array_copy_ctr=0;
 209 int SharedRuntime::_oop_array_copy_ctr=0;
 210 int SharedRuntime::_checkcast_array_copy_ctr=0;
 211 int SharedRuntime::_unsafe_array_copy_ctr=0;
 212 int SharedRuntime::_generic_array_copy_ctr=0;
 213 int SharedRuntime::_slow_array_copy_ctr=0;
 214 int SharedRuntime::_find_handler_ctr=0;
 215 int SharedRuntime::_rethrow_ctr=0;
 216 
 217 int     SharedRuntime::_ICmiss_index                    = 0;
 218 int     SharedRuntime::_ICmiss_count[SharedRuntime::maxICmiss_count];
 219 address SharedRuntime::_ICmiss_at[SharedRuntime::maxICmiss_count];
 220 
 221 
 222 void SharedRuntime::trace_ic_miss(address at) {
 223   for (int i = 0; i < _ICmiss_index; i++) {
 224     if (_ICmiss_at[i] == at) {
 225       _ICmiss_count[i]++;
 226       return;
 227     }
 228   }
 229   int index = _ICmiss_index++;
 230   if (_ICmiss_index >= maxICmiss_count) _ICmiss_index = maxICmiss_count - 1;
 231   _ICmiss_at[index] = at;
 232   _ICmiss_count[index] = 1;
 233 }
 234 
 235 void SharedRuntime::print_ic_miss_histogram() {
 236   if (ICMissHistogram) {
 237     tty->print_cr ("IC Miss Histogram:");
 238     int tot_misses = 0;
 239     for (int i = 0; i < _ICmiss_index; i++) {
 240       tty->print_cr("  at: " INTPTR_FORMAT "  nof: %d", _ICmiss_at[i], _ICmiss_count[i]);
 241       tot_misses += _ICmiss_count[i];
 242     }
 243     tty->print_cr ("Total IC misses: %7d", tot_misses);
 244   }
 245 }
 246 #endif // PRODUCT
 247 
 248 #ifndef SERIALGC
 249 
 250 // G1 write-barrier pre: executed before a pointer store.
 251 JRT_LEAF(void, SharedRuntime::g1_wb_pre(oopDesc* orig, JavaThread *thread))
 252   if (orig == NULL) {
 253     assert(false, "should be optimized out");
 254     return;
 255   }
 256   assert(orig->is_oop(true /* ignore mark word */), "Error");
 257   // store the original value that was in the field reference
 258   thread->satb_mark_queue().enqueue(orig);
 259 JRT_END
 260 
 261 // G1 write-barrier post: executed after a pointer store.
 262 JRT_LEAF(void, SharedRuntime::g1_wb_post(void* card_addr, JavaThread* thread))
 263   thread->dirty_card_queue().enqueue(card_addr);
 264 JRT_END
 265 
 266 #endif // !SERIALGC
 267 
 268 
 269 JRT_LEAF(jlong, SharedRuntime::lmul(jlong y, jlong x))
 270   return x * y;
 271 JRT_END
 272 
 273 
 274 JRT_LEAF(jlong, SharedRuntime::ldiv(jlong y, jlong x))
 275   if (x == min_jlong && y == CONST64(-1)) {
 276     return x;
 277   } else {
 278     return x / y;
 279   }
 280 JRT_END
 281 
 282 
 283 JRT_LEAF(jlong, SharedRuntime::lrem(jlong y, jlong x))
 284   if (x == min_jlong && y == CONST64(-1)) {
 285     return 0;
 286   } else {
 287     return x % y;
 288   }
 289 JRT_END
 290 
 291 
 292 const juint  float_sign_mask  = 0x7FFFFFFF;
 293 const juint  float_infinity   = 0x7F800000;
 294 const julong double_sign_mask = CONST64(0x7FFFFFFFFFFFFFFF);
 295 const julong double_infinity  = CONST64(0x7FF0000000000000);
 296 
 297 JRT_LEAF(jfloat, SharedRuntime::frem(jfloat  x, jfloat  y))
 298 #ifdef _WIN64
 299   // 64-bit Windows on amd64 returns the wrong values for
 300   // infinity operands.
 301   union { jfloat f; juint i; } xbits, ybits;
 302   xbits.f = x;
 303   ybits.f = y;
 304   // x Mod Infinity == x unless x is infinity
 305   if ( ((xbits.i & float_sign_mask) != float_infinity) &&
 306        ((ybits.i & float_sign_mask) == float_infinity) ) {
 307     return x;
 308   }
 309 #endif
 310   return ((jfloat)fmod((double)x,(double)y));
 311 JRT_END
 312 
 313 
 314 JRT_LEAF(jdouble, SharedRuntime::drem(jdouble x, jdouble y))
 315 #ifdef _WIN64
 316   union { jdouble d; julong l; } xbits, ybits;
 317   xbits.d = x;
 318   ybits.d = y;
 319   // x Mod Infinity == x unless x is infinity
 320   if ( ((xbits.l & double_sign_mask) != double_infinity) &&
 321        ((ybits.l & double_sign_mask) == double_infinity) ) {
 322     return x;
 323   }
 324 #endif
 325   return ((jdouble)fmod((double)x,(double)y));
 326 JRT_END
 327 
 328 #ifdef __SOFTFP__
 329 JRT_LEAF(jfloat, SharedRuntime::fadd(jfloat x, jfloat y))
 330   return x + y;
 331 JRT_END
 332 
 333 JRT_LEAF(jfloat, SharedRuntime::fsub(jfloat x, jfloat y))
 334   return x - y;
 335 JRT_END
 336 
 337 JRT_LEAF(jfloat, SharedRuntime::fmul(jfloat x, jfloat y))
 338   return x * y;
 339 JRT_END
 340 
 341 JRT_LEAF(jfloat, SharedRuntime::fdiv(jfloat x, jfloat y))
 342   return x / y;
 343 JRT_END
 344 
 345 JRT_LEAF(jdouble, SharedRuntime::dadd(jdouble x, jdouble y))
 346   return x + y;
 347 JRT_END
 348 
 349 JRT_LEAF(jdouble, SharedRuntime::dsub(jdouble x, jdouble y))
 350   return x - y;
 351 JRT_END
 352 
 353 JRT_LEAF(jdouble, SharedRuntime::dmul(jdouble x, jdouble y))
 354   return x * y;
 355 JRT_END
 356 
 357 JRT_LEAF(jdouble, SharedRuntime::ddiv(jdouble x, jdouble y))
 358   return x / y;
 359 JRT_END
 360 
 361 JRT_LEAF(jfloat, SharedRuntime::i2f(jint x))
 362   return (jfloat)x;
 363 JRT_END
 364 
 365 JRT_LEAF(jdouble, SharedRuntime::i2d(jint x))
 366   return (jdouble)x;
 367 JRT_END
 368 
 369 JRT_LEAF(jdouble, SharedRuntime::f2d(jfloat x))
 370   return (jdouble)x;
 371 JRT_END
 372 
 373 JRT_LEAF(int,  SharedRuntime::fcmpl(float x, float y))
 374   return x>y ? 1 : (x==y ? 0 : -1);  /* x<y or is_nan*/
 375 JRT_END
 376 
 377 JRT_LEAF(int,  SharedRuntime::fcmpg(float x, float y))
 378   return x<y ? -1 : (x==y ? 0 : 1);  /* x>y or is_nan */
 379 JRT_END
 380 
 381 JRT_LEAF(int,  SharedRuntime::dcmpl(double x, double y))
 382   return x>y ? 1 : (x==y ? 0 : -1); /* x<y or is_nan */
 383 JRT_END
 384 
 385 JRT_LEAF(int,  SharedRuntime::dcmpg(double x, double y))
 386   return x<y ? -1 : (x==y ? 0 : 1);  /* x>y or is_nan */
 387 JRT_END
 388 
 389 // Functions to return the opposite of the aeabi functions for nan.
 390 JRT_LEAF(int, SharedRuntime::unordered_fcmplt(float x, float y))
 391   return (x < y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 392 JRT_END
 393 
 394 JRT_LEAF(int, SharedRuntime::unordered_dcmplt(double x, double y))
 395   return (x < y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 396 JRT_END
 397 
 398 JRT_LEAF(int, SharedRuntime::unordered_fcmple(float x, float y))
 399   return (x <= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 400 JRT_END
 401 
 402 JRT_LEAF(int, SharedRuntime::unordered_dcmple(double x, double y))
 403   return (x <= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 404 JRT_END
 405 
 406 JRT_LEAF(int, SharedRuntime::unordered_fcmpge(float x, float y))
 407   return (x >= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 408 JRT_END
 409 
 410 JRT_LEAF(int, SharedRuntime::unordered_dcmpge(double x, double y))
 411   return (x >= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 412 JRT_END
 413 
 414 JRT_LEAF(int, SharedRuntime::unordered_fcmpgt(float x, float y))
 415   return (x > y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 416 JRT_END
 417 
 418 JRT_LEAF(int, SharedRuntime::unordered_dcmpgt(double x, double y))
 419   return (x > y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 420 JRT_END
 421 
 422 // Intrinsics make gcc generate code for these.
 423 float  SharedRuntime::fneg(float f)   {
 424   return -f;
 425 }
 426 
 427 double SharedRuntime::dneg(double f)  {
 428   return -f;
 429 }
 430 
 431 #endif // __SOFTFP__
 432 
 433 #if defined(__SOFTFP__) || defined(E500V2)
 434 // Intrinsics make gcc generate code for these.
 435 double SharedRuntime::dabs(double f)  {
 436   return (f <= (double)0.0) ? (double)0.0 - f : f;
 437 }
 438 
 439 #endif
 440 
 441 #if defined(__SOFTFP__) || defined(PPC)
 442 double SharedRuntime::dsqrt(double f) {
 443   return sqrt(f);
 444 }
 445 #endif
 446 
 447 JRT_LEAF(jint, SharedRuntime::f2i(jfloat  x))
 448   if (g_isnan(x))
 449     return 0;
 450   if (x >= (jfloat) max_jint)
 451     return max_jint;
 452   if (x <= (jfloat) min_jint)
 453     return min_jint;
 454   return (jint) x;
 455 JRT_END
 456 
 457 
 458 JRT_LEAF(jlong, SharedRuntime::f2l(jfloat  x))
 459   if (g_isnan(x))
 460     return 0;
 461   if (x >= (jfloat) max_jlong)
 462     return max_jlong;
 463   if (x <= (jfloat) min_jlong)
 464     return min_jlong;
 465   return (jlong) x;
 466 JRT_END
 467 
 468 
 469 JRT_LEAF(jint, SharedRuntime::d2i(jdouble x))
 470   if (g_isnan(x))
 471     return 0;
 472   if (x >= (jdouble) max_jint)
 473     return max_jint;
 474   if (x <= (jdouble) min_jint)
 475     return min_jint;
 476   return (jint) x;
 477 JRT_END
 478 
 479 
 480 JRT_LEAF(jlong, SharedRuntime::d2l(jdouble x))
 481   if (g_isnan(x))
 482     return 0;
 483   if (x >= (jdouble) max_jlong)
 484     return max_jlong;
 485   if (x <= (jdouble) min_jlong)
 486     return min_jlong;
 487   return (jlong) x;
 488 JRT_END
 489 
 490 
 491 JRT_LEAF(jfloat, SharedRuntime::d2f(jdouble x))
 492   return (jfloat)x;
 493 JRT_END
 494 
 495 
 496 JRT_LEAF(jfloat, SharedRuntime::l2f(jlong x))
 497   return (jfloat)x;
 498 JRT_END
 499 
 500 
 501 JRT_LEAF(jdouble, SharedRuntime::l2d(jlong x))
 502   return (jdouble)x;
 503 JRT_END
 504 
 505 // Exception handling accross interpreter/compiler boundaries
 506 //
 507 // exception_handler_for_return_address(...) returns the continuation address.
 508 // The continuation address is the entry point of the exception handler of the
 509 // previous frame depending on the return address.
 510 
 511 address SharedRuntime::raw_exception_handler_for_return_address(JavaThread* thread, address return_address) {
 512   assert(frame::verify_return_pc(return_address), err_msg("must be a return address: " INTPTR_FORMAT, return_address));
 513 
 514   // Reset method handle flag.
 515   thread->set_is_method_handle_return(false);
 516 
 517   // The fastest case first
 518   CodeBlob* blob = CodeCache::find_blob(return_address);
 519   nmethod* nm = (blob != NULL) ? blob->as_nmethod_or_null() : NULL;
 520   if (nm != NULL) {
 521     // Set flag if return address is a method handle call site.
 522     thread->set_is_method_handle_return(nm->is_method_handle_return(return_address));
 523     // native nmethods don't have exception handlers
 524     assert(!nm->is_native_method(), "no exception handler");
 525     assert(nm->header_begin() != nm->exception_begin(), "no exception handler");
 526     if (nm->is_deopt_pc(return_address)) {
 527       return SharedRuntime::deopt_blob()->unpack_with_exception();
 528     } else {
 529       return nm->exception_begin();
 530     }
 531   }
 532 
 533   // Entry code
 534   if (StubRoutines::returns_to_call_stub(return_address)) {
 535     return StubRoutines::catch_exception_entry();
 536   }
 537   // Interpreted code
 538   if (Interpreter::contains(return_address)) {
 539     return Interpreter::rethrow_exception_entry();
 540   }
 541   // Ricochet frame unwind code
 542   if (SharedRuntime::ricochet_blob() != NULL && SharedRuntime::ricochet_blob()->returns_to_bounce_addr(return_address)) {
 543     return SharedRuntime::ricochet_blob()->exception_addr();
 544   }
 545 
 546   guarantee(blob == NULL || !blob->is_runtime_stub(), "caller should have skipped stub");
 547   guarantee(!VtableStubs::contains(return_address), "NULL exceptions in vtables should have been handled already!");
 548 
 549 #ifndef PRODUCT
 550   { ResourceMark rm;
 551     tty->print_cr("No exception handler found for exception at " INTPTR_FORMAT " - potential problems:", return_address);
 552     tty->print_cr("a) exception happened in (new?) code stubs/buffers that is not handled here");
 553     tty->print_cr("b) other problem");
 554   }
 555 #endif // PRODUCT
 556 
 557   ShouldNotReachHere();
 558   return NULL;
 559 }
 560 
 561 
 562 JRT_LEAF(address, SharedRuntime::exception_handler_for_return_address(JavaThread* thread, address return_address))
 563   return raw_exception_handler_for_return_address(thread, return_address);
 564 JRT_END
 565 
 566 
 567 address SharedRuntime::get_poll_stub(address pc) {
 568   address stub;
 569   // Look up the code blob
 570   CodeBlob *cb = CodeCache::find_blob(pc);
 571 
 572   // Should be an nmethod
 573   assert( cb && cb->is_nmethod(), "safepoint polling: pc must refer to an nmethod" );
 574 
 575   // Look up the relocation information
 576   assert( ((nmethod*)cb)->is_at_poll_or_poll_return(pc),
 577     "safepoint polling: type must be poll" );
 578 
 579   assert( ((NativeInstruction*)pc)->is_safepoint_poll(),
 580     "Only polling locations are used for safepoint");
 581 
 582   bool at_poll_return = ((nmethod*)cb)->is_at_poll_return(pc);
 583   if (at_poll_return) {
 584     assert(SharedRuntime::polling_page_return_handler_blob() != NULL,
 585            "polling page return stub not created yet");
 586     stub = SharedRuntime::polling_page_return_handler_blob()->entry_point();
 587   } else {
 588     assert(SharedRuntime::polling_page_safepoint_handler_blob() != NULL,
 589            "polling page safepoint stub not created yet");
 590     stub = SharedRuntime::polling_page_safepoint_handler_blob()->entry_point();
 591   }
 592 #ifndef PRODUCT
 593   if( TraceSafepoint ) {
 594     char buf[256];
 595     jio_snprintf(buf, sizeof(buf),
 596                  "... found polling page %s exception at pc = "
 597                  INTPTR_FORMAT ", stub =" INTPTR_FORMAT,
 598                  at_poll_return ? "return" : "loop",
 599                  (intptr_t)pc, (intptr_t)stub);
 600     tty->print_raw_cr(buf);
 601   }
 602 #endif // PRODUCT
 603   return stub;
 604 }
 605 
 606 
 607 oop SharedRuntime::retrieve_receiver( Symbol* sig, frame caller ) {
 608   assert(caller.is_interpreted_frame(), "");
 609   int args_size = ArgumentSizeComputer(sig).size() + 1;
 610   assert(args_size <= caller.interpreter_frame_expression_stack_size(), "receiver must be on interpreter stack");
 611   oop result = (oop) *caller.interpreter_frame_tos_at(args_size - 1);
 612   assert(Universe::heap()->is_in(result) && result->is_oop(), "receiver must be an oop");
 613   return result;
 614 }
 615 
 616 
 617 void SharedRuntime::throw_and_post_jvmti_exception(JavaThread *thread, Handle h_exception) {
 618   if (JvmtiExport::can_post_on_exceptions()) {
 619     vframeStream vfst(thread, true);
 620     methodHandle method = methodHandle(thread, vfst.method());
 621     address bcp = method()->bcp_from(vfst.bci());
 622     JvmtiExport::post_exception_throw(thread, method(), bcp, h_exception());
 623   }
 624   Exceptions::_throw(thread, __FILE__, __LINE__, h_exception);
 625 }
 626 
 627 void SharedRuntime::throw_and_post_jvmti_exception(JavaThread *thread, Symbol* name, const char *message) {
 628   Handle h_exception = Exceptions::new_exception(thread, name, message);
 629   throw_and_post_jvmti_exception(thread, h_exception);
 630 }
 631 
 632 // The interpreter code to call this tracing function is only
 633 // called/generated when TraceRedefineClasses has the right bits
 634 // set. Since obsolete methods are never compiled, we don't have
 635 // to modify the compilers to generate calls to this function.
 636 //
 637 JRT_LEAF(int, SharedRuntime::rc_trace_method_entry(
 638     JavaThread* thread, methodOopDesc* method))
 639   assert(RC_TRACE_IN_RANGE(0x00001000, 0x00002000), "wrong call");
 640 
 641   if (method->is_obsolete()) {
 642     // We are calling an obsolete method, but this is not necessarily
 643     // an error. Our method could have been redefined just after we
 644     // fetched the methodOop from the constant pool.
 645 
 646     // RC_TRACE macro has an embedded ResourceMark
 647     RC_TRACE_WITH_THREAD(0x00001000, thread,
 648                          ("calling obsolete method '%s'",
 649                           method->name_and_sig_as_C_string()));
 650     if (RC_TRACE_ENABLED(0x00002000)) {
 651       // this option is provided to debug calls to obsolete methods
 652       guarantee(false, "faulting at call to an obsolete method.");
 653     }
 654   }
 655   return 0;
 656 JRT_END
 657 
 658 // ret_pc points into caller; we are returning caller's exception handler
 659 // for given exception
 660 address SharedRuntime::compute_compiled_exc_handler(nmethod* nm, address ret_pc, Handle& exception,
 661                                                     bool force_unwind, bool top_frame_only) {
 662   assert(nm != NULL, "must exist");
 663   ResourceMark rm;
 664 
 665   ScopeDesc* sd = nm->scope_desc_at(ret_pc);
 666   // determine handler bci, if any
 667   EXCEPTION_MARK;
 668 
 669   int handler_bci = -1;
 670   int scope_depth = 0;
 671   if (!force_unwind) {
 672     int bci = sd->bci();
 673     bool recursive_exception = false;
 674     do {
 675       bool skip_scope_increment = false;
 676       // exception handler lookup
 677       KlassHandle ek (THREAD, exception->klass());
 678       handler_bci = sd->method()->fast_exception_handler_bci_for(ek, bci, THREAD);
 679       if (HAS_PENDING_EXCEPTION) {
 680         recursive_exception = true;
 681         // We threw an exception while trying to find the exception handler.
 682         // Transfer the new exception to the exception handle which will
 683         // be set into thread local storage, and do another lookup for an
 684         // exception handler for this exception, this time starting at the
 685         // BCI of the exception handler which caused the exception to be
 686         // thrown (bugs 4307310 and 4546590). Set "exception" reference
 687         // argument to ensure that the correct exception is thrown (4870175).
 688         exception = Handle(THREAD, PENDING_EXCEPTION);
 689         CLEAR_PENDING_EXCEPTION;
 690         if (handler_bci >= 0) {
 691           bci = handler_bci;
 692           handler_bci = -1;
 693           skip_scope_increment = true;
 694         }
 695       }
 696       else {
 697         recursive_exception = false;
 698       }
 699       if (!top_frame_only && handler_bci < 0 && !skip_scope_increment) {
 700         sd = sd->sender();
 701         if (sd != NULL) {
 702           bci = sd->bci();
 703         }
 704         ++scope_depth;
 705       }
 706     } while (recursive_exception || (!top_frame_only && handler_bci < 0 && sd != NULL));
 707   }
 708 
 709   // found handling method => lookup exception handler
 710   int catch_pco = ret_pc - nm->code_begin();
 711 
 712   ExceptionHandlerTable table(nm);
 713   HandlerTableEntry *t = table.entry_for(catch_pco, handler_bci, scope_depth);
 714   if (t == NULL && (nm->is_compiled_by_c1() || handler_bci != -1)) {
 715     // Allow abbreviated catch tables.  The idea is to allow a method
 716     // to materialize its exceptions without committing to the exact
 717     // routing of exceptions.  In particular this is needed for adding
 718     // a synthethic handler to unlock monitors when inlining
 719     // synchonized methods since the unlock path isn't represented in
 720     // the bytecodes.
 721     t = table.entry_for(catch_pco, -1, 0);
 722   }
 723 
 724 #ifdef COMPILER1
 725   if (t == NULL && nm->is_compiled_by_c1()) {
 726     assert(nm->unwind_handler_begin() != NULL, "");
 727     return nm->unwind_handler_begin();
 728   }
 729 #endif
 730 
 731   if (t == NULL) {
 732     tty->print_cr("MISSING EXCEPTION HANDLER for pc " INTPTR_FORMAT " and handler bci %d", ret_pc, handler_bci);
 733     tty->print_cr("   Exception:");
 734     exception->print();
 735     tty->cr();
 736     tty->print_cr(" Compiled exception table :");
 737     table.print();
 738     nm->print_code();
 739     guarantee(false, "missing exception handler");
 740     return NULL;
 741   }
 742 
 743   return nm->code_begin() + t->pco();
 744 }
 745 
 746 JRT_ENTRY(void, SharedRuntime::throw_AbstractMethodError(JavaThread* thread))
 747   // These errors occur only at call sites
 748   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_AbstractMethodError());
 749 JRT_END
 750 
 751 JRT_ENTRY(void, SharedRuntime::throw_IncompatibleClassChangeError(JavaThread* thread))
 752   // These errors occur only at call sites
 753   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_IncompatibleClassChangeError(), "vtable stub");
 754 JRT_END
 755 
 756 JRT_ENTRY(void, SharedRuntime::throw_ArithmeticException(JavaThread* thread))
 757   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_ArithmeticException(), "/ by zero");
 758 JRT_END
 759 
 760 JRT_ENTRY(void, SharedRuntime::throw_NullPointerException(JavaThread* thread))
 761   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_NullPointerException());
 762 JRT_END
 763 
 764 JRT_ENTRY(void, SharedRuntime::throw_NullPointerException_at_call(JavaThread* thread))
 765   // This entry point is effectively only used for NullPointerExceptions which occur at inline
 766   // cache sites (when the callee activation is not yet set up) so we are at a call site
 767   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_NullPointerException());
 768 JRT_END
 769 
 770 JRT_ENTRY(void, SharedRuntime::throw_StackOverflowError(JavaThread* thread))
 771   // We avoid using the normal exception construction in this case because
 772   // it performs an upcall to Java, and we're already out of stack space.
 773   klassOop k = SystemDictionary::StackOverflowError_klass();
 774   oop exception_oop = instanceKlass::cast(k)->allocate_instance(CHECK);
 775   Handle exception (thread, exception_oop);
 776   if (StackTraceInThrowable) {
 777     java_lang_Throwable::fill_in_stack_trace(exception);
 778   }
 779   throw_and_post_jvmti_exception(thread, exception);
 780 JRT_END
 781 
 782 JRT_ENTRY(void, SharedRuntime::throw_WrongMethodTypeException(JavaThread* thread, oopDesc* required, oopDesc* actual))
 783   assert(thread == JavaThread::current() && required->is_oop() && actual->is_oop(), "bad args");
 784   ResourceMark rm;
 785   char* message = SharedRuntime::generate_wrong_method_type_message(thread, required, actual);
 786   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_invoke_WrongMethodTypeException(), message);
 787 JRT_END
 788 
 789 address SharedRuntime::continuation_for_implicit_exception(JavaThread* thread,
 790                                                            address pc,
 791                                                            SharedRuntime::ImplicitExceptionKind exception_kind)
 792 {
 793   address target_pc = NULL;
 794 
 795   if (Interpreter::contains(pc)) {
 796 #ifdef CC_INTERP
 797     // C++ interpreter doesn't throw implicit exceptions
 798     ShouldNotReachHere();
 799 #else
 800     switch (exception_kind) {
 801       case IMPLICIT_NULL:           return Interpreter::throw_NullPointerException_entry();
 802       case IMPLICIT_DIVIDE_BY_ZERO: return Interpreter::throw_ArithmeticException_entry();
 803       case STACK_OVERFLOW:          return Interpreter::throw_StackOverflowError_entry();
 804       default:                      ShouldNotReachHere();
 805     }
 806 #endif // !CC_INTERP
 807   } else {
 808     switch (exception_kind) {
 809       case STACK_OVERFLOW: {
 810         // Stack overflow only occurs upon frame setup; the callee is
 811         // going to be unwound. Dispatch to a shared runtime stub
 812         // which will cause the StackOverflowError to be fabricated
 813         // and processed.
 814         // For stack overflow in deoptimization blob, cleanup thread.
 815         if (thread->deopt_mark() != NULL) {
 816           Deoptimization::cleanup_deopt_info(thread, NULL);
 817         }
 818         return StubRoutines::throw_StackOverflowError_entry();
 819       }
 820 
 821       case IMPLICIT_NULL: {
 822         if (VtableStubs::contains(pc)) {
 823           // We haven't yet entered the callee frame. Fabricate an
 824           // exception and begin dispatching it in the caller. Since
 825           // the caller was at a call site, it's safe to destroy all
 826           // caller-saved registers, as these entry points do.
 827           VtableStub* vt_stub = VtableStubs::stub_containing(pc);
 828 
 829           // If vt_stub is NULL, then return NULL to signal handler to report the SEGV error.
 830           if (vt_stub == NULL) return NULL;
 831 
 832           if (vt_stub->is_abstract_method_error(pc)) {
 833             assert(!vt_stub->is_vtable_stub(), "should never see AbstractMethodErrors from vtable-type VtableStubs");
 834             return StubRoutines::throw_AbstractMethodError_entry();
 835           } else {
 836             return StubRoutines::throw_NullPointerException_at_call_entry();
 837           }
 838         } else {
 839           CodeBlob* cb = CodeCache::find_blob(pc);
 840 
 841           // If code blob is NULL, then return NULL to signal handler to report the SEGV error.
 842           if (cb == NULL) return NULL;
 843 
 844           // Exception happened in CodeCache. Must be either:
 845           // 1. Inline-cache check in C2I handler blob,
 846           // 2. Inline-cache check in nmethod, or
 847           // 3. Implict null exception in nmethod
 848 
 849           if (!cb->is_nmethod()) {
 850             guarantee(cb->is_adapter_blob() || cb->is_method_handles_adapter_blob(),
 851                       "exception happened outside interpreter, nmethods and vtable stubs (1)");
 852             // There is no handler here, so we will simply unwind.
 853             return StubRoutines::throw_NullPointerException_at_call_entry();
 854           }
 855 
 856           // Otherwise, it's an nmethod.  Consult its exception handlers.
 857           nmethod* nm = (nmethod*)cb;
 858           if (nm->inlinecache_check_contains(pc)) {
 859             // exception happened inside inline-cache check code
 860             // => the nmethod is not yet active (i.e., the frame
 861             // is not set up yet) => use return address pushed by
 862             // caller => don't push another return address
 863             return StubRoutines::throw_NullPointerException_at_call_entry();
 864           }
 865 
 866 #ifndef PRODUCT
 867           _implicit_null_throws++;
 868 #endif
 869           target_pc = nm->continuation_for_implicit_exception(pc);
 870           // If there's an unexpected fault, target_pc might be NULL,
 871           // in which case we want to fall through into the normal
 872           // error handling code.
 873         }
 874 
 875         break; // fall through
 876       }
 877 
 878 
 879       case IMPLICIT_DIVIDE_BY_ZERO: {
 880         nmethod* nm = CodeCache::find_nmethod(pc);
 881         guarantee(nm != NULL, "must have containing nmethod for implicit division-by-zero exceptions");
 882 #ifndef PRODUCT
 883         _implicit_div0_throws++;
 884 #endif
 885         target_pc = nm->continuation_for_implicit_exception(pc);
 886         // If there's an unexpected fault, target_pc might be NULL,
 887         // in which case we want to fall through into the normal
 888         // error handling code.
 889         break; // fall through
 890       }
 891 
 892       default: ShouldNotReachHere();
 893     }
 894 
 895     assert(exception_kind == IMPLICIT_NULL || exception_kind == IMPLICIT_DIVIDE_BY_ZERO, "wrong implicit exception kind");
 896 
 897     // for AbortVMOnException flag
 898     NOT_PRODUCT(Exceptions::debug_check_abort("java.lang.NullPointerException"));
 899     if (exception_kind == IMPLICIT_NULL) {
 900       Events::log("Implicit null exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, pc, target_pc);
 901     } else {
 902       Events::log("Implicit division by zero exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, pc, target_pc);
 903     }
 904     return target_pc;
 905   }
 906 
 907   ShouldNotReachHere();
 908   return NULL;
 909 }
 910 
 911 
 912 JNI_ENTRY(void, throw_unsatisfied_link_error(JNIEnv* env, ...))
 913 {
 914   THROW(vmSymbols::java_lang_UnsatisfiedLinkError());
 915 }
 916 JNI_END
 917 
 918 
 919 address SharedRuntime::native_method_throw_unsatisfied_link_error_entry() {
 920   return CAST_FROM_FN_PTR(address, &throw_unsatisfied_link_error);
 921 }
 922 
 923 
 924 #ifndef PRODUCT
 925 JRT_ENTRY(intptr_t, SharedRuntime::trace_bytecode(JavaThread* thread, intptr_t preserve_this_value, intptr_t tos, intptr_t tos2))
 926   const frame f = thread->last_frame();
 927   assert(f.is_interpreted_frame(), "must be an interpreted frame");
 928 #ifndef PRODUCT
 929   methodHandle mh(THREAD, f.interpreter_frame_method());
 930   BytecodeTracer::trace(mh, f.interpreter_frame_bcp(), tos, tos2);
 931 #endif // !PRODUCT
 932   return preserve_this_value;
 933 JRT_END
 934 #endif // !PRODUCT
 935 
 936 
 937 JRT_ENTRY(void, SharedRuntime::yield_all(JavaThread* thread, int attempts))
 938   os::yield_all(attempts);
 939 JRT_END
 940 
 941 
 942 JRT_ENTRY_NO_ASYNC(void, SharedRuntime::register_finalizer(JavaThread* thread, oopDesc* obj))
 943   assert(obj->is_oop(), "must be a valid oop");
 944   assert(obj->klass()->klass_part()->has_finalizer(), "shouldn't be here otherwise");
 945   instanceKlass::register_finalizer(instanceOop(obj), CHECK);
 946 JRT_END
 947 
 948 
 949 jlong SharedRuntime::get_java_tid(Thread* thread) {
 950   if (thread != NULL) {
 951     if (thread->is_Java_thread()) {
 952       oop obj = ((JavaThread*)thread)->threadObj();
 953       return (obj == NULL) ? 0 : java_lang_Thread::thread_id(obj);
 954     }
 955   }
 956   return 0;
 957 }
 958 
 959 /**
 960  * This function ought to be a void function, but cannot be because
 961  * it gets turned into a tail-call on sparc, which runs into dtrace bug
 962  * 6254741.  Once that is fixed we can remove the dummy return value.
 963  */
 964 int SharedRuntime::dtrace_object_alloc(oopDesc* o) {
 965   return dtrace_object_alloc_base(Thread::current(), o);
 966 }
 967 
 968 int SharedRuntime::dtrace_object_alloc_base(Thread* thread, oopDesc* o) {
 969   assert(DTraceAllocProbes, "wrong call");
 970   Klass* klass = o->blueprint();
 971   int size = o->size();
 972   Symbol* name = klass->name();
 973 #ifndef USDT2
 974   HS_DTRACE_PROBE4(hotspot, object__alloc, get_java_tid(thread),
 975                    name->bytes(), name->utf8_length(), size * HeapWordSize);
 976 #else /* USDT2 */
 977   HOTSPOT_OBJECT_ALLOC(
 978                    get_java_tid(thread),
 979                    (char *) name->bytes(), name->utf8_length(), size * HeapWordSize);
 980 #endif /* USDT2 */
 981   return 0;
 982 }
 983 
 984 JRT_LEAF(int, SharedRuntime::dtrace_method_entry(
 985     JavaThread* thread, methodOopDesc* method))
 986   assert(DTraceMethodProbes, "wrong call");
 987   Symbol* kname = method->klass_name();
 988   Symbol* name = method->name();
 989   Symbol* sig = method->signature();
 990 #ifndef USDT2
 991   HS_DTRACE_PROBE7(hotspot, method__entry, get_java_tid(thread),
 992       kname->bytes(), kname->utf8_length(),
 993       name->bytes(), name->utf8_length(),
 994       sig->bytes(), sig->utf8_length());
 995 #else /* USDT2 */
 996   HOTSPOT_METHOD_ENTRY(
 997       get_java_tid(thread),
 998       (char *) kname->bytes(), kname->utf8_length(),
 999       (char *) name->bytes(), name->utf8_length(),
1000       (char *) sig->bytes(), sig->utf8_length());
1001 #endif /* USDT2 */
1002   return 0;
1003 JRT_END
1004 
1005 JRT_LEAF(int, SharedRuntime::dtrace_method_exit(
1006     JavaThread* thread, methodOopDesc* method))
1007   assert(DTraceMethodProbes, "wrong call");
1008   Symbol* kname = method->klass_name();
1009   Symbol* name = method->name();
1010   Symbol* sig = method->signature();
1011 #ifndef USDT2
1012   HS_DTRACE_PROBE7(hotspot, method__return, get_java_tid(thread),
1013       kname->bytes(), kname->utf8_length(),
1014       name->bytes(), name->utf8_length(),
1015       sig->bytes(), sig->utf8_length());
1016 #else /* USDT2 */
1017   HOTSPOT_METHOD_RETURN(
1018       get_java_tid(thread),
1019       (char *) kname->bytes(), kname->utf8_length(),
1020       (char *) name->bytes(), name->utf8_length(),
1021       (char *) sig->bytes(), sig->utf8_length());
1022 #endif /* USDT2 */
1023   return 0;
1024 JRT_END
1025 
1026 
1027 // Finds receiver, CallInfo (i.e. receiver method), and calling bytecode)
1028 // for a call current in progress, i.e., arguments has been pushed on stack
1029 // put callee has not been invoked yet.  Used by: resolve virtual/static,
1030 // vtable updates, etc.  Caller frame must be compiled.
1031 Handle SharedRuntime::find_callee_info(JavaThread* thread, Bytecodes::Code& bc, CallInfo& callinfo, TRAPS) {
1032   ResourceMark rm(THREAD);
1033 
1034   // last java frame on stack (which includes native call frames)
1035   vframeStream vfst(thread, true);  // Do not skip and javaCalls
1036 
1037   return find_callee_info_helper(thread, vfst, bc, callinfo, CHECK_(Handle()));
1038 }
1039 
1040 
1041 // Finds receiver, CallInfo (i.e. receiver method), and calling bytecode
1042 // for a call current in progress, i.e., arguments has been pushed on stack
1043 // but callee has not been invoked yet.  Caller frame must be compiled.
1044 Handle SharedRuntime::find_callee_info_helper(JavaThread* thread,
1045                                               vframeStream& vfst,
1046                                               Bytecodes::Code& bc,
1047                                               CallInfo& callinfo, TRAPS) {
1048   Handle receiver;
1049   Handle nullHandle;  //create a handy null handle for exception returns
1050 
1051   assert(!vfst.at_end(), "Java frame must exist");
1052 
1053   // Find caller and bci from vframe
1054   methodHandle caller (THREAD, vfst.method());
1055   int          bci    = vfst.bci();
1056 
1057   // Find bytecode
1058   Bytecode_invoke bytecode(caller, bci);
1059   bc = bytecode.java_code();
1060   int bytecode_index = bytecode.index();
1061 
1062   // Find receiver for non-static call
1063   if (bc != Bytecodes::_invokestatic) {
1064     // This register map must be update since we need to find the receiver for
1065     // compiled frames. The receiver might be in a register.
1066     RegisterMap reg_map2(thread);
1067     frame stubFrame   = thread->last_frame();
1068     // Caller-frame is a compiled frame
1069     frame callerFrame = stubFrame.sender(&reg_map2);
1070 
1071     methodHandle callee = bytecode.static_target(CHECK_(nullHandle));
1072     if (callee.is_null()) {
1073       THROW_(vmSymbols::java_lang_NoSuchMethodException(), nullHandle);
1074     }
1075     // Retrieve from a compiled argument list
1076     receiver = Handle(THREAD, callerFrame.retrieve_receiver(&reg_map2));
1077 
1078     if (receiver.is_null()) {
1079       THROW_(vmSymbols::java_lang_NullPointerException(), nullHandle);
1080     }
1081   }
1082 
1083   // Resolve method. This is parameterized by bytecode.
1084   constantPoolHandle constants (THREAD, caller->constants());
1085   assert (receiver.is_null() || receiver->is_oop(), "wrong receiver");
1086   LinkResolver::resolve_invoke(callinfo, receiver, constants, bytecode_index, bc, CHECK_(nullHandle));
1087 
1088 #ifdef ASSERT
1089   // Check that the receiver klass is of the right subtype and that it is initialized for virtual calls
1090   if (bc != Bytecodes::_invokestatic && bc != Bytecodes::_invokedynamic) {
1091     assert(receiver.not_null(), "should have thrown exception");
1092     KlassHandle receiver_klass (THREAD, receiver->klass());
1093     klassOop rk = constants->klass_ref_at(bytecode_index, CHECK_(nullHandle));
1094                             // klass is already loaded
1095     KlassHandle static_receiver_klass (THREAD, rk);
1096     assert(receiver_klass->is_subtype_of(static_receiver_klass()), "actual receiver must be subclass of static receiver klass");
1097     if (receiver_klass->oop_is_instance()) {
1098       if (instanceKlass::cast(receiver_klass())->is_not_initialized()) {
1099         tty->print_cr("ERROR: Klass not yet initialized!!");
1100         receiver_klass.print();
1101       }
1102       assert (!instanceKlass::cast(receiver_klass())->is_not_initialized(), "receiver_klass must be initialized");
1103     }
1104   }
1105 #endif
1106 
1107   return receiver;
1108 }
1109 
1110 methodHandle SharedRuntime::find_callee_method(JavaThread* thread, TRAPS) {
1111   ResourceMark rm(THREAD);
1112   // We need first to check if any Java activations (compiled, interpreted)
1113   // exist on the stack since last JavaCall.  If not, we need
1114   // to get the target method from the JavaCall wrapper.
1115   vframeStream vfst(thread, true);  // Do not skip any javaCalls
1116   methodHandle callee_method;
1117   if (vfst.at_end()) {
1118     // No Java frames were found on stack since we did the JavaCall.
1119     // Hence the stack can only contain an entry_frame.  We need to
1120     // find the target method from the stub frame.
1121     RegisterMap reg_map(thread, false);
1122     frame fr = thread->last_frame();
1123     assert(fr.is_runtime_frame(), "must be a runtimeStub");
1124     fr = fr.sender(&reg_map);
1125     assert(fr.is_entry_frame(), "must be");
1126     // fr is now pointing to the entry frame.
1127     callee_method = methodHandle(THREAD, fr.entry_frame_call_wrapper()->callee_method());
1128     assert(fr.entry_frame_call_wrapper()->receiver() == NULL || !callee_method->is_static(), "non-null receiver for static call??");
1129   } else {
1130     Bytecodes::Code bc;
1131     CallInfo callinfo;
1132     find_callee_info_helper(thread, vfst, bc, callinfo, CHECK_(methodHandle()));
1133     callee_method = callinfo.selected_method();
1134   }
1135   assert(callee_method()->is_method(), "must be");
1136   return callee_method;
1137 }
1138 
1139 // Resolves a call.
1140 methodHandle SharedRuntime::resolve_helper(JavaThread *thread,
1141                                            bool is_virtual,
1142                                            bool is_optimized, TRAPS) {
1143   methodHandle callee_method;
1144   callee_method = resolve_sub_helper(thread, is_virtual, is_optimized, THREAD);
1145   if (JvmtiExport::can_hotswap_or_post_breakpoint()) {
1146     int retry_count = 0;
1147     while (!HAS_PENDING_EXCEPTION && callee_method->is_old() &&
1148            callee_method->method_holder() != SystemDictionary::Object_klass()) {
1149       // If has a pending exception then there is no need to re-try to
1150       // resolve this method.
1151       // If the method has been redefined, we need to try again.
1152       // Hack: we have no way to update the vtables of arrays, so don't
1153       // require that java.lang.Object has been updated.
1154 
1155       // It is very unlikely that method is redefined more than 100 times
1156       // in the middle of resolve. If it is looping here more than 100 times
1157       // means then there could be a bug here.
1158       guarantee((retry_count++ < 100),
1159                 "Could not resolve to latest version of redefined method");
1160       // method is redefined in the middle of resolve so re-try.
1161       callee_method = resolve_sub_helper(thread, is_virtual, is_optimized, THREAD);
1162     }
1163   }
1164   return callee_method;
1165 }
1166 
1167 // Resolves a call.  The compilers generate code for calls that go here
1168 // and are patched with the real destination of the call.
1169 methodHandle SharedRuntime::resolve_sub_helper(JavaThread *thread,
1170                                            bool is_virtual,
1171                                            bool is_optimized, TRAPS) {
1172 
1173   ResourceMark rm(thread);
1174   RegisterMap cbl_map(thread, false);
1175   frame caller_frame = thread->last_frame().sender(&cbl_map);
1176 
1177   CodeBlob* caller_cb = caller_frame.cb();
1178   guarantee(caller_cb != NULL && caller_cb->is_nmethod(), "must be called from nmethod");
1179   nmethod* caller_nm = caller_cb->as_nmethod_or_null();
1180   // make sure caller is not getting deoptimized
1181   // and removed before we are done with it.
1182   // CLEANUP - with lazy deopt shouldn't need this lock
1183   nmethodLocker caller_lock(caller_nm);
1184 
1185 
1186   // determine call info & receiver
1187   // note: a) receiver is NULL for static calls
1188   //       b) an exception is thrown if receiver is NULL for non-static calls
1189   CallInfo call_info;
1190   Bytecodes::Code invoke_code = Bytecodes::_illegal;
1191   Handle receiver = find_callee_info(thread, invoke_code,
1192                                      call_info, CHECK_(methodHandle()));
1193   methodHandle callee_method = call_info.selected_method();
1194 
1195   assert((!is_virtual && invoke_code == Bytecodes::_invokestatic) ||
1196          ( is_virtual && invoke_code != Bytecodes::_invokestatic), "inconsistent bytecode");
1197 
1198   bool is_profiled = false; 
1199 
1200 #ifdef COMPILER1
1201   is_profiled = caller_nm->is_profiled_call(caller_frame.pc());
1202   if (is_profiled) {
1203     if (callee_method->code_size() > SimpleProfiledCompPolicy::max_inline_size()) {
1204       is_profiled = false;
1205     }
1206     if (is_profiled) {
1207       vframeStream vfst(thread);
1208       methodOop m = vfst.method();
1209       int bci = vfst.bci();
1210       
1211       CounterData* profile = m->method_data()->bci_to_data(bci)->as_CounterData();
1212       
1213       profile->init_if_first_seen();
1214     }
1215   }
1216 #endif
1217 
1218 
1219 #ifndef PRODUCT
1220   // tracing/debugging/statistics
1221   int *addr = (is_optimized) ? (&_resolve_opt_virtual_ctr) :
1222                 (is_virtual) ? (&_resolve_virtual_ctr) :
1223                                (&_resolve_static_ctr);
1224   Atomic::inc(addr);
1225 
1226   if (TraceCallFixup) {
1227     ResourceMark rm(thread);
1228     tty->print("resolving %s%s (%s) call to",
1229       (is_optimized) ? "optimized " : "", (is_virtual) ? "virtual" : "static",
1230       Bytecodes::name(invoke_code));
1231     callee_method->print_short_name(tty);
1232     tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
1233   }
1234 #endif
1235 
1236   // JSR 292
1237   // If the resolved method is a MethodHandle invoke target the call
1238   // site must be a MethodHandle call site.
1239   if (callee_method->is_method_handle_invoke()) {
1240     assert(caller_nm->is_method_handle_return(caller_frame.pc()), "must be MH call site");
1241   }
1242 
1243   // Compute entry points. This might require generation of C2I converter
1244   // frames, so we cannot be holding any locks here. Furthermore, the
1245   // computation of the entry points is independent of patching the call.  We
1246   // always return the entry-point, but we only patch the stub if the call has
1247   // not been deoptimized.  Return values: For a virtual call this is an
1248   // (cached_oop, destination address) pair. For a static call/optimized
1249   // virtual this is just a destination address.
1250 
1251   StaticCallInfo static_call_info;
1252   CompiledICInfo virtual_call_info;
1253 
1254   // Make sure the callee nmethod does not get deoptimized and removed before
1255   // we are done patching the code.
1256   nmethod* callee_nm = callee_method->code();
1257   nmethodLocker nl_callee(callee_nm);
1258 #ifdef ASSERT
1259   address dest_entry_point = callee_nm == NULL ? 0 : callee_nm->entry_point(); // used below
1260 #endif
1261 
1262   if (is_virtual) {
1263     assert(receiver.not_null(), "sanity check");
1264     bool static_bound = call_info.resolved_method()->can_be_statically_bound();
1265     KlassHandle h_klass(THREAD, receiver->klass());
1266     CompiledIC::compute_monomorphic_entry(callee_method, h_klass,
1267                                           is_optimized, static_bound, virtual_call_info, is_profiled,
1268                                           CHECK_(methodHandle()));
1269   } else {
1270     // static call
1271     CompiledStaticCall::compute_entry(callee_method, static_call_info, is_profiled);
1272   }
1273 
1274   // grab lock, check for deoptimization and potentially patch caller
1275   {
1276     MutexLocker ml_patch(CompiledIC_lock);
1277 
1278     // Now that we are ready to patch if the methodOop was redefined then
1279     // don't update call site and let the caller retry.
1280 
1281     if (!callee_method->is_old()) {
1282 #ifdef ASSERT
1283       // We must not try to patch to jump to an already unloaded method.
1284       if (dest_entry_point != 0) {
1285         assert(CodeCache::find_blob(dest_entry_point) != NULL,
1286                "should not unload nmethod while locked");
1287       }
1288 #endif
1289       if (is_virtual) {
1290         CompiledIC* inline_cache = CompiledIC_before(caller_frame.pc());
1291         if (inline_cache->is_clean()) {
1292           inline_cache->set_to_monomorphic(virtual_call_info);
1293 #ifdef COMPILER1
1294           if (is_profiled && !is_optimized) {
1295             assert(invoke_code == Bytecodes::_invokevirtual || invoke_code == Bytecodes::_invokeinterface, "unexpected call");
1296             vframeStream vfst(thread);
1297             methodOop m = vfst.method();
1298             int bci = vfst.bci();
1299             
1300             VirtualCallData* profile = m->method_data()->bci_to_data(bci)->as_VirtualCallData();
1301 
1302             profile->new_receiver(receiver);
1303           }
1304 #endif
1305         }
1306       } else {
1307         CompiledStaticCall* ssc = compiledStaticCall_before(caller_frame.pc());
1308         if (ssc->is_clean()) ssc->set(static_call_info);
1309       }
1310     }
1311 
1312   } // unlock CompiledIC_lock
1313 
1314   return callee_method;
1315 }
1316 
1317 
1318 // Inline caches exist only in compiled code
1319 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method_ic_miss(JavaThread* thread))
1320 #ifdef ASSERT
1321   RegisterMap reg_map(thread, false);
1322   frame stub_frame = thread->last_frame();
1323   assert(stub_frame.is_runtime_frame(), "sanity check");
1324   frame caller_frame = stub_frame.sender(&reg_map);
1325   assert(!caller_frame.is_interpreted_frame() && !caller_frame.is_entry_frame(), "unexpected frame");
1326   assert(!caller_frame.is_ricochet_frame(), "unexpected frame");
1327 #endif /* ASSERT */
1328 
1329   methodHandle callee_method;
1330   JRT_BLOCK
1331     callee_method = SharedRuntime::handle_ic_miss_helper(thread, CHECK_NULL);
1332     // Return methodOop through TLS
1333     thread->set_vm_result(callee_method());
1334   JRT_BLOCK_END
1335   // return compiled code entry point after potential safepoints
1336   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1337   return callee_method->verified_code_entry();
1338 JRT_END
1339 
1340 
1341 // Handle call site that has been made non-entrant
1342 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method(JavaThread* thread))
1343   // 6243940 We might end up in here if the callee is deoptimized
1344   // as we race to call it.  We don't want to take a safepoint if
1345   // the caller was interpreted because the caller frame will look
1346   // interpreted to the stack walkers and arguments are now
1347   // "compiled" so it is much better to make this transition
1348   // invisible to the stack walking code. The i2c path will
1349   // place the callee method in the callee_target. It is stashed
1350   // there because if we try and find the callee by normal means a
1351   // safepoint is possible and have trouble gc'ing the compiled args.
1352   RegisterMap reg_map(thread, false);
1353   frame stub_frame = thread->last_frame();
1354   assert(stub_frame.is_runtime_frame(), "sanity check");
1355   frame caller_frame = stub_frame.sender(&reg_map);
1356 
1357   // MethodHandle invokes don't have a CompiledIC and should always
1358   // simply redispatch to the callee_target.
1359   address   sender_pc = caller_frame.pc();
1360   CodeBlob* sender_cb = caller_frame.cb();
1361   nmethod*  sender_nm = sender_cb->as_nmethod_or_null();
1362   bool is_mh_invoke_via_adapter = false;  // Direct c2c call or via adapter?
1363   if (sender_nm != NULL && sender_nm->is_method_handle_return(sender_pc)) {
1364     // If the callee_target is set, then we have come here via an i2c
1365     // adapter.
1366     methodOop callee = thread->callee_target();
1367     if (callee != NULL) {
1368       assert(callee->is_method(), "sanity");
1369       is_mh_invoke_via_adapter = true;
1370     }
1371   }
1372 
1373   if (caller_frame.is_interpreted_frame() ||
1374       caller_frame.is_entry_frame()       ||
1375       caller_frame.is_ricochet_frame()    ||
1376       is_mh_invoke_via_adapter) {
1377     methodOop callee = thread->callee_target();
1378     guarantee(callee != NULL && callee->is_method(), "bad handshake");
1379     thread->set_vm_result(callee);
1380     thread->set_callee_target(NULL);
1381     return callee->get_c2i_entry();
1382   }
1383 
1384   // Must be compiled to compiled path which is safe to stackwalk
1385   methodHandle callee_method;
1386   JRT_BLOCK
1387     // Force resolving of caller (if we called from compiled frame)
1388     callee_method = SharedRuntime::reresolve_call_site(thread, CHECK_NULL);
1389     thread->set_vm_result(callee_method());
1390   JRT_BLOCK_END
1391   // return compiled code entry point after potential safepoints
1392   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1393   return callee_method->verified_code_entry();
1394 JRT_END
1395 
1396 
1397 // resolve a static call and patch code
1398 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_static_call_C(JavaThread *thread ))
1399   methodHandle callee_method;
1400   JRT_BLOCK
1401     callee_method = SharedRuntime::resolve_helper(thread, false, false, CHECK_NULL);
1402     thread->set_vm_result(callee_method());
1403   JRT_BLOCK_END
1404   // return compiled code entry point after potential safepoints
1405   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1406   return callee_method->verified_code_entry();
1407 JRT_END
1408 
1409 
1410 // resolve virtual call and update inline cache to monomorphic
1411 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_virtual_call_C(JavaThread *thread ))
1412   methodHandle callee_method;
1413   JRT_BLOCK
1414     callee_method = SharedRuntime::resolve_helper(thread, true, false, CHECK_NULL);
1415     thread->set_vm_result(callee_method());
1416   JRT_BLOCK_END
1417   // return compiled code entry point after potential safepoints
1418   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1419   return callee_method->verified_code_entry();
1420 JRT_END
1421 
1422 
1423 // Resolve a virtual call that can be statically bound (e.g., always
1424 // monomorphic, so it has no inline cache).  Patch code to resolved target.
1425 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_opt_virtual_call_C(JavaThread *thread))
1426   methodHandle callee_method;
1427   JRT_BLOCK
1428     callee_method = SharedRuntime::resolve_helper(thread, true, true, CHECK_NULL);
1429     thread->set_vm_result(callee_method());
1430   JRT_BLOCK_END
1431   // return compiled code entry point after potential safepoints
1432   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1433   return callee_method->verified_code_entry();
1434 JRT_END
1435 
1436 #ifdef COMPILER1
1437 methodHandle SharedRuntime::resolve_profile_helper(JavaThread *thread, TRAPS) {
1438   ResourceMark rm(thread);
1439   RegisterMap cbl_map(thread, false);
1440   frame caller_frame = thread->last_frame().sender(&cbl_map);
1441   
1442   CodeBlob* cb = caller_frame.cb();
1443   guarantee(cb != NULL && cb->is_nmethod(), "must be called from nmethod");
1444   nmethodLocker caller_lock((nmethod*)cb);
1445   CallInfo call_info;
1446   Bytecodes::Code invoke_code = Bytecodes::_illegal;
1447   Handle receiver = find_callee_info(thread, invoke_code,
1448                                      call_info, CHECK_(methodHandle()));
1449 
1450   return call_info.selected_method();
1451 }
1452 
1453 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_profile_call_C(JavaThread *thread ))
1454   methodHandle callee_method;
1455   JRT_BLOCK
1456   {
1457     callee_method = resolve_profile_helper(thread, CHECK_NULL);
1458  
1459     bool fix_call = SimpleProfiledCompPolicy::profile_overflow_event(thread, CHECK_NULL);
1460     
1461     if (fix_call) {
1462       ResourceMark rm;
1463       RegisterMap map(thread, false);
1464       frame fr =  thread->last_frame().sender(&map);
1465       
1466       MutexLocker ml_patch(CompiledIC_lock);
1467 
1468       CompiledIC* inline_cache = CompiledIC_before(fr.pc());
1469 
1470       inline_cache->drop_profiling();
1471     }
1472     thread->set_vm_result(callee_method());
1473   }
1474   JRT_BLOCK_END
1475   // return compiled code entry point after potential safepoints
1476   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1477   return callee_method->verified_code_entry();
1478 JRT_END
1479 
1480 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_static_profile_call_C(JavaThread *thread ))
1481   methodHandle callee_method;
1482   JRT_BLOCK
1483   {
1484     callee_method = resolve_profile_helper(thread, CHECK_NULL);
1485 
1486     bool fix_call = SimpleProfiledCompPolicy::profile_overflow_event(thread, CHECK_NULL);
1487     
1488     if (fix_call) {
1489       
1490       RegisterMap map(thread, false);
1491       frame fr =  thread->last_frame().sender(&map);
1492 
1493       MutexLocker ml_patch(CompiledIC_lock);
1494       CompiledStaticCall* ssc = compiledStaticCall_before(fr.pc());
1495       ssc->drop_profiling();
1496     }
1497     thread->set_vm_result(callee_method());
1498   }
1499   JRT_BLOCK_END
1500   // return compiled code entry point after potential safepoints
1501   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1502   return callee_method->verified_code_entry();
1503 JRT_END
1504 #endif
1505 
1506 methodHandle SharedRuntime::handle_ic_miss_helper(JavaThread *thread, TRAPS) {
1507   ResourceMark rm(thread);
1508   CallInfo call_info;
1509   Bytecodes::Code bc;
1510 
1511   // receiver is NULL for static calls. An exception is thrown for NULL
1512   // receivers for non-static calls
1513   Handle receiver = find_callee_info(thread, bc, call_info,
1514                                      CHECK_(methodHandle()));
1515   // Compiler1 can produce virtual call sites that can actually be statically bound
1516   // If we fell thru to below we would think that the site was going megamorphic
1517   // when in fact the site can never miss. Worse because we'd think it was megamorphic
1518   // we'd try and do a vtable dispatch however methods that can be statically bound
1519   // don't have vtable entries (vtable_index < 0) and we'd blow up. So we force a
1520   // reresolution of the  call site (as if we did a handle_wrong_method and not an
1521   // plain ic_miss) and the site will be converted to an optimized virtual call site
1522   // never to miss again. I don't believe C2 will produce code like this but if it
1523   // did this would still be the correct thing to do for it too, hence no ifdef.
1524   //
1525   if (call_info.resolved_method()->can_be_statically_bound()) {
1526     methodHandle callee_method = SharedRuntime::reresolve_call_site(thread, CHECK_(methodHandle()));
1527     if (TraceCallFixup) {
1528       RegisterMap reg_map(thread, false);
1529       frame caller_frame = thread->last_frame().sender(&reg_map);
1530       ResourceMark rm(thread);
1531       tty->print("converting IC miss to reresolve (%s) call to", Bytecodes::name(bc));
1532       callee_method->print_short_name(tty);
1533       tty->print_cr(" from pc: " INTPTR_FORMAT, caller_frame.pc());
1534       tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
1535     }
1536     return callee_method;
1537   }
1538 
1539   methodHandle callee_method = call_info.selected_method();
1540 
1541   bool should_be_mono = false;
1542 
1543 #ifndef PRODUCT
1544   Atomic::inc(&_ic_miss_ctr);
1545 
1546   // Statistics & Tracing
1547   if (TraceCallFixup) {
1548     ResourceMark rm(thread);
1549     tty->print("IC miss (%s) call to", Bytecodes::name(bc));
1550     callee_method->print_short_name(tty);
1551     tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
1552   }
1553 
1554   if (ICMissHistogram) {
1555     MutexLocker m(VMStatistic_lock);
1556     RegisterMap reg_map(thread, false);
1557     frame f = thread->last_frame().real_sender(&reg_map);// skip runtime stub
1558     // produce statistics under the lock
1559     trace_ic_miss(f.pc());
1560   }
1561 #endif
1562 
1563   // install an event collector so that when a vtable stub is created the
1564   // profiler can be notified via a DYNAMIC_CODE_GENERATED event. The
1565   // event can't be posted when the stub is created as locks are held
1566   // - instead the event will be deferred until the event collector goes
1567   // out of scope.
1568   JvmtiDynamicCodeEventCollector event_collector;
1569 
1570   // Update inline cache to megamorphic. Skip update if caller has been
1571   // made non-entrant or we are called from interpreted.
1572   { MutexLocker ml_patch (CompiledIC_lock);
1573     RegisterMap reg_map(thread, false);
1574     frame caller_frame = thread->last_frame().sender(&reg_map);
1575     CodeBlob* cb = caller_frame.cb();
1576     if (cb->is_nmethod() && ((nmethod*)cb)->is_in_use()) {
1577       // Not a non-entrant nmethod, so find inline_cache
1578       CompiledIC* inline_cache = CompiledIC_before(caller_frame.pc());
1579       bool should_be_mono = false;
1580       if (inline_cache->is_optimized()) {
1581         if (TraceCallFixup) {
1582           ResourceMark rm(thread);
1583           tty->print("OPTIMIZED IC miss (%s) call to", Bytecodes::name(bc));
1584           callee_method->print_short_name(tty);
1585           tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
1586         }
1587         should_be_mono = true;
1588       } else {
1589         compiledICHolderOop ic_oop = (compiledICHolderOop) inline_cache->cached_oop();
1590         if ( ic_oop != NULL && ic_oop->is_compiledICHolder()) {
1591 
1592           if (receiver()->klass() == ic_oop->holder_klass()) {
1593             // This isn't a real miss. We must have seen that compiled code
1594             // is now available and we want the call site converted to a
1595             // monomorphic compiled call site.
1596             // We can't assert for callee_method->code() != NULL because it
1597             // could have been deoptimized in the meantime
1598             if (TraceCallFixup) {
1599               ResourceMark rm(thread);
1600               tty->print("FALSE IC miss (%s) converting to compiled call to", Bytecodes::name(bc));
1601               callee_method->print_short_name(tty);
1602               tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
1603             }
1604             should_be_mono = true;
1605           }
1606         }
1607       }
1608 
1609       if (should_be_mono) {
1610 
1611         bool is_profiled = false;
1612 #ifdef COMPILER1
1613         is_profiled = ((nmethod*)cb)->is_profiled_call(caller_frame.pc());
1614 #endif
1615         // We have a path that was monomorphic but was going interpreted
1616         // and now we have (or had) a compiled entry. We correct the IC
1617         // by using a new icBuffer.
1618         CompiledICInfo info;
1619         KlassHandle receiver_klass(THREAD, receiver()->klass());
1620         inline_cache->compute_monomorphic_entry(callee_method,
1621                                                 receiver_klass,
1622                                                 inline_cache->is_optimized(),
1623                                                 false,
1624                                                 info, is_profiled, CHECK_(methodHandle()));
1625 #ifdef COMPILER1
1626         if (is_profiled) {
1627           vframeStream vfst(thread);
1628           methodOop m = vfst.method();
1629           int bci = vfst.bci();
1630           
1631           CounterData* profile = m->method_data()->bci_to_data(bci)->as_CounterData();
1632           
1633           profile->init_if_first_seen();
1634         }
1635 #endif
1636 
1637         inline_cache->set_to_monomorphic(info);
1638       } else if (!inline_cache->is_megamorphic() && !inline_cache->is_clean()) {
1639         // Change to megamorphic
1640         inline_cache->set_to_megamorphic(&call_info, bc, CHECK_(methodHandle()));
1641 #ifdef COMPILER1
1642         if (((nmethod*)cb)->is_profiled_call(caller_frame.pc())) {
1643           vframeStream vfst(thread);
1644           methodOop m = vfst.method();
1645           int bci = vfst.bci();
1646           
1647           VirtualCallData* profile = m->method_data()->bci_to_data(bci)->as_VirtualCallData();
1648           
1649           profile->new_receiver(receiver);
1650         }
1651 #endif
1652         
1653       } else {
1654         // Either clean or megamorphic
1655       }
1656     }
1657   } // Release CompiledIC_lock
1658 
1659   return callee_method;
1660 }
1661 
1662 //
1663 // Resets a call-site in compiled code so it will get resolved again.
1664 // This routines handles both virtual call sites, optimized virtual call
1665 // sites, and static call sites. Typically used to change a call sites
1666 // destination from compiled to interpreted.
1667 //
1668 methodHandle SharedRuntime::reresolve_call_site(JavaThread *thread, TRAPS) {
1669   ResourceMark rm(thread);
1670   RegisterMap reg_map(thread, false);
1671   frame stub_frame = thread->last_frame();
1672   assert(stub_frame.is_runtime_frame(), "must be a runtimeStub");
1673   frame caller = stub_frame.sender(&reg_map);
1674 
1675   // Do nothing if the frame isn't a live compiled frame.
1676   // nmethod could be deoptimized by the time we get here
1677   // so no update to the caller is needed.
1678 
1679   if (caller.is_compiled_frame() && !caller.is_deoptimized_frame()) {
1680 
1681     address pc = caller.pc();
1682     Events::log("update call-site at pc " INTPTR_FORMAT, pc);
1683 
1684     // Default call_addr is the location of the "basic" call.
1685     // Determine the address of the call we a reresolving. With
1686     // Inline Caches we will always find a recognizable call.
1687     // With Inline Caches disabled we may or may not find a
1688     // recognizable call. We will always find a call for static
1689     // calls and for optimized virtual calls. For vanilla virtual
1690     // calls it depends on the state of the UseInlineCaches switch.
1691     //
1692     // With Inline Caches disabled we can get here for a virtual call
1693     // for two reasons:
1694     //   1 - calling an abstract method. The vtable for abstract methods
1695     //       will run us thru handle_wrong_method and we will eventually
1696     //       end up in the interpreter to throw the ame.
1697     //   2 - a racing deoptimization. We could be doing a vanilla vtable
1698     //       call and between the time we fetch the entry address and
1699     //       we jump to it the target gets deoptimized. Similar to 1
1700     //       we will wind up in the interprter (thru a c2i with c2).
1701     //
1702     address call_addr = NULL;
1703     {
1704       // Get call instruction under lock because another thread may be
1705       // busy patching it.
1706       MutexLockerEx ml_patch(Patching_lock, Mutex::_no_safepoint_check_flag);
1707       // Location of call instruction
1708       if (NativeCall::is_call_before(pc)) {
1709         NativeCall *ncall = nativeCall_before(pc);
1710         call_addr = ncall->instruction_address();
1711       }
1712     }
1713 
1714     // Check for static or virtual call
1715     bool is_static_call = false;
1716     nmethod* caller_nm = CodeCache::find_nmethod(pc);
1717     // Make sure nmethod doesn't get deoptimized and removed until
1718     // this is done with it.
1719     // CLEANUP - with lazy deopt shouldn't need this lock
1720     nmethodLocker nmlock(caller_nm);
1721 
1722     if (call_addr != NULL) {
1723       RelocIterator iter(caller_nm, call_addr, call_addr+1);
1724       int ret = iter.next(); // Get item
1725       if (ret) {
1726         assert(iter.addr() == call_addr, "must find call");
1727         if (iter.type() == relocInfo::static_call_type) {
1728           is_static_call = true;
1729         } else {
1730           assert(iter.type() == relocInfo::virtual_call_type ||
1731                  iter.type() == relocInfo::opt_virtual_call_type
1732                 , "unexpected relocInfo. type");
1733         }
1734       } else {
1735         assert(!UseInlineCaches, "relocation info. must exist for this address");
1736       }
1737 
1738       // Cleaning the inline cache will force a new resolve. This is more robust
1739       // than directly setting it to the new destination, since resolving of calls
1740       // is always done through the same code path. (experience shows that it
1741       // leads to very hard to track down bugs, if an inline cache gets updated
1742       // to a wrong method). It should not be performance critical, since the
1743       // resolve is only done once.
1744 
1745       MutexLocker ml(CompiledIC_lock);
1746       //
1747       // We do not patch the call site if the nmethod has been made non-entrant
1748       // as it is a waste of time
1749       //
1750       if (caller_nm->is_in_use()) {
1751         if (is_static_call) {
1752           CompiledStaticCall* ssc= compiledStaticCall_at(call_addr);
1753           ssc->set_to_clean();
1754         } else {
1755           // compiled, dispatched call (which used to call an interpreted method)
1756           CompiledIC* inline_cache = CompiledIC_at(call_addr);
1757           inline_cache->set_to_clean();
1758         }
1759       }
1760     }
1761 
1762   }
1763 
1764   methodHandle callee_method = find_callee_method(thread, CHECK_(methodHandle()));
1765 
1766 
1767 #ifndef PRODUCT
1768   Atomic::inc(&_wrong_method_ctr);
1769 
1770   if (TraceCallFixup) {
1771     ResourceMark rm(thread);
1772     tty->print("handle_wrong_method reresolving call to");
1773     callee_method->print_short_name(tty);
1774     tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
1775   }
1776 #endif
1777 
1778   return callee_method;
1779 }
1780 
1781 // ---------------------------------------------------------------------------
1782 // We are calling the interpreter via a c2i. Normally this would mean that
1783 // we were called by a compiled method. However we could have lost a race
1784 // where we went int -> i2c -> c2i and so the caller could in fact be
1785 // interpreted. If the caller is compiled we attempt to patch the caller
1786 // so he no longer calls into the interpreter.
1787 IRT_LEAF(void, SharedRuntime::fixup_callers_callsite(methodOopDesc* method, address caller_pc))
1788   methodOop moop(method);
1789 
1790   address entry_point = moop->from_compiled_entry();
1791 
1792   // It's possible that deoptimization can occur at a call site which hasn't
1793   // been resolved yet, in which case this function will be called from
1794   // an nmethod that has been patched for deopt and we can ignore the
1795   // request for a fixup.
1796   // Also it is possible that we lost a race in that from_compiled_entry
1797   // is now back to the i2c in that case we don't need to patch and if
1798   // we did we'd leap into space because the callsite needs to use
1799   // "to interpreter" stub in order to load up the methodOop. Don't
1800   // ask me how I know this...
1801 
1802   CodeBlob* cb = CodeCache::find_blob(caller_pc);
1803   if (!cb->is_nmethod() || entry_point == moop->get_c2i_entry()) {
1804     return;
1805   }
1806 
1807   // The check above makes sure this is a nmethod.
1808   nmethod* nm = cb->as_nmethod_or_null();
1809   assert(nm, "must be");
1810 
1811   // Get the return PC for the passed caller PC.
1812   address return_pc = caller_pc + frame::pc_return_offset;
1813 
1814   // Don't fixup method handle call sites as the executed method
1815   // handle adapters are doing the required MethodHandle chain work.
1816   if (nm->is_method_handle_return(return_pc)) {
1817     return;
1818   }
1819 
1820   bool is_profiled = false;
1821 #ifdef COMPILER1
1822   is_profiled = nm->is_profiled_call(caller_pc+frame::pc_return_offset);
1823 #endif
1824 
1825   // There is a benign race here. We could be attempting to patch to a compiled
1826   // entry point at the same time the callee is being deoptimized. If that is
1827   // the case then entry_point may in fact point to a c2i and we'd patch the
1828   // call site with the same old data. clear_code will set code() to NULL
1829   // at the end of it. If we happen to see that NULL then we can skip trying
1830   // to patch. If we hit the window where the callee has a c2i in the
1831   // from_compiled_entry and the NULL isn't present yet then we lose the race
1832   // and patch the code with the same old data. Asi es la vida.
1833 
1834   if (moop->code() == NULL) return;
1835 
1836   if (nm->is_in_use()) {
1837 
1838     // Expect to find a native call there (unless it was no-inline cache vtable dispatch)
1839     MutexLockerEx ml_patch(Patching_lock, Mutex::_no_safepoint_check_flag);
1840     if (NativeCall::is_call_before(return_pc)) {
1841       NativeCall *call = nativeCall_before(return_pc);
1842       //
1843       // bug 6281185. We might get here after resolving a call site to a vanilla
1844       // virtual call. Because the resolvee uses the verified entry it may then
1845       // see compiled code and attempt to patch the site by calling us. This would
1846       // then incorrectly convert the call site to optimized and its downhill from
1847       // there. If you're lucky you'll get the assert in the bugid, if not you've
1848       // just made a call site that could be megamorphic into a monomorphic site
1849       // for the rest of its life! Just another racing bug in the life of
1850       // fixup_callers_callsite ...
1851       //
1852       RelocIterator iter(nm, call->instruction_address(), call->next_instruction_address());
1853       iter.next();
1854       assert(iter.has_current(), "must have a reloc at java call site");
1855       relocInfo::relocType typ = iter.reloc()->type();
1856       if ( typ != relocInfo::static_call_type &&
1857            typ != relocInfo::opt_virtual_call_type &&
1858            typ != relocInfo::static_stub_type) {
1859         return;
1860       }
1861       address destination = call->destination();
1862       address stub = NULL;
1863       if (is_profiled) {
1864         stub = CompiledProfile::find_profile_stub(call);
1865       }
1866       if (destination != entry_point && !CompiledProfile::is_call_to_stub(call, stub)) {
1867         CodeBlob* callee = CodeCache::find_blob(destination);
1868         // callee == cb seems weird. It means calling interpreter thru stub.
1869         if (callee == cb || callee->is_adapter_blob()) {
1870           // static call or optimized virtual
1871           if (TraceCallFixup) {
1872             tty->print("fixup callsite           at " INTPTR_FORMAT " to compiled code for", caller_pc);
1873             moop->print_short_name(tty);
1874             tty->print_cr(" to " INTPTR_FORMAT, entry_point);
1875           }
1876           if (is_profiled) {
1877             CompiledProfile::set_up_profiling(call, stub, entry_point);
1878           } else {
1879             call->set_destination_mt_safe(entry_point);
1880           }
1881         } else {
1882           if (TraceCallFixup) {
1883             tty->print("failed to fixup callsite at " INTPTR_FORMAT " to compiled code for", caller_pc);
1884             moop->print_short_name(tty);
1885             tty->print_cr(" to " INTPTR_FORMAT, entry_point);
1886           }
1887           // assert is too strong could also be resolve destinations.
1888           // assert(InlineCacheBuffer::contains(destination) || VtableStubs::contains(destination), "must be");
1889         }
1890       } else {
1891           if (TraceCallFixup) {
1892             tty->print("already patched callsite at " INTPTR_FORMAT " to compiled code for", caller_pc);
1893             moop->print_short_name(tty);
1894             tty->print_cr(" to " INTPTR_FORMAT, entry_point);
1895           }
1896       }
1897     }
1898   }
1899 IRT_END
1900 
1901 
1902 // same as JVM_Arraycopy, but called directly from compiled code
1903 JRT_ENTRY(void, SharedRuntime::slow_arraycopy_C(oopDesc* src,  jint src_pos,
1904                                                 oopDesc* dest, jint dest_pos,
1905                                                 jint length,
1906                                                 JavaThread* thread)) {
1907 #ifndef PRODUCT
1908   _slow_array_copy_ctr++;
1909 #endif
1910   // Check if we have null pointers
1911   if (src == NULL || dest == NULL) {
1912     THROW(vmSymbols::java_lang_NullPointerException());
1913   }
1914   // Do the copy.  The casts to arrayOop are necessary to the copy_array API,
1915   // even though the copy_array API also performs dynamic checks to ensure
1916   // that src and dest are truly arrays (and are conformable).
1917   // The copy_array mechanism is awkward and could be removed, but
1918   // the compilers don't call this function except as a last resort,
1919   // so it probably doesn't matter.
1920   Klass::cast(src->klass())->copy_array((arrayOopDesc*)src,  src_pos,
1921                                         (arrayOopDesc*)dest, dest_pos,
1922                                         length, thread);
1923 }
1924 JRT_END
1925 
1926 char* SharedRuntime::generate_class_cast_message(
1927     JavaThread* thread, const char* objName) {
1928 
1929   // Get target class name from the checkcast instruction
1930   vframeStream vfst(thread, true);
1931   assert(!vfst.at_end(), "Java frame must exist");
1932   Bytecode_checkcast cc(vfst.method(), vfst.method()->bcp_from(vfst.bci()));
1933   Klass* targetKlass = Klass::cast(vfst.method()->constants()->klass_at(
1934     cc.index(), thread));
1935   return generate_class_cast_message(objName, targetKlass->external_name());
1936 }
1937 
1938 char* SharedRuntime::generate_wrong_method_type_message(JavaThread* thread,
1939                                                         oopDesc* required,
1940                                                         oopDesc* actual) {
1941   if (TraceMethodHandles) {
1942     tty->print_cr("WrongMethodType thread="PTR_FORMAT" req="PTR_FORMAT" act="PTR_FORMAT"",
1943                   thread, required, actual);
1944   }
1945   assert(EnableInvokeDynamic, "");
1946   oop singleKlass = wrong_method_type_is_for_single_argument(thread, required);
1947   char* message = NULL;
1948   if (singleKlass != NULL) {
1949     const char* objName = "argument or return value";
1950     if (actual != NULL) {
1951       // be flexible about the junk passed in:
1952       klassOop ak = (actual->is_klass()
1953                      ? (klassOop)actual
1954                      : actual->klass());
1955       objName = Klass::cast(ak)->external_name();
1956     }
1957     Klass* targetKlass = Klass::cast(required->is_klass()
1958                                      ? (klassOop)required
1959                                      : java_lang_Class::as_klassOop(required));
1960     message = generate_class_cast_message(objName, targetKlass->external_name());
1961   } else {
1962     // %%% need to get the MethodType string, without messing around too much
1963     const char* desc = NULL;
1964     // Get a signature from the invoke instruction
1965     const char* mhName = "method handle";
1966     const char* targetType = "the required signature";
1967     int targetArity = -1, mhArity = -1;
1968     vframeStream vfst(thread, true);
1969     if (!vfst.at_end()) {
1970       Bytecode_invoke call(vfst.method(), vfst.bci());
1971       methodHandle target;
1972       {
1973         EXCEPTION_MARK;
1974         target = call.static_target(THREAD);
1975         if (HAS_PENDING_EXCEPTION) { CLEAR_PENDING_EXCEPTION; }
1976       }
1977       if (target.not_null()
1978           && target->is_method_handle_invoke()
1979           && required == target->method_handle_type()) {
1980         targetType = target->signature()->as_C_string();
1981         targetArity = ArgumentCount(target->signature()).size();
1982       }
1983     }
1984     KlassHandle kignore; int dmf_flags = 0;
1985     methodHandle actual_method = MethodHandles::decode_method(actual, kignore, dmf_flags);
1986     if ((dmf_flags & ~(MethodHandles::_dmf_has_receiver |
1987                        MethodHandles::_dmf_does_dispatch |
1988                        MethodHandles::_dmf_from_interface)) != 0)
1989       actual_method = methodHandle();  // MH does extra binds, drops, etc.
1990     bool has_receiver = ((dmf_flags & MethodHandles::_dmf_has_receiver) != 0);
1991     if (actual_method.not_null()) {
1992       mhName = actual_method->signature()->as_C_string();
1993       mhArity = ArgumentCount(actual_method->signature()).size();
1994       if (!actual_method->is_static())  mhArity += 1;
1995     } else if (java_lang_invoke_MethodHandle::is_instance(actual)) {
1996       oopDesc* mhType = java_lang_invoke_MethodHandle::type(actual);
1997       mhArity = java_lang_invoke_MethodType::ptype_count(mhType);
1998       stringStream st;
1999       java_lang_invoke_MethodType::print_signature(mhType, &st);
2000       mhName = st.as_string();
2001     }
2002     if (targetArity != -1 && targetArity != mhArity) {
2003       if (has_receiver && targetArity == mhArity-1)
2004         desc = " cannot be called without a receiver argument as ";
2005       else
2006         desc = " cannot be called with a different arity as ";
2007     }
2008     message = generate_class_cast_message(mhName, targetType,
2009                                           desc != NULL ? desc :
2010                                           " cannot be called as ");
2011   }
2012   if (TraceMethodHandles) {
2013     tty->print_cr("WrongMethodType => message=%s", message);
2014   }
2015   return message;
2016 }
2017 
2018 oop SharedRuntime::wrong_method_type_is_for_single_argument(JavaThread* thr,
2019                                                             oopDesc* required) {
2020   if (required == NULL)  return NULL;
2021   if (required->klass() == SystemDictionary::Class_klass())
2022     return required;
2023   if (required->is_klass())
2024     return Klass::cast(klassOop(required))->java_mirror();
2025   return NULL;
2026 }
2027 
2028 
2029 char* SharedRuntime::generate_class_cast_message(
2030     const char* objName, const char* targetKlassName, const char* desc) {
2031   size_t msglen = strlen(objName) + strlen(desc) + strlen(targetKlassName) + 1;
2032 
2033   char* message = NEW_RESOURCE_ARRAY(char, msglen);
2034   if (NULL == message) {
2035     // Shouldn't happen, but don't cause even more problems if it does
2036     message = const_cast<char*>(objName);
2037   } else {
2038     jio_snprintf(message, msglen, "%s%s%s", objName, desc, targetKlassName);
2039   }
2040   return message;
2041 }
2042 
2043 JRT_LEAF(void, SharedRuntime::reguard_yellow_pages())
2044   (void) JavaThread::current()->reguard_stack();
2045 JRT_END
2046 
2047 
2048 // Handles the uncommon case in locking, i.e., contention or an inflated lock.
2049 #ifndef PRODUCT
2050 int SharedRuntime::_monitor_enter_ctr=0;
2051 #endif
2052 JRT_ENTRY_NO_ASYNC(void, SharedRuntime::complete_monitor_locking_C(oopDesc* _obj, BasicLock* lock, JavaThread* thread))
2053   oop obj(_obj);
2054 #ifndef PRODUCT
2055   _monitor_enter_ctr++;             // monitor enter slow
2056 #endif
2057   if (PrintBiasedLockingStatistics) {
2058     Atomic::inc(BiasedLocking::slow_path_entry_count_addr());
2059   }
2060   Handle h_obj(THREAD, obj);
2061   if (UseBiasedLocking) {
2062     // Retry fast entry if bias is revoked to avoid unnecessary inflation
2063     ObjectSynchronizer::fast_enter(h_obj, lock, true, CHECK);
2064   } else {
2065     ObjectSynchronizer::slow_enter(h_obj, lock, CHECK);
2066   }
2067   assert(!HAS_PENDING_EXCEPTION, "Should have no exception here");
2068 JRT_END
2069 
2070 #ifndef PRODUCT
2071 int SharedRuntime::_monitor_exit_ctr=0;
2072 #endif
2073 // Handles the uncommon cases of monitor unlocking in compiled code
2074 JRT_LEAF(void, SharedRuntime::complete_monitor_unlocking_C(oopDesc* _obj, BasicLock* lock))
2075    oop obj(_obj);
2076 #ifndef PRODUCT
2077   _monitor_exit_ctr++;              // monitor exit slow
2078 #endif
2079   Thread* THREAD = JavaThread::current();
2080   // I'm not convinced we need the code contained by MIGHT_HAVE_PENDING anymore
2081   // testing was unable to ever fire the assert that guarded it so I have removed it.
2082   assert(!HAS_PENDING_EXCEPTION, "Do we need code below anymore?");
2083 #undef MIGHT_HAVE_PENDING
2084 #ifdef MIGHT_HAVE_PENDING
2085   // Save and restore any pending_exception around the exception mark.
2086   // While the slow_exit must not throw an exception, we could come into
2087   // this routine with one set.
2088   oop pending_excep = NULL;
2089   const char* pending_file;
2090   int pending_line;
2091   if (HAS_PENDING_EXCEPTION) {
2092     pending_excep = PENDING_EXCEPTION;
2093     pending_file  = THREAD->exception_file();
2094     pending_line  = THREAD->exception_line();
2095     CLEAR_PENDING_EXCEPTION;
2096   }
2097 #endif /* MIGHT_HAVE_PENDING */
2098 
2099   {
2100     // Exit must be non-blocking, and therefore no exceptions can be thrown.
2101     EXCEPTION_MARK;
2102     ObjectSynchronizer::slow_exit(obj, lock, THREAD);
2103   }
2104 
2105 #ifdef MIGHT_HAVE_PENDING
2106   if (pending_excep != NULL) {
2107     THREAD->set_pending_exception(pending_excep, pending_file, pending_line);
2108   }
2109 #endif /* MIGHT_HAVE_PENDING */
2110 JRT_END
2111 
2112 #ifndef PRODUCT
2113 
2114 void SharedRuntime::print_statistics() {
2115   ttyLocker ttyl;
2116   if (xtty != NULL)  xtty->head("statistics type='SharedRuntime'");
2117 
2118   if (_monitor_enter_ctr ) tty->print_cr("%5d monitor enter slow",  _monitor_enter_ctr);
2119   if (_monitor_exit_ctr  ) tty->print_cr("%5d monitor exit slow",   _monitor_exit_ctr);
2120   if (_throw_null_ctr) tty->print_cr("%5d implicit null throw", _throw_null_ctr);
2121 
2122   SharedRuntime::print_ic_miss_histogram();
2123 
2124   if (CountRemovableExceptions) {
2125     if (_nof_removable_exceptions > 0) {
2126       Unimplemented(); // this counter is not yet incremented
2127       tty->print_cr("Removable exceptions: %d", _nof_removable_exceptions);
2128     }
2129   }
2130 
2131   // Dump the JRT_ENTRY counters
2132   if( _new_instance_ctr ) tty->print_cr("%5d new instance requires GC", _new_instance_ctr);
2133   if( _new_array_ctr ) tty->print_cr("%5d new array requires GC", _new_array_ctr);
2134   if( _multi1_ctr ) tty->print_cr("%5d multianewarray 1 dim", _multi1_ctr);
2135   if( _multi2_ctr ) tty->print_cr("%5d multianewarray 2 dim", _multi2_ctr);
2136   if( _multi3_ctr ) tty->print_cr("%5d multianewarray 3 dim", _multi3_ctr);
2137   if( _multi4_ctr ) tty->print_cr("%5d multianewarray 4 dim", _multi4_ctr);
2138   if( _multi5_ctr ) tty->print_cr("%5d multianewarray 5 dim", _multi5_ctr);
2139 
2140   tty->print_cr("%5d inline cache miss in compiled", _ic_miss_ctr );
2141   tty->print_cr("%5d wrong method", _wrong_method_ctr );
2142   tty->print_cr("%5d unresolved static call site", _resolve_static_ctr );
2143   tty->print_cr("%5d unresolved virtual call site", _resolve_virtual_ctr );
2144   tty->print_cr("%5d unresolved opt virtual call site", _resolve_opt_virtual_ctr );
2145 
2146   if( _mon_enter_stub_ctr ) tty->print_cr("%5d monitor enter stub", _mon_enter_stub_ctr );
2147   if( _mon_exit_stub_ctr ) tty->print_cr("%5d monitor exit stub", _mon_exit_stub_ctr );
2148   if( _mon_enter_ctr ) tty->print_cr("%5d monitor enter slow", _mon_enter_ctr );
2149   if( _mon_exit_ctr ) tty->print_cr("%5d monitor exit slow", _mon_exit_ctr );
2150   if( _partial_subtype_ctr) tty->print_cr("%5d slow partial subtype", _partial_subtype_ctr );
2151   if( _jbyte_array_copy_ctr ) tty->print_cr("%5d byte array copies", _jbyte_array_copy_ctr );
2152   if( _jshort_array_copy_ctr ) tty->print_cr("%5d short array copies", _jshort_array_copy_ctr );
2153   if( _jint_array_copy_ctr ) tty->print_cr("%5d int array copies", _jint_array_copy_ctr );
2154   if( _jlong_array_copy_ctr ) tty->print_cr("%5d long array copies", _jlong_array_copy_ctr );
2155   if( _oop_array_copy_ctr ) tty->print_cr("%5d oop array copies", _oop_array_copy_ctr );
2156   if( _checkcast_array_copy_ctr ) tty->print_cr("%5d checkcast array copies", _checkcast_array_copy_ctr );
2157   if( _unsafe_array_copy_ctr ) tty->print_cr("%5d unsafe array copies", _unsafe_array_copy_ctr );
2158   if( _generic_array_copy_ctr ) tty->print_cr("%5d generic array copies", _generic_array_copy_ctr );
2159   if( _slow_array_copy_ctr ) tty->print_cr("%5d slow array copies", _slow_array_copy_ctr );
2160   if( _find_handler_ctr ) tty->print_cr("%5d find exception handler", _find_handler_ctr );
2161   if( _rethrow_ctr ) tty->print_cr("%5d rethrow handler", _rethrow_ctr );
2162 
2163   AdapterHandlerLibrary::print_statistics();
2164 
2165   if (xtty != NULL)  xtty->tail("statistics");
2166 }
2167 
2168 inline double percent(int x, int y) {
2169   return 100.0 * x / MAX2(y, 1);
2170 }
2171 
2172 class MethodArityHistogram {
2173  public:
2174   enum { MAX_ARITY = 256 };
2175  private:
2176   static int _arity_histogram[MAX_ARITY];     // histogram of #args
2177   static int _size_histogram[MAX_ARITY];      // histogram of arg size in words
2178   static int _max_arity;                      // max. arity seen
2179   static int _max_size;                       // max. arg size seen
2180 
2181   static void add_method_to_histogram(nmethod* nm) {
2182     methodOop m = nm->method();
2183     ArgumentCount args(m->signature());
2184     int arity   = args.size() + (m->is_static() ? 0 : 1);
2185     int argsize = m->size_of_parameters();
2186     arity   = MIN2(arity, MAX_ARITY-1);
2187     argsize = MIN2(argsize, MAX_ARITY-1);
2188     int count = nm->method()->compiled_invocation_count();
2189     _arity_histogram[arity]  += count;
2190     _size_histogram[argsize] += count;
2191     _max_arity = MAX2(_max_arity, arity);
2192     _max_size  = MAX2(_max_size, argsize);
2193   }
2194 
2195   void print_histogram_helper(int n, int* histo, const char* name) {
2196     const int N = MIN2(5, n);
2197     tty->print_cr("\nHistogram of call arity (incl. rcvr, calls to compiled methods only):");
2198     double sum = 0;
2199     double weighted_sum = 0;
2200     int i;
2201     for (i = 0; i <= n; i++) { sum += histo[i]; weighted_sum += i*histo[i]; }
2202     double rest = sum;
2203     double percent = sum / 100;
2204     for (i = 0; i <= N; i++) {
2205       rest -= histo[i];
2206       tty->print_cr("%4d: %7d (%5.1f%%)", i, histo[i], histo[i] / percent);
2207     }
2208     tty->print_cr("rest: %7d (%5.1f%%))", (int)rest, rest / percent);
2209     tty->print_cr("(avg. %s = %3.1f, max = %d)", name, weighted_sum / sum, n);
2210   }
2211 
2212   void print_histogram() {
2213     tty->print_cr("\nHistogram of call arity (incl. rcvr, calls to compiled methods only):");
2214     print_histogram_helper(_max_arity, _arity_histogram, "arity");
2215     tty->print_cr("\nSame for parameter size (in words):");
2216     print_histogram_helper(_max_size, _size_histogram, "size");
2217     tty->cr();
2218   }
2219 
2220  public:
2221   MethodArityHistogram() {
2222     MutexLockerEx mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
2223     _max_arity = _max_size = 0;
2224     for (int i = 0; i < MAX_ARITY; i++) _arity_histogram[i] = _size_histogram [i] = 0;
2225     CodeCache::nmethods_do(add_method_to_histogram);
2226     print_histogram();
2227   }
2228 };
2229 
2230 int MethodArityHistogram::_arity_histogram[MethodArityHistogram::MAX_ARITY];
2231 int MethodArityHistogram::_size_histogram[MethodArityHistogram::MAX_ARITY];
2232 int MethodArityHistogram::_max_arity;
2233 int MethodArityHistogram::_max_size;
2234 
2235 void SharedRuntime::print_call_statistics(int comp_total) {
2236   tty->print_cr("Calls from compiled code:");
2237   int total  = _nof_normal_calls + _nof_interface_calls + _nof_static_calls;
2238   int mono_c = _nof_normal_calls - _nof_optimized_calls - _nof_megamorphic_calls;
2239   int mono_i = _nof_interface_calls - _nof_optimized_interface_calls - _nof_megamorphic_interface_calls;
2240   tty->print_cr("\t%9d   (%4.1f%%) total non-inlined   ", total, percent(total, total));
2241   tty->print_cr("\t%9d   (%4.1f%%) virtual calls       ", _nof_normal_calls, percent(_nof_normal_calls, total));
2242   tty->print_cr("\t  %9d  (%3.0f%%)   inlined          ", _nof_inlined_calls, percent(_nof_inlined_calls, _nof_normal_calls));
2243   tty->print_cr("\t  %9d  (%3.0f%%)   optimized        ", _nof_optimized_calls, percent(_nof_optimized_calls, _nof_normal_calls));
2244   tty->print_cr("\t  %9d  (%3.0f%%)   monomorphic      ", mono_c, percent(mono_c, _nof_normal_calls));
2245   tty->print_cr("\t  %9d  (%3.0f%%)   megamorphic      ", _nof_megamorphic_calls, percent(_nof_megamorphic_calls, _nof_normal_calls));
2246   tty->print_cr("\t%9d   (%4.1f%%) interface calls     ", _nof_interface_calls, percent(_nof_interface_calls, total));
2247   tty->print_cr("\t  %9d  (%3.0f%%)   inlined          ", _nof_inlined_interface_calls, percent(_nof_inlined_interface_calls, _nof_interface_calls));
2248   tty->print_cr("\t  %9d  (%3.0f%%)   optimized        ", _nof_optimized_interface_calls, percent(_nof_optimized_interface_calls, _nof_interface_calls));
2249   tty->print_cr("\t  %9d  (%3.0f%%)   monomorphic      ", mono_i, percent(mono_i, _nof_interface_calls));
2250   tty->print_cr("\t  %9d  (%3.0f%%)   megamorphic      ", _nof_megamorphic_interface_calls, percent(_nof_megamorphic_interface_calls, _nof_interface_calls));
2251   tty->print_cr("\t%9d   (%4.1f%%) static/special calls", _nof_static_calls, percent(_nof_static_calls, total));
2252   tty->print_cr("\t  %9d  (%3.0f%%)   inlined          ", _nof_inlined_static_calls, percent(_nof_inlined_static_calls, _nof_static_calls));
2253   tty->cr();
2254   tty->print_cr("Note 1: counter updates are not MT-safe.");
2255   tty->print_cr("Note 2: %% in major categories are relative to total non-inlined calls;");
2256   tty->print_cr("        %% in nested categories are relative to their category");
2257   tty->print_cr("        (and thus add up to more than 100%% with inlining)");
2258   tty->cr();
2259 
2260   MethodArityHistogram h;
2261 }
2262 #endif
2263 
2264 
2265 // A simple wrapper class around the calling convention information
2266 // that allows sharing of adapters for the same calling convention.
2267 class AdapterFingerPrint : public CHeapObj {
2268  private:
2269   union {
2270     int  _compact[3];
2271     int* _fingerprint;
2272   } _value;
2273   int _length; // A negative length indicates the fingerprint is in the compact form,
2274                // Otherwise _value._fingerprint is the array.
2275 
2276   // Remap BasicTypes that are handled equivalently by the adapters.
2277   // These are correct for the current system but someday it might be
2278   // necessary to make this mapping platform dependent.
2279   static BasicType adapter_encoding(BasicType in) {
2280     assert((~0xf & in) == 0, "must fit in 4 bits");
2281     switch(in) {
2282       case T_BOOLEAN:
2283       case T_BYTE:
2284       case T_SHORT:
2285       case T_CHAR:
2286         // There are all promoted to T_INT in the calling convention
2287         return T_INT;
2288 
2289       case T_OBJECT:
2290       case T_ARRAY:
2291 #ifdef _LP64
2292         return T_LONG;
2293 #else
2294         return T_INT;
2295 #endif
2296 
2297       case T_INT:
2298       case T_LONG:
2299       case T_FLOAT:
2300       case T_DOUBLE:
2301       case T_VOID:
2302         return in;
2303 
2304       default:
2305         ShouldNotReachHere();
2306         return T_CONFLICT;
2307     }
2308   }
2309 
2310  public:
2311   AdapterFingerPrint(int total_args_passed, BasicType* sig_bt) {
2312     // The fingerprint is based on the BasicType signature encoded
2313     // into an array of ints with eight entries per int.
2314     int* ptr;
2315     int len = (total_args_passed + 7) >> 3;
2316     if (len <= (int)(sizeof(_value._compact) / sizeof(int))) {
2317       _value._compact[0] = _value._compact[1] = _value._compact[2] = 0;
2318       // Storing the signature encoded as signed chars hits about 98%
2319       // of the time.
2320       _length = -len;
2321       ptr = _value._compact;
2322     } else {
2323       _length = len;
2324       _value._fingerprint = NEW_C_HEAP_ARRAY(int, _length);
2325       ptr = _value._fingerprint;
2326     }
2327 
2328     // Now pack the BasicTypes with 8 per int
2329     int sig_index = 0;
2330     for (int index = 0; index < len; index++) {
2331       int value = 0;
2332       for (int byte = 0; byte < 8; byte++) {
2333         if (sig_index < total_args_passed) {
2334           value = (value << 4) | adapter_encoding(sig_bt[sig_index++]);
2335         }
2336       }
2337       ptr[index] = value;
2338     }
2339   }
2340 
2341   ~AdapterFingerPrint() {
2342     if (_length > 0) {
2343       FREE_C_HEAP_ARRAY(int, _value._fingerprint);
2344     }
2345   }
2346 
2347   int value(int index) {
2348     if (_length < 0) {
2349       return _value._compact[index];
2350     }
2351     return _value._fingerprint[index];
2352   }
2353   int length() {
2354     if (_length < 0) return -_length;
2355     return _length;
2356   }
2357 
2358   bool is_compact() {
2359     return _length <= 0;
2360   }
2361 
2362   unsigned int compute_hash() {
2363     int hash = 0;
2364     for (int i = 0; i < length(); i++) {
2365       int v = value(i);
2366       hash = (hash << 8) ^ v ^ (hash >> 5);
2367     }
2368     return (unsigned int)hash;
2369   }
2370 
2371   const char* as_string() {
2372     stringStream st;
2373     st.print("0x");
2374     for (int i = 0; i < length(); i++) {
2375       st.print("%08x", value(i));
2376     }
2377     return st.as_string();
2378   }
2379 
2380   bool equals(AdapterFingerPrint* other) {
2381     if (other->_length != _length) {
2382       return false;
2383     }
2384     if (_length < 0) {
2385       return _value._compact[0] == other->_value._compact[0] &&
2386              _value._compact[1] == other->_value._compact[1] &&
2387              _value._compact[2] == other->_value._compact[2];
2388     } else {
2389       for (int i = 0; i < _length; i++) {
2390         if (_value._fingerprint[i] != other->_value._fingerprint[i]) {
2391           return false;
2392         }
2393       }
2394     }
2395     return true;
2396   }
2397 };
2398 
2399 
2400 // A hashtable mapping from AdapterFingerPrints to AdapterHandlerEntries
2401 class AdapterHandlerTable : public BasicHashtable {
2402   friend class AdapterHandlerTableIterator;
2403 
2404  private:
2405 
2406 #ifndef PRODUCT
2407   static int _lookups; // number of calls to lookup
2408   static int _buckets; // number of buckets checked
2409   static int _equals;  // number of buckets checked with matching hash
2410   static int _hits;    // number of successful lookups
2411   static int _compact; // number of equals calls with compact signature
2412 #endif
2413 
2414   AdapterHandlerEntry* bucket(int i) {
2415     return (AdapterHandlerEntry*)BasicHashtable::bucket(i);
2416   }
2417 
2418  public:
2419   AdapterHandlerTable()
2420     : BasicHashtable(293, sizeof(AdapterHandlerEntry)) { }
2421 
2422   // Create a new entry suitable for insertion in the table
2423   AdapterHandlerEntry* new_entry(AdapterFingerPrint* fingerprint, address i2c_entry, address c2i_entry, address c2i_unverified_entry) {
2424     AdapterHandlerEntry* entry = (AdapterHandlerEntry*)BasicHashtable::new_entry(fingerprint->compute_hash());
2425     entry->init(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry);
2426     return entry;
2427   }
2428 
2429   // Insert an entry into the table
2430   void add(AdapterHandlerEntry* entry) {
2431     int index = hash_to_index(entry->hash());
2432     add_entry(index, entry);
2433   }
2434 
2435   void free_entry(AdapterHandlerEntry* entry) {
2436     entry->deallocate();
2437     BasicHashtable::free_entry(entry);
2438   }
2439 
2440   // Find a entry with the same fingerprint if it exists
2441   AdapterHandlerEntry* lookup(int total_args_passed, BasicType* sig_bt) {
2442     NOT_PRODUCT(_lookups++);
2443     AdapterFingerPrint fp(total_args_passed, sig_bt);
2444     unsigned int hash = fp.compute_hash();
2445     int index = hash_to_index(hash);
2446     for (AdapterHandlerEntry* e = bucket(index); e != NULL; e = e->next()) {
2447       NOT_PRODUCT(_buckets++);
2448       if (e->hash() == hash) {
2449         NOT_PRODUCT(_equals++);
2450         if (fp.equals(e->fingerprint())) {
2451 #ifndef PRODUCT
2452           if (fp.is_compact()) _compact++;
2453           _hits++;
2454 #endif
2455           return e;
2456         }
2457       }
2458     }
2459     return NULL;
2460   }
2461 
2462 #ifndef PRODUCT
2463   void print_statistics() {
2464     ResourceMark rm;
2465     int longest = 0;
2466     int empty = 0;
2467     int total = 0;
2468     int nonempty = 0;
2469     for (int index = 0; index < table_size(); index++) {
2470       int count = 0;
2471       for (AdapterHandlerEntry* e = bucket(index); e != NULL; e = e->next()) {
2472         count++;
2473       }
2474       if (count != 0) nonempty++;
2475       if (count == 0) empty++;
2476       if (count > longest) longest = count;
2477       total += count;
2478     }
2479     tty->print_cr("AdapterHandlerTable: empty %d longest %d total %d average %f",
2480                   empty, longest, total, total / (double)nonempty);
2481     tty->print_cr("AdapterHandlerTable: lookups %d buckets %d equals %d hits %d compact %d",
2482                   _lookups, _buckets, _equals, _hits, _compact);
2483   }
2484 #endif
2485 };
2486 
2487 
2488 #ifndef PRODUCT
2489 
2490 int AdapterHandlerTable::_lookups;
2491 int AdapterHandlerTable::_buckets;
2492 int AdapterHandlerTable::_equals;
2493 int AdapterHandlerTable::_hits;
2494 int AdapterHandlerTable::_compact;
2495 
2496 #endif
2497 
2498 class AdapterHandlerTableIterator : public StackObj {
2499  private:
2500   AdapterHandlerTable* _table;
2501   int _index;
2502   AdapterHandlerEntry* _current;
2503 
2504   void scan() {
2505     while (_index < _table->table_size()) {
2506       AdapterHandlerEntry* a = _table->bucket(_index);
2507       _index++;
2508       if (a != NULL) {
2509         _current = a;
2510         return;
2511       }
2512     }
2513   }
2514 
2515  public:
2516   AdapterHandlerTableIterator(AdapterHandlerTable* table): _table(table), _index(0), _current(NULL) {
2517     scan();
2518   }
2519   bool has_next() {
2520     return _current != NULL;
2521   }
2522   AdapterHandlerEntry* next() {
2523     if (_current != NULL) {
2524       AdapterHandlerEntry* result = _current;
2525       _current = _current->next();
2526       if (_current == NULL) scan();
2527       return result;
2528     } else {
2529       return NULL;
2530     }
2531   }
2532 };
2533 
2534 
2535 // ---------------------------------------------------------------------------
2536 // Implementation of AdapterHandlerLibrary
2537 AdapterHandlerTable* AdapterHandlerLibrary::_adapters = NULL;
2538 AdapterHandlerEntry* AdapterHandlerLibrary::_abstract_method_handler = NULL;
2539 const int AdapterHandlerLibrary_size = 16*K;
2540 BufferBlob* AdapterHandlerLibrary::_buffer = NULL;
2541 
2542 BufferBlob* AdapterHandlerLibrary::buffer_blob() {
2543   // Should be called only when AdapterHandlerLibrary_lock is active.
2544   if (_buffer == NULL) // Initialize lazily
2545       _buffer = BufferBlob::create("adapters", AdapterHandlerLibrary_size);
2546   return _buffer;
2547 }
2548 
2549 void AdapterHandlerLibrary::initialize() {
2550   if (_adapters != NULL) return;
2551   _adapters = new AdapterHandlerTable();
2552 
2553   // Create a special handler for abstract methods.  Abstract methods
2554   // are never compiled so an i2c entry is somewhat meaningless, but
2555   // fill it in with something appropriate just in case.  Pass handle
2556   // wrong method for the c2i transitions.
2557   address wrong_method = SharedRuntime::get_handle_wrong_method_stub();
2558   _abstract_method_handler = AdapterHandlerLibrary::new_entry(new AdapterFingerPrint(0, NULL),
2559                                                               StubRoutines::throw_AbstractMethodError_entry(),
2560                                                               wrong_method, wrong_method);
2561 }
2562 
2563 AdapterHandlerEntry* AdapterHandlerLibrary::new_entry(AdapterFingerPrint* fingerprint,
2564                                                       address i2c_entry,
2565                                                       address c2i_entry,
2566                                                       address c2i_unverified_entry) {
2567   return _adapters->new_entry(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry);
2568 }
2569 
2570 AdapterHandlerEntry* AdapterHandlerLibrary::get_adapter(methodHandle method) {
2571   // Use customized signature handler.  Need to lock around updates to
2572   // the AdapterHandlerTable (it is not safe for concurrent readers
2573   // and a single writer: this could be fixed if it becomes a
2574   // problem).
2575 
2576   // Get the address of the ic_miss handlers before we grab the
2577   // AdapterHandlerLibrary_lock. This fixes bug 6236259 which
2578   // was caused by the initialization of the stubs happening
2579   // while we held the lock and then notifying jvmti while
2580   // holding it. This just forces the initialization to be a little
2581   // earlier.
2582   address ic_miss = SharedRuntime::get_ic_miss_stub();
2583   assert(ic_miss != NULL, "must have handler");
2584 
2585   ResourceMark rm;
2586 
2587   NOT_PRODUCT(int insts_size);
2588   AdapterBlob* B = NULL;
2589   AdapterHandlerEntry* entry = NULL;
2590   AdapterFingerPrint* fingerprint = NULL;
2591   {
2592     MutexLocker mu(AdapterHandlerLibrary_lock);
2593     // make sure data structure is initialized
2594     initialize();
2595 
2596     if (method->is_abstract()) {
2597       return _abstract_method_handler;
2598     }
2599 
2600     // Fill in the signature array, for the calling-convention call.
2601     int total_args_passed = method->size_of_parameters(); // All args on stack
2602 
2603     BasicType* sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_args_passed);
2604     VMRegPair* regs   = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed);
2605     int i = 0;
2606     if (!method->is_static())  // Pass in receiver first
2607       sig_bt[i++] = T_OBJECT;
2608     for (SignatureStream ss(method->signature()); !ss.at_return_type(); ss.next()) {
2609       sig_bt[i++] = ss.type();  // Collect remaining bits of signature
2610       if (ss.type() == T_LONG || ss.type() == T_DOUBLE)
2611         sig_bt[i++] = T_VOID;   // Longs & doubles take 2 Java slots
2612     }
2613     assert(i == total_args_passed, "");
2614 
2615     // Lookup method signature's fingerprint
2616     entry = _adapters->lookup(total_args_passed, sig_bt);
2617 
2618 #ifdef ASSERT
2619     AdapterHandlerEntry* shared_entry = NULL;
2620     if (VerifyAdapterSharing && entry != NULL) {
2621       shared_entry = entry;
2622       entry = NULL;
2623     }
2624 #endif
2625 
2626     if (entry != NULL) {
2627       return entry;
2628     }
2629 
2630     // Get a description of the compiled java calling convention and the largest used (VMReg) stack slot usage
2631     int comp_args_on_stack = SharedRuntime::java_calling_convention(sig_bt, regs, total_args_passed, false);
2632 
2633     // Make a C heap allocated version of the fingerprint to store in the adapter
2634     fingerprint = new AdapterFingerPrint(total_args_passed, sig_bt);
2635 
2636     // Create I2C & C2I handlers
2637 
2638     BufferBlob* buf = buffer_blob(); // the temporary code buffer in CodeCache
2639     if (buf != NULL) {
2640       CodeBuffer buffer(buf);
2641       short buffer_locs[20];
2642       buffer.insts()->initialize_shared_locs((relocInfo*)buffer_locs,
2643                                              sizeof(buffer_locs)/sizeof(relocInfo));
2644       MacroAssembler _masm(&buffer);
2645 
2646       entry = SharedRuntime::generate_i2c2i_adapters(&_masm,
2647                                                      total_args_passed,
2648                                                      comp_args_on_stack,
2649                                                      sig_bt,
2650                                                      regs,
2651                                                      fingerprint);
2652 
2653 #ifdef ASSERT
2654       if (VerifyAdapterSharing) {
2655         if (shared_entry != NULL) {
2656           assert(shared_entry->compare_code(buf->code_begin(), buffer.insts_size(), total_args_passed, sig_bt),
2657                  "code must match");
2658           // Release the one just created and return the original
2659           _adapters->free_entry(entry);
2660           return shared_entry;
2661         } else  {
2662           entry->save_code(buf->code_begin(), buffer.insts_size(), total_args_passed, sig_bt);
2663         }
2664       }
2665 #endif
2666 
2667       B = AdapterBlob::create(&buffer);
2668       NOT_PRODUCT(insts_size = buffer.insts_size());
2669     }
2670     if (B == NULL) {
2671       // CodeCache is full, disable compilation
2672       // Ought to log this but compile log is only per compile thread
2673       // and we're some non descript Java thread.
2674       MutexUnlocker mu(AdapterHandlerLibrary_lock);
2675       CompileBroker::handle_full_code_cache();
2676       return NULL; // Out of CodeCache space
2677     }
2678     entry->relocate(B->content_begin());
2679 #ifndef PRODUCT
2680     // debugging suppport
2681     if (PrintAdapterHandlers) {
2682       tty->cr();
2683       tty->print_cr("i2c argument handler #%d for: %s %s (fingerprint = %s, %d bytes generated)",
2684                     _adapters->number_of_entries(), (method->is_static() ? "static" : "receiver"),
2685                     method->signature()->as_C_string(), fingerprint->as_string(), insts_size );
2686       tty->print_cr("c2i argument handler starts at %p",entry->get_c2i_entry());
2687       Disassembler::decode(entry->get_i2c_entry(), entry->get_i2c_entry() + insts_size);
2688     }
2689 #endif
2690 
2691     _adapters->add(entry);
2692   }
2693   // Outside of the lock
2694   if (B != NULL) {
2695     char blob_id[256];
2696     jio_snprintf(blob_id,
2697                  sizeof(blob_id),
2698                  "%s(%s)@" PTR_FORMAT,
2699                  B->name(),
2700                  fingerprint->as_string(),
2701                  B->content_begin());
2702     Forte::register_stub(blob_id, B->content_begin(), B->content_end());
2703 
2704     if (JvmtiExport::should_post_dynamic_code_generated()) {
2705       JvmtiExport::post_dynamic_code_generated(blob_id, B->content_begin(), B->content_end());
2706     }
2707   }
2708   return entry;
2709 }
2710 
2711 void AdapterHandlerEntry::relocate(address new_base) {
2712     ptrdiff_t delta = new_base - _i2c_entry;
2713     _i2c_entry += delta;
2714     _c2i_entry += delta;
2715     _c2i_unverified_entry += delta;
2716 }
2717 
2718 
2719 void AdapterHandlerEntry::deallocate() {
2720   delete _fingerprint;
2721 #ifdef ASSERT
2722   if (_saved_code) FREE_C_HEAP_ARRAY(unsigned char, _saved_code);
2723   if (_saved_sig)  FREE_C_HEAP_ARRAY(Basictype, _saved_sig);
2724 #endif
2725 }
2726 
2727 
2728 #ifdef ASSERT
2729 // Capture the code before relocation so that it can be compared
2730 // against other versions.  If the code is captured after relocation
2731 // then relative instructions won't be equivalent.
2732 void AdapterHandlerEntry::save_code(unsigned char* buffer, int length, int total_args_passed, BasicType* sig_bt) {
2733   _saved_code = NEW_C_HEAP_ARRAY(unsigned char, length);
2734   _code_length = length;
2735   memcpy(_saved_code, buffer, length);
2736   _total_args_passed = total_args_passed;
2737   _saved_sig = NEW_C_HEAP_ARRAY(BasicType, _total_args_passed);
2738   memcpy(_saved_sig, sig_bt, _total_args_passed * sizeof(BasicType));
2739 }
2740 
2741 
2742 bool AdapterHandlerEntry::compare_code(unsigned char* buffer, int length, int total_args_passed, BasicType* sig_bt) {
2743   if (length != _code_length) {
2744     return false;
2745   }
2746   for (int i = 0; i < length; i++) {
2747     if (buffer[i] != _saved_code[i]) {
2748       return false;
2749     }
2750   }
2751   return true;
2752 }
2753 #endif
2754 
2755 
2756 // Create a native wrapper for this native method.  The wrapper converts the
2757 // java compiled calling convention to the native convention, handlizes
2758 // arguments, and transitions to native.  On return from the native we transition
2759 // back to java blocking if a safepoint is in progress.
2760 nmethod *AdapterHandlerLibrary::create_native_wrapper(methodHandle method, int compile_id) {
2761   ResourceMark rm;
2762   nmethod* nm = NULL;
2763 
2764   assert(method->has_native_function(), "must have something valid to call!");
2765 
2766   {
2767     // perform the work while holding the lock, but perform any printing outside the lock
2768     MutexLocker mu(AdapterHandlerLibrary_lock);
2769     // See if somebody beat us to it
2770     nm = method->code();
2771     if (nm) {
2772       return nm;
2773     }
2774 
2775     ResourceMark rm;
2776 
2777     BufferBlob*  buf = buffer_blob(); // the temporary code buffer in CodeCache
2778     if (buf != NULL) {
2779       CodeBuffer buffer(buf);
2780       double locs_buf[20];
2781       buffer.insts()->initialize_shared_locs((relocInfo*)locs_buf, sizeof(locs_buf) / sizeof(relocInfo));
2782       MacroAssembler _masm(&buffer);
2783 
2784       // Fill in the signature array, for the calling-convention call.
2785       int total_args_passed = method->size_of_parameters();
2786 
2787       BasicType* sig_bt = NEW_RESOURCE_ARRAY(BasicType,total_args_passed);
2788       VMRegPair*   regs = NEW_RESOURCE_ARRAY(VMRegPair,total_args_passed);
2789       int i=0;
2790       if( !method->is_static() )  // Pass in receiver first
2791         sig_bt[i++] = T_OBJECT;
2792       SignatureStream ss(method->signature());
2793       for( ; !ss.at_return_type(); ss.next()) {
2794         sig_bt[i++] = ss.type();  // Collect remaining bits of signature
2795         if( ss.type() == T_LONG || ss.type() == T_DOUBLE )
2796           sig_bt[i++] = T_VOID;   // Longs & doubles take 2 Java slots
2797       }
2798       assert( i==total_args_passed, "" );
2799       BasicType ret_type = ss.type();
2800 
2801       // Now get the compiled-Java layout as input arguments
2802       int comp_args_on_stack;
2803       comp_args_on_stack = SharedRuntime::java_calling_convention(sig_bt, regs, total_args_passed, false);
2804 
2805       // Generate the compiled-to-native wrapper code
2806       nm = SharedRuntime::generate_native_wrapper(&_masm,
2807                                                   method,
2808                                                   compile_id,
2809                                                   total_args_passed,
2810                                                   comp_args_on_stack,
2811                                                   sig_bt,regs,
2812                                                   ret_type);
2813     }
2814   }
2815 
2816   // Must unlock before calling set_code
2817 
2818   // Install the generated code.
2819   if (nm != NULL) {
2820     if (PrintCompilation) {
2821       ttyLocker ttyl;
2822       CompileTask::print_compilation(tty, nm, method->is_static() ? "(static)" : "");
2823     }
2824     method->set_code(method, nm);
2825     nm->post_compiled_method_load_event();
2826   } else {
2827     // CodeCache is full, disable compilation
2828     CompileBroker::handle_full_code_cache();
2829   }
2830   return nm;
2831 }
2832 
2833 #ifdef HAVE_DTRACE_H
2834 // Create a dtrace nmethod for this method.  The wrapper converts the
2835 // java compiled calling convention to the native convention, makes a dummy call
2836 // (actually nops for the size of the call instruction, which become a trap if
2837 // probe is enabled). The returns to the caller. Since this all looks like a
2838 // leaf no thread transition is needed.
2839 
2840 nmethod *AdapterHandlerLibrary::create_dtrace_nmethod(methodHandle method) {
2841   ResourceMark rm;
2842   nmethod* nm = NULL;
2843 
2844   if (PrintCompilation) {
2845     ttyLocker ttyl;
2846     tty->print("---   n%s  ");
2847     method->print_short_name(tty);
2848     if (method->is_static()) {
2849       tty->print(" (static)");
2850     }
2851     tty->cr();
2852   }
2853 
2854   {
2855     // perform the work while holding the lock, but perform any printing
2856     // outside the lock
2857     MutexLocker mu(AdapterHandlerLibrary_lock);
2858     // See if somebody beat us to it
2859     nm = method->code();
2860     if (nm) {
2861       return nm;
2862     }
2863 
2864     ResourceMark rm;
2865 
2866     BufferBlob*  buf = buffer_blob(); // the temporary code buffer in CodeCache
2867     if (buf != NULL) {
2868       CodeBuffer buffer(buf);
2869       // Need a few relocation entries
2870       double locs_buf[20];
2871       buffer.insts()->initialize_shared_locs(
2872         (relocInfo*)locs_buf, sizeof(locs_buf) / sizeof(relocInfo));
2873       MacroAssembler _masm(&buffer);
2874 
2875       // Generate the compiled-to-native wrapper code
2876       nm = SharedRuntime::generate_dtrace_nmethod(&_masm, method);
2877     }
2878   }
2879   return nm;
2880 }
2881 
2882 // the dtrace method needs to convert java lang string to utf8 string.
2883 void SharedRuntime::get_utf(oopDesc* src, address dst) {
2884   typeArrayOop jlsValue  = java_lang_String::value(src);
2885   int          jlsOffset = java_lang_String::offset(src);
2886   int          jlsLen    = java_lang_String::length(src);
2887   jchar*       jlsPos    = (jlsLen == 0) ? NULL :
2888                                            jlsValue->char_at_addr(jlsOffset);
2889   assert(typeArrayKlass::cast(jlsValue->klass())->element_type() == T_CHAR, "compressed string");
2890   (void) UNICODE::as_utf8(jlsPos, jlsLen, (char *)dst, max_dtrace_string_size);
2891 }
2892 #endif // ndef HAVE_DTRACE_H
2893 
2894 // -------------------------------------------------------------------------
2895 // Java-Java calling convention
2896 // (what you use when Java calls Java)
2897 
2898 //------------------------------name_for_receiver----------------------------------
2899 // For a given signature, return the VMReg for parameter 0.
2900 VMReg SharedRuntime::name_for_receiver() {
2901   VMRegPair regs;
2902   BasicType sig_bt = T_OBJECT;
2903   (void) java_calling_convention(&sig_bt, &regs, 1, true);
2904   // Return argument 0 register.  In the LP64 build pointers
2905   // take 2 registers, but the VM wants only the 'main' name.
2906   return regs.first();
2907 }
2908 
2909 VMRegPair *SharedRuntime::find_callee_arguments(Symbol* sig, bool has_receiver, int* arg_size) {
2910   // This method is returning a data structure allocating as a
2911   // ResourceObject, so do not put any ResourceMarks in here.
2912   char *s = sig->as_C_string();
2913   int len = (int)strlen(s);
2914   *s++; len--;                  // Skip opening paren
2915   char *t = s+len;
2916   while( *(--t) != ')' ) ;      // Find close paren
2917 
2918   BasicType *sig_bt = NEW_RESOURCE_ARRAY( BasicType, 256 );
2919   VMRegPair *regs = NEW_RESOURCE_ARRAY( VMRegPair, 256 );
2920   int cnt = 0;
2921   if (has_receiver) {
2922     sig_bt[cnt++] = T_OBJECT; // Receiver is argument 0; not in signature
2923   }
2924 
2925   while( s < t ) {
2926     switch( *s++ ) {            // Switch on signature character
2927     case 'B': sig_bt[cnt++] = T_BYTE;    break;
2928     case 'C': sig_bt[cnt++] = T_CHAR;    break;
2929     case 'D': sig_bt[cnt++] = T_DOUBLE;  sig_bt[cnt++] = T_VOID; break;
2930     case 'F': sig_bt[cnt++] = T_FLOAT;   break;
2931     case 'I': sig_bt[cnt++] = T_INT;     break;
2932     case 'J': sig_bt[cnt++] = T_LONG;    sig_bt[cnt++] = T_VOID; break;
2933     case 'S': sig_bt[cnt++] = T_SHORT;   break;
2934     case 'Z': sig_bt[cnt++] = T_BOOLEAN; break;
2935     case 'V': sig_bt[cnt++] = T_VOID;    break;
2936     case 'L':                   // Oop
2937       while( *s++ != ';'  ) ;   // Skip signature
2938       sig_bt[cnt++] = T_OBJECT;
2939       break;
2940     case '[': {                 // Array
2941       do {                      // Skip optional size
2942         while( *s >= '0' && *s <= '9' ) s++;
2943       } while( *s++ == '[' );   // Nested arrays?
2944       // Skip element type
2945       if( s[-1] == 'L' )
2946         while( *s++ != ';'  ) ; // Skip signature
2947       sig_bt[cnt++] = T_ARRAY;
2948       break;
2949     }
2950     default : ShouldNotReachHere();
2951     }
2952   }
2953   assert( cnt < 256, "grow table size" );
2954 
2955   int comp_args_on_stack;
2956   comp_args_on_stack = java_calling_convention(sig_bt, regs, cnt, true);
2957 
2958   // the calling convention doesn't count out_preserve_stack_slots so
2959   // we must add that in to get "true" stack offsets.
2960 
2961   if (comp_args_on_stack) {
2962     for (int i = 0; i < cnt; i++) {
2963       VMReg reg1 = regs[i].first();
2964       if( reg1->is_stack()) {
2965         // Yuck
2966         reg1 = reg1->bias(out_preserve_stack_slots());
2967       }
2968       VMReg reg2 = regs[i].second();
2969       if( reg2->is_stack()) {
2970         // Yuck
2971         reg2 = reg2->bias(out_preserve_stack_slots());
2972       }
2973       regs[i].set_pair(reg2, reg1);
2974     }
2975   }
2976 
2977   // results
2978   *arg_size = cnt;
2979   return regs;
2980 }
2981 
2982 // OSR Migration Code
2983 //
2984 // This code is used convert interpreter frames into compiled frames.  It is
2985 // called from very start of a compiled OSR nmethod.  A temp array is
2986 // allocated to hold the interesting bits of the interpreter frame.  All
2987 // active locks are inflated to allow them to move.  The displaced headers and
2988 // active interpeter locals are copied into the temp buffer.  Then we return
2989 // back to the compiled code.  The compiled code then pops the current
2990 // interpreter frame off the stack and pushes a new compiled frame.  Then it
2991 // copies the interpreter locals and displaced headers where it wants.
2992 // Finally it calls back to free the temp buffer.
2993 //
2994 // All of this is done NOT at any Safepoint, nor is any safepoint or GC allowed.
2995 
2996 JRT_LEAF(intptr_t*, SharedRuntime::OSR_migration_begin( JavaThread *thread) )
2997 
2998 #ifdef IA64
2999   ShouldNotReachHere(); // NYI
3000 #endif /* IA64 */
3001 
3002   //
3003   // This code is dependent on the memory layout of the interpreter local
3004   // array and the monitors. On all of our platforms the layout is identical
3005   // so this code is shared. If some platform lays the their arrays out
3006   // differently then this code could move to platform specific code or
3007   // the code here could be modified to copy items one at a time using
3008   // frame accessor methods and be platform independent.
3009 
3010   frame fr = thread->last_frame();
3011   assert( fr.is_interpreted_frame(), "" );
3012   assert( fr.interpreter_frame_expression_stack_size()==0, "only handle empty stacks" );
3013 
3014   // Figure out how many monitors are active.
3015   int active_monitor_count = 0;
3016   for( BasicObjectLock *kptr = fr.interpreter_frame_monitor_end();
3017        kptr < fr.interpreter_frame_monitor_begin();
3018        kptr = fr.next_monitor_in_interpreter_frame(kptr) ) {
3019     if( kptr->obj() != NULL ) active_monitor_count++;
3020   }
3021 
3022   // QQQ we could place number of active monitors in the array so that compiled code
3023   // could double check it.
3024 
3025   methodOop moop = fr.interpreter_frame_method();
3026   int max_locals = moop->max_locals();
3027   // Allocate temp buffer, 1 word per local & 2 per active monitor
3028   int buf_size_words = max_locals + active_monitor_count*2;
3029   intptr_t *buf = NEW_C_HEAP_ARRAY(intptr_t,buf_size_words);
3030 
3031   // Copy the locals.  Order is preserved so that loading of longs works.
3032   // Since there's no GC I can copy the oops blindly.
3033   assert( sizeof(HeapWord)==sizeof(intptr_t), "fix this code");
3034   Copy::disjoint_words((HeapWord*)fr.interpreter_frame_local_at(max_locals-1),
3035                        (HeapWord*)&buf[0],
3036                        max_locals);
3037 
3038   // Inflate locks.  Copy the displaced headers.  Be careful, there can be holes.
3039   int i = max_locals;
3040   for( BasicObjectLock *kptr2 = fr.interpreter_frame_monitor_end();
3041        kptr2 < fr.interpreter_frame_monitor_begin();
3042        kptr2 = fr.next_monitor_in_interpreter_frame(kptr2) ) {
3043     if( kptr2->obj() != NULL) {         // Avoid 'holes' in the monitor array
3044       BasicLock *lock = kptr2->lock();
3045       // Inflate so the displaced header becomes position-independent
3046       if (lock->displaced_header()->is_unlocked())
3047         ObjectSynchronizer::inflate_helper(kptr2->obj());
3048       // Now the displaced header is free to move
3049       buf[i++] = (intptr_t)lock->displaced_header();
3050       buf[i++] = (intptr_t)kptr2->obj();
3051     }
3052   }
3053   assert( i - max_locals == active_monitor_count*2, "found the expected number of monitors" );
3054 
3055   return buf;
3056 JRT_END
3057 
3058 JRT_LEAF(void, SharedRuntime::OSR_migration_end( intptr_t* buf) )
3059   FREE_C_HEAP_ARRAY(intptr_t,buf);
3060 JRT_END
3061 
3062 bool AdapterHandlerLibrary::contains(CodeBlob* b) {
3063   AdapterHandlerTableIterator iter(_adapters);
3064   while (iter.has_next()) {
3065     AdapterHandlerEntry* a = iter.next();
3066     if ( b == CodeCache::find_blob(a->get_i2c_entry()) ) return true;
3067   }
3068   return false;
3069 }
3070 
3071 void AdapterHandlerLibrary::print_handler_on(outputStream* st, CodeBlob* b) {
3072   AdapterHandlerTableIterator iter(_adapters);
3073   while (iter.has_next()) {
3074     AdapterHandlerEntry* a = iter.next();
3075     if ( b == CodeCache::find_blob(a->get_i2c_entry()) ) {
3076       st->print("Adapter for signature: ");
3077       st->print_cr("%s i2c: " INTPTR_FORMAT " c2i: " INTPTR_FORMAT " c2iUV: " INTPTR_FORMAT,
3078                    a->fingerprint()->as_string(),
3079                    a->get_i2c_entry(), a->get_c2i_entry(), a->get_c2i_unverified_entry());
3080 
3081       return;
3082     }
3083   }
3084   assert(false, "Should have found handler");
3085 }
3086 
3087 #ifndef PRODUCT
3088 
3089 void AdapterHandlerLibrary::print_statistics() {
3090   _adapters->print_statistics();
3091 }
3092 
3093 #endif /* PRODUCT */