1 /*
   2  * Copyright (c) 2005, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "ci/ciArrayKlass.hpp"
  27 #include "ci/ciEnv.hpp"
  28 #include "ci/ciKlass.hpp"
  29 #include "ci/ciMethod.hpp"
  30 #include "classfile/javaClasses.inline.hpp"
  31 #include "code/dependencies.hpp"
  32 #include "compiler/compileLog.hpp"
  33 #include "oops/oop.inline.hpp"
  34 #include "runtime/handles.hpp"
  35 #include "runtime/handles.inline.hpp"
  36 #include "runtime/thread.inline.hpp"
  37 #include "utilities/copy.hpp"
  38 
  39 
  40 #ifdef ASSERT
  41 static bool must_be_in_vm() {
  42   Thread* thread = Thread::current();
  43   if (thread->is_Java_thread())
  44     return ((JavaThread*)thread)->thread_state() == _thread_in_vm;
  45   else
  46     return true;  //something like this: thread->is_VM_thread();
  47 }
  48 #endif //ASSERT
  49 
  50 void Dependencies::initialize(ciEnv* env) {
  51   Arena* arena = env->arena();
  52   _oop_recorder = env->oop_recorder();
  53   _log = env->log();
  54   _dep_seen = new(arena) GrowableArray<int>(arena, 500, 0, 0);
  55   DEBUG_ONLY(_deps[end_marker] = NULL);
  56   for (int i = (int)FIRST_TYPE; i < (int)TYPE_LIMIT; i++) {
  57     _deps[i] = new(arena) GrowableArray<ciBaseObject*>(arena, 10, 0, 0);
  58   }
  59   _content_bytes = NULL;
  60   _size_in_bytes = (size_t)-1;
  61 
  62   assert(TYPE_LIMIT <= (1<<LG2_TYPE_LIMIT), "sanity");
  63 }
  64 
  65 void Dependencies::assert_evol_method(ciMethod* m) {
  66   assert_common_1(evol_method, m);
  67 }
  68 
  69 void Dependencies::assert_leaf_type(ciKlass* ctxk) {
  70   if (ctxk->is_array_klass()) {
  71     // As a special case, support this assertion on an array type,
  72     // which reduces to an assertion on its element type.
  73     // Note that this cannot be done with assertions that
  74     // relate to concreteness or abstractness.
  75     ciType* elemt = ctxk->as_array_klass()->base_element_type();
  76     if (!elemt->is_instance_klass())  return;   // Ex:  int[][]
  77     ctxk = elemt->as_instance_klass();
  78     //if (ctxk->is_final())  return;            // Ex:  String[][]
  79   }
  80   check_ctxk(ctxk);
  81   assert_common_1(leaf_type, ctxk);
  82 }
  83 
  84 void Dependencies::assert_abstract_with_unique_concrete_subtype(ciKlass* ctxk, ciKlass* conck) {
  85   check_ctxk_abstract(ctxk);
  86   assert_common_2(abstract_with_unique_concrete_subtype, ctxk, conck);
  87 }
  88 
  89 void Dependencies::assert_abstract_with_no_concrete_subtype(ciKlass* ctxk) {
  90   check_ctxk_abstract(ctxk);
  91   assert_common_1(abstract_with_no_concrete_subtype, ctxk);
  92 }
  93 
  94 void Dependencies::assert_concrete_with_no_concrete_subtype(ciKlass* ctxk) {
  95   check_ctxk_concrete(ctxk);
  96   assert_common_1(concrete_with_no_concrete_subtype, ctxk);
  97 }
  98 
  99 void Dependencies::assert_unique_concrete_method(ciKlass* ctxk, ciMethod* uniqm) {
 100   check_ctxk(ctxk);
 101   assert_common_2(unique_concrete_method, ctxk, uniqm);
 102 }
 103 
 104 void Dependencies::assert_abstract_with_exclusive_concrete_subtypes(ciKlass* ctxk, ciKlass* k1, ciKlass* k2) {
 105   check_ctxk(ctxk);
 106   assert_common_3(abstract_with_exclusive_concrete_subtypes_2, ctxk, k1, k2);
 107 }
 108 
 109 void Dependencies::assert_exclusive_concrete_methods(ciKlass* ctxk, ciMethod* m1, ciMethod* m2) {
 110   check_ctxk(ctxk);
 111   assert_common_3(exclusive_concrete_methods_2, ctxk, m1, m2);
 112 }
 113 
 114 void Dependencies::assert_has_no_finalizable_subclasses(ciKlass* ctxk) {
 115   check_ctxk(ctxk);
 116   assert_common_1(no_finalizable_subclasses, ctxk);
 117 }
 118 
 119 void Dependencies::assert_call_site_target_value(ciCallSite* call_site, ciMethodHandle* method_handle) {
 120   check_ctxk(call_site->klass());
 121   assert_common_2(call_site_target_value, call_site, method_handle);
 122 }
 123 
 124 // Helper function.  If we are adding a new dep. under ctxk2,
 125 // try to find an old dep. under a broader* ctxk1.  If there is
 126 //
 127 bool Dependencies::maybe_merge_ctxk(GrowableArray<ciBaseObject*>* deps,
 128                                     int ctxk_i, ciKlass* ctxk2) {
 129   ciKlass* ctxk1 = deps->at(ctxk_i)->as_metadata()->as_klass();
 130   if (ctxk2->is_subtype_of(ctxk1)) {
 131     return true;  // success, and no need to change
 132   } else if (ctxk1->is_subtype_of(ctxk2)) {
 133     // new context class fully subsumes previous one
 134     deps->at_put(ctxk_i, ctxk2);
 135     return true;
 136   } else {
 137     return false;
 138   }
 139 }
 140 
 141 void Dependencies::assert_common_1(DepType dept, ciBaseObject* x) {
 142   assert(dep_args(dept) == 1, "sanity");
 143   log_dependency(dept, x);
 144   GrowableArray<ciBaseObject*>* deps = _deps[dept];
 145 
 146   // see if the same (or a similar) dep is already recorded
 147   if (note_dep_seen(dept, x)) {
 148     assert(deps->find(x) >= 0, "sanity");
 149   } else {
 150     deps->append(x);
 151   }
 152 }
 153 
 154 void Dependencies::assert_common_2(DepType dept,
 155                                    ciBaseObject* x0, ciBaseObject* x1) {
 156   assert(dep_args(dept) == 2, "sanity");
 157   log_dependency(dept, x0, x1);
 158   GrowableArray<ciBaseObject*>* deps = _deps[dept];
 159 
 160   // see if the same (or a similar) dep is already recorded
 161   bool has_ctxk = has_explicit_context_arg(dept);
 162   if (has_ctxk) {
 163     assert(dep_context_arg(dept) == 0, "sanity");
 164     if (note_dep_seen(dept, x1)) {
 165       // look in this bucket for redundant assertions
 166       const int stride = 2;
 167       for (int i = deps->length(); (i -= stride) >= 0; ) {
 168         ciBaseObject* y1 = deps->at(i+1);
 169         if (x1 == y1) {  // same subject; check the context
 170           if (maybe_merge_ctxk(deps, i+0, x0->as_metadata()->as_klass())) {
 171             return;
 172           }
 173         }
 174       }
 175     }
 176   } else {
 177     assert(dep_implicit_context_arg(dept) == 0, "sanity");
 178     if (note_dep_seen(dept, x0) && note_dep_seen(dept, x1)) {
 179       // look in this bucket for redundant assertions
 180       const int stride = 2;
 181       for (int i = deps->length(); (i -= stride) >= 0; ) {
 182         ciBaseObject* y0 = deps->at(i+0);
 183         ciBaseObject* y1 = deps->at(i+1);
 184         if (x0 == y0 && x1 == y1) {
 185           return;
 186         }
 187       }
 188     }
 189   }
 190 
 191   // append the assertion in the correct bucket:
 192   deps->append(x0);
 193   deps->append(x1);
 194 }
 195 
 196 void Dependencies::assert_common_3(DepType dept,
 197                                    ciKlass* ctxk, ciBaseObject* x, ciBaseObject* x2) {
 198   assert(dep_context_arg(dept) == 0, "sanity");
 199   assert(dep_args(dept) == 3, "sanity");
 200   log_dependency(dept, ctxk, x, x2);
 201   GrowableArray<ciBaseObject*>* deps = _deps[dept];
 202 
 203   // try to normalize an unordered pair:
 204   bool swap = false;
 205   switch (dept) {
 206   case abstract_with_exclusive_concrete_subtypes_2:
 207     swap = (x->ident() > x2->ident() && x->as_metadata()->as_klass() != ctxk);
 208     break;
 209   case exclusive_concrete_methods_2:
 210     swap = (x->ident() > x2->ident() && x->as_metadata()->as_method()->holder() != ctxk);
 211     break;
 212   }
 213   if (swap) { ciBaseObject* t = x; x = x2; x2 = t; }
 214 
 215   // see if the same (or a similar) dep is already recorded
 216   if (note_dep_seen(dept, x) && note_dep_seen(dept, x2)) {
 217     // look in this bucket for redundant assertions
 218     const int stride = 3;
 219     for (int i = deps->length(); (i -= stride) >= 0; ) {
 220       ciBaseObject* y  = deps->at(i+1);
 221       ciBaseObject* y2 = deps->at(i+2);
 222       if (x == y && x2 == y2) {  // same subjects; check the context
 223         if (maybe_merge_ctxk(deps, i+0, ctxk)) {
 224           return;
 225         }
 226       }
 227     }
 228   }
 229   // append the assertion in the correct bucket:
 230   deps->append(ctxk);
 231   deps->append(x);
 232   deps->append(x2);
 233 }
 234 
 235 /// Support for encoding dependencies into an nmethod:
 236 
 237 void Dependencies::copy_to(nmethod* nm) {
 238   address beg = nm->dependencies_begin();
 239   address end = nm->dependencies_end();
 240   guarantee(end - beg >= (ptrdiff_t) size_in_bytes(), "bad sizing");
 241   Copy::disjoint_words((HeapWord*) content_bytes(),
 242                        (HeapWord*) beg,
 243                        size_in_bytes() / sizeof(HeapWord));
 244   assert(size_in_bytes() % sizeof(HeapWord) == 0, "copy by words");
 245 }
 246 
 247 static int sort_dep(ciBaseObject** p1, ciBaseObject** p2, int narg) {
 248   for (int i = 0; i < narg; i++) {
 249     int diff = p1[i]->ident() - p2[i]->ident();
 250     if (diff != 0)  return diff;
 251   }
 252   return 0;
 253 }
 254 static int sort_dep_arg_1(ciBaseObject** p1, ciBaseObject** p2)
 255 { return sort_dep(p1, p2, 1); }
 256 static int sort_dep_arg_2(ciBaseObject** p1, ciBaseObject** p2)
 257 { return sort_dep(p1, p2, 2); }
 258 static int sort_dep_arg_3(ciBaseObject** p1, ciBaseObject** p2)
 259 { return sort_dep(p1, p2, 3); }
 260 
 261 void Dependencies::sort_all_deps() {
 262   for (int deptv = (int)FIRST_TYPE; deptv < (int)TYPE_LIMIT; deptv++) {
 263     DepType dept = (DepType)deptv;
 264     GrowableArray<ciBaseObject*>* deps = _deps[dept];
 265     if (deps->length() <= 1)  continue;
 266     switch (dep_args(dept)) {
 267     case 1: deps->sort(sort_dep_arg_1, 1); break;
 268     case 2: deps->sort(sort_dep_arg_2, 2); break;
 269     case 3: deps->sort(sort_dep_arg_3, 3); break;
 270     default: ShouldNotReachHere();
 271     }
 272   }
 273 }
 274 
 275 size_t Dependencies::estimate_size_in_bytes() {
 276   size_t est_size = 100;
 277   for (int deptv = (int)FIRST_TYPE; deptv < (int)TYPE_LIMIT; deptv++) {
 278     DepType dept = (DepType)deptv;
 279     GrowableArray<ciBaseObject*>* deps = _deps[dept];
 280     est_size += deps->length()*2;  // tags and argument(s)
 281   }
 282   return est_size;
 283 }
 284 
 285 ciKlass* Dependencies::ctxk_encoded_as_null(DepType dept, ciBaseObject* x) {
 286   switch (dept) {
 287   case abstract_with_exclusive_concrete_subtypes_2:
 288     return x->as_metadata()->as_klass();
 289   case unique_concrete_method:
 290   case exclusive_concrete_methods_2:
 291     return x->as_metadata()->as_method()->holder();
 292   }
 293   return NULL;  // let NULL be NULL
 294 }
 295 
 296 Klass* Dependencies::ctxk_encoded_as_null(DepType dept, Metadata* x) {
 297   assert(must_be_in_vm(), "raw oops here");
 298   switch (dept) {
 299   case abstract_with_exclusive_concrete_subtypes_2:
 300     assert(x->is_klass(), "sanity");
 301     return (Klass*) x;
 302   case unique_concrete_method:
 303   case exclusive_concrete_methods_2:
 304     assert(x->is_method(), "sanity");
 305     return ((Method*)x)->method_holder();
 306   }
 307   return NULL;  // let NULL be NULL
 308 }
 309 
 310 void Dependencies::encode_content_bytes() {
 311   sort_all_deps();
 312 
 313   // cast is safe, no deps can overflow INT_MAX
 314   CompressedWriteStream bytes((int)estimate_size_in_bytes());
 315 
 316   for (int deptv = (int)FIRST_TYPE; deptv < (int)TYPE_LIMIT; deptv++) {
 317     DepType dept = (DepType)deptv;
 318     GrowableArray<ciBaseObject*>* deps = _deps[dept];
 319     if (deps->length() == 0)  continue;
 320     int stride = dep_args(dept);
 321     int ctxkj  = dep_context_arg(dept);  // -1 if no context arg
 322     assert(stride > 0, "sanity");
 323     for (int i = 0; i < deps->length(); i += stride) {
 324       jbyte code_byte = (jbyte)dept;
 325       int skipj = -1;
 326       if (ctxkj >= 0 && ctxkj+1 < stride) {
 327         ciKlass*  ctxk = deps->at(i+ctxkj+0)->as_metadata()->as_klass();
 328         ciBaseObject* x     = deps->at(i+ctxkj+1);  // following argument
 329         if (ctxk == ctxk_encoded_as_null(dept, x)) {
 330           skipj = ctxkj;  // we win:  maybe one less oop to keep track of
 331           code_byte |= default_context_type_bit;
 332         }
 333       }
 334       bytes.write_byte(code_byte);
 335       for (int j = 0; j < stride; j++) {
 336         if (j == skipj)  continue;
 337         ciBaseObject* v = deps->at(i+j);
 338         int idx;
 339         if (v->is_object()) {
 340           idx = _oop_recorder->find_index(v->as_object()->constant_encoding());
 341         } else {
 342           ciMetadata* meta = v->as_metadata();
 343           idx = _oop_recorder->find_index(meta->constant_encoding());
 344         }
 345         bytes.write_int(idx);
 346       }
 347     }
 348   }
 349 
 350   // write a sentinel byte to mark the end
 351   bytes.write_byte(end_marker);
 352 
 353   // round it out to a word boundary
 354   while (bytes.position() % sizeof(HeapWord) != 0) {
 355     bytes.write_byte(end_marker);
 356   }
 357 
 358   // check whether the dept byte encoding really works
 359   assert((jbyte)default_context_type_bit != 0, "byte overflow");
 360 
 361   _content_bytes = bytes.buffer();
 362   _size_in_bytes = bytes.position();
 363 }
 364 
 365 
 366 const char* Dependencies::_dep_name[TYPE_LIMIT] = {
 367   "end_marker",
 368   "evol_method",
 369   "leaf_type",
 370   "abstract_with_unique_concrete_subtype",
 371   "abstract_with_no_concrete_subtype",
 372   "concrete_with_no_concrete_subtype",
 373   "unique_concrete_method",
 374   "abstract_with_exclusive_concrete_subtypes_2",
 375   "exclusive_concrete_methods_2",
 376   "no_finalizable_subclasses",
 377   "call_site_target_value"
 378 };
 379 
 380 int Dependencies::_dep_args[TYPE_LIMIT] = {
 381   -1,// end_marker
 382   1, // evol_method m
 383   1, // leaf_type ctxk
 384   2, // abstract_with_unique_concrete_subtype ctxk, k
 385   1, // abstract_with_no_concrete_subtype ctxk
 386   1, // concrete_with_no_concrete_subtype ctxk
 387   2, // unique_concrete_method ctxk, m
 388   3, // unique_concrete_subtypes_2 ctxk, k1, k2
 389   3, // unique_concrete_methods_2 ctxk, m1, m2
 390   1, // no_finalizable_subclasses ctxk
 391   2  // call_site_target_value call_site, method_handle
 392 };
 393 
 394 const char* Dependencies::dep_name(Dependencies::DepType dept) {
 395   if (!dept_in_mask(dept, all_types))  return "?bad-dep?";
 396   return _dep_name[dept];
 397 }
 398 
 399 int Dependencies::dep_args(Dependencies::DepType dept) {
 400   if (!dept_in_mask(dept, all_types))  return -1;
 401   return _dep_args[dept];
 402 }
 403 
 404 void Dependencies::check_valid_dependency_type(DepType dept) {
 405   guarantee(FIRST_TYPE <= dept && dept < TYPE_LIMIT, err_msg("invalid dependency type: %d", (int) dept));
 406 }
 407 
 408 // for the sake of the compiler log, print out current dependencies:
 409 void Dependencies::log_all_dependencies() {
 410   if (log() == NULL)  return;
 411   ResourceMark rm;
 412   for (int deptv = (int)FIRST_TYPE; deptv < (int)TYPE_LIMIT; deptv++) {
 413     DepType dept = (DepType)deptv;
 414     GrowableArray<ciBaseObject*>* deps = _deps[dept];
 415     int deplen = deps->length();
 416     if (deplen == 0) {
 417       continue;
 418     }
 419     int stride = dep_args(dept);
 420     GrowableArray<ciBaseObject*>* ciargs = new GrowableArray<ciBaseObject*>(stride);
 421     for (int i = 0; i < deps->length(); i += stride) {
 422       for (int j = 0; j < stride; j++) {
 423         // flush out the identities before printing
 424         ciargs->push(deps->at(i+j));
 425       }
 426       write_dependency_to(log(), dept, ciargs);
 427       ciargs->clear();
 428     }
 429     guarantee(deplen == deps->length(), "deps array cannot grow inside nested ResoureMark scope");
 430   }
 431 }
 432 
 433 void Dependencies::write_dependency_to(CompileLog* log,
 434                                        DepType dept,
 435                                        GrowableArray<DepArgument>* args,
 436                                        Klass* witness) {
 437   if (log == NULL) {
 438     return;
 439   }
 440   ResourceMark rm;
 441   ciEnv* env = ciEnv::current();
 442   GrowableArray<ciBaseObject*>* ciargs = new GrowableArray<ciBaseObject*>(args->length());
 443   for (GrowableArrayIterator<DepArgument> it = args->begin(); it != args->end(); ++it) {
 444     DepArgument arg = *it;
 445     if (arg.is_oop()) {
 446       ciargs->push(env->get_object(arg.oop_value()));
 447     } else {
 448       ciargs->push(env->get_metadata(arg.metadata_value()));
 449     }
 450   }
 451   int argslen = ciargs->length();
 452   Dependencies::write_dependency_to(log, dept, ciargs, witness);
 453   guarantee(argslen == ciargs->length(), "ciargs array cannot grow inside nested ResoureMark scope");
 454 }
 455 
 456 void Dependencies::write_dependency_to(CompileLog* log,
 457                                        DepType dept,
 458                                        GrowableArray<ciBaseObject*>* args,
 459                                        Klass* witness) {
 460   if (log == NULL) {
 461     return;
 462   }
 463   ResourceMark rm;
 464   GrowableArray<int>* argids = new GrowableArray<int>(args->length());
 465   for (GrowableArrayIterator<ciBaseObject*> it = args->begin(); it != args->end(); ++it) {
 466     ciBaseObject* obj = *it;
 467     if (obj->is_object()) {
 468       argids->push(log->identify(obj->as_object()));
 469     } else {
 470       argids->push(log->identify(obj->as_metadata()));
 471     }
 472   }
 473   if (witness != NULL) {
 474     log->begin_elem("dependency_failed");
 475   } else {
 476     log->begin_elem("dependency");
 477   }
 478   log->print(" type='%s'", dep_name(dept));
 479   const int ctxkj = dep_context_arg(dept);  // -1 if no context arg
 480   if (ctxkj >= 0 && ctxkj < argids->length()) {
 481     log->print(" ctxk='%d'", argids->at(ctxkj));
 482   }
 483   // write remaining arguments, if any.
 484   for (int j = 0; j < argids->length(); j++) {
 485     if (j == ctxkj)  continue;  // already logged
 486     if (j == 1) {
 487       log->print(  " x='%d'",    argids->at(j));
 488     } else {
 489       log->print(" x%d='%d'", j, argids->at(j));
 490     }
 491   }
 492   if (witness != NULL) {
 493     log->object("witness", witness);
 494     log->stamp();
 495   }
 496   log->end_elem();
 497 }
 498 
 499 void Dependencies::write_dependency_to(xmlStream* xtty,
 500                                        DepType dept,
 501                                        GrowableArray<DepArgument>* args,
 502                                        Klass* witness) {
 503   if (xtty == NULL) {
 504     return;
 505   }
 506   ResourceMark rm;
 507   ttyLocker ttyl;
 508   int ctxkj = dep_context_arg(dept);  // -1 if no context arg
 509   if (witness != NULL) {
 510     xtty->begin_elem("dependency_failed");
 511   } else {
 512     xtty->begin_elem("dependency");
 513   }
 514   xtty->print(" type='%s'", dep_name(dept));
 515   if (ctxkj >= 0) {
 516     xtty->object("ctxk", args->at(ctxkj).metadata_value());
 517   }
 518   // write remaining arguments, if any.
 519   for (int j = 0; j < args->length(); j++) {
 520     if (j == ctxkj)  continue;  // already logged
 521     DepArgument arg = args->at(j);
 522     if (j == 1) {
 523       if (arg.is_oop()) {
 524         xtty->object("x", arg.oop_value());
 525       } else {
 526         xtty->object("x", arg.metadata_value());
 527       }
 528     } else {
 529       char xn[10]; sprintf(xn, "x%d", j);
 530       if (arg.is_oop()) {
 531         xtty->object(xn, arg.oop_value());
 532       } else {
 533         xtty->object(xn, arg.metadata_value());
 534       }
 535     }
 536   }
 537   if (witness != NULL) {
 538     xtty->object("witness", witness);
 539     xtty->stamp();
 540   }
 541   xtty->end_elem();
 542 }
 543 
 544 void Dependencies::print_dependency(DepType dept, GrowableArray<DepArgument>* args,
 545                                     Klass* witness) {
 546   ResourceMark rm;
 547   ttyLocker ttyl;   // keep the following output all in one block
 548   tty->print_cr("%s of type %s",
 549                 (witness == NULL)? "Dependency": "Failed dependency",
 550                 dep_name(dept));
 551   // print arguments
 552   int ctxkj = dep_context_arg(dept);  // -1 if no context arg
 553   for (int j = 0; j < args->length(); j++) {
 554     DepArgument arg = args->at(j);
 555     bool put_star = false;
 556     if (arg.is_null())  continue;
 557     const char* what;
 558     if (j == ctxkj) {
 559       assert(arg.is_metadata(), "must be");
 560       what = "context";
 561       put_star = !Dependencies::is_concrete_klass((Klass*)arg.metadata_value());
 562     } else if (arg.is_method()) {
 563       what = "method ";
 564       put_star = !Dependencies::is_concrete_method((Method*)arg.metadata_value(), NULL);
 565     } else if (arg.is_klass()) {
 566       what = "class  ";
 567     } else {
 568       what = "object ";
 569     }
 570     tty->print("  %s = %s", what, (put_star? "*": ""));
 571     if (arg.is_klass()) {
 572       tty->print("%s", ((Klass*)arg.metadata_value())->external_name());
 573     } else if (arg.is_method()) {
 574       ((Method*)arg.metadata_value())->print_value();
 575     } else if (arg.is_oop()) {
 576       arg.oop_value()->print_value_on(tty);
 577     } else {
 578       ShouldNotReachHere(); // Provide impl for this type.
 579     }
 580 
 581     tty->cr();
 582   }
 583   if (witness != NULL) {
 584     bool put_star = !Dependencies::is_concrete_klass(witness);
 585     tty->print_cr("  witness = %s%s",
 586                   (put_star? "*": ""),
 587                   witness->external_name());
 588   }
 589 }
 590 
 591 void Dependencies::DepStream::log_dependency(Klass* witness) {
 592   if (_deps == NULL && xtty == NULL)  return;  // fast cutout for runtime
 593   ResourceMark rm;
 594   const int nargs = argument_count();
 595   GrowableArray<DepArgument>* args = new GrowableArray<DepArgument>(nargs);
 596   for (int j = 0; j < nargs; j++) {
 597     if (type() == call_site_target_value) {
 598       args->push(argument_oop(j));
 599     } else {
 600       args->push(argument(j));
 601     }
 602   }
 603   int argslen = args->length();
 604   if (_deps != NULL && _deps->log() != NULL) {
 605     Dependencies::write_dependency_to(_deps->log(), type(), args, witness);
 606   } else {
 607     Dependencies::write_dependency_to(xtty, type(), args, witness);
 608   }
 609   guarantee(argslen == args->length(), "args array cannot grow inside nested ResoureMark scope");
 610 }
 611 
 612 void Dependencies::DepStream::print_dependency(Klass* witness, bool verbose) {
 613   ResourceMark rm;
 614   int nargs = argument_count();
 615   GrowableArray<DepArgument>* args = new GrowableArray<DepArgument>(nargs);
 616   for (int j = 0; j < nargs; j++) {
 617     if (type() == call_site_target_value) {
 618       args->push(argument_oop(j));
 619     } else {
 620       args->push(argument(j));
 621     }
 622   }
 623   int argslen = args->length();
 624   Dependencies::print_dependency(type(), args, witness);
 625   if (verbose) {
 626     if (_code != NULL) {
 627       tty->print("  code: ");
 628       _code->print_value_on(tty);
 629       tty->cr();
 630     }
 631   }
 632   guarantee(argslen == args->length(), "args array cannot grow inside nested ResoureMark scope");
 633 }
 634 
 635 
 636 /// Dependency stream support (decodes dependencies from an nmethod):
 637 
 638 #ifdef ASSERT
 639 void Dependencies::DepStream::initial_asserts(size_t byte_limit) {
 640   assert(must_be_in_vm(), "raw oops here");
 641   _byte_limit = byte_limit;
 642   _type       = (DepType)(end_marker-1);  // defeat "already at end" assert
 643   assert((_code!=NULL) + (_deps!=NULL) == 1, "one or t'other");
 644 }
 645 #endif //ASSERT
 646 
 647 bool Dependencies::DepStream::next() {
 648   assert(_type != end_marker, "already at end");
 649   if (_bytes.position() == 0 && _code != NULL
 650       && _code->dependencies_size() == 0) {
 651     // Method has no dependencies at all.
 652     return false;
 653   }
 654   int code_byte = (_bytes.read_byte() & 0xFF);
 655   if (code_byte == end_marker) {
 656     DEBUG_ONLY(_type = end_marker);
 657     return false;
 658   } else {
 659     int ctxk_bit = (code_byte & Dependencies::default_context_type_bit);
 660     code_byte -= ctxk_bit;
 661     DepType dept = (DepType)code_byte;
 662     _type = dept;
 663     Dependencies::check_valid_dependency_type(dept);
 664     int stride = _dep_args[dept];
 665     assert(stride == dep_args(dept), "sanity");
 666     int skipj = -1;
 667     if (ctxk_bit != 0) {
 668       skipj = 0;  // currently the only context argument is at zero
 669       assert(skipj == dep_context_arg(dept), "zero arg always ctxk");
 670     }
 671     for (int j = 0; j < stride; j++) {
 672       _xi[j] = (j == skipj)? 0: _bytes.read_int();
 673     }
 674     DEBUG_ONLY(_xi[stride] = -1);   // help detect overruns
 675     return true;
 676   }
 677 }
 678 
 679 inline Metadata* Dependencies::DepStream::recorded_metadata_at(int i) {
 680   Metadata* o = NULL;
 681   if (_code != NULL) {
 682     o = _code->metadata_at(i);
 683   } else {
 684     o = _deps->oop_recorder()->metadata_at(i);
 685   }
 686   return o;
 687 }
 688 
 689 inline oop Dependencies::DepStream::recorded_oop_at(int i) {
 690   return (_code != NULL)
 691          ? _code->oop_at(i)
 692     : JNIHandles::resolve(_deps->oop_recorder()->oop_at(i));
 693 }
 694 
 695 Metadata* Dependencies::DepStream::argument(int i) {
 696   Metadata* result = recorded_metadata_at(argument_index(i));
 697 
 698   if (result == NULL) { // Explicit context argument can be compressed
 699     int ctxkj = dep_context_arg(type());  // -1 if no explicit context arg
 700     if (ctxkj >= 0 && i == ctxkj && ctxkj+1 < argument_count()) {
 701       result = ctxk_encoded_as_null(type(), argument(ctxkj+1));
 702     }
 703   }
 704 
 705   assert(result == NULL || result->is_klass() || result->is_method(), "must be");
 706   return result;
 707 }
 708 
 709 /**
 710  * Returns a unique identifier for each dependency argument.
 711  */
 712 uintptr_t Dependencies::DepStream::get_identifier(int i) {
 713   if (has_oop_argument()) {
 714     return (uintptr_t)(oopDesc*)argument_oop(i);
 715   } else {
 716     return (uintptr_t)argument(i);
 717   }
 718 }
 719 
 720 oop Dependencies::DepStream::argument_oop(int i) {
 721   oop result = recorded_oop_at(argument_index(i));
 722   assert(result == NULL || result->is_oop(), "must be");
 723   return result;
 724 }
 725 
 726 Klass* Dependencies::DepStream::context_type() {
 727   assert(must_be_in_vm(), "raw oops here");
 728 
 729   // Most dependencies have an explicit context type argument.
 730   {
 731     int ctxkj = dep_context_arg(type());  // -1 if no explicit context arg
 732     if (ctxkj >= 0) {
 733       Metadata* k = argument(ctxkj);
 734       assert(k != NULL && k->is_klass(), "type check");
 735       return (Klass*)k;
 736     }
 737   }
 738 
 739   // Some dependencies are using the klass of the first object
 740   // argument as implicit context type (e.g. call_site_target_value).
 741   {
 742     int ctxkj = dep_implicit_context_arg(type());
 743     if (ctxkj >= 0) {
 744       Klass* k = argument_oop(ctxkj)->klass();
 745       assert(k != NULL && k->is_klass(), "type check");
 746       return (Klass*) k;
 747     }
 748   }
 749 
 750   // And some dependencies don't have a context type at all,
 751   // e.g. evol_method.
 752   return NULL;
 753 }
 754 
 755 // ----------------- DependencySignature --------------------------------------
 756 bool DependencySignature::equals(DependencySignature const& s1, DependencySignature const& s2) {
 757   if ((s1.type() != s2.type()) || (s1.args_count() != s2.args_count())) {
 758     return false;
 759   }
 760 
 761   for (int i = 0; i < s1.args_count(); i++) {
 762     if (s1.arg(i) != s2.arg(i)) {
 763       return false;
 764     }
 765   }
 766   return true;
 767 }
 768 
 769 /// Checking dependencies:
 770 
 771 // This hierarchy walker inspects subtypes of a given type,
 772 // trying to find a "bad" class which breaks a dependency.
 773 // Such a class is called a "witness" to the broken dependency.
 774 // While searching around, we ignore "participants", which
 775 // are already known to the dependency.
 776 class ClassHierarchyWalker {
 777  public:
 778   enum { PARTICIPANT_LIMIT = 3 };
 779 
 780  private:
 781   // optional method descriptor to check for:
 782   Symbol* _name;
 783   Symbol* _signature;
 784 
 785   // special classes which are not allowed to be witnesses:
 786   Klass*    _participants[PARTICIPANT_LIMIT+1];
 787   int       _num_participants;
 788 
 789   // cache of method lookups
 790   Method* _found_methods[PARTICIPANT_LIMIT+1];
 791 
 792   // if non-zero, tells how many witnesses to convert to participants
 793   int       _record_witnesses;
 794 
 795   void initialize(Klass* participant) {
 796     _record_witnesses = 0;
 797     _participants[0]  = participant;
 798     _found_methods[0] = NULL;
 799     _num_participants = 0;
 800     if (participant != NULL) {
 801       // Terminating NULL.
 802       _participants[1] = NULL;
 803       _found_methods[1] = NULL;
 804       _num_participants = 1;
 805     }
 806   }
 807 
 808   void initialize_from_method(Method* m) {
 809     assert(m != NULL && m->is_method(), "sanity");
 810     _name      = m->name();
 811     _signature = m->signature();
 812   }
 813 
 814  public:
 815   // The walker is initialized to recognize certain methods and/or types
 816   // as friendly participants.
 817   ClassHierarchyWalker(Klass* participant, Method* m) {
 818     initialize_from_method(m);
 819     initialize(participant);
 820   }
 821   ClassHierarchyWalker(Method* m) {
 822     initialize_from_method(m);
 823     initialize(NULL);
 824   }
 825   ClassHierarchyWalker(Klass* participant = NULL) {
 826     _name      = NULL;
 827     _signature = NULL;
 828     initialize(participant);
 829   }
 830 
 831   // This is common code for two searches:  One for concrete subtypes,
 832   // the other for concrete method implementations and overrides.
 833   bool doing_subtype_search() {
 834     return _name == NULL;
 835   }
 836 
 837   int num_participants() { return _num_participants; }
 838   Klass* participant(int n) {
 839     assert((uint)n <= (uint)_num_participants, "oob");
 840     return _participants[n];
 841   }
 842 
 843   // Note:  If n==num_participants, returns NULL.
 844   Method* found_method(int n) {
 845     assert((uint)n <= (uint)_num_participants, "oob");
 846     Method* fm = _found_methods[n];
 847     assert(n == _num_participants || fm != NULL, "proper usage");
 848     assert(fm == NULL || fm->method_holder() == _participants[n], "sanity");
 849     return fm;
 850   }
 851 
 852 #ifdef ASSERT
 853   // Assert that m is inherited into ctxk, without intervening overrides.
 854   // (May return true even if this is not true, in corner cases where we punt.)
 855   bool check_method_context(Klass* ctxk, Method* m) {
 856     if (m->method_holder() == ctxk)
 857       return true;  // Quick win.
 858     if (m->is_private())
 859       return false; // Quick lose.  Should not happen.
 860     if (!(m->is_public() || m->is_protected()))
 861       // The override story is complex when packages get involved.
 862       return true;  // Must punt the assertion to true.
 863     Klass* k = ctxk;
 864     Method* lm = k->lookup_method(m->name(), m->signature());
 865     if (lm == NULL && k->oop_is_instance()) {
 866       // It might be an interface method
 867         lm = ((InstanceKlass*)k)->lookup_method_in_ordered_interfaces(m->name(),
 868                                                                 m->signature());
 869     }
 870     if (lm == m)
 871       // Method m is inherited into ctxk.
 872       return true;
 873     if (lm != NULL) {
 874       if (!(lm->is_public() || lm->is_protected())) {
 875         // Method is [package-]private, so the override story is complex.
 876         return true;  // Must punt the assertion to true.
 877       }
 878       if (lm->is_static()) {
 879         // Static methods don't override non-static so punt
 880         return true;
 881       }
 882       if (   !Dependencies::is_concrete_method(lm, k)
 883           && !Dependencies::is_concrete_method(m, ctxk)
 884           && lm->method_holder()->is_subtype_of(m->method_holder()))
 885         // Method m is overridden by lm, but both are non-concrete.
 886         return true;
 887     }
 888     ResourceMark rm;
 889     tty->print_cr("Dependency method not found in the associated context:");
 890     tty->print_cr("  context = %s", ctxk->external_name());
 891     tty->print(   "  method = "); m->print_short_name(tty); tty->cr();
 892     if (lm != NULL) {
 893       tty->print( "  found = "); lm->print_short_name(tty); tty->cr();
 894     }
 895     return false;
 896   }
 897 #endif
 898 
 899   void add_participant(Klass* participant) {
 900     assert(_num_participants + _record_witnesses < PARTICIPANT_LIMIT, "oob");
 901     int np = _num_participants++;
 902     _participants[np] = participant;
 903     _participants[np+1] = NULL;
 904     _found_methods[np+1] = NULL;
 905   }
 906 
 907   void record_witnesses(int add) {
 908     if (add > PARTICIPANT_LIMIT)  add = PARTICIPANT_LIMIT;
 909     assert(_num_participants + add < PARTICIPANT_LIMIT, "oob");
 910     _record_witnesses = add;
 911   }
 912 
 913   bool is_witness(Klass* k) {
 914     if (doing_subtype_search()) {
 915       return Dependencies::is_concrete_klass(k);
 916     } else if (!k->oop_is_instance()) {
 917       return false; // no methods to find in an array type
 918     } else {
 919       // Search class hierarchy first.
 920       Method* m = InstanceKlass::cast(k)->find_instance_method(_name, _signature);
 921       if (!Dependencies::is_concrete_method(m, k)) {
 922         // Check interface defaults also, if any exist.
 923         Array<Method*>* default_methods = InstanceKlass::cast(k)->default_methods();
 924         if (default_methods == NULL)
 925             return false;
 926         m = InstanceKlass::cast(k)->find_method(default_methods, _name, _signature);
 927         if (!Dependencies::is_concrete_method(m, NULL))
 928             return false;
 929       }
 930       _found_methods[_num_participants] = m;
 931       // Note:  If add_participant(k) is called,
 932       // the method m will already be memoized for it.
 933       return true;
 934     }
 935   }
 936 
 937   bool is_participant(Klass* k) {
 938     if (k == _participants[0]) {
 939       return true;
 940     } else if (_num_participants <= 1) {
 941       return false;
 942     } else {
 943       return in_list(k, &_participants[1]);
 944     }
 945   }
 946   bool ignore_witness(Klass* witness) {
 947     if (_record_witnesses == 0) {
 948       return false;
 949     } else {
 950       --_record_witnesses;
 951       add_participant(witness);
 952       return true;
 953     }
 954   }
 955   static bool in_list(Klass* x, Klass** list) {
 956     for (int i = 0; ; i++) {
 957       Klass* y = list[i];
 958       if (y == NULL)  break;
 959       if (y == x)  return true;
 960     }
 961     return false;  // not in list
 962   }
 963 
 964  private:
 965   // the actual search method:
 966   Klass* find_witness_anywhere(Klass* context_type,
 967                                  bool participants_hide_witnesses,
 968                                  bool top_level_call = true);
 969   // the spot-checking version:
 970   Klass* find_witness_in(KlassDepChange& changes,
 971                          Klass* context_type,
 972                            bool participants_hide_witnesses);
 973  public:
 974   Klass* find_witness_subtype(Klass* context_type, KlassDepChange* changes = NULL) {
 975     assert(doing_subtype_search(), "must set up a subtype search");
 976     // When looking for unexpected concrete types,
 977     // do not look beneath expected ones.
 978     const bool participants_hide_witnesses = true;
 979     // CX > CC > C' is OK, even if C' is new.
 980     // CX > { CC,  C' } is not OK if C' is new, and C' is the witness.
 981     if (changes != NULL) {
 982       return find_witness_in(*changes, context_type, participants_hide_witnesses);
 983     } else {
 984       return find_witness_anywhere(context_type, participants_hide_witnesses);
 985     }
 986   }
 987   Klass* find_witness_definer(Klass* context_type, KlassDepChange* changes = NULL) {
 988     assert(!doing_subtype_search(), "must set up a method definer search");
 989     // When looking for unexpected concrete methods,
 990     // look beneath expected ones, to see if there are overrides.
 991     const bool participants_hide_witnesses = true;
 992     // CX.m > CC.m > C'.m is not OK, if C'.m is new, and C' is the witness.
 993     if (changes != NULL) {
 994       return find_witness_in(*changes, context_type, !participants_hide_witnesses);
 995     } else {
 996       return find_witness_anywhere(context_type, !participants_hide_witnesses);
 997     }
 998   }
 999 };
1000 
1001 #ifndef PRODUCT
1002 static int deps_find_witness_calls = 0;
1003 static int deps_find_witness_steps = 0;
1004 static int deps_find_witness_recursions = 0;
1005 static int deps_find_witness_singles = 0;
1006 static int deps_find_witness_print = 0; // set to -1 to force a final print
1007 static bool count_find_witness_calls() {
1008   if (TraceDependencies || LogCompilation) {
1009     int pcount = deps_find_witness_print + 1;
1010     bool final_stats      = (pcount == 0);
1011     bool initial_call     = (pcount == 1);
1012     bool occasional_print = ((pcount & ((1<<10) - 1)) == 0);
1013     if (pcount < 0)  pcount = 1; // crude overflow protection
1014     deps_find_witness_print = pcount;
1015     if (VerifyDependencies && initial_call) {
1016       tty->print_cr("Warning:  TraceDependencies results may be inflated by VerifyDependencies");
1017     }
1018     if (occasional_print || final_stats) {
1019       // Every now and then dump a little info about dependency searching.
1020       if (xtty != NULL) {
1021        ttyLocker ttyl;
1022        xtty->elem("deps_find_witness calls='%d' steps='%d' recursions='%d' singles='%d'",
1023                    deps_find_witness_calls,
1024                    deps_find_witness_steps,
1025                    deps_find_witness_recursions,
1026                    deps_find_witness_singles);
1027       }
1028       if (final_stats || (TraceDependencies && WizardMode)) {
1029         ttyLocker ttyl;
1030         tty->print_cr("Dependency check (find_witness) "
1031                       "calls=%d, steps=%d (avg=%.1f), recursions=%d, singles=%d",
1032                       deps_find_witness_calls,
1033                       deps_find_witness_steps,
1034                       (double)deps_find_witness_steps / deps_find_witness_calls,
1035                       deps_find_witness_recursions,
1036                       deps_find_witness_singles);
1037       }
1038     }
1039     return true;
1040   }
1041   return false;
1042 }
1043 #else
1044 #define count_find_witness_calls() (0)
1045 #endif //PRODUCT
1046 
1047 
1048 Klass* ClassHierarchyWalker::find_witness_in(KlassDepChange& changes,
1049                                                Klass* context_type,
1050                                                bool participants_hide_witnesses) {
1051   assert(changes.involves_context(context_type), "irrelevant dependency");
1052   Klass* new_type = changes.new_type();
1053 
1054   (void)count_find_witness_calls();
1055   NOT_PRODUCT(deps_find_witness_singles++);
1056 
1057   // Current thread must be in VM (not native mode, as in CI):
1058   assert(must_be_in_vm(), "raw oops here");
1059   // Must not move the class hierarchy during this check:
1060   assert_locked_or_safepoint(Compile_lock);
1061 
1062   int nof_impls = InstanceKlass::cast(context_type)->nof_implementors();
1063   if (nof_impls > 1) {
1064     // Avoid this case: *I.m > { A.m, C }; B.m > C
1065     // %%% Until this is fixed more systematically, bail out.
1066     // See corresponding comment in find_witness_anywhere.
1067     return context_type;
1068   }
1069 
1070   assert(!is_participant(new_type), "only old classes are participants");
1071   if (participants_hide_witnesses) {
1072     // If the new type is a subtype of a participant, we are done.
1073     for (int i = 0; i < num_participants(); i++) {
1074       Klass* part = participant(i);
1075       if (part == NULL)  continue;
1076       assert(changes.involves_context(part) == new_type->is_subtype_of(part),
1077              "correct marking of participants, b/c new_type is unique");
1078       if (changes.involves_context(part)) {
1079         // new guy is protected from this check by previous participant
1080         return NULL;
1081       }
1082     }
1083   }
1084 
1085   if (is_witness(new_type) &&
1086       !ignore_witness(new_type)) {
1087     return new_type;
1088   }
1089 
1090   return NULL;
1091 }
1092 
1093 
1094 // Walk hierarchy under a context type, looking for unexpected types.
1095 // Do not report participant types, and recursively walk beneath
1096 // them only if participants_hide_witnesses is false.
1097 // If top_level_call is false, skip testing the context type,
1098 // because the caller has already considered it.
1099 Klass* ClassHierarchyWalker::find_witness_anywhere(Klass* context_type,
1100                                                      bool participants_hide_witnesses,
1101                                                      bool top_level_call) {
1102   // Current thread must be in VM (not native mode, as in CI):
1103   assert(must_be_in_vm(), "raw oops here");
1104   // Must not move the class hierarchy during this check:
1105   assert_locked_or_safepoint(Compile_lock);
1106 
1107   bool do_counts = count_find_witness_calls();
1108 
1109   // Check the root of the sub-hierarchy first.
1110   if (top_level_call) {
1111     if (do_counts) {
1112       NOT_PRODUCT(deps_find_witness_calls++);
1113       NOT_PRODUCT(deps_find_witness_steps++);
1114     }
1115     if (is_participant(context_type)) {
1116       if (participants_hide_witnesses)  return NULL;
1117       // else fall through to search loop...
1118     } else if (is_witness(context_type) && !ignore_witness(context_type)) {
1119       // The context is an abstract class or interface, to start with.
1120       return context_type;
1121     }
1122   }
1123 
1124   // Now we must check each implementor and each subclass.
1125   // Use a short worklist to avoid blowing the stack.
1126   // Each worklist entry is a *chain* of subklass siblings to process.
1127   const int CHAINMAX = 100;  // >= 1 + InstanceKlass::implementors_limit
1128   Klass* chains[CHAINMAX];
1129   int    chaini = 0;  // index into worklist
1130   Klass* chain;       // scratch variable
1131 #define ADD_SUBCLASS_CHAIN(k)                     {  \
1132     assert(chaini < CHAINMAX, "oob");                \
1133     chain = k->subklass();                           \
1134     if (chain != NULL)  chains[chaini++] = chain;    }
1135 
1136   // Look for non-abstract subclasses.
1137   // (Note:  Interfaces do not have subclasses.)
1138   ADD_SUBCLASS_CHAIN(context_type);
1139 
1140   // If it is an interface, search its direct implementors.
1141   // (Their subclasses are additional indirect implementors.
1142   // See InstanceKlass::add_implementor.)
1143   // (Note:  nof_implementors is always zero for non-interfaces.)
1144   if (top_level_call) {
1145     int nof_impls = InstanceKlass::cast(context_type)->nof_implementors();
1146     if (nof_impls > 1) {
1147       // Avoid this case: *I.m > { A.m, C }; B.m > C
1148       // Here, I.m has 2 concrete implementations, but m appears unique
1149       // as A.m, because the search misses B.m when checking C.
1150       // The inherited method B.m was getting missed by the walker
1151       // when interface 'I' was the starting point.
1152       // %%% Until this is fixed more systematically, bail out.
1153       // (Old CHA had the same limitation.)
1154       return context_type;
1155     }
1156     if (nof_impls > 0) {
1157       Klass* impl = InstanceKlass::cast(context_type)->implementor();
1158       assert(impl != NULL, "just checking");
1159       // If impl is the same as the context_type, then more than one
1160       // implementor has seen. No exact info in this case.
1161       if (impl == context_type) {
1162         return context_type;  // report an inexact witness to this sad affair
1163       }
1164       if (do_counts)
1165         { NOT_PRODUCT(deps_find_witness_steps++); }
1166       if (is_participant(impl)) {
1167         if (!participants_hide_witnesses) {
1168           ADD_SUBCLASS_CHAIN(impl);
1169         }
1170       } else if (is_witness(impl) && !ignore_witness(impl)) {
1171         return impl;
1172       } else {
1173         ADD_SUBCLASS_CHAIN(impl);
1174       }
1175     }
1176   }
1177 
1178   // Recursively process each non-trivial sibling chain.
1179   while (chaini > 0) {
1180     Klass* chain = chains[--chaini];
1181     for (Klass* sub = chain; sub != NULL; sub = sub->next_sibling()) {
1182       if (do_counts) { NOT_PRODUCT(deps_find_witness_steps++); }
1183       if (is_participant(sub)) {
1184         if (participants_hide_witnesses)  continue;
1185         // else fall through to process this guy's subclasses
1186       } else if (is_witness(sub) && !ignore_witness(sub)) {
1187         return sub;
1188       }
1189       if (chaini < (VerifyDependencies? 2: CHAINMAX)) {
1190         // Fast path.  (Partially disabled if VerifyDependencies.)
1191         ADD_SUBCLASS_CHAIN(sub);
1192       } else {
1193         // Worklist overflow.  Do a recursive call.  Should be rare.
1194         // The recursive call will have its own worklist, of course.
1195         // (Note that sub has already been tested, so that there is
1196         // no need for the recursive call to re-test.  That's handy,
1197         // since the recursive call sees sub as the context_type.)
1198         if (do_counts) { NOT_PRODUCT(deps_find_witness_recursions++); }
1199         Klass* witness = find_witness_anywhere(sub,
1200                                                  participants_hide_witnesses,
1201                                                  /*top_level_call=*/ false);
1202         if (witness != NULL)  return witness;
1203       }
1204     }
1205   }
1206 
1207   // No witness found.  The dependency remains unbroken.
1208   return NULL;
1209 #undef ADD_SUBCLASS_CHAIN
1210 }
1211 
1212 
1213 bool Dependencies::is_concrete_klass(Klass* k) {
1214   if (k->is_abstract())  return false;
1215   // %%% We could treat classes which are concrete but
1216   // have not yet been instantiated as virtually abstract.
1217   // This would require a deoptimization barrier on first instantiation.
1218   //if (k->is_not_instantiated())  return false;
1219   return true;
1220 }
1221 
1222 bool Dependencies::is_concrete_method(Method* m, Klass * k) {
1223   // NULL is not a concrete method,
1224   // statics are irrelevant to virtual call sites,
1225   // abstract methods are not concrete,
1226   // overpass (error) methods are not concrete if k is abstract
1227   //
1228   // note "true" is conservative answer --
1229   //     overpass clause is false if k == NULL, implies return true if
1230   //     answer depends on overpass clause.
1231   return ! ( m == NULL || m -> is_static() || m -> is_abstract() ||
1232              m->is_overpass() && k != NULL && k -> is_abstract() );
1233 }
1234 
1235 
1236 Klass* Dependencies::find_finalizable_subclass(Klass* k) {
1237   if (k->is_interface())  return NULL;
1238   if (k->has_finalizer()) return k;
1239   k = k->subklass();
1240   while (k != NULL) {
1241     Klass* result = find_finalizable_subclass(k);
1242     if (result != NULL) return result;
1243     k = k->next_sibling();
1244   }
1245   return NULL;
1246 }
1247 
1248 
1249 bool Dependencies::is_concrete_klass(ciInstanceKlass* k) {
1250   if (k->is_abstract())  return false;
1251   // We could also return false if k does not yet appear to be
1252   // instantiated, if the VM version supports this distinction also.
1253   //if (k->is_not_instantiated())  return false;
1254   return true;
1255 }
1256 
1257 bool Dependencies::has_finalizable_subclass(ciInstanceKlass* k) {
1258   return k->has_finalizable_subclass();
1259 }
1260 
1261 
1262 // Any use of the contents (bytecodes) of a method must be
1263 // marked by an "evol_method" dependency, if those contents
1264 // can change.  (Note: A method is always dependent on itself.)
1265 Klass* Dependencies::check_evol_method(Method* m) {
1266   assert(must_be_in_vm(), "raw oops here");
1267   // Did somebody do a JVMTI RedefineClasses while our backs were turned?
1268   // Or is there a now a breakpoint?
1269   // (Assumes compiled code cannot handle bkpts; change if UseFastBreakpoints.)
1270   if (m->is_old()
1271       || m->number_of_breakpoints() > 0) {
1272     return m->method_holder();
1273   } else {
1274     return NULL;
1275   }
1276 }
1277 
1278 // This is a strong assertion:  It is that the given type
1279 // has no subtypes whatever.  It is most useful for
1280 // optimizing checks on reflected types or on array types.
1281 // (Checks on types which are derived from real instances
1282 // can be optimized more strongly than this, because we
1283 // know that the checked type comes from a concrete type,
1284 // and therefore we can disregard abstract types.)
1285 Klass* Dependencies::check_leaf_type(Klass* ctxk) {
1286   assert(must_be_in_vm(), "raw oops here");
1287   assert_locked_or_safepoint(Compile_lock);
1288   InstanceKlass* ctx = InstanceKlass::cast(ctxk);
1289   Klass* sub = ctx->subklass();
1290   if (sub != NULL) {
1291     return sub;
1292   } else if (ctx->nof_implementors() != 0) {
1293     // if it is an interface, it must be unimplemented
1294     // (if it is not an interface, nof_implementors is always zero)
1295     Klass* impl = ctx->implementor();
1296     assert(impl != NULL, "must be set");
1297     return impl;
1298   } else {
1299     return NULL;
1300   }
1301 }
1302 
1303 // Test the assertion that conck is the only concrete subtype* of ctxk.
1304 // The type conck itself is allowed to have have further concrete subtypes.
1305 // This allows the compiler to narrow occurrences of ctxk by conck,
1306 // when dealing with the types of actual instances.
1307 Klass* Dependencies::check_abstract_with_unique_concrete_subtype(Klass* ctxk,
1308                                                                    Klass* conck,
1309                                                                    KlassDepChange* changes) {
1310   ClassHierarchyWalker wf(conck);
1311   return wf.find_witness_subtype(ctxk, changes);
1312 }
1313 
1314 // If a non-concrete class has no concrete subtypes, it is not (yet)
1315 // instantiatable.  This can allow the compiler to make some paths go
1316 // dead, if they are gated by a test of the type.
1317 Klass* Dependencies::check_abstract_with_no_concrete_subtype(Klass* ctxk,
1318                                                                KlassDepChange* changes) {
1319   // Find any concrete subtype, with no participants:
1320   ClassHierarchyWalker wf;
1321   return wf.find_witness_subtype(ctxk, changes);
1322 }
1323 
1324 
1325 // If a concrete class has no concrete subtypes, it can always be
1326 // exactly typed.  This allows the use of a cheaper type test.
1327 Klass* Dependencies::check_concrete_with_no_concrete_subtype(Klass* ctxk,
1328                                                                KlassDepChange* changes) {
1329   // Find any concrete subtype, with only the ctxk as participant:
1330   ClassHierarchyWalker wf(ctxk);
1331   return wf.find_witness_subtype(ctxk, changes);
1332 }
1333 
1334 
1335 // Find the unique concrete proper subtype of ctxk, or NULL if there
1336 // is more than one concrete proper subtype.  If there are no concrete
1337 // proper subtypes, return ctxk itself, whether it is concrete or not.
1338 // The returned subtype is allowed to have have further concrete subtypes.
1339 // That is, return CC1 for CX > CC1 > CC2, but NULL for CX > { CC1, CC2 }.
1340 Klass* Dependencies::find_unique_concrete_subtype(Klass* ctxk) {
1341   ClassHierarchyWalker wf(ctxk);   // Ignore ctxk when walking.
1342   wf.record_witnesses(1);          // Record one other witness when walking.
1343   Klass* wit = wf.find_witness_subtype(ctxk);
1344   if (wit != NULL)  return NULL;   // Too many witnesses.
1345   Klass* conck = wf.participant(0);
1346   if (conck == NULL) {
1347 #ifndef PRODUCT
1348     // Make sure the dependency mechanism will pass this discovery:
1349     if (VerifyDependencies) {
1350       // Turn off dependency tracing while actually testing deps.
1351       FlagSetting fs(TraceDependencies, false);
1352       if (!Dependencies::is_concrete_klass(ctxk)) {
1353         guarantee(NULL ==
1354                   (void *)check_abstract_with_no_concrete_subtype(ctxk),
1355                   "verify dep.");
1356       } else {
1357         guarantee(NULL ==
1358                   (void *)check_concrete_with_no_concrete_subtype(ctxk),
1359                   "verify dep.");
1360       }
1361     }
1362 #endif //PRODUCT
1363     return ctxk;                   // Return ctxk as a flag for "no subtypes".
1364   } else {
1365 #ifndef PRODUCT
1366     // Make sure the dependency mechanism will pass this discovery:
1367     if (VerifyDependencies) {
1368       // Turn off dependency tracing while actually testing deps.
1369       FlagSetting fs(TraceDependencies, false);
1370       if (!Dependencies::is_concrete_klass(ctxk)) {
1371         guarantee(NULL == (void *)
1372                   check_abstract_with_unique_concrete_subtype(ctxk, conck),
1373                   "verify dep.");
1374       }
1375     }
1376 #endif //PRODUCT
1377     return conck;
1378   }
1379 }
1380 
1381 // Test the assertion that the k[12] are the only concrete subtypes of ctxk,
1382 // except possibly for further subtypes of k[12] themselves.
1383 // The context type must be abstract.  The types k1 and k2 are themselves
1384 // allowed to have further concrete subtypes.
1385 Klass* Dependencies::check_abstract_with_exclusive_concrete_subtypes(
1386                                                 Klass* ctxk,
1387                                                 Klass* k1,
1388                                                 Klass* k2,
1389                                                 KlassDepChange* changes) {
1390   ClassHierarchyWalker wf;
1391   wf.add_participant(k1);
1392   wf.add_participant(k2);
1393   return wf.find_witness_subtype(ctxk, changes);
1394 }
1395 
1396 // Search ctxk for concrete implementations.  If there are klen or fewer,
1397 // pack them into the given array and return the number.
1398 // Otherwise, return -1, meaning the given array would overflow.
1399 // (Note that a return of 0 means there are exactly no concrete subtypes.)
1400 // In this search, if ctxk is concrete, it will be reported alone.
1401 // For any type CC reported, no proper subtypes of CC will be reported.
1402 int Dependencies::find_exclusive_concrete_subtypes(Klass* ctxk,
1403                                                    int klen,
1404                                                    Klass* karray[]) {
1405   ClassHierarchyWalker wf;
1406   wf.record_witnesses(klen);
1407   Klass* wit = wf.find_witness_subtype(ctxk);
1408   if (wit != NULL)  return -1;  // Too many witnesses.
1409   int num = wf.num_participants();
1410   assert(num <= klen, "oob");
1411   // Pack the result array with the good news.
1412   for (int i = 0; i < num; i++)
1413     karray[i] = wf.participant(i);
1414 #ifndef PRODUCT
1415   // Make sure the dependency mechanism will pass this discovery:
1416   if (VerifyDependencies) {
1417     // Turn off dependency tracing while actually testing deps.
1418     FlagSetting fs(TraceDependencies, false);
1419     switch (Dependencies::is_concrete_klass(ctxk)? -1: num) {
1420     case -1: // ctxk was itself concrete
1421       guarantee(num == 1 && karray[0] == ctxk, "verify dep.");
1422       break;
1423     case 0:
1424       guarantee(NULL == (void *)check_abstract_with_no_concrete_subtype(ctxk),
1425                 "verify dep.");
1426       break;
1427     case 1:
1428       guarantee(NULL == (void *)
1429                 check_abstract_with_unique_concrete_subtype(ctxk, karray[0]),
1430                 "verify dep.");
1431       break;
1432     case 2:
1433       guarantee(NULL == (void *)
1434                 check_abstract_with_exclusive_concrete_subtypes(ctxk,
1435                                                                 karray[0],
1436                                                                 karray[1]),
1437                 "verify dep.");
1438       break;
1439     default:
1440       ShouldNotReachHere();  // klen > 2 yet supported
1441     }
1442   }
1443 #endif //PRODUCT
1444   return num;
1445 }
1446 
1447 // If a class (or interface) has a unique concrete method uniqm, return NULL.
1448 // Otherwise, return a class that contains an interfering method.
1449 Klass* Dependencies::check_unique_concrete_method(Klass* ctxk, Method* uniqm,
1450                                                     KlassDepChange* changes) {
1451   // Here is a missing optimization:  If uniqm->is_final(),
1452   // we don't really need to search beneath it for overrides.
1453   // This is probably not important, since we don't use dependencies
1454   // to track final methods.  (They can't be "definalized".)
1455   ClassHierarchyWalker wf(uniqm->method_holder(), uniqm);
1456   return wf.find_witness_definer(ctxk, changes);
1457 }
1458 
1459 // Find the set of all non-abstract methods under ctxk that match m.
1460 // (The method m must be defined or inherited in ctxk.)
1461 // Include m itself in the set, unless it is abstract.
1462 // If this set has exactly one element, return that element.
1463 Method* Dependencies::find_unique_concrete_method(Klass* ctxk, Method* m) {
1464   // Return NULL if m is marked old; must have been a redefined method.
1465   if (m->is_old()) {
1466     return NULL;
1467   }
1468   ClassHierarchyWalker wf(m);
1469   assert(wf.check_method_context(ctxk, m), "proper context");
1470   wf.record_witnesses(1);
1471   Klass* wit = wf.find_witness_definer(ctxk);
1472   if (wit != NULL)  return NULL;  // Too many witnesses.
1473   Method* fm = wf.found_method(0);  // Will be NULL if num_parts == 0.
1474   if (Dependencies::is_concrete_method(m, ctxk)) {
1475     if (fm == NULL) {
1476       // It turns out that m was always the only implementation.
1477       fm = m;
1478     } else if (fm != m) {
1479       // Two conflicting implementations after all.
1480       // (This can happen if m is inherited into ctxk and fm overrides it.)
1481       return NULL;
1482     }
1483   }
1484 #ifndef PRODUCT
1485   // Make sure the dependency mechanism will pass this discovery:
1486   if (VerifyDependencies && fm != NULL) {
1487     guarantee(NULL == (void *)check_unique_concrete_method(ctxk, fm),
1488               "verify dep.");
1489   }
1490 #endif //PRODUCT
1491   return fm;
1492 }
1493 
1494 Klass* Dependencies::check_exclusive_concrete_methods(Klass* ctxk,
1495                                                         Method* m1,
1496                                                         Method* m2,
1497                                                         KlassDepChange* changes) {
1498   ClassHierarchyWalker wf(m1);
1499   wf.add_participant(m1->method_holder());
1500   wf.add_participant(m2->method_holder());
1501   return wf.find_witness_definer(ctxk, changes);
1502 }
1503 
1504 Klass* Dependencies::check_has_no_finalizable_subclasses(Klass* ctxk, KlassDepChange* changes) {
1505   Klass* search_at = ctxk;
1506   if (changes != NULL)
1507     search_at = changes->new_type(); // just look at the new bit
1508   return find_finalizable_subclass(search_at);
1509 }
1510 
1511 Klass* Dependencies::check_call_site_target_value(oop call_site, oop method_handle, CallSiteDepChange* changes) {
1512   assert(call_site    ->is_a(SystemDictionary::CallSite_klass()),     "sanity");
1513   assert(method_handle->is_a(SystemDictionary::MethodHandle_klass()), "sanity");
1514   if (changes == NULL) {
1515     // Validate all CallSites
1516     if (java_lang_invoke_CallSite::target(call_site) != method_handle)
1517       return call_site->klass();  // assertion failed
1518   } else {
1519     // Validate the given CallSite
1520     if (call_site == changes->call_site() && java_lang_invoke_CallSite::target(call_site) != changes->method_handle()) {
1521       assert(method_handle != changes->method_handle(), "must be");
1522       return call_site->klass();  // assertion failed
1523     }
1524   }
1525   return NULL;  // assertion still valid
1526 }
1527 
1528 
1529 void Dependencies::DepStream::trace_and_log_witness(Klass* witness) {
1530   if (witness != NULL) {
1531     if (TraceDependencies) {
1532       print_dependency(witness, /*verbose=*/ true);
1533     }
1534     // The following is a no-op unless logging is enabled:
1535     log_dependency(witness);
1536   }
1537 }
1538 
1539 
1540 Klass* Dependencies::DepStream::check_klass_dependency(KlassDepChange* changes) {
1541   assert_locked_or_safepoint(Compile_lock);
1542   Dependencies::check_valid_dependency_type(type());
1543 
1544   Klass* witness = NULL;
1545   switch (type()) {
1546   case evol_method:
1547     witness = check_evol_method(method_argument(0));
1548     break;
1549   case leaf_type:
1550     witness = check_leaf_type(context_type());
1551     break;
1552   case abstract_with_unique_concrete_subtype:
1553     witness = check_abstract_with_unique_concrete_subtype(context_type(), type_argument(1), changes);
1554     break;
1555   case abstract_with_no_concrete_subtype:
1556     witness = check_abstract_with_no_concrete_subtype(context_type(), changes);
1557     break;
1558   case concrete_with_no_concrete_subtype:
1559     witness = check_concrete_with_no_concrete_subtype(context_type(), changes);
1560     break;
1561   case unique_concrete_method:
1562     witness = check_unique_concrete_method(context_type(), method_argument(1), changes);
1563     break;
1564   case abstract_with_exclusive_concrete_subtypes_2:
1565     witness = check_abstract_with_exclusive_concrete_subtypes(context_type(), type_argument(1), type_argument(2), changes);
1566     break;
1567   case exclusive_concrete_methods_2:
1568     witness = check_exclusive_concrete_methods(context_type(), method_argument(1), method_argument(2), changes);
1569     break;
1570   case no_finalizable_subclasses:
1571     witness = check_has_no_finalizable_subclasses(context_type(), changes);
1572     break;
1573   default:
1574     witness = NULL;
1575     break;
1576   }
1577   trace_and_log_witness(witness);
1578   return witness;
1579 }
1580 
1581 
1582 Klass* Dependencies::DepStream::check_call_site_dependency(CallSiteDepChange* changes) {
1583   assert_locked_or_safepoint(Compile_lock);
1584   Dependencies::check_valid_dependency_type(type());
1585 
1586   Klass* witness = NULL;
1587   switch (type()) {
1588   case call_site_target_value:
1589     witness = check_call_site_target_value(argument_oop(0), argument_oop(1), changes);
1590     break;
1591   default:
1592     witness = NULL;
1593     break;
1594   }
1595   trace_and_log_witness(witness);
1596   return witness;
1597 }
1598 
1599 
1600 Klass* Dependencies::DepStream::spot_check_dependency_at(DepChange& changes) {
1601   // Handle klass dependency
1602   if (changes.is_klass_change() && changes.as_klass_change()->involves_context(context_type()))
1603     return check_klass_dependency(changes.as_klass_change());
1604 
1605   // Handle CallSite dependency
1606   if (changes.is_call_site_change())
1607     return check_call_site_dependency(changes.as_call_site_change());
1608 
1609   // irrelevant dependency; skip it
1610   return NULL;
1611 }
1612 
1613 
1614 void DepChange::print() {
1615   int nsup = 0, nint = 0;
1616   for (ContextStream str(*this); str.next(); ) {
1617     Klass* k = str.klass();
1618     switch (str.change_type()) {
1619     case Change_new_type:
1620       tty->print_cr("  dependee = %s", InstanceKlass::cast(k)->external_name());
1621       break;
1622     case Change_new_sub:
1623       if (!WizardMode) {
1624         ++nsup;
1625       } else {
1626         tty->print_cr("  context super = %s", InstanceKlass::cast(k)->external_name());
1627       }
1628       break;
1629     case Change_new_impl:
1630       if (!WizardMode) {
1631         ++nint;
1632       } else {
1633         tty->print_cr("  context interface = %s", InstanceKlass::cast(k)->external_name());
1634       }
1635       break;
1636     }
1637   }
1638   if (nsup + nint != 0) {
1639     tty->print_cr("  context supers = %d, interfaces = %d", nsup, nint);
1640   }
1641 }
1642 
1643 void DepChange::ContextStream::start() {
1644   Klass* new_type = _changes.is_klass_change() ? _changes.as_klass_change()->new_type() : (Klass*) NULL;
1645   _change_type = (new_type == NULL ? NO_CHANGE : Start_Klass);
1646   _klass = new_type;
1647   _ti_base = NULL;
1648   _ti_index = 0;
1649   _ti_limit = 0;
1650 }
1651 
1652 bool DepChange::ContextStream::next() {
1653   switch (_change_type) {
1654   case Start_Klass:             // initial state; _klass is the new type
1655     _ti_base = InstanceKlass::cast(_klass)->transitive_interfaces();
1656     _ti_index = 0;
1657     _change_type = Change_new_type;
1658     return true;
1659   case Change_new_type:
1660     // fall through:
1661     _change_type = Change_new_sub;
1662   case Change_new_sub:
1663     // 6598190: brackets workaround Sun Studio C++ compiler bug 6629277
1664     {
1665       _klass = InstanceKlass::cast(_klass)->super();
1666       if (_klass != NULL) {
1667         return true;
1668       }
1669     }
1670     // else set up _ti_limit and fall through:
1671     _ti_limit = (_ti_base == NULL) ? 0 : _ti_base->length();
1672     _change_type = Change_new_impl;
1673   case Change_new_impl:
1674     if (_ti_index < _ti_limit) {
1675       _klass = _ti_base->at(_ti_index++);
1676       return true;
1677     }
1678     // fall through:
1679     _change_type = NO_CHANGE;  // iterator is exhausted
1680   case NO_CHANGE:
1681     break;
1682   default:
1683     ShouldNotReachHere();
1684   }
1685   return false;
1686 }
1687 
1688 void KlassDepChange::initialize() {
1689   // entire transaction must be under this lock:
1690   assert_lock_strong(Compile_lock);
1691 
1692   // Mark all dependee and all its superclasses
1693   // Mark transitive interfaces
1694   for (ContextStream str(*this); str.next(); ) {
1695     Klass* d = str.klass();
1696     assert(!InstanceKlass::cast(d)->is_marked_dependent(), "checking");
1697     InstanceKlass::cast(d)->set_is_marked_dependent(true);
1698   }
1699 }
1700 
1701 KlassDepChange::~KlassDepChange() {
1702   // Unmark all dependee and all its superclasses
1703   // Unmark transitive interfaces
1704   for (ContextStream str(*this); str.next(); ) {
1705     Klass* d = str.klass();
1706     InstanceKlass::cast(d)->set_is_marked_dependent(false);
1707   }
1708 }
1709 
1710 bool KlassDepChange::involves_context(Klass* k) {
1711   if (k == NULL || !k->oop_is_instance()) {
1712     return false;
1713   }
1714   InstanceKlass* ik = InstanceKlass::cast(k);
1715   bool is_contained = ik->is_marked_dependent();
1716   assert(is_contained == new_type()->is_subtype_of(k),
1717          "correct marking of potential context types");
1718   return is_contained;
1719 }
1720 
1721 #ifndef PRODUCT
1722 void Dependencies::print_statistics() {
1723   if (deps_find_witness_print != 0) {
1724     // Call one final time, to flush out the data.
1725     deps_find_witness_print = -1;
1726     count_find_witness_calls();
1727   }
1728 }
1729 #endif