1 /*
   2  * Copyright (c) 1997, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "compiler/compileLog.hpp"
  27 #include "ci/bcEscapeAnalyzer.hpp"
  28 #include "compiler/oopMap.hpp"
  29 #include "opto/callGenerator.hpp"
  30 #include "opto/callnode.hpp"
  31 #include "opto/castnode.hpp"
  32 #include "opto/convertnode.hpp"
  33 #include "opto/escape.hpp"
  34 #include "opto/locknode.hpp"
  35 #include "opto/machnode.hpp"
  36 #include "opto/matcher.hpp"
  37 #include "opto/parse.hpp"
  38 #include "opto/regalloc.hpp"
  39 #include "opto/regmask.hpp"
  40 #include "opto/rootnode.hpp"
  41 #include "opto/runtime.hpp"
  42 
  43 // Portions of code courtesy of Clifford Click
  44 
  45 // Optimization - Graph Style
  46 
  47 //=============================================================================
  48 uint StartNode::size_of() const { return sizeof(*this); }
  49 uint StartNode::cmp( const Node &n ) const
  50 { return _domain == ((StartNode&)n)._domain; }
  51 const Type *StartNode::bottom_type() const { return _domain; }
  52 const Type *StartNode::Value(PhaseTransform *phase) const { return _domain; }
  53 #ifndef PRODUCT
  54 void StartNode::dump_spec(outputStream *st) const { st->print(" #"); _domain->dump_on(st);}
  55 #endif
  56 
  57 //------------------------------Ideal------------------------------------------
  58 Node *StartNode::Ideal(PhaseGVN *phase, bool can_reshape){
  59   return remove_dead_region(phase, can_reshape) ? this : NULL;
  60 }
  61 
  62 //------------------------------calling_convention-----------------------------
  63 void StartNode::calling_convention( BasicType* sig_bt, VMRegPair *parm_regs, uint argcnt ) const {
  64   Matcher::calling_convention( sig_bt, parm_regs, argcnt, false );
  65 }
  66 
  67 //------------------------------Registers--------------------------------------
  68 const RegMask &StartNode::in_RegMask(uint) const {
  69   return RegMask::Empty;
  70 }
  71 
  72 //------------------------------match------------------------------------------
  73 // Construct projections for incoming parameters, and their RegMask info
  74 Node *StartNode::match( const ProjNode *proj, const Matcher *match ) {
  75   switch (proj->_con) {
  76   case TypeFunc::Control:
  77   case TypeFunc::I_O:
  78   case TypeFunc::Memory:
  79     return new MachProjNode(this,proj->_con,RegMask::Empty,MachProjNode::unmatched_proj);
  80   case TypeFunc::FramePtr:
  81     return new MachProjNode(this,proj->_con,Matcher::c_frame_ptr_mask, Op_RegP);
  82   case TypeFunc::ReturnAdr:
  83     return new MachProjNode(this,proj->_con,match->_return_addr_mask,Op_RegP);
  84   case TypeFunc::Parms:
  85   default: {
  86       uint parm_num = proj->_con - TypeFunc::Parms;
  87       const Type *t = _domain->field_at(proj->_con);
  88       if (t->base() == Type::Half)  // 2nd half of Longs and Doubles
  89         return new ConNode(Type::TOP);
  90       uint ideal_reg = t->ideal_reg();
  91       RegMask &rm = match->_calling_convention_mask[parm_num];
  92       return new MachProjNode(this,proj->_con,rm,ideal_reg);
  93     }
  94   }
  95   return NULL;
  96 }
  97 
  98 //------------------------------StartOSRNode----------------------------------
  99 // The method start node for an on stack replacement adapter
 100 
 101 //------------------------------osr_domain-----------------------------
 102 const TypeTuple *StartOSRNode::osr_domain() {
 103   const Type **fields = TypeTuple::fields(2);
 104   fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM;  // address of osr buffer
 105 
 106   return TypeTuple::make(TypeFunc::Parms+1, fields);
 107 }
 108 
 109 //=============================================================================
 110 const char * const ParmNode::names[TypeFunc::Parms+1] = {
 111   "Control", "I_O", "Memory", "FramePtr", "ReturnAdr", "Parms"
 112 };
 113 
 114 #ifndef PRODUCT
 115 void ParmNode::dump_spec(outputStream *st) const {
 116   if( _con < TypeFunc::Parms ) {
 117     st->print("%s", names[_con]);
 118   } else {
 119     st->print("Parm%d: ",_con-TypeFunc::Parms);
 120     // Verbose and WizardMode dump bottom_type for all nodes
 121     if( !Verbose && !WizardMode )   bottom_type()->dump_on(st);
 122   }
 123 }
 124 #endif
 125 
 126 uint ParmNode::ideal_reg() const {
 127   switch( _con ) {
 128   case TypeFunc::Control  : // fall through
 129   case TypeFunc::I_O      : // fall through
 130   case TypeFunc::Memory   : return 0;
 131   case TypeFunc::FramePtr : // fall through
 132   case TypeFunc::ReturnAdr: return Op_RegP;
 133   default                 : assert( _con > TypeFunc::Parms, "" );
 134     // fall through
 135   case TypeFunc::Parms    : {
 136     // Type of argument being passed
 137     const Type *t = in(0)->as_Start()->_domain->field_at(_con);
 138     return t->ideal_reg();
 139   }
 140   }
 141   ShouldNotReachHere();
 142   return 0;
 143 }
 144 
 145 //=============================================================================
 146 ReturnNode::ReturnNode(uint edges, Node *cntrl, Node *i_o, Node *memory, Node *frameptr, Node *retadr ) : Node(edges) {
 147   init_req(TypeFunc::Control,cntrl);
 148   init_req(TypeFunc::I_O,i_o);
 149   init_req(TypeFunc::Memory,memory);
 150   init_req(TypeFunc::FramePtr,frameptr);
 151   init_req(TypeFunc::ReturnAdr,retadr);
 152 }
 153 
 154 Node *ReturnNode::Ideal(PhaseGVN *phase, bool can_reshape){
 155   return remove_dead_region(phase, can_reshape) ? this : NULL;
 156 }
 157 
 158 const Type *ReturnNode::Value( PhaseTransform *phase ) const {
 159   return ( phase->type(in(TypeFunc::Control)) == Type::TOP)
 160     ? Type::TOP
 161     : Type::BOTTOM;
 162 }
 163 
 164 // Do we Match on this edge index or not?  No edges on return nodes
 165 uint ReturnNode::match_edge(uint idx) const {
 166   return 0;
 167 }
 168 
 169 
 170 #ifndef PRODUCT
 171 void ReturnNode::dump_req(outputStream *st) const {
 172   // Dump the required inputs, enclosed in '(' and ')'
 173   uint i;                       // Exit value of loop
 174   for (i = 0; i < req(); i++) {    // For all required inputs
 175     if (i == TypeFunc::Parms) st->print("returns");
 176     if (in(i)) st->print("%c%d ", Compile::current()->node_arena()->contains(in(i)) ? ' ' : 'o', in(i)->_idx);
 177     else st->print("_ ");
 178   }
 179 }
 180 #endif
 181 
 182 //=============================================================================
 183 RethrowNode::RethrowNode(
 184   Node* cntrl,
 185   Node* i_o,
 186   Node* memory,
 187   Node* frameptr,
 188   Node* ret_adr,
 189   Node* exception
 190 ) : Node(TypeFunc::Parms + 1) {
 191   init_req(TypeFunc::Control  , cntrl    );
 192   init_req(TypeFunc::I_O      , i_o      );
 193   init_req(TypeFunc::Memory   , memory   );
 194   init_req(TypeFunc::FramePtr , frameptr );
 195   init_req(TypeFunc::ReturnAdr, ret_adr);
 196   init_req(TypeFunc::Parms    , exception);
 197 }
 198 
 199 Node *RethrowNode::Ideal(PhaseGVN *phase, bool can_reshape){
 200   return remove_dead_region(phase, can_reshape) ? this : NULL;
 201 }
 202 
 203 const Type *RethrowNode::Value( PhaseTransform *phase ) const {
 204   return (phase->type(in(TypeFunc::Control)) == Type::TOP)
 205     ? Type::TOP
 206     : Type::BOTTOM;
 207 }
 208 
 209 uint RethrowNode::match_edge(uint idx) const {
 210   return 0;
 211 }
 212 
 213 #ifndef PRODUCT
 214 void RethrowNode::dump_req(outputStream *st) const {
 215   // Dump the required inputs, enclosed in '(' and ')'
 216   uint i;                       // Exit value of loop
 217   for (i = 0; i < req(); i++) {    // For all required inputs
 218     if (i == TypeFunc::Parms) st->print("exception");
 219     if (in(i)) st->print("%c%d ", Compile::current()->node_arena()->contains(in(i)) ? ' ' : 'o', in(i)->_idx);
 220     else st->print("_ ");
 221   }
 222 }
 223 #endif
 224 
 225 //=============================================================================
 226 // Do we Match on this edge index or not?  Match only target address & method
 227 uint TailCallNode::match_edge(uint idx) const {
 228   return TypeFunc::Parms <= idx  &&  idx <= TypeFunc::Parms+1;
 229 }
 230 
 231 //=============================================================================
 232 // Do we Match on this edge index or not?  Match only target address & oop
 233 uint TailJumpNode::match_edge(uint idx) const {
 234   return TypeFunc::Parms <= idx  &&  idx <= TypeFunc::Parms+1;
 235 }
 236 
 237 //=============================================================================
 238 JVMState::JVMState(ciMethod* method, JVMState* caller) :
 239   _method(method) {
 240   assert(method != NULL, "must be valid call site");
 241   _reexecute = Reexecute_Undefined;
 242   debug_only(_bci = -99);  // random garbage value
 243   debug_only(_map = (SafePointNode*)-1);
 244   _caller = caller;
 245   _depth  = 1 + (caller == NULL ? 0 : caller->depth());
 246   _locoff = TypeFunc::Parms;
 247   _stkoff = _locoff + _method->max_locals();
 248   _monoff = _stkoff + _method->max_stack();
 249   _scloff = _monoff;
 250   _endoff = _monoff;
 251   _sp = 0;
 252 }
 253 JVMState::JVMState(int stack_size) :
 254   _method(NULL) {
 255   _bci = InvocationEntryBci;
 256   _reexecute = Reexecute_Undefined;
 257   debug_only(_map = (SafePointNode*)-1);
 258   _caller = NULL;
 259   _depth  = 1;
 260   _locoff = TypeFunc::Parms;
 261   _stkoff = _locoff;
 262   _monoff = _stkoff + stack_size;
 263   _scloff = _monoff;
 264   _endoff = _monoff;
 265   _sp = 0;
 266 }
 267 
 268 //--------------------------------of_depth-------------------------------------
 269 JVMState* JVMState::of_depth(int d) const {
 270   const JVMState* jvmp = this;
 271   assert(0 < d && (uint)d <= depth(), "oob");
 272   for (int skip = depth() - d; skip > 0; skip--) {
 273     jvmp = jvmp->caller();
 274   }
 275   assert(jvmp->depth() == (uint)d, "found the right one");
 276   return (JVMState*)jvmp;
 277 }
 278 
 279 //-----------------------------same_calls_as-----------------------------------
 280 bool JVMState::same_calls_as(const JVMState* that) const {
 281   if (this == that)                    return true;
 282   if (this->depth() != that->depth())  return false;
 283   const JVMState* p = this;
 284   const JVMState* q = that;
 285   for (;;) {
 286     if (p->_method != q->_method)    return false;
 287     if (p->_method == NULL)          return true;   // bci is irrelevant
 288     if (p->_bci    != q->_bci)       return false;
 289     if (p->_reexecute != q->_reexecute)  return false;
 290     p = p->caller();
 291     q = q->caller();
 292     if (p == q)                      return true;
 293     assert(p != NULL && q != NULL, "depth check ensures we don't run off end");
 294   }
 295 }
 296 
 297 //------------------------------debug_start------------------------------------
 298 uint JVMState::debug_start()  const {
 299   debug_only(JVMState* jvmroot = of_depth(1));
 300   assert(jvmroot->locoff() <= this->locoff(), "youngest JVMState must be last");
 301   return of_depth(1)->locoff();
 302 }
 303 
 304 //-------------------------------debug_end-------------------------------------
 305 uint JVMState::debug_end() const {
 306   debug_only(JVMState* jvmroot = of_depth(1));
 307   assert(jvmroot->endoff() <= this->endoff(), "youngest JVMState must be last");
 308   return endoff();
 309 }
 310 
 311 //------------------------------debug_depth------------------------------------
 312 uint JVMState::debug_depth() const {
 313   uint total = 0;
 314   for (const JVMState* jvmp = this; jvmp != NULL; jvmp = jvmp->caller()) {
 315     total += jvmp->debug_size();
 316   }
 317   return total;
 318 }
 319 
 320 #ifndef PRODUCT
 321 
 322 //------------------------------format_helper----------------------------------
 323 // Given an allocation (a Chaitin object) and a Node decide if the Node carries
 324 // any defined value or not.  If it does, print out the register or constant.
 325 static void format_helper( PhaseRegAlloc *regalloc, outputStream* st, Node *n, const char *msg, uint i, GrowableArray<SafePointScalarObjectNode*> *scobjs ) {
 326   if (n == NULL) { st->print(" NULL"); return; }
 327   if (n->is_SafePointScalarObject()) {
 328     // Scalar replacement.
 329     SafePointScalarObjectNode* spobj = n->as_SafePointScalarObject();
 330     scobjs->append_if_missing(spobj);
 331     int sco_n = scobjs->find(spobj);
 332     assert(sco_n >= 0, "");
 333     st->print(" %s%d]=#ScObj" INT32_FORMAT, msg, i, sco_n);
 334     return;
 335   }
 336   if (regalloc->node_regs_max_index() > 0 &&
 337       OptoReg::is_valid(regalloc->get_reg_first(n))) { // Check for undefined
 338     char buf[50];
 339     regalloc->dump_register(n,buf);
 340     st->print(" %s%d]=%s",msg,i,buf);
 341   } else {                      // No register, but might be constant
 342     const Type *t = n->bottom_type();
 343     switch (t->base()) {
 344     case Type::Int:
 345       st->print(" %s%d]=#"INT32_FORMAT,msg,i,t->is_int()->get_con());
 346       break;
 347     case Type::AnyPtr:
 348       assert( t == TypePtr::NULL_PTR || n->in_dump(), "" );
 349       st->print(" %s%d]=#NULL",msg,i);
 350       break;
 351     case Type::AryPtr:
 352     case Type::InstPtr:
 353       st->print(" %s%d]=#Ptr" INTPTR_FORMAT,msg,i,p2i(t->isa_oopptr()->const_oop()));
 354       break;
 355     case Type::KlassPtr:
 356       st->print(" %s%d]=#Ptr" INTPTR_FORMAT,msg,i,p2i(t->make_ptr()->isa_klassptr()->klass()));
 357       break;
 358     case Type::MetadataPtr:
 359       st->print(" %s%d]=#Ptr" INTPTR_FORMAT,msg,i,p2i(t->make_ptr()->isa_metadataptr()->metadata()));
 360       break;
 361     case Type::NarrowOop:
 362       st->print(" %s%d]=#Ptr" INTPTR_FORMAT,msg,i,p2i(t->make_ptr()->isa_oopptr()->const_oop()));
 363       break;
 364     case Type::RawPtr:
 365       st->print(" %s%d]=#Raw" INTPTR_FORMAT,msg,i,p2i(t->is_rawptr()));
 366       break;
 367     case Type::DoubleCon:
 368       st->print(" %s%d]=#%fD",msg,i,t->is_double_constant()->_d);
 369       break;
 370     case Type::FloatCon:
 371       st->print(" %s%d]=#%fF",msg,i,t->is_float_constant()->_f);
 372       break;
 373     case Type::Long:
 374       st->print(" %s%d]=#"INT64_FORMAT,msg,i,(int64_t)(t->is_long()->get_con()));
 375       break;
 376     case Type::Half:
 377     case Type::Top:
 378       st->print(" %s%d]=_",msg,i);
 379       break;
 380     default: ShouldNotReachHere();
 381     }
 382   }
 383 }
 384 
 385 //------------------------------format-----------------------------------------
 386 void JVMState::format(PhaseRegAlloc *regalloc, const Node *n, outputStream* st) const {
 387   st->print("        #");
 388   if (_method) {
 389     _method->print_short_name(st);
 390     st->print(" @ bci:%d ",_bci);
 391   } else {
 392     st->print_cr(" runtime stub ");
 393     return;
 394   }
 395   if (n->is_MachSafePoint()) {
 396     GrowableArray<SafePointScalarObjectNode*> scobjs;
 397     MachSafePointNode *mcall = n->as_MachSafePoint();
 398     uint i;
 399     // Print locals
 400     for (i = 0; i < (uint)loc_size(); i++)
 401       format_helper(regalloc, st, mcall->local(this, i), "L[", i, &scobjs);
 402     // Print stack
 403     for (i = 0; i < (uint)stk_size(); i++) {
 404       if ((uint)(_stkoff + i) >= mcall->len())
 405         st->print(" oob ");
 406       else
 407        format_helper(regalloc, st, mcall->stack(this, i), "STK[", i, &scobjs);
 408     }
 409     for (i = 0; (int)i < nof_monitors(); i++) {
 410       Node *box = mcall->monitor_box(this, i);
 411       Node *obj = mcall->monitor_obj(this, i);
 412       if (regalloc->node_regs_max_index() > 0 &&
 413           OptoReg::is_valid(regalloc->get_reg_first(box))) {
 414         box = BoxLockNode::box_node(box);
 415         format_helper(regalloc, st, box, "MON-BOX[", i, &scobjs);
 416       } else {
 417         OptoReg::Name box_reg = BoxLockNode::reg(box);
 418         st->print(" MON-BOX%d=%s+%d",
 419                    i,
 420                    OptoReg::regname(OptoReg::c_frame_pointer),
 421                    regalloc->reg2offset(box_reg));
 422       }
 423       const char* obj_msg = "MON-OBJ[";
 424       if (EliminateLocks) {
 425         if (BoxLockNode::box_node(box)->is_eliminated())
 426           obj_msg = "MON-OBJ(LOCK ELIMINATED)[";
 427       }
 428       format_helper(regalloc, st, obj, obj_msg, i, &scobjs);
 429     }
 430 
 431     for (i = 0; i < (uint)scobjs.length(); i++) {
 432       // Scalar replaced objects.
 433       st->cr();
 434       st->print("        # ScObj" INT32_FORMAT " ", i);
 435       SafePointScalarObjectNode* spobj = scobjs.at(i);
 436       ciKlass* cik = spobj->bottom_type()->is_oopptr()->klass();
 437       assert(cik->is_instance_klass() ||
 438              cik->is_array_klass(), "Not supported allocation.");
 439       ciInstanceKlass *iklass = NULL;
 440       if (cik->is_instance_klass()) {
 441         cik->print_name_on(st);
 442         iklass = cik->as_instance_klass();
 443       } else if (cik->is_type_array_klass()) {
 444         cik->as_array_klass()->base_element_type()->print_name_on(st);
 445         st->print("[%d]", spobj->n_fields());
 446       } else if (cik->is_obj_array_klass()) {
 447         ciKlass* cie = cik->as_obj_array_klass()->base_element_klass();
 448         if (cie->is_instance_klass()) {
 449           cie->print_name_on(st);
 450         } else if (cie->is_type_array_klass()) {
 451           cie->as_array_klass()->base_element_type()->print_name_on(st);
 452         } else {
 453           ShouldNotReachHere();
 454         }
 455         st->print("[%d]", spobj->n_fields());
 456         int ndim = cik->as_array_klass()->dimension() - 1;
 457         while (ndim-- > 0) {
 458           st->print("[]");
 459         }
 460       }
 461       st->print("={");
 462       uint nf = spobj->n_fields();
 463       if (nf > 0) {
 464         uint first_ind = spobj->first_index(mcall->jvms());
 465         Node* fld_node = mcall->in(first_ind);
 466         ciField* cifield;
 467         if (iklass != NULL) {
 468           st->print(" [");
 469           cifield = iklass->nonstatic_field_at(0);
 470           cifield->print_name_on(st);
 471           format_helper(regalloc, st, fld_node, ":", 0, &scobjs);
 472         } else {
 473           format_helper(regalloc, st, fld_node, "[", 0, &scobjs);
 474         }
 475         for (uint j = 1; j < nf; j++) {
 476           fld_node = mcall->in(first_ind+j);
 477           if (iklass != NULL) {
 478             st->print(", [");
 479             cifield = iklass->nonstatic_field_at(j);
 480             cifield->print_name_on(st);
 481             format_helper(regalloc, st, fld_node, ":", j, &scobjs);
 482           } else {
 483             format_helper(regalloc, st, fld_node, ", [", j, &scobjs);
 484           }
 485         }
 486       }
 487       st->print(" }");
 488     }
 489   }
 490   st->cr();
 491   if (caller() != NULL) caller()->format(regalloc, n, st);
 492 }
 493 
 494 
 495 void JVMState::dump_spec(outputStream *st) const {
 496   if (_method != NULL) {
 497     bool printed = false;
 498     if (!Verbose) {
 499       // The JVMS dumps make really, really long lines.
 500       // Take out the most boring parts, which are the package prefixes.
 501       char buf[500];
 502       stringStream namest(buf, sizeof(buf));
 503       _method->print_short_name(&namest);
 504       if (namest.count() < sizeof(buf)) {
 505         const char* name = namest.base();
 506         if (name[0] == ' ')  ++name;
 507         const char* endcn = strchr(name, ':');  // end of class name
 508         if (endcn == NULL)  endcn = strchr(name, '(');
 509         if (endcn == NULL)  endcn = name + strlen(name);
 510         while (endcn > name && endcn[-1] != '.' && endcn[-1] != '/')
 511           --endcn;
 512         st->print(" %s", endcn);
 513         printed = true;
 514       }
 515     }
 516     if (!printed)
 517       _method->print_short_name(st);
 518     st->print(" @ bci:%d",_bci);
 519     if(_reexecute == Reexecute_True)
 520       st->print(" reexecute");
 521   } else {
 522     st->print(" runtime stub");
 523   }
 524   if (caller() != NULL)  caller()->dump_spec(st);
 525 }
 526 
 527 
 528 void JVMState::dump_on(outputStream* st) const {
 529   bool print_map = _map && !((uintptr_t)_map & 1) &&
 530                   ((caller() == NULL) || (caller()->map() != _map));
 531   if (print_map) {
 532     if (_map->len() > _map->req()) {  // _map->has_exceptions()
 533       Node* ex = _map->in(_map->req());  // _map->next_exception()
 534       // skip the first one; it's already being printed
 535       while (ex != NULL && ex->len() > ex->req()) {
 536         ex = ex->in(ex->req());  // ex->next_exception()
 537         ex->dump(1);
 538       }
 539     }
 540     _map->dump(Verbose ? 2 : 1);
 541   }
 542   if (caller() != NULL) {
 543     caller()->dump_on(st);
 544   }
 545   st->print("JVMS depth=%d loc=%d stk=%d arg=%d mon=%d scalar=%d end=%d mondepth=%d sp=%d bci=%d reexecute=%s method=",
 546              depth(), locoff(), stkoff(), argoff(), monoff(), scloff(), endoff(), monitor_depth(), sp(), bci(), should_reexecute()?"true":"false");
 547   if (_method == NULL) {
 548     st->print_cr("(none)");
 549   } else {
 550     _method->print_name(st);
 551     st->cr();
 552     if (bci() >= 0 && bci() < _method->code_size()) {
 553       st->print("    bc: ");
 554       _method->print_codes_on(bci(), bci()+1, st);
 555     }
 556   }
 557 }
 558 
 559 // Extra way to dump a jvms from the debugger,
 560 // to avoid a bug with C++ member function calls.
 561 void dump_jvms(JVMState* jvms) {
 562   jvms->dump();
 563 }
 564 #endif
 565 
 566 //--------------------------clone_shallow--------------------------------------
 567 JVMState* JVMState::clone_shallow(Compile* C) const {
 568   JVMState* n = has_method() ? new (C) JVMState(_method, _caller) : new (C) JVMState(0);
 569   n->set_bci(_bci);
 570   n->_reexecute = _reexecute;
 571   n->set_locoff(_locoff);
 572   n->set_stkoff(_stkoff);
 573   n->set_monoff(_monoff);
 574   n->set_scloff(_scloff);
 575   n->set_endoff(_endoff);
 576   n->set_sp(_sp);
 577   n->set_map(_map);
 578   return n;
 579 }
 580 
 581 //---------------------------clone_deep----------------------------------------
 582 JVMState* JVMState::clone_deep(Compile* C) const {
 583   JVMState* n = clone_shallow(C);
 584   for (JVMState* p = n; p->_caller != NULL; p = p->_caller) {
 585     p->_caller = p->_caller->clone_shallow(C);
 586   }
 587   assert(n->depth() == depth(), "sanity");
 588   assert(n->debug_depth() == debug_depth(), "sanity");
 589   return n;
 590 }
 591 
 592 /**
 593  * Reset map for all callers
 594  */
 595 void JVMState::set_map_deep(SafePointNode* map) {
 596   for (JVMState* p = this; p->_caller != NULL; p = p->_caller) {
 597     p->set_map(map);
 598   }
 599 }
 600 
 601 // Adapt offsets in in-array after adding or removing an edge.
 602 // Prerequisite is that the JVMState is used by only one node.
 603 void JVMState::adapt_position(int delta) {
 604   for (JVMState* jvms = this; jvms != NULL; jvms = jvms->caller()) {
 605     jvms->set_locoff(jvms->locoff() + delta);
 606     jvms->set_stkoff(jvms->stkoff() + delta);
 607     jvms->set_monoff(jvms->monoff() + delta);
 608     jvms->set_scloff(jvms->scloff() + delta);
 609     jvms->set_endoff(jvms->endoff() + delta);
 610   }
 611 }
 612 
 613 // Mirror the stack size calculation in the deopt code
 614 // How much stack space would we need at this point in the program in
 615 // case of deoptimization?
 616 int JVMState::interpreter_frame_size() const {
 617   const JVMState* jvms = this;
 618   int size = 0;
 619   int callee_parameters = 0;
 620   int callee_locals = 0;
 621   int extra_args = method()->max_stack() - stk_size();
 622 
 623   while (jvms != NULL) {
 624     int locks = jvms->nof_monitors();
 625     int temps = jvms->stk_size();
 626     bool is_top_frame = (jvms == this);
 627     ciMethod* method = jvms->method();
 628 
 629     int frame_size = BytesPerWord * Interpreter::size_activation(method->max_stack(),
 630                                                                  temps + callee_parameters,
 631                                                                  extra_args,
 632                                                                  locks,
 633                                                                  callee_parameters,
 634                                                                  callee_locals,
 635                                                                  is_top_frame);
 636     size += frame_size;
 637 
 638     callee_parameters = method->size_of_parameters();
 639     callee_locals = method->max_locals();
 640     extra_args = 0;
 641     jvms = jvms->caller();
 642   }
 643   return size + Deoptimization::last_frame_adjust(0, callee_locals) * BytesPerWord;
 644 }
 645 
 646 //=============================================================================
 647 uint CallNode::cmp( const Node &n ) const
 648 { return _tf == ((CallNode&)n)._tf && _jvms == ((CallNode&)n)._jvms; }
 649 #ifndef PRODUCT
 650 void CallNode::dump_req(outputStream *st) const {
 651   // Dump the required inputs, enclosed in '(' and ')'
 652   uint i;                       // Exit value of loop
 653   for (i = 0; i < req(); i++) {    // For all required inputs
 654     if (i == TypeFunc::Parms) st->print("(");
 655     if (in(i)) st->print("%c%d ", Compile::current()->node_arena()->contains(in(i)) ? ' ' : 'o', in(i)->_idx);
 656     else st->print("_ ");
 657   }
 658   st->print(")");
 659 }
 660 
 661 void CallNode::dump_spec(outputStream *st) const {
 662   st->print(" ");
 663   if (tf() != NULL)  tf()->dump_on(st);
 664   if (_cnt != COUNT_UNKNOWN)  st->print(" C=%f",_cnt);
 665   if (jvms() != NULL)  jvms()->dump_spec(st);
 666 }
 667 #endif
 668 
 669 const Type *CallNode::bottom_type() const { return tf()->range(); }
 670 const Type *CallNode::Value(PhaseTransform *phase) const {
 671   if (phase->type(in(0)) == Type::TOP)  return Type::TOP;
 672   return tf()->range();
 673 }
 674 
 675 //------------------------------calling_convention-----------------------------
 676 void CallNode::calling_convention( BasicType* sig_bt, VMRegPair *parm_regs, uint argcnt ) const {
 677   // Use the standard compiler calling convention
 678   Matcher::calling_convention( sig_bt, parm_regs, argcnt, true );
 679 }
 680 
 681 
 682 //------------------------------match------------------------------------------
 683 // Construct projections for control, I/O, memory-fields, ..., and
 684 // return result(s) along with their RegMask info
 685 Node *CallNode::match( const ProjNode *proj, const Matcher *match ) {
 686   switch (proj->_con) {
 687   case TypeFunc::Control:
 688   case TypeFunc::I_O:
 689   case TypeFunc::Memory:
 690     return new MachProjNode(this,proj->_con,RegMask::Empty,MachProjNode::unmatched_proj);
 691 
 692   case TypeFunc::Parms+1:       // For LONG & DOUBLE returns
 693     assert(tf()->range()->field_at(TypeFunc::Parms+1) == Type::HALF, "");
 694     // 2nd half of doubles and longs
 695     return new MachProjNode(this,proj->_con, RegMask::Empty, (uint)OptoReg::Bad);
 696 
 697   case TypeFunc::Parms: {       // Normal returns
 698     uint ideal_reg = tf()->range()->field_at(TypeFunc::Parms)->ideal_reg();
 699     OptoRegPair regs = is_CallRuntime()
 700       ? match->c_return_value(ideal_reg,true)  // Calls into C runtime
 701       : match->  return_value(ideal_reg,true); // Calls into compiled Java code
 702     RegMask rm = RegMask(regs.first());
 703     if( OptoReg::is_valid(regs.second()) )
 704       rm.Insert( regs.second() );
 705     return new MachProjNode(this,proj->_con,rm,ideal_reg);
 706   }
 707 
 708   case TypeFunc::ReturnAdr:
 709   case TypeFunc::FramePtr:
 710   default:
 711     ShouldNotReachHere();
 712   }
 713   return NULL;
 714 }
 715 
 716 // Do we Match on this edge index or not?  Match no edges
 717 uint CallNode::match_edge(uint idx) const {
 718   return 0;
 719 }
 720 
 721 //
 722 // Determine whether the call could modify the field of the specified
 723 // instance at the specified offset.
 724 //
 725 bool CallNode::may_modify(const TypeOopPtr *t_oop, PhaseTransform *phase) {
 726   assert((t_oop != NULL), "sanity");
 727   if (is_call_to_arraycopystub()) {
 728     const TypeTuple* args = _tf->domain();
 729     Node* dest = NULL;
 730     // Stubs that can be called once an ArrayCopyNode is expanded have
 731     // different signatures. Look for the second pointer argument,
 732     // that is the destination of the copy.
 733     for (uint i = TypeFunc::Parms, j = 0; i < args->cnt(); i++) {
 734       if (args->field_at(i)->isa_ptr()) {
 735         j++;
 736         if (j == 2) {
 737           dest = in(i);
 738           break;
 739         }
 740       }
 741     }
 742     if (!dest->is_top() && may_modify_arraycopy_helper(phase->type(dest)->is_oopptr(), t_oop, phase)) {
 743       return true;
 744     }
 745     return false;
 746   }
 747   if (t_oop->is_known_instance()) {
 748     // The instance_id is set only for scalar-replaceable allocations which
 749     // are not passed as arguments according to Escape Analysis.
 750     return false;
 751   }
 752   if (t_oop->is_ptr_to_boxed_value()) {
 753     ciKlass* boxing_klass = t_oop->klass();
 754     if (is_CallStaticJava() && as_CallStaticJava()->is_boxing_method()) {
 755       // Skip unrelated boxing methods.
 756       Node* proj = proj_out(TypeFunc::Parms);
 757       if ((proj == NULL) || (phase->type(proj)->is_instptr()->klass() != boxing_klass)) {
 758         return false;
 759       }
 760     }
 761     if (is_CallJava() && as_CallJava()->method() != NULL) {
 762       ciMethod* meth = as_CallJava()->method();
 763       if (meth->is_accessor()) {
 764         return false;
 765       }
 766       // May modify (by reflection) if an boxing object is passed
 767       // as argument or returned.
 768       if (returns_pointer() && (proj_out(TypeFunc::Parms) != NULL)) {
 769         Node* proj = proj_out(TypeFunc::Parms);
 770         const TypeInstPtr* inst_t = phase->type(proj)->isa_instptr();
 771         if ((inst_t != NULL) && (!inst_t->klass_is_exact() ||
 772                                  (inst_t->klass() == boxing_klass))) {
 773           return true;
 774         }
 775       }
 776       const TypeTuple* d = tf()->domain();
 777       for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
 778         const TypeInstPtr* inst_t = d->field_at(i)->isa_instptr();
 779         if ((inst_t != NULL) && (!inst_t->klass_is_exact() ||
 780                                  (inst_t->klass() == boxing_klass))) {
 781           return true;
 782         }
 783       }
 784       return false;
 785     }
 786   }
 787   return true;
 788 }
 789 
 790 // Does this call have a direct reference to n other than debug information?
 791 bool CallNode::has_non_debug_use(Node *n) {
 792   const TypeTuple * d = tf()->domain();
 793   for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
 794     Node *arg = in(i);
 795     if (arg == n) {
 796       return true;
 797     }
 798   }
 799   return false;
 800 }
 801 
 802 // Returns the unique CheckCastPP of a call
 803 // or 'this' if there are several CheckCastPP or unexpected uses
 804 // or returns NULL if there is no one.
 805 Node *CallNode::result_cast() {
 806   Node *cast = NULL;
 807 
 808   Node *p = proj_out(TypeFunc::Parms);
 809   if (p == NULL)
 810     return NULL;
 811 
 812   for (DUIterator_Fast imax, i = p->fast_outs(imax); i < imax; i++) {
 813     Node *use = p->fast_out(i);
 814     if (use->is_CheckCastPP()) {
 815       if (cast != NULL) {
 816         return this;  // more than 1 CheckCastPP
 817       }
 818       cast = use;
 819     } else if (!use->is_Initialize() &&
 820                !use->is_AddP() &&
 821                use->Opcode() != Op_MemBarStoreStore) {
 822       // Expected uses are restricted to a CheckCastPP, an Initialize
 823       // node, a MemBarStoreStore (clone) and AddP nodes. If we
 824       // encounter any other use (a Phi node can be seen in rare
 825       // cases) return this to prevent incorrect optimizations.
 826       return this;
 827     }
 828   }
 829   return cast;
 830 }
 831 
 832 
 833 void CallNode::extract_projections(CallProjections* projs, bool separate_io_proj) {
 834   projs->fallthrough_proj      = NULL;
 835   projs->fallthrough_catchproj = NULL;
 836   projs->fallthrough_ioproj    = NULL;
 837   projs->catchall_ioproj       = NULL;
 838   projs->catchall_catchproj    = NULL;
 839   projs->fallthrough_memproj   = NULL;
 840   projs->catchall_memproj      = NULL;
 841   projs->resproj               = NULL;
 842   projs->exobj                 = NULL;
 843 
 844   for (DUIterator_Fast imax, i = fast_outs(imax); i < imax; i++) {
 845     ProjNode *pn = fast_out(i)->as_Proj();
 846     if (pn->outcnt() == 0) continue;
 847     switch (pn->_con) {
 848     case TypeFunc::Control:
 849       {
 850         // For Control (fallthrough) and I_O (catch_all_index) we have CatchProj -> Catch -> Proj
 851         projs->fallthrough_proj = pn;
 852         DUIterator_Fast jmax, j = pn->fast_outs(jmax);
 853         const Node *cn = pn->fast_out(j);
 854         if (cn->is_Catch()) {
 855           ProjNode *cpn = NULL;
 856           for (DUIterator_Fast kmax, k = cn->fast_outs(kmax); k < kmax; k++) {
 857             cpn = cn->fast_out(k)->as_Proj();
 858             assert(cpn->is_CatchProj(), "must be a CatchProjNode");
 859             if (cpn->_con == CatchProjNode::fall_through_index)
 860               projs->fallthrough_catchproj = cpn;
 861             else {
 862               assert(cpn->_con == CatchProjNode::catch_all_index, "must be correct index.");
 863               projs->catchall_catchproj = cpn;
 864             }
 865           }
 866         }
 867         break;
 868       }
 869     case TypeFunc::I_O:
 870       if (pn->_is_io_use)
 871         projs->catchall_ioproj = pn;
 872       else
 873         projs->fallthrough_ioproj = pn;
 874       for (DUIterator j = pn->outs(); pn->has_out(j); j++) {
 875         Node* e = pn->out(j);
 876         if (e->Opcode() == Op_CreateEx && e->in(0)->is_CatchProj() && e->outcnt() > 0) {
 877           assert(projs->exobj == NULL, "only one");
 878           projs->exobj = e;
 879         }
 880       }
 881       break;
 882     case TypeFunc::Memory:
 883       if (pn->_is_io_use)
 884         projs->catchall_memproj = pn;
 885       else
 886         projs->fallthrough_memproj = pn;
 887       break;
 888     case TypeFunc::Parms:
 889       projs->resproj = pn;
 890       break;
 891     default:
 892       assert(false, "unexpected projection from allocation node.");
 893     }
 894   }
 895 
 896   // The resproj may not exist because the result couuld be ignored
 897   // and the exception object may not exist if an exception handler
 898   // swallows the exception but all the other must exist and be found.
 899   assert(projs->fallthrough_proj      != NULL, "must be found");
 900   assert(Compile::current()->inlining_incrementally() || projs->fallthrough_catchproj != NULL, "must be found");
 901   assert(Compile::current()->inlining_incrementally() || projs->fallthrough_memproj   != NULL, "must be found");
 902   assert(Compile::current()->inlining_incrementally() || projs->fallthrough_ioproj    != NULL, "must be found");
 903   assert(Compile::current()->inlining_incrementally() || projs->catchall_catchproj    != NULL, "must be found");
 904   if (separate_io_proj) {
 905     assert(Compile::current()->inlining_incrementally() || projs->catchall_memproj    != NULL, "must be found");
 906     assert(Compile::current()->inlining_incrementally() || projs->catchall_ioproj     != NULL, "must be found");
 907   }
 908 }
 909 
 910 Node *CallNode::Ideal(PhaseGVN *phase, bool can_reshape) {
 911   CallGenerator* cg = generator();
 912   if (can_reshape && cg != NULL && cg->is_mh_late_inline() && !cg->already_attempted()) {
 913     // Check whether this MH handle call becomes a candidate for inlining
 914     ciMethod* callee = cg->method();
 915     vmIntrinsics::ID iid = callee->intrinsic_id();
 916     if (iid == vmIntrinsics::_invokeBasic) {
 917       if (in(TypeFunc::Parms)->Opcode() == Op_ConP) {
 918         phase->C->prepend_late_inline(cg);
 919         set_generator(NULL);
 920       }
 921     } else {
 922       assert(callee->has_member_arg(), "wrong type of call?");
 923       if (in(TypeFunc::Parms + callee->arg_size() - 1)->Opcode() == Op_ConP) {
 924         phase->C->prepend_late_inline(cg);
 925         set_generator(NULL);
 926       }
 927     }
 928   }
 929   return SafePointNode::Ideal(phase, can_reshape);
 930 }
 931 
 932 bool CallNode::is_call_to_arraycopystub() const {
 933   if (_name != NULL && strstr(_name, "arraycopy") != 0) {
 934     return true;
 935   }
 936   return false;
 937 }
 938 
 939 //=============================================================================
 940 uint CallJavaNode::size_of() const { return sizeof(*this); }
 941 uint CallJavaNode::cmp( const Node &n ) const {
 942   CallJavaNode &call = (CallJavaNode&)n;
 943   return CallNode::cmp(call) && _method == call._method;
 944 }
 945 #ifndef PRODUCT
 946 void CallJavaNode::dump_spec(outputStream *st) const {
 947   if( _method ) _method->print_short_name(st);
 948   CallNode::dump_spec(st);
 949 }
 950 #endif
 951 
 952 //=============================================================================
 953 uint CallStaticJavaNode::size_of() const { return sizeof(*this); }
 954 uint CallStaticJavaNode::cmp( const Node &n ) const {
 955   CallStaticJavaNode &call = (CallStaticJavaNode&)n;
 956   return CallJavaNode::cmp(call);
 957 }
 958 
 959 //----------------------------uncommon_trap_request----------------------------
 960 // If this is an uncommon trap, return the request code, else zero.
 961 int CallStaticJavaNode::uncommon_trap_request() const {
 962   if (_name != NULL && !strcmp(_name, "uncommon_trap")) {
 963     return extract_uncommon_trap_request(this);
 964   }
 965   return 0;
 966 }
 967 int CallStaticJavaNode::extract_uncommon_trap_request(const Node* call) {
 968 #ifndef PRODUCT
 969   if (!(call->req() > TypeFunc::Parms &&
 970         call->in(TypeFunc::Parms) != NULL &&
 971         call->in(TypeFunc::Parms)->is_Con() &&
 972         call->in(TypeFunc::Parms)->bottom_type()->isa_int())) {
 973     assert(in_dump() != 0, "OK if dumping");
 974     tty->print("[bad uncommon trap]");
 975     return 0;
 976   }
 977 #endif
 978   return call->in(TypeFunc::Parms)->bottom_type()->is_int()->get_con();
 979 }
 980 
 981 #ifndef PRODUCT
 982 void CallStaticJavaNode::dump_spec(outputStream *st) const {
 983   st->print("# Static ");
 984   if (_name != NULL) {
 985     st->print("%s", _name);
 986     int trap_req = uncommon_trap_request();
 987     if (trap_req != 0) {
 988       char buf[100];
 989       st->print("(%s)",
 990                  Deoptimization::format_trap_request(buf, sizeof(buf),
 991                                                      trap_req));
 992     }
 993     st->print(" ");
 994   }
 995   CallJavaNode::dump_spec(st);
 996 }
 997 #endif
 998 
 999 //=============================================================================
1000 uint CallDynamicJavaNode::size_of() const { return sizeof(*this); }
1001 uint CallDynamicJavaNode::cmp( const Node &n ) const {
1002   CallDynamicJavaNode &call = (CallDynamicJavaNode&)n;
1003   return CallJavaNode::cmp(call);
1004 }
1005 #ifndef PRODUCT
1006 void CallDynamicJavaNode::dump_spec(outputStream *st) const {
1007   st->print("# Dynamic ");
1008   CallJavaNode::dump_spec(st);
1009 }
1010 #endif
1011 
1012 //=============================================================================
1013 uint CallRuntimeNode::size_of() const { return sizeof(*this); }
1014 uint CallRuntimeNode::cmp( const Node &n ) const {
1015   CallRuntimeNode &call = (CallRuntimeNode&)n;
1016   return CallNode::cmp(call) && !strcmp(_name,call._name);
1017 }
1018 #ifndef PRODUCT
1019 void CallRuntimeNode::dump_spec(outputStream *st) const {
1020   st->print("# ");
1021   st->print("%s", _name);
1022   CallNode::dump_spec(st);
1023 }
1024 #endif
1025 
1026 //------------------------------calling_convention-----------------------------
1027 void CallRuntimeNode::calling_convention( BasicType* sig_bt, VMRegPair *parm_regs, uint argcnt ) const {
1028   Matcher::c_calling_convention( sig_bt, parm_regs, argcnt );
1029 }
1030 
1031 //=============================================================================
1032 //------------------------------calling_convention-----------------------------
1033 
1034 
1035 //=============================================================================
1036 #ifndef PRODUCT
1037 void CallLeafNode::dump_spec(outputStream *st) const {
1038   st->print("# ");
1039   st->print("%s", _name);
1040   CallNode::dump_spec(st);
1041 }
1042 #endif
1043 
1044 //=============================================================================
1045 
1046 void SafePointNode::set_local(JVMState* jvms, uint idx, Node *c) {
1047   assert(verify_jvms(jvms), "jvms must match");
1048   int loc = jvms->locoff() + idx;
1049   if (in(loc)->is_top() && idx > 0 && !c->is_top() ) {
1050     // If current local idx is top then local idx - 1 could
1051     // be a long/double that needs to be killed since top could
1052     // represent the 2nd half ofthe long/double.
1053     uint ideal = in(loc -1)->ideal_reg();
1054     if (ideal == Op_RegD || ideal == Op_RegL) {
1055       // set other (low index) half to top
1056       set_req(loc - 1, in(loc));
1057     }
1058   }
1059   set_req(loc, c);
1060 }
1061 
1062 uint SafePointNode::size_of() const { return sizeof(*this); }
1063 uint SafePointNode::cmp( const Node &n ) const {
1064   return (&n == this);          // Always fail except on self
1065 }
1066 
1067 //-------------------------set_next_exception----------------------------------
1068 void SafePointNode::set_next_exception(SafePointNode* n) {
1069   assert(n == NULL || n->Opcode() == Op_SafePoint, "correct value for next_exception");
1070   if (len() == req()) {
1071     if (n != NULL)  add_prec(n);
1072   } else {
1073     set_prec(req(), n);
1074   }
1075 }
1076 
1077 
1078 //----------------------------next_exception-----------------------------------
1079 SafePointNode* SafePointNode::next_exception() const {
1080   if (len() == req()) {
1081     return NULL;
1082   } else {
1083     Node* n = in(req());
1084     assert(n == NULL || n->Opcode() == Op_SafePoint, "no other uses of prec edges");
1085     return (SafePointNode*) n;
1086   }
1087 }
1088 
1089 
1090 //------------------------------Ideal------------------------------------------
1091 // Skip over any collapsed Regions
1092 Node *SafePointNode::Ideal(PhaseGVN *phase, bool can_reshape) {
1093   return remove_dead_region(phase, can_reshape) ? this : NULL;
1094 }
1095 
1096 //------------------------------Identity---------------------------------------
1097 // Remove obviously duplicate safepoints
1098 Node *SafePointNode::Identity( PhaseTransform *phase ) {
1099 
1100   // If you have back to back safepoints, remove one
1101   if( in(TypeFunc::Control)->is_SafePoint() )
1102     return in(TypeFunc::Control);
1103 
1104   if( in(0)->is_Proj() ) {
1105     Node *n0 = in(0)->in(0);
1106     // Check if he is a call projection (except Leaf Call)
1107     if( n0->is_Catch() ) {
1108       n0 = n0->in(0)->in(0);
1109       assert( n0->is_Call(), "expect a call here" );
1110     }
1111     if( n0->is_Call() && n0->as_Call()->guaranteed_safepoint() ) {
1112       // Useless Safepoint, so remove it
1113       return in(TypeFunc::Control);
1114     }
1115   }
1116 
1117   return this;
1118 }
1119 
1120 //------------------------------Value------------------------------------------
1121 const Type *SafePointNode::Value( PhaseTransform *phase ) const {
1122   if( phase->type(in(0)) == Type::TOP ) return Type::TOP;
1123   if( phase->eqv( in(0), this ) ) return Type::TOP; // Dead infinite loop
1124   return Type::CONTROL;
1125 }
1126 
1127 #ifndef PRODUCT
1128 void SafePointNode::dump_spec(outputStream *st) const {
1129   st->print(" SafePoint ");
1130   _replaced_nodes.dump(st);
1131 }
1132 #endif
1133 
1134 const RegMask &SafePointNode::in_RegMask(uint idx) const {
1135   if( idx < TypeFunc::Parms ) return RegMask::Empty;
1136   // Values outside the domain represent debug info
1137   return *(Compile::current()->matcher()->idealreg2debugmask[in(idx)->ideal_reg()]);
1138 }
1139 const RegMask &SafePointNode::out_RegMask() const {
1140   return RegMask::Empty;
1141 }
1142 
1143 
1144 void SafePointNode::grow_stack(JVMState* jvms, uint grow_by) {
1145   assert((int)grow_by > 0, "sanity");
1146   int monoff = jvms->monoff();
1147   int scloff = jvms->scloff();
1148   int endoff = jvms->endoff();
1149   assert(endoff == (int)req(), "no other states or debug info after me");
1150   Node* top = Compile::current()->top();
1151   for (uint i = 0; i < grow_by; i++) {
1152     ins_req(monoff, top);
1153   }
1154   jvms->set_monoff(monoff + grow_by);
1155   jvms->set_scloff(scloff + grow_by);
1156   jvms->set_endoff(endoff + grow_by);
1157 }
1158 
1159 void SafePointNode::push_monitor(const FastLockNode *lock) {
1160   // Add a LockNode, which points to both the original BoxLockNode (the
1161   // stack space for the monitor) and the Object being locked.
1162   const int MonitorEdges = 2;
1163   assert(JVMState::logMonitorEdges == exact_log2(MonitorEdges), "correct MonitorEdges");
1164   assert(req() == jvms()->endoff(), "correct sizing");
1165   int nextmon = jvms()->scloff();
1166   if (GenerateSynchronizationCode) {
1167     ins_req(nextmon,   lock->box_node());
1168     ins_req(nextmon+1, lock->obj_node());
1169   } else {
1170     Node* top = Compile::current()->top();
1171     ins_req(nextmon, top);
1172     ins_req(nextmon, top);
1173   }
1174   jvms()->set_scloff(nextmon + MonitorEdges);
1175   jvms()->set_endoff(req());
1176 }
1177 
1178 void SafePointNode::pop_monitor() {
1179   // Delete last monitor from debug info
1180   debug_only(int num_before_pop = jvms()->nof_monitors());
1181   const int MonitorEdges = 2;
1182   assert(JVMState::logMonitorEdges == exact_log2(MonitorEdges), "correct MonitorEdges");
1183   int scloff = jvms()->scloff();
1184   int endoff = jvms()->endoff();
1185   int new_scloff = scloff - MonitorEdges;
1186   int new_endoff = endoff - MonitorEdges;
1187   jvms()->set_scloff(new_scloff);
1188   jvms()->set_endoff(new_endoff);
1189   while (scloff > new_scloff)  del_req_ordered(--scloff);
1190   assert(jvms()->nof_monitors() == num_before_pop-1, "");
1191 }
1192 
1193 Node *SafePointNode::peek_monitor_box() const {
1194   int mon = jvms()->nof_monitors() - 1;
1195   assert(mon >= 0, "most have a monitor");
1196   return monitor_box(jvms(), mon);
1197 }
1198 
1199 Node *SafePointNode::peek_monitor_obj() const {
1200   int mon = jvms()->nof_monitors() - 1;
1201   assert(mon >= 0, "most have a monitor");
1202   return monitor_obj(jvms(), mon);
1203 }
1204 
1205 // Do we Match on this edge index or not?  Match no edges
1206 uint SafePointNode::match_edge(uint idx) const {
1207   if( !needs_polling_address_input() )
1208     return 0;
1209 
1210   return (TypeFunc::Parms == idx);
1211 }
1212 
1213 //==============  SafePointScalarObjectNode  ==============
1214 
1215 SafePointScalarObjectNode::SafePointScalarObjectNode(const TypeOopPtr* tp,
1216 #ifdef ASSERT
1217                                                      AllocateNode* alloc,
1218 #endif
1219                                                      uint first_index,
1220                                                      uint n_fields) :
1221   TypeNode(tp, 1), // 1 control input -- seems required.  Get from root.
1222 #ifdef ASSERT
1223   _alloc(alloc),
1224 #endif
1225   _first_index(first_index),
1226   _n_fields(n_fields)
1227 {
1228   init_class_id(Class_SafePointScalarObject);
1229 }
1230 
1231 // Do not allow value-numbering for SafePointScalarObject node.
1232 uint SafePointScalarObjectNode::hash() const { return NO_HASH; }
1233 uint SafePointScalarObjectNode::cmp( const Node &n ) const {
1234   return (&n == this); // Always fail except on self
1235 }
1236 
1237 uint SafePointScalarObjectNode::ideal_reg() const {
1238   return 0; // No matching to machine instruction
1239 }
1240 
1241 const RegMask &SafePointScalarObjectNode::in_RegMask(uint idx) const {
1242   return *(Compile::current()->matcher()->idealreg2debugmask[in(idx)->ideal_reg()]);
1243 }
1244 
1245 const RegMask &SafePointScalarObjectNode::out_RegMask() const {
1246   return RegMask::Empty;
1247 }
1248 
1249 uint SafePointScalarObjectNode::match_edge(uint idx) const {
1250   return 0;
1251 }
1252 
1253 SafePointScalarObjectNode*
1254 SafePointScalarObjectNode::clone(Dict* sosn_map) const {
1255   void* cached = (*sosn_map)[(void*)this];
1256   if (cached != NULL) {
1257     return (SafePointScalarObjectNode*)cached;
1258   }
1259   SafePointScalarObjectNode* res = (SafePointScalarObjectNode*)Node::clone();
1260   sosn_map->Insert((void*)this, (void*)res);
1261   return res;
1262 }
1263 
1264 
1265 #ifndef PRODUCT
1266 void SafePointScalarObjectNode::dump_spec(outputStream *st) const {
1267   st->print(" # fields@[%d..%d]", first_index(),
1268              first_index() + n_fields() - 1);
1269 }
1270 
1271 #endif
1272 
1273 //=============================================================================
1274 uint AllocateNode::size_of() const { return sizeof(*this); }
1275 
1276 AllocateNode::AllocateNode(Compile* C, const TypeFunc *atype,
1277                            Node *ctrl, Node *mem, Node *abio,
1278                            Node *size, Node *klass_node, Node *initial_test)
1279   : CallNode(atype, NULL, TypeRawPtr::BOTTOM)
1280 {
1281   init_class_id(Class_Allocate);
1282   init_flags(Flag_is_macro);
1283   _is_scalar_replaceable = false;
1284   _is_non_escaping = false;
1285   Node *topnode = C->top();
1286 
1287   init_req( TypeFunc::Control  , ctrl );
1288   init_req( TypeFunc::I_O      , abio );
1289   init_req( TypeFunc::Memory   , mem );
1290   init_req( TypeFunc::ReturnAdr, topnode );
1291   init_req( TypeFunc::FramePtr , topnode );
1292   init_req( AllocSize          , size);
1293   init_req( KlassNode          , klass_node);
1294   init_req( InitialTest        , initial_test);
1295   init_req( ALength            , topnode);
1296   C->add_macro_node(this);
1297 }
1298 
1299 //=============================================================================
1300 Node* AllocateArrayNode::Ideal(PhaseGVN *phase, bool can_reshape) {
1301   if (remove_dead_region(phase, can_reshape))  return this;
1302   // Don't bother trying to transform a dead node
1303   if (in(0) && in(0)->is_top())  return NULL;
1304 
1305   const Type* type = phase->type(Ideal_length());
1306   if (type->isa_int() && type->is_int()->_hi < 0) {
1307     if (can_reshape) {
1308       PhaseIterGVN *igvn = phase->is_IterGVN();
1309       // Unreachable fall through path (negative array length),
1310       // the allocation can only throw so disconnect it.
1311       Node* proj = proj_out(TypeFunc::Control);
1312       Node* catchproj = NULL;
1313       if (proj != NULL) {
1314         for (DUIterator_Fast imax, i = proj->fast_outs(imax); i < imax; i++) {
1315           Node *cn = proj->fast_out(i);
1316           if (cn->is_Catch()) {
1317             catchproj = cn->as_Multi()->proj_out(CatchProjNode::fall_through_index);
1318             break;
1319           }
1320         }
1321       }
1322       if (catchproj != NULL && catchproj->outcnt() > 0 &&
1323           (catchproj->outcnt() > 1 ||
1324            catchproj->unique_out()->Opcode() != Op_Halt)) {
1325         assert(catchproj->is_CatchProj(), "must be a CatchProjNode");
1326         Node* nproj = catchproj->clone();
1327         igvn->register_new_node_with_optimizer(nproj);
1328 
1329         Node *frame = new ParmNode( phase->C->start(), TypeFunc::FramePtr );
1330         frame = phase->transform(frame);
1331         // Halt & Catch Fire
1332         Node *halt = new HaltNode( nproj, frame );
1333         phase->C->root()->add_req(halt);
1334         phase->transform(halt);
1335 
1336         igvn->replace_node(catchproj, phase->C->top());
1337         return this;
1338       }
1339     } else {
1340       // Can't correct it during regular GVN so register for IGVN
1341       phase->C->record_for_igvn(this);
1342     }
1343   }
1344   return NULL;
1345 }
1346 
1347 // Retrieve the length from the AllocateArrayNode. Narrow the type with a
1348 // CastII, if appropriate.  If we are not allowed to create new nodes, and
1349 // a CastII is appropriate, return NULL.
1350 Node *AllocateArrayNode::make_ideal_length(const TypeOopPtr* oop_type, PhaseTransform *phase, bool allow_new_nodes) {
1351   Node *length = in(AllocateNode::ALength);
1352   assert(length != NULL, "length is not null");
1353 
1354   const TypeInt* length_type = phase->find_int_type(length);
1355   const TypeAryPtr* ary_type = oop_type->isa_aryptr();
1356 
1357   if (ary_type != NULL && length_type != NULL) {
1358     const TypeInt* narrow_length_type = ary_type->narrow_size_type(length_type);
1359     if (narrow_length_type != length_type) {
1360       // Assert one of:
1361       //   - the narrow_length is 0
1362       //   - the narrow_length is not wider than length
1363       assert(narrow_length_type == TypeInt::ZERO ||
1364              length_type->is_con() && narrow_length_type->is_con() &&
1365                 (narrow_length_type->_hi <= length_type->_lo) ||
1366              (narrow_length_type->_hi <= length_type->_hi &&
1367               narrow_length_type->_lo >= length_type->_lo),
1368              "narrow type must be narrower than length type");
1369 
1370       // Return NULL if new nodes are not allowed
1371       if (!allow_new_nodes) return NULL;
1372       // Create a cast which is control dependent on the initialization to
1373       // propagate the fact that the array length must be positive.
1374       length = new CastIINode(length, narrow_length_type);
1375       length->set_req(0, initialization()->proj_out(0));
1376     }
1377   }
1378 
1379   return length;
1380 }
1381 
1382 //=============================================================================
1383 uint LockNode::size_of() const { return sizeof(*this); }
1384 
1385 // Redundant lock elimination
1386 //
1387 // There are various patterns of locking where we release and
1388 // immediately reacquire a lock in a piece of code where no operations
1389 // occur in between that would be observable.  In those cases we can
1390 // skip releasing and reacquiring the lock without violating any
1391 // fairness requirements.  Doing this around a loop could cause a lock
1392 // to be held for a very long time so we concentrate on non-looping
1393 // control flow.  We also require that the operations are fully
1394 // redundant meaning that we don't introduce new lock operations on
1395 // some paths so to be able to eliminate it on others ala PRE.  This
1396 // would probably require some more extensive graph manipulation to
1397 // guarantee that the memory edges were all handled correctly.
1398 //
1399 // Assuming p is a simple predicate which can't trap in any way and s
1400 // is a synchronized method consider this code:
1401 //
1402 //   s();
1403 //   if (p)
1404 //     s();
1405 //   else
1406 //     s();
1407 //   s();
1408 //
1409 // 1. The unlocks of the first call to s can be eliminated if the
1410 // locks inside the then and else branches are eliminated.
1411 //
1412 // 2. The unlocks of the then and else branches can be eliminated if
1413 // the lock of the final call to s is eliminated.
1414 //
1415 // Either of these cases subsumes the simple case of sequential control flow
1416 //
1417 // Addtionally we can eliminate versions without the else case:
1418 //
1419 //   s();
1420 //   if (p)
1421 //     s();
1422 //   s();
1423 //
1424 // 3. In this case we eliminate the unlock of the first s, the lock
1425 // and unlock in the then case and the lock in the final s.
1426 //
1427 // Note also that in all these cases the then/else pieces don't have
1428 // to be trivial as long as they begin and end with synchronization
1429 // operations.
1430 //
1431 //   s();
1432 //   if (p)
1433 //     s();
1434 //     f();
1435 //     s();
1436 //   s();
1437 //
1438 // The code will work properly for this case, leaving in the unlock
1439 // before the call to f and the relock after it.
1440 //
1441 // A potentially interesting case which isn't handled here is when the
1442 // locking is partially redundant.
1443 //
1444 //   s();
1445 //   if (p)
1446 //     s();
1447 //
1448 // This could be eliminated putting unlocking on the else case and
1449 // eliminating the first unlock and the lock in the then side.
1450 // Alternatively the unlock could be moved out of the then side so it
1451 // was after the merge and the first unlock and second lock
1452 // eliminated.  This might require less manipulation of the memory
1453 // state to get correct.
1454 //
1455 // Additionally we might allow work between a unlock and lock before
1456 // giving up eliminating the locks.  The current code disallows any
1457 // conditional control flow between these operations.  A formulation
1458 // similar to partial redundancy elimination computing the
1459 // availability of unlocking and the anticipatability of locking at a
1460 // program point would allow detection of fully redundant locking with
1461 // some amount of work in between.  I'm not sure how often I really
1462 // think that would occur though.  Most of the cases I've seen
1463 // indicate it's likely non-trivial work would occur in between.
1464 // There may be other more complicated constructs where we could
1465 // eliminate locking but I haven't seen any others appear as hot or
1466 // interesting.
1467 //
1468 // Locking and unlocking have a canonical form in ideal that looks
1469 // roughly like this:
1470 //
1471 //              <obj>
1472 //                | \\------+
1473 //                |  \       \
1474 //                | BoxLock   \
1475 //                |  |   |     \
1476 //                |  |    \     \
1477 //                |  |   FastLock
1478 //                |  |   /
1479 //                |  |  /
1480 //                |  |  |
1481 //
1482 //               Lock
1483 //                |
1484 //            Proj #0
1485 //                |
1486 //            MembarAcquire
1487 //                |
1488 //            Proj #0
1489 //
1490 //            MembarRelease
1491 //                |
1492 //            Proj #0
1493 //                |
1494 //              Unlock
1495 //                |
1496 //            Proj #0
1497 //
1498 //
1499 // This code proceeds by processing Lock nodes during PhaseIterGVN
1500 // and searching back through its control for the proper code
1501 // patterns.  Once it finds a set of lock and unlock operations to
1502 // eliminate they are marked as eliminatable which causes the
1503 // expansion of the Lock and Unlock macro nodes to make the operation a NOP
1504 //
1505 //=============================================================================
1506 
1507 //
1508 // Utility function to skip over uninteresting control nodes.  Nodes skipped are:
1509 //   - copy regions.  (These may not have been optimized away yet.)
1510 //   - eliminated locking nodes
1511 //
1512 static Node *next_control(Node *ctrl) {
1513   if (ctrl == NULL)
1514     return NULL;
1515   while (1) {
1516     if (ctrl->is_Region()) {
1517       RegionNode *r = ctrl->as_Region();
1518       Node *n = r->is_copy();
1519       if (n == NULL)
1520         break;  // hit a region, return it
1521       else
1522         ctrl = n;
1523     } else if (ctrl->is_Proj()) {
1524       Node *in0 = ctrl->in(0);
1525       if (in0->is_AbstractLock() && in0->as_AbstractLock()->is_eliminated()) {
1526         ctrl = in0->in(0);
1527       } else {
1528         break;
1529       }
1530     } else {
1531       break; // found an interesting control
1532     }
1533   }
1534   return ctrl;
1535 }
1536 //
1537 // Given a control, see if it's the control projection of an Unlock which
1538 // operating on the same object as lock.
1539 //
1540 bool AbstractLockNode::find_matching_unlock(const Node* ctrl, LockNode* lock,
1541                                             GrowableArray<AbstractLockNode*> &lock_ops) {
1542   ProjNode *ctrl_proj = (ctrl->is_Proj()) ? ctrl->as_Proj() : NULL;
1543   if (ctrl_proj != NULL && ctrl_proj->_con == TypeFunc::Control) {
1544     Node *n = ctrl_proj->in(0);
1545     if (n != NULL && n->is_Unlock()) {
1546       UnlockNode *unlock = n->as_Unlock();
1547       if (lock->obj_node()->eqv_uncast(unlock->obj_node()) &&
1548           BoxLockNode::same_slot(lock->box_node(), unlock->box_node()) &&
1549           !unlock->is_eliminated()) {
1550         lock_ops.append(unlock);
1551         return true;
1552       }
1553     }
1554   }
1555   return false;
1556 }
1557 
1558 //
1559 // Find the lock matching an unlock.  Returns null if a safepoint
1560 // or complicated control is encountered first.
1561 LockNode *AbstractLockNode::find_matching_lock(UnlockNode* unlock) {
1562   LockNode *lock_result = NULL;
1563   // find the matching lock, or an intervening safepoint
1564   Node *ctrl = next_control(unlock->in(0));
1565   while (1) {
1566     assert(ctrl != NULL, "invalid control graph");
1567     assert(!ctrl->is_Start(), "missing lock for unlock");
1568     if (ctrl->is_top()) break;  // dead control path
1569     if (ctrl->is_Proj()) ctrl = ctrl->in(0);
1570     if (ctrl->is_SafePoint()) {
1571         break;  // found a safepoint (may be the lock we are searching for)
1572     } else if (ctrl->is_Region()) {
1573       // Check for a simple diamond pattern.  Punt on anything more complicated
1574       if (ctrl->req() == 3 && ctrl->in(1) != NULL && ctrl->in(2) != NULL) {
1575         Node *in1 = next_control(ctrl->in(1));
1576         Node *in2 = next_control(ctrl->in(2));
1577         if (((in1->is_IfTrue() && in2->is_IfFalse()) ||
1578              (in2->is_IfTrue() && in1->is_IfFalse())) && (in1->in(0) == in2->in(0))) {
1579           ctrl = next_control(in1->in(0)->in(0));
1580         } else {
1581           break;
1582         }
1583       } else {
1584         break;
1585       }
1586     } else {
1587       ctrl = next_control(ctrl->in(0));  // keep searching
1588     }
1589   }
1590   if (ctrl->is_Lock()) {
1591     LockNode *lock = ctrl->as_Lock();
1592     if (lock->obj_node()->eqv_uncast(unlock->obj_node()) &&
1593         BoxLockNode::same_slot(lock->box_node(), unlock->box_node())) {
1594       lock_result = lock;
1595     }
1596   }
1597   return lock_result;
1598 }
1599 
1600 // This code corresponds to case 3 above.
1601 
1602 bool AbstractLockNode::find_lock_and_unlock_through_if(Node* node, LockNode* lock,
1603                                                        GrowableArray<AbstractLockNode*> &lock_ops) {
1604   Node* if_node = node->in(0);
1605   bool  if_true = node->is_IfTrue();
1606 
1607   if (if_node->is_If() && if_node->outcnt() == 2 && (if_true || node->is_IfFalse())) {
1608     Node *lock_ctrl = next_control(if_node->in(0));
1609     if (find_matching_unlock(lock_ctrl, lock, lock_ops)) {
1610       Node* lock1_node = NULL;
1611       ProjNode* proj = if_node->as_If()->proj_out(!if_true);
1612       if (if_true) {
1613         if (proj->is_IfFalse() && proj->outcnt() == 1) {
1614           lock1_node = proj->unique_out();
1615         }
1616       } else {
1617         if (proj->is_IfTrue() && proj->outcnt() == 1) {
1618           lock1_node = proj->unique_out();
1619         }
1620       }
1621       if (lock1_node != NULL && lock1_node->is_Lock()) {
1622         LockNode *lock1 = lock1_node->as_Lock();
1623         if (lock->obj_node()->eqv_uncast(lock1->obj_node()) &&
1624             BoxLockNode::same_slot(lock->box_node(), lock1->box_node()) &&
1625             !lock1->is_eliminated()) {
1626           lock_ops.append(lock1);
1627           return true;
1628         }
1629       }
1630     }
1631   }
1632 
1633   lock_ops.trunc_to(0);
1634   return false;
1635 }
1636 
1637 bool AbstractLockNode::find_unlocks_for_region(const RegionNode* region, LockNode* lock,
1638                                GrowableArray<AbstractLockNode*> &lock_ops) {
1639   // check each control merging at this point for a matching unlock.
1640   // in(0) should be self edge so skip it.
1641   for (int i = 1; i < (int)region->req(); i++) {
1642     Node *in_node = next_control(region->in(i));
1643     if (in_node != NULL) {
1644       if (find_matching_unlock(in_node, lock, lock_ops)) {
1645         // found a match so keep on checking.
1646         continue;
1647       } else if (find_lock_and_unlock_through_if(in_node, lock, lock_ops)) {
1648         continue;
1649       }
1650 
1651       // If we fall through to here then it was some kind of node we
1652       // don't understand or there wasn't a matching unlock, so give
1653       // up trying to merge locks.
1654       lock_ops.trunc_to(0);
1655       return false;
1656     }
1657   }
1658   return true;
1659 
1660 }
1661 
1662 #ifndef PRODUCT
1663 //
1664 // Create a counter which counts the number of times this lock is acquired
1665 //
1666 void AbstractLockNode::create_lock_counter(JVMState* state) {
1667   _counter = OptoRuntime::new_named_counter(state, NamedCounter::LockCounter);
1668 }
1669 
1670 void AbstractLockNode::set_eliminated_lock_counter() {
1671   if (_counter) {
1672     // Update the counter to indicate that this lock was eliminated.
1673     // The counter update code will stay around even though the
1674     // optimizer will eliminate the lock operation itself.
1675     _counter->set_tag(NamedCounter::EliminatedLockCounter);
1676   }
1677 }
1678 #endif
1679 
1680 //=============================================================================
1681 Node *LockNode::Ideal(PhaseGVN *phase, bool can_reshape) {
1682 
1683   // perform any generic optimizations first (returns 'this' or NULL)
1684   Node *result = SafePointNode::Ideal(phase, can_reshape);
1685   if (result != NULL)  return result;
1686   // Don't bother trying to transform a dead node
1687   if (in(0) && in(0)->is_top())  return NULL;
1688 
1689   // Now see if we can optimize away this lock.  We don't actually
1690   // remove the locking here, we simply set the _eliminate flag which
1691   // prevents macro expansion from expanding the lock.  Since we don't
1692   // modify the graph, the value returned from this function is the
1693   // one computed above.
1694   if (can_reshape && EliminateLocks && !is_non_esc_obj()) {
1695     //
1696     // If we are locking an unescaped object, the lock/unlock is unnecessary
1697     //
1698     ConnectionGraph *cgr = phase->C->congraph();
1699     if (cgr != NULL && cgr->not_global_escape(obj_node())) {
1700       assert(!is_eliminated() || is_coarsened(), "sanity");
1701       // The lock could be marked eliminated by lock coarsening
1702       // code during first IGVN before EA. Replace coarsened flag
1703       // to eliminate all associated locks/unlocks.
1704 #ifdef ASSERT
1705       this->log_lock_optimization(phase->C,"eliminate_lock_set_non_esc1");
1706 #endif
1707       this->set_non_esc_obj();
1708       return result;
1709     }
1710 
1711     //
1712     // Try lock coarsening
1713     //
1714     PhaseIterGVN* iter = phase->is_IterGVN();
1715     if (iter != NULL && !is_eliminated()) {
1716 
1717       GrowableArray<AbstractLockNode*>   lock_ops;
1718 
1719       Node *ctrl = next_control(in(0));
1720 
1721       // now search back for a matching Unlock
1722       if (find_matching_unlock(ctrl, this, lock_ops)) {
1723         // found an unlock directly preceding this lock.  This is the
1724         // case of single unlock directly control dependent on a
1725         // single lock which is the trivial version of case 1 or 2.
1726       } else if (ctrl->is_Region() ) {
1727         if (find_unlocks_for_region(ctrl->as_Region(), this, lock_ops)) {
1728         // found lock preceded by multiple unlocks along all paths
1729         // joining at this point which is case 3 in description above.
1730         }
1731       } else {
1732         // see if this lock comes from either half of an if and the
1733         // predecessors merges unlocks and the other half of the if
1734         // performs a lock.
1735         if (find_lock_and_unlock_through_if(ctrl, this, lock_ops)) {
1736           // found unlock splitting to an if with locks on both branches.
1737         }
1738       }
1739 
1740       if (lock_ops.length() > 0) {
1741         // add ourselves to the list of locks to be eliminated.
1742         lock_ops.append(this);
1743 
1744   #ifndef PRODUCT
1745         if (PrintEliminateLocks) {
1746           int locks = 0;
1747           int unlocks = 0;
1748           for (int i = 0; i < lock_ops.length(); i++) {
1749             AbstractLockNode* lock = lock_ops.at(i);
1750             if (lock->Opcode() == Op_Lock)
1751               locks++;
1752             else
1753               unlocks++;
1754             if (Verbose) {
1755               lock->dump(1);
1756             }
1757           }
1758           tty->print_cr("***Eliminated %d unlocks and %d locks", unlocks, locks);
1759         }
1760   #endif
1761 
1762         // for each of the identified locks, mark them
1763         // as eliminatable
1764         for (int i = 0; i < lock_ops.length(); i++) {
1765           AbstractLockNode* lock = lock_ops.at(i);
1766 
1767           // Mark it eliminated by coarsening and update any counters
1768 #ifdef ASSERT
1769           lock->log_lock_optimization(phase->C, "eliminate_lock_set_coarsened");
1770 #endif
1771           lock->set_coarsened();
1772         }
1773       } else if (ctrl->is_Region() &&
1774                  iter->_worklist.member(ctrl)) {
1775         // We weren't able to find any opportunities but the region this
1776         // lock is control dependent on hasn't been processed yet so put
1777         // this lock back on the worklist so we can check again once any
1778         // region simplification has occurred.
1779         iter->_worklist.push(this);
1780       }
1781     }
1782   }
1783 
1784   return result;
1785 }
1786 
1787 //=============================================================================
1788 bool LockNode::is_nested_lock_region() {
1789   return is_nested_lock_region(NULL);
1790 }
1791 
1792 // p is used for access to compilation log; no logging if NULL
1793 bool LockNode::is_nested_lock_region(Compile * c) {
1794   BoxLockNode* box = box_node()->as_BoxLock();
1795   int stk_slot = box->stack_slot();
1796   if (stk_slot <= 0) {
1797 #ifdef ASSERT
1798     this->log_lock_optimization(c, "eliminate_lock_INLR_1");
1799 #endif
1800     return false; // External lock or it is not Box (Phi node).
1801   }
1802 
1803   // Ignore complex cases: merged locks or multiple locks.
1804   Node* obj = obj_node();
1805   LockNode* unique_lock = NULL;
1806   if (!box->is_simple_lock_region(&unique_lock, obj)) {
1807 #ifdef ASSERT
1808     this->log_lock_optimization(c, "eliminate_lock_INLR_2a");
1809 #endif
1810     return false;
1811   }
1812   if (unique_lock != this) {
1813 #ifdef ASSERT
1814     this->log_lock_optimization(c, "eliminate_lock_INLR_2b");
1815 #endif
1816     return false;
1817   }
1818 
1819   // Look for external lock for the same object.
1820   SafePointNode* sfn = this->as_SafePoint();
1821   JVMState* youngest_jvms = sfn->jvms();
1822   int max_depth = youngest_jvms->depth();
1823   for (int depth = 1; depth <= max_depth; depth++) {
1824     JVMState* jvms = youngest_jvms->of_depth(depth);
1825     int num_mon  = jvms->nof_monitors();
1826     // Loop over monitors
1827     for (int idx = 0; idx < num_mon; idx++) {
1828       Node* obj_node = sfn->monitor_obj(jvms, idx);
1829       BoxLockNode* box_node = sfn->monitor_box(jvms, idx)->as_BoxLock();
1830       if ((box_node->stack_slot() < stk_slot) && obj_node->eqv_uncast(obj)) {
1831         return true;
1832       }
1833     }
1834   }
1835 #ifdef ASSERT
1836   this->log_lock_optimization(c, "eliminate_lock_INLR_3");
1837 #endif
1838   return false;
1839 }
1840 
1841 //=============================================================================
1842 uint UnlockNode::size_of() const { return sizeof(*this); }
1843 
1844 //=============================================================================
1845 Node *UnlockNode::Ideal(PhaseGVN *phase, bool can_reshape) {
1846 
1847   // perform any generic optimizations first (returns 'this' or NULL)
1848   Node *result = SafePointNode::Ideal(phase, can_reshape);
1849   if (result != NULL)  return result;
1850   // Don't bother trying to transform a dead node
1851   if (in(0) && in(0)->is_top())  return NULL;
1852 
1853   // Now see if we can optimize away this unlock.  We don't actually
1854   // remove the unlocking here, we simply set the _eliminate flag which
1855   // prevents macro expansion from expanding the unlock.  Since we don't
1856   // modify the graph, the value returned from this function is the
1857   // one computed above.
1858   // Escape state is defined after Parse phase.
1859   if (can_reshape && EliminateLocks && !is_non_esc_obj()) {
1860     //
1861     // If we are unlocking an unescaped object, the lock/unlock is unnecessary.
1862     //
1863     ConnectionGraph *cgr = phase->C->congraph();
1864     if (cgr != NULL && cgr->not_global_escape(obj_node())) {
1865       assert(!is_eliminated() || is_coarsened(), "sanity");
1866       // The lock could be marked eliminated by lock coarsening
1867       // code during first IGVN before EA. Replace coarsened flag
1868       // to eliminate all associated locks/unlocks.
1869 #ifdef ASSERT
1870       this->log_lock_optimization(phase->C, "eliminate_lock_set_non_esc2");
1871 #endif
1872       this->set_non_esc_obj();
1873     }
1874   }
1875   return result;
1876 }
1877 
1878 const char * AbstractLockNode::kind_as_string() const {
1879   return is_coarsened()   ? "coarsened" :
1880          is_nested()      ? "nested" :
1881          is_non_esc_obj() ? "non_escaping" :
1882          "?";
1883 }
1884 
1885 void AbstractLockNode::log_lock_optimization(Compile *C, const char * tag)  const {
1886   if (C == NULL) {
1887     return;
1888   }
1889   CompileLog* log = C->log();
1890   if (log != NULL) {
1891     log->begin_head("%s lock='%d' compile_id='%d' class_id='%s' kind='%s'",
1892           tag, is_Lock(), C->compile_id(),
1893           is_Unlock() ? "unlock" : is_Lock() ? "lock" : "?",
1894           kind_as_string());
1895     log->stamp();
1896     log->end_head();
1897     JVMState* p = is_Unlock() ? (as_Unlock()->dbg_jvms()) : jvms();
1898     while (p != NULL) {
1899       log->elem("jvms bci='%d' method='%d'", p->bci(), log->identify(p->method()));
1900       p = p->caller();
1901     }
1902     log->tail(tag);
1903   }
1904 }
1905 
1906 bool CallNode::may_modify_arraycopy_helper(const TypeOopPtr* dest_t, const TypeOopPtr *t_oop, PhaseTransform *phase) {
1907   if (dest_t->is_known_instance() && t_oop->is_known_instance()) {
1908     return dest_t->instance_id() == t_oop->instance_id();
1909   }
1910 
1911   if (dest_t->isa_instptr() && !dest_t->klass()->equals(phase->C->env()->Object_klass())) {
1912     // clone
1913     if (t_oop->isa_aryptr()) {
1914       return false;
1915     }
1916     if (!t_oop->isa_instptr()) {
1917       return true;
1918     }
1919     if (dest_t->klass()->is_subtype_of(t_oop->klass()) || t_oop->klass()->is_subtype_of(dest_t->klass())) {
1920       return true;
1921     }
1922     // unrelated
1923     return false;
1924   }
1925 
1926   if (dest_t->isa_aryptr()) {
1927     // arraycopy or array clone
1928     if (t_oop->isa_instptr()) {
1929       return false;
1930     }
1931     if (!t_oop->isa_aryptr()) {
1932       return true;
1933     }
1934 
1935     const Type* elem = dest_t->is_aryptr()->elem();
1936     if (elem == Type::BOTTOM) {
1937       // An array but we don't know what elements are
1938       return true;
1939     }
1940 
1941     dest_t = dest_t->add_offset(Type::OffsetBot)->is_oopptr();
1942     uint dest_alias = phase->C->get_alias_index(dest_t);
1943     uint t_oop_alias = phase->C->get_alias_index(t_oop);
1944 
1945     return dest_alias == t_oop_alias;
1946   }
1947 
1948   return true;
1949 }
1950