1 /*
   2  * Copyright (c) 1997, 2014, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "compiler/compileLog.hpp"
  27 #include "memory/allocation.inline.hpp"
  28 #include "opto/addnode.hpp"
  29 #include "opto/callnode.hpp"
  30 #include "opto/cfgnode.hpp"
  31 #include "opto/connode.hpp"
  32 #include "opto/loopnode.hpp"
  33 #include "opto/matcher.hpp"
  34 #include "opto/mulnode.hpp"
  35 #include "opto/opcodes.hpp"
  36 #include "opto/phaseX.hpp"
  37 #include "opto/subnode.hpp"
  38 #include "runtime/sharedRuntime.hpp"
  39 
  40 // Portions of code courtesy of Clifford Click
  41 
  42 // Optimization - Graph Style
  43 
  44 #include "math.h"
  45 
  46 //=============================================================================
  47 //------------------------------Identity---------------------------------------
  48 // If right input is a constant 0, return the left input.
  49 Node *SubNode::Identity( PhaseTransform *phase ) {
  50   assert(in(1) != this, "Must already have called Value");
  51   assert(in(2) != this, "Must already have called Value");
  52 
  53   // Remove double negation
  54   const Type *zero = add_id();
  55   if( phase->type( in(1) )->higher_equal( zero ) &&
  56       in(2)->Opcode() == Opcode() &&
  57       phase->type( in(2)->in(1) )->higher_equal( zero ) ) {
  58     return in(2)->in(2);
  59   }
  60 
  61   // Convert "(X+Y) - Y" into X and "(X+Y) - X" into Y
  62   if( in(1)->Opcode() == Op_AddI ) {
  63     if( phase->eqv(in(1)->in(2),in(2)) )
  64       return in(1)->in(1);
  65     if (phase->eqv(in(1)->in(1),in(2)))
  66       return in(1)->in(2);
  67 
  68     // Also catch: "(X + Opaque2(Y)) - Y".  In this case, 'Y' is a loop-varying
  69     // trip counter and X is likely to be loop-invariant (that's how O2 Nodes
  70     // are originally used, although the optimizer sometimes jiggers things).
  71     // This folding through an O2 removes a loop-exit use of a loop-varying
  72     // value and generally lowers register pressure in and around the loop.
  73     if( in(1)->in(2)->Opcode() == Op_Opaque2 &&
  74         phase->eqv(in(1)->in(2)->in(1),in(2)) )
  75       return in(1)->in(1);
  76   }
  77 
  78   return ( phase->type( in(2) )->higher_equal( zero ) ) ? in(1) : this;
  79 }
  80 
  81 //------------------------------Value------------------------------------------
  82 // A subtract node differences it's two inputs.
  83 const Type* SubNode::Value_common(PhaseTransform *phase) const {
  84   const Node* in1 = in(1);
  85   const Node* in2 = in(2);
  86   // Either input is TOP ==> the result is TOP
  87   const Type* t1 = (in1 == this) ? Type::TOP : phase->type(in1);
  88   if( t1 == Type::TOP ) return Type::TOP;
  89   const Type* t2 = (in2 == this) ? Type::TOP : phase->type(in2);
  90   if( t2 == Type::TOP ) return Type::TOP;
  91 
  92   // Not correct for SubFnode and AddFNode (must check for infinity)
  93   // Equal?  Subtract is zero
  94   if (in1->eqv_uncast(in2))  return add_id();
  95 
  96   // Either input is BOTTOM ==> the result is the local BOTTOM
  97   if( t1 == Type::BOTTOM || t2 == Type::BOTTOM )
  98     return bottom_type();
  99 
 100   return NULL;
 101 }
 102 
 103 const Type* SubNode::Value(PhaseTransform *phase) const {
 104   const Type* t = Value_common(phase);
 105   if (t != NULL) {
 106     return t;
 107   }
 108   const Type* t1 = phase->type(in(1));
 109   const Type* t2 = phase->type(in(2));
 110   return sub(t1,t2);            // Local flavor of type subtraction
 111 
 112 }
 113 
 114 //=============================================================================
 115 
 116 //------------------------------Helper function--------------------------------
 117 static bool ok_to_convert(Node* inc, Node* iv) {
 118     // Do not collapse (x+c0)-y if "+" is a loop increment, because the
 119     // "-" is loop invariant and collapsing extends the live-range of "x"
 120     // to overlap with the "+", forcing another register to be used in
 121     // the loop.
 122     // This test will be clearer with '&&' (apply DeMorgan's rule)
 123     // but I like the early cutouts that happen here.
 124     const PhiNode *phi;
 125     if( ( !inc->in(1)->is_Phi() ||
 126           !(phi=inc->in(1)->as_Phi()) ||
 127           phi->is_copy() ||
 128           !phi->region()->is_CountedLoop() ||
 129           inc != phi->region()->as_CountedLoop()->incr() )
 130        &&
 131         // Do not collapse (x+c0)-iv if "iv" is a loop induction variable,
 132         // because "x" maybe invariant.
 133         ( !iv->is_loop_iv() )
 134       ) {
 135       return true;
 136     } else {
 137       return false;
 138     }
 139 }
 140 //------------------------------Ideal------------------------------------------
 141 Node *SubINode::Ideal(PhaseGVN *phase, bool can_reshape){
 142   Node *in1 = in(1);
 143   Node *in2 = in(2);
 144   uint op1 = in1->Opcode();
 145   uint op2 = in2->Opcode();
 146 
 147 #ifdef ASSERT
 148   // Check for dead loop
 149   if( phase->eqv( in1, this ) || phase->eqv( in2, this ) ||
 150       ( op1 == Op_AddI || op1 == Op_SubI ) &&
 151       ( phase->eqv( in1->in(1), this ) || phase->eqv( in1->in(2), this ) ||
 152         phase->eqv( in1->in(1), in1  ) || phase->eqv( in1->in(2), in1 ) ) )
 153     assert(false, "dead loop in SubINode::Ideal");
 154 #endif
 155 
 156   const Type *t2 = phase->type( in2 );
 157   if( t2 == Type::TOP ) return NULL;
 158   // Convert "x-c0" into "x+ -c0".
 159   if( t2->base() == Type::Int ){        // Might be bottom or top...
 160     const TypeInt *i = t2->is_int();
 161     if( i->is_con() )
 162       return new (phase->C) AddINode(in1, phase->intcon(-i->get_con()));
 163   }
 164 
 165   // Convert "(x+c0) - y" into (x-y) + c0"
 166   // Do not collapse (x+c0)-y if "+" is a loop increment or
 167   // if "y" is a loop induction variable.
 168   if( op1 == Op_AddI && ok_to_convert(in1, in2) ) {
 169     const Type *tadd = phase->type( in1->in(2) );
 170     if( tadd->singleton() && tadd != Type::TOP ) {
 171       Node *sub2 = phase->transform( new (phase->C) SubINode( in1->in(1), in2 ));
 172       return new (phase->C) AddINode( sub2, in1->in(2) );
 173     }
 174   }
 175 
 176 
 177   // Convert "x - (y+c0)" into "(x-y) - c0"
 178   // Need the same check as in above optimization but reversed.
 179   if (op2 == Op_AddI && ok_to_convert(in2, in1)) {
 180     Node* in21 = in2->in(1);
 181     Node* in22 = in2->in(2);
 182     const TypeInt* tcon = phase->type(in22)->isa_int();
 183     if (tcon != NULL && tcon->is_con()) {
 184       Node* sub2 = phase->transform( new (phase->C) SubINode(in1, in21) );
 185       Node* neg_c0 = phase->intcon(- tcon->get_con());
 186       return new (phase->C) AddINode(sub2, neg_c0);
 187     }
 188   }
 189 
 190   const Type *t1 = phase->type( in1 );
 191   if( t1 == Type::TOP ) return NULL;
 192 
 193 #ifdef ASSERT
 194   // Check for dead loop
 195   if( ( op2 == Op_AddI || op2 == Op_SubI ) &&
 196       ( phase->eqv( in2->in(1), this ) || phase->eqv( in2->in(2), this ) ||
 197         phase->eqv( in2->in(1), in2  ) || phase->eqv( in2->in(2), in2  ) ) )
 198     assert(false, "dead loop in SubINode::Ideal");
 199 #endif
 200 
 201   // Convert "x - (x+y)" into "-y"
 202   if( op2 == Op_AddI &&
 203       phase->eqv( in1, in2->in(1) ) )
 204     return new (phase->C) SubINode( phase->intcon(0),in2->in(2));
 205   // Convert "(x-y) - x" into "-y"
 206   if( op1 == Op_SubI &&
 207       phase->eqv( in1->in(1), in2 ) )
 208     return new (phase->C) SubINode( phase->intcon(0),in1->in(2));
 209   // Convert "x - (y+x)" into "-y"
 210   if( op2 == Op_AddI &&
 211       phase->eqv( in1, in2->in(2) ) )
 212     return new (phase->C) SubINode( phase->intcon(0),in2->in(1));
 213 
 214   // Convert "0 - (x-y)" into "y-x"
 215   if( t1 == TypeInt::ZERO && op2 == Op_SubI )
 216     return new (phase->C) SubINode( in2->in(2), in2->in(1) );
 217 
 218   // Convert "0 - (x+con)" into "-con-x"
 219   jint con;
 220   if( t1 == TypeInt::ZERO && op2 == Op_AddI &&
 221       (con = in2->in(2)->find_int_con(0)) != 0 )
 222     return new (phase->C) SubINode( phase->intcon(-con), in2->in(1) );
 223 
 224   // Convert "(X+A) - (X+B)" into "A - B"
 225   if( op1 == Op_AddI && op2 == Op_AddI && in1->in(1) == in2->in(1) )
 226     return new (phase->C) SubINode( in1->in(2), in2->in(2) );
 227 
 228   // Convert "(A+X) - (B+X)" into "A - B"
 229   if( op1 == Op_AddI && op2 == Op_AddI && in1->in(2) == in2->in(2) )
 230     return new (phase->C) SubINode( in1->in(1), in2->in(1) );
 231 
 232   // Convert "(A+X) - (X+B)" into "A - B"
 233   if( op1 == Op_AddI && op2 == Op_AddI && in1->in(2) == in2->in(1) )
 234     return new (phase->C) SubINode( in1->in(1), in2->in(2) );
 235 
 236   // Convert "(X+A) - (B+X)" into "A - B"
 237   if( op1 == Op_AddI && op2 == Op_AddI && in1->in(1) == in2->in(2) )
 238     return new (phase->C) SubINode( in1->in(2), in2->in(1) );
 239 
 240   // Convert "A-(B-C)" into (A+C)-B", since add is commutative and generally
 241   // nicer to optimize than subtract.
 242   if( op2 == Op_SubI && in2->outcnt() == 1) {
 243     Node *add1 = phase->transform( new (phase->C) AddINode( in1, in2->in(2) ) );
 244     return new (phase->C) SubINode( add1, in2->in(1) );
 245   }
 246 
 247   return NULL;
 248 }
 249 
 250 //------------------------------sub--------------------------------------------
 251 // A subtract node differences it's two inputs.
 252 const Type *SubINode::sub( const Type *t1, const Type *t2 ) const {
 253   const TypeInt *r0 = t1->is_int(); // Handy access
 254   const TypeInt *r1 = t2->is_int();
 255   int32 lo = java_subtract(r0->_lo, r1->_hi);
 256   int32 hi = java_subtract(r0->_hi, r1->_lo);
 257 
 258   // We next check for 32-bit overflow.
 259   // If that happens, we just assume all integers are possible.
 260   if( (((r0->_lo ^ r1->_hi) >= 0) ||    // lo ends have same signs OR
 261        ((r0->_lo ^      lo) >= 0)) &&   // lo results have same signs AND
 262       (((r0->_hi ^ r1->_lo) >= 0) ||    // hi ends have same signs OR
 263        ((r0->_hi ^      hi) >= 0)) )    // hi results have same signs
 264     return TypeInt::make(lo,hi,MAX2(r0->_widen,r1->_widen));
 265   else                          // Overflow; assume all integers
 266     return TypeInt::INT;
 267 }
 268 
 269 //=============================================================================
 270 //------------------------------Ideal------------------------------------------
 271 Node *SubLNode::Ideal(PhaseGVN *phase, bool can_reshape) {
 272   Node *in1 = in(1);
 273   Node *in2 = in(2);
 274   uint op1 = in1->Opcode();
 275   uint op2 = in2->Opcode();
 276 
 277 #ifdef ASSERT
 278   // Check for dead loop
 279   if( phase->eqv( in1, this ) || phase->eqv( in2, this ) ||
 280       ( op1 == Op_AddL || op1 == Op_SubL ) &&
 281       ( phase->eqv( in1->in(1), this ) || phase->eqv( in1->in(2), this ) ||
 282         phase->eqv( in1->in(1), in1  ) || phase->eqv( in1->in(2), in1  ) ) )
 283     assert(false, "dead loop in SubLNode::Ideal");
 284 #endif
 285 
 286   if( phase->type( in2 ) == Type::TOP ) return NULL;
 287   const TypeLong *i = phase->type( in2 )->isa_long();
 288   // Convert "x-c0" into "x+ -c0".
 289   if( i &&                      // Might be bottom or top...
 290       i->is_con() )
 291     return new (phase->C) AddLNode(in1, phase->longcon(-i->get_con()));
 292 
 293   // Convert "(x+c0) - y" into (x-y) + c0"
 294   // Do not collapse (x+c0)-y if "+" is a loop increment or
 295   // if "y" is a loop induction variable.
 296   if( op1 == Op_AddL && ok_to_convert(in1, in2) ) {
 297     Node *in11 = in1->in(1);
 298     const Type *tadd = phase->type( in1->in(2) );
 299     if( tadd->singleton() && tadd != Type::TOP ) {
 300       Node *sub2 = phase->transform( new (phase->C) SubLNode( in11, in2 ));
 301       return new (phase->C) AddLNode( sub2, in1->in(2) );
 302     }
 303   }
 304 
 305   // Convert "x - (y+c0)" into "(x-y) - c0"
 306   // Need the same check as in above optimization but reversed.
 307   if (op2 == Op_AddL && ok_to_convert(in2, in1)) {
 308     Node* in21 = in2->in(1);
 309     Node* in22 = in2->in(2);
 310     const TypeLong* tcon = phase->type(in22)->isa_long();
 311     if (tcon != NULL && tcon->is_con()) {
 312       Node* sub2 = phase->transform( new (phase->C) SubLNode(in1, in21) );
 313       Node* neg_c0 = phase->longcon(- tcon->get_con());
 314       return new (phase->C) AddLNode(sub2, neg_c0);
 315     }
 316   }
 317 
 318   const Type *t1 = phase->type( in1 );
 319   if( t1 == Type::TOP ) return NULL;
 320 
 321 #ifdef ASSERT
 322   // Check for dead loop
 323   if( ( op2 == Op_AddL || op2 == Op_SubL ) &&
 324       ( phase->eqv( in2->in(1), this ) || phase->eqv( in2->in(2), this ) ||
 325         phase->eqv( in2->in(1), in2  ) || phase->eqv( in2->in(2), in2  ) ) )
 326     assert(false, "dead loop in SubLNode::Ideal");
 327 #endif
 328 
 329   // Convert "x - (x+y)" into "-y"
 330   if( op2 == Op_AddL &&
 331       phase->eqv( in1, in2->in(1) ) )
 332     return new (phase->C) SubLNode( phase->makecon(TypeLong::ZERO), in2->in(2));
 333   // Convert "x - (y+x)" into "-y"
 334   if( op2 == Op_AddL &&
 335       phase->eqv( in1, in2->in(2) ) )
 336     return new (phase->C) SubLNode( phase->makecon(TypeLong::ZERO),in2->in(1));
 337 
 338   // Convert "0 - (x-y)" into "y-x"
 339   if( phase->type( in1 ) == TypeLong::ZERO && op2 == Op_SubL )
 340     return new (phase->C) SubLNode( in2->in(2), in2->in(1) );
 341 
 342   // Convert "(X+A) - (X+B)" into "A - B"
 343   if( op1 == Op_AddL && op2 == Op_AddL && in1->in(1) == in2->in(1) )
 344     return new (phase->C) SubLNode( in1->in(2), in2->in(2) );
 345 
 346   // Convert "(A+X) - (B+X)" into "A - B"
 347   if( op1 == Op_AddL && op2 == Op_AddL && in1->in(2) == in2->in(2) )
 348     return new (phase->C) SubLNode( in1->in(1), in2->in(1) );
 349 
 350   // Convert "A-(B-C)" into (A+C)-B"
 351   if( op2 == Op_SubL && in2->outcnt() == 1) {
 352     Node *add1 = phase->transform( new (phase->C) AddLNode( in1, in2->in(2) ) );
 353     return new (phase->C) SubLNode( add1, in2->in(1) );
 354   }
 355 
 356   return NULL;
 357 }
 358 
 359 //------------------------------sub--------------------------------------------
 360 // A subtract node differences it's two inputs.
 361 const Type *SubLNode::sub( const Type *t1, const Type *t2 ) const {
 362   const TypeLong *r0 = t1->is_long(); // Handy access
 363   const TypeLong *r1 = t2->is_long();
 364   jlong lo = java_subtract(r0->_lo, r1->_hi);
 365   jlong hi = java_subtract(r0->_hi, r1->_lo);
 366 
 367   // We next check for 32-bit overflow.
 368   // If that happens, we just assume all integers are possible.
 369   if( (((r0->_lo ^ r1->_hi) >= 0) ||    // lo ends have same signs OR
 370        ((r0->_lo ^      lo) >= 0)) &&   // lo results have same signs AND
 371       (((r0->_hi ^ r1->_lo) >= 0) ||    // hi ends have same signs OR
 372        ((r0->_hi ^      hi) >= 0)) )    // hi results have same signs
 373     return TypeLong::make(lo,hi,MAX2(r0->_widen,r1->_widen));
 374   else                          // Overflow; assume all integers
 375     return TypeLong::LONG;
 376 }
 377 
 378 //=============================================================================
 379 //------------------------------Value------------------------------------------
 380 // A subtract node differences its two inputs.
 381 const Type *SubFPNode::Value( PhaseTransform *phase ) const {
 382   const Node* in1 = in(1);
 383   const Node* in2 = in(2);
 384   // Either input is TOP ==> the result is TOP
 385   const Type* t1 = (in1 == this) ? Type::TOP : phase->type(in1);
 386   if( t1 == Type::TOP ) return Type::TOP;
 387   const Type* t2 = (in2 == this) ? Type::TOP : phase->type(in2);
 388   if( t2 == Type::TOP ) return Type::TOP;
 389 
 390   // if both operands are infinity of same sign, the result is NaN; do
 391   // not replace with zero
 392   if( (t1->is_finite() && t2->is_finite()) ) {
 393     if( phase->eqv(in1, in2) ) return add_id();
 394   }
 395 
 396   // Either input is BOTTOM ==> the result is the local BOTTOM
 397   const Type *bot = bottom_type();
 398   if( (t1 == bot) || (t2 == bot) ||
 399       (t1 == Type::BOTTOM) || (t2 == Type::BOTTOM) )
 400     return bot;
 401 
 402   return sub(t1,t2);            // Local flavor of type subtraction
 403 }
 404 
 405 
 406 //=============================================================================
 407 //------------------------------Ideal------------------------------------------
 408 Node *SubFNode::Ideal(PhaseGVN *phase, bool can_reshape) {
 409   const Type *t2 = phase->type( in(2) );
 410   // Convert "x-c0" into "x+ -c0".
 411   if( t2->base() == Type::FloatCon ) {  // Might be bottom or top...
 412     // return new (phase->C, 3) AddFNode(in(1), phase->makecon( TypeF::make(-t2->getf()) ) );
 413   }
 414 
 415   // Not associative because of boundary conditions (infinity)
 416   if( IdealizedNumerics && !phase->C->method()->is_strict() ) {
 417     // Convert "x - (x+y)" into "-y"
 418     if( in(2)->is_Add() &&
 419         phase->eqv(in(1),in(2)->in(1) ) )
 420       return new (phase->C) SubFNode( phase->makecon(TypeF::ZERO),in(2)->in(2));
 421   }
 422 
 423   // Cannot replace 0.0-X with -X because a 'fsub' bytecode computes
 424   // 0.0-0.0 as +0.0, while a 'fneg' bytecode computes -0.0.
 425   //if( phase->type(in(1)) == TypeF::ZERO )
 426   //return new (phase->C, 2) NegFNode(in(2));
 427 
 428   return NULL;
 429 }
 430 
 431 //------------------------------sub--------------------------------------------
 432 // A subtract node differences its two inputs.
 433 const Type *SubFNode::sub( const Type *t1, const Type *t2 ) const {
 434   // no folding if one of operands is infinity or NaN, do not do constant folding
 435   if( g_isfinite(t1->getf()) && g_isfinite(t2->getf()) ) {
 436     return TypeF::make( t1->getf() - t2->getf() );
 437   }
 438   else if( g_isnan(t1->getf()) ) {
 439     return t1;
 440   }
 441   else if( g_isnan(t2->getf()) ) {
 442     return t2;
 443   }
 444   else {
 445     return Type::FLOAT;
 446   }
 447 }
 448 
 449 //=============================================================================
 450 //------------------------------Ideal------------------------------------------
 451 Node *SubDNode::Ideal(PhaseGVN *phase, bool can_reshape){
 452   const Type *t2 = phase->type( in(2) );
 453   // Convert "x-c0" into "x+ -c0".
 454   if( t2->base() == Type::DoubleCon ) { // Might be bottom or top...
 455     // return new (phase->C, 3) AddDNode(in(1), phase->makecon( TypeD::make(-t2->getd()) ) );
 456   }
 457 
 458   // Not associative because of boundary conditions (infinity)
 459   if( IdealizedNumerics && !phase->C->method()->is_strict() ) {
 460     // Convert "x - (x+y)" into "-y"
 461     if( in(2)->is_Add() &&
 462         phase->eqv(in(1),in(2)->in(1) ) )
 463       return new (phase->C) SubDNode( phase->makecon(TypeD::ZERO),in(2)->in(2));
 464   }
 465 
 466   // Cannot replace 0.0-X with -X because a 'dsub' bytecode computes
 467   // 0.0-0.0 as +0.0, while a 'dneg' bytecode computes -0.0.
 468   //if( phase->type(in(1)) == TypeD::ZERO )
 469   //return new (phase->C, 2) NegDNode(in(2));
 470 
 471   return NULL;
 472 }
 473 
 474 //------------------------------sub--------------------------------------------
 475 // A subtract node differences its two inputs.
 476 const Type *SubDNode::sub( const Type *t1, const Type *t2 ) const {
 477   // no folding if one of operands is infinity or NaN, do not do constant folding
 478   if( g_isfinite(t1->getd()) && g_isfinite(t2->getd()) ) {
 479     return TypeD::make( t1->getd() - t2->getd() );
 480   }
 481   else if( g_isnan(t1->getd()) ) {
 482     return t1;
 483   }
 484   else if( g_isnan(t2->getd()) ) {
 485     return t2;
 486   }
 487   else {
 488     return Type::DOUBLE;
 489   }
 490 }
 491 
 492 //=============================================================================
 493 //------------------------------Idealize---------------------------------------
 494 // Unlike SubNodes, compare must still flatten return value to the
 495 // range -1, 0, 1.
 496 // And optimizations like those for (X + Y) - X fail if overflow happens.
 497 Node *CmpNode::Identity( PhaseTransform *phase ) {
 498   return this;
 499 }
 500 
 501 //=============================================================================
 502 //------------------------------cmp--------------------------------------------
 503 // Simplify a CmpI (compare 2 integers) node, based on local information.
 504 // If both inputs are constants, compare them.
 505 const Type *CmpINode::sub( const Type *t1, const Type *t2 ) const {
 506   const TypeInt *r0 = t1->is_int(); // Handy access
 507   const TypeInt *r1 = t2->is_int();
 508 
 509   if( r0->_hi < r1->_lo )       // Range is always low?
 510     return TypeInt::CC_LT;
 511   else if( r0->_lo > r1->_hi )  // Range is always high?
 512     return TypeInt::CC_GT;
 513 
 514   else if( r0->is_con() && r1->is_con() ) { // comparing constants?
 515     assert(r0->get_con() == r1->get_con(), "must be equal");
 516     return TypeInt::CC_EQ;      // Equal results.
 517   } else if( r0->_hi == r1->_lo ) // Range is never high?
 518     return TypeInt::CC_LE;
 519   else if( r0->_lo == r1->_hi ) // Range is never low?
 520     return TypeInt::CC_GE;
 521   return TypeInt::CC;           // else use worst case results
 522 }
 523 
 524 // Simplify a CmpU (compare 2 integers) node, based on local information.
 525 // If both inputs are constants, compare them.
 526 const Type *CmpUNode::sub( const Type *t1, const Type *t2 ) const {
 527   assert(!t1->isa_ptr(), "obsolete usage of CmpU");
 528 
 529   // comparing two unsigned ints
 530   const TypeInt *r0 = t1->is_int();   // Handy access
 531   const TypeInt *r1 = t2->is_int();
 532 
 533   // Current installed version
 534   // Compare ranges for non-overlap
 535   juint lo0 = r0->_lo;
 536   juint hi0 = r0->_hi;
 537   juint lo1 = r1->_lo;
 538   juint hi1 = r1->_hi;
 539 
 540   // If either one has both negative and positive values,
 541   // it therefore contains both 0 and -1, and since [0..-1] is the
 542   // full unsigned range, the type must act as an unsigned bottom.
 543   bool bot0 = ((jint)(lo0 ^ hi0) < 0);
 544   bool bot1 = ((jint)(lo1 ^ hi1) < 0);
 545 
 546   if (bot0 || bot1) {
 547     // All unsigned values are LE -1 and GE 0.
 548     if (lo0 == 0 && hi0 == 0) {
 549       return TypeInt::CC_LE;            //   0 <= bot
 550     } else if ((jint)lo0 == -1 && (jint)hi0 == -1) {
 551       return TypeInt::CC_GE;            // -1 >= bot
 552     } else if (lo1 == 0 && hi1 == 0) {
 553       return TypeInt::CC_GE;            // bot >= 0
 554     } else if ((jint)lo1 == -1 && (jint)hi1 == -1) {
 555       return TypeInt::CC_LE;            // bot <= -1
 556     }
 557   } else {
 558     // We can use ranges of the form [lo..hi] if signs are the same.
 559     assert(lo0 <= hi0 && lo1 <= hi1, "unsigned ranges are valid");
 560     // results are reversed, '-' > '+' for unsigned compare
 561     if (hi0 < lo1) {
 562       return TypeInt::CC_LT;            // smaller
 563     } else if (lo0 > hi1) {
 564       return TypeInt::CC_GT;            // greater
 565     } else if (hi0 == lo1 && lo0 == hi1) {
 566       return TypeInt::CC_EQ;            // Equal results
 567     } else if (lo0 >= hi1) {
 568       return TypeInt::CC_GE;
 569     } else if (hi0 <= lo1) {
 570       // Check for special case in Hashtable::get.  (See below.)
 571       if ((jint)lo0 >= 0 && (jint)lo1 >= 0 && is_index_range_check())
 572         return TypeInt::CC_LT;
 573       return TypeInt::CC_LE;
 574     }
 575   }
 576   // Check for special case in Hashtable::get - the hash index is
 577   // mod'ed to the table size so the following range check is useless.
 578   // Check for: (X Mod Y) CmpU Y, where the mod result and Y both have
 579   // to be positive.
 580   // (This is a gross hack, since the sub method never
 581   // looks at the structure of the node in any other case.)
 582   if ((jint)lo0 >= 0 && (jint)lo1 >= 0 && is_index_range_check())
 583     return TypeInt::CC_LT;
 584   return TypeInt::CC;                   // else use worst case results
 585 }
 586 
 587 const Type* CmpUNode::Value(PhaseTransform *phase) const {
 588   const Type* t = SubNode::Value_common(phase);
 589   if (t != NULL) {
 590     return t;
 591   }
 592   const Node* in1 = in(1);
 593   const Node* in2 = in(2);
 594   const Type* t1 = phase->type(in1);
 595   const Type* t2 = phase->type(in2);
 596   assert(t1->isa_int(), "CmpU has only Int type inputs");
 597   if (t2 == TypeInt::INT) { // Compare to bottom?
 598     return bottom_type();
 599   }
 600   uint in1_op = in1->Opcode();
 601   if (in1_op == Op_AddI || in1_op == Op_SubI) {
 602     // The problem rise when result of AddI(SubI) may overflow
 603     // signed integer value. Let say the input type is
 604     // [256, maxint] then +128 will create 2 ranges due to
 605     // overflow: [minint, minint+127] and [384, maxint].
 606     // But C2 type system keep only 1 type range and as result
 607     // it use general [minint, maxint] for this case which we
 608     // can't optimize.
 609     //
 610     // Make 2 separate type ranges based on types of AddI(SubI) inputs
 611     // and compare results of their compare. If results are the same
 612     // CmpU node can be optimized.
 613     const Node* in11 = in1->in(1);
 614     const Node* in12 = in1->in(2);
 615     const Type* t11 = (in11 == in1) ? Type::TOP : phase->type(in11);
 616     const Type* t12 = (in12 == in1) ? Type::TOP : phase->type(in12);
 617     // Skip cases when input types are top or bottom.
 618     if ((t11 != Type::TOP) && (t11 != TypeInt::INT) &&
 619         (t12 != Type::TOP) && (t12 != TypeInt::INT)) {
 620       const TypeInt *r0 = t11->is_int();
 621       const TypeInt *r1 = t12->is_int();
 622       jlong lo_r0 = r0->_lo;
 623       jlong hi_r0 = r0->_hi;
 624       jlong lo_r1 = r1->_lo;
 625       jlong hi_r1 = r1->_hi;
 626       if (in1_op == Op_SubI) {
 627         jlong tmp = hi_r1;
 628         hi_r1 = -lo_r1;
 629         lo_r1 = -tmp;
 630         // Note, for substructing [minint,x] type range
 631         // long arithmetic provides correct overflow answer.
 632         // The confusion come from the fact that in 32-bit
 633         // -minint == minint but in 64-bit -minint == maxint+1.
 634       }
 635       jlong lo_long = lo_r0 + lo_r1;
 636       jlong hi_long = hi_r0 + hi_r1;
 637       int lo_tr1 = min_jint;
 638       int hi_tr1 = (int)hi_long;
 639       int lo_tr2 = (int)lo_long;
 640       int hi_tr2 = max_jint;
 641       bool underflow = lo_long != (jlong)lo_tr2;
 642       bool overflow  = hi_long != (jlong)hi_tr1;
 643       // Use sub(t1, t2) when there is no overflow (one type range)
 644       // or when both overflow and underflow (too complex).
 645       if ((underflow != overflow) && (hi_tr1 < lo_tr2)) {
 646         // Overflow only on one boundary, compare 2 separate type ranges.
 647         int w = MAX2(r0->_widen, r1->_widen); // _widen does not matter here
 648         const TypeInt* tr1 = TypeInt::make(lo_tr1, hi_tr1, w);
 649         const TypeInt* tr2 = TypeInt::make(lo_tr2, hi_tr2, w);
 650         const Type* cmp1 = sub(tr1, t2);
 651         const Type* cmp2 = sub(tr2, t2);
 652         if (cmp1 == cmp2) {
 653           return cmp1; // Hit!
 654         }
 655       }
 656     }
 657   }
 658 
 659   return sub(t1, t2);            // Local flavor of type subtraction
 660 }
 661 
 662 bool CmpUNode::is_index_range_check() const {
 663   // Check for the "(X ModI Y) CmpU Y" shape
 664   return (in(1)->Opcode() == Op_ModI &&
 665           in(1)->in(2)->eqv_uncast(in(2)));
 666 }
 667 
 668 //------------------------------Idealize---------------------------------------
 669 Node *CmpINode::Ideal( PhaseGVN *phase, bool can_reshape ) {
 670   if (phase->type(in(2))->higher_equal(TypeInt::ZERO)) {
 671     switch (in(1)->Opcode()) {
 672     case Op_CmpL3:              // Collapse a CmpL3/CmpI into a CmpL
 673       return new (phase->C) CmpLNode(in(1)->in(1),in(1)->in(2));
 674     case Op_CmpF3:              // Collapse a CmpF3/CmpI into a CmpF
 675       return new (phase->C) CmpFNode(in(1)->in(1),in(1)->in(2));
 676     case Op_CmpD3:              // Collapse a CmpD3/CmpI into a CmpD
 677       return new (phase->C) CmpDNode(in(1)->in(1),in(1)->in(2));
 678     //case Op_SubI:
 679       // If (x - y) cannot overflow, then ((x - y) <?> 0)
 680       // can be turned into (x <?> y).
 681       // This is handled (with more general cases) by Ideal_sub_algebra.
 682     }
 683   }
 684   return NULL;                  // No change
 685 }
 686 
 687 
 688 //=============================================================================
 689 // Simplify a CmpL (compare 2 longs ) node, based on local information.
 690 // If both inputs are constants, compare them.
 691 const Type *CmpLNode::sub( const Type *t1, const Type *t2 ) const {
 692   const TypeLong *r0 = t1->is_long(); // Handy access
 693   const TypeLong *r1 = t2->is_long();
 694 
 695   if( r0->_hi < r1->_lo )       // Range is always low?
 696     return TypeInt::CC_LT;
 697   else if( r0->_lo > r1->_hi )  // Range is always high?
 698     return TypeInt::CC_GT;
 699 
 700   else if( r0->is_con() && r1->is_con() ) { // comparing constants?
 701     assert(r0->get_con() == r1->get_con(), "must be equal");
 702     return TypeInt::CC_EQ;      // Equal results.
 703   } else if( r0->_hi == r1->_lo ) // Range is never high?
 704     return TypeInt::CC_LE;
 705   else if( r0->_lo == r1->_hi ) // Range is never low?
 706     return TypeInt::CC_GE;
 707   return TypeInt::CC;           // else use worst case results
 708 }
 709 
 710 
 711 // Simplify a CmpUL (compare 2 unsigned longs) node, based on local information.
 712 // If both inputs are constants, compare them.
 713 const Type* CmpULNode::sub(const Type* t1, const Type* t2) const {
 714   assert(!t1->isa_ptr(), "obsolete usage of CmpUL");
 715 
 716   // comparing two unsigned longs
 717   const TypeLong* r0 = t1->is_long();   // Handy access
 718   const TypeLong* r1 = t2->is_long();
 719 
 720   // Current installed version
 721   // Compare ranges for non-overlap
 722   julong lo0 = r0->_lo;
 723   julong hi0 = r0->_hi;
 724   julong lo1 = r1->_lo;
 725   julong hi1 = r1->_hi;
 726 
 727   // If either one has both negative and positive values,
 728   // it therefore contains both 0 and -1, and since [0..-1] is the
 729   // full unsigned range, the type must act as an unsigned bottom.
 730   bool bot0 = ((jlong)(lo0 ^ hi0) < 0);
 731   bool bot1 = ((jlong)(lo1 ^ hi1) < 0);
 732 
 733   if (bot0 || bot1) {
 734     // All unsigned values are LE -1 and GE 0.
 735     if (lo0 == 0 && hi0 == 0) {
 736       return TypeInt::CC_LE;            //   0 <= bot
 737     } else if ((jlong)lo0 == -1 && (jlong)hi0 == -1) {
 738       return TypeInt::CC_GE;            // -1 >= bot
 739     } else if (lo1 == 0 && hi1 == 0) {
 740       return TypeInt::CC_GE;            // bot >= 0
 741     } else if ((jlong)lo1 == -1 && (jlong)hi1 == -1) {
 742       return TypeInt::CC_LE;            // bot <= -1
 743     }
 744   } else {
 745     // We can use ranges of the form [lo..hi] if signs are the same.
 746     assert(lo0 <= hi0 && lo1 <= hi1, "unsigned ranges are valid");
 747     // results are reversed, '-' > '+' for unsigned compare
 748     if (hi0 < lo1) {
 749       return TypeInt::CC_LT;            // smaller
 750     } else if (lo0 > hi1) {
 751       return TypeInt::CC_GT;            // greater
 752     } else if (hi0 == lo1 && lo0 == hi1) {
 753       return TypeInt::CC_EQ;            // Equal results
 754     } else if (lo0 >= hi1) {
 755       return TypeInt::CC_GE;
 756     } else if (hi0 <= lo1) {
 757       return TypeInt::CC_LE;
 758     }
 759   }
 760 
 761   return TypeInt::CC;                   // else use worst case results
 762 }
 763 
 764 //=============================================================================
 765 //------------------------------sub--------------------------------------------
 766 // Simplify an CmpP (compare 2 pointers) node, based on local information.
 767 // If both inputs are constants, compare them.
 768 const Type *CmpPNode::sub( const Type *t1, const Type *t2 ) const {
 769   const TypePtr *r0 = t1->is_ptr(); // Handy access
 770   const TypePtr *r1 = t2->is_ptr();
 771 
 772   // Undefined inputs makes for an undefined result
 773   if( TypePtr::above_centerline(r0->_ptr) ||
 774       TypePtr::above_centerline(r1->_ptr) )
 775     return Type::TOP;
 776 
 777   if (r0 == r1 && r0->singleton()) {
 778     // Equal pointer constants (klasses, nulls, etc.)
 779     return TypeInt::CC_EQ;
 780   }
 781 
 782   // See if it is 2 unrelated classes.
 783   const TypeOopPtr* p0 = r0->isa_oopptr();
 784   const TypeOopPtr* p1 = r1->isa_oopptr();
 785   if (p0 && p1) {
 786     Node* in1 = in(1)->uncast();
 787     Node* in2 = in(2)->uncast();
 788     AllocateNode* alloc1 = AllocateNode::Ideal_allocation(in1, NULL);
 789     AllocateNode* alloc2 = AllocateNode::Ideal_allocation(in2, NULL);
 790     if (MemNode::detect_ptr_independence(in1, alloc1, in2, alloc2, NULL)) {
 791       return TypeInt::CC_GT;  // different pointers
 792     }
 793     ciKlass* klass0 = p0->klass();
 794     bool    xklass0 = p0->klass_is_exact();
 795     ciKlass* klass1 = p1->klass();
 796     bool    xklass1 = p1->klass_is_exact();
 797     int kps = (p0->isa_klassptr()?1:0) + (p1->isa_klassptr()?1:0);
 798     if (klass0 && klass1 &&
 799         kps != 1 &&             // both or neither are klass pointers
 800         klass0->is_loaded() && !klass0->is_interface() && // do not trust interfaces
 801         klass1->is_loaded() && !klass1->is_interface() &&
 802         (!klass0->is_obj_array_klass() ||
 803          !klass0->as_obj_array_klass()->base_element_klass()->is_interface()) &&
 804         (!klass1->is_obj_array_klass() ||
 805          !klass1->as_obj_array_klass()->base_element_klass()->is_interface())) {
 806       bool unrelated_classes = false;
 807       // See if neither subclasses the other, or if the class on top
 808       // is precise.  In either of these cases, the compare is known
 809       // to fail if at least one of the pointers is provably not null.
 810       if (klass0->equals(klass1)) {  // if types are unequal but klasses are equal
 811         // Do nothing; we know nothing for imprecise types
 812       } else if (klass0->is_subtype_of(klass1)) {
 813         // If klass1's type is PRECISE, then classes are unrelated.
 814         unrelated_classes = xklass1;
 815       } else if (klass1->is_subtype_of(klass0)) {
 816         // If klass0's type is PRECISE, then classes are unrelated.
 817         unrelated_classes = xklass0;
 818       } else {                  // Neither subtypes the other
 819         unrelated_classes = true;
 820       }
 821       if (unrelated_classes) {
 822         // The oops classes are known to be unrelated. If the joined PTRs of
 823         // two oops is not Null and not Bottom, then we are sure that one
 824         // of the two oops is non-null, and the comparison will always fail.
 825         TypePtr::PTR jp = r0->join_ptr(r1->_ptr);
 826         if (jp != TypePtr::Null && jp != TypePtr::BotPTR) {
 827           return TypeInt::CC_GT;
 828         }
 829       }
 830     }
 831   }
 832 
 833   // Known constants can be compared exactly
 834   // Null can be distinguished from any NotNull pointers
 835   // Unknown inputs makes an unknown result
 836   if( r0->singleton() ) {
 837     intptr_t bits0 = r0->get_con();
 838     if( r1->singleton() )
 839       return bits0 == r1->get_con() ? TypeInt::CC_EQ : TypeInt::CC_GT;
 840     return ( r1->_ptr == TypePtr::NotNull && bits0==0 ) ? TypeInt::CC_GT : TypeInt::CC;
 841   } else if( r1->singleton() ) {
 842     intptr_t bits1 = r1->get_con();
 843     return ( r0->_ptr == TypePtr::NotNull && bits1==0 ) ? TypeInt::CC_GT : TypeInt::CC;
 844   } else
 845     return TypeInt::CC;
 846 }
 847 
 848 static inline Node* isa_java_mirror_load(PhaseGVN* phase, Node* n) {
 849   // Return the klass node for
 850   //   LoadP(AddP(foo:Klass, #java_mirror))
 851   //   or NULL if not matching.
 852   if (n->Opcode() != Op_LoadP) return NULL;
 853 
 854   const TypeInstPtr* tp = phase->type(n)->isa_instptr();
 855   if (!tp || tp->klass() != phase->C->env()->Class_klass()) return NULL;
 856 
 857   Node* adr = n->in(MemNode::Address);
 858   intptr_t off = 0;
 859   Node* k = AddPNode::Ideal_base_and_offset(adr, phase, off);
 860   if (k == NULL)  return NULL;
 861   const TypeKlassPtr* tkp = phase->type(k)->isa_klassptr();
 862   if (!tkp || off != in_bytes(Klass::java_mirror_offset())) return NULL;
 863 
 864   // We've found the klass node of a Java mirror load.
 865   return k;
 866 }
 867 
 868 static inline Node* isa_const_java_mirror(PhaseGVN* phase, Node* n) {
 869   // for ConP(Foo.class) return ConP(Foo.klass)
 870   // otherwise return NULL
 871   if (!n->is_Con()) return NULL;
 872 
 873   const TypeInstPtr* tp = phase->type(n)->isa_instptr();
 874   if (!tp) return NULL;
 875 
 876   ciType* mirror_type = tp->java_mirror_type();
 877   // TypeInstPtr::java_mirror_type() returns non-NULL for compile-
 878   // time Class constants only.
 879   if (!mirror_type) return NULL;
 880 
 881   // x.getClass() == int.class can never be true (for all primitive types)
 882   // Return a ConP(NULL) node for this case.
 883   if (mirror_type->is_classless()) {
 884     return phase->makecon(TypePtr::NULL_PTR);
 885   }
 886 
 887   // return the ConP(Foo.klass)
 888   assert(mirror_type->is_klass(), "mirror_type should represent a Klass*");
 889   return phase->makecon(TypeKlassPtr::make(mirror_type->as_klass()));
 890 }
 891 
 892 //------------------------------Ideal------------------------------------------
 893 // Normalize comparisons between Java mirror loads to compare the klass instead.
 894 //
 895 // Also check for the case of comparing an unknown klass loaded from the primary
 896 // super-type array vs a known klass with no subtypes.  This amounts to
 897 // checking to see an unknown klass subtypes a known klass with no subtypes;
 898 // this only happens on an exact match.  We can shorten this test by 1 load.
 899 Node *CmpPNode::Ideal( PhaseGVN *phase, bool can_reshape ) {
 900   // Normalize comparisons between Java mirrors into comparisons of the low-
 901   // level klass, where a dependent load could be shortened.
 902   //
 903   // The new pattern has a nice effect of matching the same pattern used in the
 904   // fast path of instanceof/checkcast/Class.isInstance(), which allows
 905   // redundant exact type check be optimized away by GVN.
 906   // For example, in
 907   //   if (x.getClass() == Foo.class) {
 908   //     Foo foo = (Foo) x;
 909   //     // ... use a ...
 910   //   }
 911   // a CmpPNode could be shared between if_acmpne and checkcast
 912   {
 913     Node* k1 = isa_java_mirror_load(phase, in(1));
 914     Node* k2 = isa_java_mirror_load(phase, in(2));
 915     Node* conk2 = isa_const_java_mirror(phase, in(2));
 916 
 917     if (k1 && (k2 || conk2)) {
 918       Node* lhs = k1;
 919       Node* rhs = (k2 != NULL) ? k2 : conk2;
 920       this->set_req(1, lhs);
 921       this->set_req(2, rhs);
 922       return this;
 923     }
 924   }
 925 
 926   // Constant pointer on right?
 927   const TypeKlassPtr* t2 = phase->type(in(2))->isa_klassptr();
 928   if (t2 == NULL || !t2->klass_is_exact())
 929     return NULL;
 930   // Get the constant klass we are comparing to.
 931   ciKlass* superklass = t2->klass();
 932 
 933   // Now check for LoadKlass on left.
 934   Node* ldk1 = in(1);
 935   if (ldk1->is_DecodeNKlass()) {
 936     ldk1 = ldk1->in(1);
 937     if (ldk1->Opcode() != Op_LoadNKlass )
 938       return NULL;
 939   } else if (ldk1->Opcode() != Op_LoadKlass )
 940     return NULL;
 941   // Take apart the address of the LoadKlass:
 942   Node* adr1 = ldk1->in(MemNode::Address);
 943   intptr_t con2 = 0;
 944   Node* ldk2 = AddPNode::Ideal_base_and_offset(adr1, phase, con2);
 945   if (ldk2 == NULL)
 946     return NULL;
 947   if (con2 == oopDesc::klass_offset_in_bytes()) {
 948     // We are inspecting an object's concrete class.
 949     // Short-circuit the check if the query is abstract.
 950     if (superklass->is_interface() ||
 951         superklass->is_abstract()) {
 952       // Make it come out always false:
 953       this->set_req(2, phase->makecon(TypePtr::NULL_PTR));
 954       return this;
 955     }
 956   }
 957 
 958   // Check for a LoadKlass from primary supertype array.
 959   // Any nested loadklass from loadklass+con must be from the p.s. array.
 960   if (ldk2->is_DecodeNKlass()) {
 961     // Keep ldk2 as DecodeN since it could be used in CmpP below.
 962     if (ldk2->in(1)->Opcode() != Op_LoadNKlass )
 963       return NULL;
 964   } else if (ldk2->Opcode() != Op_LoadKlass)
 965     return NULL;
 966 
 967   // Verify that we understand the situation
 968   if (con2 != (intptr_t) superklass->super_check_offset())
 969     return NULL;                // Might be element-klass loading from array klass
 970 
 971   // If 'superklass' has no subklasses and is not an interface, then we are
 972   // assured that the only input which will pass the type check is
 973   // 'superklass' itself.
 974   //
 975   // We could be more liberal here, and allow the optimization on interfaces
 976   // which have a single implementor.  This would require us to increase the
 977   // expressiveness of the add_dependency() mechanism.
 978   // %%% Do this after we fix TypeOopPtr:  Deps are expressive enough now.
 979 
 980   // Object arrays must have their base element have no subtypes
 981   while (superklass->is_obj_array_klass()) {
 982     ciType* elem = superklass->as_obj_array_klass()->element_type();
 983     superklass = elem->as_klass();
 984   }
 985   if (superklass->is_instance_klass()) {
 986     ciInstanceKlass* ik = superklass->as_instance_klass();
 987     if (ik->has_subklass() || ik->is_interface())  return NULL;
 988     // Add a dependency if there is a chance that a subclass will be added later.
 989     if (!ik->is_final()) {
 990       phase->C->dependencies()->assert_leaf_type(ik);
 991     }
 992   }
 993 
 994   // Bypass the dependent load, and compare directly
 995   this->set_req(1,ldk2);
 996 
 997   return this;
 998 }
 999 
1000 //=============================================================================
1001 //------------------------------sub--------------------------------------------
1002 // Simplify an CmpN (compare 2 pointers) node, based on local information.
1003 // If both inputs are constants, compare them.
1004 const Type *CmpNNode::sub( const Type *t1, const Type *t2 ) const {
1005   const TypePtr *r0 = t1->make_ptr(); // Handy access
1006   const TypePtr *r1 = t2->make_ptr();
1007 
1008   // Undefined inputs makes for an undefined result
1009   if ((r0 == NULL) || (r1 == NULL) ||
1010       TypePtr::above_centerline(r0->_ptr) ||
1011       TypePtr::above_centerline(r1->_ptr)) {
1012     return Type::TOP;
1013   }
1014   if (r0 == r1 && r0->singleton()) {
1015     // Equal pointer constants (klasses, nulls, etc.)
1016     return TypeInt::CC_EQ;
1017   }
1018 
1019   // See if it is 2 unrelated classes.
1020   const TypeOopPtr* p0 = r0->isa_oopptr();
1021   const TypeOopPtr* p1 = r1->isa_oopptr();
1022   if (p0 && p1) {
1023     ciKlass* klass0 = p0->klass();
1024     bool    xklass0 = p0->klass_is_exact();
1025     ciKlass* klass1 = p1->klass();
1026     bool    xklass1 = p1->klass_is_exact();
1027     int kps = (p0->isa_klassptr()?1:0) + (p1->isa_klassptr()?1:0);
1028     if (klass0 && klass1 &&
1029         kps != 1 &&             // both or neither are klass pointers
1030         !klass0->is_interface() && // do not trust interfaces
1031         !klass1->is_interface()) {
1032       bool unrelated_classes = false;
1033       // See if neither subclasses the other, or if the class on top
1034       // is precise.  In either of these cases, the compare is known
1035       // to fail if at least one of the pointers is provably not null.
1036       if (klass0->equals(klass1)) { // if types are unequal but klasses are equal
1037         // Do nothing; we know nothing for imprecise types
1038       } else if (klass0->is_subtype_of(klass1)) {
1039         // If klass1's type is PRECISE, then classes are unrelated.
1040         unrelated_classes = xklass1;
1041       } else if (klass1->is_subtype_of(klass0)) {
1042         // If klass0's type is PRECISE, then classes are unrelated.
1043         unrelated_classes = xklass0;
1044       } else {                  // Neither subtypes the other
1045         unrelated_classes = true;
1046       }
1047       if (unrelated_classes) {
1048         // The oops classes are known to be unrelated. If the joined PTRs of
1049         // two oops is not Null and not Bottom, then we are sure that one
1050         // of the two oops is non-null, and the comparison will always fail.
1051         TypePtr::PTR jp = r0->join_ptr(r1->_ptr);
1052         if (jp != TypePtr::Null && jp != TypePtr::BotPTR) {
1053           return TypeInt::CC_GT;
1054         }
1055       }
1056     }
1057   }
1058 
1059   // Known constants can be compared exactly
1060   // Null can be distinguished from any NotNull pointers
1061   // Unknown inputs makes an unknown result
1062   if( r0->singleton() ) {
1063     intptr_t bits0 = r0->get_con();
1064     if( r1->singleton() )
1065       return bits0 == r1->get_con() ? TypeInt::CC_EQ : TypeInt::CC_GT;
1066     return ( r1->_ptr == TypePtr::NotNull && bits0==0 ) ? TypeInt::CC_GT : TypeInt::CC;
1067   } else if( r1->singleton() ) {
1068     intptr_t bits1 = r1->get_con();
1069     return ( r0->_ptr == TypePtr::NotNull && bits1==0 ) ? TypeInt::CC_GT : TypeInt::CC;
1070   } else
1071     return TypeInt::CC;
1072 }
1073 
1074 //------------------------------Ideal------------------------------------------
1075 Node *CmpNNode::Ideal( PhaseGVN *phase, bool can_reshape ) {
1076   return NULL;
1077 }
1078 
1079 //=============================================================================
1080 //------------------------------Value------------------------------------------
1081 // Simplify an CmpF (compare 2 floats ) node, based on local information.
1082 // If both inputs are constants, compare them.
1083 const Type *CmpFNode::Value( PhaseTransform *phase ) const {
1084   const Node* in1 = in(1);
1085   const Node* in2 = in(2);
1086   // Either input is TOP ==> the result is TOP
1087   const Type* t1 = (in1 == this) ? Type::TOP : phase->type(in1);
1088   if( t1 == Type::TOP ) return Type::TOP;
1089   const Type* t2 = (in2 == this) ? Type::TOP : phase->type(in2);
1090   if( t2 == Type::TOP ) return Type::TOP;
1091 
1092   // Not constants?  Don't know squat - even if they are the same
1093   // value!  If they are NaN's they compare to LT instead of EQ.
1094   const TypeF *tf1 = t1->isa_float_constant();
1095   const TypeF *tf2 = t2->isa_float_constant();
1096   if( !tf1 || !tf2 ) return TypeInt::CC;
1097 
1098   // This implements the Java bytecode fcmpl, so unordered returns -1.
1099   if( tf1->is_nan() || tf2->is_nan() )
1100     return TypeInt::CC_LT;
1101 
1102   if( tf1->_f < tf2->_f ) return TypeInt::CC_LT;
1103   if( tf1->_f > tf2->_f ) return TypeInt::CC_GT;
1104   assert( tf1->_f == tf2->_f, "do not understand FP behavior" );
1105   return TypeInt::CC_EQ;
1106 }
1107 
1108 
1109 //=============================================================================
1110 //------------------------------Value------------------------------------------
1111 // Simplify an CmpD (compare 2 doubles ) node, based on local information.
1112 // If both inputs are constants, compare them.
1113 const Type *CmpDNode::Value( PhaseTransform *phase ) const {
1114   const Node* in1 = in(1);
1115   const Node* in2 = in(2);
1116   // Either input is TOP ==> the result is TOP
1117   const Type* t1 = (in1 == this) ? Type::TOP : phase->type(in1);
1118   if( t1 == Type::TOP ) return Type::TOP;
1119   const Type* t2 = (in2 == this) ? Type::TOP : phase->type(in2);
1120   if( t2 == Type::TOP ) return Type::TOP;
1121 
1122   // Not constants?  Don't know squat - even if they are the same
1123   // value!  If they are NaN's they compare to LT instead of EQ.
1124   const TypeD *td1 = t1->isa_double_constant();
1125   const TypeD *td2 = t2->isa_double_constant();
1126   if( !td1 || !td2 ) return TypeInt::CC;
1127 
1128   // This implements the Java bytecode dcmpl, so unordered returns -1.
1129   if( td1->is_nan() || td2->is_nan() )
1130     return TypeInt::CC_LT;
1131 
1132   if( td1->_d < td2->_d ) return TypeInt::CC_LT;
1133   if( td1->_d > td2->_d ) return TypeInt::CC_GT;
1134   assert( td1->_d == td2->_d, "do not understand FP behavior" );
1135   return TypeInt::CC_EQ;
1136 }
1137 
1138 //------------------------------Ideal------------------------------------------
1139 Node *CmpDNode::Ideal(PhaseGVN *phase, bool can_reshape){
1140   // Check if we can change this to a CmpF and remove a ConvD2F operation.
1141   // Change  (CMPD (F2D (float)) (ConD value))
1142   // To      (CMPF      (float)  (ConF value))
1143   // Valid when 'value' does not lose precision as a float.
1144   // Benefits: eliminates conversion, does not require 24-bit mode
1145 
1146   // NaNs prevent commuting operands.  This transform works regardless of the
1147   // order of ConD and ConvF2D inputs by preserving the original order.
1148   int idx_f2d = 1;              // ConvF2D on left side?
1149   if( in(idx_f2d)->Opcode() != Op_ConvF2D )
1150     idx_f2d = 2;                // No, swap to check for reversed args
1151   int idx_con = 3-idx_f2d;      // Check for the constant on other input
1152 
1153   if( ConvertCmpD2CmpF &&
1154       in(idx_f2d)->Opcode() == Op_ConvF2D &&
1155       in(idx_con)->Opcode() == Op_ConD ) {
1156     const TypeD *t2 = in(idx_con)->bottom_type()->is_double_constant();
1157     double t2_value_as_double = t2->_d;
1158     float  t2_value_as_float  = (float)t2_value_as_double;
1159     if( t2_value_as_double == (double)t2_value_as_float ) {
1160       // Test value can be represented as a float
1161       // Eliminate the conversion to double and create new comparison
1162       Node *new_in1 = in(idx_f2d)->in(1);
1163       Node *new_in2 = phase->makecon( TypeF::make(t2_value_as_float) );
1164       if( idx_f2d != 1 ) {      // Must flip args to match original order
1165         Node *tmp = new_in1;
1166         new_in1 = new_in2;
1167         new_in2 = tmp;
1168       }
1169       CmpFNode *new_cmp = (Opcode() == Op_CmpD3)
1170         ? new (phase->C) CmpF3Node( new_in1, new_in2 )
1171         : new (phase->C) CmpFNode ( new_in1, new_in2 ) ;
1172       return new_cmp;           // Changed to CmpFNode
1173     }
1174     // Testing value required the precision of a double
1175   }
1176   return NULL;                  // No change
1177 }
1178 
1179 
1180 //=============================================================================
1181 //------------------------------cc2logical-------------------------------------
1182 // Convert a condition code type to a logical type
1183 const Type *BoolTest::cc2logical( const Type *CC ) const {
1184   if( CC == Type::TOP ) return Type::TOP;
1185   if( CC->base() != Type::Int ) return TypeInt::BOOL; // Bottom or worse
1186   const TypeInt *ti = CC->is_int();
1187   if( ti->is_con() ) {          // Only 1 kind of condition codes set?
1188     // Match low order 2 bits
1189     int tmp = ((ti->get_con()&3) == (_test&3)) ? 1 : 0;
1190     if( _test & 4 ) tmp = 1-tmp;     // Optionally complement result
1191     return TypeInt::make(tmp);       // Boolean result
1192   }
1193 
1194   if( CC == TypeInt::CC_GE ) {
1195     if( _test == ge ) return TypeInt::ONE;
1196     if( _test == lt ) return TypeInt::ZERO;
1197   }
1198   if( CC == TypeInt::CC_LE ) {
1199     if( _test == le ) return TypeInt::ONE;
1200     if( _test == gt ) return TypeInt::ZERO;
1201   }
1202 
1203   return TypeInt::BOOL;
1204 }
1205 
1206 //------------------------------dump_spec-------------------------------------
1207 // Print special per-node info
1208 void BoolTest::dump_on(outputStream *st) const {
1209   const char *msg[] = {"eq","gt","of","lt","ne","le","nof","ge"};
1210   st->print("%s", msg[_test]);
1211 }
1212 
1213 //=============================================================================
1214 uint BoolNode::hash() const { return (Node::hash() << 3)|(_test._test+1); }
1215 uint BoolNode::size_of() const { return sizeof(BoolNode); }
1216 
1217 //------------------------------operator==-------------------------------------
1218 uint BoolNode::cmp( const Node &n ) const {
1219   const BoolNode *b = (const BoolNode *)&n; // Cast up
1220   return (_test._test == b->_test._test);
1221 }
1222 
1223 //-------------------------------make_predicate--------------------------------
1224 Node* BoolNode::make_predicate(Node* test_value, PhaseGVN* phase) {
1225   if (test_value->is_Con())   return test_value;
1226   if (test_value->is_Bool())  return test_value;
1227   Compile* C = phase->C;
1228   if (test_value->is_CMove() &&
1229       test_value->in(CMoveNode::Condition)->is_Bool()) {
1230     BoolNode*   bol   = test_value->in(CMoveNode::Condition)->as_Bool();
1231     const Type* ftype = phase->type(test_value->in(CMoveNode::IfFalse));
1232     const Type* ttype = phase->type(test_value->in(CMoveNode::IfTrue));
1233     if (ftype == TypeInt::ZERO && !TypeInt::ZERO->higher_equal(ttype)) {
1234       return bol;
1235     } else if (ttype == TypeInt::ZERO && !TypeInt::ZERO->higher_equal(ftype)) {
1236       return phase->transform( bol->negate(phase) );
1237     }
1238     // Else fall through.  The CMove gets in the way of the test.
1239     // It should be the case that make_predicate(bol->as_int_value()) == bol.
1240   }
1241   Node* cmp = new (C) CmpINode(test_value, phase->intcon(0));
1242   cmp = phase->transform(cmp);
1243   Node* bol = new (C) BoolNode(cmp, BoolTest::ne);
1244   return phase->transform(bol);
1245 }
1246 
1247 //--------------------------------as_int_value---------------------------------
1248 Node* BoolNode::as_int_value(PhaseGVN* phase) {
1249   // Inverse to make_predicate.  The CMove probably boils down to a Conv2B.
1250   Node* cmov = CMoveNode::make(phase->C, NULL, this,
1251                                phase->intcon(0), phase->intcon(1),
1252                                TypeInt::BOOL);
1253   return phase->transform(cmov);
1254 }
1255 
1256 //----------------------------------negate-------------------------------------
1257 BoolNode* BoolNode::negate(PhaseGVN* phase) {
1258   Compile* C = phase->C;
1259   return new (C) BoolNode(in(1), _test.negate());
1260 }
1261 
1262 
1263 //------------------------------Ideal------------------------------------------
1264 Node *BoolNode::Ideal(PhaseGVN *phase, bool can_reshape) {
1265   // Change "bool tst (cmp con x)" into "bool ~tst (cmp x con)".
1266   // This moves the constant to the right.  Helps value-numbering.
1267   Node *cmp = in(1);
1268   if( !cmp->is_Sub() ) return NULL;
1269   int cop = cmp->Opcode();
1270   if( cop == Op_FastLock || cop == Op_FastUnlock) return NULL;
1271   Node *cmp1 = cmp->in(1);
1272   Node *cmp2 = cmp->in(2);
1273   if( !cmp1 ) return NULL;
1274 
1275   if (_test._test == BoolTest::overflow || _test._test == BoolTest::no_overflow) {
1276     return NULL;
1277   }
1278 
1279   // Constant on left?
1280   Node *con = cmp1;
1281   uint op2 = cmp2->Opcode();
1282   // Move constants to the right of compare's to canonicalize.
1283   // Do not muck with Opaque1 nodes, as this indicates a loop
1284   // guard that cannot change shape.
1285   if( con->is_Con() && !cmp2->is_Con() && op2 != Op_Opaque1 &&
1286       // Because of NaN's, CmpD and CmpF are not commutative
1287       cop != Op_CmpD && cop != Op_CmpF &&
1288       // Protect against swapping inputs to a compare when it is used by a
1289       // counted loop exit, which requires maintaining the loop-limit as in(2)
1290       !is_counted_loop_exit_test() ) {
1291     // Ok, commute the constant to the right of the cmp node.
1292     // Clone the Node, getting a new Node of the same class
1293     cmp = cmp->clone();
1294     // Swap inputs to the clone
1295     cmp->swap_edges(1, 2);
1296     cmp = phase->transform( cmp );
1297     return new (phase->C) BoolNode( cmp, _test.commute() );
1298   }
1299 
1300   // Change "bool eq/ne (cmp (xor X 1) 0)" into "bool ne/eq (cmp X 0)".
1301   // The XOR-1 is an idiom used to flip the sense of a bool.  We flip the
1302   // test instead.
1303   int cmp1_op = cmp1->Opcode();
1304   const TypeInt* cmp2_type = phase->type(cmp2)->isa_int();
1305   if (cmp2_type == NULL)  return NULL;
1306   Node* j_xor = cmp1;
1307   if( cmp2_type == TypeInt::ZERO &&
1308       cmp1_op == Op_XorI &&
1309       j_xor->in(1) != j_xor &&          // An xor of itself is dead
1310       phase->type( j_xor->in(1) ) == TypeInt::BOOL &&
1311       phase->type( j_xor->in(2) ) == TypeInt::ONE &&
1312       (_test._test == BoolTest::eq ||
1313        _test._test == BoolTest::ne) ) {
1314     Node *ncmp = phase->transform(new (phase->C) CmpINode(j_xor->in(1),cmp2));
1315     return new (phase->C) BoolNode( ncmp, _test.negate() );
1316   }
1317 
1318   // Change "bool eq/ne (cmp (Conv2B X) 0)" into "bool eq/ne (cmp X 0)".
1319   // This is a standard idiom for branching on a boolean value.
1320   Node *c2b = cmp1;
1321   if( cmp2_type == TypeInt::ZERO &&
1322       cmp1_op == Op_Conv2B &&
1323       (_test._test == BoolTest::eq ||
1324        _test._test == BoolTest::ne) ) {
1325     Node *ncmp = phase->transform(phase->type(c2b->in(1))->isa_int()
1326        ? (Node*)new (phase->C) CmpINode(c2b->in(1),cmp2)
1327        : (Node*)new (phase->C) CmpPNode(c2b->in(1),phase->makecon(TypePtr::NULL_PTR))
1328     );
1329     return new (phase->C) BoolNode( ncmp, _test._test );
1330   }
1331 
1332   // Comparing a SubI against a zero is equal to comparing the SubI
1333   // arguments directly.  This only works for eq and ne comparisons
1334   // due to possible integer overflow.
1335   if ((_test._test == BoolTest::eq || _test._test == BoolTest::ne) &&
1336         (cop == Op_CmpI) &&
1337         (cmp1->Opcode() == Op_SubI) &&
1338         ( cmp2_type == TypeInt::ZERO ) ) {
1339     Node *ncmp = phase->transform( new (phase->C) CmpINode(cmp1->in(1),cmp1->in(2)));
1340     return new (phase->C) BoolNode( ncmp, _test._test );
1341   }
1342 
1343   // Change (-A vs 0) into (A vs 0) by commuting the test.  Disallow in the
1344   // most general case because negating 0x80000000 does nothing.  Needed for
1345   // the CmpF3/SubI/CmpI idiom.
1346   if( cop == Op_CmpI &&
1347       cmp1->Opcode() == Op_SubI &&
1348       cmp2_type == TypeInt::ZERO &&
1349       phase->type( cmp1->in(1) ) == TypeInt::ZERO &&
1350       phase->type( cmp1->in(2) )->higher_equal(TypeInt::SYMINT) ) {
1351     Node *ncmp = phase->transform( new (phase->C) CmpINode(cmp1->in(2),cmp2));
1352     return new (phase->C) BoolNode( ncmp, _test.commute() );
1353   }
1354 
1355   //  The transformation below is not valid for either signed or unsigned
1356   //  comparisons due to wraparound concerns at MAX_VALUE and MIN_VALUE.
1357   //  This transformation can be resurrected when we are able to
1358   //  make inferences about the range of values being subtracted from
1359   //  (or added to) relative to the wraparound point.
1360   //
1361   //    // Remove +/-1's if possible.
1362   //    // "X <= Y-1" becomes "X <  Y"
1363   //    // "X+1 <= Y" becomes "X <  Y"
1364   //    // "X <  Y+1" becomes "X <= Y"
1365   //    // "X-1 <  Y" becomes "X <= Y"
1366   //    // Do not this to compares off of the counted-loop-end.  These guys are
1367   //    // checking the trip counter and they want to use the post-incremented
1368   //    // counter.  If they use the PRE-incremented counter, then the counter has
1369   //    // to be incremented in a private block on a loop backedge.
1370   //    if( du && du->cnt(this) && du->out(this)[0]->Opcode() == Op_CountedLoopEnd )
1371   //      return NULL;
1372   //  #ifndef PRODUCT
1373   //    // Do not do this in a wash GVN pass during verification.
1374   //    // Gets triggered by too many simple optimizations to be bothered with
1375   //    // re-trying it again and again.
1376   //    if( !phase->allow_progress() ) return NULL;
1377   //  #endif
1378   //    // Not valid for unsigned compare because of corner cases in involving zero.
1379   //    // For example, replacing "X-1 <u Y" with "X <=u Y" fails to throw an
1380   //    // exception in case X is 0 (because 0-1 turns into 4billion unsigned but
1381   //    // "0 <=u Y" is always true).
1382   //    if( cmp->Opcode() == Op_CmpU ) return NULL;
1383   //    int cmp2_op = cmp2->Opcode();
1384   //    if( _test._test == BoolTest::le ) {
1385   //      if( cmp1_op == Op_AddI &&
1386   //          phase->type( cmp1->in(2) ) == TypeInt::ONE )
1387   //        return clone_cmp( cmp, cmp1->in(1), cmp2, phase, BoolTest::lt );
1388   //      else if( cmp2_op == Op_AddI &&
1389   //         phase->type( cmp2->in(2) ) == TypeInt::MINUS_1 )
1390   //        return clone_cmp( cmp, cmp1, cmp2->in(1), phase, BoolTest::lt );
1391   //    } else if( _test._test == BoolTest::lt ) {
1392   //      if( cmp1_op == Op_AddI &&
1393   //          phase->type( cmp1->in(2) ) == TypeInt::MINUS_1 )
1394   //        return clone_cmp( cmp, cmp1->in(1), cmp2, phase, BoolTest::le );
1395   //      else if( cmp2_op == Op_AddI &&
1396   //         phase->type( cmp2->in(2) ) == TypeInt::ONE )
1397   //        return clone_cmp( cmp, cmp1, cmp2->in(1), phase, BoolTest::le );
1398   //    }
1399 
1400   return NULL;
1401 }
1402 
1403 //------------------------------Value------------------------------------------
1404 // Simplify a Bool (convert condition codes to boolean (1 or 0)) node,
1405 // based on local information.   If the input is constant, do it.
1406 const Type *BoolNode::Value( PhaseTransform *phase ) const {
1407   return _test.cc2logical( phase->type( in(1) ) );
1408 }
1409 
1410 //------------------------------dump_spec--------------------------------------
1411 // Dump special per-node info
1412 #ifndef PRODUCT
1413 void BoolNode::dump_spec(outputStream *st) const {
1414   st->print("[");
1415   _test.dump_on(st);
1416   st->print("]");
1417 }
1418 #endif
1419 
1420 //------------------------------is_counted_loop_exit_test--------------------------------------
1421 // Returns true if node is used by a counted loop node.
1422 bool BoolNode::is_counted_loop_exit_test() {
1423   for( DUIterator_Fast imax, i = fast_outs(imax); i < imax; i++ ) {
1424     Node* use = fast_out(i);
1425     if (use->is_CountedLoopEnd()) {
1426       return true;
1427     }
1428   }
1429   return false;
1430 }
1431 
1432 //=============================================================================
1433 //------------------------------Value------------------------------------------
1434 // Compute sqrt
1435 const Type *SqrtDNode::Value( PhaseTransform *phase ) const {
1436   const Type *t1 = phase->type( in(1) );
1437   if( t1 == Type::TOP ) return Type::TOP;
1438   if( t1->base() != Type::DoubleCon ) return Type::DOUBLE;
1439   double d = t1->getd();
1440   if( d < 0.0 ) return Type::DOUBLE;
1441   return TypeD::make( sqrt( d ) );
1442 }
1443 
1444 //=============================================================================
1445 //------------------------------Value------------------------------------------
1446 // Compute cos
1447 const Type *CosDNode::Value( PhaseTransform *phase ) const {
1448   const Type *t1 = phase->type( in(1) );
1449   if( t1 == Type::TOP ) return Type::TOP;
1450   if( t1->base() != Type::DoubleCon ) return Type::DOUBLE;
1451   double d = t1->getd();
1452   return TypeD::make( StubRoutines::intrinsic_cos( d ) );
1453 }
1454 
1455 //=============================================================================
1456 //------------------------------Value------------------------------------------
1457 // Compute sin
1458 const Type *SinDNode::Value( PhaseTransform *phase ) const {
1459   const Type *t1 = phase->type( in(1) );
1460   if( t1 == Type::TOP ) return Type::TOP;
1461   if( t1->base() != Type::DoubleCon ) return Type::DOUBLE;
1462   double d = t1->getd();
1463   return TypeD::make( StubRoutines::intrinsic_sin( d ) );
1464 }
1465 
1466 //=============================================================================
1467 //------------------------------Value------------------------------------------
1468 // Compute tan
1469 const Type *TanDNode::Value( PhaseTransform *phase ) const {
1470   const Type *t1 = phase->type( in(1) );
1471   if( t1 == Type::TOP ) return Type::TOP;
1472   if( t1->base() != Type::DoubleCon ) return Type::DOUBLE;
1473   double d = t1->getd();
1474   return TypeD::make( StubRoutines::intrinsic_tan( d ) );
1475 }
1476 
1477 //=============================================================================
1478 //------------------------------Value------------------------------------------
1479 // Compute log
1480 const Type *LogDNode::Value( PhaseTransform *phase ) const {
1481   const Type *t1 = phase->type( in(1) );
1482   if( t1 == Type::TOP ) return Type::TOP;
1483   if( t1->base() != Type::DoubleCon ) return Type::DOUBLE;
1484   double d = t1->getd();
1485   return TypeD::make( StubRoutines::intrinsic_log( d ) );
1486 }
1487 
1488 //=============================================================================
1489 //------------------------------Value------------------------------------------
1490 // Compute log10
1491 const Type *Log10DNode::Value( PhaseTransform *phase ) const {
1492   const Type *t1 = phase->type( in(1) );
1493   if( t1 == Type::TOP ) return Type::TOP;
1494   if( t1->base() != Type::DoubleCon ) return Type::DOUBLE;
1495   double d = t1->getd();
1496   return TypeD::make( StubRoutines::intrinsic_log10( d ) );
1497 }
1498 
1499 //=============================================================================
1500 //------------------------------Value------------------------------------------
1501 // Compute exp
1502 const Type *ExpDNode::Value( PhaseTransform *phase ) const {
1503   const Type *t1 = phase->type( in(1) );
1504   if( t1 == Type::TOP ) return Type::TOP;
1505   if( t1->base() != Type::DoubleCon ) return Type::DOUBLE;
1506   double d = t1->getd();
1507   return TypeD::make( StubRoutines::intrinsic_exp( d ) );
1508 }
1509 
1510 
1511 //=============================================================================
1512 //------------------------------Value------------------------------------------
1513 // Compute pow
1514 const Type *PowDNode::Value( PhaseTransform *phase ) const {
1515   const Type *t1 = phase->type( in(1) );
1516   if( t1 == Type::TOP ) return Type::TOP;
1517   if( t1->base() != Type::DoubleCon ) return Type::DOUBLE;
1518   const Type *t2 = phase->type( in(2) );
1519   if( t2 == Type::TOP ) return Type::TOP;
1520   if( t2->base() != Type::DoubleCon ) return Type::DOUBLE;
1521   double d1 = t1->getd();
1522   double d2 = t2->getd();
1523   return TypeD::make( StubRoutines::intrinsic_pow( d1, d2 ) );
1524 }