1 /*
   2  * Copyright (c) 1997, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "ci/ciMethodData.hpp"
  27 #include "ci/ciTypeFlow.hpp"
  28 #include "classfile/symbolTable.hpp"
  29 #include "classfile/systemDictionary.hpp"
  30 #include "compiler/compileLog.hpp"
  31 #include "libadt/dict.hpp"
  32 #include "memory/gcLocker.hpp"
  33 #include "memory/oopFactory.hpp"
  34 #include "memory/resourceArea.hpp"
  35 #include "oops/instanceKlass.hpp"
  36 #include "oops/instanceMirrorKlass.hpp"
  37 #include "oops/objArrayKlass.hpp"
  38 #include "oops/typeArrayKlass.hpp"
  39 #include "opto/matcher.hpp"
  40 #include "opto/node.hpp"
  41 #include "opto/opcodes.hpp"
  42 #include "opto/type.hpp"
  43 
  44 PRAGMA_FORMAT_MUTE_WARNINGS_FOR_GCC
  45 
  46 // Portions of code courtesy of Clifford Click
  47 
  48 // Optimization - Graph Style
  49 
  50 // Dictionary of types shared among compilations.
  51 Dict* Type::_shared_type_dict = NULL;
  52 
  53 // Array which maps compiler types to Basic Types
  54 const Type::TypeInfo Type::_type_info[Type::lastype] = {
  55   { Bad,             T_ILLEGAL,    "bad",           false, Node::NotAMachineReg, relocInfo::none          },  // Bad
  56   { Control,         T_ILLEGAL,    "control",       false, 0,                    relocInfo::none          },  // Control
  57   { Bottom,          T_VOID,       "top",           false, 0,                    relocInfo::none          },  // Top
  58   { Bad,             T_INT,        "int:",          false, Op_RegI,              relocInfo::none          },  // Int
  59   { Bad,             T_LONG,       "long:",         false, Op_RegL,              relocInfo::none          },  // Long
  60   { Half,            T_VOID,       "half",          false, 0,                    relocInfo::none          },  // Half
  61   { Bad,             T_NARROWOOP,  "narrowoop:",    false, Op_RegN,              relocInfo::none          },  // NarrowOop
  62   { Bad,             T_NARROWKLASS,"narrowklass:",  false, Op_RegN,              relocInfo::none          },  // NarrowKlass
  63   { Bad,             T_ILLEGAL,    "tuple:",        false, Node::NotAMachineReg, relocInfo::none          },  // Tuple
  64   { Bad,             T_ARRAY,      "array:",        false, Node::NotAMachineReg, relocInfo::none          },  // Array
  65 
  66 #ifdef SPARC
  67   { Bad,             T_ILLEGAL,    "vectors:",      false, 0,                    relocInfo::none          },  // VectorS
  68   { Bad,             T_ILLEGAL,    "vectord:",      false, Op_RegD,              relocInfo::none          },  // VectorD
  69   { Bad,             T_ILLEGAL,    "vectorx:",      false, 0,                    relocInfo::none          },  // VectorX
  70   { Bad,             T_ILLEGAL,    "vectory:",      false, 0,                    relocInfo::none          },  // VectorY
  71 #elif defined(PPC64)
  72   { Bad,             T_ILLEGAL,    "vectors:",      false, 0,                    relocInfo::none          },  // VectorS
  73   { Bad,             T_ILLEGAL,    "vectord:",      false, Op_RegL,              relocInfo::none          },  // VectorD
  74   { Bad,             T_ILLEGAL,    "vectorx:",      false, 0,                    relocInfo::none          },  // VectorX
  75   { Bad,             T_ILLEGAL,    "vectory:",      false, 0,                    relocInfo::none          },  // VectorY
  76 #else // all other
  77   { Bad,             T_ILLEGAL,    "vectors:",      false, Op_VecS,              relocInfo::none          },  // VectorS
  78   { Bad,             T_ILLEGAL,    "vectord:",      false, Op_VecD,              relocInfo::none          },  // VectorD
  79   { Bad,             T_ILLEGAL,    "vectorx:",      false, Op_VecX,              relocInfo::none          },  // VectorX
  80   { Bad,             T_ILLEGAL,    "vectory:",      false, Op_VecY,              relocInfo::none          },  // VectorY
  81 #endif
  82   { Bad,             T_ADDRESS,    "anyptr:",       false, Op_RegP,              relocInfo::none          },  // AnyPtr
  83   { Bad,             T_ADDRESS,    "rawptr:",       false, Op_RegP,              relocInfo::none          },  // RawPtr
  84   { Bad,             T_OBJECT,     "oop:",          true,  Op_RegP,              relocInfo::oop_type      },  // OopPtr
  85   { Bad,             T_OBJECT,     "inst:",         true,  Op_RegP,              relocInfo::oop_type      },  // InstPtr
  86   { Bad,             T_OBJECT,     "ary:",          true,  Op_RegP,              relocInfo::oop_type      },  // AryPtr
  87   { Bad,             T_METADATA,   "metadata:",     false, Op_RegP,              relocInfo::metadata_type },  // MetadataPtr
  88   { Bad,             T_METADATA,   "klass:",        false, Op_RegP,              relocInfo::metadata_type },  // KlassPtr
  89   { Bad,             T_OBJECT,     "func",          false, 0,                    relocInfo::none          },  // Function
  90   { Abio,            T_ILLEGAL,    "abIO",          false, 0,                    relocInfo::none          },  // Abio
  91   { Return_Address,  T_ADDRESS,    "return_address",false, Op_RegP,              relocInfo::none          },  // Return_Address
  92   { Memory,          T_ILLEGAL,    "memory",        false, 0,                    relocInfo::none          },  // Memory
  93   { FloatBot,        T_FLOAT,      "float_top",     false, Op_RegF,              relocInfo::none          },  // FloatTop
  94   { FloatCon,        T_FLOAT,      "ftcon:",        false, Op_RegF,              relocInfo::none          },  // FloatCon
  95   { FloatTop,        T_FLOAT,      "float",         false, Op_RegF,              relocInfo::none          },  // FloatBot
  96   { DoubleBot,       T_DOUBLE,     "double_top",    false, Op_RegD,              relocInfo::none          },  // DoubleTop
  97   { DoubleCon,       T_DOUBLE,     "dblcon:",       false, Op_RegD,              relocInfo::none          },  // DoubleCon
  98   { DoubleTop,       T_DOUBLE,     "double",        false, Op_RegD,              relocInfo::none          },  // DoubleBot
  99   { Top,             T_ILLEGAL,    "bottom",        false, 0,                    relocInfo::none          }   // Bottom
 100 };
 101 
 102 // Map ideal registers (machine types) to ideal types
 103 const Type *Type::mreg2type[_last_machine_leaf];
 104 
 105 // Map basic types to canonical Type* pointers.
 106 const Type* Type::     _const_basic_type[T_CONFLICT+1];
 107 
 108 // Map basic types to constant-zero Types.
 109 const Type* Type::            _zero_type[T_CONFLICT+1];
 110 
 111 // Map basic types to array-body alias types.
 112 const TypeAryPtr* TypeAryPtr::_array_body_type[T_CONFLICT+1];
 113 
 114 //=============================================================================
 115 // Convenience common pre-built types.
 116 const Type *Type::ABIO;         // State-of-machine only
 117 const Type *Type::BOTTOM;       // All values
 118 const Type *Type::CONTROL;      // Control only
 119 const Type *Type::DOUBLE;       // All doubles
 120 const Type *Type::FLOAT;        // All floats
 121 const Type *Type::HALF;         // Placeholder half of doublewide type
 122 const Type *Type::MEMORY;       // Abstract store only
 123 const Type *Type::RETURN_ADDRESS;
 124 const Type *Type::TOP;          // No values in set
 125 
 126 //------------------------------get_const_type---------------------------
 127 const Type* Type::get_const_type(ciType* type) {
 128   if (type == NULL) {
 129     return NULL;
 130   } else if (type->is_primitive_type()) {
 131     return get_const_basic_type(type->basic_type());
 132   } else {
 133     return TypeOopPtr::make_from_klass(type->as_klass());
 134   }
 135 }
 136 
 137 //---------------------------array_element_basic_type---------------------------------
 138 // Mapping to the array element's basic type.
 139 BasicType Type::array_element_basic_type() const {
 140   BasicType bt = basic_type();
 141   if (bt == T_INT) {
 142     if (this == TypeInt::INT)   return T_INT;
 143     if (this == TypeInt::CHAR)  return T_CHAR;
 144     if (this == TypeInt::BYTE)  return T_BYTE;
 145     if (this == TypeInt::BOOL)  return T_BOOLEAN;
 146     if (this == TypeInt::SHORT) return T_SHORT;
 147     return T_VOID;
 148   }
 149   return bt;
 150 }
 151 
 152 // For two instance arrays of same dimension, return the base element types.
 153 // Otherwise or if the arrays have different dimensions, return NULL.
 154 void Type::get_arrays_base_elements(const Type *a1, const Type *a2,
 155                                     const TypeInstPtr **e1, const TypeInstPtr **e2) {
 156 
 157   if (e1) *e1 = NULL;
 158   if (e2) *e2 = NULL;
 159   const TypeAryPtr* a1tap = (a1 == NULL) ? NULL : a1->isa_aryptr();
 160   const TypeAryPtr* a2tap = (a2 == NULL) ? NULL : a2->isa_aryptr();
 161 
 162   if (a1tap != NULL && a2tap != NULL) {
 163     // Handle multidimensional arrays
 164     const TypePtr* a1tp = a1tap->elem()->make_ptr();
 165     const TypePtr* a2tp = a2tap->elem()->make_ptr();
 166     while (a1tp && a1tp->isa_aryptr() && a2tp && a2tp->isa_aryptr()) {
 167       a1tap = a1tp->is_aryptr();
 168       a2tap = a2tp->is_aryptr();
 169       a1tp = a1tap->elem()->make_ptr();
 170       a2tp = a2tap->elem()->make_ptr();
 171     }
 172     if (a1tp && a1tp->isa_instptr() && a2tp && a2tp->isa_instptr()) {
 173       if (e1) *e1 = a1tp->is_instptr();
 174       if (e2) *e2 = a2tp->is_instptr();
 175     }
 176   }
 177 }
 178 
 179 //---------------------------get_typeflow_type---------------------------------
 180 // Import a type produced by ciTypeFlow.
 181 const Type* Type::get_typeflow_type(ciType* type) {
 182   switch (type->basic_type()) {
 183 
 184   case ciTypeFlow::StateVector::T_BOTTOM:
 185     assert(type == ciTypeFlow::StateVector::bottom_type(), "");
 186     return Type::BOTTOM;
 187 
 188   case ciTypeFlow::StateVector::T_TOP:
 189     assert(type == ciTypeFlow::StateVector::top_type(), "");
 190     return Type::TOP;
 191 
 192   case ciTypeFlow::StateVector::T_NULL:
 193     assert(type == ciTypeFlow::StateVector::null_type(), "");
 194     return TypePtr::NULL_PTR;
 195 
 196   case ciTypeFlow::StateVector::T_LONG2:
 197     // The ciTypeFlow pass pushes a long, then the half.
 198     // We do the same.
 199     assert(type == ciTypeFlow::StateVector::long2_type(), "");
 200     return TypeInt::TOP;
 201 
 202   case ciTypeFlow::StateVector::T_DOUBLE2:
 203     // The ciTypeFlow pass pushes double, then the half.
 204     // Our convention is the same.
 205     assert(type == ciTypeFlow::StateVector::double2_type(), "");
 206     return Type::TOP;
 207 
 208   case T_ADDRESS:
 209     assert(type->is_return_address(), "");
 210     return TypeRawPtr::make((address)(intptr_t)type->as_return_address()->bci());
 211 
 212   default:
 213     // make sure we did not mix up the cases:
 214     assert(type != ciTypeFlow::StateVector::bottom_type(), "");
 215     assert(type != ciTypeFlow::StateVector::top_type(), "");
 216     assert(type != ciTypeFlow::StateVector::null_type(), "");
 217     assert(type != ciTypeFlow::StateVector::long2_type(), "");
 218     assert(type != ciTypeFlow::StateVector::double2_type(), "");
 219     assert(!type->is_return_address(), "");
 220 
 221     return Type::get_const_type(type);
 222   }
 223 }
 224 
 225 
 226 //-----------------------make_from_constant------------------------------------
 227 const Type* Type::make_from_constant(ciConstant constant,
 228                                      bool require_constant, bool is_autobox_cache) {
 229   switch (constant.basic_type()) {
 230   case T_BOOLEAN:  return TypeInt::make(constant.as_boolean());
 231   case T_CHAR:     return TypeInt::make(constant.as_char());
 232   case T_BYTE:     return TypeInt::make(constant.as_byte());
 233   case T_SHORT:    return TypeInt::make(constant.as_short());
 234   case T_INT:      return TypeInt::make(constant.as_int());
 235   case T_LONG:     return TypeLong::make(constant.as_long());
 236   case T_FLOAT:    return TypeF::make(constant.as_float());
 237   case T_DOUBLE:   return TypeD::make(constant.as_double());
 238   case T_ARRAY:
 239   case T_OBJECT:
 240     {
 241       // cases:
 242       //   can_be_constant    = (oop not scavengable || ScavengeRootsInCode != 0)
 243       //   should_be_constant = (oop not scavengable || ScavengeRootsInCode >= 2)
 244       // An oop is not scavengable if it is in the perm gen.
 245       ciObject* oop_constant = constant.as_object();
 246       if (oop_constant->is_null_object()) {
 247         return Type::get_zero_type(T_OBJECT);
 248       } else if (require_constant || oop_constant->should_be_constant()) {
 249         return TypeOopPtr::make_from_constant(oop_constant, require_constant, is_autobox_cache);
 250       }
 251     }
 252   }
 253   // Fall through to failure
 254   return NULL;
 255 }
 256 
 257 
 258 //------------------------------make-------------------------------------------
 259 // Create a simple Type, with default empty symbol sets.  Then hashcons it
 260 // and look for an existing copy in the type dictionary.
 261 const Type *Type::make( enum TYPES t ) {
 262   return (new Type(t))->hashcons();
 263 }
 264 
 265 //------------------------------cmp--------------------------------------------
 266 int Type::cmp( const Type *const t1, const Type *const t2 ) {
 267   if( t1->_base != t2->_base )
 268     return 1;                   // Missed badly
 269   assert(t1 != t2 || t1->eq(t2), "eq must be reflexive");
 270   return !t1->eq(t2);           // Return ZERO if equal
 271 }
 272 
 273 const Type* Type::maybe_remove_speculative(bool include_speculative) const {
 274   if (!include_speculative) {
 275     return remove_speculative();
 276   }
 277   return this;
 278 }
 279 
 280 //------------------------------hash-------------------------------------------
 281 int Type::uhash( const Type *const t ) {
 282   return t->hash();
 283 }
 284 
 285 #define SMALLINT ((juint)3)  // a value too insignificant to consider widening
 286 
 287 //--------------------------Initialize_shared----------------------------------
 288 void Type::Initialize_shared(Compile* current) {
 289   // This method does not need to be locked because the first system
 290   // compilations (stub compilations) occur serially.  If they are
 291   // changed to proceed in parallel, then this section will need
 292   // locking.
 293 
 294   Arena* save = current->type_arena();
 295   Arena* shared_type_arena = new (mtCompiler)Arena(mtCompiler);
 296 
 297   current->set_type_arena(shared_type_arena);
 298   _shared_type_dict =
 299     new (shared_type_arena) Dict( (CmpKey)Type::cmp, (Hash)Type::uhash,
 300                                   shared_type_arena, 128 );
 301   current->set_type_dict(_shared_type_dict);
 302 
 303   // Make shared pre-built types.
 304   CONTROL = make(Control);      // Control only
 305   TOP     = make(Top);          // No values in set
 306   MEMORY  = make(Memory);       // Abstract store only
 307   ABIO    = make(Abio);         // State-of-machine only
 308   RETURN_ADDRESS=make(Return_Address);
 309   FLOAT   = make(FloatBot);     // All floats
 310   DOUBLE  = make(DoubleBot);    // All doubles
 311   BOTTOM  = make(Bottom);       // Everything
 312   HALF    = make(Half);         // Placeholder half of doublewide type
 313 
 314   TypeF::ZERO = TypeF::make(0.0); // Float 0 (positive zero)
 315   TypeF::ONE  = TypeF::make(1.0); // Float 1
 316 
 317   TypeD::ZERO = TypeD::make(0.0); // Double 0 (positive zero)
 318   TypeD::ONE  = TypeD::make(1.0); // Double 1
 319 
 320   TypeInt::MINUS_1 = TypeInt::make(-1);  // -1
 321   TypeInt::ZERO    = TypeInt::make( 0);  //  0
 322   TypeInt::ONE     = TypeInt::make( 1);  //  1
 323   TypeInt::BOOL    = TypeInt::make(0,1,   WidenMin);  // 0 or 1, FALSE or TRUE.
 324   TypeInt::CC      = TypeInt::make(-1, 1, WidenMin);  // -1, 0 or 1, condition codes
 325   TypeInt::CC_LT   = TypeInt::make(-1,-1, WidenMin);  // == TypeInt::MINUS_1
 326   TypeInt::CC_GT   = TypeInt::make( 1, 1, WidenMin);  // == TypeInt::ONE
 327   TypeInt::CC_EQ   = TypeInt::make( 0, 0, WidenMin);  // == TypeInt::ZERO
 328   TypeInt::CC_LE   = TypeInt::make(-1, 0, WidenMin);
 329   TypeInt::CC_GE   = TypeInt::make( 0, 1, WidenMin);  // == TypeInt::BOOL
 330   TypeInt::BYTE    = TypeInt::make(-128,127,     WidenMin); // Bytes
 331   TypeInt::UBYTE   = TypeInt::make(0, 255,       WidenMin); // Unsigned Bytes
 332   TypeInt::CHAR    = TypeInt::make(0,65535,      WidenMin); // Java chars
 333   TypeInt::SHORT   = TypeInt::make(-32768,32767, WidenMin); // Java shorts
 334   TypeInt::POS     = TypeInt::make(0,max_jint,   WidenMin); // Non-neg values
 335   TypeInt::POS1    = TypeInt::make(1,max_jint,   WidenMin); // Positive values
 336   TypeInt::INT     = TypeInt::make(min_jint,max_jint, WidenMax); // 32-bit integers
 337   TypeInt::SYMINT  = TypeInt::make(-max_jint,max_jint,WidenMin); // symmetric range
 338   TypeInt::TYPE_DOMAIN  = TypeInt::INT;
 339   // CmpL is overloaded both as the bytecode computation returning
 340   // a trinary (-1,0,+1) integer result AND as an efficient long
 341   // compare returning optimizer ideal-type flags.
 342   assert( TypeInt::CC_LT == TypeInt::MINUS_1, "types must match for CmpL to work" );
 343   assert( TypeInt::CC_GT == TypeInt::ONE,     "types must match for CmpL to work" );
 344   assert( TypeInt::CC_EQ == TypeInt::ZERO,    "types must match for CmpL to work" );
 345   assert( TypeInt::CC_GE == TypeInt::BOOL,    "types must match for CmpL to work" );
 346   assert( (juint)(TypeInt::CC->_hi - TypeInt::CC->_lo) <= SMALLINT, "CC is truly small");
 347 
 348   TypeLong::MINUS_1 = TypeLong::make(-1);        // -1
 349   TypeLong::ZERO    = TypeLong::make( 0);        //  0
 350   TypeLong::ONE     = TypeLong::make( 1);        //  1
 351   TypeLong::POS     = TypeLong::make(0,max_jlong, WidenMin); // Non-neg values
 352   TypeLong::LONG    = TypeLong::make(min_jlong,max_jlong,WidenMax); // 64-bit integers
 353   TypeLong::INT     = TypeLong::make((jlong)min_jint,(jlong)max_jint,WidenMin);
 354   TypeLong::UINT    = TypeLong::make(0,(jlong)max_juint,WidenMin);
 355   TypeLong::TYPE_DOMAIN  = TypeLong::LONG;
 356 
 357   const Type **fboth =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
 358   fboth[0] = Type::CONTROL;
 359   fboth[1] = Type::CONTROL;
 360   TypeTuple::IFBOTH = TypeTuple::make( 2, fboth );
 361 
 362   const Type **ffalse =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
 363   ffalse[0] = Type::CONTROL;
 364   ffalse[1] = Type::TOP;
 365   TypeTuple::IFFALSE = TypeTuple::make( 2, ffalse );
 366 
 367   const Type **fneither =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
 368   fneither[0] = Type::TOP;
 369   fneither[1] = Type::TOP;
 370   TypeTuple::IFNEITHER = TypeTuple::make( 2, fneither );
 371 
 372   const Type **ftrue =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
 373   ftrue[0] = Type::TOP;
 374   ftrue[1] = Type::CONTROL;
 375   TypeTuple::IFTRUE = TypeTuple::make( 2, ftrue );
 376 
 377   const Type **floop =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
 378   floop[0] = Type::CONTROL;
 379   floop[1] = TypeInt::INT;
 380   TypeTuple::LOOPBODY = TypeTuple::make( 2, floop );
 381 
 382   TypePtr::NULL_PTR= TypePtr::make( AnyPtr, TypePtr::Null, 0 );
 383   TypePtr::NOTNULL = TypePtr::make( AnyPtr, TypePtr::NotNull, OffsetBot );
 384   TypePtr::BOTTOM  = TypePtr::make( AnyPtr, TypePtr::BotPTR, OffsetBot );
 385 
 386   TypeRawPtr::BOTTOM = TypeRawPtr::make( TypePtr::BotPTR );
 387   TypeRawPtr::NOTNULL= TypeRawPtr::make( TypePtr::NotNull );
 388 
 389   const Type **fmembar = TypeTuple::fields(0);
 390   TypeTuple::MEMBAR = TypeTuple::make(TypeFunc::Parms+0, fmembar);
 391 
 392   const Type **fsc = (const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
 393   fsc[0] = TypeInt::CC;
 394   fsc[1] = Type::MEMORY;
 395   TypeTuple::STORECONDITIONAL = TypeTuple::make(2, fsc);
 396 
 397   TypeInstPtr::NOTNULL = TypeInstPtr::make(TypePtr::NotNull, current->env()->Object_klass());
 398   TypeInstPtr::BOTTOM  = TypeInstPtr::make(TypePtr::BotPTR,  current->env()->Object_klass());
 399   TypeInstPtr::MIRROR  = TypeInstPtr::make(TypePtr::NotNull, current->env()->Class_klass());
 400   TypeInstPtr::MARK    = TypeInstPtr::make(TypePtr::BotPTR,  current->env()->Object_klass(),
 401                                            false, 0, oopDesc::mark_offset_in_bytes());
 402   TypeInstPtr::KLASS   = TypeInstPtr::make(TypePtr::BotPTR,  current->env()->Object_klass(),
 403                                            false, 0, oopDesc::klass_offset_in_bytes());
 404   TypeOopPtr::BOTTOM  = TypeOopPtr::make(TypePtr::BotPTR, OffsetBot, TypeOopPtr::InstanceBot, NULL);
 405 
 406   TypeMetadataPtr::BOTTOM = TypeMetadataPtr::make(TypePtr::BotPTR, NULL, OffsetBot);
 407 
 408   TypeNarrowOop::NULL_PTR = TypeNarrowOop::make( TypePtr::NULL_PTR );
 409   TypeNarrowOop::BOTTOM   = TypeNarrowOop::make( TypeInstPtr::BOTTOM );
 410 
 411   TypeNarrowKlass::NULL_PTR = TypeNarrowKlass::make( TypePtr::NULL_PTR );
 412 
 413   mreg2type[Op_Node] = Type::BOTTOM;
 414   mreg2type[Op_Set ] = 0;
 415   mreg2type[Op_RegN] = TypeNarrowOop::BOTTOM;
 416   mreg2type[Op_RegI] = TypeInt::INT;
 417   mreg2type[Op_RegP] = TypePtr::BOTTOM;
 418   mreg2type[Op_RegF] = Type::FLOAT;
 419   mreg2type[Op_RegD] = Type::DOUBLE;
 420   mreg2type[Op_RegL] = TypeLong::LONG;
 421   mreg2type[Op_RegFlags] = TypeInt::CC;
 422 
 423   TypeAryPtr::RANGE   = TypeAryPtr::make( TypePtr::BotPTR, TypeAry::make(Type::BOTTOM,TypeInt::POS), NULL /* current->env()->Object_klass() */, false, arrayOopDesc::length_offset_in_bytes());
 424 
 425   TypeAryPtr::NARROWOOPS = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeNarrowOop::BOTTOM, TypeInt::POS), NULL /*ciArrayKlass::make(o)*/,  false,  Type::OffsetBot);
 426 
 427 #ifdef _LP64
 428   if (UseCompressedOops) {
 429     assert(TypeAryPtr::NARROWOOPS->is_ptr_to_narrowoop(), "array of narrow oops must be ptr to narrow oop");
 430     TypeAryPtr::OOPS  = TypeAryPtr::NARROWOOPS;
 431   } else
 432 #endif
 433   {
 434     // There is no shared klass for Object[].  See note in TypeAryPtr::klass().
 435     TypeAryPtr::OOPS  = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInstPtr::BOTTOM,TypeInt::POS), NULL /*ciArrayKlass::make(o)*/,  false,  Type::OffsetBot);
 436   }
 437   TypeAryPtr::BYTES   = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::BYTE      ,TypeInt::POS), ciTypeArrayKlass::make(T_BYTE),   true,  Type::OffsetBot);
 438   TypeAryPtr::SHORTS  = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::SHORT     ,TypeInt::POS), ciTypeArrayKlass::make(T_SHORT),  true,  Type::OffsetBot);
 439   TypeAryPtr::CHARS   = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::CHAR      ,TypeInt::POS), ciTypeArrayKlass::make(T_CHAR),   true,  Type::OffsetBot);
 440   TypeAryPtr::INTS    = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::INT       ,TypeInt::POS), ciTypeArrayKlass::make(T_INT),    true,  Type::OffsetBot);
 441   TypeAryPtr::LONGS   = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeLong::LONG     ,TypeInt::POS), ciTypeArrayKlass::make(T_LONG),   true,  Type::OffsetBot);
 442   TypeAryPtr::FLOATS  = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(Type::FLOAT        ,TypeInt::POS), ciTypeArrayKlass::make(T_FLOAT),  true,  Type::OffsetBot);
 443   TypeAryPtr::DOUBLES = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(Type::DOUBLE       ,TypeInt::POS), ciTypeArrayKlass::make(T_DOUBLE), true,  Type::OffsetBot);
 444 
 445   // Nobody should ask _array_body_type[T_NARROWOOP]. Use NULL as assert.
 446   TypeAryPtr::_array_body_type[T_NARROWOOP] = NULL;
 447   TypeAryPtr::_array_body_type[T_OBJECT]  = TypeAryPtr::OOPS;
 448   TypeAryPtr::_array_body_type[T_ARRAY]   = TypeAryPtr::OOPS; // arrays are stored in oop arrays
 449   TypeAryPtr::_array_body_type[T_BYTE]    = TypeAryPtr::BYTES;
 450   TypeAryPtr::_array_body_type[T_BOOLEAN] = TypeAryPtr::BYTES;  // boolean[] is a byte array
 451   TypeAryPtr::_array_body_type[T_SHORT]   = TypeAryPtr::SHORTS;
 452   TypeAryPtr::_array_body_type[T_CHAR]    = TypeAryPtr::CHARS;
 453   TypeAryPtr::_array_body_type[T_INT]     = TypeAryPtr::INTS;
 454   TypeAryPtr::_array_body_type[T_LONG]    = TypeAryPtr::LONGS;
 455   TypeAryPtr::_array_body_type[T_FLOAT]   = TypeAryPtr::FLOATS;
 456   TypeAryPtr::_array_body_type[T_DOUBLE]  = TypeAryPtr::DOUBLES;
 457 
 458   TypeKlassPtr::OBJECT = TypeKlassPtr::make( TypePtr::NotNull, current->env()->Object_klass(), 0 );
 459   TypeKlassPtr::OBJECT_OR_NULL = TypeKlassPtr::make( TypePtr::BotPTR, current->env()->Object_klass(), 0 );
 460 
 461   const Type **fi2c = TypeTuple::fields(2);
 462   fi2c[TypeFunc::Parms+0] = TypeInstPtr::BOTTOM; // Method*
 463   fi2c[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM; // argument pointer
 464   TypeTuple::START_I2C = TypeTuple::make(TypeFunc::Parms+2, fi2c);
 465 
 466   const Type **intpair = TypeTuple::fields(2);
 467   intpair[0] = TypeInt::INT;
 468   intpair[1] = TypeInt::INT;
 469   TypeTuple::INT_PAIR = TypeTuple::make(2, intpair);
 470 
 471   const Type **longpair = TypeTuple::fields(2);
 472   longpair[0] = TypeLong::LONG;
 473   longpair[1] = TypeLong::LONG;
 474   TypeTuple::LONG_PAIR = TypeTuple::make(2, longpair);
 475 
 476   const Type **intccpair = TypeTuple::fields(2);
 477   intccpair[0] = TypeInt::INT;
 478   intccpair[1] = TypeInt::CC;
 479   TypeTuple::INT_CC_PAIR = TypeTuple::make(2, intccpair);
 480 
 481   const Type **longccpair = TypeTuple::fields(2);
 482   longccpair[0] = TypeLong::LONG;
 483   longccpair[1] = TypeInt::CC;
 484   TypeTuple::LONG_CC_PAIR = TypeTuple::make(2, longccpair);
 485 
 486   _const_basic_type[T_NARROWOOP]   = TypeNarrowOop::BOTTOM;
 487   _const_basic_type[T_NARROWKLASS] = Type::BOTTOM;
 488   _const_basic_type[T_BOOLEAN]     = TypeInt::BOOL;
 489   _const_basic_type[T_CHAR]        = TypeInt::CHAR;
 490   _const_basic_type[T_BYTE]        = TypeInt::BYTE;
 491   _const_basic_type[T_SHORT]       = TypeInt::SHORT;
 492   _const_basic_type[T_INT]         = TypeInt::INT;
 493   _const_basic_type[T_LONG]        = TypeLong::LONG;
 494   _const_basic_type[T_FLOAT]       = Type::FLOAT;
 495   _const_basic_type[T_DOUBLE]      = Type::DOUBLE;
 496   _const_basic_type[T_OBJECT]      = TypeInstPtr::BOTTOM;
 497   _const_basic_type[T_ARRAY]       = TypeInstPtr::BOTTOM; // there is no separate bottom for arrays
 498   _const_basic_type[T_VOID]        = TypePtr::NULL_PTR;   // reflection represents void this way
 499   _const_basic_type[T_ADDRESS]     = TypeRawPtr::BOTTOM;  // both interpreter return addresses & random raw ptrs
 500   _const_basic_type[T_CONFLICT]    = Type::BOTTOM;        // why not?
 501 
 502   _zero_type[T_NARROWOOP]   = TypeNarrowOop::NULL_PTR;
 503   _zero_type[T_NARROWKLASS] = TypeNarrowKlass::NULL_PTR;
 504   _zero_type[T_BOOLEAN]     = TypeInt::ZERO;     // false == 0
 505   _zero_type[T_CHAR]        = TypeInt::ZERO;     // '\0' == 0
 506   _zero_type[T_BYTE]        = TypeInt::ZERO;     // 0x00 == 0
 507   _zero_type[T_SHORT]       = TypeInt::ZERO;     // 0x0000 == 0
 508   _zero_type[T_INT]         = TypeInt::ZERO;
 509   _zero_type[T_LONG]        = TypeLong::ZERO;
 510   _zero_type[T_FLOAT]       = TypeF::ZERO;
 511   _zero_type[T_DOUBLE]      = TypeD::ZERO;
 512   _zero_type[T_OBJECT]      = TypePtr::NULL_PTR;
 513   _zero_type[T_ARRAY]       = TypePtr::NULL_PTR; // null array is null oop
 514   _zero_type[T_ADDRESS]     = TypePtr::NULL_PTR; // raw pointers use the same null
 515   _zero_type[T_VOID]        = Type::TOP;         // the only void value is no value at all
 516 
 517   // get_zero_type() should not happen for T_CONFLICT
 518   _zero_type[T_CONFLICT]= NULL;
 519 
 520   // Vector predefined types, it needs initialized _const_basic_type[].
 521   if (Matcher::vector_size_supported(T_BYTE,4)) {
 522     TypeVect::VECTS = TypeVect::make(T_BYTE,4);
 523   }
 524   if (Matcher::vector_size_supported(T_FLOAT,2)) {
 525     TypeVect::VECTD = TypeVect::make(T_FLOAT,2);
 526   }
 527   if (Matcher::vector_size_supported(T_FLOAT,4)) {
 528     TypeVect::VECTX = TypeVect::make(T_FLOAT,4);
 529   }
 530   if (Matcher::vector_size_supported(T_FLOAT,8)) {
 531     TypeVect::VECTY = TypeVect::make(T_FLOAT,8);
 532   }
 533   mreg2type[Op_VecS] = TypeVect::VECTS;
 534   mreg2type[Op_VecD] = TypeVect::VECTD;
 535   mreg2type[Op_VecX] = TypeVect::VECTX;
 536   mreg2type[Op_VecY] = TypeVect::VECTY;
 537 
 538   // Restore working type arena.
 539   current->set_type_arena(save);
 540   current->set_type_dict(NULL);
 541 }
 542 
 543 //------------------------------Initialize-------------------------------------
 544 void Type::Initialize(Compile* current) {
 545   assert(current->type_arena() != NULL, "must have created type arena");
 546 
 547   if (_shared_type_dict == NULL) {
 548     Initialize_shared(current);
 549   }
 550 
 551   Arena* type_arena = current->type_arena();
 552 
 553   // Create the hash-cons'ing dictionary with top-level storage allocation
 554   Dict *tdic = new (type_arena) Dict( (CmpKey)Type::cmp,(Hash)Type::uhash, type_arena, 128 );
 555   current->set_type_dict(tdic);
 556 
 557   // Transfer the shared types.
 558   DictI i(_shared_type_dict);
 559   for( ; i.test(); ++i ) {
 560     Type* t = (Type*)i._value;
 561     tdic->Insert(t,t);  // New Type, insert into Type table
 562   }
 563 }
 564 
 565 //------------------------------hashcons---------------------------------------
 566 // Do the hash-cons trick.  If the Type already exists in the type table,
 567 // delete the current Type and return the existing Type.  Otherwise stick the
 568 // current Type in the Type table.
 569 const Type *Type::hashcons(void) {
 570   debug_only(base());           // Check the assertion in Type::base().
 571   // Look up the Type in the Type dictionary
 572   Dict *tdic = type_dict();
 573   Type* old = (Type*)(tdic->Insert(this, this, false));
 574   if( old ) {                   // Pre-existing Type?
 575     if( old != this )           // Yes, this guy is not the pre-existing?
 576       delete this;              // Yes, Nuke this guy
 577     assert( old->_dual, "" );
 578     return old;                 // Return pre-existing
 579   }
 580 
 581   // Every type has a dual (to make my lattice symmetric).
 582   // Since we just discovered a new Type, compute its dual right now.
 583   assert( !_dual, "" );         // No dual yet
 584   _dual = xdual();              // Compute the dual
 585   if( cmp(this,_dual)==0 ) {    // Handle self-symmetric
 586     _dual = this;
 587     return this;
 588   }
 589   assert( !_dual->_dual, "" );  // No reverse dual yet
 590   assert( !(*tdic)[_dual], "" ); // Dual not in type system either
 591   // New Type, insert into Type table
 592   tdic->Insert((void*)_dual,(void*)_dual);
 593   ((Type*)_dual)->_dual = this; // Finish up being symmetric
 594 #ifdef ASSERT
 595   Type *dual_dual = (Type*)_dual->xdual();
 596   assert( eq(dual_dual), "xdual(xdual()) should be identity" );
 597   delete dual_dual;
 598 #endif
 599   return this;                  // Return new Type
 600 }
 601 
 602 //------------------------------eq---------------------------------------------
 603 // Structural equality check for Type representations
 604 bool Type::eq( const Type * ) const {
 605   return true;                  // Nothing else can go wrong
 606 }
 607 
 608 //------------------------------hash-------------------------------------------
 609 // Type-specific hashing function.
 610 int Type::hash(void) const {
 611   return _base;
 612 }
 613 
 614 //------------------------------is_finite--------------------------------------
 615 // Has a finite value
 616 bool Type::is_finite() const {
 617   return false;
 618 }
 619 
 620 //------------------------------is_nan-----------------------------------------
 621 // Is not a number (NaN)
 622 bool Type::is_nan()    const {
 623   return false;
 624 }
 625 
 626 //----------------------interface_vs_oop---------------------------------------
 627 #ifdef ASSERT
 628 bool Type::interface_vs_oop_helper(const Type *t) const {
 629   bool result = false;
 630 
 631   const TypePtr* this_ptr = this->make_ptr(); // In case it is narrow_oop
 632   const TypePtr*    t_ptr =    t->make_ptr();
 633   if( this_ptr == NULL || t_ptr == NULL )
 634     return result;
 635 
 636   const TypeInstPtr* this_inst = this_ptr->isa_instptr();
 637   const TypeInstPtr*    t_inst =    t_ptr->isa_instptr();
 638   if( this_inst && this_inst->is_loaded() && t_inst && t_inst->is_loaded() ) {
 639     bool this_interface = this_inst->klass()->is_interface();
 640     bool    t_interface =    t_inst->klass()->is_interface();
 641     result = this_interface ^ t_interface;
 642   }
 643 
 644   return result;
 645 }
 646 
 647 bool Type::interface_vs_oop(const Type *t) const {
 648   if (interface_vs_oop_helper(t)) {
 649     return true;
 650   }
 651   // Now check the speculative parts as well
 652   const TypeOopPtr* this_spec = isa_oopptr() != NULL ? isa_oopptr()->speculative() : NULL;
 653   const TypeOopPtr* t_spec = t->isa_oopptr() != NULL ? t->isa_oopptr()->speculative() : NULL;
 654   if (this_spec != NULL && t_spec != NULL) {
 655     if (this_spec->interface_vs_oop_helper(t_spec)) {
 656       return true;
 657     }
 658     return false;
 659   }
 660   if (this_spec != NULL && this_spec->interface_vs_oop_helper(t)) {
 661     return true;
 662   }
 663   if (t_spec != NULL && interface_vs_oop_helper(t_spec)) {
 664     return true;
 665   }
 666   return false;
 667 }
 668 
 669 #endif
 670 
 671 //------------------------------meet-------------------------------------------
 672 // Compute the MEET of two types.  NOT virtual.  It enforces that meet is
 673 // commutative and the lattice is symmetric.
 674 const Type *Type::meet_helper(const Type *t, bool include_speculative) const {
 675   if (isa_narrowoop() && t->isa_narrowoop()) {
 676     const Type* result = make_ptr()->meet_helper(t->make_ptr(), include_speculative);
 677     return result->make_narrowoop();
 678   }
 679   if (isa_narrowklass() && t->isa_narrowklass()) {
 680     const Type* result = make_ptr()->meet_helper(t->make_ptr(), include_speculative);
 681     return result->make_narrowklass();
 682   }
 683 
 684   const Type *this_t = maybe_remove_speculative(include_speculative);
 685   t = t->maybe_remove_speculative(include_speculative);
 686 
 687   const Type *mt = this_t->xmeet(t);
 688   if (isa_narrowoop() || t->isa_narrowoop()) return mt;
 689   if (isa_narrowklass() || t->isa_narrowklass()) return mt;
 690 #ifdef ASSERT
 691   assert(mt == t->xmeet(this_t), "meet not commutative");
 692   const Type* dual_join = mt->_dual;
 693   const Type *t2t    = dual_join->xmeet(t->_dual);
 694   const Type *t2this = dual_join->xmeet(this_t->_dual);
 695 
 696   // Interface meet Oop is Not Symmetric:
 697   // Interface:AnyNull meet Oop:AnyNull == Interface:AnyNull
 698   // Interface:NotNull meet Oop:NotNull == java/lang/Object:NotNull
 699 
 700   if( !interface_vs_oop(t) && (t2t != t->_dual || t2this != this_t->_dual) ) {
 701     tty->print_cr("=== Meet Not Symmetric ===");
 702     tty->print("t   =                   ");              t->dump(); tty->cr();
 703     tty->print("this=                   ");         this_t->dump(); tty->cr();
 704     tty->print("mt=(t meet this)=       ");             mt->dump(); tty->cr();
 705 
 706     tty->print("t_dual=                 ");       t->_dual->dump(); tty->cr();
 707     tty->print("this_dual=              ");  this_t->_dual->dump(); tty->cr();
 708     tty->print("mt_dual=                ");      mt->_dual->dump(); tty->cr();
 709 
 710     tty->print("mt_dual meet t_dual=    "); t2t           ->dump(); tty->cr();
 711     tty->print("mt_dual meet this_dual= "); t2this        ->dump(); tty->cr();
 712 
 713     fatal("meet not symmetric" );
 714   }
 715 #endif
 716   return mt;
 717 }
 718 
 719 //------------------------------xmeet------------------------------------------
 720 // Compute the MEET of two types.  It returns a new Type object.
 721 const Type *Type::xmeet( const Type *t ) const {
 722   // Perform a fast test for common case; meeting the same types together.
 723   if( this == t ) return this;  // Meeting same type-rep?
 724 
 725   // Meeting TOP with anything?
 726   if( _base == Top ) return t;
 727 
 728   // Meeting BOTTOM with anything?
 729   if( _base == Bottom ) return BOTTOM;
 730 
 731   // Current "this->_base" is one of: Bad, Multi, Control, Top,
 732   // Abio, Abstore, Floatxxx, Doublexxx, Bottom, lastype.
 733   switch (t->base()) {  // Switch on original type
 734 
 735   // Cut in half the number of cases I must handle.  Only need cases for when
 736   // the given enum "t->type" is less than or equal to the local enum "type".
 737   case FloatCon:
 738   case DoubleCon:
 739   case Int:
 740   case Long:
 741     return t->xmeet(this);
 742 
 743   case OopPtr:
 744     return t->xmeet(this);
 745 
 746   case InstPtr:
 747     return t->xmeet(this);
 748 
 749   case MetadataPtr:
 750   case KlassPtr:
 751     return t->xmeet(this);
 752 
 753   case AryPtr:
 754     return t->xmeet(this);
 755 
 756   case NarrowOop:
 757     return t->xmeet(this);
 758 
 759   case NarrowKlass:
 760     return t->xmeet(this);
 761 
 762   case Bad:                     // Type check
 763   default:                      // Bogus type not in lattice
 764     typerr(t);
 765     return Type::BOTTOM;
 766 
 767   case Bottom:                  // Ye Olde Default
 768     return t;
 769 
 770   case FloatTop:
 771     if( _base == FloatTop ) return this;
 772   case FloatBot:                // Float
 773     if( _base == FloatBot || _base == FloatTop ) return FLOAT;
 774     if( _base == DoubleTop || _base == DoubleBot ) return Type::BOTTOM;
 775     typerr(t);
 776     return Type::BOTTOM;
 777 
 778   case DoubleTop:
 779     if( _base == DoubleTop ) return this;
 780   case DoubleBot:               // Double
 781     if( _base == DoubleBot || _base == DoubleTop ) return DOUBLE;
 782     if( _base == FloatTop || _base == FloatBot ) return Type::BOTTOM;
 783     typerr(t);
 784     return Type::BOTTOM;
 785 
 786   // These next few cases must match exactly or it is a compile-time error.
 787   case Control:                 // Control of code
 788   case Abio:                    // State of world outside of program
 789   case Memory:
 790     if( _base == t->_base )  return this;
 791     typerr(t);
 792     return Type::BOTTOM;
 793 
 794   case Top:                     // Top of the lattice
 795     return this;
 796   }
 797 
 798   // The type is unchanged
 799   return this;
 800 }
 801 
 802 //-----------------------------filter------------------------------------------
 803 const Type *Type::filter_helper(const Type *kills, bool include_speculative) const {
 804   const Type* ft = join_helper(kills, include_speculative);
 805   if (ft->empty())
 806     return Type::TOP;           // Canonical empty value
 807   return ft;
 808 }
 809 
 810 //------------------------------xdual------------------------------------------
 811 // Compute dual right now.
 812 const Type::TYPES Type::dual_type[Type::lastype] = {
 813   Bad,          // Bad
 814   Control,      // Control
 815   Bottom,       // Top
 816   Bad,          // Int - handled in v-call
 817   Bad,          // Long - handled in v-call
 818   Half,         // Half
 819   Bad,          // NarrowOop - handled in v-call
 820   Bad,          // NarrowKlass - handled in v-call
 821 
 822   Bad,          // Tuple - handled in v-call
 823   Bad,          // Array - handled in v-call
 824   Bad,          // VectorS - handled in v-call
 825   Bad,          // VectorD - handled in v-call
 826   Bad,          // VectorX - handled in v-call
 827   Bad,          // VectorY - handled in v-call
 828 
 829   Bad,          // AnyPtr - handled in v-call
 830   Bad,          // RawPtr - handled in v-call
 831   Bad,          // OopPtr - handled in v-call
 832   Bad,          // InstPtr - handled in v-call
 833   Bad,          // AryPtr - handled in v-call
 834 
 835   Bad,          //  MetadataPtr - handled in v-call
 836   Bad,          // KlassPtr - handled in v-call
 837 
 838   Bad,          // Function - handled in v-call
 839   Abio,         // Abio
 840   Return_Address,// Return_Address
 841   Memory,       // Memory
 842   FloatBot,     // FloatTop
 843   FloatCon,     // FloatCon
 844   FloatTop,     // FloatBot
 845   DoubleBot,    // DoubleTop
 846   DoubleCon,    // DoubleCon
 847   DoubleTop,    // DoubleBot
 848   Top           // Bottom
 849 };
 850 
 851 const Type *Type::xdual() const {
 852   // Note: the base() accessor asserts the sanity of _base.
 853   assert(_type_info[base()].dual_type != Bad, "implement with v-call");
 854   return new Type(_type_info[_base].dual_type);
 855 }
 856 
 857 //------------------------------has_memory-------------------------------------
 858 bool Type::has_memory() const {
 859   Type::TYPES tx = base();
 860   if (tx == Memory) return true;
 861   if (tx == Tuple) {
 862     const TypeTuple *t = is_tuple();
 863     for (uint i=0; i < t->cnt(); i++) {
 864       tx = t->field_at(i)->base();
 865       if (tx == Memory)  return true;
 866     }
 867   }
 868   return false;
 869 }
 870 
 871 #ifndef PRODUCT
 872 //------------------------------dump2------------------------------------------
 873 void Type::dump2( Dict &d, uint depth, outputStream *st ) const {
 874   st->print("%s", _type_info[_base].msg);
 875 }
 876 
 877 //------------------------------dump-------------------------------------------
 878 void Type::dump_on(outputStream *st) const {
 879   ResourceMark rm;
 880   Dict d(cmpkey,hashkey);       // Stop recursive type dumping
 881   dump2(d,1, st);
 882   if (is_ptr_to_narrowoop()) {
 883     st->print(" [narrow]");
 884   } else if (is_ptr_to_narrowklass()) {
 885     st->print(" [narrowklass]");
 886   }
 887 }
 888 
 889 //-----------------------------------------------------------------------------
 890 const char* Type::str(const Type* t) {
 891   stringStream ss;
 892   t->dump_on(&ss);
 893   return ss.as_string();
 894 }
 895 #endif
 896 
 897 //------------------------------singleton--------------------------------------
 898 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
 899 // constants (Ldi nodes).  Singletons are integer, float or double constants.
 900 bool Type::singleton(void) const {
 901   return _base == Top || _base == Half;
 902 }
 903 
 904 //------------------------------empty------------------------------------------
 905 // TRUE if Type is a type with no values, FALSE otherwise.
 906 bool Type::empty(void) const {
 907   switch (_base) {
 908   case DoubleTop:
 909   case FloatTop:
 910   case Top:
 911     return true;
 912 
 913   case Half:
 914   case Abio:
 915   case Return_Address:
 916   case Memory:
 917   case Bottom:
 918   case FloatBot:
 919   case DoubleBot:
 920     return false;  // never a singleton, therefore never empty
 921   }
 922 
 923   ShouldNotReachHere();
 924   return false;
 925 }
 926 
 927 //------------------------------dump_stats-------------------------------------
 928 // Dump collected statistics to stderr
 929 #ifndef PRODUCT
 930 void Type::dump_stats() {
 931   tty->print("Types made: %d\n", type_dict()->Size());
 932 }
 933 #endif
 934 
 935 //------------------------------typerr-----------------------------------------
 936 void Type::typerr( const Type *t ) const {
 937 #ifndef PRODUCT
 938   tty->print("\nError mixing types: ");
 939   dump();
 940   tty->print(" and ");
 941   t->dump();
 942   tty->print("\n");
 943 #endif
 944   ShouldNotReachHere();
 945 }
 946 
 947 
 948 //=============================================================================
 949 // Convenience common pre-built types.
 950 const TypeF *TypeF::ZERO;       // Floating point zero
 951 const TypeF *TypeF::ONE;        // Floating point one
 952 
 953 //------------------------------make-------------------------------------------
 954 // Create a float constant
 955 const TypeF *TypeF::make(float f) {
 956   return (TypeF*)(new TypeF(f))->hashcons();
 957 }
 958 
 959 //------------------------------meet-------------------------------------------
 960 // Compute the MEET of two types.  It returns a new Type object.
 961 const Type *TypeF::xmeet( const Type *t ) const {
 962   // Perform a fast test for common case; meeting the same types together.
 963   if( this == t ) return this;  // Meeting same type-rep?
 964 
 965   // Current "this->_base" is FloatCon
 966   switch (t->base()) {          // Switch on original type
 967   case AnyPtr:                  // Mixing with oops happens when javac
 968   case RawPtr:                  // reuses local variables
 969   case OopPtr:
 970   case InstPtr:
 971   case AryPtr:
 972   case MetadataPtr:
 973   case KlassPtr:
 974   case NarrowOop:
 975   case NarrowKlass:
 976   case Int:
 977   case Long:
 978   case DoubleTop:
 979   case DoubleCon:
 980   case DoubleBot:
 981   case Bottom:                  // Ye Olde Default
 982     return Type::BOTTOM;
 983 
 984   case FloatBot:
 985     return t;
 986 
 987   default:                      // All else is a mistake
 988     typerr(t);
 989 
 990   case FloatCon:                // Float-constant vs Float-constant?
 991     if( jint_cast(_f) != jint_cast(t->getf()) )         // unequal constants?
 992                                 // must compare bitwise as positive zero, negative zero and NaN have
 993                                 // all the same representation in C++
 994       return FLOAT;             // Return generic float
 995                                 // Equal constants
 996   case Top:
 997   case FloatTop:
 998     break;                      // Return the float constant
 999   }
1000   return this;                  // Return the float constant
1001 }
1002 
1003 //------------------------------xdual------------------------------------------
1004 // Dual: symmetric
1005 const Type *TypeF::xdual() const {
1006   return this;
1007 }
1008 
1009 //------------------------------eq---------------------------------------------
1010 // Structural equality check for Type representations
1011 bool TypeF::eq(const Type *t) const {
1012   // Bitwise comparison to distinguish between +/-0. These values must be treated
1013   // as different to be consistent with C1 and the interpreter.
1014   return (jint_cast(_f) == jint_cast(t->getf()));
1015 }
1016 
1017 //------------------------------hash-------------------------------------------
1018 // Type-specific hashing function.
1019 int TypeF::hash(void) const {
1020   return *(int*)(&_f);
1021 }
1022 
1023 //------------------------------is_finite--------------------------------------
1024 // Has a finite value
1025 bool TypeF::is_finite() const {
1026   return g_isfinite(getf()) != 0;
1027 }
1028 
1029 //------------------------------is_nan-----------------------------------------
1030 // Is not a number (NaN)
1031 bool TypeF::is_nan()    const {
1032   return g_isnan(getf()) != 0;
1033 }
1034 
1035 //------------------------------dump2------------------------------------------
1036 // Dump float constant Type
1037 #ifndef PRODUCT
1038 void TypeF::dump2( Dict &d, uint depth, outputStream *st ) const {
1039   Type::dump2(d,depth, st);
1040   st->print("%f", _f);
1041 }
1042 #endif
1043 
1044 //------------------------------singleton--------------------------------------
1045 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
1046 // constants (Ldi nodes).  Singletons are integer, float or double constants
1047 // or a single symbol.
1048 bool TypeF::singleton(void) const {
1049   return true;                  // Always a singleton
1050 }
1051 
1052 bool TypeF::empty(void) const {
1053   return false;                 // always exactly a singleton
1054 }
1055 
1056 //=============================================================================
1057 // Convenience common pre-built types.
1058 const TypeD *TypeD::ZERO;       // Floating point zero
1059 const TypeD *TypeD::ONE;        // Floating point one
1060 
1061 //------------------------------make-------------------------------------------
1062 const TypeD *TypeD::make(double d) {
1063   return (TypeD*)(new TypeD(d))->hashcons();
1064 }
1065 
1066 //------------------------------meet-------------------------------------------
1067 // Compute the MEET of two types.  It returns a new Type object.
1068 const Type *TypeD::xmeet( const Type *t ) const {
1069   // Perform a fast test for common case; meeting the same types together.
1070   if( this == t ) return this;  // Meeting same type-rep?
1071 
1072   // Current "this->_base" is DoubleCon
1073   switch (t->base()) {          // Switch on original type
1074   case AnyPtr:                  // Mixing with oops happens when javac
1075   case RawPtr:                  // reuses local variables
1076   case OopPtr:
1077   case InstPtr:
1078   case AryPtr:
1079   case MetadataPtr:
1080   case KlassPtr:
1081   case NarrowOop:
1082   case NarrowKlass:
1083   case Int:
1084   case Long:
1085   case FloatTop:
1086   case FloatCon:
1087   case FloatBot:
1088   case Bottom:                  // Ye Olde Default
1089     return Type::BOTTOM;
1090 
1091   case DoubleBot:
1092     return t;
1093 
1094   default:                      // All else is a mistake
1095     typerr(t);
1096 
1097   case DoubleCon:               // Double-constant vs Double-constant?
1098     if( jlong_cast(_d) != jlong_cast(t->getd()) )       // unequal constants? (see comment in TypeF::xmeet)
1099       return DOUBLE;            // Return generic double
1100   case Top:
1101   case DoubleTop:
1102     break;
1103   }
1104   return this;                  // Return the double constant
1105 }
1106 
1107 //------------------------------xdual------------------------------------------
1108 // Dual: symmetric
1109 const Type *TypeD::xdual() const {
1110   return this;
1111 }
1112 
1113 //------------------------------eq---------------------------------------------
1114 // Structural equality check for Type representations
1115 bool TypeD::eq(const Type *t) const {
1116   // Bitwise comparison to distinguish between +/-0. These values must be treated
1117   // as different to be consistent with C1 and the interpreter.
1118   return (jlong_cast(_d) == jlong_cast(t->getd()));
1119 }
1120 
1121 //------------------------------hash-------------------------------------------
1122 // Type-specific hashing function.
1123 int TypeD::hash(void) const {
1124   return *(int*)(&_d);
1125 }
1126 
1127 //------------------------------is_finite--------------------------------------
1128 // Has a finite value
1129 bool TypeD::is_finite() const {
1130   return g_isfinite(getd()) != 0;
1131 }
1132 
1133 //------------------------------is_nan-----------------------------------------
1134 // Is not a number (NaN)
1135 bool TypeD::is_nan()    const {
1136   return g_isnan(getd()) != 0;
1137 }
1138 
1139 //------------------------------dump2------------------------------------------
1140 // Dump double constant Type
1141 #ifndef PRODUCT
1142 void TypeD::dump2( Dict &d, uint depth, outputStream *st ) const {
1143   Type::dump2(d,depth,st);
1144   st->print("%f", _d);
1145 }
1146 #endif
1147 
1148 //------------------------------singleton--------------------------------------
1149 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
1150 // constants (Ldi nodes).  Singletons are integer, float or double constants
1151 // or a single symbol.
1152 bool TypeD::singleton(void) const {
1153   return true;                  // Always a singleton
1154 }
1155 
1156 bool TypeD::empty(void) const {
1157   return false;                 // always exactly a singleton
1158 }
1159 
1160 //=============================================================================
1161 // Convience common pre-built types.
1162 const TypeInt *TypeInt::MINUS_1;// -1
1163 const TypeInt *TypeInt::ZERO;   // 0
1164 const TypeInt *TypeInt::ONE;    // 1
1165 const TypeInt *TypeInt::BOOL;   // 0 or 1, FALSE or TRUE.
1166 const TypeInt *TypeInt::CC;     // -1,0 or 1, condition codes
1167 const TypeInt *TypeInt::CC_LT;  // [-1]  == MINUS_1
1168 const TypeInt *TypeInt::CC_GT;  // [1]   == ONE
1169 const TypeInt *TypeInt::CC_EQ;  // [0]   == ZERO
1170 const TypeInt *TypeInt::CC_LE;  // [-1,0]
1171 const TypeInt *TypeInt::CC_GE;  // [0,1] == BOOL (!)
1172 const TypeInt *TypeInt::BYTE;   // Bytes, -128 to 127
1173 const TypeInt *TypeInt::UBYTE;  // Unsigned Bytes, 0 to 255
1174 const TypeInt *TypeInt::CHAR;   // Java chars, 0-65535
1175 const TypeInt *TypeInt::SHORT;  // Java shorts, -32768-32767
1176 const TypeInt *TypeInt::POS;    // Positive 32-bit integers or zero
1177 const TypeInt *TypeInt::POS1;   // Positive 32-bit integers
1178 const TypeInt *TypeInt::INT;    // 32-bit integers
1179 const TypeInt *TypeInt::SYMINT; // symmetric range [-max_jint..max_jint]
1180 const TypeInt *TypeInt::TYPE_DOMAIN; // alias for TypeInt::INT
1181 
1182 //------------------------------TypeInt----------------------------------------
1183 TypeInt::TypeInt( jint lo, jint hi, int w ) : Type(Int), _lo(lo), _hi(hi), _widen(w) {
1184 }
1185 
1186 //------------------------------make-------------------------------------------
1187 const TypeInt *TypeInt::make( jint lo ) {
1188   return (TypeInt*)(new TypeInt(lo,lo,WidenMin))->hashcons();
1189 }
1190 
1191 static int normalize_int_widen( jint lo, jint hi, int w ) {
1192   // Certain normalizations keep us sane when comparing types.
1193   // The 'SMALLINT' covers constants and also CC and its relatives.
1194   if (lo <= hi) {
1195     if (((juint)hi - lo) <= SMALLINT)  w = Type::WidenMin;
1196     if (((juint)hi - lo) >= max_juint) w = Type::WidenMax; // TypeInt::INT
1197   } else {
1198     if (((juint)lo - hi) <= SMALLINT)  w = Type::WidenMin;
1199     if (((juint)lo - hi) >= max_juint) w = Type::WidenMin; // dual TypeInt::INT
1200   }
1201   return w;
1202 }
1203 
1204 const TypeInt *TypeInt::make( jint lo, jint hi, int w ) {
1205   w = normalize_int_widen(lo, hi, w);
1206   return (TypeInt*)(new TypeInt(lo,hi,w))->hashcons();
1207 }
1208 
1209 //------------------------------meet-------------------------------------------
1210 // Compute the MEET of two types.  It returns a new Type representation object
1211 // with reference count equal to the number of Types pointing at it.
1212 // Caller should wrap a Types around it.
1213 const Type *TypeInt::xmeet( const Type *t ) const {
1214   // Perform a fast test for common case; meeting the same types together.
1215   if( this == t ) return this;  // Meeting same type?
1216 
1217   // Currently "this->_base" is a TypeInt
1218   switch (t->base()) {          // Switch on original type
1219   case AnyPtr:                  // Mixing with oops happens when javac
1220   case RawPtr:                  // reuses local variables
1221   case OopPtr:
1222   case InstPtr:
1223   case AryPtr:
1224   case MetadataPtr:
1225   case KlassPtr:
1226   case NarrowOop:
1227   case NarrowKlass:
1228   case Long:
1229   case FloatTop:
1230   case FloatCon:
1231   case FloatBot:
1232   case DoubleTop:
1233   case DoubleCon:
1234   case DoubleBot:
1235   case Bottom:                  // Ye Olde Default
1236     return Type::BOTTOM;
1237   default:                      // All else is a mistake
1238     typerr(t);
1239   case Top:                     // No change
1240     return this;
1241   case Int:                     // Int vs Int?
1242     break;
1243   }
1244 
1245   // Expand covered set
1246   const TypeInt *r = t->is_int();
1247   return make( MIN2(_lo,r->_lo), MAX2(_hi,r->_hi), MAX2(_widen,r->_widen) );
1248 }
1249 
1250 //------------------------------xdual------------------------------------------
1251 // Dual: reverse hi & lo; flip widen
1252 const Type *TypeInt::xdual() const {
1253   int w = normalize_int_widen(_hi,_lo, WidenMax-_widen);
1254   return new TypeInt(_hi,_lo,w);
1255 }
1256 
1257 //------------------------------widen------------------------------------------
1258 // Only happens for optimistic top-down optimizations.
1259 const Type *TypeInt::widen( const Type *old, const Type* limit ) const {
1260   // Coming from TOP or such; no widening
1261   if( old->base() != Int ) return this;
1262   const TypeInt *ot = old->is_int();
1263 
1264   // If new guy is equal to old guy, no widening
1265   if( _lo == ot->_lo && _hi == ot->_hi )
1266     return old;
1267 
1268   // If new guy contains old, then we widened
1269   if( _lo <= ot->_lo && _hi >= ot->_hi ) {
1270     // New contains old
1271     // If new guy is already wider than old, no widening
1272     if( _widen > ot->_widen ) return this;
1273     // If old guy was a constant, do not bother
1274     if (ot->_lo == ot->_hi)  return this;
1275     // Now widen new guy.
1276     // Check for widening too far
1277     if (_widen == WidenMax) {
1278       int max = max_jint;
1279       int min = min_jint;
1280       if (limit->isa_int()) {
1281         max = limit->is_int()->_hi;
1282         min = limit->is_int()->_lo;
1283       }
1284       if (min < _lo && _hi < max) {
1285         // If neither endpoint is extremal yet, push out the endpoint
1286         // which is closer to its respective limit.
1287         if (_lo >= 0 ||                 // easy common case
1288             (juint)(_lo - min) >= (juint)(max - _hi)) {
1289           // Try to widen to an unsigned range type of 31 bits:
1290           return make(_lo, max, WidenMax);
1291         } else {
1292           return make(min, _hi, WidenMax);
1293         }
1294       }
1295       return TypeInt::INT;
1296     }
1297     // Returned widened new guy
1298     return make(_lo,_hi,_widen+1);
1299   }
1300 
1301   // If old guy contains new, then we probably widened too far & dropped to
1302   // bottom.  Return the wider fellow.
1303   if ( ot->_lo <= _lo && ot->_hi >= _hi )
1304     return old;
1305 
1306   //fatal("Integer value range is not subset");
1307   //return this;
1308   return TypeInt::INT;
1309 }
1310 
1311 //------------------------------narrow---------------------------------------
1312 // Only happens for pessimistic optimizations.
1313 const Type *TypeInt::narrow( const Type *old ) const {
1314   if (_lo >= _hi)  return this;   // already narrow enough
1315   if (old == NULL)  return this;
1316   const TypeInt* ot = old->isa_int();
1317   if (ot == NULL)  return this;
1318   jint olo = ot->_lo;
1319   jint ohi = ot->_hi;
1320 
1321   // If new guy is equal to old guy, no narrowing
1322   if (_lo == olo && _hi == ohi)  return old;
1323 
1324   // If old guy was maximum range, allow the narrowing
1325   if (olo == min_jint && ohi == max_jint)  return this;
1326 
1327   if (_lo < olo || _hi > ohi)
1328     return this;                // doesn't narrow; pretty wierd
1329 
1330   // The new type narrows the old type, so look for a "death march".
1331   // See comments on PhaseTransform::saturate.
1332   juint nrange = (juint)_hi - _lo;
1333   juint orange = (juint)ohi - olo;
1334   if (nrange < max_juint - 1 && nrange > (orange >> 1) + (SMALLINT*2)) {
1335     // Use the new type only if the range shrinks a lot.
1336     // We do not want the optimizer computing 2^31 point by point.
1337     return old;
1338   }
1339 
1340   return this;
1341 }
1342 
1343 //-----------------------------filter------------------------------------------
1344 const Type *TypeInt::filter_helper(const Type *kills, bool include_speculative) const {
1345   const TypeInt* ft = join_helper(kills, include_speculative)->isa_int();
1346   if (ft == NULL || ft->empty())
1347     return Type::TOP;           // Canonical empty value
1348   if (ft->_widen < this->_widen) {
1349     // Do not allow the value of kill->_widen to affect the outcome.
1350     // The widen bits must be allowed to run freely through the graph.
1351     ft = TypeInt::make(ft->_lo, ft->_hi, this->_widen);
1352   }
1353   return ft;
1354 }
1355 
1356 //------------------------------eq---------------------------------------------
1357 // Structural equality check for Type representations
1358 bool TypeInt::eq( const Type *t ) const {
1359   const TypeInt *r = t->is_int(); // Handy access
1360   return r->_lo == _lo && r->_hi == _hi && r->_widen == _widen;
1361 }
1362 
1363 //------------------------------hash-------------------------------------------
1364 // Type-specific hashing function.
1365 int TypeInt::hash(void) const {
1366   return java_add(java_add(_lo, _hi), java_add(_widen, (int)Type::Int));
1367 }
1368 
1369 //------------------------------is_finite--------------------------------------
1370 // Has a finite value
1371 bool TypeInt::is_finite() const {
1372   return true;
1373 }
1374 
1375 //------------------------------dump2------------------------------------------
1376 // Dump TypeInt
1377 #ifndef PRODUCT
1378 static const char* intname(char* buf, jint n) {
1379   if (n == min_jint)
1380     return "min";
1381   else if (n < min_jint + 10000)
1382     sprintf(buf, "min+" INT32_FORMAT, n - min_jint);
1383   else if (n == max_jint)
1384     return "max";
1385   else if (n > max_jint - 10000)
1386     sprintf(buf, "max-" INT32_FORMAT, max_jint - n);
1387   else
1388     sprintf(buf, INT32_FORMAT, n);
1389   return buf;
1390 }
1391 
1392 void TypeInt::dump2( Dict &d, uint depth, outputStream *st ) const {
1393   char buf[40], buf2[40];
1394   if (_lo == min_jint && _hi == max_jint)
1395     st->print("int");
1396   else if (is_con())
1397     st->print("int:%s", intname(buf, get_con()));
1398   else if (_lo == BOOL->_lo && _hi == BOOL->_hi)
1399     st->print("bool");
1400   else if (_lo == BYTE->_lo && _hi == BYTE->_hi)
1401     st->print("byte");
1402   else if (_lo == CHAR->_lo && _hi == CHAR->_hi)
1403     st->print("char");
1404   else if (_lo == SHORT->_lo && _hi == SHORT->_hi)
1405     st->print("short");
1406   else if (_hi == max_jint)
1407     st->print("int:>=%s", intname(buf, _lo));
1408   else if (_lo == min_jint)
1409     st->print("int:<=%s", intname(buf, _hi));
1410   else
1411     st->print("int:%s..%s", intname(buf, _lo), intname(buf2, _hi));
1412 
1413   if (_widen != 0 && this != TypeInt::INT)
1414     st->print(":%.*s", _widen, "wwww");
1415 }
1416 #endif
1417 
1418 //------------------------------singleton--------------------------------------
1419 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
1420 // constants.
1421 bool TypeInt::singleton(void) const {
1422   return _lo >= _hi;
1423 }
1424 
1425 bool TypeInt::empty(void) const {
1426   return _lo > _hi;
1427 }
1428 
1429 //=============================================================================
1430 // Convenience common pre-built types.
1431 const TypeLong *TypeLong::MINUS_1;// -1
1432 const TypeLong *TypeLong::ZERO; // 0
1433 const TypeLong *TypeLong::ONE;  // 1
1434 const TypeLong *TypeLong::POS;  // >=0
1435 const TypeLong *TypeLong::LONG; // 64-bit integers
1436 const TypeLong *TypeLong::INT;  // 32-bit subrange
1437 const TypeLong *TypeLong::UINT; // 32-bit unsigned subrange
1438 const TypeLong *TypeLong::TYPE_DOMAIN; // alias for TypeLong::LONG
1439 
1440 //------------------------------TypeLong---------------------------------------
1441 TypeLong::TypeLong( jlong lo, jlong hi, int w ) : Type(Long), _lo(lo), _hi(hi), _widen(w) {
1442 }
1443 
1444 //------------------------------make-------------------------------------------
1445 const TypeLong *TypeLong::make( jlong lo ) {
1446   return (TypeLong*)(new TypeLong(lo,lo,WidenMin))->hashcons();
1447 }
1448 
1449 static int normalize_long_widen( jlong lo, jlong hi, int w ) {
1450   // Certain normalizations keep us sane when comparing types.
1451   // The 'SMALLINT' covers constants.
1452   if (lo <= hi) {
1453     if (((julong)hi - lo) <= SMALLINT)   w = Type::WidenMin;
1454     if (((julong)hi - lo) >= max_julong) w = Type::WidenMax; // TypeLong::LONG
1455   } else {
1456     if (((julong)lo - hi) <= SMALLINT)   w = Type::WidenMin;
1457     if (((julong)lo - hi) >= max_julong) w = Type::WidenMin; // dual TypeLong::LONG
1458   }
1459   return w;
1460 }
1461 
1462 const TypeLong *TypeLong::make( jlong lo, jlong hi, int w ) {
1463   w = normalize_long_widen(lo, hi, w);
1464   return (TypeLong*)(new TypeLong(lo,hi,w))->hashcons();
1465 }
1466 
1467 
1468 //------------------------------meet-------------------------------------------
1469 // Compute the MEET of two types.  It returns a new Type representation object
1470 // with reference count equal to the number of Types pointing at it.
1471 // Caller should wrap a Types around it.
1472 const Type *TypeLong::xmeet( const Type *t ) const {
1473   // Perform a fast test for common case; meeting the same types together.
1474   if( this == t ) return this;  // Meeting same type?
1475 
1476   // Currently "this->_base" is a TypeLong
1477   switch (t->base()) {          // Switch on original type
1478   case AnyPtr:                  // Mixing with oops happens when javac
1479   case RawPtr:                  // reuses local variables
1480   case OopPtr:
1481   case InstPtr:
1482   case AryPtr:
1483   case MetadataPtr:
1484   case KlassPtr:
1485   case NarrowOop:
1486   case NarrowKlass:
1487   case Int:
1488   case FloatTop:
1489   case FloatCon:
1490   case FloatBot:
1491   case DoubleTop:
1492   case DoubleCon:
1493   case DoubleBot:
1494   case Bottom:                  // Ye Olde Default
1495     return Type::BOTTOM;
1496   default:                      // All else is a mistake
1497     typerr(t);
1498   case Top:                     // No change
1499     return this;
1500   case Long:                    // Long vs Long?
1501     break;
1502   }
1503 
1504   // Expand covered set
1505   const TypeLong *r = t->is_long(); // Turn into a TypeLong
1506   return make( MIN2(_lo,r->_lo), MAX2(_hi,r->_hi), MAX2(_widen,r->_widen) );
1507 }
1508 
1509 //------------------------------xdual------------------------------------------
1510 // Dual: reverse hi & lo; flip widen
1511 const Type *TypeLong::xdual() const {
1512   int w = normalize_long_widen(_hi,_lo, WidenMax-_widen);
1513   return new TypeLong(_hi,_lo,w);
1514 }
1515 
1516 //------------------------------widen------------------------------------------
1517 // Only happens for optimistic top-down optimizations.
1518 const Type *TypeLong::widen( const Type *old, const Type* limit ) const {
1519   // Coming from TOP or such; no widening
1520   if( old->base() != Long ) return this;
1521   const TypeLong *ot = old->is_long();
1522 
1523   // If new guy is equal to old guy, no widening
1524   if( _lo == ot->_lo && _hi == ot->_hi )
1525     return old;
1526 
1527   // If new guy contains old, then we widened
1528   if( _lo <= ot->_lo && _hi >= ot->_hi ) {
1529     // New contains old
1530     // If new guy is already wider than old, no widening
1531     if( _widen > ot->_widen ) return this;
1532     // If old guy was a constant, do not bother
1533     if (ot->_lo == ot->_hi)  return this;
1534     // Now widen new guy.
1535     // Check for widening too far
1536     if (_widen == WidenMax) {
1537       jlong max = max_jlong;
1538       jlong min = min_jlong;
1539       if (limit->isa_long()) {
1540         max = limit->is_long()->_hi;
1541         min = limit->is_long()->_lo;
1542       }
1543       if (min < _lo && _hi < max) {
1544         // If neither endpoint is extremal yet, push out the endpoint
1545         // which is closer to its respective limit.
1546         if (_lo >= 0 ||                 // easy common case
1547             ((julong)_lo - min) >= ((julong)max - _hi)) {
1548           // Try to widen to an unsigned range type of 32/63 bits:
1549           if (max >= max_juint && _hi < max_juint)
1550             return make(_lo, max_juint, WidenMax);
1551           else
1552             return make(_lo, max, WidenMax);
1553         } else {
1554           return make(min, _hi, WidenMax);
1555         }
1556       }
1557       return TypeLong::LONG;
1558     }
1559     // Returned widened new guy
1560     return make(_lo,_hi,_widen+1);
1561   }
1562 
1563   // If old guy contains new, then we probably widened too far & dropped to
1564   // bottom.  Return the wider fellow.
1565   if ( ot->_lo <= _lo && ot->_hi >= _hi )
1566     return old;
1567 
1568   //  fatal("Long value range is not subset");
1569   // return this;
1570   return TypeLong::LONG;
1571 }
1572 
1573 //------------------------------narrow----------------------------------------
1574 // Only happens for pessimistic optimizations.
1575 const Type *TypeLong::narrow( const Type *old ) const {
1576   if (_lo >= _hi)  return this;   // already narrow enough
1577   if (old == NULL)  return this;
1578   const TypeLong* ot = old->isa_long();
1579   if (ot == NULL)  return this;
1580   jlong olo = ot->_lo;
1581   jlong ohi = ot->_hi;
1582 
1583   // If new guy is equal to old guy, no narrowing
1584   if (_lo == olo && _hi == ohi)  return old;
1585 
1586   // If old guy was maximum range, allow the narrowing
1587   if (olo == min_jlong && ohi == max_jlong)  return this;
1588 
1589   if (_lo < olo || _hi > ohi)
1590     return this;                // doesn't narrow; pretty wierd
1591 
1592   // The new type narrows the old type, so look for a "death march".
1593   // See comments on PhaseTransform::saturate.
1594   julong nrange = _hi - _lo;
1595   julong orange = ohi - olo;
1596   if (nrange < max_julong - 1 && nrange > (orange >> 1) + (SMALLINT*2)) {
1597     // Use the new type only if the range shrinks a lot.
1598     // We do not want the optimizer computing 2^31 point by point.
1599     return old;
1600   }
1601 
1602   return this;
1603 }
1604 
1605 //-----------------------------filter------------------------------------------
1606 const Type *TypeLong::filter_helper(const Type *kills, bool include_speculative) const {
1607   const TypeLong* ft = join_helper(kills, include_speculative)->isa_long();
1608   if (ft == NULL || ft->empty())
1609     return Type::TOP;           // Canonical empty value
1610   if (ft->_widen < this->_widen) {
1611     // Do not allow the value of kill->_widen to affect the outcome.
1612     // The widen bits must be allowed to run freely through the graph.
1613     ft = TypeLong::make(ft->_lo, ft->_hi, this->_widen);
1614   }
1615   return ft;
1616 }
1617 
1618 //------------------------------eq---------------------------------------------
1619 // Structural equality check for Type representations
1620 bool TypeLong::eq( const Type *t ) const {
1621   const TypeLong *r = t->is_long(); // Handy access
1622   return r->_lo == _lo &&  r->_hi == _hi  && r->_widen == _widen;
1623 }
1624 
1625 //------------------------------hash-------------------------------------------
1626 // Type-specific hashing function.
1627 int TypeLong::hash(void) const {
1628   return (int)(_lo+_hi+_widen+(int)Type::Long);
1629 }
1630 
1631 //------------------------------is_finite--------------------------------------
1632 // Has a finite value
1633 bool TypeLong::is_finite() const {
1634   return true;
1635 }
1636 
1637 //------------------------------dump2------------------------------------------
1638 // Dump TypeLong
1639 #ifndef PRODUCT
1640 static const char* longnamenear(jlong x, const char* xname, char* buf, jlong n) {
1641   if (n > x) {
1642     if (n >= x + 10000)  return NULL;
1643     sprintf(buf, "%s+" JLONG_FORMAT, xname, n - x);
1644   } else if (n < x) {
1645     if (n <= x - 10000)  return NULL;
1646     sprintf(buf, "%s-" JLONG_FORMAT, xname, x - n);
1647   } else {
1648     return xname;
1649   }
1650   return buf;
1651 }
1652 
1653 static const char* longname(char* buf, jlong n) {
1654   const char* str;
1655   if (n == min_jlong)
1656     return "min";
1657   else if (n < min_jlong + 10000)
1658     sprintf(buf, "min+" JLONG_FORMAT, n - min_jlong);
1659   else if (n == max_jlong)
1660     return "max";
1661   else if (n > max_jlong - 10000)
1662     sprintf(buf, "max-" JLONG_FORMAT, max_jlong - n);
1663   else if ((str = longnamenear(max_juint, "maxuint", buf, n)) != NULL)
1664     return str;
1665   else if ((str = longnamenear(max_jint, "maxint", buf, n)) != NULL)
1666     return str;
1667   else if ((str = longnamenear(min_jint, "minint", buf, n)) != NULL)
1668     return str;
1669   else
1670     sprintf(buf, JLONG_FORMAT, n);
1671   return buf;
1672 }
1673 
1674 void TypeLong::dump2( Dict &d, uint depth, outputStream *st ) const {
1675   char buf[80], buf2[80];
1676   if (_lo == min_jlong && _hi == max_jlong)
1677     st->print("long");
1678   else if (is_con())
1679     st->print("long:%s", longname(buf, get_con()));
1680   else if (_hi == max_jlong)
1681     st->print("long:>=%s", longname(buf, _lo));
1682   else if (_lo == min_jlong)
1683     st->print("long:<=%s", longname(buf, _hi));
1684   else
1685     st->print("long:%s..%s", longname(buf, _lo), longname(buf2, _hi));
1686 
1687   if (_widen != 0 && this != TypeLong::LONG)
1688     st->print(":%.*s", _widen, "wwww");
1689 }
1690 #endif
1691 
1692 //------------------------------singleton--------------------------------------
1693 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
1694 // constants
1695 bool TypeLong::singleton(void) const {
1696   return _lo >= _hi;
1697 }
1698 
1699 bool TypeLong::empty(void) const {
1700   return _lo > _hi;
1701 }
1702 
1703 //=============================================================================
1704 // Convenience common pre-built types.
1705 const TypeTuple *TypeTuple::IFBOTH;     // Return both arms of IF as reachable
1706 const TypeTuple *TypeTuple::IFFALSE;
1707 const TypeTuple *TypeTuple::IFTRUE;
1708 const TypeTuple *TypeTuple::IFNEITHER;
1709 const TypeTuple *TypeTuple::LOOPBODY;
1710 const TypeTuple *TypeTuple::MEMBAR;
1711 const TypeTuple *TypeTuple::STORECONDITIONAL;
1712 const TypeTuple *TypeTuple::START_I2C;
1713 const TypeTuple *TypeTuple::INT_PAIR;
1714 const TypeTuple *TypeTuple::LONG_PAIR;
1715 const TypeTuple *TypeTuple::INT_CC_PAIR;
1716 const TypeTuple *TypeTuple::LONG_CC_PAIR;
1717 
1718 
1719 //------------------------------make-------------------------------------------
1720 // Make a TypeTuple from the range of a method signature
1721 const TypeTuple *TypeTuple::make_range(ciSignature* sig) {
1722   ciType* return_type = sig->return_type();
1723   uint total_fields = TypeFunc::Parms + return_type->size();
1724   const Type **field_array = fields(total_fields);
1725   switch (return_type->basic_type()) {
1726   case T_LONG:
1727     field_array[TypeFunc::Parms]   = TypeLong::LONG;
1728     field_array[TypeFunc::Parms+1] = Type::HALF;
1729     break;
1730   case T_DOUBLE:
1731     field_array[TypeFunc::Parms]   = Type::DOUBLE;
1732     field_array[TypeFunc::Parms+1] = Type::HALF;
1733     break;
1734   case T_OBJECT:
1735   case T_ARRAY:
1736   case T_BOOLEAN:
1737   case T_CHAR:
1738   case T_FLOAT:
1739   case T_BYTE:
1740   case T_SHORT:
1741   case T_INT:
1742     field_array[TypeFunc::Parms] = get_const_type(return_type);
1743     break;
1744   case T_VOID:
1745     break;
1746   default:
1747     ShouldNotReachHere();
1748   }
1749   return (TypeTuple*)(new TypeTuple(total_fields,field_array))->hashcons();
1750 }
1751 
1752 // Make a TypeTuple from the domain of a method signature
1753 const TypeTuple *TypeTuple::make_domain(ciInstanceKlass* recv, ciSignature* sig) {
1754   uint total_fields = TypeFunc::Parms + sig->size();
1755 
1756   uint pos = TypeFunc::Parms;
1757   const Type **field_array;
1758   if (recv != NULL) {
1759     total_fields++;
1760     field_array = fields(total_fields);
1761     // Use get_const_type here because it respects UseUniqueSubclasses:
1762     field_array[pos++] = get_const_type(recv)->join_speculative(TypePtr::NOTNULL);
1763   } else {
1764     field_array = fields(total_fields);
1765   }
1766 
1767   int i = 0;
1768   while (pos < total_fields) {
1769     ciType* type = sig->type_at(i);
1770 
1771     switch (type->basic_type()) {
1772     case T_LONG:
1773       field_array[pos++] = TypeLong::LONG;
1774       field_array[pos++] = Type::HALF;
1775       break;
1776     case T_DOUBLE:
1777       field_array[pos++] = Type::DOUBLE;
1778       field_array[pos++] = Type::HALF;
1779       break;
1780     case T_OBJECT:
1781     case T_ARRAY:
1782     case T_FLOAT:
1783     case T_INT:
1784       field_array[pos++] = get_const_type(type);
1785       break;
1786     case T_BOOLEAN:
1787     case T_CHAR:
1788     case T_BYTE:
1789     case T_SHORT:
1790       field_array[pos++] = TypeInt::INT;
1791       break;
1792     default:
1793       ShouldNotReachHere();
1794     }
1795     i++;
1796   }
1797   return (TypeTuple*)(new TypeTuple(total_fields,field_array))->hashcons();
1798 }
1799 
1800 const TypeTuple *TypeTuple::make( uint cnt, const Type **fields ) {
1801   return (TypeTuple*)(new TypeTuple(cnt,fields))->hashcons();
1802 }
1803 
1804 //------------------------------fields-----------------------------------------
1805 // Subroutine call type with space allocated for argument types
1806 const Type **TypeTuple::fields( uint arg_cnt ) {
1807   const Type **flds = (const Type **)(Compile::current()->type_arena()->Amalloc_4((TypeFunc::Parms+arg_cnt)*sizeof(Type*) ));
1808   flds[TypeFunc::Control  ] = Type::CONTROL;
1809   flds[TypeFunc::I_O      ] = Type::ABIO;
1810   flds[TypeFunc::Memory   ] = Type::MEMORY;
1811   flds[TypeFunc::FramePtr ] = TypeRawPtr::BOTTOM;
1812   flds[TypeFunc::ReturnAdr] = Type::RETURN_ADDRESS;
1813 
1814   return flds;
1815 }
1816 
1817 //------------------------------meet-------------------------------------------
1818 // Compute the MEET of two types.  It returns a new Type object.
1819 const Type *TypeTuple::xmeet( const Type *t ) const {
1820   // Perform a fast test for common case; meeting the same types together.
1821   if( this == t ) return this;  // Meeting same type-rep?
1822 
1823   // Current "this->_base" is Tuple
1824   switch (t->base()) {          // switch on original type
1825 
1826   case Bottom:                  // Ye Olde Default
1827     return t;
1828 
1829   default:                      // All else is a mistake
1830     typerr(t);
1831 
1832   case Tuple: {                 // Meeting 2 signatures?
1833     const TypeTuple *x = t->is_tuple();
1834     assert( _cnt == x->_cnt, "" );
1835     const Type **fields = (const Type **)(Compile::current()->type_arena()->Amalloc_4( _cnt*sizeof(Type*) ));
1836     for( uint i=0; i<_cnt; i++ )
1837       fields[i] = field_at(i)->xmeet( x->field_at(i) );
1838     return TypeTuple::make(_cnt,fields);
1839   }
1840   case Top:
1841     break;
1842   }
1843   return this;                  // Return the double constant
1844 }
1845 
1846 //------------------------------xdual------------------------------------------
1847 // Dual: compute field-by-field dual
1848 const Type *TypeTuple::xdual() const {
1849   const Type **fields = (const Type **)(Compile::current()->type_arena()->Amalloc_4( _cnt*sizeof(Type*) ));
1850   for( uint i=0; i<_cnt; i++ )
1851     fields[i] = _fields[i]->dual();
1852   return new TypeTuple(_cnt,fields);
1853 }
1854 
1855 //------------------------------eq---------------------------------------------
1856 // Structural equality check for Type representations
1857 bool TypeTuple::eq( const Type *t ) const {
1858   const TypeTuple *s = (const TypeTuple *)t;
1859   if (_cnt != s->_cnt)  return false;  // Unequal field counts
1860   for (uint i = 0; i < _cnt; i++)
1861     if (field_at(i) != s->field_at(i)) // POINTER COMPARE!  NO RECURSION!
1862       return false;             // Missed
1863   return true;
1864 }
1865 
1866 //------------------------------hash-------------------------------------------
1867 // Type-specific hashing function.
1868 int TypeTuple::hash(void) const {
1869   intptr_t sum = _cnt;
1870   for( uint i=0; i<_cnt; i++ )
1871     sum += (intptr_t)_fields[i];     // Hash on pointers directly
1872   return sum;
1873 }
1874 
1875 //------------------------------dump2------------------------------------------
1876 // Dump signature Type
1877 #ifndef PRODUCT
1878 void TypeTuple::dump2( Dict &d, uint depth, outputStream *st ) const {
1879   st->print("{");
1880   if( !depth || d[this] ) {     // Check for recursive print
1881     st->print("...}");
1882     return;
1883   }
1884   d.Insert((void*)this, (void*)this);   // Stop recursion
1885   if( _cnt ) {
1886     uint i;
1887     for( i=0; i<_cnt-1; i++ ) {
1888       st->print("%d:", i);
1889       _fields[i]->dump2(d, depth-1, st);
1890       st->print(", ");
1891     }
1892     st->print("%d:", i);
1893     _fields[i]->dump2(d, depth-1, st);
1894   }
1895   st->print("}");
1896 }
1897 #endif
1898 
1899 //------------------------------singleton--------------------------------------
1900 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
1901 // constants (Ldi nodes).  Singletons are integer, float or double constants
1902 // or a single symbol.
1903 bool TypeTuple::singleton(void) const {
1904   return false;                 // Never a singleton
1905 }
1906 
1907 bool TypeTuple::empty(void) const {
1908   for( uint i=0; i<_cnt; i++ ) {
1909     if (_fields[i]->empty())  return true;
1910   }
1911   return false;
1912 }
1913 
1914 //=============================================================================
1915 // Convenience common pre-built types.
1916 
1917 inline const TypeInt* normalize_array_size(const TypeInt* size) {
1918   // Certain normalizations keep us sane when comparing types.
1919   // We do not want arrayOop variables to differ only by the wideness
1920   // of their index types.  Pick minimum wideness, since that is the
1921   // forced wideness of small ranges anyway.
1922   if (size->_widen != Type::WidenMin)
1923     return TypeInt::make(size->_lo, size->_hi, Type::WidenMin);
1924   else
1925     return size;
1926 }
1927 
1928 //------------------------------make-------------------------------------------
1929 const TypeAry* TypeAry::make(const Type* elem, const TypeInt* size, bool stable) {
1930   if (UseCompressedOops && elem->isa_oopptr()) {
1931     elem = elem->make_narrowoop();
1932   }
1933   size = normalize_array_size(size);
1934   return (TypeAry*)(new TypeAry(elem,size,stable))->hashcons();
1935 }
1936 
1937 //------------------------------meet-------------------------------------------
1938 // Compute the MEET of two types.  It returns a new Type object.
1939 const Type *TypeAry::xmeet( const Type *t ) const {
1940   // Perform a fast test for common case; meeting the same types together.
1941   if( this == t ) return this;  // Meeting same type-rep?
1942 
1943   // Current "this->_base" is Ary
1944   switch (t->base()) {          // switch on original type
1945 
1946   case Bottom:                  // Ye Olde Default
1947     return t;
1948 
1949   default:                      // All else is a mistake
1950     typerr(t);
1951 
1952   case Array: {                 // Meeting 2 arrays?
1953     const TypeAry *a = t->is_ary();
1954     return TypeAry::make(_elem->meet_speculative(a->_elem),
1955                          _size->xmeet(a->_size)->is_int(),
1956                          _stable & a->_stable);
1957   }
1958   case Top:
1959     break;
1960   }
1961   return this;                  // Return the double constant
1962 }
1963 
1964 //------------------------------xdual------------------------------------------
1965 // Dual: compute field-by-field dual
1966 const Type *TypeAry::xdual() const {
1967   const TypeInt* size_dual = _size->dual()->is_int();
1968   size_dual = normalize_array_size(size_dual);
1969   return new TypeAry(_elem->dual(), size_dual, !_stable);
1970 }
1971 
1972 //------------------------------eq---------------------------------------------
1973 // Structural equality check for Type representations
1974 bool TypeAry::eq( const Type *t ) const {
1975   const TypeAry *a = (const TypeAry*)t;
1976   return _elem == a->_elem &&
1977     _stable == a->_stable &&
1978     _size == a->_size;
1979 }
1980 
1981 //------------------------------hash-------------------------------------------
1982 // Type-specific hashing function.
1983 int TypeAry::hash(void) const {
1984   return (intptr_t)_elem + (intptr_t)_size + (_stable ? 43 : 0);
1985 }
1986 
1987 /**
1988  * Return same type without a speculative part in the element
1989  */
1990 const Type* TypeAry::remove_speculative() const {
1991   return make(_elem->remove_speculative(), _size, _stable);
1992 }
1993 
1994 //----------------------interface_vs_oop---------------------------------------
1995 #ifdef ASSERT
1996 bool TypeAry::interface_vs_oop(const Type *t) const {
1997   const TypeAry* t_ary = t->is_ary();
1998   if (t_ary) {
1999     const TypePtr* this_ptr = _elem->make_ptr(); // In case we have narrow_oops
2000     const TypePtr*    t_ptr = t_ary->_elem->make_ptr();
2001     if(this_ptr != NULL && t_ptr != NULL) {
2002       return this_ptr->interface_vs_oop(t_ptr);
2003     }
2004   }
2005   return false;
2006 }
2007 #endif
2008 
2009 //------------------------------dump2------------------------------------------
2010 #ifndef PRODUCT
2011 void TypeAry::dump2( Dict &d, uint depth, outputStream *st ) const {
2012   if (_stable)  st->print("stable:");
2013   _elem->dump2(d, depth, st);
2014   st->print("[");
2015   _size->dump2(d, depth, st);
2016   st->print("]");
2017 }
2018 #endif
2019 
2020 //------------------------------singleton--------------------------------------
2021 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
2022 // constants (Ldi nodes).  Singletons are integer, float or double constants
2023 // or a single symbol.
2024 bool TypeAry::singleton(void) const {
2025   return false;                 // Never a singleton
2026 }
2027 
2028 bool TypeAry::empty(void) const {
2029   return _elem->empty() || _size->empty();
2030 }
2031 
2032 //--------------------------ary_must_be_exact----------------------------------
2033 bool TypeAry::ary_must_be_exact() const {
2034   if (!UseExactTypes)       return false;
2035   // This logic looks at the element type of an array, and returns true
2036   // if the element type is either a primitive or a final instance class.
2037   // In such cases, an array built on this ary must have no subclasses.
2038   if (_elem == BOTTOM)      return false;  // general array not exact
2039   if (_elem == TOP   )      return false;  // inverted general array not exact
2040   const TypeOopPtr*  toop = NULL;
2041   if (UseCompressedOops && _elem->isa_narrowoop()) {
2042     toop = _elem->make_ptr()->isa_oopptr();
2043   } else {
2044     toop = _elem->isa_oopptr();
2045   }
2046   if (!toop)                return true;   // a primitive type, like int
2047   ciKlass* tklass = toop->klass();
2048   if (tklass == NULL)       return false;  // unloaded class
2049   if (!tklass->is_loaded()) return false;  // unloaded class
2050   const TypeInstPtr* tinst;
2051   if (_elem->isa_narrowoop())
2052     tinst = _elem->make_ptr()->isa_instptr();
2053   else
2054     tinst = _elem->isa_instptr();
2055   if (tinst)
2056     return tklass->as_instance_klass()->is_final();
2057   const TypeAryPtr*  tap;
2058   if (_elem->isa_narrowoop())
2059     tap = _elem->make_ptr()->isa_aryptr();
2060   else
2061     tap = _elem->isa_aryptr();
2062   if (tap)
2063     return tap->ary()->ary_must_be_exact();
2064   return false;
2065 }
2066 
2067 //==============================TypeVect=======================================
2068 // Convenience common pre-built types.
2069 const TypeVect *TypeVect::VECTS = NULL; //  32-bit vectors
2070 const TypeVect *TypeVect::VECTD = NULL; //  64-bit vectors
2071 const TypeVect *TypeVect::VECTX = NULL; // 128-bit vectors
2072 const TypeVect *TypeVect::VECTY = NULL; // 256-bit vectors
2073 
2074 //------------------------------make-------------------------------------------
2075 const TypeVect* TypeVect::make(const Type *elem, uint length) {
2076   BasicType elem_bt = elem->array_element_basic_type();
2077   assert(is_java_primitive(elem_bt), "only primitive types in vector");
2078   assert(length > 1 && is_power_of_2(length), "vector length is power of 2");
2079   assert(Matcher::vector_size_supported(elem_bt, length), "length in range");
2080   int size = length * type2aelembytes(elem_bt);
2081   switch (Matcher::vector_ideal_reg(size)) {
2082   case Op_VecS:
2083     return (TypeVect*)(new TypeVectS(elem, length))->hashcons();
2084   case Op_RegL:
2085   case Op_VecD:
2086   case Op_RegD:
2087     return (TypeVect*)(new TypeVectD(elem, length))->hashcons();
2088   case Op_VecX:
2089     return (TypeVect*)(new TypeVectX(elem, length))->hashcons();
2090   case Op_VecY:
2091     return (TypeVect*)(new TypeVectY(elem, length))->hashcons();
2092   }
2093  ShouldNotReachHere();
2094   return NULL;
2095 }
2096 
2097 //------------------------------meet-------------------------------------------
2098 // Compute the MEET of two types.  It returns a new Type object.
2099 const Type *TypeVect::xmeet( const Type *t ) const {
2100   // Perform a fast test for common case; meeting the same types together.
2101   if( this == t ) return this;  // Meeting same type-rep?
2102 
2103   // Current "this->_base" is Vector
2104   switch (t->base()) {          // switch on original type
2105 
2106   case Bottom:                  // Ye Olde Default
2107     return t;
2108 
2109   default:                      // All else is a mistake
2110     typerr(t);
2111 
2112   case VectorS:
2113   case VectorD:
2114   case VectorX:
2115   case VectorY: {                // Meeting 2 vectors?
2116     const TypeVect* v = t->is_vect();
2117     assert(  base() == v->base(), "");
2118     assert(length() == v->length(), "");
2119     assert(element_basic_type() == v->element_basic_type(), "");
2120     return TypeVect::make(_elem->xmeet(v->_elem), _length);
2121   }
2122   case Top:
2123     break;
2124   }
2125   return this;
2126 }
2127 
2128 //------------------------------xdual------------------------------------------
2129 // Dual: compute field-by-field dual
2130 const Type *TypeVect::xdual() const {
2131   return new TypeVect(base(), _elem->dual(), _length);
2132 }
2133 
2134 //------------------------------eq---------------------------------------------
2135 // Structural equality check for Type representations
2136 bool TypeVect::eq(const Type *t) const {
2137   const TypeVect *v = t->is_vect();
2138   return (_elem == v->_elem) && (_length == v->_length);
2139 }
2140 
2141 //------------------------------hash-------------------------------------------
2142 // Type-specific hashing function.
2143 int TypeVect::hash(void) const {
2144   return (intptr_t)_elem + (intptr_t)_length;
2145 }
2146 
2147 //------------------------------singleton--------------------------------------
2148 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
2149 // constants (Ldi nodes).  Vector is singleton if all elements are the same
2150 // constant value (when vector is created with Replicate code).
2151 bool TypeVect::singleton(void) const {
2152 // There is no Con node for vectors yet.
2153 //  return _elem->singleton();
2154   return false;
2155 }
2156 
2157 bool TypeVect::empty(void) const {
2158   return _elem->empty();
2159 }
2160 
2161 //------------------------------dump2------------------------------------------
2162 #ifndef PRODUCT
2163 void TypeVect::dump2(Dict &d, uint depth, outputStream *st) const {
2164   switch (base()) {
2165   case VectorS:
2166     st->print("vectors["); break;
2167   case VectorD:
2168     st->print("vectord["); break;
2169   case VectorX:
2170     st->print("vectorx["); break;
2171   case VectorY:
2172     st->print("vectory["); break;
2173   default:
2174     ShouldNotReachHere();
2175   }
2176   st->print("%d]:{", _length);
2177   _elem->dump2(d, depth, st);
2178   st->print("}");
2179 }
2180 #endif
2181 
2182 
2183 //=============================================================================
2184 // Convenience common pre-built types.
2185 const TypePtr *TypePtr::NULL_PTR;
2186 const TypePtr *TypePtr::NOTNULL;
2187 const TypePtr *TypePtr::BOTTOM;
2188 
2189 //------------------------------meet-------------------------------------------
2190 // Meet over the PTR enum
2191 const TypePtr::PTR TypePtr::ptr_meet[TypePtr::lastPTR][TypePtr::lastPTR] = {
2192   //              TopPTR,    AnyNull,   Constant, Null,   NotNull, BotPTR,
2193   { /* Top     */ TopPTR,    AnyNull,   Constant, Null,   NotNull, BotPTR,},
2194   { /* AnyNull */ AnyNull,   AnyNull,   Constant, BotPTR, NotNull, BotPTR,},
2195   { /* Constant*/ Constant,  Constant,  Constant, BotPTR, NotNull, BotPTR,},
2196   { /* Null    */ Null,      BotPTR,    BotPTR,   Null,   BotPTR,  BotPTR,},
2197   { /* NotNull */ NotNull,   NotNull,   NotNull,  BotPTR, NotNull, BotPTR,},
2198   { /* BotPTR  */ BotPTR,    BotPTR,    BotPTR,   BotPTR, BotPTR,  BotPTR,}
2199 };
2200 
2201 //------------------------------make-------------------------------------------
2202 const TypePtr *TypePtr::make( TYPES t, enum PTR ptr, int offset ) {
2203   return (TypePtr*)(new TypePtr(t,ptr,offset))->hashcons();
2204 }
2205 
2206 //------------------------------cast_to_ptr_type-------------------------------
2207 const Type *TypePtr::cast_to_ptr_type(PTR ptr) const {
2208   assert(_base == AnyPtr, "subclass must override cast_to_ptr_type");
2209   if( ptr == _ptr ) return this;
2210   return make(_base, ptr, _offset);
2211 }
2212 
2213 //------------------------------get_con----------------------------------------
2214 intptr_t TypePtr::get_con() const {
2215   assert( _ptr == Null, "" );
2216   return _offset;
2217 }
2218 
2219 //------------------------------meet-------------------------------------------
2220 // Compute the MEET of two types.  It returns a new Type object.
2221 const Type *TypePtr::xmeet( const Type *t ) const {
2222   // Perform a fast test for common case; meeting the same types together.
2223   if( this == t ) return this;  // Meeting same type-rep?
2224 
2225   // Current "this->_base" is AnyPtr
2226   switch (t->base()) {          // switch on original type
2227   case Int:                     // Mixing ints & oops happens when javac
2228   case Long:                    // reuses local variables
2229   case FloatTop:
2230   case FloatCon:
2231   case FloatBot:
2232   case DoubleTop:
2233   case DoubleCon:
2234   case DoubleBot:
2235   case NarrowOop:
2236   case NarrowKlass:
2237   case Bottom:                  // Ye Olde Default
2238     return Type::BOTTOM;
2239   case Top:
2240     return this;
2241 
2242   case AnyPtr: {                // Meeting to AnyPtrs
2243     const TypePtr *tp = t->is_ptr();
2244     return make( AnyPtr, meet_ptr(tp->ptr()), meet_offset(tp->offset()) );
2245   }
2246   case RawPtr:                  // For these, flip the call around to cut down
2247   case OopPtr:
2248   case InstPtr:                 // on the cases I have to handle.
2249   case AryPtr:
2250   case MetadataPtr:
2251   case KlassPtr:
2252     return t->xmeet(this);      // Call in reverse direction
2253   default:                      // All else is a mistake
2254     typerr(t);
2255 
2256   }
2257   return this;
2258 }
2259 
2260 //------------------------------meet_offset------------------------------------
2261 int TypePtr::meet_offset( int offset ) const {
2262   // Either is 'TOP' offset?  Return the other offset!
2263   if( _offset == OffsetTop ) return offset;
2264   if( offset == OffsetTop ) return _offset;
2265   // If either is different, return 'BOTTOM' offset
2266   if( _offset != offset ) return OffsetBot;
2267   return _offset;
2268 }
2269 
2270 //------------------------------dual_offset------------------------------------
2271 int TypePtr::dual_offset( ) const {
2272   if( _offset == OffsetTop ) return OffsetBot;// Map 'TOP' into 'BOTTOM'
2273   if( _offset == OffsetBot ) return OffsetTop;// Map 'BOTTOM' into 'TOP'
2274   return _offset;               // Map everything else into self
2275 }
2276 
2277 //------------------------------xdual------------------------------------------
2278 // Dual: compute field-by-field dual
2279 const TypePtr::PTR TypePtr::ptr_dual[TypePtr::lastPTR] = {
2280   BotPTR, NotNull, Constant, Null, AnyNull, TopPTR
2281 };
2282 const Type *TypePtr::xdual() const {
2283   return new TypePtr( AnyPtr, dual_ptr(), dual_offset() );
2284 }
2285 
2286 //------------------------------xadd_offset------------------------------------
2287 int TypePtr::xadd_offset( intptr_t offset ) const {
2288   // Adding to 'TOP' offset?  Return 'TOP'!
2289   if( _offset == OffsetTop || offset == OffsetTop ) return OffsetTop;
2290   // Adding to 'BOTTOM' offset?  Return 'BOTTOM'!
2291   if( _offset == OffsetBot || offset == OffsetBot ) return OffsetBot;
2292   // Addition overflows or "accidentally" equals to OffsetTop? Return 'BOTTOM'!
2293   offset += (intptr_t)_offset;
2294   if (offset != (int)offset || offset == OffsetTop) return OffsetBot;
2295 
2296   // assert( _offset >= 0 && _offset+offset >= 0, "" );
2297   // It is possible to construct a negative offset during PhaseCCP
2298 
2299   return (int)offset;        // Sum valid offsets
2300 }
2301 
2302 //------------------------------add_offset-------------------------------------
2303 const TypePtr *TypePtr::add_offset( intptr_t offset ) const {
2304   return make( AnyPtr, _ptr, xadd_offset(offset) );
2305 }
2306 
2307 //------------------------------eq---------------------------------------------
2308 // Structural equality check for Type representations
2309 bool TypePtr::eq( const Type *t ) const {
2310   const TypePtr *a = (const TypePtr*)t;
2311   return _ptr == a->ptr() && _offset == a->offset();
2312 }
2313 
2314 //------------------------------hash-------------------------------------------
2315 // Type-specific hashing function.
2316 int TypePtr::hash(void) const {
2317   return java_add(_ptr, _offset);
2318 }
2319 
2320 //------------------------------dump2------------------------------------------
2321 const char *const TypePtr::ptr_msg[TypePtr::lastPTR] = {
2322   "TopPTR","AnyNull","Constant","NULL","NotNull","BotPTR"
2323 };
2324 
2325 #ifndef PRODUCT
2326 void TypePtr::dump2( Dict &d, uint depth, outputStream *st ) const {
2327   if( _ptr == Null ) st->print("NULL");
2328   else st->print("%s *", ptr_msg[_ptr]);
2329   if( _offset == OffsetTop ) st->print("+top");
2330   else if( _offset == OffsetBot ) st->print("+bot");
2331   else if( _offset ) st->print("+%d", _offset);
2332 }
2333 #endif
2334 
2335 //------------------------------singleton--------------------------------------
2336 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
2337 // constants
2338 bool TypePtr::singleton(void) const {
2339   // TopPTR, Null, AnyNull, Constant are all singletons
2340   return (_offset != OffsetBot) && !below_centerline(_ptr);
2341 }
2342 
2343 bool TypePtr::empty(void) const {
2344   return (_offset == OffsetTop) || above_centerline(_ptr);
2345 }
2346 
2347 //=============================================================================
2348 // Convenience common pre-built types.
2349 const TypeRawPtr *TypeRawPtr::BOTTOM;
2350 const TypeRawPtr *TypeRawPtr::NOTNULL;
2351 
2352 //------------------------------make-------------------------------------------
2353 const TypeRawPtr *TypeRawPtr::make( enum PTR ptr ) {
2354   assert( ptr != Constant, "what is the constant?" );
2355   assert( ptr != Null, "Use TypePtr for NULL" );
2356   return (TypeRawPtr*)(new TypeRawPtr(ptr,0))->hashcons();
2357 }
2358 
2359 const TypeRawPtr *TypeRawPtr::make( address bits ) {
2360   assert( bits, "Use TypePtr for NULL" );
2361   return (TypeRawPtr*)(new TypeRawPtr(Constant,bits))->hashcons();
2362 }
2363 
2364 //------------------------------cast_to_ptr_type-------------------------------
2365 const Type *TypeRawPtr::cast_to_ptr_type(PTR ptr) const {
2366   assert( ptr != Constant, "what is the constant?" );
2367   assert( ptr != Null, "Use TypePtr for NULL" );
2368   assert( _bits==0, "Why cast a constant address?");
2369   if( ptr == _ptr ) return this;
2370   return make(ptr);
2371 }
2372 
2373 //------------------------------get_con----------------------------------------
2374 intptr_t TypeRawPtr::get_con() const {
2375   assert( _ptr == Null || _ptr == Constant, "" );
2376   return (intptr_t)_bits;
2377 }
2378 
2379 //------------------------------meet-------------------------------------------
2380 // Compute the MEET of two types.  It returns a new Type object.
2381 const Type *TypeRawPtr::xmeet( const Type *t ) const {
2382   // Perform a fast test for common case; meeting the same types together.
2383   if( this == t ) return this;  // Meeting same type-rep?
2384 
2385   // Current "this->_base" is RawPtr
2386   switch( t->base() ) {         // switch on original type
2387   case Bottom:                  // Ye Olde Default
2388     return t;
2389   case Top:
2390     return this;
2391   case AnyPtr:                  // Meeting to AnyPtrs
2392     break;
2393   case RawPtr: {                // might be top, bot, any/not or constant
2394     enum PTR tptr = t->is_ptr()->ptr();
2395     enum PTR ptr = meet_ptr( tptr );
2396     if( ptr == Constant ) {     // Cannot be equal constants, so...
2397       if( tptr == Constant && _ptr != Constant)  return t;
2398       if( _ptr == Constant && tptr != Constant)  return this;
2399       ptr = NotNull;            // Fall down in lattice
2400     }
2401     return make( ptr );
2402   }
2403 
2404   case OopPtr:
2405   case InstPtr:
2406   case AryPtr:
2407   case MetadataPtr:
2408   case KlassPtr:
2409     return TypePtr::BOTTOM;     // Oop meet raw is not well defined
2410   default:                      // All else is a mistake
2411     typerr(t);
2412   }
2413 
2414   // Found an AnyPtr type vs self-RawPtr type
2415   const TypePtr *tp = t->is_ptr();
2416   switch (tp->ptr()) {
2417   case TypePtr::TopPTR:  return this;
2418   case TypePtr::BotPTR:  return t;
2419   case TypePtr::Null:
2420     if( _ptr == TypePtr::TopPTR ) return t;
2421     return TypeRawPtr::BOTTOM;
2422   case TypePtr::NotNull: return TypePtr::make( AnyPtr, meet_ptr(TypePtr::NotNull), tp->meet_offset(0) );
2423   case TypePtr::AnyNull:
2424     if( _ptr == TypePtr::Constant) return this;
2425     return make( meet_ptr(TypePtr::AnyNull) );
2426   default: ShouldNotReachHere();
2427   }
2428   return this;
2429 }
2430 
2431 //------------------------------xdual------------------------------------------
2432 // Dual: compute field-by-field dual
2433 const Type *TypeRawPtr::xdual() const {
2434   return new TypeRawPtr( dual_ptr(), _bits );
2435 }
2436 
2437 //------------------------------add_offset-------------------------------------
2438 const TypePtr *TypeRawPtr::add_offset( intptr_t offset ) const {
2439   if( offset == OffsetTop ) return BOTTOM; // Undefined offset-> undefined pointer
2440   if( offset == OffsetBot ) return BOTTOM; // Unknown offset-> unknown pointer
2441   if( offset == 0 ) return this; // No change
2442   switch (_ptr) {
2443   case TypePtr::TopPTR:
2444   case TypePtr::BotPTR:
2445   case TypePtr::NotNull:
2446     return this;
2447   case TypePtr::Null:
2448   case TypePtr::Constant: {
2449     address bits = _bits+offset;
2450     if ( bits == 0 ) return TypePtr::NULL_PTR;
2451     return make( bits );
2452   }
2453   default:  ShouldNotReachHere();
2454   }
2455   return NULL;                  // Lint noise
2456 }
2457 
2458 //------------------------------eq---------------------------------------------
2459 // Structural equality check for Type representations
2460 bool TypeRawPtr::eq( const Type *t ) const {
2461   const TypeRawPtr *a = (const TypeRawPtr*)t;
2462   return _bits == a->_bits && TypePtr::eq(t);
2463 }
2464 
2465 //------------------------------hash-------------------------------------------
2466 // Type-specific hashing function.
2467 int TypeRawPtr::hash(void) const {
2468   return (intptr_t)_bits + TypePtr::hash();
2469 }
2470 
2471 //------------------------------dump2------------------------------------------
2472 #ifndef PRODUCT
2473 void TypeRawPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
2474   if( _ptr == Constant )
2475     st->print(INTPTR_FORMAT, _bits);
2476   else
2477     st->print("rawptr:%s", ptr_msg[_ptr]);
2478 }
2479 #endif
2480 
2481 //=============================================================================
2482 // Convenience common pre-built type.
2483 const TypeOopPtr *TypeOopPtr::BOTTOM;
2484 
2485 //------------------------------TypeOopPtr-------------------------------------
2486 TypeOopPtr::TypeOopPtr(TYPES t, PTR ptr, ciKlass* k, bool xk, ciObject* o, int offset, int instance_id, const TypeOopPtr* speculative, int inline_depth)
2487   : TypePtr(t, ptr, offset),
2488     _const_oop(o), _klass(k),
2489     _klass_is_exact(xk),
2490     _is_ptr_to_narrowoop(false),
2491     _is_ptr_to_narrowklass(false),
2492     _is_ptr_to_boxed_value(false),
2493     _instance_id(instance_id),
2494     _speculative(speculative),
2495     _inline_depth(inline_depth){
2496   if (Compile::current()->eliminate_boxing() && (t == InstPtr) &&
2497       (offset > 0) && xk && (k != 0) && k->is_instance_klass()) {
2498     _is_ptr_to_boxed_value = k->as_instance_klass()->is_boxed_value_offset(offset);
2499   }
2500 #ifdef _LP64
2501   if (_offset != 0) {
2502     if (_offset == oopDesc::klass_offset_in_bytes()) {
2503       _is_ptr_to_narrowklass = UseCompressedClassPointers;
2504     } else if (klass() == NULL) {
2505       // Array with unknown body type
2506       assert(this->isa_aryptr(), "only arrays without klass");
2507       _is_ptr_to_narrowoop = UseCompressedOops;
2508     } else if (this->isa_aryptr()) {
2509       _is_ptr_to_narrowoop = (UseCompressedOops && klass()->is_obj_array_klass() &&
2510                              _offset != arrayOopDesc::length_offset_in_bytes());
2511     } else if (klass()->is_instance_klass()) {
2512       ciInstanceKlass* ik = klass()->as_instance_klass();
2513       ciField* field = NULL;
2514       if (this->isa_klassptr()) {
2515         // Perm objects don't use compressed references
2516       } else if (_offset == OffsetBot || _offset == OffsetTop) {
2517         // unsafe access
2518         _is_ptr_to_narrowoop = UseCompressedOops;
2519       } else { // exclude unsafe ops
2520         assert(this->isa_instptr(), "must be an instance ptr.");
2521 
2522         if (klass() == ciEnv::current()->Class_klass() &&
2523             (_offset == java_lang_Class::klass_offset_in_bytes() ||
2524              _offset == java_lang_Class::array_klass_offset_in_bytes())) {
2525           // Special hidden fields from the Class.
2526           assert(this->isa_instptr(), "must be an instance ptr.");
2527           _is_ptr_to_narrowoop = false;
2528         } else if (klass() == ciEnv::current()->Class_klass() &&
2529                    _offset >= InstanceMirrorKlass::offset_of_static_fields()) {
2530           // Static fields
2531           assert(o != NULL, "must be constant");
2532           ciInstanceKlass* k = o->as_instance()->java_lang_Class_klass()->as_instance_klass();
2533           ciField* field = k->get_field_by_offset(_offset, true);
2534           assert(field != NULL, "missing field");
2535           BasicType basic_elem_type = field->layout_type();
2536           _is_ptr_to_narrowoop = UseCompressedOops && (basic_elem_type == T_OBJECT ||
2537                                                        basic_elem_type == T_ARRAY);
2538         } else {
2539           // Instance fields which contains a compressed oop references.
2540           field = ik->get_field_by_offset(_offset, false);
2541           if (field != NULL) {
2542             BasicType basic_elem_type = field->layout_type();
2543             _is_ptr_to_narrowoop = UseCompressedOops && (basic_elem_type == T_OBJECT ||
2544                                                          basic_elem_type == T_ARRAY);
2545           } else if (klass()->equals(ciEnv::current()->Object_klass())) {
2546             // Compile::find_alias_type() cast exactness on all types to verify
2547             // that it does not affect alias type.
2548             _is_ptr_to_narrowoop = UseCompressedOops;
2549           } else {
2550             // Type for the copy start in LibraryCallKit::inline_native_clone().
2551             _is_ptr_to_narrowoop = UseCompressedOops;
2552           }
2553         }
2554       }
2555     }
2556   }
2557 #endif
2558 }
2559 
2560 //------------------------------make-------------------------------------------
2561 const TypeOopPtr *TypeOopPtr::make(PTR ptr,
2562                                    int offset, int instance_id, const TypeOopPtr* speculative, int inline_depth) {
2563   assert(ptr != Constant, "no constant generic pointers");
2564   ciKlass*  k = Compile::current()->env()->Object_klass();
2565   bool      xk = false;
2566   ciObject* o = NULL;
2567   return (TypeOopPtr*)(new TypeOopPtr(OopPtr, ptr, k, xk, o, offset, instance_id, speculative, inline_depth))->hashcons();
2568 }
2569 
2570 
2571 //------------------------------cast_to_ptr_type-------------------------------
2572 const Type *TypeOopPtr::cast_to_ptr_type(PTR ptr) const {
2573   assert(_base == OopPtr, "subclass must override cast_to_ptr_type");
2574   if( ptr == _ptr ) return this;
2575   return make(ptr, _offset, _instance_id, _speculative, _inline_depth);
2576 }
2577 
2578 //-----------------------------cast_to_instance_id----------------------------
2579 const TypeOopPtr *TypeOopPtr::cast_to_instance_id(int instance_id) const {
2580   // There are no instances of a general oop.
2581   // Return self unchanged.
2582   return this;
2583 }
2584 
2585 //-----------------------------cast_to_exactness-------------------------------
2586 const Type *TypeOopPtr::cast_to_exactness(bool klass_is_exact) const {
2587   // There is no such thing as an exact general oop.
2588   // Return self unchanged.
2589   return this;
2590 }
2591 
2592 
2593 //------------------------------as_klass_type----------------------------------
2594 // Return the klass type corresponding to this instance or array type.
2595 // It is the type that is loaded from an object of this type.
2596 const TypeKlassPtr* TypeOopPtr::as_klass_type() const {
2597   ciKlass* k = klass();
2598   bool    xk = klass_is_exact();
2599   if (k == NULL)
2600     return TypeKlassPtr::OBJECT;
2601   else
2602     return TypeKlassPtr::make(xk? Constant: NotNull, k, 0);
2603 }
2604 
2605 const Type *TypeOopPtr::xmeet(const Type *t) const {
2606   const Type* res = xmeet_helper(t);
2607   if (res->isa_oopptr() == NULL) {
2608     return res;
2609   }
2610 
2611   const TypeOopPtr* res_oopptr = res->is_oopptr();
2612   if (res_oopptr->speculative() != NULL) {
2613     // type->speculative() == NULL means that speculation is no better
2614     // than type, i.e. type->speculative() == type. So there are 2
2615     // ways to represent the fact that we have no useful speculative
2616     // data and we should use a single one to be able to test for
2617     // equality between types. Check whether type->speculative() ==
2618     // type and set speculative to NULL if it is the case.
2619     if (res_oopptr->remove_speculative() == res_oopptr->speculative()) {
2620       return res_oopptr->remove_speculative();
2621     }
2622   }
2623 
2624   return res;
2625 }
2626 
2627 //------------------------------meet-------------------------------------------
2628 // Compute the MEET of two types.  It returns a new Type object.
2629 const Type *TypeOopPtr::xmeet_helper(const Type *t) const {
2630   // Perform a fast test for common case; meeting the same types together.
2631   if( this == t ) return this;  // Meeting same type-rep?
2632 
2633   // Current "this->_base" is OopPtr
2634   switch (t->base()) {          // switch on original type
2635 
2636   case Int:                     // Mixing ints & oops happens when javac
2637   case Long:                    // reuses local variables
2638   case FloatTop:
2639   case FloatCon:
2640   case FloatBot:
2641   case DoubleTop:
2642   case DoubleCon:
2643   case DoubleBot:
2644   case NarrowOop:
2645   case NarrowKlass:
2646   case Bottom:                  // Ye Olde Default
2647     return Type::BOTTOM;
2648   case Top:
2649     return this;
2650 
2651   default:                      // All else is a mistake
2652     typerr(t);
2653 
2654   case RawPtr:
2655   case MetadataPtr:
2656   case KlassPtr:
2657     return TypePtr::BOTTOM;     // Oop meet raw is not well defined
2658 
2659   case AnyPtr: {
2660     // Found an AnyPtr type vs self-OopPtr type
2661     const TypePtr *tp = t->is_ptr();
2662     int offset = meet_offset(tp->offset());
2663     PTR ptr = meet_ptr(tp->ptr());
2664     switch (tp->ptr()) {
2665     case Null:
2666       if (ptr == Null)  return TypePtr::make(AnyPtr, ptr, offset);
2667       // else fall through:
2668     case TopPTR:
2669     case AnyNull: {
2670       int instance_id = meet_instance_id(InstanceTop);
2671       const TypeOopPtr* speculative = _speculative;
2672       return make(ptr, offset, instance_id, speculative, _inline_depth);
2673     }
2674     case BotPTR:
2675     case NotNull:
2676       return TypePtr::make(AnyPtr, ptr, offset);
2677     default: typerr(t);
2678     }
2679   }
2680 
2681   case OopPtr: {                 // Meeting to other OopPtrs
2682     const TypeOopPtr *tp = t->is_oopptr();
2683     int instance_id = meet_instance_id(tp->instance_id());
2684     const TypeOopPtr* speculative = xmeet_speculative(tp);
2685     int depth = meet_inline_depth(tp->inline_depth());
2686     return make(meet_ptr(tp->ptr()), meet_offset(tp->offset()), instance_id, speculative, depth);
2687   }
2688 
2689   case InstPtr:                  // For these, flip the call around to cut down
2690   case AryPtr:
2691     return t->xmeet(this);      // Call in reverse direction
2692 
2693   } // End of switch
2694   return this;                  // Return the double constant
2695 }
2696 
2697 
2698 //------------------------------xdual------------------------------------------
2699 // Dual of a pure heap pointer.  No relevant klass or oop information.
2700 const Type *TypeOopPtr::xdual() const {
2701   assert(klass() == Compile::current()->env()->Object_klass(), "no klasses here");
2702   assert(const_oop() == NULL,             "no constants here");
2703   return new TypeOopPtr(_base, dual_ptr(), klass(), klass_is_exact(), const_oop(), dual_offset(), dual_instance_id(), dual_speculative(), dual_inline_depth());
2704 }
2705 
2706 //--------------------------make_from_klass_common-----------------------------
2707 // Computes the element-type given a klass.
2708 const TypeOopPtr* TypeOopPtr::make_from_klass_common(ciKlass *klass, bool klass_change, bool try_for_exact) {
2709   if (klass->is_instance_klass()) {
2710     Compile* C = Compile::current();
2711     Dependencies* deps = C->dependencies();
2712     assert((deps != NULL) == (C->method() != NULL && C->method()->code_size() > 0), "sanity");
2713     // Element is an instance
2714     bool klass_is_exact = false;
2715     if (klass->is_loaded()) {
2716       // Try to set klass_is_exact.
2717       ciInstanceKlass* ik = klass->as_instance_klass();
2718       klass_is_exact = ik->is_final();
2719       if (!klass_is_exact && klass_change
2720           && deps != NULL && UseUniqueSubclasses) {
2721         ciInstanceKlass* sub = ik->unique_concrete_subklass();
2722         if (sub != NULL) {
2723           deps->assert_abstract_with_unique_concrete_subtype(ik, sub);
2724           klass = ik = sub;
2725           klass_is_exact = sub->is_final();
2726         }
2727       }
2728       if (!klass_is_exact && try_for_exact
2729           && deps != NULL && UseExactTypes) {
2730         if (!ik->is_interface() && !ik->has_subklass()) {
2731           // Add a dependence; if concrete subclass added we need to recompile
2732           deps->assert_leaf_type(ik);
2733           klass_is_exact = true;
2734         }
2735       }
2736     }
2737     return TypeInstPtr::make(TypePtr::BotPTR, klass, klass_is_exact, NULL, 0);
2738   } else if (klass->is_obj_array_klass()) {
2739     // Element is an object array. Recursively call ourself.
2740     const TypeOopPtr *etype = TypeOopPtr::make_from_klass_common(klass->as_obj_array_klass()->element_klass(), false, try_for_exact);
2741     bool xk = etype->klass_is_exact();
2742     const TypeAry* arr0 = TypeAry::make(etype, TypeInt::POS);
2743     // We used to pass NotNull in here, asserting that the sub-arrays
2744     // are all not-null.  This is not true in generally, as code can
2745     // slam NULLs down in the subarrays.
2746     const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::BotPTR, arr0, klass, xk, 0);
2747     return arr;
2748   } else if (klass->is_type_array_klass()) {
2749     // Element is an typeArray
2750     const Type* etype = get_const_basic_type(klass->as_type_array_klass()->element_type());
2751     const TypeAry* arr0 = TypeAry::make(etype, TypeInt::POS);
2752     // We used to pass NotNull in here, asserting that the array pointer
2753     // is not-null. That was not true in general.
2754     const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::BotPTR, arr0, klass, true, 0);
2755     return arr;
2756   } else {
2757     ShouldNotReachHere();
2758     return NULL;
2759   }
2760 }
2761 
2762 //------------------------------make_from_constant-----------------------------
2763 // Make a java pointer from an oop constant
2764 const TypeOopPtr* TypeOopPtr::make_from_constant(ciObject* o,
2765                                                  bool require_constant,
2766                                                  bool is_autobox_cache) {
2767   assert(!o->is_null_object(), "null object not yet handled here.");
2768   ciKlass* klass = o->klass();
2769   if (klass->is_instance_klass()) {
2770     // Element is an instance
2771     if (require_constant) {
2772       if (!o->can_be_constant())  return NULL;
2773     } else if (!o->should_be_constant()) {
2774       return TypeInstPtr::make(TypePtr::NotNull, klass, true, NULL, 0);
2775     }
2776     return TypeInstPtr::make(o);
2777   } else if (klass->is_obj_array_klass()) {
2778     // Element is an object array. Recursively call ourself.
2779     const TypeOopPtr *etype =
2780       TypeOopPtr::make_from_klass_raw(klass->as_obj_array_klass()->element_klass());
2781     if (is_autobox_cache) {
2782       // The pointers in the autobox arrays are always non-null.
2783       etype = etype->cast_to_ptr_type(TypePtr::NotNull)->is_oopptr();
2784     }
2785     const TypeAry* arr0 = TypeAry::make(etype, TypeInt::make(o->as_array()->length()));
2786     // We used to pass NotNull in here, asserting that the sub-arrays
2787     // are all not-null.  This is not true in generally, as code can
2788     // slam NULLs down in the subarrays.
2789     if (require_constant) {
2790       if (!o->can_be_constant())  return NULL;
2791     } else if (!o->should_be_constant()) {
2792       return TypeAryPtr::make(TypePtr::NotNull, arr0, klass, true, 0);
2793     }
2794     const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::Constant, o, arr0, klass, true, 0, InstanceBot, NULL, InlineDepthBottom, is_autobox_cache);
2795     return arr;
2796   } else if (klass->is_type_array_klass()) {
2797     // Element is an typeArray
2798     const Type* etype =
2799       (Type*)get_const_basic_type(klass->as_type_array_klass()->element_type());
2800     const TypeAry* arr0 = TypeAry::make(etype, TypeInt::make(o->as_array()->length()));
2801     // We used to pass NotNull in here, asserting that the array pointer
2802     // is not-null. That was not true in general.
2803     if (require_constant) {
2804       if (!o->can_be_constant())  return NULL;
2805     } else if (!o->should_be_constant()) {
2806       return TypeAryPtr::make(TypePtr::NotNull, arr0, klass, true, 0);
2807     }
2808     const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::Constant, o, arr0, klass, true, 0);
2809     return arr;
2810   }
2811 
2812   fatal("unhandled object type");
2813   return NULL;
2814 }
2815 
2816 //------------------------------get_con----------------------------------------
2817 intptr_t TypeOopPtr::get_con() const {
2818   assert( _ptr == Null || _ptr == Constant, "" );
2819   assert( _offset >= 0, "" );
2820 
2821   if (_offset != 0) {
2822     // After being ported to the compiler interface, the compiler no longer
2823     // directly manipulates the addresses of oops.  Rather, it only has a pointer
2824     // to a handle at compile time.  This handle is embedded in the generated
2825     // code and dereferenced at the time the nmethod is made.  Until that time,
2826     // it is not reasonable to do arithmetic with the addresses of oops (we don't
2827     // have access to the addresses!).  This does not seem to currently happen,
2828     // but this assertion here is to help prevent its occurence.
2829     tty->print_cr("Found oop constant with non-zero offset");
2830     ShouldNotReachHere();
2831   }
2832 
2833   return (intptr_t)const_oop()->constant_encoding();
2834 }
2835 
2836 
2837 //-----------------------------filter------------------------------------------
2838 // Do not allow interface-vs.-noninterface joins to collapse to top.
2839 const Type *TypeOopPtr::filter_helper(const Type *kills, bool include_speculative) const {
2840 
2841   const Type* ft = join_helper(kills, include_speculative);
2842   const TypeInstPtr* ftip = ft->isa_instptr();
2843   const TypeInstPtr* ktip = kills->isa_instptr();
2844 
2845   if (ft->empty()) {
2846     // Check for evil case of 'this' being a class and 'kills' expecting an
2847     // interface.  This can happen because the bytecodes do not contain
2848     // enough type info to distinguish a Java-level interface variable
2849     // from a Java-level object variable.  If we meet 2 classes which
2850     // both implement interface I, but their meet is at 'j/l/O' which
2851     // doesn't implement I, we have no way to tell if the result should
2852     // be 'I' or 'j/l/O'.  Thus we'll pick 'j/l/O'.  If this then flows
2853     // into a Phi which "knows" it's an Interface type we'll have to
2854     // uplift the type.
2855     if (!empty()) {
2856       if (ktip != NULL && ktip->is_loaded() && ktip->klass()->is_interface()) {
2857         return kills;           // Uplift to interface
2858       }
2859       // Also check for evil cases of 'this' being a class array
2860       // and 'kills' expecting an array of interfaces.
2861       Type::get_arrays_base_elements(ft, kills, NULL, &ktip);
2862       if (ktip != NULL && ktip->is_loaded() && ktip->klass()->is_interface()) {
2863         return kills;           // Uplift to array of interface
2864       }
2865     }
2866 
2867     return Type::TOP;           // Canonical empty value
2868   }
2869 
2870   // If we have an interface-typed Phi or cast and we narrow to a class type,
2871   // the join should report back the class.  However, if we have a J/L/Object
2872   // class-typed Phi and an interface flows in, it's possible that the meet &
2873   // join report an interface back out.  This isn't possible but happens
2874   // because the type system doesn't interact well with interfaces.
2875   if (ftip != NULL && ktip != NULL &&
2876       ftip->is_loaded() &&  ftip->klass()->is_interface() &&
2877       ktip->is_loaded() && !ktip->klass()->is_interface()) {
2878     // Happens in a CTW of rt.jar, 320-341, no extra flags
2879     assert(!ftip->klass_is_exact(), "interface could not be exact");
2880     return ktip->cast_to_ptr_type(ftip->ptr());
2881   }
2882 
2883   return ft;
2884 }
2885 
2886 //------------------------------eq---------------------------------------------
2887 // Structural equality check for Type representations
2888 bool TypeOopPtr::eq( const Type *t ) const {
2889   const TypeOopPtr *a = (const TypeOopPtr*)t;
2890   if (_klass_is_exact != a->_klass_is_exact ||
2891       _instance_id != a->_instance_id ||
2892       !eq_speculative(a) ||
2893       _inline_depth != a->_inline_depth)  return false;
2894   ciObject* one = const_oop();
2895   ciObject* two = a->const_oop();
2896   if (one == NULL || two == NULL) {
2897     return (one == two) && TypePtr::eq(t);
2898   } else {
2899     return one->equals(two) && TypePtr::eq(t);
2900   }
2901 }
2902 
2903 //------------------------------hash-------------------------------------------
2904 // Type-specific hashing function.
2905 int TypeOopPtr::hash(void) const {
2906   return
2907     java_add(java_add(java_add(const_oop() ? const_oop()->hash() : 0, _klass_is_exact),
2908                       java_add(_instance_id , hash_speculative())), java_add(_inline_depth , TypePtr::hash()));
2909 }
2910 
2911 //------------------------------dump2------------------------------------------
2912 #ifndef PRODUCT
2913 void TypeOopPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
2914   st->print("oopptr:%s", ptr_msg[_ptr]);
2915   if( _klass_is_exact ) st->print(":exact");
2916   if( const_oop() ) st->print(INTPTR_FORMAT, const_oop());
2917   switch( _offset ) {
2918   case OffsetTop: st->print("+top"); break;
2919   case OffsetBot: st->print("+any"); break;
2920   case         0: break;
2921   default:        st->print("+%d",_offset); break;
2922   }
2923   if (_instance_id == InstanceTop)
2924     st->print(",iid=top");
2925   else if (_instance_id != InstanceBot)
2926     st->print(",iid=%d",_instance_id);
2927 
2928   dump_inline_depth(st);
2929   dump_speculative(st);
2930 }
2931 
2932 /**
2933  *dump the speculative part of the type
2934  */
2935 void TypeOopPtr::dump_speculative(outputStream *st) const {
2936   if (_speculative != NULL) {
2937     st->print(" (speculative=");
2938     _speculative->dump_on(st);
2939     st->print(")");
2940   }
2941 }
2942 
2943 void TypeOopPtr::dump_inline_depth(outputStream *st) const {
2944   if (_inline_depth != InlineDepthBottom) {
2945     if (_inline_depth == InlineDepthTop) {
2946       st->print(" (inline_depth=InlineDepthTop)");
2947     } else {
2948       st->print(" (inline_depth=%d)", _inline_depth);
2949     }
2950   }
2951 }
2952 #endif
2953 
2954 //------------------------------singleton--------------------------------------
2955 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
2956 // constants
2957 bool TypeOopPtr::singleton(void) const {
2958   // detune optimizer to not generate constant oop + constant offset as a constant!
2959   // TopPTR, Null, AnyNull, Constant are all singletons
2960   return (_offset == 0) && !below_centerline(_ptr);
2961 }
2962 
2963 //------------------------------add_offset-------------------------------------
2964 const TypePtr *TypeOopPtr::add_offset(intptr_t offset) const {
2965   return make(_ptr, xadd_offset(offset), _instance_id, add_offset_speculative(offset), _inline_depth);
2966 }
2967 
2968 /**
2969  * Return same type without a speculative part
2970  */
2971 const Type* TypeOopPtr::remove_speculative() const {
2972   if (_speculative == NULL) {
2973     return this;
2974   }
2975   assert(_inline_depth == InlineDepthTop || _inline_depth == InlineDepthBottom, "non speculative type shouldn't have inline depth");
2976   return make(_ptr, _offset, _instance_id, NULL, _inline_depth);
2977 }
2978 
2979 /**
2980  * Return same type but with a different inline depth (used for speculation)
2981  *
2982  * @param depth  depth to meet with
2983  */
2984 const TypeOopPtr* TypeOopPtr::with_inline_depth(int depth) const {
2985   if (!UseInlineDepthForSpeculativeTypes) {
2986     return this;
2987   }
2988   return make(_ptr, _offset, _instance_id, _speculative, depth);
2989 }
2990 
2991 /**
2992  * Check whether new profiling would improve speculative type
2993  *
2994  * @param   exact_kls    class from profiling
2995  * @param   inline_depth inlining depth of profile point
2996  *
2997  * @return  true if type profile is valuable
2998  */
2999 bool TypeOopPtr::would_improve_type(ciKlass* exact_kls, int inline_depth) const {
3000   // no way to improve an already exact type
3001   if (klass_is_exact()) {
3002     return false;
3003   }
3004   // no profiling?
3005   if (exact_kls == NULL) {
3006     return false;
3007   }
3008   // no speculative type or non exact speculative type?
3009   if (speculative_type() == NULL) {
3010     return true;
3011   }
3012   // If the node already has an exact speculative type keep it,
3013   // unless it was provided by profiling that is at a deeper
3014   // inlining level. Profiling at a higher inlining depth is
3015   // expected to be less accurate.
3016   if (_speculative->inline_depth() == InlineDepthBottom) {
3017     return false;
3018   }
3019   assert(_speculative->inline_depth() != InlineDepthTop, "can't do the comparison");
3020   return inline_depth < _speculative->inline_depth();
3021 }
3022 
3023 //------------------------------meet_instance_id--------------------------------
3024 int TypeOopPtr::meet_instance_id( int instance_id ) const {
3025   // Either is 'TOP' instance?  Return the other instance!
3026   if( _instance_id == InstanceTop ) return  instance_id;
3027   if(  instance_id == InstanceTop ) return _instance_id;
3028   // If either is different, return 'BOTTOM' instance
3029   if( _instance_id != instance_id ) return InstanceBot;
3030   return _instance_id;
3031 }
3032 
3033 //------------------------------dual_instance_id--------------------------------
3034 int TypeOopPtr::dual_instance_id( ) const {
3035   if( _instance_id == InstanceTop ) return InstanceBot; // Map TOP into BOTTOM
3036   if( _instance_id == InstanceBot ) return InstanceTop; // Map BOTTOM into TOP
3037   return _instance_id;              // Map everything else into self
3038 }
3039 
3040 /**
3041  * meet of the speculative parts of 2 types
3042  *
3043  * @param other  type to meet with
3044  */
3045 const TypeOopPtr* TypeOopPtr::xmeet_speculative(const TypeOopPtr* other) const {
3046   bool this_has_spec = (_speculative != NULL);
3047   bool other_has_spec = (other->speculative() != NULL);
3048 
3049   if (!this_has_spec && !other_has_spec) {
3050     return NULL;
3051   }
3052 
3053   // If we are at a point where control flow meets and one branch has
3054   // a speculative type and the other has not, we meet the speculative
3055   // type of one branch with the actual type of the other. If the
3056   // actual type is exact and the speculative is as well, then the
3057   // result is a speculative type which is exact and we can continue
3058   // speculation further.
3059   const TypeOopPtr* this_spec = _speculative;
3060   const TypeOopPtr* other_spec = other->speculative();
3061 
3062   if (!this_has_spec) {
3063     this_spec = this;
3064   }
3065 
3066   if (!other_has_spec) {
3067     other_spec = other;
3068   }
3069 
3070   return this_spec->meet_speculative(other_spec)->is_oopptr();
3071 }
3072 
3073 /**
3074  * dual of the speculative part of the type
3075  */
3076 const TypeOopPtr* TypeOopPtr::dual_speculative() const {
3077   if (_speculative == NULL) {
3078     return NULL;
3079   }
3080   return _speculative->dual()->is_oopptr();
3081 }
3082 
3083 /**
3084  * add offset to the speculative part of the type
3085  *
3086  * @param offset  offset to add
3087  */
3088 const TypeOopPtr* TypeOopPtr::add_offset_speculative(intptr_t offset) const {
3089   if (_speculative == NULL) {
3090     return NULL;
3091   }
3092   return _speculative->add_offset(offset)->is_oopptr();
3093 }
3094 
3095 /**
3096  * Are the speculative parts of 2 types equal?
3097  *
3098  * @param other  type to compare this one to
3099  */
3100 bool TypeOopPtr::eq_speculative(const TypeOopPtr* other) const {
3101   if (_speculative == NULL || other->speculative() == NULL) {
3102     return _speculative == other->speculative();
3103   }
3104 
3105   if (_speculative->base() != other->speculative()->base()) {
3106     return false;
3107   }
3108 
3109   return _speculative->eq(other->speculative());
3110 }
3111 
3112 /**
3113  * Hash of the speculative part of the type
3114  */
3115 int TypeOopPtr::hash_speculative() const {
3116   if (_speculative == NULL) {
3117     return 0;
3118   }
3119 
3120   return _speculative->hash();
3121 }
3122 
3123 /**
3124  * dual of the inline depth for this type (used for speculation)
3125  */
3126 int TypeOopPtr::dual_inline_depth() const {
3127   return -inline_depth();
3128 }
3129 
3130 /**
3131  * meet of 2 inline depth (used for speculation)
3132  *
3133  * @param depth  depth to meet with
3134  */
3135 int TypeOopPtr::meet_inline_depth(int depth) const {
3136   return MAX2(inline_depth(), depth);
3137 }
3138 
3139 //=============================================================================
3140 // Convenience common pre-built types.
3141 const TypeInstPtr *TypeInstPtr::NOTNULL;
3142 const TypeInstPtr *TypeInstPtr::BOTTOM;
3143 const TypeInstPtr *TypeInstPtr::MIRROR;
3144 const TypeInstPtr *TypeInstPtr::MARK;
3145 const TypeInstPtr *TypeInstPtr::KLASS;
3146 
3147 //------------------------------TypeInstPtr-------------------------------------
3148 TypeInstPtr::TypeInstPtr(PTR ptr, ciKlass* k, bool xk, ciObject* o, int off, int instance_id, const TypeOopPtr* speculative, int inline_depth)
3149   : TypeOopPtr(InstPtr, ptr, k, xk, o, off, instance_id, speculative, inline_depth), _name(k->name()) {
3150    assert(k != NULL &&
3151           (k->is_loaded() || o == NULL),
3152           "cannot have constants with non-loaded klass");
3153 };
3154 
3155 //------------------------------make-------------------------------------------
3156 const TypeInstPtr *TypeInstPtr::make(PTR ptr,
3157                                      ciKlass* k,
3158                                      bool xk,
3159                                      ciObject* o,
3160                                      int offset,
3161                                      int instance_id,
3162                                      const TypeOopPtr* speculative,
3163                                      int inline_depth) {
3164   assert( !k->is_loaded() || k->is_instance_klass(), "Must be for instance");
3165   // Either const_oop() is NULL or else ptr is Constant
3166   assert( (!o && ptr != Constant) || (o && ptr == Constant),
3167           "constant pointers must have a value supplied" );
3168   // Ptr is never Null
3169   assert( ptr != Null, "NULL pointers are not typed" );
3170 
3171   assert(instance_id <= 0 || xk || !UseExactTypes, "instances are always exactly typed");
3172   if (!UseExactTypes)  xk = false;
3173   if (ptr == Constant) {
3174     // Note:  This case includes meta-object constants, such as methods.
3175     xk = true;
3176   } else if (k->is_loaded()) {
3177     ciInstanceKlass* ik = k->as_instance_klass();
3178     if (!xk && ik->is_final())     xk = true;   // no inexact final klass
3179     if (xk && ik->is_interface())  xk = false;  // no exact interface
3180   }
3181 
3182   // Now hash this baby
3183   TypeInstPtr *result =
3184     (TypeInstPtr*)(new TypeInstPtr(ptr, k, xk, o ,offset, instance_id, speculative, inline_depth))->hashcons();
3185 
3186   return result;
3187 }
3188 
3189 /**
3190  *  Create constant type for a constant boxed value
3191  */
3192 const Type* TypeInstPtr::get_const_boxed_value() const {
3193   assert(is_ptr_to_boxed_value(), "should be called only for boxed value");
3194   assert((const_oop() != NULL), "should be called only for constant object");
3195   ciConstant constant = const_oop()->as_instance()->field_value_by_offset(offset());
3196   BasicType bt = constant.basic_type();
3197   switch (bt) {
3198     case T_BOOLEAN:  return TypeInt::make(constant.as_boolean());
3199     case T_INT:      return TypeInt::make(constant.as_int());
3200     case T_CHAR:     return TypeInt::make(constant.as_char());
3201     case T_BYTE:     return TypeInt::make(constant.as_byte());
3202     case T_SHORT:    return TypeInt::make(constant.as_short());
3203     case T_FLOAT:    return TypeF::make(constant.as_float());
3204     case T_DOUBLE:   return TypeD::make(constant.as_double());
3205     case T_LONG:     return TypeLong::make(constant.as_long());
3206     default:         break;
3207   }
3208   fatal(err_msg_res("Invalid boxed value type '%s'", type2name(bt)));
3209   return NULL;
3210 }
3211 
3212 //------------------------------cast_to_ptr_type-------------------------------
3213 const Type *TypeInstPtr::cast_to_ptr_type(PTR ptr) const {
3214   if( ptr == _ptr ) return this;
3215   // Reconstruct _sig info here since not a problem with later lazy
3216   // construction, _sig will show up on demand.
3217   return make(ptr, klass(), klass_is_exact(), const_oop(), _offset, _instance_id, _speculative, _inline_depth);
3218 }
3219 
3220 
3221 //-----------------------------cast_to_exactness-------------------------------
3222 const Type *TypeInstPtr::cast_to_exactness(bool klass_is_exact) const {
3223   if( klass_is_exact == _klass_is_exact ) return this;
3224   if (!UseExactTypes)  return this;
3225   if (!_klass->is_loaded())  return this;
3226   ciInstanceKlass* ik = _klass->as_instance_klass();
3227   if( (ik->is_final() || _const_oop) )  return this;  // cannot clear xk
3228   if( ik->is_interface() )              return this;  // cannot set xk
3229   return make(ptr(), klass(), klass_is_exact, const_oop(), _offset, _instance_id, _speculative, _inline_depth);
3230 }
3231 
3232 //-----------------------------cast_to_instance_id----------------------------
3233 const TypeOopPtr *TypeInstPtr::cast_to_instance_id(int instance_id) const {
3234   if( instance_id == _instance_id ) return this;
3235   return make(_ptr, klass(), _klass_is_exact, const_oop(), _offset, instance_id, _speculative, _inline_depth);
3236 }
3237 
3238 //------------------------------xmeet_unloaded---------------------------------
3239 // Compute the MEET of two InstPtrs when at least one is unloaded.
3240 // Assume classes are different since called after check for same name/class-loader
3241 const TypeInstPtr *TypeInstPtr::xmeet_unloaded(const TypeInstPtr *tinst) const {
3242     int off = meet_offset(tinst->offset());
3243     PTR ptr = meet_ptr(tinst->ptr());
3244     int instance_id = meet_instance_id(tinst->instance_id());
3245     const TypeOopPtr* speculative = xmeet_speculative(tinst);
3246     int depth = meet_inline_depth(tinst->inline_depth());
3247 
3248     const TypeInstPtr *loaded    = is_loaded() ? this  : tinst;
3249     const TypeInstPtr *unloaded  = is_loaded() ? tinst : this;
3250     if( loaded->klass()->equals(ciEnv::current()->Object_klass()) ) {
3251       //
3252       // Meet unloaded class with java/lang/Object
3253       //
3254       // Meet
3255       //          |                     Unloaded Class
3256       //  Object  |   TOP    |   AnyNull | Constant |   NotNull |  BOTTOM   |
3257       //  ===================================================================
3258       //   TOP    | ..........................Unloaded......................|
3259       //  AnyNull |  U-AN    |................Unloaded......................|
3260       // Constant | ... O-NN .................................. |   O-BOT   |
3261       //  NotNull | ... O-NN .................................. |   O-BOT   |
3262       //  BOTTOM  | ........................Object-BOTTOM ..................|
3263       //
3264       assert(loaded->ptr() != TypePtr::Null, "insanity check");
3265       //
3266       if(      loaded->ptr() == TypePtr::TopPTR ) { return unloaded; }
3267       else if (loaded->ptr() == TypePtr::AnyNull) { return TypeInstPtr::make(ptr, unloaded->klass(), false, NULL, off, instance_id, speculative, depth); }
3268       else if (loaded->ptr() == TypePtr::BotPTR ) { return TypeInstPtr::BOTTOM; }
3269       else if (loaded->ptr() == TypePtr::Constant || loaded->ptr() == TypePtr::NotNull) {
3270         if (unloaded->ptr() == TypePtr::BotPTR  ) { return TypeInstPtr::BOTTOM;  }
3271         else                                      { return TypeInstPtr::NOTNULL; }
3272       }
3273       else if( unloaded->ptr() == TypePtr::TopPTR )  { return unloaded; }
3274 
3275       return unloaded->cast_to_ptr_type(TypePtr::AnyNull)->is_instptr();
3276     }
3277 
3278     // Both are unloaded, not the same class, not Object
3279     // Or meet unloaded with a different loaded class, not java/lang/Object
3280     if( ptr != TypePtr::BotPTR ) {
3281       return TypeInstPtr::NOTNULL;
3282     }
3283     return TypeInstPtr::BOTTOM;
3284 }
3285 
3286 
3287 //------------------------------meet-------------------------------------------
3288 // Compute the MEET of two types.  It returns a new Type object.
3289 const Type *TypeInstPtr::xmeet_helper(const Type *t) const {
3290   // Perform a fast test for common case; meeting the same types together.
3291   if( this == t ) return this;  // Meeting same type-rep?
3292 
3293   // Current "this->_base" is Pointer
3294   switch (t->base()) {          // switch on original type
3295 
3296   case Int:                     // Mixing ints & oops happens when javac
3297   case Long:                    // reuses local variables
3298   case FloatTop:
3299   case FloatCon:
3300   case FloatBot:
3301   case DoubleTop:
3302   case DoubleCon:
3303   case DoubleBot:
3304   case NarrowOop:
3305   case NarrowKlass:
3306   case Bottom:                  // Ye Olde Default
3307     return Type::BOTTOM;
3308   case Top:
3309     return this;
3310 
3311   default:                      // All else is a mistake
3312     typerr(t);
3313 
3314   case MetadataPtr:
3315   case KlassPtr:
3316   case RawPtr: return TypePtr::BOTTOM;
3317 
3318   case AryPtr: {                // All arrays inherit from Object class
3319     const TypeAryPtr *tp = t->is_aryptr();
3320     int offset = meet_offset(tp->offset());
3321     PTR ptr = meet_ptr(tp->ptr());
3322     int instance_id = meet_instance_id(tp->instance_id());
3323     const TypeOopPtr* speculative = xmeet_speculative(tp);
3324     int depth = meet_inline_depth(tp->inline_depth());
3325     switch (ptr) {
3326     case TopPTR:
3327     case AnyNull:                // Fall 'down' to dual of object klass
3328       // For instances when a subclass meets a superclass we fall
3329       // below the centerline when the superclass is exact. We need to
3330       // do the same here.
3331       if (klass()->equals(ciEnv::current()->Object_klass()) && !klass_is_exact()) {
3332         return TypeAryPtr::make(ptr, tp->ary(), tp->klass(), tp->klass_is_exact(), offset, instance_id, speculative, depth);
3333       } else {
3334         // cannot subclass, so the meet has to fall badly below the centerline
3335         ptr = NotNull;
3336         instance_id = InstanceBot;
3337         return TypeInstPtr::make( ptr, ciEnv::current()->Object_klass(), false, NULL, offset, instance_id, speculative, depth);
3338       }
3339     case Constant:
3340     case NotNull:
3341     case BotPTR:                // Fall down to object klass
3342       // LCA is object_klass, but if we subclass from the top we can do better
3343       if( above_centerline(_ptr) ) { // if( _ptr == TopPTR || _ptr == AnyNull )
3344         // If 'this' (InstPtr) is above the centerline and it is Object class
3345         // then we can subclass in the Java class hierarchy.
3346         // For instances when a subclass meets a superclass we fall
3347         // below the centerline when the superclass is exact. We need
3348         // to do the same here.
3349         if (klass()->equals(ciEnv::current()->Object_klass()) && !klass_is_exact()) {
3350           // that is, tp's array type is a subtype of my klass
3351           return TypeAryPtr::make(ptr, (ptr == Constant ? tp->const_oop() : NULL),
3352                                   tp->ary(), tp->klass(), tp->klass_is_exact(), offset, instance_id, speculative, depth);
3353         }
3354       }
3355       // The other case cannot happen, since I cannot be a subtype of an array.
3356       // The meet falls down to Object class below centerline.
3357       if( ptr == Constant )
3358          ptr = NotNull;
3359       instance_id = InstanceBot;
3360       return make(ptr, ciEnv::current()->Object_klass(), false, NULL, offset, instance_id, speculative, depth);
3361     default: typerr(t);
3362     }
3363   }
3364 
3365   case OopPtr: {                // Meeting to OopPtrs
3366     // Found a OopPtr type vs self-InstPtr type
3367     const TypeOopPtr *tp = t->is_oopptr();
3368     int offset = meet_offset(tp->offset());
3369     PTR ptr = meet_ptr(tp->ptr());
3370     switch (tp->ptr()) {
3371     case TopPTR:
3372     case AnyNull: {
3373       int instance_id = meet_instance_id(InstanceTop);
3374       const TypeOopPtr* speculative = xmeet_speculative(tp);
3375       int depth = meet_inline_depth(tp->inline_depth());
3376       return make(ptr, klass(), klass_is_exact(),
3377                   (ptr == Constant ? const_oop() : NULL), offset, instance_id, speculative, depth);
3378     }
3379     case NotNull:
3380     case BotPTR: {
3381       int instance_id = meet_instance_id(tp->instance_id());
3382       const TypeOopPtr* speculative = xmeet_speculative(tp);
3383       int depth = meet_inline_depth(tp->inline_depth());
3384       return TypeOopPtr::make(ptr, offset, instance_id, speculative, depth);
3385     }
3386     default: typerr(t);
3387     }
3388   }
3389 
3390   case AnyPtr: {                // Meeting to AnyPtrs
3391     // Found an AnyPtr type vs self-InstPtr type
3392     const TypePtr *tp = t->is_ptr();
3393     int offset = meet_offset(tp->offset());
3394     PTR ptr = meet_ptr(tp->ptr());
3395     switch (tp->ptr()) {
3396     case Null:
3397       if( ptr == Null ) return TypePtr::make(AnyPtr, ptr, offset);
3398       // else fall through to AnyNull
3399     case TopPTR:
3400     case AnyNull: {
3401       int instance_id = meet_instance_id(InstanceTop);
3402       const TypeOopPtr* speculative = _speculative;
3403       return make(ptr, klass(), klass_is_exact(),
3404                   (ptr == Constant ? const_oop() : NULL), offset, instance_id, speculative, _inline_depth);
3405     }
3406     case NotNull:
3407     case BotPTR:
3408       return TypePtr::make(AnyPtr, ptr, offset);
3409     default: typerr(t);
3410     }
3411   }
3412 
3413   /*
3414                  A-top         }
3415                /   |   \       }  Tops
3416            B-top A-any C-top   }
3417               | /  |  \ |      }  Any-nulls
3418            B-any   |   C-any   }
3419               |    |    |
3420            B-con A-con C-con   } constants; not comparable across classes
3421               |    |    |
3422            B-not   |   C-not   }
3423               | \  |  / |      }  not-nulls
3424            B-bot A-not C-bot   }
3425                \   |   /       }  Bottoms
3426                  A-bot         }
3427   */
3428 
3429   case InstPtr: {                // Meeting 2 Oops?
3430     // Found an InstPtr sub-type vs self-InstPtr type
3431     const TypeInstPtr *tinst = t->is_instptr();
3432     int off = meet_offset( tinst->offset() );
3433     PTR ptr = meet_ptr( tinst->ptr() );
3434     int instance_id = meet_instance_id(tinst->instance_id());
3435     const TypeOopPtr* speculative = xmeet_speculative(tinst);
3436     int depth = meet_inline_depth(tinst->inline_depth());
3437 
3438     // Check for easy case; klasses are equal (and perhaps not loaded!)
3439     // If we have constants, then we created oops so classes are loaded
3440     // and we can handle the constants further down.  This case handles
3441     // both-not-loaded or both-loaded classes
3442     if (ptr != Constant && klass()->equals(tinst->klass()) && klass_is_exact() == tinst->klass_is_exact()) {
3443       return make(ptr, klass(), klass_is_exact(), NULL, off, instance_id, speculative, depth);
3444     }
3445 
3446     // Classes require inspection in the Java klass hierarchy.  Must be loaded.
3447     ciKlass* tinst_klass = tinst->klass();
3448     ciKlass* this_klass  = this->klass();
3449     bool tinst_xk = tinst->klass_is_exact();
3450     bool this_xk  = this->klass_is_exact();
3451     if (!tinst_klass->is_loaded() || !this_klass->is_loaded() ) {
3452       // One of these classes has not been loaded
3453       const TypeInstPtr *unloaded_meet = xmeet_unloaded(tinst);
3454 #ifndef PRODUCT
3455       if( PrintOpto && Verbose ) {
3456         tty->print("meet of unloaded classes resulted in: "); unloaded_meet->dump(); tty->cr();
3457         tty->print("  this == "); this->dump(); tty->cr();
3458         tty->print(" tinst == "); tinst->dump(); tty->cr();
3459       }
3460 #endif
3461       return unloaded_meet;
3462     }
3463 
3464     // Handle mixing oops and interfaces first.
3465     if( this_klass->is_interface() && !(tinst_klass->is_interface() ||
3466                                         tinst_klass == ciEnv::current()->Object_klass())) {
3467       ciKlass *tmp = tinst_klass; // Swap interface around
3468       tinst_klass = this_klass;
3469       this_klass = tmp;
3470       bool tmp2 = tinst_xk;
3471       tinst_xk = this_xk;
3472       this_xk = tmp2;
3473     }
3474     if (tinst_klass->is_interface() &&
3475         !(this_klass->is_interface() ||
3476           // Treat java/lang/Object as an honorary interface,
3477           // because we need a bottom for the interface hierarchy.
3478           this_klass == ciEnv::current()->Object_klass())) {
3479       // Oop meets interface!
3480 
3481       // See if the oop subtypes (implements) interface.
3482       ciKlass *k;
3483       bool xk;
3484       if( this_klass->is_subtype_of( tinst_klass ) ) {
3485         // Oop indeed subtypes.  Now keep oop or interface depending
3486         // on whether we are both above the centerline or either is
3487         // below the centerline.  If we are on the centerline
3488         // (e.g., Constant vs. AnyNull interface), use the constant.
3489         k  = below_centerline(ptr) ? tinst_klass : this_klass;
3490         // If we are keeping this_klass, keep its exactness too.
3491         xk = below_centerline(ptr) ? tinst_xk    : this_xk;
3492       } else {                  // Does not implement, fall to Object
3493         // Oop does not implement interface, so mixing falls to Object
3494         // just like the verifier does (if both are above the
3495         // centerline fall to interface)
3496         k = above_centerline(ptr) ? tinst_klass : ciEnv::current()->Object_klass();
3497         xk = above_centerline(ptr) ? tinst_xk : false;
3498         // Watch out for Constant vs. AnyNull interface.
3499         if (ptr == Constant)  ptr = NotNull;   // forget it was a constant
3500         instance_id = InstanceBot;
3501       }
3502       ciObject* o = NULL;  // the Constant value, if any
3503       if (ptr == Constant) {
3504         // Find out which constant.
3505         o = (this_klass == klass()) ? const_oop() : tinst->const_oop();
3506       }
3507       return make(ptr, k, xk, o, off, instance_id, speculative, depth);
3508     }
3509 
3510     // Either oop vs oop or interface vs interface or interface vs Object
3511 
3512     // !!! Here's how the symmetry requirement breaks down into invariants:
3513     // If we split one up & one down AND they subtype, take the down man.
3514     // If we split one up & one down AND they do NOT subtype, "fall hard".
3515     // If both are up and they subtype, take the subtype class.
3516     // If both are up and they do NOT subtype, "fall hard".
3517     // If both are down and they subtype, take the supertype class.
3518     // If both are down and they do NOT subtype, "fall hard".
3519     // Constants treated as down.
3520 
3521     // Now, reorder the above list; observe that both-down+subtype is also
3522     // "fall hard"; "fall hard" becomes the default case:
3523     // If we split one up & one down AND they subtype, take the down man.
3524     // If both are up and they subtype, take the subtype class.
3525 
3526     // If both are down and they subtype, "fall hard".
3527     // If both are down and they do NOT subtype, "fall hard".
3528     // If both are up and they do NOT subtype, "fall hard".
3529     // If we split one up & one down AND they do NOT subtype, "fall hard".
3530 
3531     // If a proper subtype is exact, and we return it, we return it exactly.
3532     // If a proper supertype is exact, there can be no subtyping relationship!
3533     // If both types are equal to the subtype, exactness is and-ed below the
3534     // centerline and or-ed above it.  (N.B. Constants are always exact.)
3535 
3536     // Check for subtyping:
3537     ciKlass *subtype = NULL;
3538     bool subtype_exact = false;
3539     if( tinst_klass->equals(this_klass) ) {
3540       subtype = this_klass;
3541       subtype_exact = below_centerline(ptr) ? (this_xk & tinst_xk) : (this_xk | tinst_xk);
3542     } else if( !tinst_xk && this_klass->is_subtype_of( tinst_klass ) ) {
3543       subtype = this_klass;     // Pick subtyping class
3544       subtype_exact = this_xk;
3545     } else if( !this_xk && tinst_klass->is_subtype_of( this_klass ) ) {
3546       subtype = tinst_klass;    // Pick subtyping class
3547       subtype_exact = tinst_xk;
3548     }
3549 
3550     if( subtype ) {
3551       if( above_centerline(ptr) ) { // both are up?
3552         this_klass = tinst_klass = subtype;
3553         this_xk = tinst_xk = subtype_exact;
3554       } else if( above_centerline(this ->_ptr) && !above_centerline(tinst->_ptr) ) {
3555         this_klass = tinst_klass; // tinst is down; keep down man
3556         this_xk = tinst_xk;
3557       } else if( above_centerline(tinst->_ptr) && !above_centerline(this ->_ptr) ) {
3558         tinst_klass = this_klass; // this is down; keep down man
3559         tinst_xk = this_xk;
3560       } else {
3561         this_xk = subtype_exact;  // either they are equal, or we'll do an LCA
3562       }
3563     }
3564 
3565     // Check for classes now being equal
3566     if (tinst_klass->equals(this_klass)) {
3567       // If the klasses are equal, the constants may still differ.  Fall to
3568       // NotNull if they do (neither constant is NULL; that is a special case
3569       // handled elsewhere).
3570       ciObject* o = NULL;             // Assume not constant when done
3571       ciObject* this_oop  = const_oop();
3572       ciObject* tinst_oop = tinst->const_oop();
3573       if( ptr == Constant ) {
3574         if (this_oop != NULL && tinst_oop != NULL &&
3575             this_oop->equals(tinst_oop) )
3576           o = this_oop;
3577         else if (above_centerline(this ->_ptr))
3578           o = tinst_oop;
3579         else if (above_centerline(tinst ->_ptr))
3580           o = this_oop;
3581         else
3582           ptr = NotNull;
3583       }
3584       return make(ptr, this_klass, this_xk, o, off, instance_id, speculative, depth);
3585     } // Else classes are not equal
3586 
3587     // Since klasses are different, we require a LCA in the Java
3588     // class hierarchy - which means we have to fall to at least NotNull.
3589     if( ptr == TopPTR || ptr == AnyNull || ptr == Constant )
3590       ptr = NotNull;
3591     instance_id = InstanceBot;
3592 
3593     // Now we find the LCA of Java classes
3594     ciKlass* k = this_klass->least_common_ancestor(tinst_klass);
3595     return make(ptr, k, false, NULL, off, instance_id, speculative, depth);
3596   } // End of case InstPtr
3597 
3598   } // End of switch
3599   return this;                  // Return the double constant
3600 }
3601 
3602 
3603 //------------------------java_mirror_type--------------------------------------
3604 ciType* TypeInstPtr::java_mirror_type() const {
3605   // must be a singleton type
3606   if( const_oop() == NULL )  return NULL;
3607 
3608   // must be of type java.lang.Class
3609   if( klass() != ciEnv::current()->Class_klass() )  return NULL;
3610 
3611   return const_oop()->as_instance()->java_mirror_type();
3612 }
3613 
3614 
3615 //------------------------------xdual------------------------------------------
3616 // Dual: do NOT dual on klasses.  This means I do NOT understand the Java
3617 // inheritance mechanism.
3618 const Type *TypeInstPtr::xdual() const {
3619   return new TypeInstPtr(dual_ptr(), klass(), klass_is_exact(), const_oop(), dual_offset(), dual_instance_id(), dual_speculative(), dual_inline_depth());
3620 }
3621 
3622 //------------------------------eq---------------------------------------------
3623 // Structural equality check for Type representations
3624 bool TypeInstPtr::eq( const Type *t ) const {
3625   const TypeInstPtr *p = t->is_instptr();
3626   return
3627     klass()->equals(p->klass()) &&
3628     TypeOopPtr::eq(p);          // Check sub-type stuff
3629 }
3630 
3631 //------------------------------hash-------------------------------------------
3632 // Type-specific hashing function.
3633 int TypeInstPtr::hash(void) const {
3634   int hash = java_add(klass()->hash(), TypeOopPtr::hash());
3635   return hash;
3636 }
3637 
3638 //------------------------------dump2------------------------------------------
3639 // Dump oop Type
3640 #ifndef PRODUCT
3641 void TypeInstPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
3642   // Print the name of the klass.
3643   klass()->print_name_on(st);
3644 
3645   switch( _ptr ) {
3646   case Constant:
3647     // TO DO: Make CI print the hex address of the underlying oop.
3648     if (WizardMode || Verbose) {
3649       const_oop()->print_oop(st);
3650     }
3651   case BotPTR:
3652     if (!WizardMode && !Verbose) {
3653       if( _klass_is_exact ) st->print(":exact");
3654       break;
3655     }
3656   case TopPTR:
3657   case AnyNull:
3658   case NotNull:
3659     st->print(":%s", ptr_msg[_ptr]);
3660     if( _klass_is_exact ) st->print(":exact");
3661     break;
3662   }
3663 
3664   if( _offset ) {               // Dump offset, if any
3665     if( _offset == OffsetBot )      st->print("+any");
3666     else if( _offset == OffsetTop ) st->print("+unknown");
3667     else st->print("+%d", _offset);
3668   }
3669 
3670   st->print(" *");
3671   if (_instance_id == InstanceTop)
3672     st->print(",iid=top");
3673   else if (_instance_id != InstanceBot)
3674     st->print(",iid=%d",_instance_id);
3675 
3676   dump_inline_depth(st);
3677   dump_speculative(st);
3678 }
3679 #endif
3680 
3681 //------------------------------add_offset-------------------------------------
3682 const TypePtr *TypeInstPtr::add_offset(intptr_t offset) const {
3683   return make(_ptr, klass(), klass_is_exact(), const_oop(), xadd_offset(offset), _instance_id, add_offset_speculative(offset));
3684 }
3685 
3686 const Type *TypeInstPtr::remove_speculative() const {
3687   if (_speculative == NULL) {
3688     return this;
3689   }
3690   assert(_inline_depth == InlineDepthTop || _inline_depth == InlineDepthBottom, "non speculative type shouldn't have inline depth");
3691   return make(_ptr, klass(), klass_is_exact(), const_oop(), _offset, _instance_id, NULL, _inline_depth);
3692 }
3693 
3694 const TypeOopPtr *TypeInstPtr::with_inline_depth(int depth) const {
3695   if (!UseInlineDepthForSpeculativeTypes) {
3696     return this;
3697   }
3698   return make(_ptr, klass(), klass_is_exact(), const_oop(), _offset, _instance_id, _speculative, depth);
3699 }
3700 
3701 //=============================================================================
3702 // Convenience common pre-built types.
3703 const TypeAryPtr *TypeAryPtr::RANGE;
3704 const TypeAryPtr *TypeAryPtr::OOPS;
3705 const TypeAryPtr *TypeAryPtr::NARROWOOPS;
3706 const TypeAryPtr *TypeAryPtr::BYTES;
3707 const TypeAryPtr *TypeAryPtr::SHORTS;
3708 const TypeAryPtr *TypeAryPtr::CHARS;
3709 const TypeAryPtr *TypeAryPtr::INTS;
3710 const TypeAryPtr *TypeAryPtr::LONGS;
3711 const TypeAryPtr *TypeAryPtr::FLOATS;
3712 const TypeAryPtr *TypeAryPtr::DOUBLES;
3713 
3714 //------------------------------make-------------------------------------------
3715 const TypeAryPtr *TypeAryPtr::make(PTR ptr, const TypeAry *ary, ciKlass* k, bool xk, int offset, int instance_id, const TypeOopPtr* speculative, int inline_depth) {
3716   assert(!(k == NULL && ary->_elem->isa_int()),
3717          "integral arrays must be pre-equipped with a class");
3718   if (!xk)  xk = ary->ary_must_be_exact();
3719   assert(instance_id <= 0 || xk || !UseExactTypes, "instances are always exactly typed");
3720   if (!UseExactTypes)  xk = (ptr == Constant);
3721   return (TypeAryPtr*)(new TypeAryPtr(ptr, NULL, ary, k, xk, offset, instance_id, false, speculative, inline_depth))->hashcons();
3722 }
3723 
3724 //------------------------------make-------------------------------------------
3725 const TypeAryPtr *TypeAryPtr::make(PTR ptr, ciObject* o, const TypeAry *ary, ciKlass* k, bool xk, int offset, int instance_id, const TypeOopPtr* speculative, int inline_depth, bool is_autobox_cache) {
3726   assert(!(k == NULL && ary->_elem->isa_int()),
3727          "integral arrays must be pre-equipped with a class");
3728   assert( (ptr==Constant && o) || (ptr!=Constant && !o), "" );
3729   if (!xk)  xk = (o != NULL) || ary->ary_must_be_exact();
3730   assert(instance_id <= 0 || xk || !UseExactTypes, "instances are always exactly typed");
3731   if (!UseExactTypes)  xk = (ptr == Constant);
3732   return (TypeAryPtr*)(new TypeAryPtr(ptr, o, ary, k, xk, offset, instance_id, is_autobox_cache, speculative, inline_depth))->hashcons();
3733 }
3734 
3735 //------------------------------cast_to_ptr_type-------------------------------
3736 const Type *TypeAryPtr::cast_to_ptr_type(PTR ptr) const {
3737   if( ptr == _ptr ) return this;
3738   return make(ptr, const_oop(), _ary, klass(), klass_is_exact(), _offset, _instance_id, _speculative, _inline_depth);
3739 }
3740 
3741 
3742 //-----------------------------cast_to_exactness-------------------------------
3743 const Type *TypeAryPtr::cast_to_exactness(bool klass_is_exact) const {
3744   if( klass_is_exact == _klass_is_exact ) return this;
3745   if (!UseExactTypes)  return this;
3746   if (_ary->ary_must_be_exact())  return this;  // cannot clear xk
3747   return make(ptr(), const_oop(), _ary, klass(), klass_is_exact, _offset, _instance_id, _speculative, _inline_depth);
3748 }
3749 
3750 //-----------------------------cast_to_instance_id----------------------------
3751 const TypeOopPtr *TypeAryPtr::cast_to_instance_id(int instance_id) const {
3752   if( instance_id == _instance_id ) return this;
3753   return make(_ptr, const_oop(), _ary, klass(), _klass_is_exact, _offset, instance_id, _speculative, _inline_depth);
3754 }
3755 
3756 //-----------------------------narrow_size_type-------------------------------
3757 // Local cache for arrayOopDesc::max_array_length(etype),
3758 // which is kind of slow (and cached elsewhere by other users).
3759 static jint max_array_length_cache[T_CONFLICT+1];
3760 static jint max_array_length(BasicType etype) {
3761   jint& cache = max_array_length_cache[etype];
3762   jint res = cache;
3763   if (res == 0) {
3764     switch (etype) {
3765     case T_NARROWOOP:
3766       etype = T_OBJECT;
3767       break;
3768     case T_NARROWKLASS:
3769     case T_CONFLICT:
3770     case T_ILLEGAL:
3771     case T_VOID:
3772       etype = T_BYTE;           // will produce conservatively high value
3773     }
3774     cache = res = arrayOopDesc::max_array_length(etype);
3775   }
3776   return res;
3777 }
3778 
3779 // Narrow the given size type to the index range for the given array base type.
3780 // Return NULL if the resulting int type becomes empty.
3781 const TypeInt* TypeAryPtr::narrow_size_type(const TypeInt* size) const {
3782   jint hi = size->_hi;
3783   jint lo = size->_lo;
3784   jint min_lo = 0;
3785   jint max_hi = max_array_length(elem()->basic_type());
3786   //if (index_not_size)  --max_hi;     // type of a valid array index, FTR
3787   bool chg = false;
3788   if (lo < min_lo) {
3789     lo = min_lo;
3790     if (size->is_con()) {
3791       hi = lo;
3792     }
3793     chg = true;
3794   }
3795   if (hi > max_hi) {
3796     hi = max_hi;
3797     if (size->is_con()) {
3798       lo = hi;
3799     }
3800     chg = true;
3801   }
3802   // Negative length arrays will produce weird intermediate dead fast-path code
3803   if (lo > hi)
3804     return TypeInt::ZERO;
3805   if (!chg)
3806     return size;
3807   return TypeInt::make(lo, hi, Type::WidenMin);
3808 }
3809 
3810 //-------------------------------cast_to_size----------------------------------
3811 const TypeAryPtr* TypeAryPtr::cast_to_size(const TypeInt* new_size) const {
3812   assert(new_size != NULL, "");
3813   new_size = narrow_size_type(new_size);
3814   if (new_size == size())  return this;
3815   const TypeAry* new_ary = TypeAry::make(elem(), new_size, is_stable());
3816   return make(ptr(), const_oop(), new_ary, klass(), klass_is_exact(), _offset, _instance_id, _speculative, _inline_depth);
3817 }
3818 
3819 
3820 //------------------------------cast_to_stable---------------------------------
3821 const TypeAryPtr* TypeAryPtr::cast_to_stable(bool stable, int stable_dimension) const {
3822   if (stable_dimension <= 0 || (stable_dimension == 1 && stable == this->is_stable()))
3823     return this;
3824 
3825   const Type* elem = this->elem();
3826   const TypePtr* elem_ptr = elem->make_ptr();
3827 
3828   if (stable_dimension > 1 && elem_ptr != NULL && elem_ptr->isa_aryptr()) {
3829     // If this is widened from a narrow oop, TypeAry::make will re-narrow it.
3830     elem = elem_ptr = elem_ptr->is_aryptr()->cast_to_stable(stable, stable_dimension - 1);
3831   }
3832 
3833   const TypeAry* new_ary = TypeAry::make(elem, size(), stable);
3834 
3835   return make(ptr(), const_oop(), new_ary, klass(), klass_is_exact(), _offset, _instance_id);
3836 }
3837 
3838 //-----------------------------stable_dimension--------------------------------
3839 int TypeAryPtr::stable_dimension() const {
3840   if (!is_stable())  return 0;
3841   int dim = 1;
3842   const TypePtr* elem_ptr = elem()->make_ptr();
3843   if (elem_ptr != NULL && elem_ptr->isa_aryptr())
3844     dim += elem_ptr->is_aryptr()->stable_dimension();
3845   return dim;
3846 }
3847 
3848 //------------------------------eq---------------------------------------------
3849 // Structural equality check for Type representations
3850 bool TypeAryPtr::eq( const Type *t ) const {
3851   const TypeAryPtr *p = t->is_aryptr();
3852   return
3853     _ary == p->_ary &&  // Check array
3854     TypeOopPtr::eq(p);  // Check sub-parts
3855 }
3856 
3857 //------------------------------hash-------------------------------------------
3858 // Type-specific hashing function.
3859 int TypeAryPtr::hash(void) const {
3860   return (intptr_t)_ary + TypeOopPtr::hash();
3861 }
3862 
3863 //------------------------------meet-------------------------------------------
3864 // Compute the MEET of two types.  It returns a new Type object.
3865 const Type *TypeAryPtr::xmeet_helper(const Type *t) const {
3866   // Perform a fast test for common case; meeting the same types together.
3867   if( this == t ) return this;  // Meeting same type-rep?
3868   // Current "this->_base" is Pointer
3869   switch (t->base()) {          // switch on original type
3870 
3871   // Mixing ints & oops happens when javac reuses local variables
3872   case Int:
3873   case Long:
3874   case FloatTop:
3875   case FloatCon:
3876   case FloatBot:
3877   case DoubleTop:
3878   case DoubleCon:
3879   case DoubleBot:
3880   case NarrowOop:
3881   case NarrowKlass:
3882   case Bottom:                  // Ye Olde Default
3883     return Type::BOTTOM;
3884   case Top:
3885     return this;
3886 
3887   default:                      // All else is a mistake
3888     typerr(t);
3889 
3890   case OopPtr: {                // Meeting to OopPtrs
3891     // Found a OopPtr type vs self-AryPtr type
3892     const TypeOopPtr *tp = t->is_oopptr();
3893     int offset = meet_offset(tp->offset());
3894     PTR ptr = meet_ptr(tp->ptr());
3895     int depth = meet_inline_depth(tp->inline_depth());
3896     switch (tp->ptr()) {
3897     case TopPTR:
3898     case AnyNull: {
3899       int instance_id = meet_instance_id(InstanceTop);
3900       const TypeOopPtr* speculative = xmeet_speculative(tp);
3901       return make(ptr, (ptr == Constant ? const_oop() : NULL),
3902                   _ary, _klass, _klass_is_exact, offset, instance_id, speculative, depth);
3903     }
3904     case BotPTR:
3905     case NotNull: {
3906       int instance_id = meet_instance_id(tp->instance_id());
3907       const TypeOopPtr* speculative = xmeet_speculative(tp);
3908       return TypeOopPtr::make(ptr, offset, instance_id, speculative, depth);
3909     }
3910     default: ShouldNotReachHere();
3911     }
3912   }
3913 
3914   case AnyPtr: {                // Meeting two AnyPtrs
3915     // Found an AnyPtr type vs self-AryPtr type
3916     const TypePtr *tp = t->is_ptr();
3917     int offset = meet_offset(tp->offset());
3918     PTR ptr = meet_ptr(tp->ptr());
3919     switch (tp->ptr()) {
3920     case TopPTR:
3921       return this;
3922     case BotPTR:
3923     case NotNull:
3924       return TypePtr::make(AnyPtr, ptr, offset);
3925     case Null:
3926       if( ptr == Null ) return TypePtr::make(AnyPtr, ptr, offset);
3927       // else fall through to AnyNull
3928     case AnyNull: {
3929       int instance_id = meet_instance_id(InstanceTop);
3930       const TypeOopPtr* speculative = _speculative;
3931       return make(ptr, (ptr == Constant ? const_oop() : NULL),
3932                   _ary, _klass, _klass_is_exact, offset, instance_id, speculative, _inline_depth);
3933     }
3934     default: ShouldNotReachHere();
3935     }
3936   }
3937 
3938   case MetadataPtr:
3939   case KlassPtr:
3940   case RawPtr: return TypePtr::BOTTOM;
3941 
3942   case AryPtr: {                // Meeting 2 references?
3943     const TypeAryPtr *tap = t->is_aryptr();
3944     int off = meet_offset(tap->offset());
3945     const TypeAry *tary = _ary->meet_speculative(tap->_ary)->is_ary();
3946     PTR ptr = meet_ptr(tap->ptr());
3947     int instance_id = meet_instance_id(tap->instance_id());
3948     const TypeOopPtr* speculative = xmeet_speculative(tap);
3949     int depth = meet_inline_depth(tap->inline_depth());
3950     ciKlass* lazy_klass = NULL;
3951     if (tary->_elem->isa_int()) {
3952       // Integral array element types have irrelevant lattice relations.
3953       // It is the klass that determines array layout, not the element type.
3954       if (_klass == NULL)
3955         lazy_klass = tap->_klass;
3956       else if (tap->_klass == NULL || tap->_klass == _klass) {
3957         lazy_klass = _klass;
3958       } else {
3959         // Something like byte[int+] meets char[int+].
3960         // This must fall to bottom, not (int[-128..65535])[int+].
3961         instance_id = InstanceBot;
3962         tary = TypeAry::make(Type::BOTTOM, tary->_size, tary->_stable);
3963       }
3964     } else // Non integral arrays.
3965       // Must fall to bottom if exact klasses in upper lattice
3966       // are not equal or super klass is exact.
3967       if ((above_centerline(ptr) || ptr == Constant) && klass() != tap->klass() &&
3968           // meet with top[] and bottom[] are processed further down:
3969           tap->_klass != NULL  && this->_klass != NULL   &&
3970           // both are exact and not equal:
3971           ((tap->_klass_is_exact && this->_klass_is_exact) ||
3972            // 'tap'  is exact and super or unrelated:
3973            (tap->_klass_is_exact && !tap->klass()->is_subtype_of(klass())) ||
3974            // 'this' is exact and super or unrelated:
3975            (this->_klass_is_exact && !klass()->is_subtype_of(tap->klass())))) {
3976       if (above_centerline(ptr)) {
3977         tary = TypeAry::make(Type::BOTTOM, tary->_size, tary->_stable);
3978       }
3979       return make(NotNull, NULL, tary, lazy_klass, false, off, InstanceBot);
3980     }
3981 
3982     bool xk = false;
3983     switch (tap->ptr()) {
3984     case AnyNull:
3985     case TopPTR:
3986       // Compute new klass on demand, do not use tap->_klass
3987       if (below_centerline(this->_ptr)) {
3988         xk = this->_klass_is_exact;
3989       } else {
3990         xk = (tap->_klass_is_exact | this->_klass_is_exact);
3991       }
3992       return make(ptr, const_oop(), tary, lazy_klass, xk, off, instance_id, speculative, depth);
3993     case Constant: {
3994       ciObject* o = const_oop();
3995       if( _ptr == Constant ) {
3996         if( tap->const_oop() != NULL && !o->equals(tap->const_oop()) ) {
3997           xk = (klass() == tap->klass());
3998           ptr = NotNull;
3999           o = NULL;
4000           instance_id = InstanceBot;
4001         } else {
4002           xk = true;
4003         }
4004       } else if(above_centerline(_ptr)) {
4005         o = tap->const_oop();
4006         xk = true;
4007       } else {
4008         // Only precise for identical arrays
4009         xk = this->_klass_is_exact && (klass() == tap->klass());
4010       }
4011       return TypeAryPtr::make(ptr, o, tary, lazy_klass, xk, off, instance_id, speculative, depth);
4012     }
4013     case NotNull:
4014     case BotPTR:
4015       // Compute new klass on demand, do not use tap->_klass
4016       if (above_centerline(this->_ptr))
4017             xk = tap->_klass_is_exact;
4018       else  xk = (tap->_klass_is_exact & this->_klass_is_exact) &&
4019               (klass() == tap->klass()); // Only precise for identical arrays
4020       return TypeAryPtr::make(ptr, NULL, tary, lazy_klass, xk, off, instance_id, speculative, depth);
4021     default: ShouldNotReachHere();
4022     }
4023   }
4024 
4025   // All arrays inherit from Object class
4026   case InstPtr: {
4027     const TypeInstPtr *tp = t->is_instptr();
4028     int offset = meet_offset(tp->offset());
4029     PTR ptr = meet_ptr(tp->ptr());
4030     int instance_id = meet_instance_id(tp->instance_id());
4031     const TypeOopPtr* speculative = xmeet_speculative(tp);
4032     int depth = meet_inline_depth(tp->inline_depth());
4033     switch (ptr) {
4034     case TopPTR:
4035     case AnyNull:                // Fall 'down' to dual of object klass
4036       // For instances when a subclass meets a superclass we fall
4037       // below the centerline when the superclass is exact. We need to
4038       // do the same here.
4039       if (tp->klass()->equals(ciEnv::current()->Object_klass()) && !tp->klass_is_exact()) {
4040         return TypeAryPtr::make(ptr, _ary, _klass, _klass_is_exact, offset, instance_id, speculative, depth);
4041       } else {
4042         // cannot subclass, so the meet has to fall badly below the centerline
4043         ptr = NotNull;
4044         instance_id = InstanceBot;
4045         return TypeInstPtr::make(ptr, ciEnv::current()->Object_klass(), false, NULL,offset, instance_id, speculative, depth);
4046       }
4047     case Constant:
4048     case NotNull:
4049     case BotPTR:                // Fall down to object klass
4050       // LCA is object_klass, but if we subclass from the top we can do better
4051       if (above_centerline(tp->ptr())) {
4052         // If 'tp'  is above the centerline and it is Object class
4053         // then we can subclass in the Java class hierarchy.
4054         // For instances when a subclass meets a superclass we fall
4055         // below the centerline when the superclass is exact. We need
4056         // to do the same here.
4057         if (tp->klass()->equals(ciEnv::current()->Object_klass()) && !tp->klass_is_exact()) {
4058           // that is, my array type is a subtype of 'tp' klass
4059           return make(ptr, (ptr == Constant ? const_oop() : NULL),
4060                       _ary, _klass, _klass_is_exact, offset, instance_id, speculative, depth);
4061         }
4062       }
4063       // The other case cannot happen, since t cannot be a subtype of an array.
4064       // The meet falls down to Object class below centerline.
4065       if( ptr == Constant )
4066          ptr = NotNull;
4067       instance_id = InstanceBot;
4068       return TypeInstPtr::make(ptr, ciEnv::current()->Object_klass(), false, NULL,offset, instance_id, speculative, depth);
4069     default: typerr(t);
4070     }
4071   }
4072   }
4073   return this;                  // Lint noise
4074 }
4075 
4076 //------------------------------xdual------------------------------------------
4077 // Dual: compute field-by-field dual
4078 const Type *TypeAryPtr::xdual() const {
4079   return new TypeAryPtr(dual_ptr(), _const_oop, _ary->dual()->is_ary(),_klass, _klass_is_exact, dual_offset(), dual_instance_id(), is_autobox_cache(), dual_speculative(), dual_inline_depth());
4080 }
4081 
4082 //----------------------interface_vs_oop---------------------------------------
4083 #ifdef ASSERT
4084 bool TypeAryPtr::interface_vs_oop(const Type *t) const {
4085   const TypeAryPtr* t_aryptr = t->isa_aryptr();
4086   if (t_aryptr) {
4087     return _ary->interface_vs_oop(t_aryptr->_ary);
4088   }
4089   return false;
4090 }
4091 #endif
4092 
4093 //------------------------------dump2------------------------------------------
4094 #ifndef PRODUCT
4095 void TypeAryPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
4096   _ary->dump2(d,depth,st);
4097   switch( _ptr ) {
4098   case Constant:
4099     const_oop()->print(st);
4100     break;
4101   case BotPTR:
4102     if (!WizardMode && !Verbose) {
4103       if( _klass_is_exact ) st->print(":exact");
4104       break;
4105     }
4106   case TopPTR:
4107   case AnyNull:
4108   case NotNull:
4109     st->print(":%s", ptr_msg[_ptr]);
4110     if( _klass_is_exact ) st->print(":exact");
4111     break;
4112   }
4113 
4114   if( _offset != 0 ) {
4115     int header_size = objArrayOopDesc::header_size() * wordSize;
4116     if( _offset == OffsetTop )       st->print("+undefined");
4117     else if( _offset == OffsetBot )  st->print("+any");
4118     else if( _offset < header_size ) st->print("+%d", _offset);
4119     else {
4120       BasicType basic_elem_type = elem()->basic_type();
4121       int array_base = arrayOopDesc::base_offset_in_bytes(basic_elem_type);
4122       int elem_size = type2aelembytes(basic_elem_type);
4123       st->print("[%d]", (_offset - array_base)/elem_size);
4124     }
4125   }
4126   st->print(" *");
4127   if (_instance_id == InstanceTop)
4128     st->print(",iid=top");
4129   else if (_instance_id != InstanceBot)
4130     st->print(",iid=%d",_instance_id);
4131 
4132   dump_inline_depth(st);
4133   dump_speculative(st);
4134 }
4135 #endif
4136 
4137 bool TypeAryPtr::empty(void) const {
4138   if (_ary->empty())       return true;
4139   return TypeOopPtr::empty();
4140 }
4141 
4142 //------------------------------add_offset-------------------------------------
4143 const TypePtr *TypeAryPtr::add_offset(intptr_t offset) const {
4144   return make(_ptr, _const_oop, _ary, _klass, _klass_is_exact, xadd_offset(offset), _instance_id, add_offset_speculative(offset), _inline_depth);
4145 }
4146 
4147 const Type *TypeAryPtr::remove_speculative() const {
4148   if (_speculative == NULL) {
4149     return this;
4150   }
4151   assert(_inline_depth == InlineDepthTop || _inline_depth == InlineDepthBottom, "non speculative type shouldn't have inline depth");
4152   return make(_ptr, _const_oop, _ary->remove_speculative()->is_ary(), _klass, _klass_is_exact, _offset, _instance_id, NULL, _inline_depth);
4153 }
4154 
4155 const TypeOopPtr *TypeAryPtr::with_inline_depth(int depth) const {
4156   if (!UseInlineDepthForSpeculativeTypes) {
4157     return this;
4158   }
4159   return make(_ptr, _const_oop, _ary->remove_speculative()->is_ary(), _klass, _klass_is_exact, _offset, _instance_id, _speculative, depth);
4160 }
4161 
4162 //=============================================================================
4163 
4164 //------------------------------hash-------------------------------------------
4165 // Type-specific hashing function.
4166 int TypeNarrowPtr::hash(void) const {
4167   return _ptrtype->hash() + 7;
4168 }
4169 
4170 bool TypeNarrowPtr::singleton(void) const {    // TRUE if type is a singleton
4171   return _ptrtype->singleton();
4172 }
4173 
4174 bool TypeNarrowPtr::empty(void) const {
4175   return _ptrtype->empty();
4176 }
4177 
4178 intptr_t TypeNarrowPtr::get_con() const {
4179   return _ptrtype->get_con();
4180 }
4181 
4182 bool TypeNarrowPtr::eq( const Type *t ) const {
4183   const TypeNarrowPtr* tc = isa_same_narrowptr(t);
4184   if (tc != NULL) {
4185     if (_ptrtype->base() != tc->_ptrtype->base()) {
4186       return false;
4187     }
4188     return tc->_ptrtype->eq(_ptrtype);
4189   }
4190   return false;
4191 }
4192 
4193 const Type *TypeNarrowPtr::xdual() const {    // Compute dual right now.
4194   const TypePtr* odual = _ptrtype->dual()->is_ptr();
4195   return make_same_narrowptr(odual);
4196 }
4197 
4198 
4199 const Type *TypeNarrowPtr::filter_helper(const Type *kills, bool include_speculative) const {
4200   if (isa_same_narrowptr(kills)) {
4201     const Type* ft =_ptrtype->filter_helper(is_same_narrowptr(kills)->_ptrtype, include_speculative);
4202     if (ft->empty())
4203       return Type::TOP;           // Canonical empty value
4204     if (ft->isa_ptr()) {
4205       return make_hash_same_narrowptr(ft->isa_ptr());
4206     }
4207     return ft;
4208   } else if (kills->isa_ptr()) {
4209     const Type* ft = _ptrtype->join_helper(kills, include_speculative);
4210     if (ft->empty())
4211       return Type::TOP;           // Canonical empty value
4212     return ft;
4213   } else {
4214     return Type::TOP;
4215   }
4216 }
4217 
4218 //------------------------------xmeet------------------------------------------
4219 // Compute the MEET of two types.  It returns a new Type object.
4220 const Type *TypeNarrowPtr::xmeet( const Type *t ) const {
4221   // Perform a fast test for common case; meeting the same types together.
4222   if( this == t ) return this;  // Meeting same type-rep?
4223 
4224   if (t->base() == base()) {
4225     const Type* result = _ptrtype->xmeet(t->make_ptr());
4226     if (result->isa_ptr()) {
4227       return make_hash_same_narrowptr(result->is_ptr());
4228     }
4229     return result;
4230   }
4231 
4232   // Current "this->_base" is NarrowKlass or NarrowOop
4233   switch (t->base()) {          // switch on original type
4234 
4235   case Int:                     // Mixing ints & oops happens when javac
4236   case Long:                    // reuses local variables
4237   case FloatTop:
4238   case FloatCon:
4239   case FloatBot:
4240   case DoubleTop:
4241   case DoubleCon:
4242   case DoubleBot:
4243   case AnyPtr:
4244   case RawPtr:
4245   case OopPtr:
4246   case InstPtr:
4247   case AryPtr:
4248   case MetadataPtr:
4249   case KlassPtr:
4250   case NarrowOop:
4251   case NarrowKlass:
4252 
4253   case Bottom:                  // Ye Olde Default
4254     return Type::BOTTOM;
4255   case Top:
4256     return this;
4257 
4258   default:                      // All else is a mistake
4259     typerr(t);
4260 
4261   } // End of switch
4262 
4263   return this;
4264 }
4265 
4266 #ifndef PRODUCT
4267 void TypeNarrowPtr::dump2( Dict & d, uint depth, outputStream *st ) const {
4268   _ptrtype->dump2(d, depth, st);
4269 }
4270 #endif
4271 
4272 const TypeNarrowOop *TypeNarrowOop::BOTTOM;
4273 const TypeNarrowOop *TypeNarrowOop::NULL_PTR;
4274 
4275 
4276 const TypeNarrowOop* TypeNarrowOop::make(const TypePtr* type) {
4277   return (const TypeNarrowOop*)(new TypeNarrowOop(type))->hashcons();
4278 }
4279 
4280 
4281 #ifndef PRODUCT
4282 void TypeNarrowOop::dump2( Dict & d, uint depth, outputStream *st ) const {
4283   st->print("narrowoop: ");
4284   TypeNarrowPtr::dump2(d, depth, st);
4285 }
4286 #endif
4287 
4288 const TypeNarrowKlass *TypeNarrowKlass::NULL_PTR;
4289 
4290 const TypeNarrowKlass* TypeNarrowKlass::make(const TypePtr* type) {
4291   return (const TypeNarrowKlass*)(new TypeNarrowKlass(type))->hashcons();
4292 }
4293 
4294 #ifndef PRODUCT
4295 void TypeNarrowKlass::dump2( Dict & d, uint depth, outputStream *st ) const {
4296   st->print("narrowklass: ");
4297   TypeNarrowPtr::dump2(d, depth, st);
4298 }
4299 #endif
4300 
4301 
4302 //------------------------------eq---------------------------------------------
4303 // Structural equality check for Type representations
4304 bool TypeMetadataPtr::eq( const Type *t ) const {
4305   const TypeMetadataPtr *a = (const TypeMetadataPtr*)t;
4306   ciMetadata* one = metadata();
4307   ciMetadata* two = a->metadata();
4308   if (one == NULL || two == NULL) {
4309     return (one == two) && TypePtr::eq(t);
4310   } else {
4311     return one->equals(two) && TypePtr::eq(t);
4312   }
4313 }
4314 
4315 //------------------------------hash-------------------------------------------
4316 // Type-specific hashing function.
4317 int TypeMetadataPtr::hash(void) const {
4318   return
4319     (metadata() ? metadata()->hash() : 0) +
4320     TypePtr::hash();
4321 }
4322 
4323 //------------------------------singleton--------------------------------------
4324 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
4325 // constants
4326 bool TypeMetadataPtr::singleton(void) const {
4327   // detune optimizer to not generate constant metadta + constant offset as a constant!
4328   // TopPTR, Null, AnyNull, Constant are all singletons
4329   return (_offset == 0) && !below_centerline(_ptr);
4330 }
4331 
4332 //------------------------------add_offset-------------------------------------
4333 const TypePtr *TypeMetadataPtr::add_offset( intptr_t offset ) const {
4334   return make( _ptr, _metadata, xadd_offset(offset));
4335 }
4336 
4337 //-----------------------------filter------------------------------------------
4338 // Do not allow interface-vs.-noninterface joins to collapse to top.
4339 const Type *TypeMetadataPtr::filter_helper(const Type *kills, bool include_speculative) const {
4340   const TypeMetadataPtr* ft = join_helper(kills, include_speculative)->isa_metadataptr();
4341   if (ft == NULL || ft->empty())
4342     return Type::TOP;           // Canonical empty value
4343   return ft;
4344 }
4345 
4346  //------------------------------get_con----------------------------------------
4347 intptr_t TypeMetadataPtr::get_con() const {
4348   assert( _ptr == Null || _ptr == Constant, "" );
4349   assert( _offset >= 0, "" );
4350 
4351   if (_offset != 0) {
4352     // After being ported to the compiler interface, the compiler no longer
4353     // directly manipulates the addresses of oops.  Rather, it only has a pointer
4354     // to a handle at compile time.  This handle is embedded in the generated
4355     // code and dereferenced at the time the nmethod is made.  Until that time,
4356     // it is not reasonable to do arithmetic with the addresses of oops (we don't
4357     // have access to the addresses!).  This does not seem to currently happen,
4358     // but this assertion here is to help prevent its occurence.
4359     tty->print_cr("Found oop constant with non-zero offset");
4360     ShouldNotReachHere();
4361   }
4362 
4363   return (intptr_t)metadata()->constant_encoding();
4364 }
4365 
4366 //------------------------------cast_to_ptr_type-------------------------------
4367 const Type *TypeMetadataPtr::cast_to_ptr_type(PTR ptr) const {
4368   if( ptr == _ptr ) return this;
4369   return make(ptr, metadata(), _offset);
4370 }
4371 
4372 //------------------------------meet-------------------------------------------
4373 // Compute the MEET of two types.  It returns a new Type object.
4374 const Type *TypeMetadataPtr::xmeet( const Type *t ) const {
4375   // Perform a fast test for common case; meeting the same types together.
4376   if( this == t ) return this;  // Meeting same type-rep?
4377 
4378   // Current "this->_base" is OopPtr
4379   switch (t->base()) {          // switch on original type
4380 
4381   case Int:                     // Mixing ints & oops happens when javac
4382   case Long:                    // reuses local variables
4383   case FloatTop:
4384   case FloatCon:
4385   case FloatBot:
4386   case DoubleTop:
4387   case DoubleCon:
4388   case DoubleBot:
4389   case NarrowOop:
4390   case NarrowKlass:
4391   case Bottom:                  // Ye Olde Default
4392     return Type::BOTTOM;
4393   case Top:
4394     return this;
4395 
4396   default:                      // All else is a mistake
4397     typerr(t);
4398 
4399   case AnyPtr: {
4400     // Found an AnyPtr type vs self-OopPtr type
4401     const TypePtr *tp = t->is_ptr();
4402     int offset = meet_offset(tp->offset());
4403     PTR ptr = meet_ptr(tp->ptr());
4404     switch (tp->ptr()) {
4405     case Null:
4406       if (ptr == Null)  return TypePtr::make(AnyPtr, ptr, offset);
4407       // else fall through:
4408     case TopPTR:
4409     case AnyNull: {
4410       return make(ptr, _metadata, offset);
4411     }
4412     case BotPTR:
4413     case NotNull:
4414       return TypePtr::make(AnyPtr, ptr, offset);
4415     default: typerr(t);
4416     }
4417   }
4418 
4419   case RawPtr:
4420   case KlassPtr:
4421   case OopPtr:
4422   case InstPtr:
4423   case AryPtr:
4424     return TypePtr::BOTTOM;     // Oop meet raw is not well defined
4425 
4426   case MetadataPtr: {
4427     const TypeMetadataPtr *tp = t->is_metadataptr();
4428     int offset = meet_offset(tp->offset());
4429     PTR tptr = tp->ptr();
4430     PTR ptr = meet_ptr(tptr);
4431     ciMetadata* md = (tptr == TopPTR) ? metadata() : tp->metadata();
4432     if (tptr == TopPTR || _ptr == TopPTR ||
4433         metadata()->equals(tp->metadata())) {
4434       return make(ptr, md, offset);
4435     }
4436     // metadata is different
4437     if( ptr == Constant ) {  // Cannot be equal constants, so...
4438       if( tptr == Constant && _ptr != Constant)  return t;
4439       if( _ptr == Constant && tptr != Constant)  return this;
4440       ptr = NotNull;            // Fall down in lattice
4441     }
4442     return make(ptr, NULL, offset);
4443     break;
4444   }
4445   } // End of switch
4446   return this;                  // Return the double constant
4447 }
4448 
4449 
4450 //------------------------------xdual------------------------------------------
4451 // Dual of a pure metadata pointer.
4452 const Type *TypeMetadataPtr::xdual() const {
4453   return new TypeMetadataPtr(dual_ptr(), metadata(), dual_offset());
4454 }
4455 
4456 //------------------------------dump2------------------------------------------
4457 #ifndef PRODUCT
4458 void TypeMetadataPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
4459   st->print("metadataptr:%s", ptr_msg[_ptr]);
4460   if( metadata() ) st->print(INTPTR_FORMAT, metadata());
4461   switch( _offset ) {
4462   case OffsetTop: st->print("+top"); break;
4463   case OffsetBot: st->print("+any"); break;
4464   case         0: break;
4465   default:        st->print("+%d",_offset); break;
4466   }
4467 }
4468 #endif
4469 
4470 
4471 //=============================================================================
4472 // Convenience common pre-built type.
4473 const TypeMetadataPtr *TypeMetadataPtr::BOTTOM;
4474 
4475 TypeMetadataPtr::TypeMetadataPtr(PTR ptr, ciMetadata* metadata, int offset):
4476   TypePtr(MetadataPtr, ptr, offset), _metadata(metadata) {
4477 }
4478 
4479 const TypeMetadataPtr* TypeMetadataPtr::make(ciMethod* m) {
4480   return make(Constant, m, 0);
4481 }
4482 const TypeMetadataPtr* TypeMetadataPtr::make(ciMethodData* m) {
4483   return make(Constant, m, 0);
4484 }
4485 
4486 //------------------------------make-------------------------------------------
4487 // Create a meta data constant
4488 const TypeMetadataPtr *TypeMetadataPtr::make(PTR ptr, ciMetadata* m, int offset) {
4489   assert(m == NULL || !m->is_klass(), "wrong type");
4490   return (TypeMetadataPtr*)(new TypeMetadataPtr(ptr, m, offset))->hashcons();
4491 }
4492 
4493 
4494 //=============================================================================
4495 // Convenience common pre-built types.
4496 
4497 // Not-null object klass or below
4498 const TypeKlassPtr *TypeKlassPtr::OBJECT;
4499 const TypeKlassPtr *TypeKlassPtr::OBJECT_OR_NULL;
4500 
4501 //------------------------------TypeKlassPtr-----------------------------------
4502 TypeKlassPtr::TypeKlassPtr( PTR ptr, ciKlass* klass, int offset )
4503   : TypePtr(KlassPtr, ptr, offset), _klass(klass), _klass_is_exact(ptr == Constant) {
4504 }
4505 
4506 //------------------------------make-------------------------------------------
4507 // ptr to klass 'k', if Constant, or possibly to a sub-klass if not a Constant
4508 const TypeKlassPtr *TypeKlassPtr::make( PTR ptr, ciKlass* k, int offset ) {
4509   assert( k != NULL, "Expect a non-NULL klass");
4510   assert(k->is_instance_klass() || k->is_array_klass(), "Incorrect type of klass oop");
4511   TypeKlassPtr *r =
4512     (TypeKlassPtr*)(new TypeKlassPtr(ptr, k, offset))->hashcons();
4513 
4514   return r;
4515 }
4516 
4517 //------------------------------eq---------------------------------------------
4518 // Structural equality check for Type representations
4519 bool TypeKlassPtr::eq( const Type *t ) const {
4520   const TypeKlassPtr *p = t->is_klassptr();
4521   return
4522     klass()->equals(p->klass()) &&
4523     TypePtr::eq(p);
4524 }
4525 
4526 //------------------------------hash-------------------------------------------
4527 // Type-specific hashing function.
4528 int TypeKlassPtr::hash(void) const {
4529   return java_add(klass()->hash(), TypePtr::hash());
4530 }
4531 
4532 //------------------------------singleton--------------------------------------
4533 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
4534 // constants
4535 bool TypeKlassPtr::singleton(void) const {
4536   // detune optimizer to not generate constant klass + constant offset as a constant!
4537   // TopPTR, Null, AnyNull, Constant are all singletons
4538   return (_offset == 0) && !below_centerline(_ptr);
4539 }
4540 
4541 // Do not allow interface-vs.-noninterface joins to collapse to top.
4542 const Type *TypeKlassPtr::filter_helper(const Type *kills, bool include_speculative) const {
4543   // logic here mirrors the one from TypeOopPtr::filter. See comments
4544   // there.
4545   const Type* ft = join_helper(kills, include_speculative);
4546   const TypeKlassPtr* ftkp = ft->isa_klassptr();
4547   const TypeKlassPtr* ktkp = kills->isa_klassptr();
4548 
4549   if (ft->empty()) {
4550     if (!empty() && ktkp != NULL && ktkp->klass()->is_loaded() && ktkp->klass()->is_interface())
4551       return kills;             // Uplift to interface
4552 
4553     return Type::TOP;           // Canonical empty value
4554   }
4555 
4556   // Interface klass type could be exact in opposite to interface type,
4557   // return it here instead of incorrect Constant ptr J/L/Object (6894807).
4558   if (ftkp != NULL && ktkp != NULL &&
4559       ftkp->is_loaded() &&  ftkp->klass()->is_interface() &&
4560       !ftkp->klass_is_exact() && // Keep exact interface klass
4561       ktkp->is_loaded() && !ktkp->klass()->is_interface()) {
4562     return ktkp->cast_to_ptr_type(ftkp->ptr());
4563   }
4564 
4565   return ft;
4566 }
4567 
4568 //----------------------compute_klass------------------------------------------
4569 // Compute the defining klass for this class
4570 ciKlass* TypeAryPtr::compute_klass(DEBUG_ONLY(bool verify)) const {
4571   // Compute _klass based on element type.
4572   ciKlass* k_ary = NULL;
4573   const TypeInstPtr *tinst;
4574   const TypeAryPtr *tary;
4575   const Type* el = elem();
4576   if (el->isa_narrowoop()) {
4577     el = el->make_ptr();
4578   }
4579 
4580   // Get element klass
4581   if ((tinst = el->isa_instptr()) != NULL) {
4582     // Compute array klass from element klass
4583     k_ary = ciObjArrayKlass::make(tinst->klass());
4584   } else if ((tary = el->isa_aryptr()) != NULL) {
4585     // Compute array klass from element klass
4586     ciKlass* k_elem = tary->klass();
4587     // If element type is something like bottom[], k_elem will be null.
4588     if (k_elem != NULL)
4589       k_ary = ciObjArrayKlass::make(k_elem);
4590   } else if ((el->base() == Type::Top) ||
4591              (el->base() == Type::Bottom)) {
4592     // element type of Bottom occurs from meet of basic type
4593     // and object; Top occurs when doing join on Bottom.
4594     // Leave k_ary at NULL.
4595   } else {
4596     // Cannot compute array klass directly from basic type,
4597     // since subtypes of TypeInt all have basic type T_INT.
4598 #ifdef ASSERT
4599     if (verify && el->isa_int()) {
4600       // Check simple cases when verifying klass.
4601       BasicType bt = T_ILLEGAL;
4602       if (el == TypeInt::BYTE) {
4603         bt = T_BYTE;
4604       } else if (el == TypeInt::SHORT) {
4605         bt = T_SHORT;
4606       } else if (el == TypeInt::CHAR) {
4607         bt = T_CHAR;
4608       } else if (el == TypeInt::INT) {
4609         bt = T_INT;
4610       } else {
4611         return _klass; // just return specified klass
4612       }
4613       return ciTypeArrayKlass::make(bt);
4614     }
4615 #endif
4616     assert(!el->isa_int(),
4617            "integral arrays must be pre-equipped with a class");
4618     // Compute array klass directly from basic type
4619     k_ary = ciTypeArrayKlass::make(el->basic_type());
4620   }
4621   return k_ary;
4622 }
4623 
4624 //------------------------------klass------------------------------------------
4625 // Return the defining klass for this class
4626 ciKlass* TypeAryPtr::klass() const {
4627   if( _klass ) return _klass;   // Return cached value, if possible
4628 
4629   // Oops, need to compute _klass and cache it
4630   ciKlass* k_ary = compute_klass();
4631 
4632   if( this != TypeAryPtr::OOPS && this->dual() != TypeAryPtr::OOPS ) {
4633     // The _klass field acts as a cache of the underlying
4634     // ciKlass for this array type.  In order to set the field,
4635     // we need to cast away const-ness.
4636     //
4637     // IMPORTANT NOTE: we *never* set the _klass field for the
4638     // type TypeAryPtr::OOPS.  This Type is shared between all
4639     // active compilations.  However, the ciKlass which represents
4640     // this Type is *not* shared between compilations, so caching
4641     // this value would result in fetching a dangling pointer.
4642     //
4643     // Recomputing the underlying ciKlass for each request is
4644     // a bit less efficient than caching, but calls to
4645     // TypeAryPtr::OOPS->klass() are not common enough to matter.
4646     ((TypeAryPtr*)this)->_klass = k_ary;
4647     if (UseCompressedOops && k_ary != NULL && k_ary->is_obj_array_klass() &&
4648         _offset != 0 && _offset != arrayOopDesc::length_offset_in_bytes()) {
4649       ((TypeAryPtr*)this)->_is_ptr_to_narrowoop = true;
4650     }
4651   }
4652   return k_ary;
4653 }
4654 
4655 
4656 //------------------------------add_offset-------------------------------------
4657 // Access internals of klass object
4658 const TypePtr *TypeKlassPtr::add_offset( intptr_t offset ) const {
4659   return make( _ptr, klass(), xadd_offset(offset) );
4660 }
4661 
4662 //------------------------------cast_to_ptr_type-------------------------------
4663 const Type *TypeKlassPtr::cast_to_ptr_type(PTR ptr) const {
4664   assert(_base == KlassPtr, "subclass must override cast_to_ptr_type");
4665   if( ptr == _ptr ) return this;
4666   return make(ptr, _klass, _offset);
4667 }
4668 
4669 
4670 //-----------------------------cast_to_exactness-------------------------------
4671 const Type *TypeKlassPtr::cast_to_exactness(bool klass_is_exact) const {
4672   if( klass_is_exact == _klass_is_exact ) return this;
4673   if (!UseExactTypes)  return this;
4674   return make(klass_is_exact ? Constant : NotNull, _klass, _offset);
4675 }
4676 
4677 
4678 //-----------------------------as_instance_type--------------------------------
4679 // Corresponding type for an instance of the given class.
4680 // It will be NotNull, and exact if and only if the klass type is exact.
4681 const TypeOopPtr* TypeKlassPtr::as_instance_type() const {
4682   ciKlass* k = klass();
4683   bool    xk = klass_is_exact();
4684   //return TypeInstPtr::make(TypePtr::NotNull, k, xk, NULL, 0);
4685   const TypeOopPtr* toop = TypeOopPtr::make_from_klass_raw(k);
4686   guarantee(toop != NULL, "need type for given klass");
4687   toop = toop->cast_to_ptr_type(TypePtr::NotNull)->is_oopptr();
4688   return toop->cast_to_exactness(xk)->is_oopptr();
4689 }
4690 
4691 
4692 //------------------------------xmeet------------------------------------------
4693 // Compute the MEET of two types, return a new Type object.
4694 const Type    *TypeKlassPtr::xmeet( const Type *t ) const {
4695   // Perform a fast test for common case; meeting the same types together.
4696   if( this == t ) return this;  // Meeting same type-rep?
4697 
4698   // Current "this->_base" is Pointer
4699   switch (t->base()) {          // switch on original type
4700 
4701   case Int:                     // Mixing ints & oops happens when javac
4702   case Long:                    // reuses local variables
4703   case FloatTop:
4704   case FloatCon:
4705   case FloatBot:
4706   case DoubleTop:
4707   case DoubleCon:
4708   case DoubleBot:
4709   case NarrowOop:
4710   case NarrowKlass:
4711   case Bottom:                  // Ye Olde Default
4712     return Type::BOTTOM;
4713   case Top:
4714     return this;
4715 
4716   default:                      // All else is a mistake
4717     typerr(t);
4718 
4719   case AnyPtr: {                // Meeting to AnyPtrs
4720     // Found an AnyPtr type vs self-KlassPtr type
4721     const TypePtr *tp = t->is_ptr();
4722     int offset = meet_offset(tp->offset());
4723     PTR ptr = meet_ptr(tp->ptr());
4724     switch (tp->ptr()) {
4725     case TopPTR:
4726       return this;
4727     case Null:
4728       if( ptr == Null ) return TypePtr::make( AnyPtr, ptr, offset );
4729     case AnyNull:
4730       return make( ptr, klass(), offset );
4731     case BotPTR:
4732     case NotNull:
4733       return TypePtr::make(AnyPtr, ptr, offset);
4734     default: typerr(t);
4735     }
4736   }
4737 
4738   case RawPtr:
4739   case MetadataPtr:
4740   case OopPtr:
4741   case AryPtr:                  // Meet with AryPtr
4742   case InstPtr:                 // Meet with InstPtr
4743     return TypePtr::BOTTOM;
4744 
4745   //
4746   //             A-top         }
4747   //           /   |   \       }  Tops
4748   //       B-top A-any C-top   }
4749   //          | /  |  \ |      }  Any-nulls
4750   //       B-any   |   C-any   }
4751   //          |    |    |
4752   //       B-con A-con C-con   } constants; not comparable across classes
4753   //          |    |    |
4754   //       B-not   |   C-not   }
4755   //          | \  |  / |      }  not-nulls
4756   //       B-bot A-not C-bot   }
4757   //           \   |   /       }  Bottoms
4758   //             A-bot         }
4759   //
4760 
4761   case KlassPtr: {  // Meet two KlassPtr types
4762     const TypeKlassPtr *tkls = t->is_klassptr();
4763     int  off     = meet_offset(tkls->offset());
4764     PTR  ptr     = meet_ptr(tkls->ptr());
4765 
4766     // Check for easy case; klasses are equal (and perhaps not loaded!)
4767     // If we have constants, then we created oops so classes are loaded
4768     // and we can handle the constants further down.  This case handles
4769     // not-loaded classes
4770     if( ptr != Constant && tkls->klass()->equals(klass()) ) {
4771       return make( ptr, klass(), off );
4772     }
4773 
4774     // Classes require inspection in the Java klass hierarchy.  Must be loaded.
4775     ciKlass* tkls_klass = tkls->klass();
4776     ciKlass* this_klass = this->klass();
4777     assert( tkls_klass->is_loaded(), "This class should have been loaded.");
4778     assert( this_klass->is_loaded(), "This class should have been loaded.");
4779 
4780     // If 'this' type is above the centerline and is a superclass of the
4781     // other, we can treat 'this' as having the same type as the other.
4782     if ((above_centerline(this->ptr())) &&
4783         tkls_klass->is_subtype_of(this_klass)) {
4784       this_klass = tkls_klass;
4785     }
4786     // If 'tinst' type is above the centerline and is a superclass of the
4787     // other, we can treat 'tinst' as having the same type as the other.
4788     if ((above_centerline(tkls->ptr())) &&
4789         this_klass->is_subtype_of(tkls_klass)) {
4790       tkls_klass = this_klass;
4791     }
4792 
4793     // Check for classes now being equal
4794     if (tkls_klass->equals(this_klass)) {
4795       // If the klasses are equal, the constants may still differ.  Fall to
4796       // NotNull if they do (neither constant is NULL; that is a special case
4797       // handled elsewhere).
4798       if( ptr == Constant ) {
4799         if (this->_ptr == Constant && tkls->_ptr == Constant &&
4800             this->klass()->equals(tkls->klass()));
4801         else if (above_centerline(this->ptr()));
4802         else if (above_centerline(tkls->ptr()));
4803         else
4804           ptr = NotNull;
4805       }
4806       return make( ptr, this_klass, off );
4807     } // Else classes are not equal
4808 
4809     // Since klasses are different, we require the LCA in the Java
4810     // class hierarchy - which means we have to fall to at least NotNull.
4811     if( ptr == TopPTR || ptr == AnyNull || ptr == Constant )
4812       ptr = NotNull;
4813     // Now we find the LCA of Java classes
4814     ciKlass* k = this_klass->least_common_ancestor(tkls_klass);
4815     return   make( ptr, k, off );
4816   } // End of case KlassPtr
4817 
4818   } // End of switch
4819   return this;                  // Return the double constant
4820 }
4821 
4822 //------------------------------xdual------------------------------------------
4823 // Dual: compute field-by-field dual
4824 const Type    *TypeKlassPtr::xdual() const {
4825   return new TypeKlassPtr( dual_ptr(), klass(), dual_offset() );
4826 }
4827 
4828 //------------------------------get_con----------------------------------------
4829 intptr_t TypeKlassPtr::get_con() const {
4830   assert( _ptr == Null || _ptr == Constant, "" );
4831   assert( _offset >= 0, "" );
4832 
4833   if (_offset != 0) {
4834     // After being ported to the compiler interface, the compiler no longer
4835     // directly manipulates the addresses of oops.  Rather, it only has a pointer
4836     // to a handle at compile time.  This handle is embedded in the generated
4837     // code and dereferenced at the time the nmethod is made.  Until that time,
4838     // it is not reasonable to do arithmetic with the addresses of oops (we don't
4839     // have access to the addresses!).  This does not seem to currently happen,
4840     // but this assertion here is to help prevent its occurence.
4841     tty->print_cr("Found oop constant with non-zero offset");
4842     ShouldNotReachHere();
4843   }
4844 
4845   return (intptr_t)klass()->constant_encoding();
4846 }
4847 //------------------------------dump2------------------------------------------
4848 // Dump Klass Type
4849 #ifndef PRODUCT
4850 void TypeKlassPtr::dump2( Dict & d, uint depth, outputStream *st ) const {
4851   switch( _ptr ) {
4852   case Constant:
4853     st->print("precise ");
4854   case NotNull:
4855     {
4856       const char *name = klass()->name()->as_utf8();
4857       if( name ) {
4858         st->print("klass %s: " INTPTR_FORMAT, name, klass());
4859       } else {
4860         ShouldNotReachHere();
4861       }
4862     }
4863   case BotPTR:
4864     if( !WizardMode && !Verbose && !_klass_is_exact ) break;
4865   case TopPTR:
4866   case AnyNull:
4867     st->print(":%s", ptr_msg[_ptr]);
4868     if( _klass_is_exact ) st->print(":exact");
4869     break;
4870   }
4871 
4872   if( _offset ) {               // Dump offset, if any
4873     if( _offset == OffsetBot )      { st->print("+any"); }
4874     else if( _offset == OffsetTop ) { st->print("+unknown"); }
4875     else                            { st->print("+%d", _offset); }
4876   }
4877 
4878   st->print(" *");
4879 }
4880 #endif
4881 
4882 
4883 
4884 //=============================================================================
4885 // Convenience common pre-built types.
4886 
4887 //------------------------------make-------------------------------------------
4888 const TypeFunc *TypeFunc::make( const TypeTuple *domain, const TypeTuple *range ) {
4889   return (TypeFunc*)(new TypeFunc(domain,range))->hashcons();
4890 }
4891 
4892 //------------------------------make-------------------------------------------
4893 const TypeFunc *TypeFunc::make(ciMethod* method) {
4894   Compile* C = Compile::current();
4895   const TypeFunc* tf = C->last_tf(method); // check cache
4896   if (tf != NULL)  return tf;  // The hit rate here is almost 50%.
4897   const TypeTuple *domain;
4898   if (method->is_static()) {
4899     domain = TypeTuple::make_domain(NULL, method->signature());
4900   } else {
4901     domain = TypeTuple::make_domain(method->holder(), method->signature());
4902   }
4903   const TypeTuple *range  = TypeTuple::make_range(method->signature());
4904   tf = TypeFunc::make(domain, range);
4905   C->set_last_tf(method, tf);  // fill cache
4906   return tf;
4907 }
4908 
4909 //------------------------------meet-------------------------------------------
4910 // Compute the MEET of two types.  It returns a new Type object.
4911 const Type *TypeFunc::xmeet( const Type *t ) const {
4912   // Perform a fast test for common case; meeting the same types together.
4913   if( this == t ) return this;  // Meeting same type-rep?
4914 
4915   // Current "this->_base" is Func
4916   switch (t->base()) {          // switch on original type
4917 
4918   case Bottom:                  // Ye Olde Default
4919     return t;
4920 
4921   default:                      // All else is a mistake
4922     typerr(t);
4923 
4924   case Top:
4925     break;
4926   }
4927   return this;                  // Return the double constant
4928 }
4929 
4930 //------------------------------xdual------------------------------------------
4931 // Dual: compute field-by-field dual
4932 const Type *TypeFunc::xdual() const {
4933   return this;
4934 }
4935 
4936 //------------------------------eq---------------------------------------------
4937 // Structural equality check for Type representations
4938 bool TypeFunc::eq( const Type *t ) const {
4939   const TypeFunc *a = (const TypeFunc*)t;
4940   return _domain == a->_domain &&
4941     _range == a->_range;
4942 }
4943 
4944 //------------------------------hash-------------------------------------------
4945 // Type-specific hashing function.
4946 int TypeFunc::hash(void) const {
4947   return (intptr_t)_domain + (intptr_t)_range;
4948 }
4949 
4950 //------------------------------dump2------------------------------------------
4951 // Dump Function Type
4952 #ifndef PRODUCT
4953 void TypeFunc::dump2( Dict &d, uint depth, outputStream *st ) const {
4954   if( _range->_cnt <= Parms )
4955     st->print("void");
4956   else {
4957     uint i;
4958     for (i = Parms; i < _range->_cnt-1; i++) {
4959       _range->field_at(i)->dump2(d,depth,st);
4960       st->print("/");
4961     }
4962     _range->field_at(i)->dump2(d,depth,st);
4963   }
4964   st->print(" ");
4965   st->print("( ");
4966   if( !depth || d[this] ) {     // Check for recursive dump
4967     st->print("...)");
4968     return;
4969   }
4970   d.Insert((void*)this,(void*)this);    // Stop recursion
4971   if (Parms < _domain->_cnt)
4972     _domain->field_at(Parms)->dump2(d,depth-1,st);
4973   for (uint i = Parms+1; i < _domain->_cnt; i++) {
4974     st->print(", ");
4975     _domain->field_at(i)->dump2(d,depth-1,st);
4976   }
4977   st->print(" )");
4978 }
4979 #endif
4980 
4981 //------------------------------singleton--------------------------------------
4982 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
4983 // constants (Ldi nodes).  Singletons are integer, float or double constants
4984 // or a single symbol.
4985 bool TypeFunc::singleton(void) const {
4986   return false;                 // Never a singleton
4987 }
4988 
4989 bool TypeFunc::empty(void) const {
4990   return false;                 // Never empty
4991 }
4992 
4993 
4994 BasicType TypeFunc::return_type() const{
4995   if (range()->cnt() == TypeFunc::Parms) {
4996     return T_VOID;
4997   }
4998   return range()->field_at(TypeFunc::Parms)->basic_type();
4999 }