1 /*
   2  * Copyright (c) 1997, 2016, Oracle and/or its affiliates. All rights reserved.
   3  * Copyright (c) 2014, 2015, Red Hat Inc. All rights reserved.
   4  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   5  *
   6  * This code is free software; you can redistribute it and/or modify it
   7  * under the terms of the GNU General Public License version 2 only, as
   8  * published by the Free Software Foundation.
   9  *
  10  * This code is distributed in the hope that it will be useful, but WITHOUT
  11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  13  * version 2 for more details (a copy is included in the LICENSE file that
  14  * accompanied this code).
  15  *
  16  * You should have received a copy of the GNU General Public License version
  17  * 2 along with this work; if not, write to the Free Software Foundation,
  18  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  19  *
  20  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  21  * or visit www.oracle.com if you need additional information or have any
  22  * questions.
  23  *
  24  */
  25 
  26 #include <sys/types.h>
  27 
  28 #include "precompiled.hpp"
  29 #include "asm/assembler.hpp"
  30 #include "asm/assembler.inline.hpp"
  31 #include "interpreter/interpreter.hpp"
  32 
  33 #include "compiler/disassembler.hpp"
  34 #include "memory/resourceArea.hpp"
  35 #include "nativeInst_aarch64.hpp"
  36 #include "oops/klass.inline.hpp"
  37 #include "oops/oop.inline.hpp"
  38 #include "opto/compile.hpp"
  39 #include "opto/intrinsicnode.hpp"
  40 #include "opto/node.hpp"
  41 #include "runtime/biasedLocking.hpp"
  42 #include "runtime/icache.hpp"
  43 #include "runtime/interfaceSupport.hpp"
  44 #include "runtime/sharedRuntime.hpp"
  45 #include "runtime/thread.hpp"
  46 
  47 #if INCLUDE_ALL_GCS
  48 #include "gc/g1/g1CollectedHeap.inline.hpp"
  49 #include "gc/g1/g1SATBCardTableModRefBS.hpp"
  50 #include "gc/g1/heapRegion.hpp"
  51 #endif
  52 
  53 #ifdef PRODUCT
  54 #define BLOCK_COMMENT(str) /* nothing */
  55 #define STOP(error) stop(error)
  56 #else
  57 #define BLOCK_COMMENT(str) block_comment(str)
  58 #define STOP(error) block_comment(error); stop(error)
  59 #endif
  60 
  61 #define BIND(label) bind(label); BLOCK_COMMENT(#label ":")
  62 
  63 // Patch any kind of instruction; there may be several instructions.
  64 // Return the total length (in bytes) of the instructions.
  65 int MacroAssembler::pd_patch_instruction_size(address branch, address target) {
  66   int instructions = 1;
  67   assert((uint64_t)target < (1ul << 48), "48-bit overflow in address constant");
  68   long offset = (target - branch) >> 2;
  69   unsigned insn = *(unsigned*)branch;
  70   if ((Instruction_aarch64::extract(insn, 29, 24) & 0b111011) == 0b011000) {
  71     // Load register (literal)
  72     Instruction_aarch64::spatch(branch, 23, 5, offset);
  73   } else if (Instruction_aarch64::extract(insn, 30, 26) == 0b00101) {
  74     // Unconditional branch (immediate)
  75     Instruction_aarch64::spatch(branch, 25, 0, offset);
  76   } else if (Instruction_aarch64::extract(insn, 31, 25) == 0b0101010) {
  77     // Conditional branch (immediate)
  78     Instruction_aarch64::spatch(branch, 23, 5, offset);
  79   } else if (Instruction_aarch64::extract(insn, 30, 25) == 0b011010) {
  80     // Compare & branch (immediate)
  81     Instruction_aarch64::spatch(branch, 23, 5, offset);
  82   } else if (Instruction_aarch64::extract(insn, 30, 25) == 0b011011) {
  83     // Test & branch (immediate)
  84     Instruction_aarch64::spatch(branch, 18, 5, offset);
  85   } else if (Instruction_aarch64::extract(insn, 28, 24) == 0b10000) {
  86     // PC-rel. addressing
  87     offset = target-branch;
  88     int shift = Instruction_aarch64::extract(insn, 31, 31);
  89     if (shift) {
  90       u_int64_t dest = (u_int64_t)target;
  91       uint64_t pc_page = (uint64_t)branch >> 12;
  92       uint64_t adr_page = (uint64_t)target >> 12;
  93       unsigned offset_lo = dest & 0xfff;
  94       offset = adr_page - pc_page;
  95 
  96       // We handle 4 types of PC relative addressing
  97       //   1 - adrp    Rx, target_page
  98       //       ldr/str Ry, [Rx, #offset_in_page]
  99       //   2 - adrp    Rx, target_page
 100       //       add     Ry, Rx, #offset_in_page
 101       //   3 - adrp    Rx, target_page (page aligned reloc, offset == 0)
 102       //       movk    Rx, #imm16<<32
 103       //   4 - adrp    Rx, target_page (page aligned reloc, offset == 0)
 104       // In the first 3 cases we must check that Rx is the same in the adrp and the
 105       // subsequent ldr/str, add or movk instruction. Otherwise we could accidentally end
 106       // up treating a type 4 relocation as a type 1, 2 or 3 just because it happened
 107       // to be followed by a random unrelated ldr/str, add or movk instruction.
 108       //
 109       unsigned insn2 = ((unsigned*)branch)[1];
 110       if (Instruction_aarch64::extract(insn2, 29, 24) == 0b111001 &&
 111                 Instruction_aarch64::extract(insn, 4, 0) ==
 112                         Instruction_aarch64::extract(insn2, 9, 5)) {
 113         // Load/store register (unsigned immediate)
 114         unsigned size = Instruction_aarch64::extract(insn2, 31, 30);
 115         Instruction_aarch64::patch(branch + sizeof (unsigned),
 116                                     21, 10, offset_lo >> size);
 117         guarantee(((dest >> size) << size) == dest, "misaligned target");
 118         instructions = 2;
 119       } else if (Instruction_aarch64::extract(insn2, 31, 22) == 0b1001000100 &&
 120                 Instruction_aarch64::extract(insn, 4, 0) ==
 121                         Instruction_aarch64::extract(insn2, 4, 0)) {
 122         // add (immediate)
 123         Instruction_aarch64::patch(branch + sizeof (unsigned),
 124                                    21, 10, offset_lo);
 125         instructions = 2;
 126       } else if (Instruction_aarch64::extract(insn2, 31, 21) == 0b11110010110 &&
 127                    Instruction_aarch64::extract(insn, 4, 0) ==
 128                      Instruction_aarch64::extract(insn2, 4, 0)) {
 129         // movk #imm16<<32
 130         Instruction_aarch64::patch(branch + 4, 20, 5, (uint64_t)target >> 32);
 131         long dest = ((long)target & 0xffffffffL) | ((long)branch & 0xffff00000000L);
 132         long pc_page = (long)branch >> 12;
 133         long adr_page = (long)dest >> 12;
 134         offset = adr_page - pc_page;
 135         instructions = 2;
 136       }
 137     }
 138     int offset_lo = offset & 3;
 139     offset >>= 2;
 140     Instruction_aarch64::spatch(branch, 23, 5, offset);
 141     Instruction_aarch64::patch(branch, 30, 29, offset_lo);
 142   } else if (Instruction_aarch64::extract(insn, 31, 21) == 0b11010010100) {
 143     u_int64_t dest = (u_int64_t)target;
 144     // Move wide constant
 145     assert(nativeInstruction_at(branch+4)->is_movk(), "wrong insns in patch");
 146     assert(nativeInstruction_at(branch+8)->is_movk(), "wrong insns in patch");
 147     Instruction_aarch64::patch(branch, 20, 5, dest & 0xffff);
 148     Instruction_aarch64::patch(branch+4, 20, 5, (dest >>= 16) & 0xffff);
 149     Instruction_aarch64::patch(branch+8, 20, 5, (dest >>= 16) & 0xffff);
 150     assert(target_addr_for_insn(branch) == target, "should be");
 151     instructions = 3;
 152   } else if (Instruction_aarch64::extract(insn, 31, 22) == 0b1011100101 &&
 153              Instruction_aarch64::extract(insn, 4, 0) == 0b11111) {
 154     // nothing to do
 155     assert(target == 0, "did not expect to relocate target for polling page load");
 156   } else {
 157     ShouldNotReachHere();
 158   }
 159   return instructions * NativeInstruction::instruction_size;
 160 }
 161 
 162 int MacroAssembler::patch_oop(address insn_addr, address o) {
 163   int instructions;
 164   unsigned insn = *(unsigned*)insn_addr;
 165   assert(nativeInstruction_at(insn_addr+4)->is_movk(), "wrong insns in patch");
 166 
 167   // OOPs are either narrow (32 bits) or wide (48 bits).  We encode
 168   // narrow OOPs by setting the upper 16 bits in the first
 169   // instruction.
 170   if (Instruction_aarch64::extract(insn, 31, 21) == 0b11010010101) {
 171     // Move narrow OOP
 172     narrowOop n = oopDesc::encode_heap_oop((oop)o);
 173     Instruction_aarch64::patch(insn_addr, 20, 5, n >> 16);
 174     Instruction_aarch64::patch(insn_addr+4, 20, 5, n & 0xffff);
 175     instructions = 2;
 176   } else {
 177     // Move wide OOP
 178     assert(nativeInstruction_at(insn_addr+8)->is_movk(), "wrong insns in patch");
 179     uintptr_t dest = (uintptr_t)o;
 180     Instruction_aarch64::patch(insn_addr, 20, 5, dest & 0xffff);
 181     Instruction_aarch64::patch(insn_addr+4, 20, 5, (dest >>= 16) & 0xffff);
 182     Instruction_aarch64::patch(insn_addr+8, 20, 5, (dest >>= 16) & 0xffff);
 183     instructions = 3;
 184   }
 185   return instructions * NativeInstruction::instruction_size;
 186 }
 187 
 188 int MacroAssembler::patch_narrow_klass(address insn_addr, narrowKlass n) {
 189   // Metatdata pointers are either narrow (32 bits) or wide (48 bits).
 190   // We encode narrow ones by setting the upper 16 bits in the first
 191   // instruction.
 192   NativeInstruction *insn = nativeInstruction_at(insn_addr);
 193   assert(Instruction_aarch64::extract(insn->encoding(), 31, 21) == 0b11010010101 &&
 194          nativeInstruction_at(insn_addr+4)->is_movk(), "wrong insns in patch");
 195 
 196   Instruction_aarch64::patch(insn_addr, 20, 5, n >> 16);
 197   Instruction_aarch64::patch(insn_addr+4, 20, 5, n & 0xffff);
 198   return 2 * NativeInstruction::instruction_size;
 199 }
 200 
 201 address MacroAssembler::target_addr_for_insn(address insn_addr, unsigned insn) {
 202   long offset = 0;
 203   if ((Instruction_aarch64::extract(insn, 29, 24) & 0b011011) == 0b00011000) {
 204     // Load register (literal)
 205     offset = Instruction_aarch64::sextract(insn, 23, 5);
 206     return address(((uint64_t)insn_addr + (offset << 2)));
 207   } else if (Instruction_aarch64::extract(insn, 30, 26) == 0b00101) {
 208     // Unconditional branch (immediate)
 209     offset = Instruction_aarch64::sextract(insn, 25, 0);
 210   } else if (Instruction_aarch64::extract(insn, 31, 25) == 0b0101010) {
 211     // Conditional branch (immediate)
 212     offset = Instruction_aarch64::sextract(insn, 23, 5);
 213   } else if (Instruction_aarch64::extract(insn, 30, 25) == 0b011010) {
 214     // Compare & branch (immediate)
 215     offset = Instruction_aarch64::sextract(insn, 23, 5);
 216    } else if (Instruction_aarch64::extract(insn, 30, 25) == 0b011011) {
 217     // Test & branch (immediate)
 218     offset = Instruction_aarch64::sextract(insn, 18, 5);
 219   } else if (Instruction_aarch64::extract(insn, 28, 24) == 0b10000) {
 220     // PC-rel. addressing
 221     offset = Instruction_aarch64::extract(insn, 30, 29);
 222     offset |= Instruction_aarch64::sextract(insn, 23, 5) << 2;
 223     int shift = Instruction_aarch64::extract(insn, 31, 31) ? 12 : 0;
 224     if (shift) {
 225       offset <<= shift;
 226       uint64_t target_page = ((uint64_t)insn_addr) + offset;
 227       target_page &= ((uint64_t)-1) << shift;
 228       // Return the target address for the following sequences
 229       //   1 - adrp    Rx, target_page
 230       //       ldr/str Ry, [Rx, #offset_in_page]
 231       //   2 - adrp    Rx, target_page
 232       //       add     Ry, Rx, #offset_in_page
 233       //   3 - adrp    Rx, target_page (page aligned reloc, offset == 0)
 234       //       movk    Rx, #imm12<<32
 235       //   4 - adrp    Rx, target_page (page aligned reloc, offset == 0)
 236       //
 237       // In the first two cases  we check that the register is the same and
 238       // return the target_page + the offset within the page.
 239       // Otherwise we assume it is a page aligned relocation and return
 240       // the target page only.
 241       //
 242       unsigned insn2 = ((unsigned*)insn_addr)[1];
 243       if (Instruction_aarch64::extract(insn2, 29, 24) == 0b111001 &&
 244                 Instruction_aarch64::extract(insn, 4, 0) ==
 245                         Instruction_aarch64::extract(insn2, 9, 5)) {
 246         // Load/store register (unsigned immediate)
 247         unsigned int byte_offset = Instruction_aarch64::extract(insn2, 21, 10);
 248         unsigned int size = Instruction_aarch64::extract(insn2, 31, 30);
 249         return address(target_page + (byte_offset << size));
 250       } else if (Instruction_aarch64::extract(insn2, 31, 22) == 0b1001000100 &&
 251                 Instruction_aarch64::extract(insn, 4, 0) ==
 252                         Instruction_aarch64::extract(insn2, 4, 0)) {
 253         // add (immediate)
 254         unsigned int byte_offset = Instruction_aarch64::extract(insn2, 21, 10);
 255         return address(target_page + byte_offset);
 256       } else {
 257         if (Instruction_aarch64::extract(insn2, 31, 21) == 0b11110010110  &&
 258                Instruction_aarch64::extract(insn, 4, 0) ==
 259                  Instruction_aarch64::extract(insn2, 4, 0)) {
 260           target_page = (target_page & 0xffffffff) |
 261                          ((uint64_t)Instruction_aarch64::extract(insn2, 20, 5) << 32);
 262         }
 263         return (address)target_page;
 264       }
 265     } else {
 266       ShouldNotReachHere();
 267     }
 268   } else if (Instruction_aarch64::extract(insn, 31, 23) == 0b110100101) {
 269     u_int32_t *insns = (u_int32_t *)insn_addr;
 270     // Move wide constant: movz, movk, movk.  See movptr().
 271     assert(nativeInstruction_at(insns+1)->is_movk(), "wrong insns in patch");
 272     assert(nativeInstruction_at(insns+2)->is_movk(), "wrong insns in patch");
 273     return address(u_int64_t(Instruction_aarch64::extract(insns[0], 20, 5))
 274                    + (u_int64_t(Instruction_aarch64::extract(insns[1], 20, 5)) << 16)
 275                    + (u_int64_t(Instruction_aarch64::extract(insns[2], 20, 5)) << 32));
 276   } else if (Instruction_aarch64::extract(insn, 31, 22) == 0b1011100101 &&
 277              Instruction_aarch64::extract(insn, 4, 0) == 0b11111) {
 278     return 0;
 279   } else {
 280     ShouldNotReachHere();
 281   }
 282   return address(((uint64_t)insn_addr + (offset << 2)));
 283 }
 284 
 285 void MacroAssembler::serialize_memory(Register thread, Register tmp) {
 286   dsb(Assembler::SY);
 287 }
 288 
 289 
 290 void MacroAssembler::reset_last_Java_frame(bool clear_fp) {
 291   // we must set sp to zero to clear frame
 292   str(zr, Address(rthread, JavaThread::last_Java_sp_offset()));
 293 
 294   // must clear fp, so that compiled frames are not confused; it is
 295   // possible that we need it only for debugging
 296   if (clear_fp) {
 297     str(zr, Address(rthread, JavaThread::last_Java_fp_offset()));
 298   }
 299 
 300   // Always clear the pc because it could have been set by make_walkable()
 301   str(zr, Address(rthread, JavaThread::last_Java_pc_offset()));
 302 }
 303 
 304 // Calls to C land
 305 //
 306 // When entering C land, the rfp, & resp of the last Java frame have to be recorded
 307 // in the (thread-local) JavaThread object. When leaving C land, the last Java fp
 308 // has to be reset to 0. This is required to allow proper stack traversal.
 309 void MacroAssembler::set_last_Java_frame(Register last_java_sp,
 310                                          Register last_java_fp,
 311                                          Register last_java_pc,
 312                                          Register scratch) {
 313 
 314   if (last_java_pc->is_valid()) {
 315       str(last_java_pc, Address(rthread,
 316                                 JavaThread::frame_anchor_offset()
 317                                 + JavaFrameAnchor::last_Java_pc_offset()));
 318     }
 319 
 320   // determine last_java_sp register
 321   if (last_java_sp == sp) {
 322     mov(scratch, sp);
 323     last_java_sp = scratch;
 324   } else if (!last_java_sp->is_valid()) {
 325     last_java_sp = esp;
 326   }
 327 
 328   str(last_java_sp, Address(rthread, JavaThread::last_Java_sp_offset()));
 329 
 330   // last_java_fp is optional
 331   if (last_java_fp->is_valid()) {
 332     str(last_java_fp, Address(rthread, JavaThread::last_Java_fp_offset()));
 333   }
 334 }
 335 
 336 void MacroAssembler::set_last_Java_frame(Register last_java_sp,
 337                                          Register last_java_fp,
 338                                          address  last_java_pc,
 339                                          Register scratch) {
 340   if (last_java_pc != NULL) {
 341     adr(scratch, last_java_pc);
 342   } else {
 343     // FIXME: This is almost never correct.  We should delete all
 344     // cases of set_last_Java_frame with last_java_pc=NULL and use the
 345     // correct return address instead.
 346     adr(scratch, pc());
 347   }
 348 
 349   str(scratch, Address(rthread,
 350                        JavaThread::frame_anchor_offset()
 351                        + JavaFrameAnchor::last_Java_pc_offset()));
 352 
 353   set_last_Java_frame(last_java_sp, last_java_fp, noreg, scratch);
 354 }
 355 
 356 void MacroAssembler::set_last_Java_frame(Register last_java_sp,
 357                                          Register last_java_fp,
 358                                          Label &L,
 359                                          Register scratch) {
 360   if (L.is_bound()) {
 361     set_last_Java_frame(last_java_sp, last_java_fp, target(L), scratch);
 362   } else {
 363     InstructionMark im(this);
 364     L.add_patch_at(code(), locator());
 365     set_last_Java_frame(last_java_sp, last_java_fp, (address)NULL, scratch);
 366   }
 367 }
 368 
 369 void MacroAssembler::far_call(Address entry, CodeBuffer *cbuf, Register tmp) {
 370   assert(ReservedCodeCacheSize < 4*G, "branch out of range");
 371   assert(CodeCache::find_blob(entry.target()) != NULL,
 372          "destination of far call not found in code cache");
 373   if (far_branches()) {
 374     unsigned long offset;
 375     // We can use ADRP here because we know that the total size of
 376     // the code cache cannot exceed 2Gb.
 377     adrp(tmp, entry, offset);
 378     add(tmp, tmp, offset);
 379     if (cbuf) cbuf->set_insts_mark();
 380     blr(tmp);
 381   } else {
 382     if (cbuf) cbuf->set_insts_mark();
 383     bl(entry);
 384   }
 385 }
 386 
 387 void MacroAssembler::far_jump(Address entry, CodeBuffer *cbuf, Register tmp) {
 388   assert(ReservedCodeCacheSize < 4*G, "branch out of range");
 389   assert(CodeCache::find_blob(entry.target()) != NULL,
 390          "destination of far call not found in code cache");
 391   if (far_branches()) {
 392     unsigned long offset;
 393     // We can use ADRP here because we know that the total size of
 394     // the code cache cannot exceed 2Gb.
 395     adrp(tmp, entry, offset);
 396     add(tmp, tmp, offset);
 397     if (cbuf) cbuf->set_insts_mark();
 398     br(tmp);
 399   } else {
 400     if (cbuf) cbuf->set_insts_mark();
 401     b(entry);
 402   }
 403 }
 404 
 405 void MacroAssembler::reserved_stack_check() {
 406     // testing if reserved zone needs to be enabled
 407     Label no_reserved_zone_enabling;
 408 
 409     ldr(rscratch1, Address(rthread, JavaThread::reserved_stack_activation_offset()));
 410     cmp(sp, rscratch1);
 411     br(Assembler::LO, no_reserved_zone_enabling);
 412 
 413     enter();   // LR and FP are live.
 414     lea(rscratch1, CAST_FROM_FN_PTR(address, SharedRuntime::enable_stack_reserved_zone));
 415     mov(c_rarg0, rthread);
 416     blr(rscratch1);
 417     leave();
 418 
 419     // We have already removed our own frame.
 420     // throw_delayed_StackOverflowError will think that it's been
 421     // called by our caller.
 422     lea(rscratch1, RuntimeAddress(StubRoutines::throw_delayed_StackOverflowError_entry()));
 423     br(rscratch1);
 424     should_not_reach_here();
 425 
 426     bind(no_reserved_zone_enabling);
 427 }
 428 
 429 int MacroAssembler::biased_locking_enter(Register lock_reg,
 430                                          Register obj_reg,
 431                                          Register swap_reg,
 432                                          Register tmp_reg,
 433                                          bool swap_reg_contains_mark,
 434                                          Label& done,
 435                                          Label* slow_case,
 436                                          BiasedLockingCounters* counters) {
 437   assert(UseBiasedLocking, "why call this otherwise?");
 438   assert_different_registers(lock_reg, obj_reg, swap_reg);
 439 
 440   if (PrintBiasedLockingStatistics && counters == NULL)
 441     counters = BiasedLocking::counters();
 442 
 443   assert_different_registers(lock_reg, obj_reg, swap_reg, tmp_reg, rscratch1, rscratch2, noreg);
 444   assert(markOopDesc::age_shift == markOopDesc::lock_bits + markOopDesc::biased_lock_bits, "biased locking makes assumptions about bit layout");
 445   Address mark_addr      (obj_reg, oopDesc::mark_offset_in_bytes());
 446   Address klass_addr     (obj_reg, oopDesc::klass_offset_in_bytes());
 447   Address saved_mark_addr(lock_reg, 0);
 448 
 449   // Biased locking
 450   // See whether the lock is currently biased toward our thread and
 451   // whether the epoch is still valid
 452   // Note that the runtime guarantees sufficient alignment of JavaThread
 453   // pointers to allow age to be placed into low bits
 454   // First check to see whether biasing is even enabled for this object
 455   Label cas_label;
 456   int null_check_offset = -1;
 457   if (!swap_reg_contains_mark) {
 458     null_check_offset = offset();
 459     ldr(swap_reg, mark_addr);
 460   }
 461   andr(tmp_reg, swap_reg, markOopDesc::biased_lock_mask_in_place);
 462   cmp(tmp_reg, markOopDesc::biased_lock_pattern);
 463   br(Assembler::NE, cas_label);
 464   // The bias pattern is present in the object's header. Need to check
 465   // whether the bias owner and the epoch are both still current.
 466   load_prototype_header(tmp_reg, obj_reg);
 467   orr(tmp_reg, tmp_reg, rthread);
 468   eor(tmp_reg, swap_reg, tmp_reg);
 469   andr(tmp_reg, tmp_reg, ~((int) markOopDesc::age_mask_in_place));
 470   if (counters != NULL) {
 471     Label around;
 472     cbnz(tmp_reg, around);
 473     atomic_incw(Address((address)counters->biased_lock_entry_count_addr()), tmp_reg, rscratch1, rscratch2);
 474     b(done);
 475     bind(around);
 476   } else {
 477     cbz(tmp_reg, done);
 478   }
 479 
 480   Label try_revoke_bias;
 481   Label try_rebias;
 482 
 483   // At this point we know that the header has the bias pattern and
 484   // that we are not the bias owner in the current epoch. We need to
 485   // figure out more details about the state of the header in order to
 486   // know what operations can be legally performed on the object's
 487   // header.
 488 
 489   // If the low three bits in the xor result aren't clear, that means
 490   // the prototype header is no longer biased and we have to revoke
 491   // the bias on this object.
 492   andr(rscratch1, tmp_reg, markOopDesc::biased_lock_mask_in_place);
 493   cbnz(rscratch1, try_revoke_bias);
 494 
 495   // Biasing is still enabled for this data type. See whether the
 496   // epoch of the current bias is still valid, meaning that the epoch
 497   // bits of the mark word are equal to the epoch bits of the
 498   // prototype header. (Note that the prototype header's epoch bits
 499   // only change at a safepoint.) If not, attempt to rebias the object
 500   // toward the current thread. Note that we must be absolutely sure
 501   // that the current epoch is invalid in order to do this because
 502   // otherwise the manipulations it performs on the mark word are
 503   // illegal.
 504   andr(rscratch1, tmp_reg, markOopDesc::epoch_mask_in_place);
 505   cbnz(rscratch1, try_rebias);
 506 
 507   // The epoch of the current bias is still valid but we know nothing
 508   // about the owner; it might be set or it might be clear. Try to
 509   // acquire the bias of the object using an atomic operation. If this
 510   // fails we will go in to the runtime to revoke the object's bias.
 511   // Note that we first construct the presumed unbiased header so we
 512   // don't accidentally blow away another thread's valid bias.
 513   {
 514     Label here;
 515     mov(rscratch1, markOopDesc::biased_lock_mask_in_place | markOopDesc::age_mask_in_place | markOopDesc::epoch_mask_in_place);
 516     andr(swap_reg, swap_reg, rscratch1);
 517     orr(tmp_reg, swap_reg, rthread);
 518     cmpxchgptr(swap_reg, tmp_reg, obj_reg, rscratch1, here, slow_case);
 519     // If the biasing toward our thread failed, this means that
 520     // another thread succeeded in biasing it toward itself and we
 521     // need to revoke that bias. The revocation will occur in the
 522     // interpreter runtime in the slow case.
 523     bind(here);
 524     if (counters != NULL) {
 525       atomic_incw(Address((address)counters->anonymously_biased_lock_entry_count_addr()),
 526                   tmp_reg, rscratch1, rscratch2);
 527     }
 528   }
 529   b(done);
 530 
 531   bind(try_rebias);
 532   // At this point we know the epoch has expired, meaning that the
 533   // current "bias owner", if any, is actually invalid. Under these
 534   // circumstances _only_, we are allowed to use the current header's
 535   // value as the comparison value when doing the cas to acquire the
 536   // bias in the current epoch. In other words, we allow transfer of
 537   // the bias from one thread to another directly in this situation.
 538   //
 539   // FIXME: due to a lack of registers we currently blow away the age
 540   // bits in this situation. Should attempt to preserve them.
 541   {
 542     Label here;
 543     load_prototype_header(tmp_reg, obj_reg);
 544     orr(tmp_reg, rthread, tmp_reg);
 545     cmpxchgptr(swap_reg, tmp_reg, obj_reg, rscratch1, here, slow_case);
 546     // If the biasing toward our thread failed, then another thread
 547     // succeeded in biasing it toward itself and we need to revoke that
 548     // bias. The revocation will occur in the runtime in the slow case.
 549     bind(here);
 550     if (counters != NULL) {
 551       atomic_incw(Address((address)counters->rebiased_lock_entry_count_addr()),
 552                   tmp_reg, rscratch1, rscratch2);
 553     }
 554   }
 555   b(done);
 556 
 557   bind(try_revoke_bias);
 558   // The prototype mark in the klass doesn't have the bias bit set any
 559   // more, indicating that objects of this data type are not supposed
 560   // to be biased any more. We are going to try to reset the mark of
 561   // this object to the prototype value and fall through to the
 562   // CAS-based locking scheme. Note that if our CAS fails, it means
 563   // that another thread raced us for the privilege of revoking the
 564   // bias of this particular object, so it's okay to continue in the
 565   // normal locking code.
 566   //
 567   // FIXME: due to a lack of registers we currently blow away the age
 568   // bits in this situation. Should attempt to preserve them.
 569   {
 570     Label here, nope;
 571     load_prototype_header(tmp_reg, obj_reg);
 572     cmpxchgptr(swap_reg, tmp_reg, obj_reg, rscratch1, here, &nope);
 573     bind(here);
 574 
 575     // Fall through to the normal CAS-based lock, because no matter what
 576     // the result of the above CAS, some thread must have succeeded in
 577     // removing the bias bit from the object's header.
 578     if (counters != NULL) {
 579       atomic_incw(Address((address)counters->revoked_lock_entry_count_addr()), tmp_reg,
 580                   rscratch1, rscratch2);
 581     }
 582     bind(nope);
 583   }
 584 
 585   bind(cas_label);
 586 
 587   return null_check_offset;
 588 }
 589 
 590 void MacroAssembler::biased_locking_exit(Register obj_reg, Register temp_reg, Label& done) {
 591   assert(UseBiasedLocking, "why call this otherwise?");
 592 
 593   // Check for biased locking unlock case, which is a no-op
 594   // Note: we do not have to check the thread ID for two reasons.
 595   // First, the interpreter checks for IllegalMonitorStateException at
 596   // a higher level. Second, if the bias was revoked while we held the
 597   // lock, the object could not be rebiased toward another thread, so
 598   // the bias bit would be clear.
 599   ldr(temp_reg, Address(obj_reg, oopDesc::mark_offset_in_bytes()));
 600   andr(temp_reg, temp_reg, markOopDesc::biased_lock_mask_in_place);
 601   cmp(temp_reg, markOopDesc::biased_lock_pattern);
 602   br(Assembler::EQ, done);
 603 }
 604 
 605 static void pass_arg0(MacroAssembler* masm, Register arg) {
 606   if (c_rarg0 != arg ) {
 607     masm->mov(c_rarg0, arg);
 608   }
 609 }
 610 
 611 static void pass_arg1(MacroAssembler* masm, Register arg) {
 612   if (c_rarg1 != arg ) {
 613     masm->mov(c_rarg1, arg);
 614   }
 615 }
 616 
 617 static void pass_arg2(MacroAssembler* masm, Register arg) {
 618   if (c_rarg2 != arg ) {
 619     masm->mov(c_rarg2, arg);
 620   }
 621 }
 622 
 623 static void pass_arg3(MacroAssembler* masm, Register arg) {
 624   if (c_rarg3 != arg ) {
 625     masm->mov(c_rarg3, arg);
 626   }
 627 }
 628 
 629 void MacroAssembler::call_VM_base(Register oop_result,
 630                                   Register java_thread,
 631                                   Register last_java_sp,
 632                                   address  entry_point,
 633                                   int      number_of_arguments,
 634                                   bool     check_exceptions) {
 635    // determine java_thread register
 636   if (!java_thread->is_valid()) {
 637     java_thread = rthread;
 638   }
 639 
 640   // determine last_java_sp register
 641   if (!last_java_sp->is_valid()) {
 642     last_java_sp = esp;
 643   }
 644 
 645   // debugging support
 646   assert(number_of_arguments >= 0   , "cannot have negative number of arguments");
 647   assert(java_thread == rthread, "unexpected register");
 648 #ifdef ASSERT
 649   // TraceBytecodes does not use r12 but saves it over the call, so don't verify
 650   // if ((UseCompressedOops || UseCompressedClassPointers) && !TraceBytecodes) verify_heapbase("call_VM_base: heap base corrupted?");
 651 #endif // ASSERT
 652 
 653   assert(java_thread != oop_result  , "cannot use the same register for java_thread & oop_result");
 654   assert(java_thread != last_java_sp, "cannot use the same register for java_thread & last_java_sp");
 655 
 656   // push java thread (becomes first argument of C function)
 657 
 658   mov(c_rarg0, java_thread);
 659 
 660   // set last Java frame before call
 661   assert(last_java_sp != rfp, "can't use rfp");
 662 
 663   Label l;
 664   set_last_Java_frame(last_java_sp, rfp, l, rscratch1);
 665 
 666   // do the call, remove parameters
 667   MacroAssembler::call_VM_leaf_base(entry_point, number_of_arguments, &l);
 668 
 669   // reset last Java frame
 670   // Only interpreter should have to clear fp
 671   reset_last_Java_frame(true);
 672 
 673    // C++ interp handles this in the interpreter
 674   check_and_handle_popframe(java_thread);
 675   check_and_handle_earlyret(java_thread);
 676 
 677   if (check_exceptions) {
 678     // check for pending exceptions (java_thread is set upon return)
 679     ldr(rscratch1, Address(java_thread, in_bytes(Thread::pending_exception_offset())));
 680     Label ok;
 681     cbz(rscratch1, ok);
 682     lea(rscratch1, RuntimeAddress(StubRoutines::forward_exception_entry()));
 683     br(rscratch1);
 684     bind(ok);
 685   }
 686 
 687   // get oop result if there is one and reset the value in the thread
 688   if (oop_result->is_valid()) {
 689     get_vm_result(oop_result, java_thread);
 690   }
 691 }
 692 
 693 void MacroAssembler::call_VM_helper(Register oop_result, address entry_point, int number_of_arguments, bool check_exceptions) {
 694   call_VM_base(oop_result, noreg, noreg, entry_point, number_of_arguments, check_exceptions);
 695 }
 696 
 697 // Maybe emit a call via a trampoline.  If the code cache is small
 698 // trampolines won't be emitted.
 699 
 700 address MacroAssembler::trampoline_call(Address entry, CodeBuffer *cbuf) {
 701   assert(entry.rspec().type() == relocInfo::runtime_call_type
 702          || entry.rspec().type() == relocInfo::opt_virtual_call_type
 703          || entry.rspec().type() == relocInfo::static_call_type
 704          || entry.rspec().type() == relocInfo::virtual_call_type, "wrong reloc type");
 705 
 706   unsigned int start_offset = offset();
 707   if (far_branches() && !Compile::current()->in_scratch_emit_size()) {
 708     address stub = emit_trampoline_stub(start_offset, entry.target());
 709     if (stub == NULL) {
 710       return NULL; // CodeCache is full
 711     }
 712   }
 713 
 714   if (cbuf) cbuf->set_insts_mark();
 715   relocate(entry.rspec());
 716   if (!far_branches()) {
 717     bl(entry.target());
 718   } else {
 719     bl(pc());
 720   }
 721   // just need to return a non-null address
 722   return pc();
 723 }
 724 
 725 
 726 // Emit a trampoline stub for a call to a target which is too far away.
 727 //
 728 // code sequences:
 729 //
 730 // call-site:
 731 //   branch-and-link to <destination> or <trampoline stub>
 732 //
 733 // Related trampoline stub for this call site in the stub section:
 734 //   load the call target from the constant pool
 735 //   branch (LR still points to the call site above)
 736 
 737 address MacroAssembler::emit_trampoline_stub(int insts_call_instruction_offset,
 738                                              address dest) {
 739   address stub = start_a_stub(Compile::MAX_stubs_size/2);
 740   if (stub == NULL) {
 741     return NULL;  // CodeBuffer::expand failed
 742   }
 743 
 744   // Create a trampoline stub relocation which relates this trampoline stub
 745   // with the call instruction at insts_call_instruction_offset in the
 746   // instructions code-section.
 747   align(wordSize);
 748   relocate(trampoline_stub_Relocation::spec(code()->insts()->start()
 749                                             + insts_call_instruction_offset));
 750   const int stub_start_offset = offset();
 751 
 752   // Now, create the trampoline stub's code:
 753   // - load the call
 754   // - call
 755   Label target;
 756   ldr(rscratch1, target);
 757   br(rscratch1);
 758   bind(target);
 759   assert(offset() - stub_start_offset == NativeCallTrampolineStub::data_offset,
 760          "should be");
 761   emit_int64((int64_t)dest);
 762 
 763   const address stub_start_addr = addr_at(stub_start_offset);
 764 
 765   assert(is_NativeCallTrampolineStub_at(stub_start_addr), "doesn't look like a trampoline");
 766 
 767   end_a_stub();
 768   return stub;
 769 }
 770 
 771 address MacroAssembler::ic_call(address entry, jint method_index) {
 772   RelocationHolder rh = virtual_call_Relocation::spec(pc(), method_index);
 773   // address const_ptr = long_constant((jlong)Universe::non_oop_word());
 774   // unsigned long offset;
 775   // ldr_constant(rscratch2, const_ptr);
 776   movptr(rscratch2, (uintptr_t)Universe::non_oop_word());
 777   return trampoline_call(Address(entry, rh));
 778 }
 779 
 780 // Implementation of call_VM versions
 781 
 782 void MacroAssembler::call_VM(Register oop_result,
 783                              address entry_point,
 784                              bool check_exceptions) {
 785   call_VM_helper(oop_result, entry_point, 0, check_exceptions);
 786 }
 787 
 788 void MacroAssembler::call_VM(Register oop_result,
 789                              address entry_point,
 790                              Register arg_1,
 791                              bool check_exceptions) {
 792   pass_arg1(this, arg_1);
 793   call_VM_helper(oop_result, entry_point, 1, check_exceptions);
 794 }
 795 
 796 void MacroAssembler::call_VM(Register oop_result,
 797                              address entry_point,
 798                              Register arg_1,
 799                              Register arg_2,
 800                              bool check_exceptions) {
 801   assert(arg_1 != c_rarg2, "smashed arg");
 802   pass_arg2(this, arg_2);
 803   pass_arg1(this, arg_1);
 804   call_VM_helper(oop_result, entry_point, 2, check_exceptions);
 805 }
 806 
 807 void MacroAssembler::call_VM(Register oop_result,
 808                              address entry_point,
 809                              Register arg_1,
 810                              Register arg_2,
 811                              Register arg_3,
 812                              bool check_exceptions) {
 813   assert(arg_1 != c_rarg3, "smashed arg");
 814   assert(arg_2 != c_rarg3, "smashed arg");
 815   pass_arg3(this, arg_3);
 816 
 817   assert(arg_1 != c_rarg2, "smashed arg");
 818   pass_arg2(this, arg_2);
 819 
 820   pass_arg1(this, arg_1);
 821   call_VM_helper(oop_result, entry_point, 3, check_exceptions);
 822 }
 823 
 824 void MacroAssembler::call_VM(Register oop_result,
 825                              Register last_java_sp,
 826                              address entry_point,
 827                              int number_of_arguments,
 828                              bool check_exceptions) {
 829   call_VM_base(oop_result, rthread, last_java_sp, entry_point, number_of_arguments, check_exceptions);
 830 }
 831 
 832 void MacroAssembler::call_VM(Register oop_result,
 833                              Register last_java_sp,
 834                              address entry_point,
 835                              Register arg_1,
 836                              bool check_exceptions) {
 837   pass_arg1(this, arg_1);
 838   call_VM(oop_result, last_java_sp, entry_point, 1, check_exceptions);
 839 }
 840 
 841 void MacroAssembler::call_VM(Register oop_result,
 842                              Register last_java_sp,
 843                              address entry_point,
 844                              Register arg_1,
 845                              Register arg_2,
 846                              bool check_exceptions) {
 847 
 848   assert(arg_1 != c_rarg2, "smashed arg");
 849   pass_arg2(this, arg_2);
 850   pass_arg1(this, arg_1);
 851   call_VM(oop_result, last_java_sp, entry_point, 2, check_exceptions);
 852 }
 853 
 854 void MacroAssembler::call_VM(Register oop_result,
 855                              Register last_java_sp,
 856                              address entry_point,
 857                              Register arg_1,
 858                              Register arg_2,
 859                              Register arg_3,
 860                              bool check_exceptions) {
 861   assert(arg_1 != c_rarg3, "smashed arg");
 862   assert(arg_2 != c_rarg3, "smashed arg");
 863   pass_arg3(this, arg_3);
 864   assert(arg_1 != c_rarg2, "smashed arg");
 865   pass_arg2(this, arg_2);
 866   pass_arg1(this, arg_1);
 867   call_VM(oop_result, last_java_sp, entry_point, 3, check_exceptions);
 868 }
 869 
 870 
 871 void MacroAssembler::get_vm_result(Register oop_result, Register java_thread) {
 872   ldr(oop_result, Address(java_thread, JavaThread::vm_result_offset()));
 873   str(zr, Address(java_thread, JavaThread::vm_result_offset()));
 874   verify_oop(oop_result, "broken oop in call_VM_base");
 875 }
 876 
 877 void MacroAssembler::get_vm_result_2(Register metadata_result, Register java_thread) {
 878   ldr(metadata_result, Address(java_thread, JavaThread::vm_result_2_offset()));
 879   str(zr, Address(java_thread, JavaThread::vm_result_2_offset()));
 880 }
 881 
 882 void MacroAssembler::align(int modulus) {
 883   while (offset() % modulus != 0) nop();
 884 }
 885 
 886 // these are no-ops overridden by InterpreterMacroAssembler
 887 
 888 void MacroAssembler::check_and_handle_earlyret(Register java_thread) { }
 889 
 890 void MacroAssembler::check_and_handle_popframe(Register java_thread) { }
 891 
 892 
 893 RegisterOrConstant MacroAssembler::delayed_value_impl(intptr_t* delayed_value_addr,
 894                                                       Register tmp,
 895                                                       int offset) {
 896   intptr_t value = *delayed_value_addr;
 897   if (value != 0)
 898     return RegisterOrConstant(value + offset);
 899 
 900   // load indirectly to solve generation ordering problem
 901   ldr(tmp, ExternalAddress((address) delayed_value_addr));
 902 
 903   if (offset != 0)
 904     add(tmp, tmp, offset);
 905 
 906   return RegisterOrConstant(tmp);
 907 }
 908 
 909 
 910 void MacroAssembler:: notify(int type) {
 911   if (type == bytecode_start) {
 912     // set_last_Java_frame(esp, rfp, (address)NULL);
 913     Assembler:: notify(type);
 914     // reset_last_Java_frame(true);
 915   }
 916   else
 917     Assembler:: notify(type);
 918 }
 919 
 920 // Look up the method for a megamorphic invokeinterface call.
 921 // The target method is determined by <intf_klass, itable_index>.
 922 // The receiver klass is in recv_klass.
 923 // On success, the result will be in method_result, and execution falls through.
 924 // On failure, execution transfers to the given label.
 925 void MacroAssembler::lookup_interface_method(Register recv_klass,
 926                                              Register intf_klass,
 927                                              RegisterOrConstant itable_index,
 928                                              Register method_result,
 929                                              Register scan_temp,
 930                                              Label& L_no_such_interface) {
 931   assert_different_registers(recv_klass, intf_klass, method_result, scan_temp);
 932   assert(itable_index.is_constant() || itable_index.as_register() == method_result,
 933          "caller must use same register for non-constant itable index as for method");
 934 
 935   // Compute start of first itableOffsetEntry (which is at the end of the vtable)
 936   int vtable_base = in_bytes(Klass::vtable_start_offset());
 937   int itentry_off = itableMethodEntry::method_offset_in_bytes();
 938   int scan_step   = itableOffsetEntry::size() * wordSize;
 939   int vte_size    = vtableEntry::size_in_bytes();
 940   assert(vte_size == wordSize, "else adjust times_vte_scale");
 941 
 942   ldrw(scan_temp, Address(recv_klass, Klass::vtable_length_offset()));
 943 
 944   // %%% Could store the aligned, prescaled offset in the klassoop.
 945   // lea(scan_temp, Address(recv_klass, scan_temp, times_vte_scale, vtable_base));
 946   lea(scan_temp, Address(recv_klass, scan_temp, Address::lsl(3)));
 947   add(scan_temp, scan_temp, vtable_base);
 948 
 949   // Adjust recv_klass by scaled itable_index, so we can free itable_index.
 950   assert(itableMethodEntry::size() * wordSize == wordSize, "adjust the scaling in the code below");
 951   // lea(recv_klass, Address(recv_klass, itable_index, Address::times_ptr, itentry_off));
 952   lea(recv_klass, Address(recv_klass, itable_index, Address::lsl(3)));
 953   if (itentry_off)
 954     add(recv_klass, recv_klass, itentry_off);
 955 
 956   // for (scan = klass->itable(); scan->interface() != NULL; scan += scan_step) {
 957   //   if (scan->interface() == intf) {
 958   //     result = (klass + scan->offset() + itable_index);
 959   //   }
 960   // }
 961   Label search, found_method;
 962 
 963   for (int peel = 1; peel >= 0; peel--) {
 964     ldr(method_result, Address(scan_temp, itableOffsetEntry::interface_offset_in_bytes()));
 965     cmp(intf_klass, method_result);
 966 
 967     if (peel) {
 968       br(Assembler::EQ, found_method);
 969     } else {
 970       br(Assembler::NE, search);
 971       // (invert the test to fall through to found_method...)
 972     }
 973 
 974     if (!peel)  break;
 975 
 976     bind(search);
 977 
 978     // Check that the previous entry is non-null.  A null entry means that
 979     // the receiver class doesn't implement the interface, and wasn't the
 980     // same as when the caller was compiled.
 981     cbz(method_result, L_no_such_interface);
 982     add(scan_temp, scan_temp, scan_step);
 983   }
 984 
 985   bind(found_method);
 986 
 987   // Got a hit.
 988   ldr(scan_temp, Address(scan_temp, itableOffsetEntry::offset_offset_in_bytes()));
 989   ldr(method_result, Address(recv_klass, scan_temp));
 990 }
 991 
 992 // virtual method calling
 993 void MacroAssembler::lookup_virtual_method(Register recv_klass,
 994                                            RegisterOrConstant vtable_index,
 995                                            Register method_result) {
 996   const int base = in_bytes(Klass::vtable_start_offset());
 997   assert(vtableEntry::size() * wordSize == 8,
 998          "adjust the scaling in the code below");
 999   int vtable_offset_in_bytes = base + vtableEntry::method_offset_in_bytes();
1000 
1001   if (vtable_index.is_register()) {
1002     lea(method_result, Address(recv_klass,
1003                                vtable_index.as_register(),
1004                                Address::lsl(LogBytesPerWord)));
1005     ldr(method_result, Address(method_result, vtable_offset_in_bytes));
1006   } else {
1007     vtable_offset_in_bytes += vtable_index.as_constant() * wordSize;
1008     ldr(method_result, Address(recv_klass, vtable_offset_in_bytes));
1009   }
1010 }
1011 
1012 void MacroAssembler::check_klass_subtype(Register sub_klass,
1013                            Register super_klass,
1014                            Register temp_reg,
1015                            Label& L_success) {
1016   Label L_failure;
1017   check_klass_subtype_fast_path(sub_klass, super_klass, temp_reg,        &L_success, &L_failure, NULL);
1018   check_klass_subtype_slow_path(sub_klass, super_klass, temp_reg, noreg, &L_success, NULL);
1019   bind(L_failure);
1020 }
1021 
1022 
1023 void MacroAssembler::check_klass_subtype_fast_path(Register sub_klass,
1024                                                    Register super_klass,
1025                                                    Register temp_reg,
1026                                                    Label* L_success,
1027                                                    Label* L_failure,
1028                                                    Label* L_slow_path,
1029                                         RegisterOrConstant super_check_offset) {
1030   assert_different_registers(sub_klass, super_klass, temp_reg);
1031   bool must_load_sco = (super_check_offset.constant_or_zero() == -1);
1032   if (super_check_offset.is_register()) {
1033     assert_different_registers(sub_klass, super_klass,
1034                                super_check_offset.as_register());
1035   } else if (must_load_sco) {
1036     assert(temp_reg != noreg, "supply either a temp or a register offset");
1037   }
1038 
1039   Label L_fallthrough;
1040   int label_nulls = 0;
1041   if (L_success == NULL)   { L_success   = &L_fallthrough; label_nulls++; }
1042   if (L_failure == NULL)   { L_failure   = &L_fallthrough; label_nulls++; }
1043   if (L_slow_path == NULL) { L_slow_path = &L_fallthrough; label_nulls++; }
1044   assert(label_nulls <= 1, "at most one NULL in the batch");
1045 
1046   int sc_offset = in_bytes(Klass::secondary_super_cache_offset());
1047   int sco_offset = in_bytes(Klass::super_check_offset_offset());
1048   Address super_check_offset_addr(super_klass, sco_offset);
1049 
1050   // Hacked jmp, which may only be used just before L_fallthrough.
1051 #define final_jmp(label)                                                \
1052   if (&(label) == &L_fallthrough) { /*do nothing*/ }                    \
1053   else                            b(label)                /*omit semi*/
1054 
1055   // If the pointers are equal, we are done (e.g., String[] elements).
1056   // This self-check enables sharing of secondary supertype arrays among
1057   // non-primary types such as array-of-interface.  Otherwise, each such
1058   // type would need its own customized SSA.
1059   // We move this check to the front of the fast path because many
1060   // type checks are in fact trivially successful in this manner,
1061   // so we get a nicely predicted branch right at the start of the check.
1062   cmp(sub_klass, super_klass);
1063   br(Assembler::EQ, *L_success);
1064 
1065   // Check the supertype display:
1066   if (must_load_sco) {
1067     ldrw(temp_reg, super_check_offset_addr);
1068     super_check_offset = RegisterOrConstant(temp_reg);
1069   }
1070   Address super_check_addr(sub_klass, super_check_offset);
1071   ldr(rscratch1, super_check_addr);
1072   cmp(super_klass, rscratch1); // load displayed supertype
1073 
1074   // This check has worked decisively for primary supers.
1075   // Secondary supers are sought in the super_cache ('super_cache_addr').
1076   // (Secondary supers are interfaces and very deeply nested subtypes.)
1077   // This works in the same check above because of a tricky aliasing
1078   // between the super_cache and the primary super display elements.
1079   // (The 'super_check_addr' can address either, as the case requires.)
1080   // Note that the cache is updated below if it does not help us find
1081   // what we need immediately.
1082   // So if it was a primary super, we can just fail immediately.
1083   // Otherwise, it's the slow path for us (no success at this point).
1084 
1085   if (super_check_offset.is_register()) {
1086     br(Assembler::EQ, *L_success);
1087     cmp(super_check_offset.as_register(), sc_offset);
1088     if (L_failure == &L_fallthrough) {
1089       br(Assembler::EQ, *L_slow_path);
1090     } else {
1091       br(Assembler::NE, *L_failure);
1092       final_jmp(*L_slow_path);
1093     }
1094   } else if (super_check_offset.as_constant() == sc_offset) {
1095     // Need a slow path; fast failure is impossible.
1096     if (L_slow_path == &L_fallthrough) {
1097       br(Assembler::EQ, *L_success);
1098     } else {
1099       br(Assembler::NE, *L_slow_path);
1100       final_jmp(*L_success);
1101     }
1102   } else {
1103     // No slow path; it's a fast decision.
1104     if (L_failure == &L_fallthrough) {
1105       br(Assembler::EQ, *L_success);
1106     } else {
1107       br(Assembler::NE, *L_failure);
1108       final_jmp(*L_success);
1109     }
1110   }
1111 
1112   bind(L_fallthrough);
1113 
1114 #undef final_jmp
1115 }
1116 
1117 // These two are taken from x86, but they look generally useful
1118 
1119 // scans count pointer sized words at [addr] for occurence of value,
1120 // generic
1121 void MacroAssembler::repne_scan(Register addr, Register value, Register count,
1122                                 Register scratch) {
1123   Label Lloop, Lexit;
1124   cbz(count, Lexit);
1125   bind(Lloop);
1126   ldr(scratch, post(addr, wordSize));
1127   cmp(value, scratch);
1128   br(EQ, Lexit);
1129   sub(count, count, 1);
1130   cbnz(count, Lloop);
1131   bind(Lexit);
1132 }
1133 
1134 // scans count 4 byte words at [addr] for occurence of value,
1135 // generic
1136 void MacroAssembler::repne_scanw(Register addr, Register value, Register count,
1137                                 Register scratch) {
1138   Label Lloop, Lexit;
1139   cbz(count, Lexit);
1140   bind(Lloop);
1141   ldrw(scratch, post(addr, wordSize));
1142   cmpw(value, scratch);
1143   br(EQ, Lexit);
1144   sub(count, count, 1);
1145   cbnz(count, Lloop);
1146   bind(Lexit);
1147 }
1148 
1149 void MacroAssembler::check_klass_subtype_slow_path(Register sub_klass,
1150                                                    Register super_klass,
1151                                                    Register temp_reg,
1152                                                    Register temp2_reg,
1153                                                    Label* L_success,
1154                                                    Label* L_failure,
1155                                                    bool set_cond_codes) {
1156   assert_different_registers(sub_klass, super_klass, temp_reg);
1157   if (temp2_reg != noreg)
1158     assert_different_registers(sub_klass, super_klass, temp_reg, temp2_reg, rscratch1);
1159 #define IS_A_TEMP(reg) ((reg) == temp_reg || (reg) == temp2_reg)
1160 
1161   Label L_fallthrough;
1162   int label_nulls = 0;
1163   if (L_success == NULL)   { L_success   = &L_fallthrough; label_nulls++; }
1164   if (L_failure == NULL)   { L_failure   = &L_fallthrough; label_nulls++; }
1165   assert(label_nulls <= 1, "at most one NULL in the batch");
1166 
1167   // a couple of useful fields in sub_klass:
1168   int ss_offset = in_bytes(Klass::secondary_supers_offset());
1169   int sc_offset = in_bytes(Klass::secondary_super_cache_offset());
1170   Address secondary_supers_addr(sub_klass, ss_offset);
1171   Address super_cache_addr(     sub_klass, sc_offset);
1172 
1173   BLOCK_COMMENT("check_klass_subtype_slow_path");
1174 
1175   // Do a linear scan of the secondary super-klass chain.
1176   // This code is rarely used, so simplicity is a virtue here.
1177   // The repne_scan instruction uses fixed registers, which we must spill.
1178   // Don't worry too much about pre-existing connections with the input regs.
1179 
1180   assert(sub_klass != r0, "killed reg"); // killed by mov(r0, super)
1181   assert(sub_klass != r2, "killed reg"); // killed by lea(r2, &pst_counter)
1182 
1183   // Get super_klass value into r0 (even if it was in r5 or r2).
1184   RegSet pushed_registers;
1185   if (!IS_A_TEMP(r2))    pushed_registers += r2;
1186   if (!IS_A_TEMP(r5))    pushed_registers += r5;
1187 
1188   if (super_klass != r0 || UseCompressedOops) {
1189     if (!IS_A_TEMP(r0))   pushed_registers += r0;
1190   }
1191 
1192   push(pushed_registers, sp);
1193 
1194 #ifndef PRODUCT
1195   mov(rscratch2, (address)&SharedRuntime::_partial_subtype_ctr);
1196   Address pst_counter_addr(rscratch2);
1197   ldr(rscratch1, pst_counter_addr);
1198   add(rscratch1, rscratch1, 1);
1199   str(rscratch1, pst_counter_addr);
1200 #endif //PRODUCT
1201 
1202   // We will consult the secondary-super array.
1203   ldr(r5, secondary_supers_addr);
1204   // Load the array length.
1205   ldrw(r2, Address(r5, Array<Klass*>::length_offset_in_bytes()));
1206   // Skip to start of data.
1207   add(r5, r5, Array<Klass*>::base_offset_in_bytes());
1208 
1209   cmp(sp, zr); // Clear Z flag; SP is never zero
1210   // Scan R2 words at [R5] for an occurrence of R0.
1211   // Set NZ/Z based on last compare.
1212   repne_scan(r5, r0, r2, rscratch1);
1213 
1214   // Unspill the temp. registers:
1215   pop(pushed_registers, sp);
1216 
1217   br(Assembler::NE, *L_failure);
1218 
1219   // Success.  Cache the super we found and proceed in triumph.
1220   str(super_klass, super_cache_addr);
1221 
1222   if (L_success != &L_fallthrough) {
1223     b(*L_success);
1224   }
1225 
1226 #undef IS_A_TEMP
1227 
1228   bind(L_fallthrough);
1229 }
1230 
1231 
1232 void MacroAssembler::verify_oop(Register reg, const char* s) {
1233   if (!VerifyOops) return;
1234 
1235   // Pass register number to verify_oop_subroutine
1236   const char* b = NULL;
1237   {
1238     ResourceMark rm;
1239     stringStream ss;
1240     ss.print("verify_oop: %s: %s", reg->name(), s);
1241     b = code_string(ss.as_string());
1242   }
1243   BLOCK_COMMENT("verify_oop {");
1244 
1245   stp(r0, rscratch1, Address(pre(sp, -2 * wordSize)));
1246   stp(rscratch2, lr, Address(pre(sp, -2 * wordSize)));
1247 
1248   mov(r0, reg);
1249   mov(rscratch1, (address)b);
1250 
1251   // call indirectly to solve generation ordering problem
1252   lea(rscratch2, ExternalAddress(StubRoutines::verify_oop_subroutine_entry_address()));
1253   ldr(rscratch2, Address(rscratch2));
1254   blr(rscratch2);
1255 
1256   ldp(rscratch2, lr, Address(post(sp, 2 * wordSize)));
1257   ldp(r0, rscratch1, Address(post(sp, 2 * wordSize)));
1258 
1259   BLOCK_COMMENT("} verify_oop");
1260 }
1261 
1262 void MacroAssembler::verify_oop_addr(Address addr, const char* s) {
1263   if (!VerifyOops) return;
1264 
1265   const char* b = NULL;
1266   {
1267     ResourceMark rm;
1268     stringStream ss;
1269     ss.print("verify_oop_addr: %s", s);
1270     b = code_string(ss.as_string());
1271   }
1272   BLOCK_COMMENT("verify_oop_addr {");
1273 
1274   stp(r0, rscratch1, Address(pre(sp, -2 * wordSize)));
1275   stp(rscratch2, lr, Address(pre(sp, -2 * wordSize)));
1276 
1277   // addr may contain sp so we will have to adjust it based on the
1278   // pushes that we just did.
1279   if (addr.uses(sp)) {
1280     lea(r0, addr);
1281     ldr(r0, Address(r0, 4 * wordSize));
1282   } else {
1283     ldr(r0, addr);
1284   }
1285   mov(rscratch1, (address)b);
1286 
1287   // call indirectly to solve generation ordering problem
1288   lea(rscratch2, ExternalAddress(StubRoutines::verify_oop_subroutine_entry_address()));
1289   ldr(rscratch2, Address(rscratch2));
1290   blr(rscratch2);
1291 
1292   ldp(rscratch2, lr, Address(post(sp, 2 * wordSize)));
1293   ldp(r0, rscratch1, Address(post(sp, 2 * wordSize)));
1294 
1295   BLOCK_COMMENT("} verify_oop_addr");
1296 }
1297 
1298 Address MacroAssembler::argument_address(RegisterOrConstant arg_slot,
1299                                          int extra_slot_offset) {
1300   // cf. TemplateTable::prepare_invoke(), if (load_receiver).
1301   int stackElementSize = Interpreter::stackElementSize;
1302   int offset = Interpreter::expr_offset_in_bytes(extra_slot_offset+0);
1303 #ifdef ASSERT
1304   int offset1 = Interpreter::expr_offset_in_bytes(extra_slot_offset+1);
1305   assert(offset1 - offset == stackElementSize, "correct arithmetic");
1306 #endif
1307   if (arg_slot.is_constant()) {
1308     return Address(esp, arg_slot.as_constant() * stackElementSize
1309                    + offset);
1310   } else {
1311     add(rscratch1, esp, arg_slot.as_register(),
1312         ext::uxtx, exact_log2(stackElementSize));
1313     return Address(rscratch1, offset);
1314   }
1315 }
1316 
1317 void MacroAssembler::call_VM_leaf_base(address entry_point,
1318                                        int number_of_arguments,
1319                                        Label *retaddr) {
1320   call_VM_leaf_base1(entry_point, number_of_arguments, 0, ret_type_integral, retaddr);
1321 }
1322 
1323 void MacroAssembler::call_VM_leaf_base1(address entry_point,
1324                                         int number_of_gp_arguments,
1325                                         int number_of_fp_arguments,
1326                                         ret_type type,
1327                                         Label *retaddr) {
1328   Label E, L;
1329 
1330   stp(rscratch1, rmethod, Address(pre(sp, -2 * wordSize)));
1331 
1332   // We add 1 to number_of_arguments because the thread in arg0 is
1333   // not counted
1334   mov(rscratch1, entry_point);
1335   blrt(rscratch1, number_of_gp_arguments + 1, number_of_fp_arguments, type);
1336   if (retaddr)
1337     bind(*retaddr);
1338 
1339   ldp(rscratch1, rmethod, Address(post(sp, 2 * wordSize)));
1340   maybe_isb();
1341 }
1342 
1343 void MacroAssembler::call_VM_leaf(address entry_point, int number_of_arguments) {
1344   call_VM_leaf_base(entry_point, number_of_arguments);
1345 }
1346 
1347 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0) {
1348   pass_arg0(this, arg_0);
1349   call_VM_leaf_base(entry_point, 1);
1350 }
1351 
1352 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0, Register arg_1) {
1353   pass_arg0(this, arg_0);
1354   pass_arg1(this, arg_1);
1355   call_VM_leaf_base(entry_point, 2);
1356 }
1357 
1358 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0,
1359                                   Register arg_1, Register arg_2) {
1360   pass_arg0(this, arg_0);
1361   pass_arg1(this, arg_1);
1362   pass_arg2(this, arg_2);
1363   call_VM_leaf_base(entry_point, 3);
1364 }
1365 
1366 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0) {
1367   pass_arg0(this, arg_0);
1368   MacroAssembler::call_VM_leaf_base(entry_point, 1);
1369 }
1370 
1371 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1) {
1372 
1373   assert(arg_0 != c_rarg1, "smashed arg");
1374   pass_arg1(this, arg_1);
1375   pass_arg0(this, arg_0);
1376   MacroAssembler::call_VM_leaf_base(entry_point, 2);
1377 }
1378 
1379 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2) {
1380   assert(arg_0 != c_rarg2, "smashed arg");
1381   assert(arg_1 != c_rarg2, "smashed arg");
1382   pass_arg2(this, arg_2);
1383   assert(arg_0 != c_rarg1, "smashed arg");
1384   pass_arg1(this, arg_1);
1385   pass_arg0(this, arg_0);
1386   MacroAssembler::call_VM_leaf_base(entry_point, 3);
1387 }
1388 
1389 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2, Register arg_3) {
1390   assert(arg_0 != c_rarg3, "smashed arg");
1391   assert(arg_1 != c_rarg3, "smashed arg");
1392   assert(arg_2 != c_rarg3, "smashed arg");
1393   pass_arg3(this, arg_3);
1394   assert(arg_0 != c_rarg2, "smashed arg");
1395   assert(arg_1 != c_rarg2, "smashed arg");
1396   pass_arg2(this, arg_2);
1397   assert(arg_0 != c_rarg1, "smashed arg");
1398   pass_arg1(this, arg_1);
1399   pass_arg0(this, arg_0);
1400   MacroAssembler::call_VM_leaf_base(entry_point, 4);
1401 }
1402 
1403 void MacroAssembler::null_check(Register reg, int offset) {
1404   if (needs_explicit_null_check(offset)) {
1405     // provoke OS NULL exception if reg = NULL by
1406     // accessing M[reg] w/o changing any registers
1407     // NOTE: this is plenty to provoke a segv
1408     ldr(zr, Address(reg));
1409   } else {
1410     // nothing to do, (later) access of M[reg + offset]
1411     // will provoke OS NULL exception if reg = NULL
1412   }
1413 }
1414 
1415 // MacroAssembler protected routines needed to implement
1416 // public methods
1417 
1418 void MacroAssembler::mov(Register r, Address dest) {
1419   code_section()->relocate(pc(), dest.rspec());
1420   u_int64_t imm64 = (u_int64_t)dest.target();
1421   movptr(r, imm64);
1422 }
1423 
1424 // Move a constant pointer into r.  In AArch64 mode the virtual
1425 // address space is 48 bits in size, so we only need three
1426 // instructions to create a patchable instruction sequence that can
1427 // reach anywhere.
1428 void MacroAssembler::movptr(Register r, uintptr_t imm64) {
1429 #ifndef PRODUCT
1430   {
1431     char buffer[64];
1432     snprintf(buffer, sizeof(buffer), "0x%"PRIX64, imm64);
1433     block_comment(buffer);
1434   }
1435 #endif
1436   assert(imm64 < (1ul << 48), "48-bit overflow in address constant");
1437   movz(r, imm64 & 0xffff);
1438   imm64 >>= 16;
1439   movk(r, imm64 & 0xffff, 16);
1440   imm64 >>= 16;
1441   movk(r, imm64 & 0xffff, 32);
1442 }
1443 
1444 // Macro to mov replicated immediate to vector register.
1445 //  Vd will get the following values for different arrangements in T
1446 //   imm32 == hex 000000gh  T8B:  Vd = ghghghghghghghgh
1447 //   imm32 == hex 000000gh  T16B: Vd = ghghghghghghghghghghghghghghghgh
1448 //   imm32 == hex 0000efgh  T4H:  Vd = efghefghefghefgh
1449 //   imm32 == hex 0000efgh  T8H:  Vd = efghefghefghefghefghefghefghefgh
1450 //   imm32 == hex abcdefgh  T2S:  Vd = abcdefghabcdefgh
1451 //   imm32 == hex abcdefgh  T4S:  Vd = abcdefghabcdefghabcdefghabcdefgh
1452 //   T1D/T2D: invalid
1453 void MacroAssembler::mov(FloatRegister Vd, SIMD_Arrangement T, u_int32_t imm32) {
1454   assert(T != T1D && T != T2D, "invalid arrangement");
1455   if (T == T8B || T == T16B) {
1456     assert((imm32 & ~0xff) == 0, "extraneous bits in unsigned imm32 (T8B/T16B)");
1457     movi(Vd, T, imm32 & 0xff, 0);
1458     return;
1459   }
1460   u_int32_t nimm32 = ~imm32;
1461   if (T == T4H || T == T8H) {
1462     assert((imm32  & ~0xffff) == 0, "extraneous bits in unsigned imm32 (T4H/T8H)");
1463     imm32 &= 0xffff;
1464     nimm32 &= 0xffff;
1465   }
1466   u_int32_t x = imm32;
1467   int movi_cnt = 0;
1468   int movn_cnt = 0;
1469   while (x) { if (x & 0xff) movi_cnt++; x >>= 8; }
1470   x = nimm32;
1471   while (x) { if (x & 0xff) movn_cnt++; x >>= 8; }
1472   if (movn_cnt < movi_cnt) imm32 = nimm32;
1473   unsigned lsl = 0;
1474   while (imm32 && (imm32 & 0xff) == 0) { lsl += 8; imm32 >>= 8; }
1475   if (movn_cnt < movi_cnt)
1476     mvni(Vd, T, imm32 & 0xff, lsl);
1477   else
1478     movi(Vd, T, imm32 & 0xff, lsl);
1479   imm32 >>= 8; lsl += 8;
1480   while (imm32) {
1481     while ((imm32 & 0xff) == 0) { lsl += 8; imm32 >>= 8; }
1482     if (movn_cnt < movi_cnt)
1483       bici(Vd, T, imm32 & 0xff, lsl);
1484     else
1485       orri(Vd, T, imm32 & 0xff, lsl);
1486     lsl += 8; imm32 >>= 8;
1487   }
1488 }
1489 
1490 void MacroAssembler::mov_immediate64(Register dst, u_int64_t imm64)
1491 {
1492 #ifndef PRODUCT
1493   {
1494     char buffer[64];
1495     snprintf(buffer, sizeof(buffer), "0x%"PRIX64, imm64);
1496     block_comment(buffer);
1497   }
1498 #endif
1499   if (operand_valid_for_logical_immediate(false, imm64)) {
1500     orr(dst, zr, imm64);
1501   } else {
1502     // we can use a combination of MOVZ or MOVN with
1503     // MOVK to build up the constant
1504     u_int64_t imm_h[4];
1505     int zero_count = 0;
1506     int neg_count = 0;
1507     int i;
1508     for (i = 0; i < 4; i++) {
1509       imm_h[i] = ((imm64 >> (i * 16)) & 0xffffL);
1510       if (imm_h[i] == 0) {
1511         zero_count++;
1512       } else if (imm_h[i] == 0xffffL) {
1513         neg_count++;
1514       }
1515     }
1516     if (zero_count == 4) {
1517       // one MOVZ will do
1518       movz(dst, 0);
1519     } else if (neg_count == 4) {
1520       // one MOVN will do
1521       movn(dst, 0);
1522     } else if (zero_count == 3) {
1523       for (i = 0; i < 4; i++) {
1524         if (imm_h[i] != 0L) {
1525           movz(dst, (u_int32_t)imm_h[i], (i << 4));
1526           break;
1527         }
1528       }
1529     } else if (neg_count == 3) {
1530       // one MOVN will do
1531       for (int i = 0; i < 4; i++) {
1532         if (imm_h[i] != 0xffffL) {
1533           movn(dst, (u_int32_t)imm_h[i] ^ 0xffffL, (i << 4));
1534           break;
1535         }
1536       }
1537     } else if (zero_count == 2) {
1538       // one MOVZ and one MOVK will do
1539       for (i = 0; i < 3; i++) {
1540         if (imm_h[i] != 0L) {
1541           movz(dst, (u_int32_t)imm_h[i], (i << 4));
1542           i++;
1543           break;
1544         }
1545       }
1546       for (;i < 4; i++) {
1547         if (imm_h[i] != 0L) {
1548           movk(dst, (u_int32_t)imm_h[i], (i << 4));
1549         }
1550       }
1551     } else if (neg_count == 2) {
1552       // one MOVN and one MOVK will do
1553       for (i = 0; i < 4; i++) {
1554         if (imm_h[i] != 0xffffL) {
1555           movn(dst, (u_int32_t)imm_h[i] ^ 0xffffL, (i << 4));
1556           i++;
1557           break;
1558         }
1559       }
1560       for (;i < 4; i++) {
1561         if (imm_h[i] != 0xffffL) {
1562           movk(dst, (u_int32_t)imm_h[i], (i << 4));
1563         }
1564       }
1565     } else if (zero_count == 1) {
1566       // one MOVZ and two MOVKs will do
1567       for (i = 0; i < 4; i++) {
1568         if (imm_h[i] != 0L) {
1569           movz(dst, (u_int32_t)imm_h[i], (i << 4));
1570           i++;
1571           break;
1572         }
1573       }
1574       for (;i < 4; i++) {
1575         if (imm_h[i] != 0x0L) {
1576           movk(dst, (u_int32_t)imm_h[i], (i << 4));
1577         }
1578       }
1579     } else if (neg_count == 1) {
1580       // one MOVN and two MOVKs will do
1581       for (i = 0; i < 4; i++) {
1582         if (imm_h[i] != 0xffffL) {
1583           movn(dst, (u_int32_t)imm_h[i] ^ 0xffffL, (i << 4));
1584           i++;
1585           break;
1586         }
1587       }
1588       for (;i < 4; i++) {
1589         if (imm_h[i] != 0xffffL) {
1590           movk(dst, (u_int32_t)imm_h[i], (i << 4));
1591         }
1592       }
1593     } else {
1594       // use a MOVZ and 3 MOVKs (makes it easier to debug)
1595       movz(dst, (u_int32_t)imm_h[0], 0);
1596       for (i = 1; i < 4; i++) {
1597         movk(dst, (u_int32_t)imm_h[i], (i << 4));
1598       }
1599     }
1600   }
1601 }
1602 
1603 void MacroAssembler::mov_immediate32(Register dst, u_int32_t imm32)
1604 {
1605 #ifndef PRODUCT
1606     {
1607       char buffer[64];
1608       snprintf(buffer, sizeof(buffer), "0x%"PRIX32, imm32);
1609       block_comment(buffer);
1610     }
1611 #endif
1612   if (operand_valid_for_logical_immediate(true, imm32)) {
1613     orrw(dst, zr, imm32);
1614   } else {
1615     // we can use MOVZ, MOVN or two calls to MOVK to build up the
1616     // constant
1617     u_int32_t imm_h[2];
1618     imm_h[0] = imm32 & 0xffff;
1619     imm_h[1] = ((imm32 >> 16) & 0xffff);
1620     if (imm_h[0] == 0) {
1621       movzw(dst, imm_h[1], 16);
1622     } else if (imm_h[0] == 0xffff) {
1623       movnw(dst, imm_h[1] ^ 0xffff, 16);
1624     } else if (imm_h[1] == 0) {
1625       movzw(dst, imm_h[0], 0);
1626     } else if (imm_h[1] == 0xffff) {
1627       movnw(dst, imm_h[0] ^ 0xffff, 0);
1628     } else {
1629       // use a MOVZ and MOVK (makes it easier to debug)
1630       movzw(dst, imm_h[0], 0);
1631       movkw(dst, imm_h[1], 16);
1632     }
1633   }
1634 }
1635 
1636 // Form an address from base + offset in Rd.  Rd may or may
1637 // not actually be used: you must use the Address that is returned.
1638 // It is up to you to ensure that the shift provided matches the size
1639 // of your data.
1640 Address MacroAssembler::form_address(Register Rd, Register base, long byte_offset, int shift) {
1641   if (Address::offset_ok_for_immed(byte_offset, shift))
1642     // It fits; no need for any heroics
1643     return Address(base, byte_offset);
1644 
1645   // Don't do anything clever with negative or misaligned offsets
1646   unsigned mask = (1 << shift) - 1;
1647   if (byte_offset < 0 || byte_offset & mask) {
1648     mov(Rd, byte_offset);
1649     add(Rd, base, Rd);
1650     return Address(Rd);
1651   }
1652 
1653   // See if we can do this with two 12-bit offsets
1654   {
1655     unsigned long word_offset = byte_offset >> shift;
1656     unsigned long masked_offset = word_offset & 0xfff000;
1657     if (Address::offset_ok_for_immed(word_offset - masked_offset)
1658         && Assembler::operand_valid_for_add_sub_immediate(masked_offset << shift)) {
1659       add(Rd, base, masked_offset << shift);
1660       word_offset -= masked_offset;
1661       return Address(Rd, word_offset << shift);
1662     }
1663   }
1664 
1665   // Do it the hard way
1666   mov(Rd, byte_offset);
1667   add(Rd, base, Rd);
1668   return Address(Rd);
1669 }
1670 
1671 void MacroAssembler::atomic_incw(Register counter_addr, Register tmp, Register tmp2) {
1672   if (UseLSE) {
1673     mov(tmp, 1);
1674     ldadd(Assembler::word, tmp, zr, counter_addr);
1675     return;
1676   }
1677   Label retry_load;
1678   if ((VM_Version::features() & VM_Version::CPU_STXR_PREFETCH))
1679     prfm(Address(counter_addr), PSTL1STRM);
1680   bind(retry_load);
1681   // flush and load exclusive from the memory location
1682   ldxrw(tmp, counter_addr);
1683   addw(tmp, tmp, 1);
1684   // if we store+flush with no intervening write tmp wil be zero
1685   stxrw(tmp2, tmp, counter_addr);
1686   cbnzw(tmp2, retry_load);
1687 }
1688 
1689 
1690 int MacroAssembler::corrected_idivl(Register result, Register ra, Register rb,
1691                                     bool want_remainder, Register scratch)
1692 {
1693   // Full implementation of Java idiv and irem.  The function
1694   // returns the (pc) offset of the div instruction - may be needed
1695   // for implicit exceptions.
1696   //
1697   // constraint : ra/rb =/= scratch
1698   //         normal case
1699   //
1700   // input : ra: dividend
1701   //         rb: divisor
1702   //
1703   // result: either
1704   //         quotient  (= ra idiv rb)
1705   //         remainder (= ra irem rb)
1706 
1707   assert(ra != scratch && rb != scratch, "reg cannot be scratch");
1708 
1709   int idivl_offset = offset();
1710   if (! want_remainder) {
1711     sdivw(result, ra, rb);
1712   } else {
1713     sdivw(scratch, ra, rb);
1714     Assembler::msubw(result, scratch, rb, ra);
1715   }
1716 
1717   return idivl_offset;
1718 }
1719 
1720 int MacroAssembler::corrected_idivq(Register result, Register ra, Register rb,
1721                                     bool want_remainder, Register scratch)
1722 {
1723   // Full implementation of Java ldiv and lrem.  The function
1724   // returns the (pc) offset of the div instruction - may be needed
1725   // for implicit exceptions.
1726   //
1727   // constraint : ra/rb =/= scratch
1728   //         normal case
1729   //
1730   // input : ra: dividend
1731   //         rb: divisor
1732   //
1733   // result: either
1734   //         quotient  (= ra idiv rb)
1735   //         remainder (= ra irem rb)
1736 
1737   assert(ra != scratch && rb != scratch, "reg cannot be scratch");
1738 
1739   int idivq_offset = offset();
1740   if (! want_remainder) {
1741     sdiv(result, ra, rb);
1742   } else {
1743     sdiv(scratch, ra, rb);
1744     Assembler::msub(result, scratch, rb, ra);
1745   }
1746 
1747   return idivq_offset;
1748 }
1749 
1750 void MacroAssembler::membar(Membar_mask_bits order_constraint) {
1751   address prev = pc() - NativeMembar::instruction_size;
1752   if (prev == code()->last_membar()) {
1753     NativeMembar *bar = NativeMembar_at(prev);
1754     // We are merging two memory barrier instructions.  On AArch64 we
1755     // can do this simply by ORing them together.
1756     bar->set_kind(bar->get_kind() | order_constraint);
1757     BLOCK_COMMENT("merged membar");
1758   } else {
1759     code()->set_last_membar(pc());
1760     dmb(Assembler::barrier(order_constraint));
1761   }
1762 }
1763 
1764 // MacroAssembler routines found actually to be needed
1765 
1766 void MacroAssembler::push(Register src)
1767 {
1768   str(src, Address(pre(esp, -1 * wordSize)));
1769 }
1770 
1771 void MacroAssembler::pop(Register dst)
1772 {
1773   ldr(dst, Address(post(esp, 1 * wordSize)));
1774 }
1775 
1776 // Note: load_unsigned_short used to be called load_unsigned_word.
1777 int MacroAssembler::load_unsigned_short(Register dst, Address src) {
1778   int off = offset();
1779   ldrh(dst, src);
1780   return off;
1781 }
1782 
1783 int MacroAssembler::load_unsigned_byte(Register dst, Address src) {
1784   int off = offset();
1785   ldrb(dst, src);
1786   return off;
1787 }
1788 
1789 int MacroAssembler::load_signed_short(Register dst, Address src) {
1790   int off = offset();
1791   ldrsh(dst, src);
1792   return off;
1793 }
1794 
1795 int MacroAssembler::load_signed_byte(Register dst, Address src) {
1796   int off = offset();
1797   ldrsb(dst, src);
1798   return off;
1799 }
1800 
1801 int MacroAssembler::load_signed_short32(Register dst, Address src) {
1802   int off = offset();
1803   ldrshw(dst, src);
1804   return off;
1805 }
1806 
1807 int MacroAssembler::load_signed_byte32(Register dst, Address src) {
1808   int off = offset();
1809   ldrsbw(dst, src);
1810   return off;
1811 }
1812 
1813 void MacroAssembler::load_sized_value(Register dst, Address src, size_t size_in_bytes, bool is_signed, Register dst2) {
1814   switch (size_in_bytes) {
1815   case  8:  ldr(dst, src); break;
1816   case  4:  ldrw(dst, src); break;
1817   case  2:  is_signed ? load_signed_short(dst, src) : load_unsigned_short(dst, src); break;
1818   case  1:  is_signed ? load_signed_byte( dst, src) : load_unsigned_byte( dst, src); break;
1819   default:  ShouldNotReachHere();
1820   }
1821 }
1822 
1823 void MacroAssembler::store_sized_value(Address dst, Register src, size_t size_in_bytes, Register src2) {
1824   switch (size_in_bytes) {
1825   case  8:  str(src, dst); break;
1826   case  4:  strw(src, dst); break;
1827   case  2:  strh(src, dst); break;
1828   case  1:  strb(src, dst); break;
1829   default:  ShouldNotReachHere();
1830   }
1831 }
1832 
1833 void MacroAssembler::decrementw(Register reg, int value)
1834 {
1835   if (value < 0)  { incrementw(reg, -value);      return; }
1836   if (value == 0) {                               return; }
1837   if (value < (1 << 12)) { subw(reg, reg, value); return; }
1838   /* else */ {
1839     guarantee(reg != rscratch2, "invalid dst for register decrement");
1840     movw(rscratch2, (unsigned)value);
1841     subw(reg, reg, rscratch2);
1842   }
1843 }
1844 
1845 void MacroAssembler::decrement(Register reg, int value)
1846 {
1847   if (value < 0)  { increment(reg, -value);      return; }
1848   if (value == 0) {                              return; }
1849   if (value < (1 << 12)) { sub(reg, reg, value); return; }
1850   /* else */ {
1851     assert(reg != rscratch2, "invalid dst for register decrement");
1852     mov(rscratch2, (unsigned long)value);
1853     sub(reg, reg, rscratch2);
1854   }
1855 }
1856 
1857 void MacroAssembler::decrementw(Address dst, int value)
1858 {
1859   assert(!dst.uses(rscratch1), "invalid dst for address decrement");
1860   ldrw(rscratch1, dst);
1861   decrementw(rscratch1, value);
1862   strw(rscratch1, dst);
1863 }
1864 
1865 void MacroAssembler::decrement(Address dst, int value)
1866 {
1867   assert(!dst.uses(rscratch1), "invalid address for decrement");
1868   ldr(rscratch1, dst);
1869   decrement(rscratch1, value);
1870   str(rscratch1, dst);
1871 }
1872 
1873 void MacroAssembler::incrementw(Register reg, int value)
1874 {
1875   if (value < 0)  { decrementw(reg, -value);      return; }
1876   if (value == 0) {                               return; }
1877   if (value < (1 << 12)) { addw(reg, reg, value); return; }
1878   /* else */ {
1879     assert(reg != rscratch2, "invalid dst for register increment");
1880     movw(rscratch2, (unsigned)value);
1881     addw(reg, reg, rscratch2);
1882   }
1883 }
1884 
1885 void MacroAssembler::increment(Register reg, int value)
1886 {
1887   if (value < 0)  { decrement(reg, -value);      return; }
1888   if (value == 0) {                              return; }
1889   if (value < (1 << 12)) { add(reg, reg, value); return; }
1890   /* else */ {
1891     assert(reg != rscratch2, "invalid dst for register increment");
1892     movw(rscratch2, (unsigned)value);
1893     add(reg, reg, rscratch2);
1894   }
1895 }
1896 
1897 void MacroAssembler::incrementw(Address dst, int value)
1898 {
1899   assert(!dst.uses(rscratch1), "invalid dst for address increment");
1900   ldrw(rscratch1, dst);
1901   incrementw(rscratch1, value);
1902   strw(rscratch1, dst);
1903 }
1904 
1905 void MacroAssembler::increment(Address dst, int value)
1906 {
1907   assert(!dst.uses(rscratch1), "invalid dst for address increment");
1908   ldr(rscratch1, dst);
1909   increment(rscratch1, value);
1910   str(rscratch1, dst);
1911 }
1912 
1913 
1914 void MacroAssembler::pusha() {
1915   push(0x7fffffff, sp);
1916 }
1917 
1918 void MacroAssembler::popa() {
1919   pop(0x7fffffff, sp);
1920 }
1921 
1922 // Push lots of registers in the bit set supplied.  Don't push sp.
1923 // Return the number of words pushed
1924 int MacroAssembler::push(unsigned int bitset, Register stack) {
1925   int words_pushed = 0;
1926 
1927   // Scan bitset to accumulate register pairs
1928   unsigned char regs[32];
1929   int count = 0;
1930   for (int reg = 0; reg <= 30; reg++) {
1931     if (1 & bitset)
1932       regs[count++] = reg;
1933     bitset >>= 1;
1934   }
1935   regs[count++] = zr->encoding_nocheck();
1936   count &= ~1;  // Only push an even nuber of regs
1937 
1938   if (count) {
1939     stp(as_Register(regs[0]), as_Register(regs[1]),
1940        Address(pre(stack, -count * wordSize)));
1941     words_pushed += 2;
1942   }
1943   for (int i = 2; i < count; i += 2) {
1944     stp(as_Register(regs[i]), as_Register(regs[i+1]),
1945        Address(stack, i * wordSize));
1946     words_pushed += 2;
1947   }
1948 
1949   assert(words_pushed == count, "oops, pushed != count");
1950 
1951   return count;
1952 }
1953 
1954 int MacroAssembler::pop(unsigned int bitset, Register stack) {
1955   int words_pushed = 0;
1956 
1957   // Scan bitset to accumulate register pairs
1958   unsigned char regs[32];
1959   int count = 0;
1960   for (int reg = 0; reg <= 30; reg++) {
1961     if (1 & bitset)
1962       regs[count++] = reg;
1963     bitset >>= 1;
1964   }
1965   regs[count++] = zr->encoding_nocheck();
1966   count &= ~1;
1967 
1968   for (int i = 2; i < count; i += 2) {
1969     ldp(as_Register(regs[i]), as_Register(regs[i+1]),
1970        Address(stack, i * wordSize));
1971     words_pushed += 2;
1972   }
1973   if (count) {
1974     ldp(as_Register(regs[0]), as_Register(regs[1]),
1975        Address(post(stack, count * wordSize)));
1976     words_pushed += 2;
1977   }
1978 
1979   assert(words_pushed == count, "oops, pushed != count");
1980 
1981   return count;
1982 }
1983 #ifdef ASSERT
1984 void MacroAssembler::verify_heapbase(const char* msg) {
1985 #if 0
1986   assert (UseCompressedOops || UseCompressedClassPointers, "should be compressed");
1987   assert (Universe::heap() != NULL, "java heap should be initialized");
1988   if (CheckCompressedOops) {
1989     Label ok;
1990     push(1 << rscratch1->encoding(), sp); // cmpptr trashes rscratch1
1991     cmpptr(rheapbase, ExternalAddress((address)Universe::narrow_ptrs_base_addr()));
1992     br(Assembler::EQ, ok);
1993     stop(msg);
1994     bind(ok);
1995     pop(1 << rscratch1->encoding(), sp);
1996   }
1997 #endif
1998 }
1999 #endif
2000 
2001 void MacroAssembler::stop(const char* msg) {
2002   address ip = pc();
2003   pusha();
2004   mov(c_rarg0, (address)msg);
2005   mov(c_rarg1, (address)ip);
2006   mov(c_rarg2, sp);
2007   mov(c_rarg3, CAST_FROM_FN_PTR(address, MacroAssembler::debug64));
2008   // call(c_rarg3);
2009   blrt(c_rarg3, 3, 0, 1);
2010   hlt(0);
2011 }
2012 
2013 // If a constant does not fit in an immediate field, generate some
2014 // number of MOV instructions and then perform the operation.
2015 void MacroAssembler::wrap_add_sub_imm_insn(Register Rd, Register Rn, unsigned imm,
2016                                            add_sub_imm_insn insn1,
2017                                            add_sub_reg_insn insn2) {
2018   assert(Rd != zr, "Rd = zr and not setting flags?");
2019   if (operand_valid_for_add_sub_immediate((int)imm)) {
2020     (this->*insn1)(Rd, Rn, imm);
2021   } else {
2022     if (uabs(imm) < (1 << 24)) {
2023        (this->*insn1)(Rd, Rn, imm & -(1 << 12));
2024        (this->*insn1)(Rd, Rd, imm & ((1 << 12)-1));
2025     } else {
2026        assert_different_registers(Rd, Rn);
2027        mov(Rd, (uint64_t)imm);
2028        (this->*insn2)(Rd, Rn, Rd, LSL, 0);
2029     }
2030   }
2031 }
2032 
2033 // Seperate vsn which sets the flags. Optimisations are more restricted
2034 // because we must set the flags correctly.
2035 void MacroAssembler::wrap_adds_subs_imm_insn(Register Rd, Register Rn, unsigned imm,
2036                                            add_sub_imm_insn insn1,
2037                                            add_sub_reg_insn insn2) {
2038   if (operand_valid_for_add_sub_immediate((int)imm)) {
2039     (this->*insn1)(Rd, Rn, imm);
2040   } else {
2041     assert_different_registers(Rd, Rn);
2042     assert(Rd != zr, "overflow in immediate operand");
2043     mov(Rd, (uint64_t)imm);
2044     (this->*insn2)(Rd, Rn, Rd, LSL, 0);
2045   }
2046 }
2047 
2048 
2049 void MacroAssembler::add(Register Rd, Register Rn, RegisterOrConstant increment) {
2050   if (increment.is_register()) {
2051     add(Rd, Rn, increment.as_register());
2052   } else {
2053     add(Rd, Rn, increment.as_constant());
2054   }
2055 }
2056 
2057 void MacroAssembler::addw(Register Rd, Register Rn, RegisterOrConstant increment) {
2058   if (increment.is_register()) {
2059     addw(Rd, Rn, increment.as_register());
2060   } else {
2061     addw(Rd, Rn, increment.as_constant());
2062   }
2063 }
2064 
2065 void MacroAssembler::sub(Register Rd, Register Rn, RegisterOrConstant decrement) {
2066   if (decrement.is_register()) {
2067     sub(Rd, Rn, decrement.as_register());
2068   } else {
2069     sub(Rd, Rn, decrement.as_constant());
2070   }
2071 }
2072 
2073 void MacroAssembler::subw(Register Rd, Register Rn, RegisterOrConstant decrement) {
2074   if (decrement.is_register()) {
2075     subw(Rd, Rn, decrement.as_register());
2076   } else {
2077     subw(Rd, Rn, decrement.as_constant());
2078   }
2079 }
2080 
2081 void MacroAssembler::reinit_heapbase()
2082 {
2083   if (UseCompressedOops) {
2084     if (Universe::is_fully_initialized()) {
2085       mov(rheapbase, Universe::narrow_ptrs_base());
2086     } else {
2087       lea(rheapbase, ExternalAddress((address)Universe::narrow_ptrs_base_addr()));
2088       ldr(rheapbase, Address(rheapbase));
2089     }
2090   }
2091 }
2092 
2093 // this simulates the behaviour of the x86 cmpxchg instruction using a
2094 // load linked/store conditional pair. we use the acquire/release
2095 // versions of these instructions so that we flush pending writes as
2096 // per Java semantics.
2097 
2098 // n.b the x86 version assumes the old value to be compared against is
2099 // in rax and updates rax with the value located in memory if the
2100 // cmpxchg fails. we supply a register for the old value explicitly
2101 
2102 // the aarch64 load linked/store conditional instructions do not
2103 // accept an offset. so, unlike x86, we must provide a plain register
2104 // to identify the memory word to be compared/exchanged rather than a
2105 // register+offset Address.
2106 
2107 void MacroAssembler::cmpxchgptr(Register oldv, Register newv, Register addr, Register tmp,
2108                                 Label &succeed, Label *fail) {
2109   // oldv holds comparison value
2110   // newv holds value to write in exchange
2111   // addr identifies memory word to compare against/update
2112   if (UseLSE) {
2113     mov(tmp, oldv);
2114     casal(Assembler::xword, oldv, newv, addr);
2115     cmp(tmp, oldv);
2116     br(Assembler::EQ, succeed);
2117     membar(AnyAny);
2118   } else {
2119     Label retry_load, nope;
2120     if ((VM_Version::features() & VM_Version::CPU_STXR_PREFETCH))
2121       prfm(Address(addr), PSTL1STRM);
2122     bind(retry_load);
2123     // flush and load exclusive from the memory location
2124     // and fail if it is not what we expect
2125     ldaxr(tmp, addr);
2126     cmp(tmp, oldv);
2127     br(Assembler::NE, nope);
2128     // if we store+flush with no intervening write tmp wil be zero
2129     stlxr(tmp, newv, addr);
2130     cbzw(tmp, succeed);
2131     // retry so we only ever return after a load fails to compare
2132     // ensures we don't return a stale value after a failed write.
2133     b(retry_load);
2134     // if the memory word differs we return it in oldv and signal a fail
2135     bind(nope);
2136     membar(AnyAny);
2137     mov(oldv, tmp);
2138   }
2139   if (fail)
2140     b(*fail);
2141 }
2142 
2143 void MacroAssembler::cmpxchgw(Register oldv, Register newv, Register addr, Register tmp,
2144                                 Label &succeed, Label *fail) {
2145   // oldv holds comparison value
2146   // newv holds value to write in exchange
2147   // addr identifies memory word to compare against/update
2148   // tmp returns 0/1 for success/failure
2149   if (UseLSE) {
2150     mov(tmp, oldv);
2151     casal(Assembler::word, oldv, newv, addr);
2152     cmp(tmp, oldv);
2153     br(Assembler::EQ, succeed);
2154     membar(AnyAny);
2155   } else {
2156     Label retry_load, nope;
2157     if ((VM_Version::features() & VM_Version::CPU_STXR_PREFETCH))
2158       prfm(Address(addr), PSTL1STRM);
2159     bind(retry_load);
2160     // flush and load exclusive from the memory location
2161     // and fail if it is not what we expect
2162     ldaxrw(tmp, addr);
2163     cmp(tmp, oldv);
2164     br(Assembler::NE, nope);
2165     // if we store+flush with no intervening write tmp wil be zero
2166     stlxrw(tmp, newv, addr);
2167     cbzw(tmp, succeed);
2168     // retry so we only ever return after a load fails to compare
2169     // ensures we don't return a stale value after a failed write.
2170     b(retry_load);
2171     // if the memory word differs we return it in oldv and signal a fail
2172     bind(nope);
2173     membar(AnyAny);
2174     mov(oldv, tmp);
2175   }
2176   if (fail)
2177     b(*fail);
2178 }
2179 
2180 // A generic CAS; success or failure is in the EQ flag.  A weak CAS
2181 // doesn't retry and may fail spuriously.  If the oldval is wanted,
2182 // Pass a register for the result, otherwise pass noreg.
2183 
2184 // Clobbers rscratch1
2185 void MacroAssembler::cmpxchg(Register addr, Register expected,
2186                              Register new_val,
2187                              enum operand_size size,
2188                              bool acquire, bool release,
2189                              bool weak,
2190                              Register result) {
2191   if (result == noreg)  result = rscratch1;
2192   if (UseLSE) {
2193     mov(result, expected);
2194     lse_cas(result, new_val, addr, size, acquire, release, /*not_pair*/ true);
2195     cmp(result, expected);
2196   } else {
2197     BLOCK_COMMENT("cmpxchg {");
2198     Label retry_load, done;
2199     if ((VM_Version::features() & VM_Version::CPU_STXR_PREFETCH))
2200       prfm(Address(addr), PSTL1STRM);
2201     bind(retry_load);
2202     load_exclusive(result, addr, size, acquire);
2203     if (size == xword)
2204       cmp(result, expected);
2205     else
2206       cmpw(result, expected);
2207     br(Assembler::NE, done);
2208     store_exclusive(rscratch1, new_val, addr, size, release);
2209     if (weak) {
2210       cmpw(rscratch1, 0u);  // If the store fails, return NE to our caller.
2211     } else {
2212       cbnzw(rscratch1, retry_load);
2213     }
2214     bind(done);
2215     BLOCK_COMMENT("} cmpxchg");
2216   }
2217 }
2218 
2219 static bool different(Register a, RegisterOrConstant b, Register c) {
2220   if (b.is_constant())
2221     return a != c;
2222   else
2223     return a != b.as_register() && a != c && b.as_register() != c;
2224 }
2225 
2226 #define ATOMIC_OP(NAME, LDXR, OP, IOP, AOP, STXR, sz)                   \
2227 void MacroAssembler::atomic_##NAME(Register prev, RegisterOrConstant incr, Register addr) { \
2228   if (UseLSE) {                                                         \
2229     prev = prev->is_valid() ? prev : zr;                                \
2230     if (incr.is_register()) {                                           \
2231       AOP(sz, incr.as_register(), prev, addr);                          \
2232     } else {                                                            \
2233       mov(rscratch2, incr.as_constant());                               \
2234       AOP(sz, rscratch2, prev, addr);                                   \
2235     }                                                                   \
2236     return;                                                             \
2237   }                                                                     \
2238   Register result = rscratch2;                                          \
2239   if (prev->is_valid())                                                 \
2240     result = different(prev, incr, addr) ? prev : rscratch2;            \
2241                                                                         \
2242   Label retry_load;                                                     \
2243   if ((VM_Version::features() & VM_Version::CPU_STXR_PREFETCH))         \
2244     prfm(Address(addr), PSTL1STRM);                                     \
2245   bind(retry_load);                                                     \
2246   LDXR(result, addr);                                                   \
2247   OP(rscratch1, result, incr);                                          \
2248   STXR(rscratch2, rscratch1, addr);                                     \
2249   cbnzw(rscratch2, retry_load);                                         \
2250   if (prev->is_valid() && prev != result) {                             \
2251     IOP(prev, rscratch1, incr);                                         \
2252   }                                                                     \
2253 }
2254 
2255 ATOMIC_OP(add, ldxr, add, sub, ldadd, stxr, Assembler::xword)
2256 ATOMIC_OP(addw, ldxrw, addw, subw, ldadd, stxrw, Assembler::word)
2257 ATOMIC_OP(addal, ldaxr, add, sub, ldaddal, stlxr, Assembler::xword)
2258 ATOMIC_OP(addalw, ldaxrw, addw, subw, ldaddal, stlxrw, Assembler::word)
2259 
2260 #undef ATOMIC_OP
2261 
2262 #define ATOMIC_XCHG(OP, AOP, LDXR, STXR, sz)                            \
2263 void MacroAssembler::atomic_##OP(Register prev, Register newv, Register addr) { \
2264   if (UseLSE) {                                                         \
2265     prev = prev->is_valid() ? prev : zr;                                \
2266     AOP(sz, newv, prev, addr);                                          \
2267     return;                                                             \
2268   }                                                                     \
2269   Register result = rscratch2;                                          \
2270   if (prev->is_valid())                                                 \
2271     result = different(prev, newv, addr) ? prev : rscratch2;            \
2272                                                                         \
2273   Label retry_load;                                                     \
2274   if ((VM_Version::features() & VM_Version::CPU_STXR_PREFETCH))         \
2275     prfm(Address(addr), PSTL1STRM);                                     \
2276   bind(retry_load);                                                     \
2277   LDXR(result, addr);                                                   \
2278   STXR(rscratch1, newv, addr);                                          \
2279   cbnzw(rscratch1, retry_load);                                         \
2280   if (prev->is_valid() && prev != result)                               \
2281     mov(prev, result);                                                  \
2282 }
2283 
2284 ATOMIC_XCHG(xchg, swp, ldxr, stxr, Assembler::xword)
2285 ATOMIC_XCHG(xchgw, swp, ldxrw, stxrw, Assembler::word)
2286 ATOMIC_XCHG(xchgal, swpal, ldaxr, stlxr, Assembler::xword)
2287 ATOMIC_XCHG(xchgalw, swpal, ldaxrw, stlxrw, Assembler::word)
2288 
2289 #undef ATOMIC_XCHG
2290 
2291 void MacroAssembler::incr_allocated_bytes(Register thread,
2292                                           Register var_size_in_bytes,
2293                                           int con_size_in_bytes,
2294                                           Register t1) {
2295   if (!thread->is_valid()) {
2296     thread = rthread;
2297   }
2298   assert(t1->is_valid(), "need temp reg");
2299 
2300   ldr(t1, Address(thread, in_bytes(JavaThread::allocated_bytes_offset())));
2301   if (var_size_in_bytes->is_valid()) {
2302     add(t1, t1, var_size_in_bytes);
2303   } else {
2304     add(t1, t1, con_size_in_bytes);
2305   }
2306   str(t1, Address(thread, in_bytes(JavaThread::allocated_bytes_offset())));
2307 }
2308 
2309 #ifndef PRODUCT
2310 extern "C" void findpc(intptr_t x);
2311 #endif
2312 
2313 void MacroAssembler::debug64(char* msg, int64_t pc, int64_t regs[])
2314 {
2315   // In order to get locks to work, we need to fake a in_VM state
2316   if (ShowMessageBoxOnError ) {
2317     JavaThread* thread = JavaThread::current();
2318     JavaThreadState saved_state = thread->thread_state();
2319     thread->set_thread_state(_thread_in_vm);
2320 #ifndef PRODUCT
2321     if (CountBytecodes || TraceBytecodes || StopInterpreterAt) {
2322       ttyLocker ttyl;
2323       BytecodeCounter::print();
2324     }
2325 #endif
2326     if (os::message_box(msg, "Execution stopped, print registers?")) {
2327       ttyLocker ttyl;
2328       tty->print_cr(" pc = 0x%016lx", pc);
2329 #ifndef PRODUCT
2330       tty->cr();
2331       findpc(pc);
2332       tty->cr();
2333 #endif
2334       tty->print_cr(" r0 = 0x%016lx", regs[0]);
2335       tty->print_cr(" r1 = 0x%016lx", regs[1]);
2336       tty->print_cr(" r2 = 0x%016lx", regs[2]);
2337       tty->print_cr(" r3 = 0x%016lx", regs[3]);
2338       tty->print_cr(" r4 = 0x%016lx", regs[4]);
2339       tty->print_cr(" r5 = 0x%016lx", regs[5]);
2340       tty->print_cr(" r6 = 0x%016lx", regs[6]);
2341       tty->print_cr(" r7 = 0x%016lx", regs[7]);
2342       tty->print_cr(" r8 = 0x%016lx", regs[8]);
2343       tty->print_cr(" r9 = 0x%016lx", regs[9]);
2344       tty->print_cr("r10 = 0x%016lx", regs[10]);
2345       tty->print_cr("r11 = 0x%016lx", regs[11]);
2346       tty->print_cr("r12 = 0x%016lx", regs[12]);
2347       tty->print_cr("r13 = 0x%016lx", regs[13]);
2348       tty->print_cr("r14 = 0x%016lx", regs[14]);
2349       tty->print_cr("r15 = 0x%016lx", regs[15]);
2350       tty->print_cr("r16 = 0x%016lx", regs[16]);
2351       tty->print_cr("r17 = 0x%016lx", regs[17]);
2352       tty->print_cr("r18 = 0x%016lx", regs[18]);
2353       tty->print_cr("r19 = 0x%016lx", regs[19]);
2354       tty->print_cr("r20 = 0x%016lx", regs[20]);
2355       tty->print_cr("r21 = 0x%016lx", regs[21]);
2356       tty->print_cr("r22 = 0x%016lx", regs[22]);
2357       tty->print_cr("r23 = 0x%016lx", regs[23]);
2358       tty->print_cr("r24 = 0x%016lx", regs[24]);
2359       tty->print_cr("r25 = 0x%016lx", regs[25]);
2360       tty->print_cr("r26 = 0x%016lx", regs[26]);
2361       tty->print_cr("r27 = 0x%016lx", regs[27]);
2362       tty->print_cr("r28 = 0x%016lx", regs[28]);
2363       tty->print_cr("r30 = 0x%016lx", regs[30]);
2364       tty->print_cr("r31 = 0x%016lx", regs[31]);
2365       BREAKPOINT;
2366     }
2367     ThreadStateTransition::transition(thread, _thread_in_vm, saved_state);
2368   } else {
2369     ttyLocker ttyl;
2370     ::tty->print_cr("=============== DEBUG MESSAGE: %s ================\n",
2371                     msg);
2372     assert(false, "DEBUG MESSAGE: %s", msg);
2373   }
2374 }
2375 
2376 #ifdef BUILTIN_SIM
2377 // routine to generate an x86 prolog for a stub function which
2378 // bootstraps into the generated ARM code which directly follows the
2379 // stub
2380 //
2381 // the argument encodes the number of general and fp registers
2382 // passed by the caller and the callng convention (currently just
2383 // the number of general registers and assumes C argument passing)
2384 
2385 extern "C" {
2386 int aarch64_stub_prolog_size();
2387 void aarch64_stub_prolog();
2388 void aarch64_prolog();
2389 }
2390 
2391 void MacroAssembler::c_stub_prolog(int gp_arg_count, int fp_arg_count, int ret_type,
2392                                    address *prolog_ptr)
2393 {
2394   int calltype = (((ret_type & 0x3) << 8) |
2395                   ((fp_arg_count & 0xf) << 4) |
2396                   (gp_arg_count & 0xf));
2397 
2398   // the addresses for the x86 to ARM entry code we need to use
2399   address start = pc();
2400   // printf("start = %lx\n", start);
2401   int byteCount =  aarch64_stub_prolog_size();
2402   // printf("byteCount = %x\n", byteCount);
2403   int instructionCount = (byteCount + 3)/ 4;
2404   // printf("instructionCount = %x\n", instructionCount);
2405   for (int i = 0; i < instructionCount; i++) {
2406     nop();
2407   }
2408 
2409   memcpy(start, (void*)aarch64_stub_prolog, byteCount);
2410 
2411   // write the address of the setup routine and the call format at the
2412   // end of into the copied code
2413   u_int64_t *patch_end = (u_int64_t *)(start + byteCount);
2414   if (prolog_ptr)
2415     patch_end[-2] = (u_int64_t)prolog_ptr;
2416   patch_end[-1] = calltype;
2417 }
2418 #endif
2419 
2420 void MacroAssembler::push_call_clobbered_registers() {
2421   push(RegSet::range(r0, r18) - RegSet::of(rscratch1, rscratch2), sp);
2422 
2423   // Push v0-v7, v16-v31.
2424   for (int i = 30; i >= 0; i -= 2) {
2425     if (i <= v7->encoding() || i >= v16->encoding()) {
2426         stpd(as_FloatRegister(i), as_FloatRegister(i+1),
2427              Address(pre(sp, -2 * wordSize)));
2428     }
2429   }
2430 }
2431 
2432 void MacroAssembler::pop_call_clobbered_registers() {
2433 
2434   for (int i = 0; i < 32; i += 2) {
2435     if (i <= v7->encoding() || i >= v16->encoding()) {
2436       ldpd(as_FloatRegister(i), as_FloatRegister(i+1),
2437            Address(post(sp, 2 * wordSize)));
2438     }
2439   }
2440 
2441   pop(RegSet::range(r0, r18) - RegSet::of(rscratch1, rscratch2), sp);
2442 }
2443 
2444 void MacroAssembler::push_CPU_state(bool save_vectors) {
2445   push(0x3fffffff, sp);         // integer registers except lr & sp
2446 
2447   if (!save_vectors) {
2448     for (int i = 30; i >= 0; i -= 2)
2449       stpd(as_FloatRegister(i), as_FloatRegister(i+1),
2450            Address(pre(sp, -2 * wordSize)));
2451   } else {
2452     for (int i = 30; i >= 0; i -= 2)
2453       stpq(as_FloatRegister(i), as_FloatRegister(i+1),
2454            Address(pre(sp, -4 * wordSize)));
2455   }
2456 }
2457 
2458 void MacroAssembler::pop_CPU_state(bool restore_vectors) {
2459   if (!restore_vectors) {
2460     for (int i = 0; i < 32; i += 2)
2461       ldpd(as_FloatRegister(i), as_FloatRegister(i+1),
2462            Address(post(sp, 2 * wordSize)));
2463   } else {
2464     for (int i = 0; i < 32; i += 2)
2465       ldpq(as_FloatRegister(i), as_FloatRegister(i+1),
2466            Address(post(sp, 4 * wordSize)));
2467   }
2468 
2469   pop(0x3fffffff, sp);         // integer registers except lr & sp
2470 }
2471 
2472 /**
2473  * Helpers for multiply_to_len().
2474  */
2475 void MacroAssembler::add2_with_carry(Register final_dest_hi, Register dest_hi, Register dest_lo,
2476                                      Register src1, Register src2) {
2477   adds(dest_lo, dest_lo, src1);
2478   adc(dest_hi, dest_hi, zr);
2479   adds(dest_lo, dest_lo, src2);
2480   adc(final_dest_hi, dest_hi, zr);
2481 }
2482 
2483 // Generate an address from (r + r1 extend offset).  "size" is the
2484 // size of the operand.  The result may be in rscratch2.
2485 Address MacroAssembler::offsetted_address(Register r, Register r1,
2486                                           Address::extend ext, int offset, int size) {
2487   if (offset || (ext.shift() % size != 0)) {
2488     lea(rscratch2, Address(r, r1, ext));
2489     return Address(rscratch2, offset);
2490   } else {
2491     return Address(r, r1, ext);
2492   }
2493 }
2494 
2495 Address MacroAssembler::spill_address(int size, int offset, Register tmp)
2496 {
2497   assert(offset >= 0, "spill to negative address?");
2498   // Offset reachable ?
2499   //   Not aligned - 9 bits signed offset
2500   //   Aligned - 12 bits unsigned offset shifted
2501   Register base = sp;
2502   if ((offset & (size-1)) && offset >= (1<<8)) {
2503     add(tmp, base, offset & ((1<<12)-1));
2504     base = tmp;
2505     offset &= -1<<12;
2506   }
2507 
2508   if (offset >= (1<<12) * size) {
2509     add(tmp, base, offset & (((1<<12)-1)<<12));
2510     base = tmp;
2511     offset &= ~(((1<<12)-1)<<12);
2512   }
2513 
2514   return Address(base, offset);
2515 }
2516 
2517 /**
2518  * Multiply 64 bit by 64 bit first loop.
2519  */
2520 void MacroAssembler::multiply_64_x_64_loop(Register x, Register xstart, Register x_xstart,
2521                                            Register y, Register y_idx, Register z,
2522                                            Register carry, Register product,
2523                                            Register idx, Register kdx) {
2524   //
2525   //  jlong carry, x[], y[], z[];
2526   //  for (int idx=ystart, kdx=ystart+1+xstart; idx >= 0; idx-, kdx--) {
2527   //    huge_128 product = y[idx] * x[xstart] + carry;
2528   //    z[kdx] = (jlong)product;
2529   //    carry  = (jlong)(product >>> 64);
2530   //  }
2531   //  z[xstart] = carry;
2532   //
2533 
2534   Label L_first_loop, L_first_loop_exit;
2535   Label L_one_x, L_one_y, L_multiply;
2536 
2537   subsw(xstart, xstart, 1);
2538   br(Assembler::MI, L_one_x);
2539 
2540   lea(rscratch1, Address(x, xstart, Address::lsl(LogBytesPerInt)));
2541   ldr(x_xstart, Address(rscratch1));
2542   ror(x_xstart, x_xstart, 32); // convert big-endian to little-endian
2543 
2544   bind(L_first_loop);
2545   subsw(idx, idx, 1);
2546   br(Assembler::MI, L_first_loop_exit);
2547   subsw(idx, idx, 1);
2548   br(Assembler::MI, L_one_y);
2549   lea(rscratch1, Address(y, idx, Address::uxtw(LogBytesPerInt)));
2550   ldr(y_idx, Address(rscratch1));
2551   ror(y_idx, y_idx, 32); // convert big-endian to little-endian
2552   bind(L_multiply);
2553 
2554   // AArch64 has a multiply-accumulate instruction that we can't use
2555   // here because it has no way to process carries, so we have to use
2556   // separate add and adc instructions.  Bah.
2557   umulh(rscratch1, x_xstart, y_idx); // x_xstart * y_idx -> rscratch1:product
2558   mul(product, x_xstart, y_idx);
2559   adds(product, product, carry);
2560   adc(carry, rscratch1, zr);   // x_xstart * y_idx + carry -> carry:product
2561 
2562   subw(kdx, kdx, 2);
2563   ror(product, product, 32); // back to big-endian
2564   str(product, offsetted_address(z, kdx, Address::uxtw(LogBytesPerInt), 0, BytesPerLong));
2565 
2566   b(L_first_loop);
2567 
2568   bind(L_one_y);
2569   ldrw(y_idx, Address(y,  0));
2570   b(L_multiply);
2571 
2572   bind(L_one_x);
2573   ldrw(x_xstart, Address(x,  0));
2574   b(L_first_loop);
2575 
2576   bind(L_first_loop_exit);
2577 }
2578 
2579 /**
2580  * Multiply 128 bit by 128. Unrolled inner loop.
2581  *
2582  */
2583 void MacroAssembler::multiply_128_x_128_loop(Register y, Register z,
2584                                              Register carry, Register carry2,
2585                                              Register idx, Register jdx,
2586                                              Register yz_idx1, Register yz_idx2,
2587                                              Register tmp, Register tmp3, Register tmp4,
2588                                              Register tmp6, Register product_hi) {
2589 
2590   //   jlong carry, x[], y[], z[];
2591   //   int kdx = ystart+1;
2592   //   for (int idx=ystart-2; idx >= 0; idx -= 2) { // Third loop
2593   //     huge_128 tmp3 = (y[idx+1] * product_hi) + z[kdx+idx+1] + carry;
2594   //     jlong carry2  = (jlong)(tmp3 >>> 64);
2595   //     huge_128 tmp4 = (y[idx]   * product_hi) + z[kdx+idx] + carry2;
2596   //     carry  = (jlong)(tmp4 >>> 64);
2597   //     z[kdx+idx+1] = (jlong)tmp3;
2598   //     z[kdx+idx] = (jlong)tmp4;
2599   //   }
2600   //   idx += 2;
2601   //   if (idx > 0) {
2602   //     yz_idx1 = (y[idx] * product_hi) + z[kdx+idx] + carry;
2603   //     z[kdx+idx] = (jlong)yz_idx1;
2604   //     carry  = (jlong)(yz_idx1 >>> 64);
2605   //   }
2606   //
2607 
2608   Label L_third_loop, L_third_loop_exit, L_post_third_loop_done;
2609 
2610   lsrw(jdx, idx, 2);
2611 
2612   bind(L_third_loop);
2613 
2614   subsw(jdx, jdx, 1);
2615   br(Assembler::MI, L_third_loop_exit);
2616   subw(idx, idx, 4);
2617 
2618   lea(rscratch1, Address(y, idx, Address::uxtw(LogBytesPerInt)));
2619 
2620   ldp(yz_idx2, yz_idx1, Address(rscratch1, 0));
2621 
2622   lea(tmp6, Address(z, idx, Address::uxtw(LogBytesPerInt)));
2623 
2624   ror(yz_idx1, yz_idx1, 32); // convert big-endian to little-endian
2625   ror(yz_idx2, yz_idx2, 32);
2626 
2627   ldp(rscratch2, rscratch1, Address(tmp6, 0));
2628 
2629   mul(tmp3, product_hi, yz_idx1);  //  yz_idx1 * product_hi -> tmp4:tmp3
2630   umulh(tmp4, product_hi, yz_idx1);
2631 
2632   ror(rscratch1, rscratch1, 32); // convert big-endian to little-endian
2633   ror(rscratch2, rscratch2, 32);
2634 
2635   mul(tmp, product_hi, yz_idx2);   //  yz_idx2 * product_hi -> carry2:tmp
2636   umulh(carry2, product_hi, yz_idx2);
2637 
2638   // propagate sum of both multiplications into carry:tmp4:tmp3
2639   adds(tmp3, tmp3, carry);
2640   adc(tmp4, tmp4, zr);
2641   adds(tmp3, tmp3, rscratch1);
2642   adcs(tmp4, tmp4, tmp);
2643   adc(carry, carry2, zr);
2644   adds(tmp4, tmp4, rscratch2);
2645   adc(carry, carry, zr);
2646 
2647   ror(tmp3, tmp3, 32); // convert little-endian to big-endian
2648   ror(tmp4, tmp4, 32);
2649   stp(tmp4, tmp3, Address(tmp6, 0));
2650 
2651   b(L_third_loop);
2652   bind (L_third_loop_exit);
2653 
2654   andw (idx, idx, 0x3);
2655   cbz(idx, L_post_third_loop_done);
2656 
2657   Label L_check_1;
2658   subsw(idx, idx, 2);
2659   br(Assembler::MI, L_check_1);
2660 
2661   lea(rscratch1, Address(y, idx, Address::uxtw(LogBytesPerInt)));
2662   ldr(yz_idx1, Address(rscratch1, 0));
2663   ror(yz_idx1, yz_idx1, 32);
2664   mul(tmp3, product_hi, yz_idx1);  //  yz_idx1 * product_hi -> tmp4:tmp3
2665   umulh(tmp4, product_hi, yz_idx1);
2666   lea(rscratch1, Address(z, idx, Address::uxtw(LogBytesPerInt)));
2667   ldr(yz_idx2, Address(rscratch1, 0));
2668   ror(yz_idx2, yz_idx2, 32);
2669 
2670   add2_with_carry(carry, tmp4, tmp3, carry, yz_idx2);
2671 
2672   ror(tmp3, tmp3, 32);
2673   str(tmp3, Address(rscratch1, 0));
2674 
2675   bind (L_check_1);
2676 
2677   andw (idx, idx, 0x1);
2678   subsw(idx, idx, 1);
2679   br(Assembler::MI, L_post_third_loop_done);
2680   ldrw(tmp4, Address(y, idx, Address::uxtw(LogBytesPerInt)));
2681   mul(tmp3, tmp4, product_hi);  //  tmp4 * product_hi -> carry2:tmp3
2682   umulh(carry2, tmp4, product_hi);
2683   ldrw(tmp4, Address(z, idx, Address::uxtw(LogBytesPerInt)));
2684 
2685   add2_with_carry(carry2, tmp3, tmp4, carry);
2686 
2687   strw(tmp3, Address(z, idx, Address::uxtw(LogBytesPerInt)));
2688   extr(carry, carry2, tmp3, 32);
2689 
2690   bind(L_post_third_loop_done);
2691 }
2692 
2693 /**
2694  * Code for BigInteger::multiplyToLen() instrinsic.
2695  *
2696  * r0: x
2697  * r1: xlen
2698  * r2: y
2699  * r3: ylen
2700  * r4:  z
2701  * r5: zlen
2702  * r10: tmp1
2703  * r11: tmp2
2704  * r12: tmp3
2705  * r13: tmp4
2706  * r14: tmp5
2707  * r15: tmp6
2708  * r16: tmp7
2709  *
2710  */
2711 void MacroAssembler::multiply_to_len(Register x, Register xlen, Register y, Register ylen,
2712                                      Register z, Register zlen,
2713                                      Register tmp1, Register tmp2, Register tmp3, Register tmp4,
2714                                      Register tmp5, Register tmp6, Register product_hi) {
2715 
2716   assert_different_registers(x, xlen, y, ylen, z, zlen, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6);
2717 
2718   const Register idx = tmp1;
2719   const Register kdx = tmp2;
2720   const Register xstart = tmp3;
2721 
2722   const Register y_idx = tmp4;
2723   const Register carry = tmp5;
2724   const Register product  = xlen;
2725   const Register x_xstart = zlen;  // reuse register
2726 
2727   // First Loop.
2728   //
2729   //  final static long LONG_MASK = 0xffffffffL;
2730   //  int xstart = xlen - 1;
2731   //  int ystart = ylen - 1;
2732   //  long carry = 0;
2733   //  for (int idx=ystart, kdx=ystart+1+xstart; idx >= 0; idx-, kdx--) {
2734   //    long product = (y[idx] & LONG_MASK) * (x[xstart] & LONG_MASK) + carry;
2735   //    z[kdx] = (int)product;
2736   //    carry = product >>> 32;
2737   //  }
2738   //  z[xstart] = (int)carry;
2739   //
2740 
2741   movw(idx, ylen);      // idx = ylen;
2742   movw(kdx, zlen);      // kdx = xlen+ylen;
2743   mov(carry, zr);       // carry = 0;
2744 
2745   Label L_done;
2746 
2747   movw(xstart, xlen);
2748   subsw(xstart, xstart, 1);
2749   br(Assembler::MI, L_done);
2750 
2751   multiply_64_x_64_loop(x, xstart, x_xstart, y, y_idx, z, carry, product, idx, kdx);
2752 
2753   Label L_second_loop;
2754   cbzw(kdx, L_second_loop);
2755 
2756   Label L_carry;
2757   subw(kdx, kdx, 1);
2758   cbzw(kdx, L_carry);
2759 
2760   strw(carry, Address(z, kdx, Address::uxtw(LogBytesPerInt)));
2761   lsr(carry, carry, 32);
2762   subw(kdx, kdx, 1);
2763 
2764   bind(L_carry);
2765   strw(carry, Address(z, kdx, Address::uxtw(LogBytesPerInt)));
2766 
2767   // Second and third (nested) loops.
2768   //
2769   // for (int i = xstart-1; i >= 0; i--) { // Second loop
2770   //   carry = 0;
2771   //   for (int jdx=ystart, k=ystart+1+i; jdx >= 0; jdx--, k--) { // Third loop
2772   //     long product = (y[jdx] & LONG_MASK) * (x[i] & LONG_MASK) +
2773   //                    (z[k] & LONG_MASK) + carry;
2774   //     z[k] = (int)product;
2775   //     carry = product >>> 32;
2776   //   }
2777   //   z[i] = (int)carry;
2778   // }
2779   //
2780   // i = xlen, j = tmp1, k = tmp2, carry = tmp5, x[i] = product_hi
2781 
2782   const Register jdx = tmp1;
2783 
2784   bind(L_second_loop);
2785   mov(carry, zr);                // carry = 0;
2786   movw(jdx, ylen);               // j = ystart+1
2787 
2788   subsw(xstart, xstart, 1);      // i = xstart-1;
2789   br(Assembler::MI, L_done);
2790 
2791   str(z, Address(pre(sp, -4 * wordSize)));
2792 
2793   Label L_last_x;
2794   lea(z, offsetted_address(z, xstart, Address::uxtw(LogBytesPerInt), 4, BytesPerInt)); // z = z + k - j
2795   subsw(xstart, xstart, 1);       // i = xstart-1;
2796   br(Assembler::MI, L_last_x);
2797 
2798   lea(rscratch1, Address(x, xstart, Address::uxtw(LogBytesPerInt)));
2799   ldr(product_hi, Address(rscratch1));
2800   ror(product_hi, product_hi, 32);  // convert big-endian to little-endian
2801 
2802   Label L_third_loop_prologue;
2803   bind(L_third_loop_prologue);
2804 
2805   str(ylen, Address(sp, wordSize));
2806   stp(x, xstart, Address(sp, 2 * wordSize));
2807   multiply_128_x_128_loop(y, z, carry, x, jdx, ylen, product,
2808                           tmp2, x_xstart, tmp3, tmp4, tmp6, product_hi);
2809   ldp(z, ylen, Address(post(sp, 2 * wordSize)));
2810   ldp(x, xlen, Address(post(sp, 2 * wordSize)));   // copy old xstart -> xlen
2811 
2812   addw(tmp3, xlen, 1);
2813   strw(carry, Address(z, tmp3, Address::uxtw(LogBytesPerInt)));
2814   subsw(tmp3, tmp3, 1);
2815   br(Assembler::MI, L_done);
2816 
2817   lsr(carry, carry, 32);
2818   strw(carry, Address(z, tmp3, Address::uxtw(LogBytesPerInt)));
2819   b(L_second_loop);
2820 
2821   // Next infrequent code is moved outside loops.
2822   bind(L_last_x);
2823   ldrw(product_hi, Address(x,  0));
2824   b(L_third_loop_prologue);
2825 
2826   bind(L_done);
2827 }
2828 
2829 /**
2830  * Emits code to update CRC-32 with a byte value according to constants in table
2831  *
2832  * @param [in,out]crc   Register containing the crc.
2833  * @param [in]val       Register containing the byte to fold into the CRC.
2834  * @param [in]table     Register containing the table of crc constants.
2835  *
2836  * uint32_t crc;
2837  * val = crc_table[(val ^ crc) & 0xFF];
2838  * crc = val ^ (crc >> 8);
2839  *
2840  */
2841 void MacroAssembler::update_byte_crc32(Register crc, Register val, Register table) {
2842   eor(val, val, crc);
2843   andr(val, val, 0xff);
2844   ldrw(val, Address(table, val, Address::lsl(2)));
2845   eor(crc, val, crc, Assembler::LSR, 8);
2846 }
2847 
2848 /**
2849  * Emits code to update CRC-32 with a 32-bit value according to tables 0 to 3
2850  *
2851  * @param [in,out]crc   Register containing the crc.
2852  * @param [in]v         Register containing the 32-bit to fold into the CRC.
2853  * @param [in]table0    Register containing table 0 of crc constants.
2854  * @param [in]table1    Register containing table 1 of crc constants.
2855  * @param [in]table2    Register containing table 2 of crc constants.
2856  * @param [in]table3    Register containing table 3 of crc constants.
2857  *
2858  * uint32_t crc;
2859  *   v = crc ^ v
2860  *   crc = table3[v&0xff]^table2[(v>>8)&0xff]^table1[(v>>16)&0xff]^table0[v>>24]
2861  *
2862  */
2863 void MacroAssembler::update_word_crc32(Register crc, Register v, Register tmp,
2864         Register table0, Register table1, Register table2, Register table3,
2865         bool upper) {
2866   eor(v, crc, v, upper ? LSR:LSL, upper ? 32:0);
2867   uxtb(tmp, v);
2868   ldrw(crc, Address(table3, tmp, Address::lsl(2)));
2869   ubfx(tmp, v, 8, 8);
2870   ldrw(tmp, Address(table2, tmp, Address::lsl(2)));
2871   eor(crc, crc, tmp);
2872   ubfx(tmp, v, 16, 8);
2873   ldrw(tmp, Address(table1, tmp, Address::lsl(2)));
2874   eor(crc, crc, tmp);
2875   ubfx(tmp, v, 24, 8);
2876   ldrw(tmp, Address(table0, tmp, Address::lsl(2)));
2877   eor(crc, crc, tmp);
2878 }
2879 
2880 /**
2881  * @param crc   register containing existing CRC (32-bit)
2882  * @param buf   register pointing to input byte buffer (byte*)
2883  * @param len   register containing number of bytes
2884  * @param table register that will contain address of CRC table
2885  * @param tmp   scratch register
2886  */
2887 void MacroAssembler::kernel_crc32(Register crc, Register buf, Register len,
2888         Register table0, Register table1, Register table2, Register table3,
2889         Register tmp, Register tmp2, Register tmp3) {
2890   Label L_by16, L_by16_loop, L_by4, L_by4_loop, L_by1, L_by1_loop, L_exit;
2891   unsigned long offset;
2892 
2893     ornw(crc, zr, crc);
2894 
2895   if (UseCRC32) {
2896     Label CRC_by64_loop, CRC_by4_loop, CRC_by1_loop;
2897 
2898       subs(len, len, 64);
2899       br(Assembler::GE, CRC_by64_loop);
2900       adds(len, len, 64-4);
2901       br(Assembler::GE, CRC_by4_loop);
2902       adds(len, len, 4);
2903       br(Assembler::GT, CRC_by1_loop);
2904       b(L_exit);
2905 
2906     BIND(CRC_by4_loop);
2907       ldrw(tmp, Address(post(buf, 4)));
2908       subs(len, len, 4);
2909       crc32w(crc, crc, tmp);
2910       br(Assembler::GE, CRC_by4_loop);
2911       adds(len, len, 4);
2912       br(Assembler::LE, L_exit);
2913     BIND(CRC_by1_loop);
2914       ldrb(tmp, Address(post(buf, 1)));
2915       subs(len, len, 1);
2916       crc32b(crc, crc, tmp);
2917       br(Assembler::GT, CRC_by1_loop);
2918       b(L_exit);
2919 
2920       align(CodeEntryAlignment);
2921     BIND(CRC_by64_loop);
2922       subs(len, len, 64);
2923       ldp(tmp, tmp3, Address(post(buf, 16)));
2924       crc32x(crc, crc, tmp);
2925       crc32x(crc, crc, tmp3);
2926       ldp(tmp, tmp3, Address(post(buf, 16)));
2927       crc32x(crc, crc, tmp);
2928       crc32x(crc, crc, tmp3);
2929       ldp(tmp, tmp3, Address(post(buf, 16)));
2930       crc32x(crc, crc, tmp);
2931       crc32x(crc, crc, tmp3);
2932       ldp(tmp, tmp3, Address(post(buf, 16)));
2933       crc32x(crc, crc, tmp);
2934       crc32x(crc, crc, tmp3);
2935       br(Assembler::GE, CRC_by64_loop);
2936       adds(len, len, 64-4);
2937       br(Assembler::GE, CRC_by4_loop);
2938       adds(len, len, 4);
2939       br(Assembler::GT, CRC_by1_loop);
2940     BIND(L_exit);
2941       ornw(crc, zr, crc);
2942       return;
2943   }
2944 
2945     adrp(table0, ExternalAddress(StubRoutines::crc_table_addr()), offset);
2946     if (offset) add(table0, table0, offset);
2947     add(table1, table0, 1*256*sizeof(juint));
2948     add(table2, table0, 2*256*sizeof(juint));
2949     add(table3, table0, 3*256*sizeof(juint));
2950 
2951   if (UseNeon) {
2952       cmp(len, 64);
2953       br(Assembler::LT, L_by16);
2954       eor(v16, T16B, v16, v16);
2955 
2956     Label L_fold;
2957 
2958       add(tmp, table0, 4*256*sizeof(juint)); // Point at the Neon constants
2959 
2960       ld1(v0, v1, T2D, post(buf, 32));
2961       ld1r(v4, T2D, post(tmp, 8));
2962       ld1r(v5, T2D, post(tmp, 8));
2963       ld1r(v6, T2D, post(tmp, 8));
2964       ld1r(v7, T2D, post(tmp, 8));
2965       mov(v16, T4S, 0, crc);
2966 
2967       eor(v0, T16B, v0, v16);
2968       sub(len, len, 64);
2969 
2970     BIND(L_fold);
2971       pmull(v22, T8H, v0, v5, T8B);
2972       pmull(v20, T8H, v0, v7, T8B);
2973       pmull(v23, T8H, v0, v4, T8B);
2974       pmull(v21, T8H, v0, v6, T8B);
2975 
2976       pmull2(v18, T8H, v0, v5, T16B);
2977       pmull2(v16, T8H, v0, v7, T16B);
2978       pmull2(v19, T8H, v0, v4, T16B);
2979       pmull2(v17, T8H, v0, v6, T16B);
2980 
2981       uzp1(v24, v20, v22, T8H);
2982       uzp2(v25, v20, v22, T8H);
2983       eor(v20, T16B, v24, v25);
2984 
2985       uzp1(v26, v16, v18, T8H);
2986       uzp2(v27, v16, v18, T8H);
2987       eor(v16, T16B, v26, v27);
2988 
2989       ushll2(v22, T4S, v20, T8H, 8);
2990       ushll(v20, T4S, v20, T4H, 8);
2991 
2992       ushll2(v18, T4S, v16, T8H, 8);
2993       ushll(v16, T4S, v16, T4H, 8);
2994 
2995       eor(v22, T16B, v23, v22);
2996       eor(v18, T16B, v19, v18);
2997       eor(v20, T16B, v21, v20);
2998       eor(v16, T16B, v17, v16);
2999 
3000       uzp1(v17, v16, v20, T2D);
3001       uzp2(v21, v16, v20, T2D);
3002       eor(v17, T16B, v17, v21);
3003 
3004       ushll2(v20, T2D, v17, T4S, 16);
3005       ushll(v16, T2D, v17, T2S, 16);
3006 
3007       eor(v20, T16B, v20, v22);
3008       eor(v16, T16B, v16, v18);
3009 
3010       uzp1(v17, v20, v16, T2D);
3011       uzp2(v21, v20, v16, T2D);
3012       eor(v28, T16B, v17, v21);
3013 
3014       pmull(v22, T8H, v1, v5, T8B);
3015       pmull(v20, T8H, v1, v7, T8B);
3016       pmull(v23, T8H, v1, v4, T8B);
3017       pmull(v21, T8H, v1, v6, T8B);
3018 
3019       pmull2(v18, T8H, v1, v5, T16B);
3020       pmull2(v16, T8H, v1, v7, T16B);
3021       pmull2(v19, T8H, v1, v4, T16B);
3022       pmull2(v17, T8H, v1, v6, T16B);
3023 
3024       ld1(v0, v1, T2D, post(buf, 32));
3025 
3026       uzp1(v24, v20, v22, T8H);
3027       uzp2(v25, v20, v22, T8H);
3028       eor(v20, T16B, v24, v25);
3029 
3030       uzp1(v26, v16, v18, T8H);
3031       uzp2(v27, v16, v18, T8H);
3032       eor(v16, T16B, v26, v27);
3033 
3034       ushll2(v22, T4S, v20, T8H, 8);
3035       ushll(v20, T4S, v20, T4H, 8);
3036 
3037       ushll2(v18, T4S, v16, T8H, 8);
3038       ushll(v16, T4S, v16, T4H, 8);
3039 
3040       eor(v22, T16B, v23, v22);
3041       eor(v18, T16B, v19, v18);
3042       eor(v20, T16B, v21, v20);
3043       eor(v16, T16B, v17, v16);
3044 
3045       uzp1(v17, v16, v20, T2D);
3046       uzp2(v21, v16, v20, T2D);
3047       eor(v16, T16B, v17, v21);
3048 
3049       ushll2(v20, T2D, v16, T4S, 16);
3050       ushll(v16, T2D, v16, T2S, 16);
3051 
3052       eor(v20, T16B, v22, v20);
3053       eor(v16, T16B, v16, v18);
3054 
3055       uzp1(v17, v20, v16, T2D);
3056       uzp2(v21, v20, v16, T2D);
3057       eor(v20, T16B, v17, v21);
3058 
3059       shl(v16, T2D, v28, 1);
3060       shl(v17, T2D, v20, 1);
3061 
3062       eor(v0, T16B, v0, v16);
3063       eor(v1, T16B, v1, v17);
3064 
3065       subs(len, len, 32);
3066       br(Assembler::GE, L_fold);
3067 
3068       mov(crc, 0);
3069       mov(tmp, v0, T1D, 0);
3070       update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, false);
3071       update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, true);
3072       mov(tmp, v0, T1D, 1);
3073       update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, false);
3074       update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, true);
3075       mov(tmp, v1, T1D, 0);
3076       update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, false);
3077       update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, true);
3078       mov(tmp, v1, T1D, 1);
3079       update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, false);
3080       update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, true);
3081 
3082       add(len, len, 32);
3083   }
3084 
3085   BIND(L_by16);
3086     subs(len, len, 16);
3087     br(Assembler::GE, L_by16_loop);
3088     adds(len, len, 16-4);
3089     br(Assembler::GE, L_by4_loop);
3090     adds(len, len, 4);
3091     br(Assembler::GT, L_by1_loop);
3092     b(L_exit);
3093 
3094   BIND(L_by4_loop);
3095     ldrw(tmp, Address(post(buf, 4)));
3096     update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3);
3097     subs(len, len, 4);
3098     br(Assembler::GE, L_by4_loop);
3099     adds(len, len, 4);
3100     br(Assembler::LE, L_exit);
3101   BIND(L_by1_loop);
3102     subs(len, len, 1);
3103     ldrb(tmp, Address(post(buf, 1)));
3104     update_byte_crc32(crc, tmp, table0);
3105     br(Assembler::GT, L_by1_loop);
3106     b(L_exit);
3107 
3108     align(CodeEntryAlignment);
3109   BIND(L_by16_loop);
3110     subs(len, len, 16);
3111     ldp(tmp, tmp3, Address(post(buf, 16)));
3112     update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, false);
3113     update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, true);
3114     update_word_crc32(crc, tmp3, tmp2, table0, table1, table2, table3, false);
3115     update_word_crc32(crc, tmp3, tmp2, table0, table1, table2, table3, true);
3116     br(Assembler::GE, L_by16_loop);
3117     adds(len, len, 16-4);
3118     br(Assembler::GE, L_by4_loop);
3119     adds(len, len, 4);
3120     br(Assembler::GT, L_by1_loop);
3121   BIND(L_exit);
3122     ornw(crc, zr, crc);
3123 }
3124 
3125 /**
3126  * @param crc   register containing existing CRC (32-bit)
3127  * @param buf   register pointing to input byte buffer (byte*)
3128  * @param len   register containing number of bytes
3129  * @param table register that will contain address of CRC table
3130  * @param tmp   scratch register
3131  */
3132 void MacroAssembler::kernel_crc32c(Register crc, Register buf, Register len,
3133         Register table0, Register table1, Register table2, Register table3,
3134         Register tmp, Register tmp2, Register tmp3) {
3135   Label L_exit;
3136   Label CRC_by64_loop, CRC_by4_loop, CRC_by1_loop;
3137 
3138     subs(len, len, 64);
3139     br(Assembler::GE, CRC_by64_loop);
3140     adds(len, len, 64-4);
3141     br(Assembler::GE, CRC_by4_loop);
3142     adds(len, len, 4);
3143     br(Assembler::GT, CRC_by1_loop);
3144     b(L_exit);
3145 
3146   BIND(CRC_by4_loop);
3147     ldrw(tmp, Address(post(buf, 4)));
3148     subs(len, len, 4);
3149     crc32cw(crc, crc, tmp);
3150     br(Assembler::GE, CRC_by4_loop);
3151     adds(len, len, 4);
3152     br(Assembler::LE, L_exit);
3153   BIND(CRC_by1_loop);
3154     ldrb(tmp, Address(post(buf, 1)));
3155     subs(len, len, 1);
3156     crc32cb(crc, crc, tmp);
3157     br(Assembler::GT, CRC_by1_loop);
3158     b(L_exit);
3159 
3160     align(CodeEntryAlignment);
3161   BIND(CRC_by64_loop);
3162     subs(len, len, 64);
3163     ldp(tmp, tmp3, Address(post(buf, 16)));
3164     crc32cx(crc, crc, tmp);
3165     crc32cx(crc, crc, tmp3);
3166     ldp(tmp, tmp3, Address(post(buf, 16)));
3167     crc32cx(crc, crc, tmp);
3168     crc32cx(crc, crc, tmp3);
3169     ldp(tmp, tmp3, Address(post(buf, 16)));
3170     crc32cx(crc, crc, tmp);
3171     crc32cx(crc, crc, tmp3);
3172     ldp(tmp, tmp3, Address(post(buf, 16)));
3173     crc32cx(crc, crc, tmp);
3174     crc32cx(crc, crc, tmp3);
3175     br(Assembler::GE, CRC_by64_loop);
3176     adds(len, len, 64-4);
3177     br(Assembler::GE, CRC_by4_loop);
3178     adds(len, len, 4);
3179     br(Assembler::GT, CRC_by1_loop);
3180   BIND(L_exit);
3181     return;
3182 }
3183 
3184 SkipIfEqual::SkipIfEqual(
3185     MacroAssembler* masm, const bool* flag_addr, bool value) {
3186   _masm = masm;
3187   unsigned long offset;
3188   _masm->adrp(rscratch1, ExternalAddress((address)flag_addr), offset);
3189   _masm->ldrb(rscratch1, Address(rscratch1, offset));
3190   _masm->cbzw(rscratch1, _label);
3191 }
3192 
3193 SkipIfEqual::~SkipIfEqual() {
3194   _masm->bind(_label);
3195 }
3196 
3197 void MacroAssembler::addptr(const Address &dst, int32_t src) {
3198   Address adr;
3199   switch(dst.getMode()) {
3200   case Address::base_plus_offset:
3201     // This is the expected mode, although we allow all the other
3202     // forms below.
3203     adr = form_address(rscratch2, dst.base(), dst.offset(), LogBytesPerWord);
3204     break;
3205   default:
3206     lea(rscratch2, dst);
3207     adr = Address(rscratch2);
3208     break;
3209   }
3210   ldr(rscratch1, adr);
3211   add(rscratch1, rscratch1, src);
3212   str(rscratch1, adr);
3213 }
3214 
3215 void MacroAssembler::cmpptr(Register src1, Address src2) {
3216   unsigned long offset;
3217   adrp(rscratch1, src2, offset);
3218   ldr(rscratch1, Address(rscratch1, offset));
3219   cmp(src1, rscratch1);
3220 }
3221 
3222 void MacroAssembler::store_check(Register obj, Address dst) {
3223   store_check(obj);
3224 }
3225 
3226 void MacroAssembler::store_check(Register obj) {
3227   // Does a store check for the oop in register obj. The content of
3228   // register obj is destroyed afterwards.
3229 
3230   BarrierSet* bs = Universe::heap()->barrier_set();
3231   assert(bs->kind() == BarrierSet::CardTableForRS ||
3232          bs->kind() == BarrierSet::CardTableExtension,
3233          "Wrong barrier set kind");
3234 
3235   CardTableModRefBS* ct = barrier_set_cast<CardTableModRefBS>(bs);
3236   assert(sizeof(*ct->byte_map_base) == sizeof(jbyte), "adjust this code");
3237 
3238   lsr(obj, obj, CardTableModRefBS::card_shift);
3239 
3240   assert(CardTableModRefBS::dirty_card_val() == 0, "must be");
3241 
3242   load_byte_map_base(rscratch1);
3243 
3244   if (UseCondCardMark) {
3245     Label L_already_dirty;
3246     membar(StoreLoad);
3247     ldrb(rscratch2,  Address(obj, rscratch1));
3248     cbz(rscratch2, L_already_dirty);
3249     strb(zr, Address(obj, rscratch1));
3250     bind(L_already_dirty);
3251   } else {
3252     if (UseConcMarkSweepGC && CMSPrecleaningEnabled) {
3253       membar(StoreStore);
3254     }
3255     strb(zr, Address(obj, rscratch1));
3256   }
3257 }
3258 
3259 void MacroAssembler::load_klass(Register dst, Register src) {
3260   if (UseCompressedClassPointers) {
3261     ldrw(dst, Address(src, oopDesc::klass_offset_in_bytes()));
3262     decode_klass_not_null(dst);
3263   } else {
3264     ldr(dst, Address(src, oopDesc::klass_offset_in_bytes()));
3265   }
3266 }
3267 
3268 void MacroAssembler::load_mirror(Register dst, Register method) {
3269   const int mirror_offset = in_bytes(Klass::java_mirror_offset());
3270   ldr(dst, Address(rmethod, Method::const_offset()));
3271   ldr(dst, Address(dst, ConstMethod::constants_offset()));
3272   ldr(dst, Address(dst, ConstantPool::pool_holder_offset_in_bytes()));
3273   ldr(dst, Address(dst, mirror_offset));
3274 }
3275 
3276 void MacroAssembler::cmp_klass(Register oop, Register trial_klass, Register tmp) {
3277   if (UseCompressedClassPointers) {
3278     ldrw(tmp, Address(oop, oopDesc::klass_offset_in_bytes()));
3279     if (Universe::narrow_klass_base() == NULL) {
3280       cmp(trial_klass, tmp, LSL, Universe::narrow_klass_shift());
3281       return;
3282     } else if (((uint64_t)Universe::narrow_klass_base() & 0xffffffff) == 0
3283                && Universe::narrow_klass_shift() == 0) {
3284       // Only the bottom 32 bits matter
3285       cmpw(trial_klass, tmp);
3286       return;
3287     }
3288     decode_klass_not_null(tmp);
3289   } else {
3290     ldr(tmp, Address(oop, oopDesc::klass_offset_in_bytes()));
3291   }
3292   cmp(trial_klass, tmp);
3293 }
3294 
3295 void MacroAssembler::load_prototype_header(Register dst, Register src) {
3296   load_klass(dst, src);
3297   ldr(dst, Address(dst, Klass::prototype_header_offset()));
3298 }
3299 
3300 void MacroAssembler::store_klass(Register dst, Register src) {
3301   // FIXME: Should this be a store release?  concurrent gcs assumes
3302   // klass length is valid if klass field is not null.
3303   if (UseCompressedClassPointers) {
3304     encode_klass_not_null(src);
3305     strw(src, Address(dst, oopDesc::klass_offset_in_bytes()));
3306   } else {
3307     str(src, Address(dst, oopDesc::klass_offset_in_bytes()));
3308   }
3309 }
3310 
3311 void MacroAssembler::store_klass_gap(Register dst, Register src) {
3312   if (UseCompressedClassPointers) {
3313     // Store to klass gap in destination
3314     strw(src, Address(dst, oopDesc::klass_gap_offset_in_bytes()));
3315   }
3316 }
3317 
3318 // Algorithm must match oop.inline.hpp encode_heap_oop.
3319 void MacroAssembler::encode_heap_oop(Register d, Register s) {
3320 #ifdef ASSERT
3321   verify_heapbase("MacroAssembler::encode_heap_oop: heap base corrupted?");
3322 #endif
3323   verify_oop(s, "broken oop in encode_heap_oop");
3324   if (Universe::narrow_oop_base() == NULL) {
3325     if (Universe::narrow_oop_shift() != 0) {
3326       assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
3327       lsr(d, s, LogMinObjAlignmentInBytes);
3328     } else {
3329       mov(d, s);
3330     }
3331   } else {
3332     subs(d, s, rheapbase);
3333     csel(d, d, zr, Assembler::HS);
3334     lsr(d, d, LogMinObjAlignmentInBytes);
3335 
3336     /*  Old algorithm: is this any worse?
3337     Label nonnull;
3338     cbnz(r, nonnull);
3339     sub(r, r, rheapbase);
3340     bind(nonnull);
3341     lsr(r, r, LogMinObjAlignmentInBytes);
3342     */
3343   }
3344 }
3345 
3346 void MacroAssembler::encode_heap_oop_not_null(Register r) {
3347 #ifdef ASSERT
3348   verify_heapbase("MacroAssembler::encode_heap_oop_not_null: heap base corrupted?");
3349   if (CheckCompressedOops) {
3350     Label ok;
3351     cbnz(r, ok);
3352     stop("null oop passed to encode_heap_oop_not_null");
3353     bind(ok);
3354   }
3355 #endif
3356   verify_oop(r, "broken oop in encode_heap_oop_not_null");
3357   if (Universe::narrow_oop_base() != NULL) {
3358     sub(r, r, rheapbase);
3359   }
3360   if (Universe::narrow_oop_shift() != 0) {
3361     assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
3362     lsr(r, r, LogMinObjAlignmentInBytes);
3363   }
3364 }
3365 
3366 void MacroAssembler::encode_heap_oop_not_null(Register dst, Register src) {
3367 #ifdef ASSERT
3368   verify_heapbase("MacroAssembler::encode_heap_oop_not_null2: heap base corrupted?");
3369   if (CheckCompressedOops) {
3370     Label ok;
3371     cbnz(src, ok);
3372     stop("null oop passed to encode_heap_oop_not_null2");
3373     bind(ok);
3374   }
3375 #endif
3376   verify_oop(src, "broken oop in encode_heap_oop_not_null2");
3377 
3378   Register data = src;
3379   if (Universe::narrow_oop_base() != NULL) {
3380     sub(dst, src, rheapbase);
3381     data = dst;
3382   }
3383   if (Universe::narrow_oop_shift() != 0) {
3384     assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
3385     lsr(dst, data, LogMinObjAlignmentInBytes);
3386     data = dst;
3387   }
3388   if (data == src)
3389     mov(dst, src);
3390 }
3391 
3392 void  MacroAssembler::decode_heap_oop(Register d, Register s) {
3393 #ifdef ASSERT
3394   verify_heapbase("MacroAssembler::decode_heap_oop: heap base corrupted?");
3395 #endif
3396   if (Universe::narrow_oop_base() == NULL) {
3397     if (Universe::narrow_oop_shift() != 0 || d != s) {
3398       lsl(d, s, Universe::narrow_oop_shift());
3399     }
3400   } else {
3401     Label done;
3402     if (d != s)
3403       mov(d, s);
3404     cbz(s, done);
3405     add(d, rheapbase, s, Assembler::LSL, LogMinObjAlignmentInBytes);
3406     bind(done);
3407   }
3408   verify_oop(d, "broken oop in decode_heap_oop");
3409 }
3410 
3411 void  MacroAssembler::decode_heap_oop_not_null(Register r) {
3412   assert (UseCompressedOops, "should only be used for compressed headers");
3413   assert (Universe::heap() != NULL, "java heap should be initialized");
3414   // Cannot assert, unverified entry point counts instructions (see .ad file)
3415   // vtableStubs also counts instructions in pd_code_size_limit.
3416   // Also do not verify_oop as this is called by verify_oop.
3417   if (Universe::narrow_oop_shift() != 0) {
3418     assert(LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
3419     if (Universe::narrow_oop_base() != NULL) {
3420       add(r, rheapbase, r, Assembler::LSL, LogMinObjAlignmentInBytes);
3421     } else {
3422       add(r, zr, r, Assembler::LSL, LogMinObjAlignmentInBytes);
3423     }
3424   } else {
3425     assert (Universe::narrow_oop_base() == NULL, "sanity");
3426   }
3427 }
3428 
3429 void  MacroAssembler::decode_heap_oop_not_null(Register dst, Register src) {
3430   assert (UseCompressedOops, "should only be used for compressed headers");
3431   assert (Universe::heap() != NULL, "java heap should be initialized");
3432   // Cannot assert, unverified entry point counts instructions (see .ad file)
3433   // vtableStubs also counts instructions in pd_code_size_limit.
3434   // Also do not verify_oop as this is called by verify_oop.
3435   if (Universe::narrow_oop_shift() != 0) {
3436     assert(LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
3437     if (Universe::narrow_oop_base() != NULL) {
3438       add(dst, rheapbase, src, Assembler::LSL, LogMinObjAlignmentInBytes);
3439     } else {
3440       add(dst, zr, src, Assembler::LSL, LogMinObjAlignmentInBytes);
3441     }
3442   } else {
3443     assert (Universe::narrow_oop_base() == NULL, "sanity");
3444     if (dst != src) {
3445       mov(dst, src);
3446     }
3447   }
3448 }
3449 
3450 void MacroAssembler::encode_klass_not_null(Register dst, Register src) {
3451   if (Universe::narrow_klass_base() == NULL) {
3452     if (Universe::narrow_klass_shift() != 0) {
3453       assert (LogKlassAlignmentInBytes == Universe::narrow_klass_shift(), "decode alg wrong");
3454       lsr(dst, src, LogKlassAlignmentInBytes);
3455     } else {
3456       if (dst != src) mov(dst, src);
3457     }
3458     return;
3459   }
3460 
3461   if (use_XOR_for_compressed_class_base) {
3462     if (Universe::narrow_klass_shift() != 0) {
3463       eor(dst, src, (uint64_t)Universe::narrow_klass_base());
3464       lsr(dst, dst, LogKlassAlignmentInBytes);
3465     } else {
3466       eor(dst, src, (uint64_t)Universe::narrow_klass_base());
3467     }
3468     return;
3469   }
3470 
3471   if (((uint64_t)Universe::narrow_klass_base() & 0xffffffff) == 0
3472       && Universe::narrow_klass_shift() == 0) {
3473     movw(dst, src);
3474     return;
3475   }
3476 
3477 #ifdef ASSERT
3478   verify_heapbase("MacroAssembler::encode_klass_not_null2: heap base corrupted?");
3479 #endif
3480 
3481   Register rbase = dst;
3482   if (dst == src) rbase = rheapbase;
3483   mov(rbase, (uint64_t)Universe::narrow_klass_base());
3484   sub(dst, src, rbase);
3485   if (Universe::narrow_klass_shift() != 0) {
3486     assert (LogKlassAlignmentInBytes == Universe::narrow_klass_shift(), "decode alg wrong");
3487     lsr(dst, dst, LogKlassAlignmentInBytes);
3488   }
3489   if (dst == src) reinit_heapbase();
3490 }
3491 
3492 void MacroAssembler::encode_klass_not_null(Register r) {
3493   encode_klass_not_null(r, r);
3494 }
3495 
3496 void  MacroAssembler::decode_klass_not_null(Register dst, Register src) {
3497   Register rbase = dst;
3498   assert (UseCompressedClassPointers, "should only be used for compressed headers");
3499 
3500   if (Universe::narrow_klass_base() == NULL) {
3501     if (Universe::narrow_klass_shift() != 0) {
3502       assert(LogKlassAlignmentInBytes == Universe::narrow_klass_shift(), "decode alg wrong");
3503       lsl(dst, src, LogKlassAlignmentInBytes);
3504     } else {
3505       if (dst != src) mov(dst, src);
3506     }
3507     return;
3508   }
3509 
3510   if (use_XOR_for_compressed_class_base) {
3511     if (Universe::narrow_klass_shift() != 0) {
3512       lsl(dst, src, LogKlassAlignmentInBytes);
3513       eor(dst, dst, (uint64_t)Universe::narrow_klass_base());
3514     } else {
3515       eor(dst, src, (uint64_t)Universe::narrow_klass_base());
3516     }
3517     return;
3518   }
3519 
3520   if (((uint64_t)Universe::narrow_klass_base() & 0xffffffff) == 0
3521       && Universe::narrow_klass_shift() == 0) {
3522     if (dst != src)
3523       movw(dst, src);
3524     movk(dst, (uint64_t)Universe::narrow_klass_base() >> 32, 32);
3525     return;
3526   }
3527 
3528   // Cannot assert, unverified entry point counts instructions (see .ad file)
3529   // vtableStubs also counts instructions in pd_code_size_limit.
3530   // Also do not verify_oop as this is called by verify_oop.
3531   if (dst == src) rbase = rheapbase;
3532   mov(rbase, (uint64_t)Universe::narrow_klass_base());
3533   if (Universe::narrow_klass_shift() != 0) {
3534     assert(LogKlassAlignmentInBytes == Universe::narrow_klass_shift(), "decode alg wrong");
3535     add(dst, rbase, src, Assembler::LSL, LogKlassAlignmentInBytes);
3536   } else {
3537     add(dst, rbase, src);
3538   }
3539   if (dst == src) reinit_heapbase();
3540 }
3541 
3542 void  MacroAssembler::decode_klass_not_null(Register r) {
3543   decode_klass_not_null(r, r);
3544 }
3545 
3546 void  MacroAssembler::set_narrow_oop(Register dst, jobject obj) {
3547   assert (UseCompressedOops, "should only be used for compressed oops");
3548   assert (Universe::heap() != NULL, "java heap should be initialized");
3549   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
3550 
3551   int oop_index = oop_recorder()->find_index(obj);
3552   assert(Universe::heap()->is_in_reserved(JNIHandles::resolve(obj)), "should be real oop");
3553 
3554   InstructionMark im(this);
3555   RelocationHolder rspec = oop_Relocation::spec(oop_index);
3556   code_section()->relocate(inst_mark(), rspec);
3557   movz(dst, 0xDEAD, 16);
3558   movk(dst, 0xBEEF);
3559 }
3560 
3561 void  MacroAssembler::set_narrow_klass(Register dst, Klass* k) {
3562   assert (UseCompressedClassPointers, "should only be used for compressed headers");
3563   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
3564   int index = oop_recorder()->find_index(k);
3565   assert(! Universe::heap()->is_in_reserved(k), "should not be an oop");
3566 
3567   InstructionMark im(this);
3568   RelocationHolder rspec = metadata_Relocation::spec(index);
3569   code_section()->relocate(inst_mark(), rspec);
3570   narrowKlass nk = Klass::encode_klass(k);
3571   movz(dst, (nk >> 16), 16);
3572   movk(dst, nk & 0xffff);
3573 }
3574 
3575 void MacroAssembler::load_heap_oop(Register dst, Address src)
3576 {
3577   if (UseCompressedOops) {
3578     ldrw(dst, src);
3579     decode_heap_oop(dst);
3580   } else {
3581     ldr(dst, src);
3582   }
3583 }
3584 
3585 void MacroAssembler::load_heap_oop_not_null(Register dst, Address src)
3586 {
3587   if (UseCompressedOops) {
3588     ldrw(dst, src);
3589     decode_heap_oop_not_null(dst);
3590   } else {
3591     ldr(dst, src);
3592   }
3593 }
3594 
3595 void MacroAssembler::store_heap_oop(Address dst, Register src) {
3596   if (UseCompressedOops) {
3597     assert(!dst.uses(src), "not enough registers");
3598     encode_heap_oop(src);
3599     strw(src, dst);
3600   } else
3601     str(src, dst);
3602 }
3603 
3604 // Used for storing NULLs.
3605 void MacroAssembler::store_heap_oop_null(Address dst) {
3606   if (UseCompressedOops) {
3607     strw(zr, dst);
3608   } else
3609     str(zr, dst);
3610 }
3611 
3612 #if INCLUDE_ALL_GCS
3613 void MacroAssembler::g1_write_barrier_pre(Register obj,
3614                                           Register pre_val,
3615                                           Register thread,
3616                                           Register tmp,
3617                                           bool tosca_live,
3618                                           bool expand_call) {
3619   // If expand_call is true then we expand the call_VM_leaf macro
3620   // directly to skip generating the check by
3621   // InterpreterMacroAssembler::call_VM_leaf_base that checks _last_sp.
3622 
3623   assert(thread == rthread, "must be");
3624 
3625   Label done;
3626   Label runtime;
3627 
3628   assert(pre_val != noreg, "check this code");
3629 
3630   if (obj != noreg)
3631     assert_different_registers(obj, pre_val, tmp);
3632 
3633   Address in_progress(thread, in_bytes(JavaThread::satb_mark_queue_offset() +
3634                                        SATBMarkQueue::byte_offset_of_active()));
3635   Address index(thread, in_bytes(JavaThread::satb_mark_queue_offset() +
3636                                        SATBMarkQueue::byte_offset_of_index()));
3637   Address buffer(thread, in_bytes(JavaThread::satb_mark_queue_offset() +
3638                                        SATBMarkQueue::byte_offset_of_buf()));
3639 
3640 
3641   // Is marking active?
3642   if (in_bytes(SATBMarkQueue::byte_width_of_active()) == 4) {
3643     ldrw(tmp, in_progress);
3644   } else {
3645     assert(in_bytes(SATBMarkQueue::byte_width_of_active()) == 1, "Assumption");
3646     ldrb(tmp, in_progress);
3647   }
3648   cbzw(tmp, done);
3649 
3650   // Do we need to load the previous value?
3651   if (obj != noreg) {
3652     load_heap_oop(pre_val, Address(obj, 0));
3653   }
3654 
3655   // Is the previous value null?
3656   cbz(pre_val, done);
3657 
3658   // Can we store original value in the thread's buffer?
3659   // Is index == 0?
3660   // (The index field is typed as size_t.)
3661 
3662   ldr(tmp, index);                      // tmp := *index_adr
3663   cbz(tmp, runtime);                    // tmp == 0?
3664                                         // If yes, goto runtime
3665 
3666   sub(tmp, tmp, wordSize);              // tmp := tmp - wordSize
3667   str(tmp, index);                      // *index_adr := tmp
3668   ldr(rscratch1, buffer);
3669   add(tmp, tmp, rscratch1);             // tmp := tmp + *buffer_adr
3670 
3671   // Record the previous value
3672   str(pre_val, Address(tmp, 0));
3673   b(done);
3674 
3675   bind(runtime);
3676   // save the live input values
3677   push(r0->bit(tosca_live) | obj->bit(obj != noreg) | pre_val->bit(true), sp);
3678 
3679   // Calling the runtime using the regular call_VM_leaf mechanism generates
3680   // code (generated by InterpreterMacroAssember::call_VM_leaf_base)
3681   // that checks that the *(rfp+frame::interpreter_frame_last_sp) == NULL.
3682   //
3683   // If we care generating the pre-barrier without a frame (e.g. in the
3684   // intrinsified Reference.get() routine) then ebp might be pointing to
3685   // the caller frame and so this check will most likely fail at runtime.
3686   //
3687   // Expanding the call directly bypasses the generation of the check.
3688   // So when we do not have have a full interpreter frame on the stack
3689   // expand_call should be passed true.
3690 
3691   if (expand_call) {
3692     assert(pre_val != c_rarg1, "smashed arg");
3693     pass_arg1(this, thread);
3694     pass_arg0(this, pre_val);
3695     MacroAssembler::call_VM_leaf_base(CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_pre), 2);
3696   } else {
3697     call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_pre), pre_val, thread);
3698   }
3699 
3700   pop(r0->bit(tosca_live) | obj->bit(obj != noreg) | pre_val->bit(true), sp);
3701 
3702   bind(done);
3703 }
3704 
3705 void MacroAssembler::g1_write_barrier_post(Register store_addr,
3706                                            Register new_val,
3707                                            Register thread,
3708                                            Register tmp,
3709                                            Register tmp2) {
3710   assert(thread == rthread, "must be");
3711 
3712   Address queue_index(thread, in_bytes(JavaThread::dirty_card_queue_offset() +
3713                                        DirtyCardQueue::byte_offset_of_index()));
3714   Address buffer(thread, in_bytes(JavaThread::dirty_card_queue_offset() +
3715                                        DirtyCardQueue::byte_offset_of_buf()));
3716 
3717   BarrierSet* bs = Universe::heap()->barrier_set();
3718   CardTableModRefBS* ct = (CardTableModRefBS*)bs;
3719   assert(sizeof(*ct->byte_map_base) == sizeof(jbyte), "adjust this code");
3720 
3721   Label done;
3722   Label runtime;
3723 
3724   // Does store cross heap regions?
3725 
3726   eor(tmp, store_addr, new_val);
3727   lsr(tmp, tmp, HeapRegion::LogOfHRGrainBytes);
3728   cbz(tmp, done);
3729 
3730   // crosses regions, storing NULL?
3731 
3732   cbz(new_val, done);
3733 
3734   // storing region crossing non-NULL, is card already dirty?
3735 
3736   ExternalAddress cardtable((address) ct->byte_map_base);
3737   assert(sizeof(*ct->byte_map_base) == sizeof(jbyte), "adjust this code");
3738   const Register card_addr = tmp;
3739 
3740   lsr(card_addr, store_addr, CardTableModRefBS::card_shift);
3741 
3742   // get the address of the card
3743   load_byte_map_base(tmp2);
3744   add(card_addr, card_addr, tmp2);
3745   ldrb(tmp2, Address(card_addr));
3746   cmpw(tmp2, (int)G1SATBCardTableModRefBS::g1_young_card_val());
3747   br(Assembler::EQ, done);
3748 
3749   assert((int)CardTableModRefBS::dirty_card_val() == 0, "must be 0");
3750 
3751   membar(Assembler::StoreLoad);
3752 
3753   ldrb(tmp2, Address(card_addr));
3754   cbzw(tmp2, done);
3755 
3756   // storing a region crossing, non-NULL oop, card is clean.
3757   // dirty card and log.
3758 
3759   strb(zr, Address(card_addr));
3760 
3761   ldr(rscratch1, queue_index);
3762   cbz(rscratch1, runtime);
3763   sub(rscratch1, rscratch1, wordSize);
3764   str(rscratch1, queue_index);
3765 
3766   ldr(tmp2, buffer);
3767   str(card_addr, Address(tmp2, rscratch1));
3768   b(done);
3769 
3770   bind(runtime);
3771   // save the live input values
3772   push(store_addr->bit(true) | new_val->bit(true), sp);
3773   call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_post), card_addr, thread);
3774   pop(store_addr->bit(true) | new_val->bit(true), sp);
3775 
3776   bind(done);
3777 }
3778 
3779 #endif // INCLUDE_ALL_GCS
3780 
3781 Address MacroAssembler::allocate_metadata_address(Metadata* obj) {
3782   assert(oop_recorder() != NULL, "this assembler needs a Recorder");
3783   int index = oop_recorder()->allocate_metadata_index(obj);
3784   RelocationHolder rspec = metadata_Relocation::spec(index);
3785   return Address((address)obj, rspec);
3786 }
3787 
3788 // Move an oop into a register.  immediate is true if we want
3789 // immediate instrcutions, i.e. we are not going to patch this
3790 // instruction while the code is being executed by another thread.  In
3791 // that case we can use move immediates rather than the constant pool.
3792 void MacroAssembler::movoop(Register dst, jobject obj, bool immediate) {
3793   int oop_index;
3794   if (obj == NULL) {
3795     oop_index = oop_recorder()->allocate_oop_index(obj);
3796   } else {
3797     oop_index = oop_recorder()->find_index(obj);
3798     assert(Universe::heap()->is_in_reserved(JNIHandles::resolve(obj)), "should be real oop");
3799   }
3800   RelocationHolder rspec = oop_Relocation::spec(oop_index);
3801   if (! immediate) {
3802     address dummy = address(uintptr_t(pc()) & -wordSize); // A nearby aligned address
3803     ldr_constant(dst, Address(dummy, rspec));
3804   } else
3805     mov(dst, Address((address)obj, rspec));
3806 }
3807 
3808 // Move a metadata address into a register.
3809 void MacroAssembler::mov_metadata(Register dst, Metadata* obj) {
3810   int oop_index;
3811   if (obj == NULL) {
3812     oop_index = oop_recorder()->allocate_metadata_index(obj);
3813   } else {
3814     oop_index = oop_recorder()->find_index(obj);
3815   }
3816   RelocationHolder rspec = metadata_Relocation::spec(oop_index);
3817   mov(dst, Address((address)obj, rspec));
3818 }
3819 
3820 Address MacroAssembler::constant_oop_address(jobject obj) {
3821   assert(oop_recorder() != NULL, "this assembler needs an OopRecorder");
3822   assert(Universe::heap()->is_in_reserved(JNIHandles::resolve(obj)), "not an oop");
3823   int oop_index = oop_recorder()->find_index(obj);
3824   return Address((address)obj, oop_Relocation::spec(oop_index));
3825 }
3826 
3827 // Defines obj, preserves var_size_in_bytes, okay for t2 == var_size_in_bytes.
3828 void MacroAssembler::tlab_allocate(Register obj,
3829                                    Register var_size_in_bytes,
3830                                    int con_size_in_bytes,
3831                                    Register t1,
3832                                    Register t2,
3833                                    Label& slow_case) {
3834   assert_different_registers(obj, t2);
3835   assert_different_registers(obj, var_size_in_bytes);
3836   Register end = t2;
3837 
3838   // verify_tlab();
3839 
3840   ldr(obj, Address(rthread, JavaThread::tlab_top_offset()));
3841   if (var_size_in_bytes == noreg) {
3842     lea(end, Address(obj, con_size_in_bytes));
3843   } else {
3844     lea(end, Address(obj, var_size_in_bytes));
3845   }
3846   ldr(rscratch1, Address(rthread, JavaThread::tlab_end_offset()));
3847   cmp(end, rscratch1);
3848   br(Assembler::HI, slow_case);
3849 
3850   // update the tlab top pointer
3851   str(end, Address(rthread, JavaThread::tlab_top_offset()));
3852 
3853   // recover var_size_in_bytes if necessary
3854   if (var_size_in_bytes == end) {
3855     sub(var_size_in_bytes, var_size_in_bytes, obj);
3856   }
3857   // verify_tlab();
3858 }
3859 
3860 // Preserves r19, and r3.
3861 Register MacroAssembler::tlab_refill(Label& retry,
3862                                      Label& try_eden,
3863                                      Label& slow_case) {
3864   Register top = r0;
3865   Register t1  = r2;
3866   Register t2  = r4;
3867   assert_different_registers(top, rthread, t1, t2, /* preserve: */ r19, r3);
3868   Label do_refill, discard_tlab;
3869 
3870   if (!Universe::heap()->supports_inline_contig_alloc()) {
3871     // No allocation in the shared eden.
3872     b(slow_case);
3873   }
3874 
3875   ldr(top, Address(rthread, in_bytes(JavaThread::tlab_top_offset())));
3876   ldr(t1,  Address(rthread, in_bytes(JavaThread::tlab_end_offset())));
3877 
3878   // calculate amount of free space
3879   sub(t1, t1, top);
3880   lsr(t1, t1, LogHeapWordSize);
3881 
3882   // Retain tlab and allocate object in shared space if
3883   // the amount free in the tlab is too large to discard.
3884 
3885   ldr(rscratch1, Address(rthread, in_bytes(JavaThread::tlab_refill_waste_limit_offset())));
3886   cmp(t1, rscratch1);
3887   br(Assembler::LE, discard_tlab);
3888 
3889   // Retain
3890   // ldr(rscratch1, Address(rthread, in_bytes(JavaThread::tlab_refill_waste_limit_offset())));
3891   mov(t2, (int32_t) ThreadLocalAllocBuffer::refill_waste_limit_increment());
3892   add(rscratch1, rscratch1, t2);
3893   str(rscratch1, Address(rthread, in_bytes(JavaThread::tlab_refill_waste_limit_offset())));
3894 
3895   if (TLABStats) {
3896     // increment number of slow_allocations
3897     addmw(Address(rthread, in_bytes(JavaThread::tlab_slow_allocations_offset())),
3898          1, rscratch1);
3899   }
3900   b(try_eden);
3901 
3902   bind(discard_tlab);
3903   if (TLABStats) {
3904     // increment number of refills
3905     addmw(Address(rthread, in_bytes(JavaThread::tlab_number_of_refills_offset())), 1,
3906          rscratch1);
3907     // accumulate wastage -- t1 is amount free in tlab
3908     addmw(Address(rthread, in_bytes(JavaThread::tlab_fast_refill_waste_offset())), t1,
3909          rscratch1);
3910   }
3911 
3912   // if tlab is currently allocated (top or end != null) then
3913   // fill [top, end + alignment_reserve) with array object
3914   cbz(top, do_refill);
3915 
3916   // set up the mark word
3917   mov(rscratch1, (intptr_t)markOopDesc::prototype()->copy_set_hash(0x2));
3918   str(rscratch1, Address(top, oopDesc::mark_offset_in_bytes()));
3919   // set the length to the remaining space
3920   sub(t1, t1, typeArrayOopDesc::header_size(T_INT));
3921   add(t1, t1, (int32_t)ThreadLocalAllocBuffer::alignment_reserve());
3922   lsl(t1, t1, log2_intptr(HeapWordSize/sizeof(jint)));
3923   strw(t1, Address(top, arrayOopDesc::length_offset_in_bytes()));
3924   // set klass to intArrayKlass
3925   {
3926     unsigned long offset;
3927     // dubious reloc why not an oop reloc?
3928     adrp(rscratch1, ExternalAddress((address)Universe::intArrayKlassObj_addr()),
3929          offset);
3930     ldr(t1, Address(rscratch1, offset));
3931   }
3932   // store klass last.  concurrent gcs assumes klass length is valid if
3933   // klass field is not null.
3934   store_klass(top, t1);
3935 
3936   mov(t1, top);
3937   ldr(rscratch1, Address(rthread, in_bytes(JavaThread::tlab_start_offset())));
3938   sub(t1, t1, rscratch1);
3939   incr_allocated_bytes(rthread, t1, 0, rscratch1);
3940 
3941   // refill the tlab with an eden allocation
3942   bind(do_refill);
3943   ldr(t1, Address(rthread, in_bytes(JavaThread::tlab_size_offset())));
3944   lsl(t1, t1, LogHeapWordSize);
3945   // allocate new tlab, address returned in top
3946   eden_allocate(top, t1, 0, t2, slow_case);
3947 
3948   // Check that t1 was preserved in eden_allocate.
3949 #ifdef ASSERT
3950   if (UseTLAB) {
3951     Label ok;
3952     Register tsize = r4;
3953     assert_different_registers(tsize, rthread, t1);
3954     str(tsize, Address(pre(sp, -16)));
3955     ldr(tsize, Address(rthread, in_bytes(JavaThread::tlab_size_offset())));
3956     lsl(tsize, tsize, LogHeapWordSize);
3957     cmp(t1, tsize);
3958     br(Assembler::EQ, ok);
3959     STOP("assert(t1 != tlab size)");
3960     should_not_reach_here();
3961 
3962     bind(ok);
3963     ldr(tsize, Address(post(sp, 16)));
3964   }
3965 #endif
3966   str(top, Address(rthread, in_bytes(JavaThread::tlab_start_offset())));
3967   str(top, Address(rthread, in_bytes(JavaThread::tlab_top_offset())));
3968   add(top, top, t1);
3969   sub(top, top, (int32_t)ThreadLocalAllocBuffer::alignment_reserve_in_bytes());
3970   str(top, Address(rthread, in_bytes(JavaThread::tlab_end_offset())));
3971 
3972   if (ZeroTLAB) {
3973     // This is a fast TLAB refill, therefore the GC is not notified of it.
3974     // So compiled code must fill the new TLAB with zeroes.
3975     ldr(top, Address(rthread, in_bytes(JavaThread::tlab_start_offset())));
3976     zero_memory(top,t1,t2);
3977   }
3978 
3979   verify_tlab();
3980   b(retry);
3981 
3982   return rthread; // for use by caller
3983 }
3984 
3985 // Zero words; len is in bytes
3986 // Destroys all registers except addr
3987 // len must be a nonzero multiple of wordSize
3988 void MacroAssembler::zero_memory(Register addr, Register len, Register t1) {
3989   assert_different_registers(addr, len, t1, rscratch1, rscratch2);
3990 
3991 #ifdef ASSERT
3992   { Label L;
3993     tst(len, BytesPerWord - 1);
3994     br(Assembler::EQ, L);
3995     stop("len is not a multiple of BytesPerWord");
3996     bind(L);
3997   }
3998 #endif
3999 
4000 #ifndef PRODUCT
4001   block_comment("zero memory");
4002 #endif
4003 
4004   Label loop;
4005   Label entry;
4006 
4007 //  Algorithm:
4008 //
4009 //    scratch1 = cnt & 7;
4010 //    cnt -= scratch1;
4011 //    p += scratch1;
4012 //    switch (scratch1) {
4013 //      do {
4014 //        cnt -= 8;
4015 //          p[-8] = 0;
4016 //        case 7:
4017 //          p[-7] = 0;
4018 //        case 6:
4019 //          p[-6] = 0;
4020 //          // ...
4021 //        case 1:
4022 //          p[-1] = 0;
4023 //        case 0:
4024 //          p += 8;
4025 //      } while (cnt);
4026 //    }
4027 
4028   const int unroll = 8; // Number of str(zr) instructions we'll unroll
4029 
4030   lsr(len, len, LogBytesPerWord);
4031   andr(rscratch1, len, unroll - 1);  // tmp1 = cnt % unroll
4032   sub(len, len, rscratch1);      // cnt -= unroll
4033   // t1 always points to the end of the region we're about to zero
4034   add(t1, addr, rscratch1, Assembler::LSL, LogBytesPerWord);
4035   adr(rscratch2, entry);
4036   sub(rscratch2, rscratch2, rscratch1, Assembler::LSL, 2);
4037   br(rscratch2);
4038   bind(loop);
4039   sub(len, len, unroll);
4040   for (int i = -unroll; i < 0; i++)
4041     str(zr, Address(t1, i * wordSize));
4042   bind(entry);
4043   add(t1, t1, unroll * wordSize);
4044   cbnz(len, loop);
4045 }
4046 
4047 // Defines obj, preserves var_size_in_bytes
4048 void MacroAssembler::eden_allocate(Register obj,
4049                                    Register var_size_in_bytes,
4050                                    int con_size_in_bytes,
4051                                    Register t1,
4052                                    Label& slow_case) {
4053   assert_different_registers(obj, var_size_in_bytes, t1);
4054   if (!Universe::heap()->supports_inline_contig_alloc()) {
4055     b(slow_case);
4056   } else {
4057     Register end = t1;
4058     Register heap_end = rscratch2;
4059     Label retry;
4060     bind(retry);
4061     {
4062       unsigned long offset;
4063       adrp(rscratch1, ExternalAddress((address) Universe::heap()->end_addr()), offset);
4064       ldr(heap_end, Address(rscratch1, offset));
4065     }
4066 
4067     ExternalAddress heap_top((address) Universe::heap()->top_addr());
4068 
4069     // Get the current top of the heap
4070     {
4071       unsigned long offset;
4072       adrp(rscratch1, heap_top, offset);
4073       // Use add() here after ARDP, rather than lea().
4074       // lea() does not generate anything if its offset is zero.
4075       // However, relocs expect to find either an ADD or a load/store
4076       // insn after an ADRP.  add() always generates an ADD insn, even
4077       // for add(Rn, Rn, 0).
4078       add(rscratch1, rscratch1, offset);
4079       ldaxr(obj, rscratch1);
4080     }
4081 
4082     // Adjust it my the size of our new object
4083     if (var_size_in_bytes == noreg) {
4084       lea(end, Address(obj, con_size_in_bytes));
4085     } else {
4086       lea(end, Address(obj, var_size_in_bytes));
4087     }
4088 
4089     // if end < obj then we wrapped around high memory
4090     cmp(end, obj);
4091     br(Assembler::LO, slow_case);
4092 
4093     cmp(end, heap_end);
4094     br(Assembler::HI, slow_case);
4095 
4096     // If heap_top hasn't been changed by some other thread, update it.
4097     stlxr(rscratch2, end, rscratch1);
4098     cbnzw(rscratch2, retry);
4099   }
4100 }
4101 
4102 void MacroAssembler::verify_tlab() {
4103 #ifdef ASSERT
4104   if (UseTLAB && VerifyOops) {
4105     Label next, ok;
4106 
4107     stp(rscratch2, rscratch1, Address(pre(sp, -16)));
4108 
4109     ldr(rscratch2, Address(rthread, in_bytes(JavaThread::tlab_top_offset())));
4110     ldr(rscratch1, Address(rthread, in_bytes(JavaThread::tlab_start_offset())));
4111     cmp(rscratch2, rscratch1);
4112     br(Assembler::HS, next);
4113     STOP("assert(top >= start)");
4114     should_not_reach_here();
4115 
4116     bind(next);
4117     ldr(rscratch2, Address(rthread, in_bytes(JavaThread::tlab_end_offset())));
4118     ldr(rscratch1, Address(rthread, in_bytes(JavaThread::tlab_top_offset())));
4119     cmp(rscratch2, rscratch1);
4120     br(Assembler::HS, ok);
4121     STOP("assert(top <= end)");
4122     should_not_reach_here();
4123 
4124     bind(ok);
4125     ldp(rscratch2, rscratch1, Address(post(sp, 16)));
4126   }
4127 #endif
4128 }
4129 
4130 // Writes to stack successive pages until offset reached to check for
4131 // stack overflow + shadow pages.  This clobbers tmp.
4132 void MacroAssembler::bang_stack_size(Register size, Register tmp) {
4133   assert_different_registers(tmp, size, rscratch1);
4134   mov(tmp, sp);
4135   // Bang stack for total size given plus shadow page size.
4136   // Bang one page at a time because large size can bang beyond yellow and
4137   // red zones.
4138   Label loop;
4139   mov(rscratch1, os::vm_page_size());
4140   bind(loop);
4141   lea(tmp, Address(tmp, -os::vm_page_size()));
4142   subsw(size, size, rscratch1);
4143   str(size, Address(tmp));
4144   br(Assembler::GT, loop);
4145 
4146   // Bang down shadow pages too.
4147   // At this point, (tmp-0) is the last address touched, so don't
4148   // touch it again.  (It was touched as (tmp-pagesize) but then tmp
4149   // was post-decremented.)  Skip this address by starting at i=1, and
4150   // touch a few more pages below.  N.B.  It is important to touch all
4151   // the way down to and including i=StackShadowPages.
4152   for (int i = 0; i < (int)(JavaThread::stack_shadow_zone_size() / os::vm_page_size()) - 1; i++) {
4153     // this could be any sized move but this is can be a debugging crumb
4154     // so the bigger the better.
4155     lea(tmp, Address(tmp, -os::vm_page_size()));
4156     str(size, Address(tmp));
4157   }
4158 }
4159 
4160 
4161 address MacroAssembler::read_polling_page(Register r, address page, relocInfo::relocType rtype) {
4162   unsigned long off;
4163   adrp(r, Address(page, rtype), off);
4164   InstructionMark im(this);
4165   code_section()->relocate(inst_mark(), rtype);
4166   ldrw(zr, Address(r, off));
4167   return inst_mark();
4168 }
4169 
4170 address MacroAssembler::read_polling_page(Register r, relocInfo::relocType rtype) {
4171   InstructionMark im(this);
4172   code_section()->relocate(inst_mark(), rtype);
4173   ldrw(zr, Address(r, 0));
4174   return inst_mark();
4175 }
4176 
4177 void MacroAssembler::adrp(Register reg1, const Address &dest, unsigned long &byte_offset) {
4178   relocInfo::relocType rtype = dest.rspec().reloc()->type();
4179   unsigned long low_page = (unsigned long)CodeCache::low_bound() >> 12;
4180   unsigned long high_page = (unsigned long)(CodeCache::high_bound()-1) >> 12;
4181   unsigned long dest_page = (unsigned long)dest.target() >> 12;
4182   long offset_low = dest_page - low_page;
4183   long offset_high = dest_page - high_page;
4184 
4185   assert(is_valid_AArch64_address(dest.target()), "bad address");
4186   assert(dest.getMode() == Address::literal, "ADRP must be applied to a literal address");
4187 
4188   InstructionMark im(this);
4189   code_section()->relocate(inst_mark(), dest.rspec());
4190   // 8143067: Ensure that the adrp can reach the dest from anywhere within
4191   // the code cache so that if it is relocated we know it will still reach
4192   if (offset_high >= -(1<<20) && offset_low < (1<<20)) {
4193     _adrp(reg1, dest.target());
4194   } else {
4195     unsigned long target = (unsigned long)dest.target();
4196     unsigned long adrp_target
4197       = (target & 0xffffffffUL) | ((unsigned long)pc() & 0xffff00000000UL);
4198 
4199     _adrp(reg1, (address)adrp_target);
4200     movk(reg1, target >> 32, 32);
4201   }
4202   byte_offset = (unsigned long)dest.target() & 0xfff;
4203 }
4204 
4205 void MacroAssembler::load_byte_map_base(Register reg) {
4206   jbyte *byte_map_base =
4207     ((CardTableModRefBS*)(Universe::heap()->barrier_set()))->byte_map_base;
4208 
4209   if (is_valid_AArch64_address((address)byte_map_base)) {
4210     // Strictly speaking the byte_map_base isn't an address at all,
4211     // and it might even be negative.
4212     unsigned long offset;
4213     adrp(reg, ExternalAddress((address)byte_map_base), offset);
4214     // We expect offset to be zero with most collectors.
4215     if (offset != 0) {
4216       add(reg, reg, offset);
4217     }
4218   } else {
4219     mov(reg, (uint64_t)byte_map_base);
4220   }
4221 }
4222 
4223 void MacroAssembler::build_frame(int framesize) {
4224   assert(framesize > 0, "framesize must be > 0");
4225   if (framesize < ((1 << 9) + 2 * wordSize)) {
4226     sub(sp, sp, framesize);
4227     stp(rfp, lr, Address(sp, framesize - 2 * wordSize));
4228     if (PreserveFramePointer) add(rfp, sp, framesize - 2 * wordSize);
4229   } else {
4230     stp(rfp, lr, Address(pre(sp, -2 * wordSize)));
4231     if (PreserveFramePointer) mov(rfp, sp);
4232     if (framesize < ((1 << 12) + 2 * wordSize))
4233       sub(sp, sp, framesize - 2 * wordSize);
4234     else {
4235       mov(rscratch1, framesize - 2 * wordSize);
4236       sub(sp, sp, rscratch1);
4237     }
4238   }
4239 }
4240 
4241 void MacroAssembler::remove_frame(int framesize) {
4242   assert(framesize > 0, "framesize must be > 0");
4243   if (framesize < ((1 << 9) + 2 * wordSize)) {
4244     ldp(rfp, lr, Address(sp, framesize - 2 * wordSize));
4245     add(sp, sp, framesize);
4246   } else {
4247     if (framesize < ((1 << 12) + 2 * wordSize))
4248       add(sp, sp, framesize - 2 * wordSize);
4249     else {
4250       mov(rscratch1, framesize - 2 * wordSize);
4251       add(sp, sp, rscratch1);
4252     }
4253     ldp(rfp, lr, Address(post(sp, 2 * wordSize)));
4254   }
4255 }
4256 
4257 typedef void (MacroAssembler::* chr_insn)(Register Rt, const Address &adr);
4258 
4259 // Search for str1 in str2 and return index or -1
4260 void MacroAssembler::string_indexof(Register str2, Register str1,
4261                                     Register cnt2, Register cnt1,
4262                                     Register tmp1, Register tmp2,
4263                                     Register tmp3, Register tmp4,
4264                                     int icnt1, Register result, int ae) {
4265   Label BM, LINEARSEARCH, DONE, NOMATCH, MATCH;
4266 
4267   Register ch1 = rscratch1;
4268   Register ch2 = rscratch2;
4269   Register cnt1tmp = tmp1;
4270   Register cnt2tmp = tmp2;
4271   Register cnt1_neg = cnt1;
4272   Register cnt2_neg = cnt2;
4273   Register result_tmp = tmp4;
4274 
4275   bool isL = ae == StrIntrinsicNode::LL;
4276 
4277   bool str1_isL = ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UL;
4278   bool str2_isL = ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::LU;
4279   int str1_chr_shift = str1_isL ? 0:1;
4280   int str2_chr_shift = str2_isL ? 0:1;
4281   int str1_chr_size = str1_isL ? 1:2;
4282   int str2_chr_size = str2_isL ? 1:2;
4283   chr_insn str1_load_1chr = str1_isL ? (chr_insn)&MacroAssembler::ldrb :
4284                                       (chr_insn)&MacroAssembler::ldrh;
4285   chr_insn str2_load_1chr = str2_isL ? (chr_insn)&MacroAssembler::ldrb :
4286                                       (chr_insn)&MacroAssembler::ldrh;
4287   chr_insn load_2chr = isL ? (chr_insn)&MacroAssembler::ldrh : (chr_insn)&MacroAssembler::ldrw;
4288   chr_insn load_4chr = isL ? (chr_insn)&MacroAssembler::ldrw : (chr_insn)&MacroAssembler::ldr;
4289 
4290   // Note, inline_string_indexOf() generates checks:
4291   // if (substr.count > string.count) return -1;
4292   // if (substr.count == 0) return 0;
4293 
4294 // We have two strings, a source string in str2, cnt2 and a pattern string
4295 // in str1, cnt1. Find the 1st occurence of pattern in source or return -1.
4296 
4297 // For larger pattern and source we use a simplified Boyer Moore algorithm.
4298 // With a small pattern and source we use linear scan.
4299 
4300   if (icnt1 == -1) {
4301     cmp(cnt1, 256);             // Use Linear Scan if cnt1 < 8 || cnt1 >= 256
4302     ccmp(cnt1, 8, 0b0000, LO);  // Can't handle skip >= 256 because we use
4303     br(LO, LINEARSEARCH);       // a byte array.
4304     cmp(cnt1, cnt2, LSR, 2);    // Source must be 4 * pattern for BM
4305     br(HS, LINEARSEARCH);
4306   }
4307 
4308 // The Boyer Moore alogorithm is based on the description here:-
4309 //
4310 // http://en.wikipedia.org/wiki/Boyer%E2%80%93Moore_string_search_algorithm
4311 //
4312 // This describes and algorithm with 2 shift rules. The 'Bad Character' rule
4313 // and the 'Good Suffix' rule.
4314 //
4315 // These rules are essentially heuristics for how far we can shift the
4316 // pattern along the search string.
4317 //
4318 // The implementation here uses the 'Bad Character' rule only because of the
4319 // complexity of initialisation for the 'Good Suffix' rule.
4320 //
4321 // This is also known as the Boyer-Moore-Horspool algorithm:-
4322 //
4323 // http://en.wikipedia.org/wiki/Boyer-Moore-Horspool_algorithm
4324 //
4325 // #define ASIZE 128
4326 //
4327 //    int bm(unsigned char *x, int m, unsigned char *y, int n) {
4328 //       int i, j;
4329 //       unsigned c;
4330 //       unsigned char bc[ASIZE];
4331 //
4332 //       /* Preprocessing */
4333 //       for (i = 0; i < ASIZE; ++i)
4334 //          bc[i] = 0;
4335 //       for (i = 0; i < m - 1; ) {
4336 //          c = x[i];
4337 //          ++i;
4338 //          if (c < ASIZE) bc[c] = i;
4339 //       }
4340 //
4341 //       /* Searching */
4342 //       j = 0;
4343 //       while (j <= n - m) {
4344 //          c = y[i+j];
4345 //          if (x[m-1] == c)
4346 //            for (i = m - 2; i >= 0 && x[i] == y[i + j]; --i);
4347 //          if (i < 0) return j;
4348 //          if (c < ASIZE)
4349 //            j = j - bc[y[j+m-1]] + m;
4350 //          else
4351 //            j += 1; // Advance by 1 only if char >= ASIZE
4352 //       }
4353 //    }
4354 
4355   if (icnt1 == -1) {
4356     BIND(BM);
4357 
4358     Label ZLOOP, BCLOOP, BCSKIP, BMLOOPSTR2, BMLOOPSTR1, BMSKIP;
4359     Label BMADV, BMMATCH, BMCHECKEND;
4360 
4361     Register cnt1end = tmp2;
4362     Register str2end = cnt2;
4363     Register skipch = tmp2;
4364 
4365     // Restrict ASIZE to 128 to reduce stack space/initialisation.
4366     // The presence of chars >= ASIZE in the target string does not affect
4367     // performance, but we must be careful not to initialise them in the stack
4368     // array.
4369     // The presence of chars >= ASIZE in the source string may adversely affect
4370     // performance since we can only advance by one when we encounter one.
4371 
4372       stp(zr, zr, pre(sp, -128));
4373       for (int i = 1; i < 8; i++)
4374           stp(zr, zr, Address(sp, i*16));
4375 
4376       mov(cnt1tmp, 0);
4377       sub(cnt1end, cnt1, 1);
4378     BIND(BCLOOP);
4379       (this->*str1_load_1chr)(ch1, Address(str1, cnt1tmp, Address::lsl(str1_chr_shift)));
4380       cmp(ch1, 128);
4381       add(cnt1tmp, cnt1tmp, 1);
4382       br(HS, BCSKIP);
4383       strb(cnt1tmp, Address(sp, ch1));
4384     BIND(BCSKIP);
4385       cmp(cnt1tmp, cnt1end);
4386       br(LT, BCLOOP);
4387 
4388       mov(result_tmp, str2);
4389 
4390       sub(cnt2, cnt2, cnt1);
4391       add(str2end, str2, cnt2, LSL, str2_chr_shift);
4392     BIND(BMLOOPSTR2);
4393       sub(cnt1tmp, cnt1, 1);
4394       (this->*str1_load_1chr)(ch1, Address(str1, cnt1tmp, Address::lsl(str1_chr_shift)));
4395       (this->*str2_load_1chr)(skipch, Address(str2, cnt1tmp, Address::lsl(str2_chr_shift)));
4396       cmp(ch1, skipch);
4397       br(NE, BMSKIP);
4398       subs(cnt1tmp, cnt1tmp, 1);
4399       br(LT, BMMATCH);
4400     BIND(BMLOOPSTR1);
4401       (this->*str1_load_1chr)(ch1, Address(str1, cnt1tmp, Address::lsl(str1_chr_shift)));
4402       (this->*str2_load_1chr)(ch2, Address(str2, cnt1tmp, Address::lsl(str2_chr_shift)));
4403       cmp(ch1, ch2);
4404       br(NE, BMSKIP);
4405       subs(cnt1tmp, cnt1tmp, 1);
4406       br(GE, BMLOOPSTR1);
4407     BIND(BMMATCH);
4408       sub(result, str2, result_tmp);
4409       if (!str2_isL) lsr(result, result, 1);
4410       add(sp, sp, 128);
4411       b(DONE);
4412     BIND(BMADV);
4413       add(str2, str2, str2_chr_size);
4414       b(BMCHECKEND);
4415     BIND(BMSKIP);
4416       cmp(skipch, 128);
4417       br(HS, BMADV);
4418       ldrb(ch2, Address(sp, skipch));
4419       add(str2, str2, cnt1, LSL, str2_chr_shift);
4420       sub(str2, str2, ch2, LSL, str2_chr_shift);
4421     BIND(BMCHECKEND);
4422       cmp(str2, str2end);
4423       br(LE, BMLOOPSTR2);
4424       add(sp, sp, 128);
4425       b(NOMATCH);
4426   }
4427 
4428   BIND(LINEARSEARCH);
4429   {
4430     Label DO1, DO2, DO3;
4431 
4432     Register str2tmp = tmp2;
4433     Register first = tmp3;
4434 
4435     if (icnt1 == -1)
4436     {
4437         Label DOSHORT, FIRST_LOOP, STR2_NEXT, STR1_LOOP, STR1_NEXT;
4438 
4439         cmp(cnt1, str1_isL == str2_isL ? 4 : 2);
4440         br(LT, DOSHORT);
4441 
4442         sub(cnt2, cnt2, cnt1);
4443         mov(result_tmp, cnt2);
4444 
4445         lea(str1, Address(str1, cnt1, Address::lsl(str1_chr_shift)));
4446         lea(str2, Address(str2, cnt2, Address::lsl(str2_chr_shift)));
4447         sub(cnt1_neg, zr, cnt1, LSL, str1_chr_shift);
4448         sub(cnt2_neg, zr, cnt2, LSL, str2_chr_shift);
4449         (this->*str1_load_1chr)(first, Address(str1, cnt1_neg));
4450 
4451       BIND(FIRST_LOOP);
4452         (this->*str2_load_1chr)(ch2, Address(str2, cnt2_neg));
4453         cmp(first, ch2);
4454         br(EQ, STR1_LOOP);
4455       BIND(STR2_NEXT);
4456         adds(cnt2_neg, cnt2_neg, str2_chr_size);
4457         br(LE, FIRST_LOOP);
4458         b(NOMATCH);
4459 
4460       BIND(STR1_LOOP);
4461         adds(cnt1tmp, cnt1_neg, str1_chr_size);
4462         add(cnt2tmp, cnt2_neg, str2_chr_size);
4463         br(GE, MATCH);
4464 
4465       BIND(STR1_NEXT);
4466         (this->*str1_load_1chr)(ch1, Address(str1, cnt1tmp));
4467         (this->*str2_load_1chr)(ch2, Address(str2, cnt2tmp));
4468         cmp(ch1, ch2);
4469         br(NE, STR2_NEXT);
4470         adds(cnt1tmp, cnt1tmp, str1_chr_size);
4471         add(cnt2tmp, cnt2tmp, str2_chr_size);
4472         br(LT, STR1_NEXT);
4473         b(MATCH);
4474 
4475       BIND(DOSHORT);
4476       if (str1_isL == str2_isL) {
4477         cmp(cnt1, 2);
4478         br(LT, DO1);
4479         br(GT, DO3);
4480       }
4481     }
4482 
4483     if (icnt1 == 4) {
4484       Label CH1_LOOP;
4485 
4486         (this->*load_4chr)(ch1, str1);
4487         sub(cnt2, cnt2, 4);
4488         mov(result_tmp, cnt2);
4489         lea(str2, Address(str2, cnt2, Address::lsl(str2_chr_shift)));
4490         sub(cnt2_neg, zr, cnt2, LSL, str2_chr_shift);
4491 
4492       BIND(CH1_LOOP);
4493         (this->*load_4chr)(ch2, Address(str2, cnt2_neg));
4494         cmp(ch1, ch2);
4495         br(EQ, MATCH);
4496         adds(cnt2_neg, cnt2_neg, str2_chr_size);
4497         br(LE, CH1_LOOP);
4498         b(NOMATCH);
4499     }
4500 
4501     if ((icnt1 == -1 && str1_isL == str2_isL) || icnt1 == 2) {
4502       Label CH1_LOOP;
4503 
4504       BIND(DO2);
4505         (this->*load_2chr)(ch1, str1);
4506         sub(cnt2, cnt2, 2);
4507         mov(result_tmp, cnt2);
4508         lea(str2, Address(str2, cnt2, Address::lsl(str2_chr_shift)));
4509         sub(cnt2_neg, zr, cnt2, LSL, str2_chr_shift);
4510 
4511       BIND(CH1_LOOP);
4512         (this->*load_2chr)(ch2, Address(str2, cnt2_neg));
4513         cmp(ch1, ch2);
4514         br(EQ, MATCH);
4515         adds(cnt2_neg, cnt2_neg, str2_chr_size);
4516         br(LE, CH1_LOOP);
4517         b(NOMATCH);
4518     }
4519 
4520     if ((icnt1 == -1 && str1_isL == str2_isL) || icnt1 == 3) {
4521       Label FIRST_LOOP, STR2_NEXT, STR1_LOOP;
4522 
4523       BIND(DO3);
4524         (this->*load_2chr)(first, str1);
4525         (this->*str1_load_1chr)(ch1, Address(str1, 2*str1_chr_size));
4526 
4527         sub(cnt2, cnt2, 3);
4528         mov(result_tmp, cnt2);
4529         lea(str2, Address(str2, cnt2, Address::lsl(str2_chr_shift)));
4530         sub(cnt2_neg, zr, cnt2, LSL, str2_chr_shift);
4531 
4532       BIND(FIRST_LOOP);
4533         (this->*load_2chr)(ch2, Address(str2, cnt2_neg));
4534         cmpw(first, ch2);
4535         br(EQ, STR1_LOOP);
4536       BIND(STR2_NEXT);
4537         adds(cnt2_neg, cnt2_neg, str2_chr_size);
4538         br(LE, FIRST_LOOP);
4539         b(NOMATCH);
4540 
4541       BIND(STR1_LOOP);
4542         add(cnt2tmp, cnt2_neg, 2*str2_chr_size);
4543         (this->*str2_load_1chr)(ch2, Address(str2, cnt2tmp));
4544         cmp(ch1, ch2);
4545         br(NE, STR2_NEXT);
4546         b(MATCH);
4547     }
4548 
4549     if (icnt1 == -1 || icnt1 == 1) {
4550       Label CH1_LOOP, HAS_ZERO;
4551       Label DO1_SHORT, DO1_LOOP;
4552 
4553       BIND(DO1);
4554         (this->*str1_load_1chr)(ch1, str1);
4555         cmp(cnt2, 8);
4556         br(LT, DO1_SHORT);
4557 
4558         if (str2_isL) {
4559           if (!str1_isL) {
4560             tst(ch1, 0xff00);
4561             br(NE, NOMATCH);
4562           }
4563           orr(ch1, ch1, ch1, LSL, 8);
4564         }
4565         orr(ch1, ch1, ch1, LSL, 16);
4566         orr(ch1, ch1, ch1, LSL, 32);
4567 
4568         sub(cnt2, cnt2, 8/str2_chr_size);
4569         mov(result_tmp, cnt2);
4570         lea(str2, Address(str2, cnt2, Address::lsl(str2_chr_shift)));
4571         sub(cnt2_neg, zr, cnt2, LSL, str2_chr_shift);
4572 
4573         mov(tmp3, str2_isL ? 0x0101010101010101 : 0x0001000100010001);
4574       BIND(CH1_LOOP);
4575         ldr(ch2, Address(str2, cnt2_neg));
4576         eor(ch2, ch1, ch2);
4577         sub(tmp1, ch2, tmp3);
4578         orr(tmp2, ch2, str2_isL ? 0x7f7f7f7f7f7f7f7f : 0x7fff7fff7fff7fff);
4579         bics(tmp1, tmp1, tmp2);
4580         br(NE, HAS_ZERO);
4581         adds(cnt2_neg, cnt2_neg, 8);
4582         br(LT, CH1_LOOP);
4583 
4584         cmp(cnt2_neg, 8);
4585         mov(cnt2_neg, 0);
4586         br(LT, CH1_LOOP);
4587         b(NOMATCH);
4588 
4589       BIND(HAS_ZERO);
4590         rev(tmp1, tmp1);
4591         clz(tmp1, tmp1);
4592         add(cnt2_neg, cnt2_neg, tmp1, LSR, 3);
4593         b(MATCH);
4594 
4595       BIND(DO1_SHORT);
4596         mov(result_tmp, cnt2);
4597         lea(str2, Address(str2, cnt2, Address::lsl(str2_chr_shift)));
4598         sub(cnt2_neg, zr, cnt2, LSL, str2_chr_shift);
4599       BIND(DO1_LOOP);
4600         (this->*str2_load_1chr)(ch2, Address(str2, cnt2_neg));
4601         cmpw(ch1, ch2);
4602         br(EQ, MATCH);
4603         adds(cnt2_neg, cnt2_neg, str2_chr_size);
4604         br(LT, DO1_LOOP);
4605     }
4606   }
4607   BIND(NOMATCH);
4608     mov(result, -1);
4609     b(DONE);
4610   BIND(MATCH);
4611     add(result, result_tmp, cnt2_neg, ASR, str2_chr_shift);
4612   BIND(DONE);
4613 }
4614 
4615 typedef void (MacroAssembler::* chr_insn)(Register Rt, const Address &adr);
4616 typedef void (MacroAssembler::* uxt_insn)(Register Rd, Register Rn);
4617 
4618 void MacroAssembler::string_indexof_char(Register str1, Register cnt1,
4619                                          Register ch, Register result,
4620                                          Register tmp1, Register tmp2, Register tmp3)
4621 {
4622   Label CH1_LOOP, HAS_ZERO, DO1_SHORT, DO1_LOOP, MATCH, NOMATCH, DONE;
4623   Register cnt1_neg = cnt1;
4624   Register ch1 = rscratch1;
4625   Register result_tmp = rscratch2;
4626 
4627   cmp(cnt1, 4);
4628   br(LT, DO1_SHORT);
4629 
4630   orr(ch, ch, ch, LSL, 16);
4631   orr(ch, ch, ch, LSL, 32);
4632 
4633   sub(cnt1, cnt1, 4);
4634   mov(result_tmp, cnt1);
4635   lea(str1, Address(str1, cnt1, Address::uxtw(1)));
4636   sub(cnt1_neg, zr, cnt1, LSL, 1);
4637 
4638   mov(tmp3, 0x0001000100010001);
4639 
4640   BIND(CH1_LOOP);
4641     ldr(ch1, Address(str1, cnt1_neg));
4642     eor(ch1, ch, ch1);
4643     sub(tmp1, ch1, tmp3);
4644     orr(tmp2, ch1, 0x7fff7fff7fff7fff);
4645     bics(tmp1, tmp1, tmp2);
4646     br(NE, HAS_ZERO);
4647     adds(cnt1_neg, cnt1_neg, 8);
4648     br(LT, CH1_LOOP);
4649 
4650     cmp(cnt1_neg, 8);
4651     mov(cnt1_neg, 0);
4652     br(LT, CH1_LOOP);
4653     b(NOMATCH);
4654 
4655   BIND(HAS_ZERO);
4656     rev(tmp1, tmp1);
4657     clz(tmp1, tmp1);
4658     add(cnt1_neg, cnt1_neg, tmp1, LSR, 3);
4659     b(MATCH);
4660 
4661   BIND(DO1_SHORT);
4662     mov(result_tmp, cnt1);
4663     lea(str1, Address(str1, cnt1, Address::uxtw(1)));
4664     sub(cnt1_neg, zr, cnt1, LSL, 1);
4665   BIND(DO1_LOOP);
4666     ldrh(ch1, Address(str1, cnt1_neg));
4667     cmpw(ch, ch1);
4668     br(EQ, MATCH);
4669     adds(cnt1_neg, cnt1_neg, 2);
4670     br(LT, DO1_LOOP);
4671   BIND(NOMATCH);
4672     mov(result, -1);
4673     b(DONE);
4674   BIND(MATCH);
4675     add(result, result_tmp, cnt1_neg, ASR, 1);
4676   BIND(DONE);
4677 }
4678 
4679 // Compare strings.
4680 void MacroAssembler::string_compare(Register str1, Register str2,
4681                                     Register cnt1, Register cnt2, Register result,
4682                                     Register tmp1,
4683                                     FloatRegister vtmp, FloatRegister vtmpZ, int ae) {
4684   Label LENGTH_DIFF, DONE, SHORT_LOOP, SHORT_STRING,
4685     NEXT_WORD, DIFFERENCE;
4686 
4687   bool isLL = ae == StrIntrinsicNode::LL;
4688   bool isLU = ae == StrIntrinsicNode::LU;
4689   bool isUL = ae == StrIntrinsicNode::UL;
4690 
4691   bool str1_isL = isLL || isLU;
4692   bool str2_isL = isLL || isUL;
4693 
4694   int str1_chr_shift = str1_isL ? 0 : 1;
4695   int str2_chr_shift = str2_isL ? 0 : 1;
4696   int str1_chr_size = str1_isL ? 1 : 2;
4697   int str2_chr_size = str2_isL ? 1 : 2;
4698 
4699   chr_insn str1_load_chr = str1_isL ? (chr_insn)&MacroAssembler::ldrb :
4700                                       (chr_insn)&MacroAssembler::ldrh;
4701   chr_insn str2_load_chr = str2_isL ? (chr_insn)&MacroAssembler::ldrb :
4702                                       (chr_insn)&MacroAssembler::ldrh;
4703   uxt_insn ext_chr = isLL ? (uxt_insn)&MacroAssembler::uxtbw :
4704                             (uxt_insn)&MacroAssembler::uxthw;
4705 
4706   BLOCK_COMMENT("string_compare {");
4707 
4708   // Bizzarely, the counts are passed in bytes, regardless of whether they
4709   // are L or U strings, however the result is always in characters.
4710   if (!str1_isL) asrw(cnt1, cnt1, 1);
4711   if (!str2_isL) asrw(cnt2, cnt2, 1);
4712 
4713   // Compute the minimum of the string lengths and save the difference.
4714   subsw(tmp1, cnt1, cnt2);
4715   cselw(cnt2, cnt1, cnt2, Assembler::LE); // min
4716 
4717   // A very short string
4718   cmpw(cnt2, isLL ? 8:4);
4719   br(Assembler::LT, SHORT_STRING);
4720 
4721   // Check if the strings start at the same location.
4722   cmp(str1, str2);
4723   br(Assembler::EQ, LENGTH_DIFF);
4724 
4725   // Compare longwords
4726   {
4727     subw(cnt2, cnt2, isLL ? 8:4); // The last longword is a special case
4728 
4729     // Move both string pointers to the last longword of their
4730     // strings, negate the remaining count, and convert it to bytes.
4731     lea(str1, Address(str1, cnt2, Address::uxtw(str1_chr_shift)));
4732     lea(str2, Address(str2, cnt2, Address::uxtw(str2_chr_shift)));
4733     if (isLU || isUL) {
4734       sub(cnt1, zr, cnt2, LSL, str1_chr_shift);
4735       eor(vtmpZ, T16B, vtmpZ, vtmpZ);
4736     }
4737     sub(cnt2, zr, cnt2, LSL, str2_chr_shift);
4738 
4739     // Loop, loading longwords and comparing them into rscratch2.
4740     bind(NEXT_WORD);
4741     if (isLU) {
4742       ldrs(vtmp, Address(str1, cnt1));
4743       zip1(vtmp, T8B, vtmp, vtmpZ);
4744       umov(result, vtmp, D, 0);
4745     } else {
4746       ldr(result, Address(str1, isUL ? cnt1:cnt2));
4747     }
4748     if (isUL) {
4749       ldrs(vtmp, Address(str2, cnt2));
4750       zip1(vtmp, T8B, vtmp, vtmpZ);
4751       umov(rscratch1, vtmp, D, 0);
4752     } else {
4753       ldr(rscratch1, Address(str2, cnt2));
4754     }
4755     adds(cnt2, cnt2, isUL ? 4:8);
4756     if (isLU || isUL) add(cnt1, cnt1, isLU ? 4:8);
4757     eor(rscratch2, result, rscratch1);
4758     cbnz(rscratch2, DIFFERENCE);
4759     br(Assembler::LT, NEXT_WORD);
4760 
4761     // Last longword.  In the case where length == 4 we compare the
4762     // same longword twice, but that's still faster than another
4763     // conditional branch.
4764 
4765     if (isLU) {
4766       ldrs(vtmp, Address(str1));
4767       zip1(vtmp, T8B, vtmp, vtmpZ);
4768       umov(result, vtmp, D, 0);
4769     } else {
4770       ldr(result, Address(str1));
4771     }
4772     if (isUL) {
4773       ldrs(vtmp, Address(str2));
4774       zip1(vtmp, T8B, vtmp, vtmpZ);
4775       umov(rscratch1, vtmp, D, 0);
4776     } else {
4777       ldr(rscratch1, Address(str2));
4778     }
4779     eor(rscratch2, result, rscratch1);
4780     cbz(rscratch2, LENGTH_DIFF);
4781 
4782     // Find the first different characters in the longwords and
4783     // compute their difference.
4784     bind(DIFFERENCE);
4785     rev(rscratch2, rscratch2);
4786     clz(rscratch2, rscratch2);
4787     andr(rscratch2, rscratch2, isLL ? -8 : -16);
4788     lsrv(result, result, rscratch2);
4789     (this->*ext_chr)(result, result);
4790     lsrv(rscratch1, rscratch1, rscratch2);
4791     (this->*ext_chr)(rscratch1, rscratch1);
4792     subw(result, result, rscratch1);
4793     b(DONE);
4794   }
4795 
4796   bind(SHORT_STRING);
4797   // Is the minimum length zero?
4798   cbz(cnt2, LENGTH_DIFF);
4799 
4800   bind(SHORT_LOOP);
4801   (this->*str1_load_chr)(result, Address(post(str1, str1_chr_size)));
4802   (this->*str2_load_chr)(cnt1, Address(post(str2, str2_chr_size)));
4803   subw(result, result, cnt1);
4804   cbnz(result, DONE);
4805   sub(cnt2, cnt2, 1);
4806   cbnz(cnt2, SHORT_LOOP);
4807 
4808   // Strings are equal up to min length.  Return the length difference.
4809   bind(LENGTH_DIFF);
4810   mov(result, tmp1);
4811 
4812   // That's it
4813   bind(DONE);
4814 
4815   BLOCK_COMMENT("} string_compare");
4816 }
4817 
4818 // Compare Strings or char/byte arrays.
4819 
4820 // is_string is true iff this is a string comparison.
4821 
4822 // For Strings we're passed the address of the first characters in a1
4823 // and a2 and the length in cnt1.
4824 
4825 // For byte and char arrays we're passed the arrays themselves and we
4826 // have to extract length fields and do null checks here.
4827 
4828 // elem_size is the element size in bytes: either 1 or 2.
4829 
4830 // There are two implementations.  For arrays >= 8 bytes, all
4831 // comparisons (including the final one, which may overlap) are
4832 // performed 8 bytes at a time.  For arrays < 8 bytes, we compare a
4833 // halfword, then a short, and then a byte.
4834 
4835 void MacroAssembler::arrays_equals(Register a1, Register a2,
4836                                    Register result, Register cnt1,
4837                                    int elem_size, bool is_string)
4838 {
4839   Label SAME, DONE, SHORT, NEXT_WORD, ONE;
4840   Register tmp1 = rscratch1;
4841   Register tmp2 = rscratch2;
4842   Register cnt2 = tmp2;  // cnt2 only used in array length compare
4843   int elem_per_word = wordSize/elem_size;
4844   int log_elem_size = exact_log2(elem_size);
4845   int length_offset = arrayOopDesc::length_offset_in_bytes();
4846   int base_offset
4847     = arrayOopDesc::base_offset_in_bytes(elem_size == 2 ? T_CHAR : T_BYTE);
4848 
4849   assert(elem_size == 1 || elem_size == 2, "must be char or byte");
4850   assert_different_registers(a1, a2, result, cnt1, rscratch1, rscratch2);
4851 
4852 #ifndef PRODUCT
4853   {
4854     const char kind = (elem_size == 2) ? 'U' : 'L';
4855     char comment[64];
4856     snprintf(comment, sizeof comment, "%s%c%s {",
4857              is_string ? "string_equals" : "array_equals",
4858              kind, "{");
4859     BLOCK_COMMENT(comment);
4860   }
4861 #endif
4862 
4863   mov(result, false);
4864 
4865   if (!is_string) {
4866     // if (a==a2)
4867     //     return true;
4868     eor(rscratch1, a1, a2);
4869     cbz(rscratch1, SAME);
4870     // if (a==null || a2==null)
4871     //     return false;
4872     cbz(a1, DONE);
4873     cbz(a2, DONE);
4874     // if (a1.length != a2.length)
4875     //      return false;
4876     ldrw(cnt1, Address(a1, length_offset));
4877     ldrw(cnt2, Address(a2, length_offset));
4878     eorw(tmp1, cnt1, cnt2);
4879     cbnzw(tmp1, DONE);
4880 
4881     lea(a1, Address(a1, base_offset));
4882     lea(a2, Address(a2, base_offset));
4883   }
4884 
4885   // Check for short strings, i.e. smaller than wordSize.
4886   subs(cnt1, cnt1, elem_per_word);
4887   br(Assembler::LT, SHORT);
4888   // Main 8 byte comparison loop.
4889   bind(NEXT_WORD); {
4890     ldr(tmp1, Address(post(a1, wordSize)));
4891     ldr(tmp2, Address(post(a2, wordSize)));
4892     subs(cnt1, cnt1, elem_per_word);
4893     eor(tmp1, tmp1, tmp2);
4894     cbnz(tmp1, DONE);
4895   } br(GT, NEXT_WORD);
4896   // Last longword.  In the case where length == 4 we compare the
4897   // same longword twice, but that's still faster than another
4898   // conditional branch.
4899   // cnt1 could be 0, -1, -2, -3, -4 for chars; -4 only happens when
4900   // length == 4.
4901   if (log_elem_size > 0)
4902     lsl(cnt1, cnt1, log_elem_size);
4903   ldr(tmp1, Address(a1, cnt1));
4904   ldr(tmp2, Address(a2, cnt1));
4905   eor(tmp1, tmp1, tmp2);
4906   cbnz(tmp1, DONE);
4907   b(SAME);
4908 
4909   bind(SHORT);
4910   Label TAIL03, TAIL01;
4911 
4912   tbz(cnt1, 2 - log_elem_size, TAIL03); // 0-7 bytes left.
4913   {
4914     ldrw(tmp1, Address(post(a1, 4)));
4915     ldrw(tmp2, Address(post(a2, 4)));
4916     eorw(tmp1, tmp1, tmp2);
4917     cbnzw(tmp1, DONE);
4918   }
4919   bind(TAIL03);
4920   tbz(cnt1, 1 - log_elem_size, TAIL01); // 0-3 bytes left.
4921   {
4922     ldrh(tmp1, Address(post(a1, 2)));
4923     ldrh(tmp2, Address(post(a2, 2)));
4924     eorw(tmp1, tmp1, tmp2);
4925     cbnzw(tmp1, DONE);
4926   }
4927   bind(TAIL01);
4928   if (elem_size == 1) { // Only needed when comparing byte arrays.
4929     tbz(cnt1, 0, SAME); // 0-1 bytes left.
4930     {
4931       ldrb(tmp1, a1);
4932       ldrb(tmp2, a2);
4933       eorw(tmp1, tmp1, tmp2);
4934       cbnzw(tmp1, DONE);
4935     }
4936   }
4937   // Arrays are equal.
4938   bind(SAME);
4939   mov(result, true);
4940 
4941   // That's it.
4942   bind(DONE);
4943   BLOCK_COMMENT(is_string ? "} string_equals" : "} array_equals");
4944 }
4945 
4946 
4947 // base:     Address of a buffer to be zeroed, 8 bytes aligned.
4948 // cnt:      Count in HeapWords.
4949 // is_large: True when 'cnt' is known to be >= BlockZeroingLowLimit.
4950 void MacroAssembler::zero_words(Register base, Register cnt)
4951 {
4952   if (UseBlockZeroing) {
4953     block_zero(base, cnt);
4954   } else {
4955     fill_words(base, cnt, zr);
4956   }
4957 }
4958 
4959 // r10 = base:   Address of a buffer to be zeroed, 8 bytes aligned.
4960 // cnt:          Immediate count in HeapWords.
4961 // r11 = tmp:    For use as cnt if we need to call out
4962 #define ShortArraySize (18 * BytesPerLong)
4963 void MacroAssembler::zero_words(Register base, u_int64_t cnt)
4964 {
4965   Register tmp = r11;
4966   int i = cnt & 1;  // store any odd word to start
4967   if (i) str(zr, Address(base));
4968 
4969   if (cnt <= ShortArraySize / BytesPerLong) {
4970     for (; i < (int)cnt; i += 2)
4971       stp(zr, zr, Address(base, i * wordSize));
4972   } else if (UseBlockZeroing && cnt >= (u_int64_t)(BlockZeroingLowLimit >> LogBytesPerWord)) {
4973     mov(tmp, cnt);
4974     block_zero(base, tmp, true);
4975   } else {
4976     const int unroll = 4; // Number of stp(zr, zr) instructions we'll unroll
4977     int remainder = cnt % (2 * unroll);
4978     for (; i < remainder; i += 2)
4979       stp(zr, zr, Address(base, i * wordSize));
4980 
4981     Label loop;
4982     Register cnt_reg = rscratch1;
4983     Register loop_base = rscratch2;
4984     cnt = cnt - remainder;
4985     mov(cnt_reg, cnt);
4986     // adjust base and prebias by -2 * wordSize so we can pre-increment
4987     add(loop_base, base, (remainder - 2) * wordSize);
4988     bind(loop);
4989     sub(cnt_reg, cnt_reg, 2 * unroll);
4990     for (i = 1; i < unroll; i++)
4991       stp(zr, zr, Address(loop_base, 2 * i * wordSize));
4992     stp(zr, zr, Address(pre(loop_base, 2 * unroll * wordSize)));
4993     cbnz(cnt_reg, loop);
4994   }
4995 }
4996 
4997 // base:   Address of a buffer to be filled, 8 bytes aligned.
4998 // cnt:    Count in 8-byte unit.
4999 // value:  Value to be filled with.
5000 // base will point to the end of the buffer after filling.
5001 void MacroAssembler::fill_words(Register base, Register cnt, Register value)
5002 {
5003 //  Algorithm:
5004 //
5005 //    scratch1 = cnt & 7;
5006 //    cnt -= scratch1;
5007 //    p += scratch1;
5008 //    switch (scratch1) {
5009 //      do {
5010 //        cnt -= 8;
5011 //          p[-8] = v;
5012 //        case 7:
5013 //          p[-7] = v;
5014 //        case 6:
5015 //          p[-6] = v;
5016 //          // ...
5017 //        case 1:
5018 //          p[-1] = v;
5019 //        case 0:
5020 //          p += 8;
5021 //      } while (cnt);
5022 //    }
5023 
5024   assert_different_registers(base, cnt, value, rscratch1, rscratch2);
5025 
5026   Label fini, skip, entry, loop;
5027   const int unroll = 8; // Number of stp instructions we'll unroll
5028 
5029   cbz(cnt, fini);
5030   tbz(base, 3, skip);
5031   str(value, Address(post(base, 8)));
5032   sub(cnt, cnt, 1);
5033   bind(skip);
5034 
5035   andr(rscratch1, cnt, (unroll-1) * 2);
5036   sub(cnt, cnt, rscratch1);
5037   add(base, base, rscratch1, Assembler::LSL, 3);
5038   adr(rscratch2, entry);
5039   sub(rscratch2, rscratch2, rscratch1, Assembler::LSL, 1);
5040   br(rscratch2);
5041 
5042   bind(loop);
5043   add(base, base, unroll * 16);
5044   for (int i = -unroll; i < 0; i++)
5045     stp(value, value, Address(base, i * 16));
5046   bind(entry);
5047   subs(cnt, cnt, unroll * 2);
5048   br(Assembler::GE, loop);
5049 
5050   tbz(cnt, 0, fini);
5051   str(value, Address(post(base, 8)));
5052   bind(fini);
5053 }
5054 
5055 // Use DC ZVA to do fast zeroing.
5056 // base:   Address of a buffer to be zeroed, 8 bytes aligned.
5057 // cnt:    Count in HeapWords.
5058 // is_large: True when 'cnt' is known to be >= BlockZeroingLowLimit.
5059 void MacroAssembler::block_zero(Register base, Register cnt, bool is_large)
5060 {
5061   Label small;
5062   Label store_pair, loop_store_pair, done;
5063   Label base_aligned;
5064 
5065   assert_different_registers(base, cnt, rscratch1);
5066   guarantee(base == r10 && cnt == r11, "fix register usage");
5067 
5068   Register tmp = rscratch1;
5069   Register tmp2 = rscratch2;
5070   int zva_length = VM_Version::zva_length();
5071 
5072   // Ensure ZVA length can be divided by 16. This is required by
5073   // the subsequent operations.
5074   assert (zva_length % 16 == 0, "Unexpected ZVA Length");
5075 
5076   if (!is_large) cbz(cnt, done);
5077   tbz(base, 3, base_aligned);
5078   str(zr, Address(post(base, 8)));
5079   sub(cnt, cnt, 1);
5080   bind(base_aligned);
5081 
5082   // Ensure count >= zva_length * 2 so that it still deserves a zva after
5083   // alignment.
5084   if (!is_large || !(BlockZeroingLowLimit >= zva_length * 2)) {
5085     int low_limit = MAX2(zva_length * 2, (int)BlockZeroingLowLimit);
5086     subs(tmp, cnt, low_limit >> 3);
5087     br(Assembler::LT, small);
5088   }
5089 
5090   far_call(StubRoutines::aarch64::get_zero_longs());
5091 
5092   bind(small);
5093 
5094   const int unroll = 8; // Number of stp instructions we'll unroll
5095   Label small_loop, small_table_end;
5096 
5097   andr(tmp, cnt, (unroll-1) * 2);
5098   sub(cnt, cnt, tmp);
5099   add(base, base, tmp, Assembler::LSL, 3);
5100   adr(tmp2, small_table_end);
5101   sub(tmp2, tmp2, tmp, Assembler::LSL, 1);
5102   br(tmp2);
5103 
5104   bind(small_loop);
5105   add(base, base, unroll * 16);
5106   for (int i = -unroll; i < 0; i++)
5107     stp(zr, zr, Address(base, i * 16));
5108   bind(small_table_end);
5109   subs(cnt, cnt, unroll * 2);
5110   br(Assembler::GE, small_loop);
5111 
5112   tbz(cnt, 0, done);
5113   str(zr, Address(post(base, 8)));
5114 
5115   bind(done);
5116 }
5117 
5118 // Intrinsic for sun/nio/cs/ISO_8859_1$Encoder.implEncodeISOArray and
5119 // java/lang/StringUTF16.compress.
5120 void MacroAssembler::encode_iso_array(Register src, Register dst,
5121                       Register len, Register result,
5122                       FloatRegister Vtmp1, FloatRegister Vtmp2,
5123                       FloatRegister Vtmp3, FloatRegister Vtmp4)
5124 {
5125     Label DONE, NEXT_32, LOOP_8, NEXT_8, LOOP_1, NEXT_1;
5126     Register tmp1 = rscratch1;
5127 
5128       mov(result, len); // Save initial len
5129 
5130 #ifndef BUILTIN_SIM
5131       subs(len, len, 32);
5132       br(LT, LOOP_8);
5133 
5134 // The following code uses the SIMD 'uqxtn' and 'uqxtn2' instructions
5135 // to convert chars to bytes. These set the 'QC' bit in the FPSR if
5136 // any char could not fit in a byte, so clear the FPSR so we can test it.
5137       clear_fpsr();
5138 
5139     BIND(NEXT_32);
5140       ld1(Vtmp1, Vtmp2, Vtmp3, Vtmp4, T8H, src);
5141       uqxtn(Vtmp1, T8B, Vtmp1, T8H);  // uqxtn  - write bottom half
5142       uqxtn(Vtmp1, T16B, Vtmp2, T8H); // uqxtn2 - write top half
5143       uqxtn(Vtmp2, T8B, Vtmp3, T8H);
5144       uqxtn(Vtmp2, T16B, Vtmp4, T8H); // uqxtn2
5145       get_fpsr(tmp1);
5146       cbnzw(tmp1, LOOP_8);
5147       st1(Vtmp1, Vtmp2, T16B, post(dst, 32));
5148       subs(len, len, 32);
5149       add(src, src, 64);
5150       br(GE, NEXT_32);
5151 
5152     BIND(LOOP_8);
5153       adds(len, len, 32-8);
5154       br(LT, LOOP_1);
5155       clear_fpsr(); // QC may be set from loop above, clear again
5156     BIND(NEXT_8);
5157       ld1(Vtmp1, T8H, src);
5158       uqxtn(Vtmp1, T8B, Vtmp1, T8H);
5159       get_fpsr(tmp1);
5160       cbnzw(tmp1, LOOP_1);
5161       st1(Vtmp1, T8B, post(dst, 8));
5162       subs(len, len, 8);
5163       add(src, src, 16);
5164       br(GE, NEXT_8);
5165 
5166     BIND(LOOP_1);
5167       adds(len, len, 8);
5168       br(LE, DONE);
5169 #else
5170       cbz(len, DONE);
5171 #endif
5172     BIND(NEXT_1);
5173       ldrh(tmp1, Address(post(src, 2)));
5174       tst(tmp1, 0xff00);
5175       br(NE, DONE);
5176       strb(tmp1, Address(post(dst, 1)));
5177       subs(len, len, 1);
5178       br(GT, NEXT_1);
5179 
5180     BIND(DONE);
5181       sub(result, result, len); // Return index where we stopped
5182                                 // Return len == 0 if we processed all
5183                                 // characters
5184 }
5185 
5186 
5187 // Inflate byte[] array to char[].
5188 void MacroAssembler::byte_array_inflate(Register src, Register dst, Register len,
5189                                         FloatRegister vtmp1, FloatRegister vtmp2, FloatRegister vtmp3,
5190                                         Register tmp4) {
5191   Label big, done;
5192 
5193   assert_different_registers(src, dst, len, tmp4, rscratch1);
5194 
5195   fmovd(vtmp1 , zr);
5196   lsrw(rscratch1, len, 3);
5197 
5198   cbnzw(rscratch1, big);
5199 
5200   // Short string: less than 8 bytes.
5201   {
5202     Label loop, around, tiny;
5203 
5204     subsw(len, len, 4);
5205     andw(len, len, 3);
5206     br(LO, tiny);
5207 
5208     // Use SIMD to do 4 bytes.
5209     ldrs(vtmp2, post(src, 4));
5210     zip1(vtmp3, T8B, vtmp2, vtmp1);
5211     strd(vtmp3, post(dst, 8));
5212 
5213     cbzw(len, done);
5214 
5215     // Do the remaining bytes by steam.
5216     bind(loop);
5217     ldrb(tmp4, post(src, 1));
5218     strh(tmp4, post(dst, 2));
5219     subw(len, len, 1);
5220 
5221     bind(tiny);
5222     cbnz(len, loop);
5223 
5224     bind(around);
5225     b(done);
5226   }
5227 
5228   // Unpack the bytes 8 at a time.
5229   bind(big);
5230   andw(len, len, 7);
5231 
5232   {
5233     Label loop, around;
5234 
5235     bind(loop);
5236     ldrd(vtmp2, post(src, 8));
5237     sub(rscratch1, rscratch1, 1);
5238     zip1(vtmp3, T16B, vtmp2, vtmp1);
5239     st1(vtmp3, T8H, post(dst, 16));
5240     cbnz(rscratch1, loop);
5241 
5242     bind(around);
5243   }
5244 
5245   // Do the tail of up to 8 bytes.
5246   sub(src, src, 8);
5247   add(src, src, len, ext::uxtw, 0);
5248   ldrd(vtmp2, Address(src));
5249   sub(dst, dst, 16);
5250   add(dst, dst, len, ext::uxtw, 1);
5251   zip1(vtmp3, T16B, vtmp2, vtmp1);
5252   st1(vtmp3, T8H, Address(dst));
5253 
5254   bind(done);
5255 }
5256 
5257 // Compress char[] array to byte[].
5258 void MacroAssembler::char_array_compress(Register src, Register dst, Register len,
5259                                          FloatRegister tmp1Reg, FloatRegister tmp2Reg,
5260                                          FloatRegister tmp3Reg, FloatRegister tmp4Reg,
5261                                          Register result) {
5262   encode_iso_array(src, dst, len, result,
5263                    tmp1Reg, tmp2Reg, tmp3Reg, tmp4Reg);
5264   cmp(len, zr);
5265   csel(result, result, zr, EQ);
5266 }
5267 
5268 // get_thread() can be called anywhere inside generated code so we
5269 // need to save whatever non-callee save context might get clobbered
5270 // by the call to JavaThread::aarch64_get_thread_helper() or, indeed,
5271 // the call setup code.
5272 //
5273 // aarch64_get_thread_helper() clobbers only r0, r1, and flags.
5274 //
5275 void MacroAssembler::get_thread(Register dst) {
5276   RegSet saved_regs = RegSet::range(r0, r1) + lr - dst;
5277   push(saved_regs, sp);
5278 
5279   mov(lr, CAST_FROM_FN_PTR(address, JavaThread::aarch64_get_thread_helper));
5280   blrt(lr, 1, 0, 1);
5281   if (dst != c_rarg0) {
5282     mov(dst, c_rarg0);
5283   }
5284 
5285   pop(saved_regs, sp);
5286 }