1 /*
   2  * Copyright (c) 1997, 2016, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef CPU_X86_VM_MACROASSEMBLER_X86_HPP
  26 #define CPU_X86_VM_MACROASSEMBLER_X86_HPP
  27 
  28 #include "asm/assembler.hpp"
  29 #include "utilities/macros.hpp"
  30 #include "runtime/rtmLocking.hpp"
  31 
  32 // MacroAssembler extends Assembler by frequently used macros.
  33 //
  34 // Instructions for which a 'better' code sequence exists depending
  35 // on arguments should also go in here.
  36 
  37 class MacroAssembler: public Assembler {
  38   friend class LIR_Assembler;
  39   friend class Runtime1;      // as_Address()
  40 
  41  protected:
  42 
  43   Address as_Address(AddressLiteral adr);
  44   Address as_Address(ArrayAddress adr);
  45 
  46   // Support for VM calls
  47   //
  48   // This is the base routine called by the different versions of call_VM_leaf. The interpreter
  49   // may customize this version by overriding it for its purposes (e.g., to save/restore
  50   // additional registers when doing a VM call).
  51 
  52   virtual void call_VM_leaf_base(
  53     address entry_point,               // the entry point
  54     int     number_of_arguments        // the number of arguments to pop after the call
  55   );
  56 
  57   // This is the base routine called by the different versions of call_VM. The interpreter
  58   // may customize this version by overriding it for its purposes (e.g., to save/restore
  59   // additional registers when doing a VM call).
  60   //
  61   // If no java_thread register is specified (noreg) than rdi will be used instead. call_VM_base
  62   // returns the register which contains the thread upon return. If a thread register has been
  63   // specified, the return value will correspond to that register. If no last_java_sp is specified
  64   // (noreg) than rsp will be used instead.
  65   virtual void call_VM_base(           // returns the register containing the thread upon return
  66     Register oop_result,               // where an oop-result ends up if any; use noreg otherwise
  67     Register java_thread,              // the thread if computed before     ; use noreg otherwise
  68     Register last_java_sp,             // to set up last_Java_frame in stubs; use noreg otherwise
  69     address  entry_point,              // the entry point
  70     int      number_of_arguments,      // the number of arguments (w/o thread) to pop after the call
  71     bool     check_exceptions          // whether to check for pending exceptions after return
  72   );
  73 
  74   // These routines should emit JVMTI PopFrame and ForceEarlyReturn handling code.
  75   // The implementation is only non-empty for the InterpreterMacroAssembler,
  76   // as only the interpreter handles PopFrame and ForceEarlyReturn requests.
  77   virtual void check_and_handle_popframe(Register java_thread);
  78   virtual void check_and_handle_earlyret(Register java_thread);
  79 
  80   void call_VM_helper(Register oop_result, address entry_point, int number_of_arguments, bool check_exceptions = true);
  81 
  82   // helpers for FPU flag access
  83   // tmp is a temporary register, if none is available use noreg
  84   void save_rax   (Register tmp);
  85   void restore_rax(Register tmp);
  86 
  87  public:
  88   MacroAssembler(CodeBuffer* code) : Assembler(code) {}
  89 
  90   // Support for NULL-checks
  91   //
  92   // Generates code that causes a NULL OS exception if the content of reg is NULL.
  93   // If the accessed location is M[reg + offset] and the offset is known, provide the
  94   // offset. No explicit code generation is needed if the offset is within a certain
  95   // range (0 <= offset <= page_size).
  96 
  97   void null_check(Register reg, int offset = -1);
  98   static bool needs_explicit_null_check(intptr_t offset);
  99 
 100   // Required platform-specific helpers for Label::patch_instructions.
 101   // They _shadow_ the declarations in AbstractAssembler, which are undefined.
 102   void pd_patch_instruction(address branch, address target) {
 103     unsigned char op = branch[0];
 104     assert(op == 0xE8 /* call */ ||
 105         op == 0xE9 /* jmp */ ||
 106         op == 0xEB /* short jmp */ ||
 107         (op & 0xF0) == 0x70 /* short jcc */ ||
 108         op == 0x0F && (branch[1] & 0xF0) == 0x80 /* jcc */ ||
 109         op == 0xC7 && branch[1] == 0xF8 /* xbegin */,
 110         "Invalid opcode at patch point");
 111 
 112     if (op == 0xEB || (op & 0xF0) == 0x70) {
 113       // short offset operators (jmp and jcc)
 114       char* disp = (char*) &branch[1];
 115       int imm8 = target - (address) &disp[1];
 116       guarantee(this->is8bit(imm8), "Short forward jump exceeds 8-bit offset");
 117       *disp = imm8;
 118     } else {
 119       int* disp = (int*) &branch[(op == 0x0F || op == 0xC7)? 2: 1];
 120       int imm32 = target - (address) &disp[1];
 121       *disp = imm32;
 122     }
 123   }
 124 
 125   // The following 4 methods return the offset of the appropriate move instruction
 126 
 127   // Support for fast byte/short loading with zero extension (depending on particular CPU)
 128   int load_unsigned_byte(Register dst, Address src);
 129   int load_unsigned_short(Register dst, Address src);
 130 
 131   // Support for fast byte/short loading with sign extension (depending on particular CPU)
 132   int load_signed_byte(Register dst, Address src);
 133   int load_signed_short(Register dst, Address src);
 134 
 135   // Support for sign-extension (hi:lo = extend_sign(lo))
 136   void extend_sign(Register hi, Register lo);
 137 
 138   // Load and store values by size and signed-ness
 139   void load_sized_value(Register dst, Address src, size_t size_in_bytes, bool is_signed, Register dst2 = noreg);
 140   void store_sized_value(Address dst, Register src, size_t size_in_bytes, Register src2 = noreg);
 141 
 142   // Support for inc/dec with optimal instruction selection depending on value
 143 
 144   void increment(Register reg, int value = 1) { LP64_ONLY(incrementq(reg, value)) NOT_LP64(incrementl(reg, value)) ; }
 145   void decrement(Register reg, int value = 1) { LP64_ONLY(decrementq(reg, value)) NOT_LP64(decrementl(reg, value)) ; }
 146 
 147   void decrementl(Address dst, int value = 1);
 148   void decrementl(Register reg, int value = 1);
 149 
 150   void decrementq(Register reg, int value = 1);
 151   void decrementq(Address dst, int value = 1);
 152 
 153   void incrementl(Address dst, int value = 1);
 154   void incrementl(Register reg, int value = 1);
 155 
 156   void incrementq(Register reg, int value = 1);
 157   void incrementq(Address dst, int value = 1);
 158 
 159   // special instructions for EVEX
 160   void setvectmask(Register dst, Register src);
 161   void restorevectmask();
 162 
 163   // Support optimal SSE move instructions.
 164   void movflt(XMMRegister dst, XMMRegister src) {
 165     if (UseXmmRegToRegMoveAll) { movaps(dst, src); return; }
 166     else                       { movss (dst, src); return; }
 167   }
 168   void movflt(XMMRegister dst, Address src) { movss(dst, src); }
 169   void movflt(XMMRegister dst, AddressLiteral src);
 170   void movflt(Address dst, XMMRegister src) { movss(dst, src); }
 171 
 172   void movdbl(XMMRegister dst, XMMRegister src) {
 173     if (UseXmmRegToRegMoveAll) { movapd(dst, src); return; }
 174     else                       { movsd (dst, src); return; }
 175   }
 176 
 177   void movdbl(XMMRegister dst, AddressLiteral src);
 178 
 179   void movdbl(XMMRegister dst, Address src) {
 180     if (UseXmmLoadAndClearUpper) { movsd (dst, src); return; }
 181     else                         { movlpd(dst, src); return; }
 182   }
 183   void movdbl(Address dst, XMMRegister src) { movsd(dst, src); }
 184 
 185   void incrementl(AddressLiteral dst);
 186   void incrementl(ArrayAddress dst);
 187 
 188   void incrementq(AddressLiteral dst);
 189 
 190   // Alignment
 191   void align(int modulus);
 192   void align(int modulus, int target);
 193 
 194   // A 5 byte nop that is safe for patching (see patch_verified_entry)
 195   void fat_nop();
 196 
 197   // Stack frame creation/removal
 198   void enter();
 199   void leave();
 200 
 201   // Support for getting the JavaThread pointer (i.e.; a reference to thread-local information)
 202   // The pointer will be loaded into the thread register.
 203   void get_thread(Register thread);
 204 
 205 
 206   // Support for VM calls
 207   //
 208   // It is imperative that all calls into the VM are handled via the call_VM macros.
 209   // They make sure that the stack linkage is setup correctly. call_VM's correspond
 210   // to ENTRY/ENTRY_X entry points while call_VM_leaf's correspond to LEAF entry points.
 211 
 212 
 213   void call_VM(Register oop_result,
 214                address entry_point,
 215                bool check_exceptions = true);
 216   void call_VM(Register oop_result,
 217                address entry_point,
 218                Register arg_1,
 219                bool check_exceptions = true);
 220   void call_VM(Register oop_result,
 221                address entry_point,
 222                Register arg_1, Register arg_2,
 223                bool check_exceptions = true);
 224   void call_VM(Register oop_result,
 225                address entry_point,
 226                Register arg_1, Register arg_2, Register arg_3,
 227                bool check_exceptions = true);
 228 
 229   // Overloadings with last_Java_sp
 230   void call_VM(Register oop_result,
 231                Register last_java_sp,
 232                address entry_point,
 233                int number_of_arguments = 0,
 234                bool check_exceptions = true);
 235   void call_VM(Register oop_result,
 236                Register last_java_sp,
 237                address entry_point,
 238                Register arg_1, bool
 239                check_exceptions = true);
 240   void call_VM(Register oop_result,
 241                Register last_java_sp,
 242                address entry_point,
 243                Register arg_1, Register arg_2,
 244                bool check_exceptions = true);
 245   void call_VM(Register oop_result,
 246                Register last_java_sp,
 247                address entry_point,
 248                Register arg_1, Register arg_2, Register arg_3,
 249                bool check_exceptions = true);
 250 
 251   void get_vm_result  (Register oop_result, Register thread);
 252   void get_vm_result_2(Register metadata_result, Register thread);
 253 
 254   // These always tightly bind to MacroAssembler::call_VM_base
 255   // bypassing the virtual implementation
 256   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, int number_of_arguments = 0, bool check_exceptions = true);
 257   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, bool check_exceptions = true);
 258   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, bool check_exceptions = true);
 259   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, Register arg_3, bool check_exceptions = true);
 260   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, Register arg_3, Register arg_4, bool check_exceptions = true);
 261 
 262   void call_VM_leaf0(address entry_point);
 263   void call_VM_leaf(address entry_point,
 264                     int number_of_arguments = 0);
 265   void call_VM_leaf(address entry_point,
 266                     Register arg_1);
 267   void call_VM_leaf(address entry_point,
 268                     Register arg_1, Register arg_2);
 269   void call_VM_leaf(address entry_point,
 270                     Register arg_1, Register arg_2, Register arg_3);
 271 
 272   // These always tightly bind to MacroAssembler::call_VM_leaf_base
 273   // bypassing the virtual implementation
 274   void super_call_VM_leaf(address entry_point);
 275   void super_call_VM_leaf(address entry_point, Register arg_1);
 276   void super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2);
 277   void super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2, Register arg_3);
 278   void super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2, Register arg_3, Register arg_4);
 279 
 280   // last Java Frame (fills frame anchor)
 281   void set_last_Java_frame(Register thread,
 282                            Register last_java_sp,
 283                            Register last_java_fp,
 284                            address last_java_pc);
 285 
 286   // thread in the default location (r15_thread on 64bit)
 287   void set_last_Java_frame(Register last_java_sp,
 288                            Register last_java_fp,
 289                            address last_java_pc);
 290 
 291   void reset_last_Java_frame(Register thread, bool clear_fp);
 292 
 293   // thread in the default location (r15_thread on 64bit)
 294   void reset_last_Java_frame(bool clear_fp);
 295 
 296   // Stores
 297   void store_check(Register obj);                // store check for obj - register is destroyed afterwards
 298   void store_check(Register obj, Address dst);   // same as above, dst is exact store location (reg. is destroyed)
 299 
 300 #if INCLUDE_ALL_GCS
 301 
 302   void g1_write_barrier_pre(Register obj,
 303                             Register pre_val,
 304                             Register thread,
 305                             Register tmp,
 306                             bool tosca_live,
 307                             bool expand_call);
 308 
 309   void g1_write_barrier_post(Register store_addr,
 310                              Register new_val,
 311                              Register thread,
 312                              Register tmp,
 313                              Register tmp2);
 314 
 315 #endif // INCLUDE_ALL_GCS
 316 
 317   // C 'boolean' to Java boolean: x == 0 ? 0 : 1
 318   void c2bool(Register x);
 319 
 320   // C++ bool manipulation
 321 
 322   void movbool(Register dst, Address src);
 323   void movbool(Address dst, bool boolconst);
 324   void movbool(Address dst, Register src);
 325   void testbool(Register dst);
 326 
 327   void load_mirror(Register mirror, Register method);
 328 
 329   // oop manipulations
 330   void load_klass(Register dst, Register src);
 331   void store_klass(Register dst, Register src);
 332 
 333   void load_heap_oop(Register dst, Address src);
 334   void load_heap_oop_not_null(Register dst, Address src);
 335   void store_heap_oop(Address dst, Register src);
 336   void cmp_heap_oop(Register src1, Address src2, Register tmp = noreg);
 337 
 338   // Used for storing NULL. All other oop constants should be
 339   // stored using routines that take a jobject.
 340   void store_heap_oop_null(Address dst);
 341 
 342   void load_prototype_header(Register dst, Register src);
 343 
 344 #ifdef _LP64
 345   void store_klass_gap(Register dst, Register src);
 346 
 347   // This dummy is to prevent a call to store_heap_oop from
 348   // converting a zero (like NULL) into a Register by giving
 349   // the compiler two choices it can't resolve
 350 
 351   void store_heap_oop(Address dst, void* dummy);
 352 
 353   void encode_heap_oop(Register r);
 354   void decode_heap_oop(Register r);
 355   void encode_heap_oop_not_null(Register r);
 356   void decode_heap_oop_not_null(Register r);
 357   void encode_heap_oop_not_null(Register dst, Register src);
 358   void decode_heap_oop_not_null(Register dst, Register src);
 359 
 360   void set_narrow_oop(Register dst, jobject obj);
 361   void set_narrow_oop(Address dst, jobject obj);
 362   void cmp_narrow_oop(Register dst, jobject obj);
 363   void cmp_narrow_oop(Address dst, jobject obj);
 364 
 365   void encode_klass_not_null(Register r);
 366   void decode_klass_not_null(Register r);
 367   void encode_klass_not_null(Register dst, Register src);
 368   void decode_klass_not_null(Register dst, Register src);
 369   void set_narrow_klass(Register dst, Klass* k);
 370   void set_narrow_klass(Address dst, Klass* k);
 371   void cmp_narrow_klass(Register dst, Klass* k);
 372   void cmp_narrow_klass(Address dst, Klass* k);
 373 
 374   // Returns the byte size of the instructions generated by decode_klass_not_null()
 375   // when compressed klass pointers are being used.
 376   static int instr_size_for_decode_klass_not_null();
 377 
 378   // if heap base register is used - reinit it with the correct value
 379   void reinit_heapbase();
 380 
 381   DEBUG_ONLY(void verify_heapbase(const char* msg);)
 382 
 383 #endif // _LP64
 384 
 385   // Int division/remainder for Java
 386   // (as idivl, but checks for special case as described in JVM spec.)
 387   // returns idivl instruction offset for implicit exception handling
 388   int corrected_idivl(Register reg);
 389 
 390   // Long division/remainder for Java
 391   // (as idivq, but checks for special case as described in JVM spec.)
 392   // returns idivq instruction offset for implicit exception handling
 393   int corrected_idivq(Register reg);
 394 
 395   void int3();
 396 
 397   // Long operation macros for a 32bit cpu
 398   // Long negation for Java
 399   void lneg(Register hi, Register lo);
 400 
 401   // Long multiplication for Java
 402   // (destroys contents of eax, ebx, ecx and edx)
 403   void lmul(int x_rsp_offset, int y_rsp_offset); // rdx:rax = x * y
 404 
 405   // Long shifts for Java
 406   // (semantics as described in JVM spec.)
 407   void lshl(Register hi, Register lo);                               // hi:lo << (rcx & 0x3f)
 408   void lshr(Register hi, Register lo, bool sign_extension = false);  // hi:lo >> (rcx & 0x3f)
 409 
 410   // Long compare for Java
 411   // (semantics as described in JVM spec.)
 412   void lcmp2int(Register x_hi, Register x_lo, Register y_hi, Register y_lo); // x_hi = lcmp(x, y)
 413 
 414 
 415   // misc
 416 
 417   // Sign extension
 418   void sign_extend_short(Register reg);
 419   void sign_extend_byte(Register reg);
 420 
 421   // Division by power of 2, rounding towards 0
 422   void division_with_shift(Register reg, int shift_value);
 423 
 424   // Compares the top-most stack entries on the FPU stack and sets the eflags as follows:
 425   //
 426   // CF (corresponds to C0) if x < y
 427   // PF (corresponds to C2) if unordered
 428   // ZF (corresponds to C3) if x = y
 429   //
 430   // The arguments are in reversed order on the stack (i.e., top of stack is first argument).
 431   // tmp is a temporary register, if none is available use noreg (only matters for non-P6 code)
 432   void fcmp(Register tmp);
 433   // Variant of the above which allows y to be further down the stack
 434   // and which only pops x and y if specified. If pop_right is
 435   // specified then pop_left must also be specified.
 436   void fcmp(Register tmp, int index, bool pop_left, bool pop_right);
 437 
 438   // Floating-point comparison for Java
 439   // Compares the top-most stack entries on the FPU stack and stores the result in dst.
 440   // The arguments are in reversed order on the stack (i.e., top of stack is first argument).
 441   // (semantics as described in JVM spec.)
 442   void fcmp2int(Register dst, bool unordered_is_less);
 443   // Variant of the above which allows y to be further down the stack
 444   // and which only pops x and y if specified. If pop_right is
 445   // specified then pop_left must also be specified.
 446   void fcmp2int(Register dst, bool unordered_is_less, int index, bool pop_left, bool pop_right);
 447 
 448   // Floating-point remainder for Java (ST0 = ST0 fremr ST1, ST1 is empty afterwards)
 449   // tmp is a temporary register, if none is available use noreg
 450   void fremr(Register tmp);
 451 
 452   // dst = c = a * b + c
 453   void fmad(XMMRegister dst, XMMRegister a, XMMRegister b, XMMRegister c);
 454   void fmaf(XMMRegister dst, XMMRegister a, XMMRegister b, XMMRegister c);
 455 
 456 
 457   // same as fcmp2int, but using SSE2
 458   void cmpss2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less);
 459   void cmpsd2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less);
 460 
 461   // branch to L if FPU flag C2 is set/not set
 462   // tmp is a temporary register, if none is available use noreg
 463   void jC2 (Register tmp, Label& L);
 464   void jnC2(Register tmp, Label& L);
 465 
 466   // Pop ST (ffree & fincstp combined)
 467   void fpop();
 468 
 469   // Load float value from 'address'. If UseSSE >= 1, the value is loaded into
 470   // register xmm0. Otherwise, the value is loaded onto the FPU stack.
 471   void load_float(Address src);
 472 
 473   // Store float value to 'address'. If UseSSE >= 1, the value is stored
 474   // from register xmm0. Otherwise, the value is stored from the FPU stack.
 475   void store_float(Address dst);
 476 
 477   // Load double value from 'address'. If UseSSE >= 2, the value is loaded into
 478   // register xmm0. Otherwise, the value is loaded onto the FPU stack.
 479   void load_double(Address src);
 480 
 481   // Store double value to 'address'. If UseSSE >= 2, the value is stored
 482   // from register xmm0. Otherwise, the value is stored from the FPU stack.
 483   void store_double(Address dst);
 484 
 485   // pushes double TOS element of FPU stack on CPU stack; pops from FPU stack
 486   void push_fTOS();
 487 
 488   // pops double TOS element from CPU stack and pushes on FPU stack
 489   void pop_fTOS();
 490 
 491   void empty_FPU_stack();
 492 
 493   void push_IU_state();
 494   void pop_IU_state();
 495 
 496   void push_FPU_state();
 497   void pop_FPU_state();
 498 
 499   void push_CPU_state();
 500   void pop_CPU_state();
 501 
 502   // Round up to a power of two
 503   void round_to(Register reg, int modulus);
 504 
 505   // Callee saved registers handling
 506   void push_callee_saved_registers();
 507   void pop_callee_saved_registers();
 508 
 509   // allocation
 510   void eden_allocate(
 511     Register obj,                      // result: pointer to object after successful allocation
 512     Register var_size_in_bytes,        // object size in bytes if unknown at compile time; invalid otherwise
 513     int      con_size_in_bytes,        // object size in bytes if   known at compile time
 514     Register t1,                       // temp register
 515     Label&   slow_case                 // continuation point if fast allocation fails
 516   );
 517   void tlab_allocate(
 518     Register obj,                      // result: pointer to object after successful allocation
 519     Register var_size_in_bytes,        // object size in bytes if unknown at compile time; invalid otherwise
 520     int      con_size_in_bytes,        // object size in bytes if   known at compile time
 521     Register t1,                       // temp register
 522     Register t2,                       // temp register
 523     Label&   slow_case                 // continuation point if fast allocation fails
 524   );
 525   Register tlab_refill(Label& retry_tlab, Label& try_eden, Label& slow_case); // returns TLS address
 526   void zero_memory(Register address, Register length_in_bytes, int offset_in_bytes, Register temp);
 527 
 528   void incr_allocated_bytes(Register thread,
 529                             Register var_size_in_bytes, int con_size_in_bytes,
 530                             Register t1 = noreg);
 531 
 532   // interface method calling
 533   void lookup_interface_method(Register recv_klass,
 534                                Register intf_klass,
 535                                RegisterOrConstant itable_index,
 536                                Register method_result,
 537                                Register scan_temp,
 538                                Label& no_such_interface);
 539 
 540   // virtual method calling
 541   void lookup_virtual_method(Register recv_klass,
 542                              RegisterOrConstant vtable_index,
 543                              Register method_result);
 544 
 545   // Test sub_klass against super_klass, with fast and slow paths.
 546 
 547   // The fast path produces a tri-state answer: yes / no / maybe-slow.
 548   // One of the three labels can be NULL, meaning take the fall-through.
 549   // If super_check_offset is -1, the value is loaded up from super_klass.
 550   // No registers are killed, except temp_reg.
 551   void check_klass_subtype_fast_path(Register sub_klass,
 552                                      Register super_klass,
 553                                      Register temp_reg,
 554                                      Label* L_success,
 555                                      Label* L_failure,
 556                                      Label* L_slow_path,
 557                 RegisterOrConstant super_check_offset = RegisterOrConstant(-1));
 558 
 559   // The rest of the type check; must be wired to a corresponding fast path.
 560   // It does not repeat the fast path logic, so don't use it standalone.
 561   // The temp_reg and temp2_reg can be noreg, if no temps are available.
 562   // Updates the sub's secondary super cache as necessary.
 563   // If set_cond_codes, condition codes will be Z on success, NZ on failure.
 564   void check_klass_subtype_slow_path(Register sub_klass,
 565                                      Register super_klass,
 566                                      Register temp_reg,
 567                                      Register temp2_reg,
 568                                      Label* L_success,
 569                                      Label* L_failure,
 570                                      bool set_cond_codes = false);
 571 
 572   // Simplified, combined version, good for typical uses.
 573   // Falls through on failure.
 574   void check_klass_subtype(Register sub_klass,
 575                            Register super_klass,
 576                            Register temp_reg,
 577                            Label& L_success);
 578 
 579   // method handles (JSR 292)
 580   Address argument_address(RegisterOrConstant arg_slot, int extra_slot_offset = 0);
 581 
 582   //----
 583   void set_word_if_not_zero(Register reg); // sets reg to 1 if not zero, otherwise 0
 584 
 585   // Debugging
 586 
 587   // only if +VerifyOops
 588   // TODO: Make these macros with file and line like sparc version!
 589   void verify_oop(Register reg, const char* s = "broken oop");
 590   void verify_oop_addr(Address addr, const char * s = "broken oop addr");
 591 
 592   // TODO: verify method and klass metadata (compare against vptr?)
 593   void _verify_method_ptr(Register reg, const char * msg, const char * file, int line) {}
 594   void _verify_klass_ptr(Register reg, const char * msg, const char * file, int line){}
 595 
 596 #define verify_method_ptr(reg) _verify_method_ptr(reg, "broken method " #reg, __FILE__, __LINE__)
 597 #define verify_klass_ptr(reg) _verify_klass_ptr(reg, "broken klass " #reg, __FILE__, __LINE__)
 598 
 599   // only if +VerifyFPU
 600   void verify_FPU(int stack_depth, const char* s = "illegal FPU state");
 601 
 602   // Verify or restore cpu control state after JNI call
 603   void restore_cpu_control_state_after_jni();
 604 
 605   // prints msg, dumps registers and stops execution
 606   void stop(const char* msg);
 607 
 608   // prints msg and continues
 609   void warn(const char* msg);
 610 
 611   // dumps registers and other state
 612   void print_state();
 613 
 614   static void debug32(int rdi, int rsi, int rbp, int rsp, int rbx, int rdx, int rcx, int rax, int eip, char* msg);
 615   static void debug64(char* msg, int64_t pc, int64_t regs[]);
 616   static void print_state32(int rdi, int rsi, int rbp, int rsp, int rbx, int rdx, int rcx, int rax, int eip);
 617   static void print_state64(int64_t pc, int64_t regs[]);
 618 
 619   void os_breakpoint();
 620 
 621   void untested()                                { stop("untested"); }
 622 
 623   void unimplemented(const char* what = "")      { char* b = new char[1024];  jio_snprintf(b, 1024, "unimplemented: %s", what);  stop(b); }
 624 
 625   void should_not_reach_here()                   { stop("should not reach here"); }
 626 
 627   void print_CPU_state();
 628 
 629   // Stack overflow checking
 630   void bang_stack_with_offset(int offset) {
 631     // stack grows down, caller passes positive offset
 632     assert(offset > 0, "must bang with negative offset");
 633     movl(Address(rsp, (-offset)), rax);
 634   }
 635 
 636   // Writes to stack successive pages until offset reached to check for
 637   // stack overflow + shadow pages.  Also, clobbers tmp
 638   void bang_stack_size(Register size, Register tmp);
 639 
 640   // Check for reserved stack access in method being exited (for JIT)
 641   void reserved_stack_check();
 642 
 643   virtual RegisterOrConstant delayed_value_impl(intptr_t* delayed_value_addr,
 644                                                 Register tmp,
 645                                                 int offset);
 646 
 647   // Support for serializing memory accesses between threads
 648   void serialize_memory(Register thread, Register tmp);
 649 
 650   void verify_tlab();
 651 
 652   // Biased locking support
 653   // lock_reg and obj_reg must be loaded up with the appropriate values.
 654   // swap_reg must be rax, and is killed.
 655   // tmp_reg is optional. If it is supplied (i.e., != noreg) it will
 656   // be killed; if not supplied, push/pop will be used internally to
 657   // allocate a temporary (inefficient, avoid if possible).
 658   // Optional slow case is for implementations (interpreter and C1) which branch to
 659   // slow case directly. Leaves condition codes set for C2's Fast_Lock node.
 660   // Returns offset of first potentially-faulting instruction for null
 661   // check info (currently consumed only by C1). If
 662   // swap_reg_contains_mark is true then returns -1 as it is assumed
 663   // the calling code has already passed any potential faults.
 664   int biased_locking_enter(Register lock_reg, Register obj_reg,
 665                            Register swap_reg, Register tmp_reg,
 666                            bool swap_reg_contains_mark,
 667                            Label& done, Label* slow_case = NULL,
 668                            BiasedLockingCounters* counters = NULL);
 669   void biased_locking_exit (Register obj_reg, Register temp_reg, Label& done);
 670 #ifdef COMPILER2
 671   // Code used by cmpFastLock and cmpFastUnlock mach instructions in .ad file.
 672   // See full desription in macroAssembler_x86.cpp.
 673   void fast_lock(Register obj, Register box, Register tmp,
 674                  Register scr, Register cx1, Register cx2,
 675                  BiasedLockingCounters* counters,
 676                  RTMLockingCounters* rtm_counters,
 677                  RTMLockingCounters* stack_rtm_counters,
 678                  Metadata* method_data,
 679                  bool use_rtm, bool profile_rtm);
 680   void fast_unlock(Register obj, Register box, Register tmp, bool use_rtm);
 681 #if INCLUDE_RTM_OPT
 682   void rtm_counters_update(Register abort_status, Register rtm_counters);
 683   void branch_on_random_using_rdtsc(Register tmp, Register scr, int count, Label& brLabel);
 684   void rtm_abort_ratio_calculation(Register tmp, Register rtm_counters_reg,
 685                                    RTMLockingCounters* rtm_counters,
 686                                    Metadata* method_data);
 687   void rtm_profiling(Register abort_status_Reg, Register rtm_counters_Reg,
 688                      RTMLockingCounters* rtm_counters, Metadata* method_data, bool profile_rtm);
 689   void rtm_retry_lock_on_abort(Register retry_count, Register abort_status, Label& retryLabel);
 690   void rtm_retry_lock_on_busy(Register retry_count, Register box, Register tmp, Register scr, Label& retryLabel);
 691   void rtm_stack_locking(Register obj, Register tmp, Register scr,
 692                          Register retry_on_abort_count,
 693                          RTMLockingCounters* stack_rtm_counters,
 694                          Metadata* method_data, bool profile_rtm,
 695                          Label& DONE_LABEL, Label& IsInflated);
 696   void rtm_inflated_locking(Register obj, Register box, Register tmp,
 697                             Register scr, Register retry_on_busy_count,
 698                             Register retry_on_abort_count,
 699                             RTMLockingCounters* rtm_counters,
 700                             Metadata* method_data, bool profile_rtm,
 701                             Label& DONE_LABEL);
 702 #endif
 703 #endif
 704 
 705   Condition negate_condition(Condition cond);
 706 
 707   // Instructions that use AddressLiteral operands. These instruction can handle 32bit/64bit
 708   // operands. In general the names are modified to avoid hiding the instruction in Assembler
 709   // so that we don't need to implement all the varieties in the Assembler with trivial wrappers
 710   // here in MacroAssembler. The major exception to this rule is call
 711 
 712   // Arithmetics
 713 
 714 
 715   void addptr(Address dst, int32_t src) { LP64_ONLY(addq(dst, src)) NOT_LP64(addl(dst, src)) ; }
 716   void addptr(Address dst, Register src);
 717 
 718   void addptr(Register dst, Address src) { LP64_ONLY(addq(dst, src)) NOT_LP64(addl(dst, src)); }
 719   void addptr(Register dst, int32_t src);
 720   void addptr(Register dst, Register src);
 721   void addptr(Register dst, RegisterOrConstant src) {
 722     if (src.is_constant()) addptr(dst, (int) src.as_constant());
 723     else                   addptr(dst,       src.as_register());
 724   }
 725 
 726   void andptr(Register dst, int32_t src);
 727   void andptr(Register src1, Register src2) { LP64_ONLY(andq(src1, src2)) NOT_LP64(andl(src1, src2)) ; }
 728 
 729   void cmp8(AddressLiteral src1, int imm);
 730 
 731   // renamed to drag out the casting of address to int32_t/intptr_t
 732   void cmp32(Register src1, int32_t imm);
 733 
 734   void cmp32(AddressLiteral src1, int32_t imm);
 735   // compare reg - mem, or reg - &mem
 736   void cmp32(Register src1, AddressLiteral src2);
 737 
 738   void cmp32(Register src1, Address src2);
 739 
 740 #ifndef _LP64
 741   void cmpklass(Address dst, Metadata* obj);
 742   void cmpklass(Register dst, Metadata* obj);
 743   void cmpoop(Address dst, jobject obj);
 744   void cmpoop(Register dst, jobject obj);
 745 #endif // _LP64
 746 
 747   // NOTE src2 must be the lval. This is NOT an mem-mem compare
 748   void cmpptr(Address src1, AddressLiteral src2);
 749 
 750   void cmpptr(Register src1, AddressLiteral src2);
 751 
 752   void cmpptr(Register src1, Register src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
 753   void cmpptr(Register src1, Address src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
 754   // void cmpptr(Address src1, Register src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
 755 
 756   void cmpptr(Register src1, int32_t src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
 757   void cmpptr(Address src1, int32_t src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
 758 
 759   // cmp64 to avoild hiding cmpq
 760   void cmp64(Register src1, AddressLiteral src);
 761 
 762   void cmpxchgptr(Register reg, Address adr);
 763 
 764   void locked_cmpxchgptr(Register reg, AddressLiteral adr);
 765 
 766 
 767   void imulptr(Register dst, Register src) { LP64_ONLY(imulq(dst, src)) NOT_LP64(imull(dst, src)); }
 768   void imulptr(Register dst, Register src, int imm32) { LP64_ONLY(imulq(dst, src, imm32)) NOT_LP64(imull(dst, src, imm32)); }
 769 
 770 
 771   void negptr(Register dst) { LP64_ONLY(negq(dst)) NOT_LP64(negl(dst)); }
 772 
 773   void notptr(Register dst) { LP64_ONLY(notq(dst)) NOT_LP64(notl(dst)); }
 774 
 775   void shlptr(Register dst, int32_t shift);
 776   void shlptr(Register dst) { LP64_ONLY(shlq(dst)) NOT_LP64(shll(dst)); }
 777 
 778   void shrptr(Register dst, int32_t shift);
 779   void shrptr(Register dst) { LP64_ONLY(shrq(dst)) NOT_LP64(shrl(dst)); }
 780 
 781   void sarptr(Register dst) { LP64_ONLY(sarq(dst)) NOT_LP64(sarl(dst)); }
 782   void sarptr(Register dst, int32_t src) { LP64_ONLY(sarq(dst, src)) NOT_LP64(sarl(dst, src)); }
 783 
 784   void subptr(Address dst, int32_t src) { LP64_ONLY(subq(dst, src)) NOT_LP64(subl(dst, src)); }
 785 
 786   void subptr(Register dst, Address src) { LP64_ONLY(subq(dst, src)) NOT_LP64(subl(dst, src)); }
 787   void subptr(Register dst, int32_t src);
 788   // Force generation of a 4 byte immediate value even if it fits into 8bit
 789   void subptr_imm32(Register dst, int32_t src);
 790   void subptr(Register dst, Register src);
 791   void subptr(Register dst, RegisterOrConstant src) {
 792     if (src.is_constant()) subptr(dst, (int) src.as_constant());
 793     else                   subptr(dst,       src.as_register());
 794   }
 795 
 796   void sbbptr(Address dst, int32_t src) { LP64_ONLY(sbbq(dst, src)) NOT_LP64(sbbl(dst, src)); }
 797   void sbbptr(Register dst, int32_t src) { LP64_ONLY(sbbq(dst, src)) NOT_LP64(sbbl(dst, src)); }
 798 
 799   void xchgptr(Register src1, Register src2) { LP64_ONLY(xchgq(src1, src2)) NOT_LP64(xchgl(src1, src2)) ; }
 800   void xchgptr(Register src1, Address src2) { LP64_ONLY(xchgq(src1, src2)) NOT_LP64(xchgl(src1, src2)) ; }
 801 
 802   void xaddptr(Address src1, Register src2) { LP64_ONLY(xaddq(src1, src2)) NOT_LP64(xaddl(src1, src2)) ; }
 803 
 804 
 805 
 806   // Helper functions for statistics gathering.
 807   // Conditionally (atomically, on MPs) increments passed counter address, preserving condition codes.
 808   void cond_inc32(Condition cond, AddressLiteral counter_addr);
 809   // Unconditional atomic increment.
 810   void atomic_incl(Address counter_addr);
 811   void atomic_incl(AddressLiteral counter_addr, Register scr = rscratch1);
 812 #ifdef _LP64
 813   void atomic_incq(Address counter_addr);
 814   void atomic_incq(AddressLiteral counter_addr, Register scr = rscratch1);
 815 #endif
 816   void atomic_incptr(AddressLiteral counter_addr, Register scr = rscratch1) { LP64_ONLY(atomic_incq(counter_addr, scr)) NOT_LP64(atomic_incl(counter_addr, scr)) ; }
 817   void atomic_incptr(Address counter_addr) { LP64_ONLY(atomic_incq(counter_addr)) NOT_LP64(atomic_incl(counter_addr)) ; }
 818 
 819   void lea(Register dst, AddressLiteral adr);
 820   void lea(Address dst, AddressLiteral adr);
 821   void lea(Register dst, Address adr) { Assembler::lea(dst, adr); }
 822 
 823   void leal32(Register dst, Address src) { leal(dst, src); }
 824 
 825   // Import other testl() methods from the parent class or else
 826   // they will be hidden by the following overriding declaration.
 827   using Assembler::testl;
 828   void testl(Register dst, AddressLiteral src);
 829 
 830   void orptr(Register dst, Address src) { LP64_ONLY(orq(dst, src)) NOT_LP64(orl(dst, src)); }
 831   void orptr(Register dst, Register src) { LP64_ONLY(orq(dst, src)) NOT_LP64(orl(dst, src)); }
 832   void orptr(Register dst, int32_t src) { LP64_ONLY(orq(dst, src)) NOT_LP64(orl(dst, src)); }
 833   void orptr(Address dst, int32_t imm32) { LP64_ONLY(orq(dst, imm32)) NOT_LP64(orl(dst, imm32)); }
 834 
 835   void testptr(Register src, int32_t imm32) {  LP64_ONLY(testq(src, imm32)) NOT_LP64(testl(src, imm32)); }
 836   void testptr(Register src1, Register src2);
 837 
 838   void xorptr(Register dst, Register src) { LP64_ONLY(xorq(dst, src)) NOT_LP64(xorl(dst, src)); }
 839   void xorptr(Register dst, Address src) { LP64_ONLY(xorq(dst, src)) NOT_LP64(xorl(dst, src)); }
 840 
 841   // Calls
 842 
 843   void call(Label& L, relocInfo::relocType rtype);
 844   void call(Register entry);
 845 
 846   // NOTE: this call transfers to the effective address of entry NOT
 847   // the address contained by entry. This is because this is more natural
 848   // for jumps/calls.
 849   void call(AddressLiteral entry);
 850 
 851   // Emit the CompiledIC call idiom
 852   void ic_call(address entry, jint method_index = 0);
 853 
 854   // Jumps
 855 
 856   // NOTE: these jumps tranfer to the effective address of dst NOT
 857   // the address contained by dst. This is because this is more natural
 858   // for jumps/calls.
 859   void jump(AddressLiteral dst);
 860   void jump_cc(Condition cc, AddressLiteral dst);
 861 
 862   // 32bit can do a case table jump in one instruction but we no longer allow the base
 863   // to be installed in the Address class. This jump will tranfers to the address
 864   // contained in the location described by entry (not the address of entry)
 865   void jump(ArrayAddress entry);
 866 
 867   // Floating
 868 
 869   void andpd(XMMRegister dst, Address src) { Assembler::andpd(dst, src); }
 870   void andpd(XMMRegister dst, AddressLiteral src);
 871   void andpd(XMMRegister dst, XMMRegister src) { Assembler::andpd(dst, src); }
 872 
 873   void andps(XMMRegister dst, XMMRegister src) { Assembler::andps(dst, src); }
 874   void andps(XMMRegister dst, Address src) { Assembler::andps(dst, src); }
 875   void andps(XMMRegister dst, AddressLiteral src);
 876 
 877   void comiss(XMMRegister dst, XMMRegister src) { Assembler::comiss(dst, src); }
 878   void comiss(XMMRegister dst, Address src) { Assembler::comiss(dst, src); }
 879   void comiss(XMMRegister dst, AddressLiteral src);
 880 
 881   void comisd(XMMRegister dst, XMMRegister src) { Assembler::comisd(dst, src); }
 882   void comisd(XMMRegister dst, Address src) { Assembler::comisd(dst, src); }
 883   void comisd(XMMRegister dst, AddressLiteral src);
 884 
 885   void fadd_s(Address src)        { Assembler::fadd_s(src); }
 886   void fadd_s(AddressLiteral src) { Assembler::fadd_s(as_Address(src)); }
 887 
 888   void fldcw(Address src) { Assembler::fldcw(src); }
 889   void fldcw(AddressLiteral src);
 890 
 891   void fld_s(int index)   { Assembler::fld_s(index); }
 892   void fld_s(Address src) { Assembler::fld_s(src); }
 893   void fld_s(AddressLiteral src);
 894 
 895   void fld_d(Address src) { Assembler::fld_d(src); }
 896   void fld_d(AddressLiteral src);
 897 
 898   void fld_x(Address src) { Assembler::fld_x(src); }
 899   void fld_x(AddressLiteral src);
 900 
 901   void fmul_s(Address src)        { Assembler::fmul_s(src); }
 902   void fmul_s(AddressLiteral src) { Assembler::fmul_s(as_Address(src)); }
 903 
 904   void ldmxcsr(Address src) { Assembler::ldmxcsr(src); }
 905   void ldmxcsr(AddressLiteral src);
 906 
 907 #ifdef _LP64
 908  private:
 909   void sha256_AVX2_one_round_compute(
 910     Register  reg_old_h,
 911     Register  reg_a,
 912     Register  reg_b,
 913     Register  reg_c,
 914     Register  reg_d,
 915     Register  reg_e,
 916     Register  reg_f,
 917     Register  reg_g,
 918     Register  reg_h,
 919     int iter);
 920   void sha256_AVX2_four_rounds_compute_first(int start);
 921   void sha256_AVX2_four_rounds_compute_last(int start);
 922   void sha256_AVX2_one_round_and_sched(
 923         XMMRegister xmm_0,     /* == ymm4 on 0, 1, 2, 3 iterations, then rotate 4 registers left on 4, 8, 12 iterations */
 924         XMMRegister xmm_1,     /* ymm5 */  /* full cycle is 16 iterations */
 925         XMMRegister xmm_2,     /* ymm6 */
 926         XMMRegister xmm_3,     /* ymm7 */
 927         Register    reg_a,      /* == eax on 0 iteration, then rotate 8 register right on each next iteration */
 928         Register    reg_b,      /* ebx */    /* full cycle is 8 iterations */
 929         Register    reg_c,      /* edi */
 930         Register    reg_d,      /* esi */
 931         Register    reg_e,      /* r8d */
 932         Register    reg_f,      /* r9d */
 933         Register    reg_g,      /* r10d */
 934         Register    reg_h,      /* r11d */
 935         int iter);
 936 
 937   void addm(int disp, Register r1, Register r2);
 938 
 939  public:
 940   void sha256_AVX2(XMMRegister msg, XMMRegister state0, XMMRegister state1, XMMRegister msgtmp0,
 941                    XMMRegister msgtmp1, XMMRegister msgtmp2, XMMRegister msgtmp3, XMMRegister msgtmp4,
 942                    Register buf, Register state, Register ofs, Register limit, Register rsp,
 943                    bool multi_block, XMMRegister shuf_mask);
 944 #endif
 945 
 946 #ifdef _LP64
 947  private:
 948   void sha512_AVX2_one_round_compute(Register old_h, Register a, Register b, Register c, Register d,
 949                                      Register e, Register f, Register g, Register h, int iteration);
 950 
 951   void sha512_AVX2_one_round_and_schedule(XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
 952                                           Register a, Register b, Register c, Register d, Register e, Register f,
 953                                           Register g, Register h, int iteration);
 954 
 955   void addmq(int disp, Register r1, Register r2);
 956  public:
 957   void sha512_AVX2(XMMRegister msg, XMMRegister state0, XMMRegister state1, XMMRegister msgtmp0,
 958                    XMMRegister msgtmp1, XMMRegister msgtmp2, XMMRegister msgtmp3, XMMRegister msgtmp4,
 959                    Register buf, Register state, Register ofs, Register limit, Register rsp, bool multi_block,
 960                    XMMRegister shuf_mask);
 961 #endif
 962 
 963   void fast_sha1(XMMRegister abcd, XMMRegister e0, XMMRegister e1, XMMRegister msg0,
 964                  XMMRegister msg1, XMMRegister msg2, XMMRegister msg3, XMMRegister shuf_mask,
 965                  Register buf, Register state, Register ofs, Register limit, Register rsp,
 966                  bool multi_block);
 967 
 968 #ifdef _LP64
 969   void fast_sha256(XMMRegister msg, XMMRegister state0, XMMRegister state1, XMMRegister msgtmp0,
 970                    XMMRegister msgtmp1, XMMRegister msgtmp2, XMMRegister msgtmp3, XMMRegister msgtmp4,
 971                    Register buf, Register state, Register ofs, Register limit, Register rsp,
 972                    bool multi_block, XMMRegister shuf_mask);
 973 #else
 974   void fast_sha256(XMMRegister msg, XMMRegister state0, XMMRegister state1, XMMRegister msgtmp0,
 975                    XMMRegister msgtmp1, XMMRegister msgtmp2, XMMRegister msgtmp3, XMMRegister msgtmp4,
 976                    Register buf, Register state, Register ofs, Register limit, Register rsp,
 977                    bool multi_block);
 978 #endif
 979 
 980   void fast_exp(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
 981                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
 982                 Register rax, Register rcx, Register rdx, Register tmp);
 983 
 984 #ifdef _LP64
 985   void fast_log(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
 986                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
 987                 Register rax, Register rcx, Register rdx, Register tmp1, Register tmp2);
 988 
 989   void fast_log10(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
 990                   XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
 991                   Register rax, Register rcx, Register rdx, Register r11);
 992 
 993   void fast_pow(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3, XMMRegister xmm4,
 994                 XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7, Register rax, Register rcx,
 995                 Register rdx, Register tmp1, Register tmp2, Register tmp3, Register tmp4);
 996 
 997   void fast_sin(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
 998                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
 999                 Register rax, Register rbx, Register rcx, Register rdx, Register tmp1, Register tmp2,
1000                 Register tmp3, Register tmp4);
1001 
1002   void fast_cos(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
1003                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
1004                 Register rax, Register rcx, Register rdx, Register tmp1,
1005                 Register tmp2, Register tmp3, Register tmp4);
1006   void fast_tan(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
1007                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
1008                 Register rax, Register rcx, Register rdx, Register tmp1,
1009                 Register tmp2, Register tmp3, Register tmp4);
1010 #else
1011   void fast_log(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
1012                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
1013                 Register rax, Register rcx, Register rdx, Register tmp1);
1014 
1015   void fast_log10(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
1016                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
1017                 Register rax, Register rcx, Register rdx, Register tmp);
1018 
1019   void fast_pow(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3, XMMRegister xmm4,
1020                 XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7, Register rax, Register rcx,
1021                 Register rdx, Register tmp);
1022 
1023   void fast_sin(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
1024                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
1025                 Register rax, Register rbx, Register rdx);
1026 
1027   void fast_cos(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
1028                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
1029                 Register rax, Register rcx, Register rdx, Register tmp);
1030 
1031   void libm_sincos_huge(XMMRegister xmm0, XMMRegister xmm1, Register eax, Register ecx,
1032                         Register edx, Register ebx, Register esi, Register edi,
1033                         Register ebp, Register esp);
1034 
1035   void libm_reduce_pi04l(Register eax, Register ecx, Register edx, Register ebx,
1036                          Register esi, Register edi, Register ebp, Register esp);
1037 
1038   void libm_tancot_huge(XMMRegister xmm0, XMMRegister xmm1, Register eax, Register ecx,
1039                         Register edx, Register ebx, Register esi, Register edi,
1040                         Register ebp, Register esp);
1041 
1042   void fast_tan(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
1043                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
1044                 Register rax, Register rcx, Register rdx, Register tmp);
1045 #endif
1046 
1047   void increase_precision();
1048   void restore_precision();
1049 
1050 private:
1051 
1052   // these are private because users should be doing movflt/movdbl
1053 
1054   void movss(Address dst, XMMRegister src)     { Assembler::movss(dst, src); }
1055   void movss(XMMRegister dst, XMMRegister src) { Assembler::movss(dst, src); }
1056   void movss(XMMRegister dst, Address src)     { Assembler::movss(dst, src); }
1057   void movss(XMMRegister dst, AddressLiteral src);
1058 
1059   void movlpd(XMMRegister dst, Address src)    {Assembler::movlpd(dst, src); }
1060   void movlpd(XMMRegister dst, AddressLiteral src);
1061 
1062 public:
1063 
1064   void addsd(XMMRegister dst, XMMRegister src)    { Assembler::addsd(dst, src); }
1065   void addsd(XMMRegister dst, Address src)        { Assembler::addsd(dst, src); }
1066   void addsd(XMMRegister dst, AddressLiteral src);
1067 
1068   void addss(XMMRegister dst, XMMRegister src)    { Assembler::addss(dst, src); }
1069   void addss(XMMRegister dst, Address src)        { Assembler::addss(dst, src); }
1070   void addss(XMMRegister dst, AddressLiteral src);
1071 
1072   void addpd(XMMRegister dst, XMMRegister src)    { Assembler::addpd(dst, src); }
1073   void addpd(XMMRegister dst, Address src)        { Assembler::addpd(dst, src); }
1074   void addpd(XMMRegister dst, AddressLiteral src);
1075 
1076   void divsd(XMMRegister dst, XMMRegister src)    { Assembler::divsd(dst, src); }
1077   void divsd(XMMRegister dst, Address src)        { Assembler::divsd(dst, src); }
1078   void divsd(XMMRegister dst, AddressLiteral src);
1079 
1080   void divss(XMMRegister dst, XMMRegister src)    { Assembler::divss(dst, src); }
1081   void divss(XMMRegister dst, Address src)        { Assembler::divss(dst, src); }
1082   void divss(XMMRegister dst, AddressLiteral src);
1083 
1084   // Move Unaligned Double Quadword
1085   void movdqu(Address     dst, XMMRegister src);
1086   void movdqu(XMMRegister dst, Address src);
1087   void movdqu(XMMRegister dst, XMMRegister src);
1088   void movdqu(XMMRegister dst, AddressLiteral src, Register scratchReg = rscratch1);
1089   // AVX Unaligned forms
1090   void vmovdqu(Address     dst, XMMRegister src);
1091   void vmovdqu(XMMRegister dst, Address src);
1092   void vmovdqu(XMMRegister dst, XMMRegister src);
1093   void vmovdqu(XMMRegister dst, AddressLiteral src);
1094 
1095   // Move Aligned Double Quadword
1096   void movdqa(XMMRegister dst, Address src)       { Assembler::movdqa(dst, src); }
1097   void movdqa(XMMRegister dst, XMMRegister src)   { Assembler::movdqa(dst, src); }
1098   void movdqa(XMMRegister dst, AddressLiteral src);
1099 
1100   void movsd(XMMRegister dst, XMMRegister src) { Assembler::movsd(dst, src); }
1101   void movsd(Address dst, XMMRegister src)     { Assembler::movsd(dst, src); }
1102   void movsd(XMMRegister dst, Address src)     { Assembler::movsd(dst, src); }
1103   void movsd(XMMRegister dst, AddressLiteral src);
1104 
1105   void mulpd(XMMRegister dst, XMMRegister src)    { Assembler::mulpd(dst, src); }
1106   void mulpd(XMMRegister dst, Address src)        { Assembler::mulpd(dst, src); }
1107   void mulpd(XMMRegister dst, AddressLiteral src);
1108 
1109   void mulsd(XMMRegister dst, XMMRegister src)    { Assembler::mulsd(dst, src); }
1110   void mulsd(XMMRegister dst, Address src)        { Assembler::mulsd(dst, src); }
1111   void mulsd(XMMRegister dst, AddressLiteral src);
1112 
1113   void mulss(XMMRegister dst, XMMRegister src)    { Assembler::mulss(dst, src); }
1114   void mulss(XMMRegister dst, Address src)        { Assembler::mulss(dst, src); }
1115   void mulss(XMMRegister dst, AddressLiteral src);
1116 
1117   // Carry-Less Multiplication Quadword
1118   void pclmulldq(XMMRegister dst, XMMRegister src) {
1119     // 0x00 - multiply lower 64 bits [0:63]
1120     Assembler::pclmulqdq(dst, src, 0x00);
1121   }
1122   void pclmulhdq(XMMRegister dst, XMMRegister src) {
1123     // 0x11 - multiply upper 64 bits [64:127]
1124     Assembler::pclmulqdq(dst, src, 0x11);
1125   }
1126 
1127   void pcmpeqb(XMMRegister dst, XMMRegister src);
1128   void pcmpeqw(XMMRegister dst, XMMRegister src);
1129 
1130   void pcmpestri(XMMRegister dst, Address src, int imm8);
1131   void pcmpestri(XMMRegister dst, XMMRegister src, int imm8);
1132 
1133   void pmovzxbw(XMMRegister dst, XMMRegister src);
1134   void pmovzxbw(XMMRegister dst, Address src);
1135 
1136   void pmovmskb(Register dst, XMMRegister src);
1137 
1138   void ptest(XMMRegister dst, XMMRegister src);
1139 
1140   void sqrtsd(XMMRegister dst, XMMRegister src)    { Assembler::sqrtsd(dst, src); }
1141   void sqrtsd(XMMRegister dst, Address src)        { Assembler::sqrtsd(dst, src); }
1142   void sqrtsd(XMMRegister dst, AddressLiteral src);
1143 
1144   void sqrtss(XMMRegister dst, XMMRegister src)    { Assembler::sqrtss(dst, src); }
1145   void sqrtss(XMMRegister dst, Address src)        { Assembler::sqrtss(dst, src); }
1146   void sqrtss(XMMRegister dst, AddressLiteral src);
1147 
1148   void subsd(XMMRegister dst, XMMRegister src)    { Assembler::subsd(dst, src); }
1149   void subsd(XMMRegister dst, Address src)        { Assembler::subsd(dst, src); }
1150   void subsd(XMMRegister dst, AddressLiteral src);
1151 
1152   void subss(XMMRegister dst, XMMRegister src)    { Assembler::subss(dst, src); }
1153   void subss(XMMRegister dst, Address src)        { Assembler::subss(dst, src); }
1154   void subss(XMMRegister dst, AddressLiteral src);
1155 
1156   void ucomiss(XMMRegister dst, XMMRegister src) { Assembler::ucomiss(dst, src); }
1157   void ucomiss(XMMRegister dst, Address src)     { Assembler::ucomiss(dst, src); }
1158   void ucomiss(XMMRegister dst, AddressLiteral src);
1159 
1160   void ucomisd(XMMRegister dst, XMMRegister src) { Assembler::ucomisd(dst, src); }
1161   void ucomisd(XMMRegister dst, Address src)     { Assembler::ucomisd(dst, src); }
1162   void ucomisd(XMMRegister dst, AddressLiteral src);
1163 
1164   // Bitwise Logical XOR of Packed Double-Precision Floating-Point Values
1165   void xorpd(XMMRegister dst, XMMRegister src);
1166   void xorpd(XMMRegister dst, Address src)     { Assembler::xorpd(dst, src); }
1167   void xorpd(XMMRegister dst, AddressLiteral src);
1168 
1169   // Bitwise Logical XOR of Packed Single-Precision Floating-Point Values
1170   void xorps(XMMRegister dst, XMMRegister src);
1171   void xorps(XMMRegister dst, Address src)     { Assembler::xorps(dst, src); }
1172   void xorps(XMMRegister dst, AddressLiteral src);
1173 
1174   // Shuffle Bytes
1175   void pshufb(XMMRegister dst, XMMRegister src) { Assembler::pshufb(dst, src); }
1176   void pshufb(XMMRegister dst, Address src)     { Assembler::pshufb(dst, src); }
1177   void pshufb(XMMRegister dst, AddressLiteral src);
1178   // AVX 3-operands instructions
1179 
1180   void vaddsd(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vaddsd(dst, nds, src); }
1181   void vaddsd(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vaddsd(dst, nds, src); }
1182   void vaddsd(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1183 
1184   void vaddss(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vaddss(dst, nds, src); }
1185   void vaddss(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vaddss(dst, nds, src); }
1186   void vaddss(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1187 
1188   void vabsss(XMMRegister dst, XMMRegister nds, XMMRegister src, AddressLiteral negate_field, int vector_len);
1189   void vabssd(XMMRegister dst, XMMRegister nds, XMMRegister src, AddressLiteral negate_field, int vector_len);
1190 
1191   void vpaddb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1192   void vpaddb(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
1193 
1194   void vpaddw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1195   void vpaddw(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
1196 
1197   void vpand(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) { Assembler::vpand(dst, nds, src, vector_len); }
1198   void vpand(XMMRegister dst, XMMRegister nds, Address src, int vector_len) { Assembler::vpand(dst, nds, src, vector_len); }
1199   void vpand(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len);
1200 
1201   void vpbroadcastw(XMMRegister dst, XMMRegister src);
1202 
1203   void vpcmpeqb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1204   void vpcmpeqw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1205 
1206   void vpmovzxbw(XMMRegister dst, Address src, int vector_len);
1207   void vpmovmskb(Register dst, XMMRegister src);
1208 
1209   void vpmullw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1210   void vpmullw(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
1211 
1212   void vpsubb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1213   void vpsubb(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
1214 
1215   void vpsubw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1216   void vpsubw(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
1217 
1218   void vpsraw(XMMRegister dst, XMMRegister nds, XMMRegister shift, int vector_len);
1219   void vpsraw(XMMRegister dst, XMMRegister nds, int shift, int vector_len);
1220 
1221   void vpsrlw(XMMRegister dst, XMMRegister nds, XMMRegister shift, int vector_len);
1222   void vpsrlw(XMMRegister dst, XMMRegister nds, int shift, int vector_len);
1223 
1224   void vpsllw(XMMRegister dst, XMMRegister nds, XMMRegister shift, int vector_len);
1225   void vpsllw(XMMRegister dst, XMMRegister nds, int shift, int vector_len);
1226 
1227   void vptest(XMMRegister dst, XMMRegister src);
1228 
1229   void punpcklbw(XMMRegister dst, XMMRegister src);
1230   void punpcklbw(XMMRegister dst, Address src) { Assembler::punpcklbw(dst, src); }
1231 
1232   void pshuflw(XMMRegister dst, XMMRegister src, int mode);
1233   void pshuflw(XMMRegister dst, Address src, int mode) { Assembler::pshuflw(dst, src, mode); }
1234 
1235   void vandpd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) { Assembler::vandpd(dst, nds, src, vector_len); }
1236   void vandpd(XMMRegister dst, XMMRegister nds, Address src, int vector_len)     { Assembler::vandpd(dst, nds, src, vector_len); }
1237   void vandpd(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len);
1238 
1239   void vandps(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) { Assembler::vandps(dst, nds, src, vector_len); }
1240   void vandps(XMMRegister dst, XMMRegister nds, Address src, int vector_len)     { Assembler::vandps(dst, nds, src, vector_len); }
1241   void vandps(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len);
1242 
1243   void vdivsd(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vdivsd(dst, nds, src); }
1244   void vdivsd(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vdivsd(dst, nds, src); }
1245   void vdivsd(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1246 
1247   void vdivss(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vdivss(dst, nds, src); }
1248   void vdivss(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vdivss(dst, nds, src); }
1249   void vdivss(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1250 
1251   void vmulsd(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vmulsd(dst, nds, src); }
1252   void vmulsd(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vmulsd(dst, nds, src); }
1253   void vmulsd(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1254 
1255   void vmulss(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vmulss(dst, nds, src); }
1256   void vmulss(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vmulss(dst, nds, src); }
1257   void vmulss(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1258 
1259   void vsubsd(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vsubsd(dst, nds, src); }
1260   void vsubsd(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vsubsd(dst, nds, src); }
1261   void vsubsd(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1262 
1263   void vsubss(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vsubss(dst, nds, src); }
1264   void vsubss(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vsubss(dst, nds, src); }
1265   void vsubss(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1266 
1267   void vnegatess(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1268   void vnegatesd(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1269 
1270   // AVX Vector instructions
1271 
1272   void vxorpd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) { Assembler::vxorpd(dst, nds, src, vector_len); }
1273   void vxorpd(XMMRegister dst, XMMRegister nds, Address src, int vector_len) { Assembler::vxorpd(dst, nds, src, vector_len); }
1274   void vxorpd(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len);
1275 
1276   void vxorps(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) { Assembler::vxorps(dst, nds, src, vector_len); }
1277   void vxorps(XMMRegister dst, XMMRegister nds, Address src, int vector_len) { Assembler::vxorps(dst, nds, src, vector_len); }
1278   void vxorps(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len);
1279 
1280   void vpxor(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
1281     if (UseAVX > 1 || (vector_len < 1)) // vpxor 256 bit is available only in AVX2
1282       Assembler::vpxor(dst, nds, src, vector_len);
1283     else
1284       Assembler::vxorpd(dst, nds, src, vector_len);
1285   }
1286   void vpxor(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
1287     if (UseAVX > 1 || (vector_len < 1)) // vpxor 256 bit is available only in AVX2
1288       Assembler::vpxor(dst, nds, src, vector_len);
1289     else
1290       Assembler::vxorpd(dst, nds, src, vector_len);
1291   }
1292 
1293   // Simple version for AVX2 256bit vectors
1294   void vpxor(XMMRegister dst, XMMRegister src) { Assembler::vpxor(dst, dst, src, true); }
1295   void vpxor(XMMRegister dst, Address src) { Assembler::vpxor(dst, dst, src, true); }
1296 
1297   void vinserti128(XMMRegister dst, XMMRegister nds, XMMRegister src, uint8_t imm8) {
1298     if (UseAVX > 2) {
1299       Assembler::vinserti32x4(dst, dst, src, imm8);
1300     } else if (UseAVX > 1) {
1301       // vinserti128 is available only in AVX2
1302       Assembler::vinserti128(dst, nds, src, imm8);
1303     } else {
1304       Assembler::vinsertf128(dst, nds, src, imm8);
1305     }
1306   }
1307 
1308   void vinserti128(XMMRegister dst, XMMRegister nds, Address src, uint8_t imm8) {
1309     if (UseAVX > 2) {
1310       Assembler::vinserti32x4(dst, dst, src, imm8);
1311     } else if (UseAVX > 1) {
1312       // vinserti128 is available only in AVX2
1313       Assembler::vinserti128(dst, nds, src, imm8);
1314     } else {
1315       Assembler::vinsertf128(dst, nds, src, imm8);
1316     }
1317   }
1318 
1319   void vextracti128(XMMRegister dst, XMMRegister src, uint8_t imm8) {
1320     if (UseAVX > 2) {
1321       Assembler::vextracti32x4(dst, src, imm8);
1322     } else if (UseAVX > 1) {
1323       // vextracti128 is available only in AVX2
1324       Assembler::vextracti128(dst, src, imm8);
1325     } else {
1326       Assembler::vextractf128(dst, src, imm8);
1327     }
1328   }
1329 
1330   void vextracti128(Address dst, XMMRegister src, uint8_t imm8) {
1331     if (UseAVX > 2) {
1332       Assembler::vextracti32x4(dst, src, imm8);
1333     } else if (UseAVX > 1) {
1334       // vextracti128 is available only in AVX2
1335       Assembler::vextracti128(dst, src, imm8);
1336     } else {
1337       Assembler::vextractf128(dst, src, imm8);
1338     }
1339   }
1340 
1341   // 128bit copy to/from high 128 bits of 256bit (YMM) vector registers
1342   void vinserti128_high(XMMRegister dst, XMMRegister src) {
1343     vinserti128(dst, dst, src, 1);
1344   }
1345   void vinserti128_high(XMMRegister dst, Address src) {
1346     vinserti128(dst, dst, src, 1);
1347   }
1348   void vextracti128_high(XMMRegister dst, XMMRegister src) {
1349     vextracti128(dst, src, 1);
1350   }
1351   void vextracti128_high(Address dst, XMMRegister src) {
1352     vextracti128(dst, src, 1);
1353   }
1354 
1355   void vinsertf128_high(XMMRegister dst, XMMRegister src) {
1356     if (UseAVX > 2) {
1357       Assembler::vinsertf32x4(dst, dst, src, 1);
1358     } else {
1359       Assembler::vinsertf128(dst, dst, src, 1);
1360     }
1361   }
1362 
1363   void vinsertf128_high(XMMRegister dst, Address src) {
1364     if (UseAVX > 2) {
1365       Assembler::vinsertf32x4(dst, dst, src, 1);
1366     } else {
1367       Assembler::vinsertf128(dst, dst, src, 1);
1368     }
1369   }
1370 
1371   void vextractf128_high(XMMRegister dst, XMMRegister src) {
1372     if (UseAVX > 2) {
1373       Assembler::vextractf32x4(dst, src, 1);
1374     } else {
1375       Assembler::vextractf128(dst, src, 1);
1376     }
1377   }
1378 
1379   void vextractf128_high(Address dst, XMMRegister src) {
1380     if (UseAVX > 2) {
1381       Assembler::vextractf32x4(dst, src, 1);
1382     } else {
1383       Assembler::vextractf128(dst, src, 1);
1384     }
1385   }
1386 
1387   // 256bit copy to/from high 256 bits of 512bit (ZMM) vector registers
1388   void vinserti64x4_high(XMMRegister dst, XMMRegister src) {
1389     Assembler::vinserti64x4(dst, dst, src, 1);
1390   }
1391   void vinsertf64x4_high(XMMRegister dst, XMMRegister src) {
1392     Assembler::vinsertf64x4(dst, dst, src, 1);
1393   }
1394   void vextracti64x4_high(XMMRegister dst, XMMRegister src) {
1395     Assembler::vextracti64x4(dst, src, 1);
1396   }
1397   void vextractf64x4_high(XMMRegister dst, XMMRegister src) {
1398     Assembler::vextractf64x4(dst, src, 1);
1399   }
1400   void vextractf64x4_high(Address dst, XMMRegister src) {
1401     Assembler::vextractf64x4(dst, src, 1);
1402   }
1403   void vinsertf64x4_high(XMMRegister dst, Address src) {
1404     Assembler::vinsertf64x4(dst, dst, src, 1);
1405   }
1406 
1407   // 128bit copy to/from low 128 bits of 256bit (YMM) vector registers
1408   void vinserti128_low(XMMRegister dst, XMMRegister src) {
1409     vinserti128(dst, dst, src, 0);
1410   }
1411   void vinserti128_low(XMMRegister dst, Address src) {
1412     vinserti128(dst, dst, src, 0);
1413   }
1414   void vextracti128_low(XMMRegister dst, XMMRegister src) {
1415     vextracti128(dst, src, 0);
1416   }
1417   void vextracti128_low(Address dst, XMMRegister src) {
1418     vextracti128(dst, src, 0);
1419   }
1420 
1421   void vinsertf128_low(XMMRegister dst, XMMRegister src) {
1422     if (UseAVX > 2) {
1423       Assembler::vinsertf32x4(dst, dst, src, 0);
1424     } else {
1425       Assembler::vinsertf128(dst, dst, src, 0);
1426     }
1427   }
1428 
1429   void vinsertf128_low(XMMRegister dst, Address src) {
1430     if (UseAVX > 2) {
1431       Assembler::vinsertf32x4(dst, dst, src, 0);
1432     } else {
1433       Assembler::vinsertf128(dst, dst, src, 0);
1434     }
1435   }
1436 
1437   void vextractf128_low(XMMRegister dst, XMMRegister src) {
1438     if (UseAVX > 2) {
1439       Assembler::vextractf32x4(dst, src, 0);
1440     } else {
1441       Assembler::vextractf128(dst, src, 0);
1442     }
1443   }
1444 
1445   void vextractf128_low(Address dst, XMMRegister src) {
1446     if (UseAVX > 2) {
1447       Assembler::vextractf32x4(dst, src, 0);
1448     } else {
1449       Assembler::vextractf128(dst, src, 0);
1450     }
1451   }
1452 
1453   // 256bit copy to/from low 256 bits of 512bit (ZMM) vector registers
1454   void vinserti64x4_low(XMMRegister dst, XMMRegister src) {
1455     Assembler::vinserti64x4(dst, dst, src, 0);
1456   }
1457   void vinsertf64x4_low(XMMRegister dst, XMMRegister src) {
1458     Assembler::vinsertf64x4(dst, dst, src, 0);
1459   }
1460   void vextracti64x4_low(XMMRegister dst, XMMRegister src) {
1461     Assembler::vextracti64x4(dst, src, 0);
1462   }
1463   void vextractf64x4_low(XMMRegister dst, XMMRegister src) {
1464     Assembler::vextractf64x4(dst, src, 0);
1465   }
1466   void vextractf64x4_low(Address dst, XMMRegister src) {
1467     Assembler::vextractf64x4(dst, src, 0);
1468   }
1469   void vinsertf64x4_low(XMMRegister dst, Address src) {
1470     Assembler::vinsertf64x4(dst, dst, src, 0);
1471   }
1472 
1473   // Carry-Less Multiplication Quadword
1474   void vpclmulldq(XMMRegister dst, XMMRegister nds, XMMRegister src) {
1475     // 0x00 - multiply lower 64 bits [0:63]
1476     Assembler::vpclmulqdq(dst, nds, src, 0x00);
1477   }
1478   void vpclmulhdq(XMMRegister dst, XMMRegister nds, XMMRegister src) {
1479     // 0x11 - multiply upper 64 bits [64:127]
1480     Assembler::vpclmulqdq(dst, nds, src, 0x11);
1481   }
1482 
1483   // Data
1484 
1485   void cmov32( Condition cc, Register dst, Address  src);
1486   void cmov32( Condition cc, Register dst, Register src);
1487 
1488   void cmov(   Condition cc, Register dst, Register src) { cmovptr(cc, dst, src); }
1489 
1490   void cmovptr(Condition cc, Register dst, Address  src) { LP64_ONLY(cmovq(cc, dst, src)) NOT_LP64(cmov32(cc, dst, src)); }
1491   void cmovptr(Condition cc, Register dst, Register src) { LP64_ONLY(cmovq(cc, dst, src)) NOT_LP64(cmov32(cc, dst, src)); }
1492 
1493   void movoop(Register dst, jobject obj);
1494   void movoop(Address dst, jobject obj);
1495 
1496   void mov_metadata(Register dst, Metadata* obj);
1497   void mov_metadata(Address dst, Metadata* obj);
1498 
1499   void movptr(ArrayAddress dst, Register src);
1500   // can this do an lea?
1501   void movptr(Register dst, ArrayAddress src);
1502 
1503   void movptr(Register dst, Address src);
1504 
1505 #ifdef _LP64
1506   void movptr(Register dst, AddressLiteral src, Register scratch=rscratch1);
1507 #else
1508   void movptr(Register dst, AddressLiteral src, Register scratch=noreg); // Scratch reg is ignored in 32-bit
1509 #endif
1510 
1511   void movptr(Register dst, intptr_t src);
1512   void movptr(Register dst, Register src);
1513   void movptr(Address dst, intptr_t src);
1514 
1515   void movptr(Address dst, Register src);
1516 
1517   void movptr(Register dst, RegisterOrConstant src) {
1518     if (src.is_constant()) movptr(dst, src.as_constant());
1519     else                   movptr(dst, src.as_register());
1520   }
1521 
1522 #ifdef _LP64
1523   // Generally the next two are only used for moving NULL
1524   // Although there are situations in initializing the mark word where
1525   // they could be used. They are dangerous.
1526 
1527   // They only exist on LP64 so that int32_t and intptr_t are not the same
1528   // and we have ambiguous declarations.
1529 
1530   void movptr(Address dst, int32_t imm32);
1531   void movptr(Register dst, int32_t imm32);
1532 #endif // _LP64
1533 
1534   // to avoid hiding movl
1535   void mov32(AddressLiteral dst, Register src);
1536   void mov32(Register dst, AddressLiteral src);
1537 
1538   // to avoid hiding movb
1539   void movbyte(ArrayAddress dst, int src);
1540 
1541   // Import other mov() methods from the parent class or else
1542   // they will be hidden by the following overriding declaration.
1543   using Assembler::movdl;
1544   using Assembler::movq;
1545   void movdl(XMMRegister dst, AddressLiteral src);
1546   void movq(XMMRegister dst, AddressLiteral src);
1547 
1548   // Can push value or effective address
1549   void pushptr(AddressLiteral src);
1550 
1551   void pushptr(Address src) { LP64_ONLY(pushq(src)) NOT_LP64(pushl(src)); }
1552   void popptr(Address src) { LP64_ONLY(popq(src)) NOT_LP64(popl(src)); }
1553 
1554   void pushoop(jobject obj);
1555   void pushklass(Metadata* obj);
1556 
1557   // sign extend as need a l to ptr sized element
1558   void movl2ptr(Register dst, Address src) { LP64_ONLY(movslq(dst, src)) NOT_LP64(movl(dst, src)); }
1559   void movl2ptr(Register dst, Register src) { LP64_ONLY(movslq(dst, src)) NOT_LP64(if (dst != src) movl(dst, src)); }
1560 
1561   // C2 compiled method's prolog code.
1562   void verified_entry(int framesize, int stack_bang_size, bool fp_mode_24b);
1563 
1564   // clear memory of size 'cnt' qwords, starting at 'base';
1565   // if 'is_large' is set, do not try to produce short loop
1566   void clear_mem(Register base, Register cnt, Register rtmp, bool is_large);
1567 
1568 #ifdef COMPILER2
1569   void string_indexof_char(Register str1, Register cnt1, Register ch, Register result,
1570                            XMMRegister vec1, XMMRegister vec2, XMMRegister vec3, Register tmp);
1571 
1572   // IndexOf strings.
1573   // Small strings are loaded through stack if they cross page boundary.
1574   void string_indexof(Register str1, Register str2,
1575                       Register cnt1, Register cnt2,
1576                       int int_cnt2,  Register result,
1577                       XMMRegister vec, Register tmp,
1578                       int ae);
1579 
1580   // IndexOf for constant substrings with size >= 8 elements
1581   // which don't need to be loaded through stack.
1582   void string_indexofC8(Register str1, Register str2,
1583                       Register cnt1, Register cnt2,
1584                       int int_cnt2,  Register result,
1585                       XMMRegister vec, Register tmp,
1586                       int ae);
1587 
1588     // Smallest code: we don't need to load through stack,
1589     // check string tail.
1590 
1591   // helper function for string_compare
1592   void load_next_elements(Register elem1, Register elem2, Register str1, Register str2,
1593                           Address::ScaleFactor scale, Address::ScaleFactor scale1,
1594                           Address::ScaleFactor scale2, Register index, int ae);
1595   // Compare strings.
1596   void string_compare(Register str1, Register str2,
1597                       Register cnt1, Register cnt2, Register result,
1598                       XMMRegister vec1, int ae);
1599 
1600   // Search for Non-ASCII character (Negative byte value) in a byte array,
1601   // return true if it has any and false otherwise.
1602   void has_negatives(Register ary1, Register len,
1603                      Register result, Register tmp1,
1604                      XMMRegister vec1, XMMRegister vec2);
1605 
1606   // Compare char[] or byte[] arrays.
1607   void arrays_equals(bool is_array_equ, Register ary1, Register ary2,
1608                      Register limit, Register result, Register chr,
1609                      XMMRegister vec1, XMMRegister vec2, bool is_char);
1610 
1611 #endif
1612 
1613   // Fill primitive arrays
1614   void generate_fill(BasicType t, bool aligned,
1615                      Register to, Register value, Register count,
1616                      Register rtmp, XMMRegister xtmp);
1617 
1618   void encode_iso_array(Register src, Register dst, Register len,
1619                         XMMRegister tmp1, XMMRegister tmp2, XMMRegister tmp3,
1620                         XMMRegister tmp4, Register tmp5, Register result);
1621 
1622 #ifdef _LP64
1623   void add2_with_carry(Register dest_hi, Register dest_lo, Register src1, Register src2);
1624   void multiply_64_x_64_loop(Register x, Register xstart, Register x_xstart,
1625                              Register y, Register y_idx, Register z,
1626                              Register carry, Register product,
1627                              Register idx, Register kdx);
1628   void multiply_add_128_x_128(Register x_xstart, Register y, Register z,
1629                               Register yz_idx, Register idx,
1630                               Register carry, Register product, int offset);
1631   void multiply_128_x_128_bmi2_loop(Register y, Register z,
1632                                     Register carry, Register carry2,
1633                                     Register idx, Register jdx,
1634                                     Register yz_idx1, Register yz_idx2,
1635                                     Register tmp, Register tmp3, Register tmp4);
1636   void multiply_128_x_128_loop(Register x_xstart, Register y, Register z,
1637                                Register yz_idx, Register idx, Register jdx,
1638                                Register carry, Register product,
1639                                Register carry2);
1640   void multiply_to_len(Register x, Register xlen, Register y, Register ylen, Register z, Register zlen,
1641                        Register tmp1, Register tmp2, Register tmp3, Register tmp4, Register tmp5);
1642   void square_rshift(Register x, Register len, Register z, Register tmp1, Register tmp3,
1643                      Register tmp4, Register tmp5, Register rdxReg, Register raxReg);
1644   void multiply_add_64_bmi2(Register sum, Register op1, Register op2, Register carry,
1645                             Register tmp2);
1646   void multiply_add_64(Register sum, Register op1, Register op2, Register carry,
1647                        Register rdxReg, Register raxReg);
1648   void add_one_64(Register z, Register zlen, Register carry, Register tmp1);
1649   void lshift_by_1(Register x, Register len, Register z, Register zlen, Register tmp1, Register tmp2,
1650                        Register tmp3, Register tmp4);
1651   void square_to_len(Register x, Register len, Register z, Register zlen, Register tmp1, Register tmp2,
1652                      Register tmp3, Register tmp4, Register tmp5, Register rdxReg, Register raxReg);
1653 
1654   void mul_add_128_x_32_loop(Register out, Register in, Register offset, Register len, Register tmp1,
1655                Register tmp2, Register tmp3, Register tmp4, Register tmp5, Register rdxReg,
1656                Register raxReg);
1657   void mul_add(Register out, Register in, Register offset, Register len, Register k, Register tmp1,
1658                Register tmp2, Register tmp3, Register tmp4, Register tmp5, Register rdxReg,
1659                Register raxReg);
1660   void vectorized_mismatch(Register obja, Register objb, Register length, Register log2_array_indxscale,
1661                            Register result, Register tmp1, Register tmp2,
1662                            XMMRegister vec1, XMMRegister vec2, XMMRegister vec3);
1663 #endif
1664 
1665   // CRC32 code for java.util.zip.CRC32::updateBytes() intrinsic.
1666   void update_byte_crc32(Register crc, Register val, Register table);
1667   void kernel_crc32(Register crc, Register buf, Register len, Register table, Register tmp);
1668   // CRC32C code for java.util.zip.CRC32C::updateBytes() intrinsic
1669   // Note on a naming convention:
1670   // Prefix w = register only used on a Westmere+ architecture
1671   // Prefix n = register only used on a Nehalem architecture
1672 #ifdef _LP64
1673   void crc32c_ipl_alg4(Register in_out, uint32_t n,
1674                        Register tmp1, Register tmp2, Register tmp3);
1675 #else
1676   void crc32c_ipl_alg4(Register in_out, uint32_t n,
1677                        Register tmp1, Register tmp2, Register tmp3,
1678                        XMMRegister xtmp1, XMMRegister xtmp2);
1679 #endif
1680   void crc32c_pclmulqdq(XMMRegister w_xtmp1,
1681                         Register in_out,
1682                         uint32_t const_or_pre_comp_const_index, bool is_pclmulqdq_supported,
1683                         XMMRegister w_xtmp2,
1684                         Register tmp1,
1685                         Register n_tmp2, Register n_tmp3);
1686   void crc32c_rec_alt2(uint32_t const_or_pre_comp_const_index_u1, uint32_t const_or_pre_comp_const_index_u2, bool is_pclmulqdq_supported, Register in_out, Register in1, Register in2,
1687                        XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3,
1688                        Register tmp1, Register tmp2,
1689                        Register n_tmp3);
1690   void crc32c_proc_chunk(uint32_t size, uint32_t const_or_pre_comp_const_index_u1, uint32_t const_or_pre_comp_const_index_u2, bool is_pclmulqdq_supported,
1691                          Register in_out1, Register in_out2, Register in_out3,
1692                          Register tmp1, Register tmp2, Register tmp3,
1693                          XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3,
1694                          Register tmp4, Register tmp5,
1695                          Register n_tmp6);
1696   void crc32c_ipl_alg2_alt2(Register in_out, Register in1, Register in2,
1697                             Register tmp1, Register tmp2, Register tmp3,
1698                             Register tmp4, Register tmp5, Register tmp6,
1699                             XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3,
1700                             bool is_pclmulqdq_supported);
1701   // Fold 128-bit data chunk
1702   void fold_128bit_crc32(XMMRegister xcrc, XMMRegister xK, XMMRegister xtmp, Register buf, int offset);
1703   void fold_128bit_crc32(XMMRegister xcrc, XMMRegister xK, XMMRegister xtmp, XMMRegister xbuf);
1704   // Fold 8-bit data
1705   void fold_8bit_crc32(Register crc, Register table, Register tmp);
1706   void fold_8bit_crc32(XMMRegister crc, Register table, XMMRegister xtmp, Register tmp);
1707 
1708   // Compress char[] array to byte[].
1709   void char_array_compress(Register src, Register dst, Register len,
1710                            XMMRegister tmp1, XMMRegister tmp2, XMMRegister tmp3,
1711                            XMMRegister tmp4, Register tmp5, Register result);
1712 
1713   // Inflate byte[] array to char[].
1714   void byte_array_inflate(Register src, Register dst, Register len,
1715                           XMMRegister tmp1, Register tmp2);
1716 
1717 };
1718 
1719 /**
1720  * class SkipIfEqual:
1721  *
1722  * Instantiating this class will result in assembly code being output that will
1723  * jump around any code emitted between the creation of the instance and it's
1724  * automatic destruction at the end of a scope block, depending on the value of
1725  * the flag passed to the constructor, which will be checked at run-time.
1726  */
1727 class SkipIfEqual {
1728  private:
1729   MacroAssembler* _masm;
1730   Label _label;
1731 
1732  public:
1733    SkipIfEqual(MacroAssembler*, const bool* flag_addr, bool value);
1734    ~SkipIfEqual();
1735 };
1736 
1737 #endif // CPU_X86_VM_MACROASSEMBLER_X86_HPP