1 /*
   2  * Copyright (c) 1997, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "gc/shared/barrierSet.hpp"
  27 #include "gc/shared/c2/barrierSetC2.hpp"
  28 #include "memory/allocation.inline.hpp"
  29 #include "memory/resourceArea.hpp"
  30 #include "opto/block.hpp"
  31 #include "opto/callnode.hpp"
  32 #include "opto/castnode.hpp"
  33 #include "opto/cfgnode.hpp"
  34 #include "opto/idealGraphPrinter.hpp"
  35 #include "opto/loopnode.hpp"
  36 #include "opto/machnode.hpp"
  37 #include "opto/opcodes.hpp"
  38 #include "opto/phaseX.hpp"
  39 #include "opto/regalloc.hpp"
  40 #include "opto/rootnode.hpp"
  41 #include "utilities/macros.hpp"
  42 
  43 //=============================================================================
  44 #define NODE_HASH_MINIMUM_SIZE    255
  45 //------------------------------NodeHash---------------------------------------
  46 NodeHash::NodeHash(uint est_max_size) :
  47   _a(Thread::current()->resource_area()),
  48   _max( round_up(est_max_size < NODE_HASH_MINIMUM_SIZE ? NODE_HASH_MINIMUM_SIZE : est_max_size) ),
  49   _inserts(0), _insert_limit( insert_limit() ),
  50   _table( NEW_ARENA_ARRAY( _a , Node* , _max ) ) // (Node**)_a->Amalloc(_max * sizeof(Node*)) ),
  51 #ifndef PRODUCT
  52   , _grows(0),_look_probes(0), _lookup_hits(0), _lookup_misses(0),
  53   _insert_probes(0), _delete_probes(0), _delete_hits(0), _delete_misses(0),
  54    _total_inserts(0), _total_insert_probes(0)
  55 #endif
  56 {
  57   // _sentinel must be in the current node space
  58   _sentinel = new ProjNode(NULL, TypeFunc::Control);
  59   memset(_table,0,sizeof(Node*)*_max);
  60 }
  61 
  62 //------------------------------NodeHash---------------------------------------
  63 NodeHash::NodeHash(Arena *arena, uint est_max_size) :
  64   _a(arena),
  65   _max( round_up(est_max_size < NODE_HASH_MINIMUM_SIZE ? NODE_HASH_MINIMUM_SIZE : est_max_size) ),
  66   _inserts(0), _insert_limit( insert_limit() ),
  67   _table( NEW_ARENA_ARRAY( _a , Node* , _max ) )
  68 #ifndef PRODUCT
  69   , _grows(0),_look_probes(0), _lookup_hits(0), _lookup_misses(0),
  70   _insert_probes(0), _delete_probes(0), _delete_hits(0), _delete_misses(0),
  71    _total_inserts(0), _total_insert_probes(0)
  72 #endif
  73 {
  74   // _sentinel must be in the current node space
  75   _sentinel = new ProjNode(NULL, TypeFunc::Control);
  76   memset(_table,0,sizeof(Node*)*_max);
  77 }
  78 
  79 //------------------------------NodeHash---------------------------------------
  80 NodeHash::NodeHash(NodeHash *nh) {
  81   debug_only(_table = (Node**)badAddress);   // interact correctly w/ operator=
  82   // just copy in all the fields
  83   *this = *nh;
  84   // nh->_sentinel must be in the current node space
  85 }
  86 
  87 void NodeHash::replace_with(NodeHash *nh) {
  88   debug_only(_table = (Node**)badAddress);   // interact correctly w/ operator=
  89   // just copy in all the fields
  90   *this = *nh;
  91   // nh->_sentinel must be in the current node space
  92 }
  93 
  94 //------------------------------hash_find--------------------------------------
  95 // Find in hash table
  96 Node *NodeHash::hash_find( const Node *n ) {
  97   // ((Node*)n)->set_hash( n->hash() );
  98   uint hash = n->hash();
  99   if (hash == Node::NO_HASH) {
 100     NOT_PRODUCT( _lookup_misses++ );
 101     return NULL;
 102   }
 103   uint key = hash & (_max-1);
 104   uint stride = key | 0x01;
 105   NOT_PRODUCT( _look_probes++ );
 106   Node *k = _table[key];        // Get hashed value
 107   if( !k ) {                    // ?Miss?
 108     NOT_PRODUCT( _lookup_misses++ );
 109     return NULL;                // Miss!
 110   }
 111 
 112   int op = n->Opcode();
 113   uint req = n->req();
 114   while( 1 ) {                  // While probing hash table
 115     if( k->req() == req &&      // Same count of inputs
 116         k->Opcode() == op ) {   // Same Opcode
 117       for( uint i=0; i<req; i++ )
 118         if( n->in(i)!=k->in(i)) // Different inputs?
 119           goto collision;       // "goto" is a speed hack...
 120       if( n->cmp(*k) ) {        // Check for any special bits
 121         NOT_PRODUCT( _lookup_hits++ );
 122         return k;               // Hit!
 123       }
 124     }
 125   collision:
 126     NOT_PRODUCT( _look_probes++ );
 127     key = (key + stride/*7*/) & (_max-1); // Stride through table with relative prime
 128     k = _table[key];            // Get hashed value
 129     if( !k ) {                  // ?Miss?
 130       NOT_PRODUCT( _lookup_misses++ );
 131       return NULL;              // Miss!
 132     }
 133   }
 134   ShouldNotReachHere();
 135   return NULL;
 136 }
 137 
 138 //------------------------------hash_find_insert-------------------------------
 139 // Find in hash table, insert if not already present
 140 // Used to preserve unique entries in hash table
 141 Node *NodeHash::hash_find_insert( Node *n ) {
 142   // n->set_hash( );
 143   uint hash = n->hash();
 144   if (hash == Node::NO_HASH) {
 145     NOT_PRODUCT( _lookup_misses++ );
 146     return NULL;
 147   }
 148   uint key = hash & (_max-1);
 149   uint stride = key | 0x01;     // stride must be relatively prime to table siz
 150   uint first_sentinel = 0;      // replace a sentinel if seen.
 151   NOT_PRODUCT( _look_probes++ );
 152   Node *k = _table[key];        // Get hashed value
 153   if( !k ) {                    // ?Miss?
 154     NOT_PRODUCT( _lookup_misses++ );
 155     _table[key] = n;            // Insert into table!
 156     debug_only(n->enter_hash_lock()); // Lock down the node while in the table.
 157     check_grow();               // Grow table if insert hit limit
 158     return NULL;                // Miss!
 159   }
 160   else if( k == _sentinel ) {
 161     first_sentinel = key;      // Can insert here
 162   }
 163 
 164   int op = n->Opcode();
 165   uint req = n->req();
 166   while( 1 ) {                  // While probing hash table
 167     if( k->req() == req &&      // Same count of inputs
 168         k->Opcode() == op ) {   // Same Opcode
 169       for( uint i=0; i<req; i++ )
 170         if( n->in(i)!=k->in(i)) // Different inputs?
 171           goto collision;       // "goto" is a speed hack...
 172       if( n->cmp(*k) ) {        // Check for any special bits
 173         NOT_PRODUCT( _lookup_hits++ );
 174         return k;               // Hit!
 175       }
 176     }
 177   collision:
 178     NOT_PRODUCT( _look_probes++ );
 179     key = (key + stride) & (_max-1); // Stride through table w/ relative prime
 180     k = _table[key];            // Get hashed value
 181     if( !k ) {                  // ?Miss?
 182       NOT_PRODUCT( _lookup_misses++ );
 183       key = (first_sentinel == 0) ? key : first_sentinel; // ?saw sentinel?
 184       _table[key] = n;          // Insert into table!
 185       debug_only(n->enter_hash_lock()); // Lock down the node while in the table.
 186       check_grow();             // Grow table if insert hit limit
 187       return NULL;              // Miss!
 188     }
 189     else if( first_sentinel == 0 && k == _sentinel ) {
 190       first_sentinel = key;    // Can insert here
 191     }
 192 
 193   }
 194   ShouldNotReachHere();
 195   return NULL;
 196 }
 197 
 198 //------------------------------hash_insert------------------------------------
 199 // Insert into hash table
 200 void NodeHash::hash_insert( Node *n ) {
 201   // // "conflict" comments -- print nodes that conflict
 202   // bool conflict = false;
 203   // n->set_hash();
 204   uint hash = n->hash();
 205   if (hash == Node::NO_HASH) {
 206     return;
 207   }
 208   check_grow();
 209   uint key = hash & (_max-1);
 210   uint stride = key | 0x01;
 211 
 212   while( 1 ) {                  // While probing hash table
 213     NOT_PRODUCT( _insert_probes++ );
 214     Node *k = _table[key];      // Get hashed value
 215     if( !k || (k == _sentinel) ) break;       // Found a slot
 216     assert( k != n, "already inserted" );
 217     // if( PrintCompilation && PrintOptoStatistics && Verbose ) { tty->print("  conflict: "); k->dump(); conflict = true; }
 218     key = (key + stride) & (_max-1); // Stride through table w/ relative prime
 219   }
 220   _table[key] = n;              // Insert into table!
 221   debug_only(n->enter_hash_lock()); // Lock down the node while in the table.
 222   // if( conflict ) { n->dump(); }
 223 }
 224 
 225 //------------------------------hash_delete------------------------------------
 226 // Replace in hash table with sentinel
 227 bool NodeHash::hash_delete( const Node *n ) {
 228   Node *k;
 229   uint hash = n->hash();
 230   if (hash == Node::NO_HASH) {
 231     NOT_PRODUCT( _delete_misses++ );
 232     return false;
 233   }
 234   uint key = hash & (_max-1);
 235   uint stride = key | 0x01;
 236   debug_only( uint counter = 0; );
 237   for( ; /* (k != NULL) && (k != _sentinel) */; ) {
 238     debug_only( counter++ );
 239     NOT_PRODUCT( _delete_probes++ );
 240     k = _table[key];            // Get hashed value
 241     if( !k ) {                  // Miss?
 242       NOT_PRODUCT( _delete_misses++ );
 243 #ifdef ASSERT
 244       if( VerifyOpto ) {
 245         for( uint i=0; i < _max; i++ )
 246           assert( _table[i] != n, "changed edges with rehashing" );
 247       }
 248 #endif
 249       return false;             // Miss! Not in chain
 250     }
 251     else if( n == k ) {
 252       NOT_PRODUCT( _delete_hits++ );
 253       _table[key] = _sentinel;  // Hit! Label as deleted entry
 254       debug_only(((Node*)n)->exit_hash_lock()); // Unlock the node upon removal from table.
 255       return true;
 256     }
 257     else {
 258       // collision: move through table with prime offset
 259       key = (key + stride/*7*/) & (_max-1);
 260       assert( counter <= _insert_limit, "Cycle in hash-table");
 261     }
 262   }
 263   ShouldNotReachHere();
 264   return false;
 265 }
 266 
 267 //------------------------------round_up---------------------------------------
 268 // Round up to nearest power of 2
 269 uint NodeHash::round_up( uint x ) {
 270   x += (x>>2);                  // Add 25% slop
 271   if( x <16 ) return 16;        // Small stuff
 272   uint i=16;
 273   while( i < x ) i <<= 1;       // Double to fit
 274   return i;                     // Return hash table size
 275 }
 276 
 277 //------------------------------grow-------------------------------------------
 278 // Grow _table to next power of 2 and insert old entries
 279 void  NodeHash::grow() {
 280   // Record old state
 281   uint   old_max   = _max;
 282   Node **old_table = _table;
 283   // Construct new table with twice the space
 284 #ifndef PRODUCT
 285   _grows++;
 286   _total_inserts       += _inserts;
 287   _total_insert_probes += _insert_probes;
 288   _insert_probes   = 0;
 289 #endif
 290   _inserts         = 0;
 291   _max     = _max << 1;
 292   _table   = NEW_ARENA_ARRAY( _a , Node* , _max ); // (Node**)_a->Amalloc( _max * sizeof(Node*) );
 293   memset(_table,0,sizeof(Node*)*_max);
 294   _insert_limit = insert_limit();
 295   // Insert old entries into the new table
 296   for( uint i = 0; i < old_max; i++ ) {
 297     Node *m = *old_table++;
 298     if( !m || m == _sentinel ) continue;
 299     debug_only(m->exit_hash_lock()); // Unlock the node upon removal from old table.
 300     hash_insert(m);
 301   }
 302 }
 303 
 304 //------------------------------clear------------------------------------------
 305 // Clear all entries in _table to NULL but keep storage
 306 void  NodeHash::clear() {
 307 #ifdef ASSERT
 308   // Unlock all nodes upon removal from table.
 309   for (uint i = 0; i < _max; i++) {
 310     Node* n = _table[i];
 311     if (!n || n == _sentinel)  continue;
 312     n->exit_hash_lock();
 313   }
 314 #endif
 315 
 316   memset( _table, 0, _max * sizeof(Node*) );
 317 }
 318 
 319 //-----------------------remove_useless_nodes----------------------------------
 320 // Remove useless nodes from value table,
 321 // implementation does not depend on hash function
 322 void NodeHash::remove_useless_nodes(VectorSet &useful) {
 323 
 324   // Dead nodes in the hash table inherited from GVN should not replace
 325   // existing nodes, remove dead nodes.
 326   uint max = size();
 327   Node *sentinel_node = sentinel();
 328   for( uint i = 0; i < max; ++i ) {
 329     Node *n = at(i);
 330     if(n != NULL && n != sentinel_node && !useful.test(n->_idx)) {
 331       debug_only(n->exit_hash_lock()); // Unlock the node when removed
 332       _table[i] = sentinel_node;       // Replace with placeholder
 333     }
 334   }
 335 }
 336 
 337 
 338 void NodeHash::check_no_speculative_types() {
 339 #ifdef ASSERT
 340   uint max = size();
 341   Node *sentinel_node = sentinel();
 342   for (uint i = 0; i < max; ++i) {
 343     Node *n = at(i);
 344     if(n != NULL && n != sentinel_node && n->is_Type() && n->outcnt() > 0) {
 345       TypeNode* tn = n->as_Type();
 346       const Type* t = tn->type();
 347       const Type* t_no_spec = t->remove_speculative();
 348       assert(t == t_no_spec, "dead node in hash table or missed node during speculative cleanup");
 349     }
 350   }
 351 #endif
 352 }
 353 
 354 #ifndef PRODUCT
 355 //------------------------------dump-------------------------------------------
 356 // Dump statistics for the hash table
 357 void NodeHash::dump() {
 358   _total_inserts       += _inserts;
 359   _total_insert_probes += _insert_probes;
 360   if (PrintCompilation && PrintOptoStatistics && Verbose && (_inserts > 0)) {
 361     if (WizardMode) {
 362       for (uint i=0; i<_max; i++) {
 363         if (_table[i])
 364           tty->print("%d/%d/%d ",i,_table[i]->hash()&(_max-1),_table[i]->_idx);
 365       }
 366     }
 367     tty->print("\nGVN Hash stats:  %d grows to %d max_size\n", _grows, _max);
 368     tty->print("  %d/%d (%8.1f%% full)\n", _inserts, _max, (double)_inserts/_max*100.0);
 369     tty->print("  %dp/(%dh+%dm) (%8.2f probes/lookup)\n", _look_probes, _lookup_hits, _lookup_misses, (double)_look_probes/(_lookup_hits+_lookup_misses));
 370     tty->print("  %dp/%di (%8.2f probes/insert)\n", _total_insert_probes, _total_inserts, (double)_total_insert_probes/_total_inserts);
 371     // sentinels increase lookup cost, but not insert cost
 372     assert((_lookup_misses+_lookup_hits)*4+100 >= _look_probes, "bad hash function");
 373     assert( _inserts+(_inserts>>3) < _max, "table too full" );
 374     assert( _inserts*3+100 >= _insert_probes, "bad hash function" );
 375   }
 376 }
 377 
 378 Node *NodeHash::find_index(uint idx) { // For debugging
 379   // Find an entry by its index value
 380   for( uint i = 0; i < _max; i++ ) {
 381     Node *m = _table[i];
 382     if( !m || m == _sentinel ) continue;
 383     if( m->_idx == (uint)idx ) return m;
 384   }
 385   return NULL;
 386 }
 387 #endif
 388 
 389 #ifdef ASSERT
 390 NodeHash::~NodeHash() {
 391   // Unlock all nodes upon destruction of table.
 392   if (_table != (Node**)badAddress)  clear();
 393 }
 394 
 395 void NodeHash::operator=(const NodeHash& nh) {
 396   // Unlock all nodes upon replacement of table.
 397   if (&nh == this)  return;
 398   if (_table != (Node**)badAddress)  clear();
 399   memcpy((void*)this, (void*)&nh, sizeof(*this));
 400   // Do not increment hash_lock counts again.
 401   // Instead, be sure we never again use the source table.
 402   ((NodeHash*)&nh)->_table = (Node**)badAddress;
 403 }
 404 
 405 
 406 #endif
 407 
 408 
 409 //=============================================================================
 410 //------------------------------PhaseRemoveUseless-----------------------------
 411 // 1) Use a breadthfirst walk to collect useful nodes reachable from root.
 412 PhaseRemoveUseless::PhaseRemoveUseless(PhaseGVN *gvn, Unique_Node_List *worklist, PhaseNumber phase_num) : Phase(phase_num),
 413   _useful(Thread::current()->resource_area()) {
 414 
 415   // Implementation requires 'UseLoopSafepoints == true' and an edge from root
 416   // to each SafePointNode at a backward branch.  Inserted in add_safepoint().
 417   if( !UseLoopSafepoints || !OptoRemoveUseless ) return;
 418 
 419   // Identify nodes that are reachable from below, useful.
 420   C->identify_useful_nodes(_useful);
 421   // Update dead node list
 422   C->update_dead_node_list(_useful);
 423 
 424   // Remove all useless nodes from PhaseValues' recorded types
 425   // Must be done before disconnecting nodes to preserve hash-table-invariant
 426   gvn->remove_useless_nodes(_useful.member_set());
 427 
 428   // Remove all useless nodes from future worklist
 429   worklist->remove_useless_nodes(_useful.member_set());
 430 
 431   // Disconnect 'useless' nodes that are adjacent to useful nodes
 432   C->remove_useless_nodes(_useful);
 433 }
 434 
 435 //=============================================================================
 436 //------------------------------PhaseRenumberLive------------------------------
 437 // First, remove useless nodes (equivalent to identifying live nodes).
 438 // Then, renumber live nodes.
 439 //
 440 // The set of live nodes is returned by PhaseRemoveUseless in the _useful structure.
 441 // If the number of live nodes is 'x' (where 'x' == _useful.size()), then the
 442 // PhaseRenumberLive updates the node ID of each node (the _idx field) with a unique
 443 // value in the range [0, x).
 444 //
 445 // At the end of the PhaseRenumberLive phase, the compiler's count of unique nodes is
 446 // updated to 'x' and the list of dead nodes is reset (as there are no dead nodes).
 447 //
 448 // The PhaseRenumberLive phase updates two data structures with the new node IDs.
 449 // (1) The worklist is used by the PhaseIterGVN phase to identify nodes that must be
 450 // processed. A new worklist (with the updated node IDs) is returned in 'new_worklist'.
 451 // (2) Type information (the field PhaseGVN::_types) maps type information to each
 452 // node ID. The mapping is updated to use the new node IDs as well. Updated type
 453 // information is returned in PhaseGVN::_types.
 454 //
 455 // The PhaseRenumberLive phase does not preserve the order of elements in the worklist.
 456 //
 457 // Other data structures used by the compiler are not updated. The hash table for value
 458 // numbering (the field PhaseGVN::_table) is not updated because computing the hash
 459 // values is not based on node IDs. The field PhaseGVN::_nodes is not updated either
 460 // because it is empty wherever PhaseRenumberLive is used.
 461 PhaseRenumberLive::PhaseRenumberLive(PhaseGVN* gvn,
 462                                      Unique_Node_List* worklist, Unique_Node_List* new_worklist,
 463                                      PhaseNumber phase_num) :
 464   PhaseRemoveUseless(gvn, worklist, Remove_Useless_And_Renumber_Live) {
 465 
 466   assert(RenumberLiveNodes, "RenumberLiveNodes must be set to true for node renumbering to take place");
 467   assert(C->live_nodes() == _useful.size(), "the number of live nodes must match the number of useful nodes");
 468   assert(gvn->nodes_size() == 0, "GVN must not contain any nodes at this point");
 469 
 470   uint old_unique_count = C->unique();
 471   uint live_node_count = C->live_nodes();
 472   uint worklist_size = worklist->size();
 473 
 474   // Storage for the updated type information.
 475   Type_Array new_type_array(C->comp_arena());
 476 
 477   // Iterate over the set of live nodes.
 478   uint current_idx = 0; // The current new node ID. Incremented after every assignment.
 479   for (uint i = 0; i < _useful.size(); i++) {
 480     Node* n = _useful.at(i);
 481     // Sanity check that fails if we ever decide to execute this phase after EA
 482     assert(!n->is_Phi() || n->as_Phi()->inst_mem_id() == -1, "should not be linked to data Phi");
 483     const Type* type = gvn->type_or_null(n);
 484     new_type_array.map(current_idx, type);
 485 
 486     bool in_worklist = false;
 487     if (worklist->member(n)) {
 488       in_worklist = true;
 489     }
 490 
 491     n->set_idx(current_idx); // Update node ID.
 492 
 493     if (in_worklist) {
 494       new_worklist->push(n);
 495     }
 496 
 497     current_idx++;
 498   }
 499 
 500   assert(worklist_size == new_worklist->size(), "the new worklist must have the same size as the original worklist");
 501   assert(live_node_count == current_idx, "all live nodes must be processed");
 502 
 503   // Replace the compiler's type information with the updated type information.
 504   gvn->replace_types(new_type_array);
 505 
 506   // Update the unique node count of the compilation to the number of currently live nodes.
 507   C->set_unique(live_node_count);
 508 
 509   // Set the dead node count to 0 and reset dead node list.
 510   C->reset_dead_node_list();
 511 }
 512 
 513 
 514 //=============================================================================
 515 //------------------------------PhaseTransform---------------------------------
 516 PhaseTransform::PhaseTransform( PhaseNumber pnum ) : Phase(pnum),
 517   _arena(Thread::current()->resource_area()),
 518   _nodes(_arena),
 519   _types(_arena)
 520 {
 521   init_con_caches();
 522 #ifndef PRODUCT
 523   clear_progress();
 524   clear_transforms();
 525   set_allow_progress(true);
 526 #endif
 527   // Force allocation for currently existing nodes
 528   _types.map(C->unique(), NULL);
 529 }
 530 
 531 //------------------------------PhaseTransform---------------------------------
 532 PhaseTransform::PhaseTransform( Arena *arena, PhaseNumber pnum ) : Phase(pnum),
 533   _arena(arena),
 534   _nodes(arena),
 535   _types(arena)
 536 {
 537   init_con_caches();
 538 #ifndef PRODUCT
 539   clear_progress();
 540   clear_transforms();
 541   set_allow_progress(true);
 542 #endif
 543   // Force allocation for currently existing nodes
 544   _types.map(C->unique(), NULL);
 545 }
 546 
 547 //------------------------------PhaseTransform---------------------------------
 548 // Initialize with previously generated type information
 549 PhaseTransform::PhaseTransform( PhaseTransform *pt, PhaseNumber pnum ) : Phase(pnum),
 550   _arena(pt->_arena),
 551   _nodes(pt->_nodes),
 552   _types(pt->_types)
 553 {
 554   init_con_caches();
 555 #ifndef PRODUCT
 556   clear_progress();
 557   clear_transforms();
 558   set_allow_progress(true);
 559 #endif
 560 }
 561 
 562 void PhaseTransform::init_con_caches() {
 563   memset(_icons,0,sizeof(_icons));
 564   memset(_lcons,0,sizeof(_lcons));
 565   memset(_zcons,0,sizeof(_zcons));
 566 }
 567 
 568 
 569 //--------------------------------find_int_type--------------------------------
 570 const TypeInt* PhaseTransform::find_int_type(Node* n) {
 571   if (n == NULL)  return NULL;
 572   // Call type_or_null(n) to determine node's type since we might be in
 573   // parse phase and call n->Value() may return wrong type.
 574   // (For example, a phi node at the beginning of loop parsing is not ready.)
 575   const Type* t = type_or_null(n);
 576   if (t == NULL)  return NULL;
 577   return t->isa_int();
 578 }
 579 
 580 
 581 //-------------------------------find_long_type--------------------------------
 582 const TypeLong* PhaseTransform::find_long_type(Node* n) {
 583   if (n == NULL)  return NULL;
 584   // (See comment above on type_or_null.)
 585   const Type* t = type_or_null(n);
 586   if (t == NULL)  return NULL;
 587   return t->isa_long();
 588 }
 589 
 590 
 591 #ifndef PRODUCT
 592 void PhaseTransform::dump_old2new_map() const {
 593   _nodes.dump();
 594 }
 595 
 596 void PhaseTransform::dump_new( uint nidx ) const {
 597   for( uint i=0; i<_nodes.Size(); i++ )
 598     if( _nodes[i] && _nodes[i]->_idx == nidx ) {
 599       _nodes[i]->dump();
 600       tty->cr();
 601       tty->print_cr("Old index= %d",i);
 602       return;
 603     }
 604   tty->print_cr("Node %d not found in the new indices", nidx);
 605 }
 606 
 607 //------------------------------dump_types-------------------------------------
 608 void PhaseTransform::dump_types( ) const {
 609   _types.dump();
 610 }
 611 
 612 //------------------------------dump_nodes_and_types---------------------------
 613 void PhaseTransform::dump_nodes_and_types(const Node *root, uint depth, bool only_ctrl) {
 614   VectorSet visited(Thread::current()->resource_area());
 615   dump_nodes_and_types_recur( root, depth, only_ctrl, visited );
 616 }
 617 
 618 //------------------------------dump_nodes_and_types_recur---------------------
 619 void PhaseTransform::dump_nodes_and_types_recur( const Node *n, uint depth, bool only_ctrl, VectorSet &visited) {
 620   if( !n ) return;
 621   if( depth == 0 ) return;
 622   if( visited.test_set(n->_idx) ) return;
 623   for( uint i=0; i<n->len(); i++ ) {
 624     if( only_ctrl && !(n->is_Region()) && i != TypeFunc::Control ) continue;
 625     dump_nodes_and_types_recur( n->in(i), depth-1, only_ctrl, visited );
 626   }
 627   n->dump();
 628   if (type_or_null(n) != NULL) {
 629     tty->print("      "); type(n)->dump(); tty->cr();
 630   }
 631 }
 632 
 633 #endif
 634 
 635 
 636 //=============================================================================
 637 //------------------------------PhaseValues------------------------------------
 638 // Set minimum table size to "255"
 639 PhaseValues::PhaseValues( Arena *arena, uint est_max_size ) : PhaseTransform(arena, GVN), _table(arena, est_max_size) {
 640   NOT_PRODUCT( clear_new_values(); )
 641 }
 642 
 643 //------------------------------PhaseValues------------------------------------
 644 // Set minimum table size to "255"
 645 PhaseValues::PhaseValues( PhaseValues *ptv ) : PhaseTransform( ptv, GVN ),
 646   _table(&ptv->_table) {
 647   NOT_PRODUCT( clear_new_values(); )
 648 }
 649 
 650 //------------------------------PhaseValues------------------------------------
 651 // Used by +VerifyOpto.  Clear out hash table but copy _types array.
 652 PhaseValues::PhaseValues( PhaseValues *ptv, const char *dummy ) : PhaseTransform( ptv, GVN ),
 653   _table(ptv->arena(),ptv->_table.size()) {
 654   NOT_PRODUCT( clear_new_values(); )
 655 }
 656 
 657 //------------------------------~PhaseValues-----------------------------------
 658 #ifndef PRODUCT
 659 PhaseValues::~PhaseValues() {
 660   _table.dump();
 661 
 662   // Statistics for value progress and efficiency
 663   if( PrintCompilation && Verbose && WizardMode ) {
 664     tty->print("\n%sValues: %d nodes ---> %d/%d (%d)",
 665       is_IterGVN() ? "Iter" : "    ", C->unique(), made_progress(), made_transforms(), made_new_values());
 666     if( made_transforms() != 0 ) {
 667       tty->print_cr("  ratio %f", made_progress()/(float)made_transforms() );
 668     } else {
 669       tty->cr();
 670     }
 671   }
 672 }
 673 #endif
 674 
 675 //------------------------------makecon----------------------------------------
 676 ConNode* PhaseTransform::makecon(const Type *t) {
 677   assert(t->singleton(), "must be a constant");
 678   assert(!t->empty() || t == Type::TOP, "must not be vacuous range");
 679   switch (t->base()) {  // fast paths
 680   case Type::Half:
 681   case Type::Top:  return (ConNode*) C->top();
 682   case Type::Int:  return intcon( t->is_int()->get_con() );
 683   case Type::Long: return longcon( t->is_long()->get_con() );
 684   default:         break;
 685   }
 686   if (t->is_zero_type())
 687     return zerocon(t->basic_type());
 688   return uncached_makecon(t);
 689 }
 690 
 691 //--------------------------uncached_makecon-----------------------------------
 692 // Make an idealized constant - one of ConINode, ConPNode, etc.
 693 ConNode* PhaseValues::uncached_makecon(const Type *t) {
 694   assert(t->singleton(), "must be a constant");
 695   ConNode* x = ConNode::make(t);
 696   ConNode* k = (ConNode*)hash_find_insert(x); // Value numbering
 697   if (k == NULL) {
 698     set_type(x, t);             // Missed, provide type mapping
 699     GrowableArray<Node_Notes*>* nna = C->node_note_array();
 700     if (nna != NULL) {
 701       Node_Notes* loc = C->locate_node_notes(nna, x->_idx, true);
 702       loc->clear(); // do not put debug info on constants
 703     }
 704   } else {
 705     x->destruct();              // Hit, destroy duplicate constant
 706     x = k;                      // use existing constant
 707   }
 708   return x;
 709 }
 710 
 711 //------------------------------intcon-----------------------------------------
 712 // Fast integer constant.  Same as "transform(new ConINode(TypeInt::make(i)))"
 713 ConINode* PhaseTransform::intcon(jint i) {
 714   // Small integer?  Check cache! Check that cached node is not dead
 715   if (i >= _icon_min && i <= _icon_max) {
 716     ConINode* icon = _icons[i-_icon_min];
 717     if (icon != NULL && icon->in(TypeFunc::Control) != NULL)
 718       return icon;
 719   }
 720   ConINode* icon = (ConINode*) uncached_makecon(TypeInt::make(i));
 721   assert(icon->is_Con(), "");
 722   if (i >= _icon_min && i <= _icon_max)
 723     _icons[i-_icon_min] = icon;   // Cache small integers
 724   return icon;
 725 }
 726 
 727 //------------------------------longcon----------------------------------------
 728 // Fast long constant.
 729 ConLNode* PhaseTransform::longcon(jlong l) {
 730   // Small integer?  Check cache! Check that cached node is not dead
 731   if (l >= _lcon_min && l <= _lcon_max) {
 732     ConLNode* lcon = _lcons[l-_lcon_min];
 733     if (lcon != NULL && lcon->in(TypeFunc::Control) != NULL)
 734       return lcon;
 735   }
 736   ConLNode* lcon = (ConLNode*) uncached_makecon(TypeLong::make(l));
 737   assert(lcon->is_Con(), "");
 738   if (l >= _lcon_min && l <= _lcon_max)
 739     _lcons[l-_lcon_min] = lcon;      // Cache small integers
 740   return lcon;
 741 }
 742 
 743 //------------------------------zerocon-----------------------------------------
 744 // Fast zero or null constant. Same as "transform(ConNode::make(Type::get_zero_type(bt)))"
 745 ConNode* PhaseTransform::zerocon(BasicType bt) {
 746   assert((uint)bt <= _zcon_max, "domain check");
 747   ConNode* zcon = _zcons[bt];
 748   if (zcon != NULL && zcon->in(TypeFunc::Control) != NULL)
 749     return zcon;
 750   zcon = (ConNode*) uncached_makecon(Type::get_zero_type(bt));
 751   _zcons[bt] = zcon;
 752   return zcon;
 753 }
 754 
 755 
 756 
 757 //=============================================================================
 758 Node* PhaseGVN::apply_ideal(Node* k, bool can_reshape) {
 759   Node* i = BarrierSet::barrier_set()->barrier_set_c2()->ideal_node(this, k, can_reshape);
 760   if (i == NULL) {
 761     i = k->Ideal(this, can_reshape);
 762   }
 763   return i;
 764 }
 765 
 766 Node* PhaseGVN::apply_identity(Node* k) {
 767   Node* i = BarrierSet::barrier_set()->barrier_set_c2()->identity_node(this, k);
 768   if (i == k) {
 769     i = k->Identity(this);
 770   }
 771   return i;
 772 }
 773 
 774 //------------------------------transform--------------------------------------
 775 // Return a node which computes the same function as this node, but in a
 776 // faster or cheaper fashion.
 777 Node *PhaseGVN::transform( Node *n ) {
 778   return transform_no_reclaim(n);
 779 }
 780 
 781 //------------------------------transform--------------------------------------
 782 // Return a node which computes the same function as this node, but
 783 // in a faster or cheaper fashion.
 784 Node *PhaseGVN::transform_no_reclaim( Node *n ) {
 785   NOT_PRODUCT( set_transforms(); )
 786 
 787   // Apply the Ideal call in a loop until it no longer applies
 788   Node *k = n;
 789   NOT_PRODUCT( uint loop_count = 0; )
 790   while( 1 ) {
 791     Node *i = apply_ideal(k, /*can_reshape=*/false);
 792     if( !i ) break;
 793     assert( i->_idx >= k->_idx, "Idealize should return new nodes, use Identity to return old nodes" );
 794     k = i;
 795     assert(loop_count++ < K, "infinite loop in PhaseGVN::transform");
 796   }
 797   NOT_PRODUCT( if( loop_count != 0 ) { set_progress(); } )
 798 
 799 
 800   // If brand new node, make space in type array.
 801   ensure_type_or_null(k);
 802 
 803   // Since I just called 'Value' to compute the set of run-time values
 804   // for this Node, and 'Value' is non-local (and therefore expensive) I'll
 805   // cache Value.  Later requests for the local phase->type of this Node can
 806   // use the cached Value instead of suffering with 'bottom_type'.
 807   const Type *t = k->Value(this); // Get runtime Value set
 808   assert(t != NULL, "value sanity");
 809   if (type_or_null(k) != t) {
 810 #ifndef PRODUCT
 811     // Do not count initial visit to node as a transformation
 812     if (type_or_null(k) == NULL) {
 813       inc_new_values();
 814       set_progress();
 815     }
 816 #endif
 817     set_type(k, t);
 818     // If k is a TypeNode, capture any more-precise type permanently into Node
 819     k->raise_bottom_type(t);
 820   }
 821 
 822   if( t->singleton() && !k->is_Con() ) {
 823     NOT_PRODUCT( set_progress(); )
 824     return makecon(t);          // Turn into a constant
 825   }
 826 
 827   // Now check for Identities
 828   Node *i = apply_identity(k);  // Look for a nearby replacement
 829   if( i != k ) {                // Found? Return replacement!
 830     NOT_PRODUCT( set_progress(); )
 831     return i;
 832   }
 833 
 834   // Global Value Numbering
 835   i = hash_find_insert(k);      // Insert if new
 836   if( i && (i != k) ) {
 837     // Return the pre-existing node
 838     NOT_PRODUCT( set_progress(); )
 839     return i;
 840   }
 841 
 842   // Return Idealized original
 843   return k;
 844 }
 845 
 846 bool PhaseGVN::is_dominator_helper(Node *d, Node *n, bool linear_only) {
 847   if (d->is_top() || n->is_top()) {
 848     return false;
 849   }
 850   assert(d->is_CFG() && n->is_CFG(), "must have CFG nodes");
 851   int i = 0;
 852   while (d != n) {
 853     n = IfNode::up_one_dom(n, linear_only);
 854     i++;
 855     if (n == NULL || i >= 10) {
 856       return false;
 857     }
 858   }
 859   return true;
 860 }
 861 
 862 #ifdef ASSERT
 863 //------------------------------dead_loop_check--------------------------------
 864 // Check for a simple dead loop when a data node references itself directly
 865 // or through an other data node excluding cons and phis.
 866 void PhaseGVN::dead_loop_check( Node *n ) {
 867   // Phi may reference itself in a loop
 868   if (n != NULL && !n->is_dead_loop_safe() && !n->is_CFG()) {
 869     // Do 2 levels check and only data inputs.
 870     bool no_dead_loop = true;
 871     uint cnt = n->req();
 872     for (uint i = 1; i < cnt && no_dead_loop; i++) {
 873       Node *in = n->in(i);
 874       if (in == n) {
 875         no_dead_loop = false;
 876       } else if (in != NULL && !in->is_dead_loop_safe()) {
 877         uint icnt = in->req();
 878         for (uint j = 1; j < icnt && no_dead_loop; j++) {
 879           if (in->in(j) == n || in->in(j) == in)
 880             no_dead_loop = false;
 881         }
 882       }
 883     }
 884     if (!no_dead_loop) n->dump(3);
 885     assert(no_dead_loop, "dead loop detected");
 886   }
 887 }
 888 #endif
 889 
 890 //=============================================================================
 891 //------------------------------PhaseIterGVN-----------------------------------
 892 // Initialize hash table to fresh and clean for +VerifyOpto
 893 PhaseIterGVN::PhaseIterGVN( PhaseIterGVN *igvn, const char *dummy ) : PhaseGVN(igvn,dummy),
 894                                                                       _delay_transform(false),
 895                                                                       _stack(C->live_nodes() >> 1),
 896                                                                       _worklist( ) {
 897 }
 898 
 899 //------------------------------PhaseIterGVN-----------------------------------
 900 // Initialize with previous PhaseIterGVN info; used by PhaseCCP
 901 PhaseIterGVN::PhaseIterGVN( PhaseIterGVN *igvn ) : PhaseGVN(igvn),
 902                                                    _delay_transform(igvn->_delay_transform),
 903                                                    _stack( igvn->_stack ),
 904                                                    _worklist( igvn->_worklist )
 905 {
 906 }
 907 
 908 //------------------------------PhaseIterGVN-----------------------------------
 909 // Initialize with previous PhaseGVN info from Parser
 910 PhaseIterGVN::PhaseIterGVN( PhaseGVN *gvn ) : PhaseGVN(gvn),
 911                                               _delay_transform(false),
 912 // TODO: Before incremental inlining it was allocated only once and it was fine. Now that
 913 //       the constructor is used in incremental inlining, this consumes too much memory:
 914 //                                            _stack(C->live_nodes() >> 1),
 915 //       So, as a band-aid, we replace this by:
 916                                               _stack(C->comp_arena(), 32),
 917                                               _worklist(*C->for_igvn())
 918 {
 919   uint max;
 920 
 921   // Dead nodes in the hash table inherited from GVN were not treated as
 922   // roots during def-use info creation; hence they represent an invisible
 923   // use.  Clear them out.
 924   max = _table.size();
 925   for( uint i = 0; i < max; ++i ) {
 926     Node *n = _table.at(i);
 927     if(n != NULL && n != _table.sentinel() && n->outcnt() == 0) {
 928       if( n->is_top() ) continue;
 929       assert( false, "Parse::remove_useless_nodes missed this node");
 930       hash_delete(n);
 931     }
 932   }
 933 
 934   // Any Phis or Regions on the worklist probably had uses that could not
 935   // make more progress because the uses were made while the Phis and Regions
 936   // were in half-built states.  Put all uses of Phis and Regions on worklist.
 937   max = _worklist.size();
 938   for( uint j = 0; j < max; j++ ) {
 939     Node *n = _worklist.at(j);
 940     uint uop = n->Opcode();
 941     if( uop == Op_Phi || uop == Op_Region ||
 942         n->is_Type() ||
 943         n->is_Mem() )
 944       add_users_to_worklist(n);
 945   }
 946 
 947   BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
 948   bs->add_users_to_worklist(&_worklist);
 949 }
 950 
 951 /**
 952  * Initialize worklist for each node.
 953  */
 954 void PhaseIterGVN::init_worklist(Node* first) {
 955   Unique_Node_List to_process;
 956   to_process.push(first);
 957 
 958   while (to_process.size() > 0) {
 959     Node* n = to_process.pop();
 960     if (!_worklist.member(n)) {
 961       _worklist.push(n);
 962 
 963       uint cnt = n->req();
 964       for(uint i = 0; i < cnt; i++) {
 965         Node* m = n->in(i);
 966         if (m != NULL) {
 967           to_process.push(m);
 968         }
 969       }
 970     }
 971   }
 972 }
 973 
 974 #ifndef PRODUCT
 975 void PhaseIterGVN::verify_step(Node* n) {
 976   if (VerifyIterativeGVN) {
 977     _verify_window[_verify_counter % _verify_window_size] = n;
 978     ++_verify_counter;
 979     ResourceMark rm;
 980     ResourceArea* area = Thread::current()->resource_area();
 981     VectorSet old_space(area), new_space(area);
 982     if (C->unique() < 1000 ||
 983         0 == _verify_counter % (C->unique() < 10000 ? 10 : 100)) {
 984       ++_verify_full_passes;
 985       Node::verify_recur(C->root(), -1, old_space, new_space);
 986     }
 987     const int verify_depth = 4;
 988     for ( int i = 0; i < _verify_window_size; i++ ) {
 989       Node* n = _verify_window[i];
 990       if ( n == NULL )  continue;
 991       if( n->in(0) == NodeSentinel ) {  // xform_idom
 992         _verify_window[i] = n->in(1);
 993         --i; continue;
 994       }
 995       // Typical fanout is 1-2, so this call visits about 6 nodes.
 996       Node::verify_recur(n, verify_depth, old_space, new_space);
 997     }
 998   }
 999 }
1000 
1001 void PhaseIterGVN::trace_PhaseIterGVN(Node* n, Node* nn, const Type* oldtype) {
1002   if (TraceIterativeGVN) {
1003     uint wlsize = _worklist.size();
1004     const Type* newtype = type_or_null(n);
1005     if (nn != n) {
1006       // print old node
1007       tty->print("< ");
1008       if (oldtype != newtype && oldtype != NULL) {
1009         oldtype->dump();
1010       }
1011       do { tty->print("\t"); } while (tty->position() < 16);
1012       tty->print("<");
1013       n->dump();
1014     }
1015     if (oldtype != newtype || nn != n) {
1016       // print new node and/or new type
1017       if (oldtype == NULL) {
1018         tty->print("* ");
1019       } else if (nn != n) {
1020         tty->print("> ");
1021       } else {
1022         tty->print("= ");
1023       }
1024       if (newtype == NULL) {
1025         tty->print("null");
1026       } else {
1027         newtype->dump();
1028       }
1029       do { tty->print("\t"); } while (tty->position() < 16);
1030       nn->dump();
1031     }
1032     if (Verbose && wlsize < _worklist.size()) {
1033       tty->print("  Push {");
1034       while (wlsize != _worklist.size()) {
1035         Node* pushed = _worklist.at(wlsize++);
1036         tty->print(" %d", pushed->_idx);
1037       }
1038       tty->print_cr(" }");
1039     }
1040     if (nn != n) {
1041       // ignore n, it might be subsumed
1042       verify_step((Node*) NULL);
1043     }
1044   }
1045 }
1046 
1047 void PhaseIterGVN::init_verifyPhaseIterGVN() {
1048   _verify_counter = 0;
1049   _verify_full_passes = 0;
1050   for (int i = 0; i < _verify_window_size; i++) {
1051     _verify_window[i] = NULL;
1052   }
1053 #ifdef ASSERT
1054   // Verify that all modified nodes are on _worklist
1055   Unique_Node_List* modified_list = C->modified_nodes();
1056   while (modified_list != NULL && modified_list->size()) {
1057     Node* n = modified_list->pop();
1058     if (n->outcnt() != 0 && !n->is_Con() && !_worklist.member(n)) {
1059       n->dump();
1060       assert(false, "modified node is not on IGVN._worklist");
1061     }
1062   }
1063 #endif
1064 }
1065 
1066 void PhaseIterGVN::verify_PhaseIterGVN() {
1067 #ifdef ASSERT
1068   // Verify nodes with changed inputs.
1069   Unique_Node_List* modified_list = C->modified_nodes();
1070   while (modified_list != NULL && modified_list->size()) {
1071     Node* n = modified_list->pop();
1072     if (n->outcnt() != 0 && !n->is_Con()) { // skip dead and Con nodes
1073       n->dump();
1074       assert(false, "modified node was not processed by IGVN.transform_old()");
1075     }
1076   }
1077 #endif
1078 
1079   C->verify_graph_edges();
1080   if( VerifyOpto && allow_progress() ) {
1081     // Must turn off allow_progress to enable assert and break recursion
1082     C->root()->verify();
1083     { // Check if any progress was missed using IterGVN
1084       // Def-Use info enables transformations not attempted in wash-pass
1085       // e.g. Region/Phi cleanup, ...
1086       // Null-check elision -- may not have reached fixpoint
1087       //                       do not propagate to dominated nodes
1088       ResourceMark rm;
1089       PhaseIterGVN igvn2(this,"Verify"); // Fresh and clean!
1090       // Fill worklist completely
1091       igvn2.init_worklist(C->root());
1092 
1093       igvn2.set_allow_progress(false);
1094       igvn2.optimize();
1095       igvn2.set_allow_progress(true);
1096     }
1097   }
1098   if (VerifyIterativeGVN && PrintOpto) {
1099     if (_verify_counter == _verify_full_passes) {
1100       tty->print_cr("VerifyIterativeGVN: %d transforms and verify passes",
1101                     (int) _verify_full_passes);
1102     } else {
1103       tty->print_cr("VerifyIterativeGVN: %d transforms, %d full verify passes",
1104                   (int) _verify_counter, (int) _verify_full_passes);
1105     }
1106   }
1107 
1108 #ifdef ASSERT
1109   while (modified_list->size()) {
1110     Node* n = modified_list->pop();
1111     n->dump();
1112     assert(false, "VerifyIterativeGVN: new modified node was added");
1113   }
1114 #endif
1115 }
1116 #endif /* PRODUCT */
1117 
1118 #ifdef ASSERT
1119 /**
1120  * Dumps information that can help to debug the problem. A debug
1121  * build fails with an assert.
1122  */
1123 void PhaseIterGVN::dump_infinite_loop_info(Node* n) {
1124   n->dump(4);
1125   _worklist.dump();
1126   assert(false, "infinite loop in PhaseIterGVN::optimize");
1127 }
1128 
1129 /**
1130  * Prints out information about IGVN if the 'verbose' option is used.
1131  */
1132 void PhaseIterGVN::trace_PhaseIterGVN_verbose(Node* n, int num_processed) {
1133   if (TraceIterativeGVN && Verbose) {
1134     tty->print("  Pop ");
1135     n->dump();
1136     if ((num_processed % 100) == 0) {
1137       _worklist.print_set();
1138     }
1139   }
1140 }
1141 #endif /* ASSERT */
1142 
1143 void PhaseIterGVN::optimize() {
1144   DEBUG_ONLY(uint num_processed  = 0;)
1145   NOT_PRODUCT(init_verifyPhaseIterGVN();)
1146 
1147   uint loop_count = 0;
1148   // Pull from worklist and transform the node. If the node has changed,
1149   // update edge info and put uses on worklist.
1150   while(_worklist.size()) {
1151     if (C->check_node_count(NodeLimitFudgeFactor * 2, "Out of nodes")) {
1152       return;
1153     }
1154     Node* n  = _worklist.pop();
1155     if (++loop_count >= K * C->live_nodes()) {
1156       DEBUG_ONLY(dump_infinite_loop_info(n);)
1157       C->record_method_not_compilable("infinite loop in PhaseIterGVN::optimize");
1158       return;
1159     }
1160     DEBUG_ONLY(trace_PhaseIterGVN_verbose(n, num_processed++);)
1161     if (n->outcnt() != 0) {
1162       NOT_PRODUCT(const Type* oldtype = type_or_null(n));
1163       // Do the transformation
1164       Node* nn = transform_old(n);
1165       NOT_PRODUCT(trace_PhaseIterGVN(n, nn, oldtype);)
1166     } else if (!n->is_top()) {
1167       remove_dead_node(n);
1168     }
1169   }
1170   NOT_PRODUCT(verify_PhaseIterGVN();)
1171 }
1172 
1173 
1174 /**
1175  * Register a new node with the optimizer.  Update the types array, the def-use
1176  * info.  Put on worklist.
1177  */
1178 Node* PhaseIterGVN::register_new_node_with_optimizer(Node* n, Node* orig) {
1179   set_type_bottom(n);
1180   _worklist.push(n);
1181   if (orig != NULL)  C->copy_node_notes_to(n, orig);
1182   return n;
1183 }
1184 
1185 //------------------------------transform--------------------------------------
1186 // Non-recursive: idealize Node 'n' with respect to its inputs and its value
1187 Node *PhaseIterGVN::transform( Node *n ) {
1188   if (_delay_transform) {
1189     // Register the node but don't optimize for now
1190     register_new_node_with_optimizer(n);
1191     return n;
1192   }
1193 
1194   // If brand new node, make space in type array, and give it a type.
1195   ensure_type_or_null(n);
1196   if (type_or_null(n) == NULL) {
1197     set_type_bottom(n);
1198   }
1199 
1200   return transform_old(n);
1201 }
1202 
1203 Node *PhaseIterGVN::transform_old(Node* n) {
1204   DEBUG_ONLY(uint loop_count = 0;);
1205   NOT_PRODUCT(set_transforms());
1206 
1207   // Remove 'n' from hash table in case it gets modified
1208   _table.hash_delete(n);
1209   if (VerifyIterativeGVN) {
1210    assert(!_table.find_index(n->_idx), "found duplicate entry in table");
1211   }
1212 
1213   // Apply the Ideal call in a loop until it no longer applies
1214   Node* k = n;
1215   DEBUG_ONLY(dead_loop_check(k);)
1216   DEBUG_ONLY(bool is_new = (k->outcnt() == 0);)
1217   C->remove_modified_node(k);
1218   Node* i = apply_ideal(k, /*can_reshape=*/true);
1219   assert(i != k || is_new || i->outcnt() > 0, "don't return dead nodes");
1220 #ifndef PRODUCT
1221   verify_step(k);
1222   if (i && VerifyOpto ) {
1223     if (!allow_progress()) {
1224       if (i->is_Add() && (i->outcnt() == 1)) {
1225         // Switched input to left side because this is the only use
1226       } else if (i->is_If() && (i->in(0) == NULL)) {
1227         // This IF is dead because it is dominated by an equivalent IF When
1228         // dominating if changed, info is not propagated sparsely to 'this'
1229         // Propagating this info further will spuriously identify other
1230         // progress.
1231         return i;
1232       } else
1233         set_progress();
1234     } else {
1235       set_progress();
1236     }
1237   }
1238 #endif
1239 
1240   while (i != NULL) {
1241 #ifdef ASSERT
1242     if (loop_count >= K) {
1243       dump_infinite_loop_info(i);
1244     }
1245     loop_count++;
1246 #endif
1247     assert((i->_idx >= k->_idx) || i->is_top(), "Idealize should return new nodes, use Identity to return old nodes");
1248     // Made a change; put users of original Node on worklist
1249     add_users_to_worklist(k);
1250     // Replacing root of transform tree?
1251     if (k != i) {
1252       // Make users of old Node now use new.
1253       subsume_node(k, i);
1254       k = i;
1255     }
1256     DEBUG_ONLY(dead_loop_check(k);)
1257     // Try idealizing again
1258     DEBUG_ONLY(is_new = (k->outcnt() == 0);)
1259     C->remove_modified_node(k);
1260     i = apply_ideal(k, /*can_reshape=*/true);
1261     assert(i != k || is_new || (i->outcnt() > 0), "don't return dead nodes");
1262 #ifndef PRODUCT
1263     verify_step(k);
1264     if (i && VerifyOpto) {
1265       set_progress();
1266     }
1267 #endif
1268   }
1269 
1270   // If brand new node, make space in type array.
1271   ensure_type_or_null(k);
1272 
1273   // See what kind of values 'k' takes on at runtime
1274   const Type* t = k->Value(this);
1275   assert(t != NULL, "value sanity");
1276 
1277   // Since I just called 'Value' to compute the set of run-time values
1278   // for this Node, and 'Value' is non-local (and therefore expensive) I'll
1279   // cache Value.  Later requests for the local phase->type of this Node can
1280   // use the cached Value instead of suffering with 'bottom_type'.
1281   if (type_or_null(k) != t) {
1282 #ifndef PRODUCT
1283     inc_new_values();
1284     set_progress();
1285 #endif
1286     set_type(k, t);
1287     // If k is a TypeNode, capture any more-precise type permanently into Node
1288     k->raise_bottom_type(t);
1289     // Move users of node to worklist
1290     add_users_to_worklist(k);
1291   }
1292   // If 'k' computes a constant, replace it with a constant
1293   if (t->singleton() && !k->is_Con()) {
1294     NOT_PRODUCT(set_progress();)
1295     Node* con = makecon(t);     // Make a constant
1296     add_users_to_worklist(k);
1297     subsume_node(k, con);       // Everybody using k now uses con
1298     return con;
1299   }
1300 
1301   // Now check for Identities
1302   i = apply_identity(k);      // Look for a nearby replacement
1303   if (i != k) {                // Found? Return replacement!
1304     NOT_PRODUCT(set_progress();)
1305     add_users_to_worklist(k);
1306     subsume_node(k, i);       // Everybody using k now uses i
1307     return i;
1308   }
1309 
1310   // Global Value Numbering
1311   i = hash_find_insert(k);      // Check for pre-existing node
1312   if (i && (i != k)) {
1313     // Return the pre-existing node if it isn't dead
1314     NOT_PRODUCT(set_progress();)
1315     add_users_to_worklist(k);
1316     subsume_node(k, i);       // Everybody using k now uses i
1317     return i;
1318   }
1319 
1320   // Return Idealized original
1321   return k;
1322 }
1323 
1324 //---------------------------------saturate------------------------------------
1325 const Type* PhaseIterGVN::saturate(const Type* new_type, const Type* old_type,
1326                                    const Type* limit_type) const {
1327   return new_type->narrow(old_type);
1328 }
1329 
1330 //------------------------------remove_globally_dead_node----------------------
1331 // Kill a globally dead Node.  All uses are also globally dead and are
1332 // aggressively trimmed.
1333 void PhaseIterGVN::remove_globally_dead_node( Node *dead ) {
1334   enum DeleteProgress {
1335     PROCESS_INPUTS,
1336     PROCESS_OUTPUTS
1337   };
1338   assert(_stack.is_empty(), "not empty");
1339   _stack.push(dead, PROCESS_INPUTS);
1340 
1341   while (_stack.is_nonempty()) {
1342     dead = _stack.node();
1343     if (dead->Opcode() == Op_SafePoint) {
1344       dead->as_SafePoint()->disconnect_from_root(this);
1345     }
1346     uint progress_state = _stack.index();
1347     assert(dead != C->root(), "killing root, eh?");
1348     assert(!dead->is_top(), "add check for top when pushing");
1349     NOT_PRODUCT( set_progress(); )
1350     if (progress_state == PROCESS_INPUTS) {
1351       // After following inputs, continue to outputs
1352       _stack.set_index(PROCESS_OUTPUTS);
1353       if (!dead->is_Con()) { // Don't kill cons but uses
1354         bool recurse = false;
1355         // Remove from hash table
1356         _table.hash_delete( dead );
1357         // Smash all inputs to 'dead', isolating him completely
1358         for (uint i = 0; i < dead->req(); i++) {
1359           Node *in = dead->in(i);
1360           if (in != NULL && in != C->top()) {  // Points to something?
1361             int nrep = dead->replace_edge(in, NULL);  // Kill edges
1362             assert((nrep > 0), "sanity");
1363             if (in->outcnt() == 0) { // Made input go dead?
1364               _stack.push(in, PROCESS_INPUTS); // Recursively remove
1365               recurse = true;
1366             } else if (in->outcnt() == 1 &&
1367                        in->has_special_unique_user()) {
1368               _worklist.push(in->unique_out());
1369             } else if (in->outcnt() <= 2 && dead->is_Phi()) {
1370               if (in->Opcode() == Op_Region) {
1371                 _worklist.push(in);
1372               } else if (in->is_Store()) {
1373                 DUIterator_Fast imax, i = in->fast_outs(imax);
1374                 _worklist.push(in->fast_out(i));
1375                 i++;
1376                 if (in->outcnt() == 2) {
1377                   _worklist.push(in->fast_out(i));
1378                   i++;
1379                 }
1380                 assert(!(i < imax), "sanity");
1381               }
1382             } else {
1383               BarrierSet::barrier_set()->barrier_set_c2()->enqueue_useful_gc_barrier(this, in);
1384             }
1385             if (ReduceFieldZeroing && dead->is_Load() && i == MemNode::Memory &&
1386                 in->is_Proj() && in->in(0) != NULL && in->in(0)->is_Initialize()) {
1387               // A Load that directly follows an InitializeNode is
1388               // going away. The Stores that follow are candidates
1389               // again to be captured by the InitializeNode.
1390               for (DUIterator_Fast jmax, j = in->fast_outs(jmax); j < jmax; j++) {
1391                 Node *n = in->fast_out(j);
1392                 if (n->is_Store()) {
1393                   _worklist.push(n);
1394                 }
1395               }
1396             }
1397           } // if (in != NULL && in != C->top())
1398         } // for (uint i = 0; i < dead->req(); i++)
1399         if (recurse) {
1400           continue;
1401         }
1402       } // if (!dead->is_Con())
1403     } // if (progress_state == PROCESS_INPUTS)
1404 
1405     // Aggressively kill globally dead uses
1406     // (Rather than pushing all the outs at once, we push one at a time,
1407     // plus the parent to resume later, because of the indefinite number
1408     // of edge deletions per loop trip.)
1409     if (dead->outcnt() > 0) {
1410       // Recursively remove output edges
1411       _stack.push(dead->raw_out(0), PROCESS_INPUTS);
1412     } else {
1413       // Finished disconnecting all input and output edges.
1414       _stack.pop();
1415       // Remove dead node from iterative worklist
1416       _worklist.remove(dead);
1417       C->remove_modified_node(dead);
1418       // Constant node that has no out-edges and has only one in-edge from
1419       // root is usually dead. However, sometimes reshaping walk makes
1420       // it reachable by adding use edges. So, we will NOT count Con nodes
1421       // as dead to be conservative about the dead node count at any
1422       // given time.
1423       if (!dead->is_Con()) {
1424         C->record_dead_node(dead->_idx);
1425       }
1426       if (dead->is_macro()) {
1427         C->remove_macro_node(dead);
1428       }
1429       if (dead->is_expensive()) {
1430         C->remove_expensive_node(dead);
1431       }
1432       CastIINode* cast = dead->isa_CastII();
1433       if (cast != NULL && cast->has_range_check()) {
1434         C->remove_range_check_cast(cast);
1435       }
1436       if (dead->Opcode() == Op_Opaque4) {
1437         C->remove_opaque4_node(dead);
1438       }
1439       BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
1440       bs->unregister_potential_barrier_node(dead);
1441     }
1442   } // while (_stack.is_nonempty())
1443 }
1444 
1445 //------------------------------subsume_node-----------------------------------
1446 // Remove users from node 'old' and add them to node 'nn'.
1447 void PhaseIterGVN::subsume_node( Node *old, Node *nn ) {
1448   if (old->Opcode() == Op_SafePoint) {
1449     old->as_SafePoint()->disconnect_from_root(this);
1450   }
1451   assert( old != hash_find(old), "should already been removed" );
1452   assert( old != C->top(), "cannot subsume top node");
1453   // Copy debug or profile information to the new version:
1454   C->copy_node_notes_to(nn, old);
1455   // Move users of node 'old' to node 'nn'
1456   for (DUIterator_Last imin, i = old->last_outs(imin); i >= imin; ) {
1457     Node* use = old->last_out(i);  // for each use...
1458     // use might need re-hashing (but it won't if it's a new node)
1459     rehash_node_delayed(use);
1460     // Update use-def info as well
1461     // We remove all occurrences of old within use->in,
1462     // so as to avoid rehashing any node more than once.
1463     // The hash table probe swamps any outer loop overhead.
1464     uint num_edges = 0;
1465     for (uint jmax = use->len(), j = 0; j < jmax; j++) {
1466       if (use->in(j) == old) {
1467         use->set_req(j, nn);
1468         ++num_edges;
1469       }
1470     }
1471     i -= num_edges;    // we deleted 1 or more copies of this edge
1472   }
1473 
1474   // Search for instance field data PhiNodes in the same region pointing to the old
1475   // memory PhiNode and update their instance memory ids to point to the new node.
1476   if (old->is_Phi() && old->as_Phi()->type()->has_memory() && old->in(0) != NULL) {
1477     Node* region = old->in(0);
1478     for (DUIterator_Fast imax, i = region->fast_outs(imax); i < imax; i++) {
1479       PhiNode* phi = region->fast_out(i)->isa_Phi();
1480       if (phi != NULL && phi->inst_mem_id() == (int)old->_idx) {
1481         phi->set_inst_mem_id((int)nn->_idx);
1482       }
1483     }
1484   }
1485 
1486   // Smash all inputs to 'old', isolating him completely
1487   Node *temp = new Node(1);
1488   temp->init_req(0,nn);     // Add a use to nn to prevent him from dying
1489   remove_dead_node( old );
1490   temp->del_req(0);         // Yank bogus edge
1491 #ifndef PRODUCT
1492   if( VerifyIterativeGVN ) {
1493     for ( int i = 0; i < _verify_window_size; i++ ) {
1494       if ( _verify_window[i] == old )
1495         _verify_window[i] = nn;
1496     }
1497   }
1498 #endif
1499   _worklist.remove(temp);   // this can be necessary
1500   temp->destruct();         // reuse the _idx of this little guy
1501 }
1502 
1503 //------------------------------add_users_to_worklist--------------------------
1504 void PhaseIterGVN::add_users_to_worklist0( Node *n ) {
1505   for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
1506     _worklist.push(n->fast_out(i));  // Push on worklist
1507   }
1508 }
1509 
1510 // Return counted loop Phi if as a counted loop exit condition, cmp
1511 // compares the the induction variable with n
1512 static PhiNode* countedloop_phi_from_cmp(CmpINode* cmp, Node* n) {
1513   for (DUIterator_Fast imax, i = cmp->fast_outs(imax); i < imax; i++) {
1514     Node* bol = cmp->fast_out(i);
1515     for (DUIterator_Fast i2max, i2 = bol->fast_outs(i2max); i2 < i2max; i2++) {
1516       Node* iff = bol->fast_out(i2);
1517       if (iff->is_CountedLoopEnd()) {
1518         CountedLoopEndNode* cle = iff->as_CountedLoopEnd();
1519         if (cle->limit() == n) {
1520           PhiNode* phi = cle->phi();
1521           if (phi != NULL) {
1522             return phi;
1523           }
1524         }
1525       }
1526     }
1527   }
1528   return NULL;
1529 }
1530 
1531 void PhaseIterGVN::add_users_to_worklist( Node *n ) {
1532   add_users_to_worklist0(n);
1533 
1534   // Move users of node to worklist
1535   for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
1536     Node* use = n->fast_out(i); // Get use
1537 
1538     if( use->is_Multi() ||      // Multi-definer?  Push projs on worklist
1539         use->is_Store() )       // Enable store/load same address
1540       add_users_to_worklist0(use);
1541 
1542     // If we changed the receiver type to a call, we need to revisit
1543     // the Catch following the call.  It's looking for a non-NULL
1544     // receiver to know when to enable the regular fall-through path
1545     // in addition to the NullPtrException path.
1546     if (use->is_CallDynamicJava() && n == use->in(TypeFunc::Parms)) {
1547       Node* p = use->as_CallDynamicJava()->proj_out_or_null(TypeFunc::Control);
1548       if (p != NULL) {
1549         add_users_to_worklist0(p);
1550       }
1551     }
1552 
1553     uint use_op = use->Opcode();
1554     if(use->is_Cmp()) {       // Enable CMP/BOOL optimization
1555       add_users_to_worklist(use); // Put Bool on worklist
1556       if (use->outcnt() > 0) {
1557         Node* bol = use->raw_out(0);
1558         if (bol->outcnt() > 0) {
1559           Node* iff = bol->raw_out(0);
1560           if (iff->outcnt() == 2) {
1561             // Look for the 'is_x2logic' pattern: "x ? : 0 : 1" and put the
1562             // phi merging either 0 or 1 onto the worklist
1563             Node* ifproj0 = iff->raw_out(0);
1564             Node* ifproj1 = iff->raw_out(1);
1565             if (ifproj0->outcnt() > 0 && ifproj1->outcnt() > 0) {
1566               Node* region0 = ifproj0->raw_out(0);
1567               Node* region1 = ifproj1->raw_out(0);
1568               if( region0 == region1 )
1569                 add_users_to_worklist0(region0);
1570             }
1571           }
1572         }
1573       }
1574       if (use_op == Op_CmpI) {
1575         Node* phi = countedloop_phi_from_cmp((CmpINode*)use, n);
1576         if (phi != NULL) {
1577           // If an opaque node feeds into the limit condition of a
1578           // CountedLoop, we need to process the Phi node for the
1579           // induction variable when the opaque node is removed:
1580           // the range of values taken by the Phi is now known and
1581           // so its type is also known.
1582           _worklist.push(phi);
1583         }
1584         Node* in1 = use->in(1);
1585         for (uint i = 0; i < in1->outcnt(); i++) {
1586           if (in1->raw_out(i)->Opcode() == Op_CastII) {
1587             Node* castii = in1->raw_out(i);
1588             if (castii->in(0) != NULL && castii->in(0)->in(0) != NULL && castii->in(0)->in(0)->is_If()) {
1589               Node* ifnode = castii->in(0)->in(0);
1590               if (ifnode->in(1) != NULL && ifnode->in(1)->is_Bool() && ifnode->in(1)->in(1) == use) {
1591                 // Reprocess a CastII node that may depend on an
1592                 // opaque node value when the opaque node is
1593                 // removed. In case it carries a dependency we can do
1594                 // a better job of computing its type.
1595                 _worklist.push(castii);
1596               }
1597             }
1598           }
1599         }
1600       }
1601     }
1602 
1603     // If changed Cast input, check Phi users for simple cycles
1604     if (use->is_ConstraintCast()) {
1605       for (DUIterator_Fast i2max, i2 = use->fast_outs(i2max); i2 < i2max; i2++) {
1606         Node* u = use->fast_out(i2);
1607         if (u->is_Phi())
1608           _worklist.push(u);
1609       }
1610     }
1611     // If changed LShift inputs, check RShift users for useless sign-ext
1612     if( use_op == Op_LShiftI ) {
1613       for (DUIterator_Fast i2max, i2 = use->fast_outs(i2max); i2 < i2max; i2++) {
1614         Node* u = use->fast_out(i2);
1615         if (u->Opcode() == Op_RShiftI)
1616           _worklist.push(u);
1617       }
1618     }
1619     // If changed AddI/SubI inputs, check CmpU for range check optimization.
1620     if (use_op == Op_AddI || use_op == Op_SubI) {
1621       for (DUIterator_Fast i2max, i2 = use->fast_outs(i2max); i2 < i2max; i2++) {
1622         Node* u = use->fast_out(i2);
1623         if (u->is_Cmp() && (u->Opcode() == Op_CmpU)) {
1624           _worklist.push(u);
1625         }
1626       }
1627     }
1628     // If changed AddP inputs, check Stores for loop invariant
1629     if( use_op == Op_AddP ) {
1630       for (DUIterator_Fast i2max, i2 = use->fast_outs(i2max); i2 < i2max; i2++) {
1631         Node* u = use->fast_out(i2);
1632         if (u->is_Mem())
1633           _worklist.push(u);
1634       }
1635     }
1636     // If changed initialization activity, check dependent Stores
1637     if (use_op == Op_Allocate || use_op == Op_AllocateArray) {
1638       InitializeNode* init = use->as_Allocate()->initialization();
1639       if (init != NULL) {
1640         Node* imem = init->proj_out_or_null(TypeFunc::Memory);
1641         if (imem != NULL)  add_users_to_worklist0(imem);
1642       }
1643     }
1644     if (use_op == Op_Initialize) {
1645       Node* imem = use->as_Initialize()->proj_out_or_null(TypeFunc::Memory);
1646       if (imem != NULL)  add_users_to_worklist0(imem);
1647     }
1648     // Loading the java mirror from a Klass requires two loads and the type
1649     // of the mirror load depends on the type of 'n'. See LoadNode::Value().
1650     //   LoadBarrier?(LoadP(LoadP(AddP(foo:Klass, #java_mirror))))
1651     BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
1652     bool has_load_barriers = bs->has_load_barriers();
1653 
1654     if (use_op == Op_LoadP && use->bottom_type()->isa_rawptr()) {
1655       for (DUIterator_Fast i2max, i2 = use->fast_outs(i2max); i2 < i2max; i2++) {
1656         Node* u = use->fast_out(i2);
1657         const Type* ut = u->bottom_type();
1658         if (u->Opcode() == Op_LoadP && ut->isa_instptr()) {
1659           if (has_load_barriers) {
1660             // Search for load barriers behind the load
1661             for (DUIterator_Fast i3max, i3 = u->fast_outs(i3max); i3 < i3max; i3++) {
1662               Node* b = u->fast_out(i3);
1663               if (bs->is_gc_barrier_node(b)) {
1664                 _worklist.push(b);
1665               }
1666             }
1667           }
1668           _worklist.push(u);
1669         }
1670       }
1671     }
1672 
1673     BarrierSet::barrier_set()->barrier_set_c2()->igvn_add_users_to_worklist(this, use);
1674   }
1675 }
1676 
1677 /**
1678  * Remove the speculative part of all types that we know of
1679  */
1680 void PhaseIterGVN::remove_speculative_types()  {
1681   assert(UseTypeSpeculation, "speculation is off");
1682   for (uint i = 0; i < _types.Size(); i++)  {
1683     const Type* t = _types.fast_lookup(i);
1684     if (t != NULL) {
1685       _types.map(i, t->remove_speculative());
1686     }
1687   }
1688   _table.check_no_speculative_types();
1689 }
1690 
1691 //=============================================================================
1692 #ifndef PRODUCT
1693 uint PhaseCCP::_total_invokes   = 0;
1694 uint PhaseCCP::_total_constants = 0;
1695 #endif
1696 //------------------------------PhaseCCP---------------------------------------
1697 // Conditional Constant Propagation, ala Wegman & Zadeck
1698 PhaseCCP::PhaseCCP( PhaseIterGVN *igvn ) : PhaseIterGVN(igvn) {
1699   NOT_PRODUCT( clear_constants(); )
1700   assert( _worklist.size() == 0, "" );
1701   // Clear out _nodes from IterGVN.  Must be clear to transform call.
1702   _nodes.clear();               // Clear out from IterGVN
1703   analyze();
1704 }
1705 
1706 #ifndef PRODUCT
1707 //------------------------------~PhaseCCP--------------------------------------
1708 PhaseCCP::~PhaseCCP() {
1709   inc_invokes();
1710   _total_constants += count_constants();
1711 }
1712 #endif
1713 
1714 
1715 #ifdef ASSERT
1716 static bool ccp_type_widens(const Type* t, const Type* t0) {
1717   assert(t->meet(t0) == t, "Not monotonic");
1718   switch (t->base() == t0->base() ? t->base() : Type::Top) {
1719   case Type::Int:
1720     assert(t0->isa_int()->_widen <= t->isa_int()->_widen, "widen increases");
1721     break;
1722   case Type::Long:
1723     assert(t0->isa_long()->_widen <= t->isa_long()->_widen, "widen increases");
1724     break;
1725   default:
1726     break;
1727   }
1728   return true;
1729 }
1730 #endif //ASSERT
1731 
1732 //------------------------------analyze----------------------------------------
1733 void PhaseCCP::analyze() {
1734   // Initialize all types to TOP, optimistic analysis
1735   for (int i = C->unique() - 1; i >= 0; i--)  {
1736     _types.map(i,Type::TOP);
1737   }
1738 
1739   // Push root onto worklist
1740   Unique_Node_List worklist;
1741   worklist.push(C->root());
1742 
1743   // Pull from worklist; compute new value; push changes out.
1744   // This loop is the meat of CCP.
1745   while( worklist.size() ) {
1746     Node *n = worklist.pop();
1747     const Type *t = n->Value(this);
1748     if (t != type(n)) {
1749       assert(ccp_type_widens(t, type(n)), "ccp type must widen");
1750 #ifndef PRODUCT
1751       if( TracePhaseCCP ) {
1752         t->dump();
1753         do { tty->print("\t"); } while (tty->position() < 16);
1754         n->dump();
1755       }
1756 #endif
1757       set_type(n, t);
1758       for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
1759         Node* m = n->fast_out(i);   // Get user
1760         if (m->is_Region()) {  // New path to Region?  Must recheck Phis too
1761           for (DUIterator_Fast i2max, i2 = m->fast_outs(i2max); i2 < i2max; i2++) {
1762             Node* p = m->fast_out(i2); // Propagate changes to uses
1763             if (p->bottom_type() != type(p)) { // If not already bottomed out
1764               worklist.push(p); // Propagate change to user
1765             }
1766           }
1767         }
1768         // If we changed the receiver type to a call, we need to revisit
1769         // the Catch following the call.  It's looking for a non-NULL
1770         // receiver to know when to enable the regular fall-through path
1771         // in addition to the NullPtrException path
1772         if (m->is_Call()) {
1773           for (DUIterator_Fast i2max, i2 = m->fast_outs(i2max); i2 < i2max; i2++) {
1774             Node* p = m->fast_out(i2);  // Propagate changes to uses
1775             if (p->is_Proj() && p->as_Proj()->_con == TypeFunc::Control && p->outcnt() == 1) {
1776               worklist.push(p->unique_out());
1777             }
1778           }
1779         }
1780         if (m->bottom_type() != type(m)) { // If not already bottomed out
1781           worklist.push(m);     // Propagate change to user
1782         }
1783 
1784         // CmpU nodes can get their type information from two nodes up in the
1785         // graph (instead of from the nodes immediately above). Make sure they
1786         // are added to the worklist if nodes they depend on are updated, since
1787         // they could be missed and get wrong types otherwise.
1788         uint m_op = m->Opcode();
1789         if (m_op == Op_AddI || m_op == Op_SubI) {
1790           for (DUIterator_Fast i2max, i2 = m->fast_outs(i2max); i2 < i2max; i2++) {
1791             Node* p = m->fast_out(i2); // Propagate changes to uses
1792             if (p->Opcode() == Op_CmpU) {
1793               // Got a CmpU which might need the new type information from node n.
1794               if(p->bottom_type() != type(p)) { // If not already bottomed out
1795                 worklist.push(p); // Propagate change to user
1796               }
1797             }
1798           }
1799         }
1800         // If n is used in a counted loop exit condition then the type
1801         // of the counted loop's Phi depends on the type of n. See
1802         // PhiNode::Value().
1803         if (m_op == Op_CmpI) {
1804           PhiNode* phi = countedloop_phi_from_cmp((CmpINode*)m, n);
1805           if (phi != NULL) {
1806             worklist.push(phi);
1807           }
1808         }
1809         // Loading the java mirror from a Klass requires two loads and the type
1810         // of the mirror load depends on the type of 'n'. See LoadNode::Value().
1811         BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
1812         bool has_load_barriers = bs->has_load_barriers();
1813 
1814         if (m_op == Op_LoadP && m->bottom_type()->isa_rawptr()) {
1815           for (DUIterator_Fast i2max, i2 = m->fast_outs(i2max); i2 < i2max; i2++) {
1816             Node* u = m->fast_out(i2);
1817             const Type* ut = u->bottom_type();
1818             if (u->Opcode() == Op_LoadP && ut->isa_instptr() && ut != type(u)) {
1819               if (has_load_barriers) {
1820                 // Search for load barriers behind the load
1821                 for (DUIterator_Fast i3max, i3 = u->fast_outs(i3max); i3 < i3max; i3++) {
1822                   Node* b = u->fast_out(i3);
1823                   if (bs->is_gc_barrier_node(b)) {
1824                     worklist.push(b);
1825                   }
1826                 }
1827               }
1828               worklist.push(u);
1829             }
1830           }
1831         }
1832 
1833         BarrierSet::barrier_set()->barrier_set_c2()->ccp_analyze(this, worklist, m);
1834       }
1835     }
1836   }
1837 }
1838 
1839 //------------------------------do_transform-----------------------------------
1840 // Top level driver for the recursive transformer
1841 void PhaseCCP::do_transform() {
1842   // Correct leaves of new-space Nodes; they point to old-space.
1843   C->set_root( transform(C->root())->as_Root() );
1844   assert( C->top(),  "missing TOP node" );
1845   assert( C->root(), "missing root" );
1846 }
1847 
1848 //------------------------------transform--------------------------------------
1849 // Given a Node in old-space, clone him into new-space.
1850 // Convert any of his old-space children into new-space children.
1851 Node *PhaseCCP::transform( Node *n ) {
1852   Node *new_node = _nodes[n->_idx]; // Check for transformed node
1853   if( new_node != NULL )
1854     return new_node;                // Been there, done that, return old answer
1855   new_node = transform_once(n);     // Check for constant
1856   _nodes.map( n->_idx, new_node );  // Flag as having been cloned
1857 
1858   // Allocate stack of size _nodes.Size()/2 to avoid frequent realloc
1859   GrowableArray <Node *> trstack(C->live_nodes() >> 1);
1860 
1861   trstack.push(new_node);           // Process children of cloned node
1862   while ( trstack.is_nonempty() ) {
1863     Node *clone = trstack.pop();
1864     uint cnt = clone->req();
1865     for( uint i = 0; i < cnt; i++ ) {          // For all inputs do
1866       Node *input = clone->in(i);
1867       if( input != NULL ) {                    // Ignore NULLs
1868         Node *new_input = _nodes[input->_idx]; // Check for cloned input node
1869         if( new_input == NULL ) {
1870           new_input = transform_once(input);   // Check for constant
1871           _nodes.map( input->_idx, new_input );// Flag as having been cloned
1872           trstack.push(new_input);
1873         }
1874         assert( new_input == clone->in(i), "insanity check");
1875       }
1876     }
1877   }
1878   return new_node;
1879 }
1880 
1881 
1882 //------------------------------transform_once---------------------------------
1883 // For PhaseCCP, transformation is IDENTITY unless Node computed a constant.
1884 Node *PhaseCCP::transform_once( Node *n ) {
1885   const Type *t = type(n);
1886   // Constant?  Use constant Node instead
1887   if( t->singleton() ) {
1888     Node *nn = n;               // Default is to return the original constant
1889     if( t == Type::TOP ) {
1890       // cache my top node on the Compile instance
1891       if( C->cached_top_node() == NULL || C->cached_top_node()->in(0) == NULL ) {
1892         C->set_cached_top_node(ConNode::make(Type::TOP));
1893         set_type(C->top(), Type::TOP);
1894       }
1895       nn = C->top();
1896     }
1897     if( !n->is_Con() ) {
1898       if( t != Type::TOP ) {
1899         nn = makecon(t);        // ConNode::make(t);
1900         NOT_PRODUCT( inc_constants(); )
1901       } else if( n->is_Region() ) { // Unreachable region
1902         // Note: nn == C->top()
1903         n->set_req(0, NULL);        // Cut selfreference
1904         bool progress = true;
1905         uint max = n->outcnt();
1906         DUIterator i;
1907         while (progress) {
1908           progress = false;
1909           // Eagerly remove dead phis to avoid phis copies creation.
1910           for (i = n->outs(); n->has_out(i); i++) {
1911             Node* m = n->out(i);
1912             if (m->is_Phi()) {
1913               assert(type(m) == Type::TOP, "Unreachable region should not have live phis.");
1914               replace_node(m, nn);
1915               if (max != n->outcnt()) {
1916                 progress = true;
1917                 i = n->refresh_out_pos(i);
1918                 max = n->outcnt();
1919               }
1920             }
1921           }
1922         }
1923       }
1924       replace_node(n,nn);       // Update DefUse edges for new constant
1925     }
1926     return nn;
1927   }
1928 
1929   // If x is a TypeNode, capture any more-precise type permanently into Node
1930   if (t != n->bottom_type()) {
1931     hash_delete(n);             // changing bottom type may force a rehash
1932     n->raise_bottom_type(t);
1933     _worklist.push(n);          // n re-enters the hash table via the worklist
1934   }
1935 
1936   // TEMPORARY fix to ensure that 2nd GVN pass eliminates NULL checks
1937   switch( n->Opcode() ) {
1938   case Op_FastLock:      // Revisit FastLocks for lock coarsening
1939   case Op_If:
1940   case Op_CountedLoopEnd:
1941   case Op_Region:
1942   case Op_Loop:
1943   case Op_CountedLoop:
1944   case Op_Conv2B:
1945   case Op_Opaque1:
1946   case Op_Opaque2:
1947     _worklist.push(n);
1948     break;
1949   default:
1950     break;
1951   }
1952 
1953   return  n;
1954 }
1955 
1956 //---------------------------------saturate------------------------------------
1957 const Type* PhaseCCP::saturate(const Type* new_type, const Type* old_type,
1958                                const Type* limit_type) const {
1959   const Type* wide_type = new_type->widen(old_type, limit_type);
1960   if (wide_type != new_type) {          // did we widen?
1961     // If so, we may have widened beyond the limit type.  Clip it back down.
1962     new_type = wide_type->filter(limit_type);
1963   }
1964   return new_type;
1965 }
1966 
1967 //------------------------------print_statistics-------------------------------
1968 #ifndef PRODUCT
1969 void PhaseCCP::print_statistics() {
1970   tty->print_cr("CCP: %d  constants found: %d", _total_invokes, _total_constants);
1971 }
1972 #endif
1973 
1974 
1975 //=============================================================================
1976 #ifndef PRODUCT
1977 uint PhasePeephole::_total_peepholes = 0;
1978 #endif
1979 //------------------------------PhasePeephole----------------------------------
1980 // Conditional Constant Propagation, ala Wegman & Zadeck
1981 PhasePeephole::PhasePeephole( PhaseRegAlloc *regalloc, PhaseCFG &cfg )
1982   : PhaseTransform(Peephole), _regalloc(regalloc), _cfg(cfg) {
1983   NOT_PRODUCT( clear_peepholes(); )
1984 }
1985 
1986 #ifndef PRODUCT
1987 //------------------------------~PhasePeephole---------------------------------
1988 PhasePeephole::~PhasePeephole() {
1989   _total_peepholes += count_peepholes();
1990 }
1991 #endif
1992 
1993 //------------------------------transform--------------------------------------
1994 Node *PhasePeephole::transform( Node *n ) {
1995   ShouldNotCallThis();
1996   return NULL;
1997 }
1998 
1999 //------------------------------do_transform-----------------------------------
2000 void PhasePeephole::do_transform() {
2001   bool method_name_not_printed = true;
2002 
2003   // Examine each basic block
2004   for (uint block_number = 1; block_number < _cfg.number_of_blocks(); ++block_number) {
2005     Block* block = _cfg.get_block(block_number);
2006     bool block_not_printed = true;
2007 
2008     // and each instruction within a block
2009     uint end_index = block->number_of_nodes();
2010     // block->end_idx() not valid after PhaseRegAlloc
2011     for( uint instruction_index = 1; instruction_index < end_index; ++instruction_index ) {
2012       Node     *n = block->get_node(instruction_index);
2013       if( n->is_Mach() ) {
2014         MachNode *m = n->as_Mach();
2015         int deleted_count = 0;
2016         // check for peephole opportunities
2017         MachNode *m2 = m->peephole(block, instruction_index, _regalloc, deleted_count);
2018         if( m2 != NULL ) {
2019 #ifndef PRODUCT
2020           if( PrintOptoPeephole ) {
2021             // Print method, first time only
2022             if( C->method() && method_name_not_printed ) {
2023               C->method()->print_short_name(); tty->cr();
2024               method_name_not_printed = false;
2025             }
2026             // Print this block
2027             if( Verbose && block_not_printed) {
2028               tty->print_cr("in block");
2029               block->dump();
2030               block_not_printed = false;
2031             }
2032             // Print instructions being deleted
2033             for( int i = (deleted_count - 1); i >= 0; --i ) {
2034               block->get_node(instruction_index-i)->as_Mach()->format(_regalloc); tty->cr();
2035             }
2036             tty->print_cr("replaced with");
2037             // Print new instruction
2038             m2->format(_regalloc);
2039             tty->print("\n\n");
2040           }
2041 #endif
2042           // Remove old nodes from basic block and update instruction_index
2043           // (old nodes still exist and may have edges pointing to them
2044           //  as register allocation info is stored in the allocator using
2045           //  the node index to live range mappings.)
2046           uint safe_instruction_index = (instruction_index - deleted_count);
2047           for( ; (instruction_index > safe_instruction_index); --instruction_index ) {
2048             block->remove_node( instruction_index );
2049           }
2050           // install new node after safe_instruction_index
2051           block->insert_node(m2, safe_instruction_index + 1);
2052           end_index = block->number_of_nodes() - 1; // Recompute new block size
2053           NOT_PRODUCT( inc_peepholes(); )
2054         }
2055       }
2056     }
2057   }
2058 }
2059 
2060 //------------------------------print_statistics-------------------------------
2061 #ifndef PRODUCT
2062 void PhasePeephole::print_statistics() {
2063   tty->print_cr("Peephole: peephole rules applied: %d",  _total_peepholes);
2064 }
2065 #endif
2066 
2067 
2068 //=============================================================================
2069 //------------------------------set_req_X--------------------------------------
2070 void Node::set_req_X( uint i, Node *n, PhaseIterGVN *igvn ) {
2071   assert( is_not_dead(n), "can not use dead node");
2072   assert( igvn->hash_find(this) != this, "Need to remove from hash before changing edges" );
2073   Node *old = in(i);
2074   set_req(i, n);
2075 
2076   // old goes dead?
2077   if( old ) {
2078     switch (old->outcnt()) {
2079     case 0:
2080       // Put into the worklist to kill later. We do not kill it now because the
2081       // recursive kill will delete the current node (this) if dead-loop exists
2082       if (!old->is_top())
2083         igvn->_worklist.push( old );
2084       break;
2085     case 1:
2086       if( old->is_Store() || old->has_special_unique_user() )
2087         igvn->add_users_to_worklist( old );
2088       break;
2089     case 2:
2090       if( old->is_Store() )
2091         igvn->add_users_to_worklist( old );
2092       if( old->Opcode() == Op_Region )
2093         igvn->_worklist.push(old);
2094       break;
2095     case 3:
2096       if( old->Opcode() == Op_Region ) {
2097         igvn->_worklist.push(old);
2098         igvn->add_users_to_worklist( old );
2099       }
2100       break;
2101     default:
2102       break;
2103     }
2104 
2105     BarrierSet::barrier_set()->barrier_set_c2()->enqueue_useful_gc_barrier(igvn, old);
2106   }
2107 
2108 }
2109 
2110 //-------------------------------replace_by-----------------------------------
2111 // Using def-use info, replace one node for another.  Follow the def-use info
2112 // to all users of the OLD node.  Then make all uses point to the NEW node.
2113 void Node::replace_by(Node *new_node) {
2114   assert(!is_top(), "top node has no DU info");
2115   for (DUIterator_Last imin, i = last_outs(imin); i >= imin; ) {
2116     Node* use = last_out(i);
2117     uint uses_found = 0;
2118     for (uint j = 0; j < use->len(); j++) {
2119       if (use->in(j) == this) {
2120         if (j < use->req())
2121               use->set_req(j, new_node);
2122         else  use->set_prec(j, new_node);
2123         uses_found++;
2124       }
2125     }
2126     i -= uses_found;    // we deleted 1 or more copies of this edge
2127   }
2128 }
2129 
2130 //=============================================================================
2131 //-----------------------------------------------------------------------------
2132 void Type_Array::grow( uint i ) {
2133   if( !_max ) {
2134     _max = 1;
2135     _types = (const Type**)_a->Amalloc( _max * sizeof(Type*) );
2136     _types[0] = NULL;
2137   }
2138   uint old = _max;
2139   while( i >= _max ) _max <<= 1;        // Double to fit
2140   _types = (const Type**)_a->Arealloc( _types, old*sizeof(Type*),_max*sizeof(Type*));
2141   memset( &_types[old], 0, (_max-old)*sizeof(Type*) );
2142 }
2143 
2144 //------------------------------dump-------------------------------------------
2145 #ifndef PRODUCT
2146 void Type_Array::dump() const {
2147   uint max = Size();
2148   for( uint i = 0; i < max; i++ ) {
2149     if( _types[i] != NULL ) {
2150       tty->print("  %d\t== ", i); _types[i]->dump(); tty->cr();
2151     }
2152   }
2153 }
2154 #endif