1 /*
   2  * Copyright (c) 1997, 2019, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "asm/macroAssembler.hpp"
  27 #include "asm/macroAssembler.inline.hpp"
  28 #include "ci/ciReplay.hpp"
  29 #include "classfile/systemDictionary.hpp"
  30 #include "code/exceptionHandlerTable.hpp"
  31 #include "code/nmethod.hpp"
  32 #include "compiler/compileBroker.hpp"
  33 #include "compiler/compileLog.hpp"
  34 #include "compiler/disassembler.hpp"
  35 #include "compiler/oopMap.hpp"
  36 #include "gc/shared/barrierSet.hpp"
  37 #include "gc/shared/c2/barrierSetC2.hpp"
  38 #include "memory/resourceArea.hpp"
  39 #include "opto/addnode.hpp"
  40 #include "opto/block.hpp"
  41 #include "opto/c2compiler.hpp"
  42 #include "opto/callGenerator.hpp"
  43 #include "opto/callnode.hpp"
  44 #include "opto/castnode.hpp"
  45 #include "opto/cfgnode.hpp"
  46 #include "opto/chaitin.hpp"
  47 #include "opto/compile.hpp"
  48 #include "opto/connode.hpp"
  49 #include "opto/convertnode.hpp"
  50 #include "opto/divnode.hpp"
  51 #include "opto/escape.hpp"
  52 #include "opto/idealGraphPrinter.hpp"
  53 #include "opto/loopnode.hpp"
  54 #include "opto/machnode.hpp"
  55 #include "opto/macro.hpp"
  56 #include "opto/matcher.hpp"
  57 #include "opto/mathexactnode.hpp"
  58 #include "opto/memnode.hpp"
  59 #include "opto/mulnode.hpp"
  60 #include "opto/narrowptrnode.hpp"
  61 #include "opto/node.hpp"
  62 #include "opto/opcodes.hpp"
  63 #include "opto/output.hpp"
  64 #include "opto/parse.hpp"
  65 #include "opto/phaseX.hpp"
  66 #include "opto/rootnode.hpp"
  67 #include "opto/runtime.hpp"
  68 #include "opto/stringopts.hpp"
  69 #include "opto/type.hpp"
  70 #include "opto/valuetypenode.hpp"
  71 #include "opto/vectornode.hpp"
  72 #include "runtime/arguments.hpp"
  73 #include "runtime/sharedRuntime.hpp"
  74 #include "runtime/signature.hpp"
  75 #include "runtime/stubRoutines.hpp"
  76 #include "runtime/timer.hpp"
  77 #include "utilities/align.hpp"
  78 #include "utilities/copy.hpp"
  79 #include "utilities/macros.hpp"
  80 #if INCLUDE_ZGC
  81 #include "gc/z/c2/zBarrierSetC2.hpp"
  82 #endif
  83 
  84 
  85 // -------------------- Compile::mach_constant_base_node -----------------------
  86 // Constant table base node singleton.
  87 MachConstantBaseNode* Compile::mach_constant_base_node() {
  88   if (_mach_constant_base_node == NULL) {
  89     _mach_constant_base_node = new MachConstantBaseNode();
  90     _mach_constant_base_node->add_req(C->root());
  91   }
  92   return _mach_constant_base_node;
  93 }
  94 
  95 
  96 /// Support for intrinsics.
  97 
  98 // Return the index at which m must be inserted (or already exists).
  99 // The sort order is by the address of the ciMethod, with is_virtual as minor key.
 100 class IntrinsicDescPair {
 101  private:
 102   ciMethod* _m;
 103   bool _is_virtual;
 104  public:
 105   IntrinsicDescPair(ciMethod* m, bool is_virtual) : _m(m), _is_virtual(is_virtual) {}
 106   static int compare(IntrinsicDescPair* const& key, CallGenerator* const& elt) {
 107     ciMethod* m= elt->method();
 108     ciMethod* key_m = key->_m;
 109     if (key_m < m)      return -1;
 110     else if (key_m > m) return 1;
 111     else {
 112       bool is_virtual = elt->is_virtual();
 113       bool key_virtual = key->_is_virtual;
 114       if (key_virtual < is_virtual)      return -1;
 115       else if (key_virtual > is_virtual) return 1;
 116       else                               return 0;
 117     }
 118   }
 119 };
 120 int Compile::intrinsic_insertion_index(ciMethod* m, bool is_virtual, bool& found) {
 121 #ifdef ASSERT
 122   for (int i = 1; i < _intrinsics->length(); i++) {
 123     CallGenerator* cg1 = _intrinsics->at(i-1);
 124     CallGenerator* cg2 = _intrinsics->at(i);
 125     assert(cg1->method() != cg2->method()
 126            ? cg1->method()     < cg2->method()
 127            : cg1->is_virtual() < cg2->is_virtual(),
 128            "compiler intrinsics list must stay sorted");
 129   }
 130 #endif
 131   IntrinsicDescPair pair(m, is_virtual);
 132   return _intrinsics->find_sorted<IntrinsicDescPair*, IntrinsicDescPair::compare>(&pair, found);
 133 }
 134 
 135 void Compile::register_intrinsic(CallGenerator* cg) {
 136   if (_intrinsics == NULL) {
 137     _intrinsics = new (comp_arena())GrowableArray<CallGenerator*>(comp_arena(), 60, 0, NULL);
 138   }
 139   int len = _intrinsics->length();
 140   bool found = false;
 141   int index = intrinsic_insertion_index(cg->method(), cg->is_virtual(), found);
 142   assert(!found, "registering twice");
 143   _intrinsics->insert_before(index, cg);
 144   assert(find_intrinsic(cg->method(), cg->is_virtual()) == cg, "registration worked");
 145 }
 146 
 147 CallGenerator* Compile::find_intrinsic(ciMethod* m, bool is_virtual) {
 148   assert(m->is_loaded(), "don't try this on unloaded methods");
 149   if (_intrinsics != NULL) {
 150     bool found = false;
 151     int index = intrinsic_insertion_index(m, is_virtual, found);
 152      if (found) {
 153       return _intrinsics->at(index);
 154     }
 155   }
 156   // Lazily create intrinsics for intrinsic IDs well-known in the runtime.
 157   if (m->intrinsic_id() != vmIntrinsics::_none &&
 158       m->intrinsic_id() <= vmIntrinsics::LAST_COMPILER_INLINE) {
 159     CallGenerator* cg = make_vm_intrinsic(m, is_virtual);
 160     if (cg != NULL) {
 161       // Save it for next time:
 162       register_intrinsic(cg);
 163       return cg;
 164     } else {
 165       gather_intrinsic_statistics(m->intrinsic_id(), is_virtual, _intrinsic_disabled);
 166     }
 167   }
 168   return NULL;
 169 }
 170 
 171 // Compile:: register_library_intrinsics and make_vm_intrinsic are defined
 172 // in library_call.cpp.
 173 
 174 
 175 #ifndef PRODUCT
 176 // statistics gathering...
 177 
 178 juint  Compile::_intrinsic_hist_count[vmIntrinsics::ID_LIMIT] = {0};
 179 jubyte Compile::_intrinsic_hist_flags[vmIntrinsics::ID_LIMIT] = {0};
 180 
 181 bool Compile::gather_intrinsic_statistics(vmIntrinsics::ID id, bool is_virtual, int flags) {
 182   assert(id > vmIntrinsics::_none && id < vmIntrinsics::ID_LIMIT, "oob");
 183   int oflags = _intrinsic_hist_flags[id];
 184   assert(flags != 0, "what happened?");
 185   if (is_virtual) {
 186     flags |= _intrinsic_virtual;
 187   }
 188   bool changed = (flags != oflags);
 189   if ((flags & _intrinsic_worked) != 0) {
 190     juint count = (_intrinsic_hist_count[id] += 1);
 191     if (count == 1) {
 192       changed = true;           // first time
 193     }
 194     // increment the overall count also:
 195     _intrinsic_hist_count[vmIntrinsics::_none] += 1;
 196   }
 197   if (changed) {
 198     if (((oflags ^ flags) & _intrinsic_virtual) != 0) {
 199       // Something changed about the intrinsic's virtuality.
 200       if ((flags & _intrinsic_virtual) != 0) {
 201         // This is the first use of this intrinsic as a virtual call.
 202         if (oflags != 0) {
 203           // We already saw it as a non-virtual, so note both cases.
 204           flags |= _intrinsic_both;
 205         }
 206       } else if ((oflags & _intrinsic_both) == 0) {
 207         // This is the first use of this intrinsic as a non-virtual
 208         flags |= _intrinsic_both;
 209       }
 210     }
 211     _intrinsic_hist_flags[id] = (jubyte) (oflags | flags);
 212   }
 213   // update the overall flags also:
 214   _intrinsic_hist_flags[vmIntrinsics::_none] |= (jubyte) flags;
 215   return changed;
 216 }
 217 
 218 static char* format_flags(int flags, char* buf) {
 219   buf[0] = 0;
 220   if ((flags & Compile::_intrinsic_worked) != 0)    strcat(buf, ",worked");
 221   if ((flags & Compile::_intrinsic_failed) != 0)    strcat(buf, ",failed");
 222   if ((flags & Compile::_intrinsic_disabled) != 0)  strcat(buf, ",disabled");
 223   if ((flags & Compile::_intrinsic_virtual) != 0)   strcat(buf, ",virtual");
 224   if ((flags & Compile::_intrinsic_both) != 0)      strcat(buf, ",nonvirtual");
 225   if (buf[0] == 0)  strcat(buf, ",");
 226   assert(buf[0] == ',', "must be");
 227   return &buf[1];
 228 }
 229 
 230 void Compile::print_intrinsic_statistics() {
 231   char flagsbuf[100];
 232   ttyLocker ttyl;
 233   if (xtty != NULL)  xtty->head("statistics type='intrinsic'");
 234   tty->print_cr("Compiler intrinsic usage:");
 235   juint total = _intrinsic_hist_count[vmIntrinsics::_none];
 236   if (total == 0)  total = 1;  // avoid div0 in case of no successes
 237   #define PRINT_STAT_LINE(name, c, f) \
 238     tty->print_cr("  %4d (%4.1f%%) %s (%s)", (int)(c), ((c) * 100.0) / total, name, f);
 239   for (int index = 1 + (int)vmIntrinsics::_none; index < (int)vmIntrinsics::ID_LIMIT; index++) {
 240     vmIntrinsics::ID id = (vmIntrinsics::ID) index;
 241     int   flags = _intrinsic_hist_flags[id];
 242     juint count = _intrinsic_hist_count[id];
 243     if ((flags | count) != 0) {
 244       PRINT_STAT_LINE(vmIntrinsics::name_at(id), count, format_flags(flags, flagsbuf));
 245     }
 246   }
 247   PRINT_STAT_LINE("total", total, format_flags(_intrinsic_hist_flags[vmIntrinsics::_none], flagsbuf));
 248   if (xtty != NULL)  xtty->tail("statistics");
 249 }
 250 
 251 void Compile::print_statistics() {
 252   { ttyLocker ttyl;
 253     if (xtty != NULL)  xtty->head("statistics type='opto'");
 254     Parse::print_statistics();
 255     PhaseCCP::print_statistics();
 256     PhaseRegAlloc::print_statistics();
 257     Scheduling::print_statistics();
 258     PhasePeephole::print_statistics();
 259     PhaseIdealLoop::print_statistics();
 260     if (xtty != NULL)  xtty->tail("statistics");
 261   }
 262   if (_intrinsic_hist_flags[vmIntrinsics::_none] != 0) {
 263     // put this under its own <statistics> element.
 264     print_intrinsic_statistics();
 265   }
 266 }
 267 #endif //PRODUCT
 268 
 269 // Support for bundling info
 270 Bundle* Compile::node_bundling(const Node *n) {
 271   assert(valid_bundle_info(n), "oob");
 272   return &_node_bundling_base[n->_idx];
 273 }
 274 
 275 bool Compile::valid_bundle_info(const Node *n) {
 276   return (_node_bundling_limit > n->_idx);
 277 }
 278 
 279 
 280 void Compile::gvn_replace_by(Node* n, Node* nn) {
 281   for (DUIterator_Last imin, i = n->last_outs(imin); i >= imin; ) {
 282     Node* use = n->last_out(i);
 283     bool is_in_table = initial_gvn()->hash_delete(use);
 284     uint uses_found = 0;
 285     for (uint j = 0; j < use->len(); j++) {
 286       if (use->in(j) == n) {
 287         if (j < use->req())
 288           use->set_req(j, nn);
 289         else
 290           use->set_prec(j, nn);
 291         uses_found++;
 292       }
 293     }
 294     if (is_in_table) {
 295       // reinsert into table
 296       initial_gvn()->hash_find_insert(use);
 297     }
 298     record_for_igvn(use);
 299     i -= uses_found;    // we deleted 1 or more copies of this edge
 300   }
 301 }
 302 
 303 
 304 static inline bool not_a_node(const Node* n) {
 305   if (n == NULL)                   return true;
 306   if (((intptr_t)n & 1) != 0)      return true;  // uninitialized, etc.
 307   if (*(address*)n == badAddress)  return true;  // kill by Node::destruct
 308   return false;
 309 }
 310 
 311 // Identify all nodes that are reachable from below, useful.
 312 // Use breadth-first pass that records state in a Unique_Node_List,
 313 // recursive traversal is slower.
 314 void Compile::identify_useful_nodes(Unique_Node_List &useful) {
 315   int estimated_worklist_size = live_nodes();
 316   useful.map( estimated_worklist_size, NULL );  // preallocate space
 317 
 318   // Initialize worklist
 319   if (root() != NULL)     { useful.push(root()); }
 320   // If 'top' is cached, declare it useful to preserve cached node
 321   if( cached_top_node() ) { useful.push(cached_top_node()); }
 322 
 323   // Push all useful nodes onto the list, breadthfirst
 324   for( uint next = 0; next < useful.size(); ++next ) {
 325     assert( next < unique(), "Unique useful nodes < total nodes");
 326     Node *n  = useful.at(next);
 327     uint max = n->len();
 328     for( uint i = 0; i < max; ++i ) {
 329       Node *m = n->in(i);
 330       if (not_a_node(m))  continue;
 331       useful.push(m);
 332     }
 333   }
 334 }
 335 
 336 // Update dead_node_list with any missing dead nodes using useful
 337 // list. Consider all non-useful nodes to be useless i.e., dead nodes.
 338 void Compile::update_dead_node_list(Unique_Node_List &useful) {
 339   uint max_idx = unique();
 340   VectorSet& useful_node_set = useful.member_set();
 341 
 342   for (uint node_idx = 0; node_idx < max_idx; node_idx++) {
 343     // If node with index node_idx is not in useful set,
 344     // mark it as dead in dead node list.
 345     if (! useful_node_set.test(node_idx) ) {
 346       record_dead_node(node_idx);
 347     }
 348   }
 349 }
 350 
 351 void Compile::remove_useless_late_inlines(GrowableArray<CallGenerator*>* inlines, Unique_Node_List &useful) {
 352   int shift = 0;
 353   for (int i = 0; i < inlines->length(); i++) {
 354     CallGenerator* cg = inlines->at(i);
 355     CallNode* call = cg->call_node();
 356     if (shift > 0) {
 357       inlines->at_put(i-shift, cg);
 358     }
 359     if (!useful.member(call)) {
 360       shift++;
 361     }
 362   }
 363   inlines->trunc_to(inlines->length()-shift);
 364 }
 365 
 366 // Disconnect all useless nodes by disconnecting those at the boundary.
 367 void Compile::remove_useless_nodes(Unique_Node_List &useful) {
 368   uint next = 0;
 369   while (next < useful.size()) {
 370     Node *n = useful.at(next++);
 371     if (n->is_SafePoint()) {
 372       // We're done with a parsing phase. Replaced nodes are not valid
 373       // beyond that point.
 374       n->as_SafePoint()->delete_replaced_nodes();
 375     }
 376     // Use raw traversal of out edges since this code removes out edges
 377     int max = n->outcnt();
 378     for (int j = 0; j < max; ++j) {
 379       Node* child = n->raw_out(j);
 380       if (! useful.member(child)) {
 381         assert(!child->is_top() || child != top(),
 382                "If top is cached in Compile object it is in useful list");
 383         // Only need to remove this out-edge to the useless node
 384         n->raw_del_out(j);
 385         --j;
 386         --max;
 387       }
 388     }
 389     if (n->outcnt() == 1 && n->has_special_unique_user()) {
 390       record_for_igvn(n->unique_out());
 391     }
 392   }
 393   // Remove useless macro and predicate opaq nodes
 394   for (int i = C->macro_count()-1; i >= 0; i--) {
 395     Node* n = C->macro_node(i);
 396     if (!useful.member(n)) {
 397       remove_macro_node(n);
 398     }
 399   }
 400   // Remove useless CastII nodes with range check dependency
 401   for (int i = range_check_cast_count() - 1; i >= 0; i--) {
 402     Node* cast = range_check_cast_node(i);
 403     if (!useful.member(cast)) {
 404       remove_range_check_cast(cast);
 405     }
 406   }
 407   // Remove useless expensive nodes
 408   for (int i = C->expensive_count()-1; i >= 0; i--) {
 409     Node* n = C->expensive_node(i);
 410     if (!useful.member(n)) {
 411       remove_expensive_node(n);
 412     }
 413   }
 414   // Remove useless Opaque4 nodes
 415   for (int i = opaque4_count() - 1; i >= 0; i--) {
 416     Node* opaq = opaque4_node(i);
 417     if (!useful.member(opaq)) {
 418       remove_opaque4_node(opaq);
 419     }
 420   }
 421   // Remove useless value type nodes
 422   if (_value_type_nodes != NULL) {
 423     _value_type_nodes->remove_useless_nodes(useful.member_set());
 424   }
 425   BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
 426   bs->eliminate_useless_gc_barriers(useful, this);
 427   // clean up the late inline lists
 428   remove_useless_late_inlines(&_string_late_inlines, useful);
 429   remove_useless_late_inlines(&_boxing_late_inlines, useful);
 430   remove_useless_late_inlines(&_late_inlines, useful);
 431   debug_only(verify_graph_edges(true/*check for no_dead_code*/);)
 432 }
 433 
 434 //------------------------------frame_size_in_words-----------------------------
 435 // frame_slots in units of words
 436 int Compile::frame_size_in_words() const {
 437   // shift is 0 in LP32 and 1 in LP64
 438   const int shift = (LogBytesPerWord - LogBytesPerInt);
 439   int words = _frame_slots >> shift;
 440   assert( words << shift == _frame_slots, "frame size must be properly aligned in LP64" );
 441   return words;
 442 }
 443 
 444 // To bang the stack of this compiled method we use the stack size
 445 // that the interpreter would need in case of a deoptimization. This
 446 // removes the need to bang the stack in the deoptimization blob which
 447 // in turn simplifies stack overflow handling.
 448 int Compile::bang_size_in_bytes() const {
 449   return MAX2(frame_size_in_bytes() + os::extra_bang_size_in_bytes(), _interpreter_frame_size);
 450 }
 451 
 452 // ============================================================================
 453 //------------------------------CompileWrapper---------------------------------
 454 class CompileWrapper : public StackObj {
 455   Compile *const _compile;
 456  public:
 457   CompileWrapper(Compile* compile);
 458 
 459   ~CompileWrapper();
 460 };
 461 
 462 CompileWrapper::CompileWrapper(Compile* compile) : _compile(compile) {
 463   // the Compile* pointer is stored in the current ciEnv:
 464   ciEnv* env = compile->env();
 465   assert(env == ciEnv::current(), "must already be a ciEnv active");
 466   assert(env->compiler_data() == NULL, "compile already active?");
 467   env->set_compiler_data(compile);
 468   assert(compile == Compile::current(), "sanity");
 469 
 470   compile->set_type_dict(NULL);
 471   compile->set_clone_map(new Dict(cmpkey, hashkey, _compile->comp_arena()));
 472   compile->clone_map().set_clone_idx(0);
 473   compile->set_type_hwm(NULL);
 474   compile->set_type_last_size(0);
 475   compile->set_last_tf(NULL, NULL);
 476   compile->set_indexSet_arena(NULL);
 477   compile->set_indexSet_free_block_list(NULL);
 478   compile->init_type_arena();
 479   Type::Initialize(compile);
 480   _compile->set_scratch_buffer_blob(NULL);
 481   _compile->begin_method();
 482   _compile->clone_map().set_debug(_compile->has_method() && _compile->directive()->CloneMapDebugOption);
 483 }
 484 CompileWrapper::~CompileWrapper() {
 485   _compile->end_method();
 486   if (_compile->scratch_buffer_blob() != NULL)
 487     BufferBlob::free(_compile->scratch_buffer_blob());
 488   _compile->env()->set_compiler_data(NULL);
 489 }
 490 
 491 
 492 //----------------------------print_compile_messages---------------------------
 493 void Compile::print_compile_messages() {
 494 #ifndef PRODUCT
 495   // Check if recompiling
 496   if (_subsume_loads == false && PrintOpto) {
 497     // Recompiling without allowing machine instructions to subsume loads
 498     tty->print_cr("*********************************************************");
 499     tty->print_cr("** Bailout: Recompile without subsuming loads          **");
 500     tty->print_cr("*********************************************************");
 501   }
 502   if (_do_escape_analysis != DoEscapeAnalysis && PrintOpto) {
 503     // Recompiling without escape analysis
 504     tty->print_cr("*********************************************************");
 505     tty->print_cr("** Bailout: Recompile without escape analysis          **");
 506     tty->print_cr("*********************************************************");
 507   }
 508   if (_eliminate_boxing != EliminateAutoBox && PrintOpto) {
 509     // Recompiling without boxing elimination
 510     tty->print_cr("*********************************************************");
 511     tty->print_cr("** Bailout: Recompile without boxing elimination       **");
 512     tty->print_cr("*********************************************************");
 513   }
 514   if (C->directive()->BreakAtCompileOption) {
 515     // Open the debugger when compiling this method.
 516     tty->print("### Breaking when compiling: ");
 517     method()->print_short_name();
 518     tty->cr();
 519     BREAKPOINT;
 520   }
 521 
 522   if( PrintOpto ) {
 523     if (is_osr_compilation()) {
 524       tty->print("[OSR]%3d", _compile_id);
 525     } else {
 526       tty->print("%3d", _compile_id);
 527     }
 528   }
 529 #endif
 530 }
 531 
 532 
 533 //-----------------------init_scratch_buffer_blob------------------------------
 534 // Construct a temporary BufferBlob and cache it for this compile.
 535 void Compile::init_scratch_buffer_blob(int const_size) {
 536   // If there is already a scratch buffer blob allocated and the
 537   // constant section is big enough, use it.  Otherwise free the
 538   // current and allocate a new one.
 539   BufferBlob* blob = scratch_buffer_blob();
 540   if ((blob != NULL) && (const_size <= _scratch_const_size)) {
 541     // Use the current blob.
 542   } else {
 543     if (blob != NULL) {
 544       BufferBlob::free(blob);
 545     }
 546 
 547     ResourceMark rm;
 548     _scratch_const_size = const_size;
 549     int size = C2Compiler::initial_code_buffer_size(const_size);
 550 #ifdef ASSERT
 551     if (C->has_scalarized_args()) {
 552       // Oop verification for loading object fields from scalarized value types in the new entry point requires lots of space
 553       size += 5120;
 554     }
 555 #endif
 556     blob = BufferBlob::create("Compile::scratch_buffer", size);
 557     // Record the buffer blob for next time.
 558     set_scratch_buffer_blob(blob);
 559     // Have we run out of code space?
 560     if (scratch_buffer_blob() == NULL) {
 561       // Let CompilerBroker disable further compilations.
 562       record_failure("Not enough space for scratch buffer in CodeCache");
 563       return;
 564     }
 565   }
 566 
 567   // Initialize the relocation buffers
 568   relocInfo* locs_buf = (relocInfo*) blob->content_end() - MAX_locs_size;
 569   set_scratch_locs_memory(locs_buf);
 570 }
 571 
 572 
 573 //-----------------------scratch_emit_size-------------------------------------
 574 // Helper function that computes size by emitting code
 575 uint Compile::scratch_emit_size(const Node* n) {
 576   // Start scratch_emit_size section.
 577   set_in_scratch_emit_size(true);
 578 
 579   // Emit into a trash buffer and count bytes emitted.
 580   // This is a pretty expensive way to compute a size,
 581   // but it works well enough if seldom used.
 582   // All common fixed-size instructions are given a size
 583   // method by the AD file.
 584   // Note that the scratch buffer blob and locs memory are
 585   // allocated at the beginning of the compile task, and
 586   // may be shared by several calls to scratch_emit_size.
 587   // The allocation of the scratch buffer blob is particularly
 588   // expensive, since it has to grab the code cache lock.
 589   BufferBlob* blob = this->scratch_buffer_blob();
 590   assert(blob != NULL, "Initialize BufferBlob at start");
 591   assert(blob->size() > MAX_inst_size, "sanity");
 592   relocInfo* locs_buf = scratch_locs_memory();
 593   address blob_begin = blob->content_begin();
 594   address blob_end   = (address)locs_buf;
 595   assert(blob->contains(blob_end), "sanity");
 596   CodeBuffer buf(blob_begin, blob_end - blob_begin);
 597   buf.initialize_consts_size(_scratch_const_size);
 598   buf.initialize_stubs_size(MAX_stubs_size);
 599   assert(locs_buf != NULL, "sanity");
 600   int lsize = MAX_locs_size / 3;
 601   buf.consts()->initialize_shared_locs(&locs_buf[lsize * 0], lsize);
 602   buf.insts()->initialize_shared_locs( &locs_buf[lsize * 1], lsize);
 603   buf.stubs()->initialize_shared_locs( &locs_buf[lsize * 2], lsize);
 604   // Mark as scratch buffer.
 605   buf.consts()->set_scratch_emit();
 606   buf.insts()->set_scratch_emit();
 607   buf.stubs()->set_scratch_emit();
 608 
 609   // Do the emission.
 610 
 611   Label fakeL; // Fake label for branch instructions.
 612   Label*   saveL = NULL;
 613   uint save_bnum = 0;
 614   bool is_branch = n->is_MachBranch();
 615   if (is_branch) {
 616     MacroAssembler masm(&buf);
 617     masm.bind(fakeL);
 618     n->as_MachBranch()->save_label(&saveL, &save_bnum);
 619     n->as_MachBranch()->label_set(&fakeL, 0);
 620   } else if (n->is_MachProlog()) {
 621     saveL = ((MachPrologNode*)n)->_verified_entry;
 622     ((MachPrologNode*)n)->_verified_entry = &fakeL;
 623   }
 624   n->emit(buf, this->regalloc());
 625 
 626   // Emitting into the scratch buffer should not fail
 627   assert (!failing(), "Must not have pending failure. Reason is: %s", failure_reason());
 628 
 629   // Restore label.
 630   if (is_branch) {
 631     n->as_MachBranch()->label_set(saveL, save_bnum);
 632   } else if (n->is_MachProlog()) {
 633     ((MachPrologNode*)n)->_verified_entry = saveL;
 634   }
 635 
 636   // End scratch_emit_size section.
 637   set_in_scratch_emit_size(false);
 638 
 639   return buf.insts_size();
 640 }
 641 
 642 
 643 // ============================================================================
 644 //------------------------------Compile standard-------------------------------
 645 debug_only( int Compile::_debug_idx = 100000; )
 646 
 647 // Compile a method.  entry_bci is -1 for normal compilations and indicates
 648 // the continuation bci for on stack replacement.
 649 
 650 
 651 Compile::Compile( ciEnv* ci_env, C2Compiler* compiler, ciMethod* target, int osr_bci,
 652                   bool subsume_loads, bool do_escape_analysis, bool eliminate_boxing, DirectiveSet* directive)
 653                 : Phase(Compiler),
 654                   _compile_id(ci_env->compile_id()),
 655                   _save_argument_registers(false),
 656                   _subsume_loads(subsume_loads),
 657                   _do_escape_analysis(do_escape_analysis),
 658                   _eliminate_boxing(eliminate_boxing),
 659                   _method(target),
 660                   _entry_bci(osr_bci),
 661                   _stub_function(NULL),
 662                   _stub_name(NULL),
 663                   _stub_entry_point(NULL),
 664                   _max_node_limit(MaxNodeLimit),
 665                   _orig_pc_slot(0),
 666                   _orig_pc_slot_offset_in_bytes(0),
 667                   _sp_inc_slot(0),
 668                   _sp_inc_slot_offset_in_bytes(0),
 669                   _inlining_progress(false),
 670                   _inlining_incrementally(false),
 671                   _do_cleanup(false),
 672                   _has_reserved_stack_access(target->has_reserved_stack_access()),
 673 #ifndef PRODUCT
 674                   _trace_opto_output(directive->TraceOptoOutputOption),
 675 #endif
 676                   _has_method_handle_invokes(false),
 677                   _comp_arena(mtCompiler),
 678                   _barrier_set_state(BarrierSet::barrier_set()->barrier_set_c2()->create_barrier_state(comp_arena())),
 679                   _env(ci_env),
 680                   _directive(directive),
 681                   _log(ci_env->log()),
 682                   _failure_reason(NULL),
 683                   _congraph(NULL),
 684 #ifndef PRODUCT
 685                   _printer(IdealGraphPrinter::printer()),
 686 #endif
 687                   _dead_node_list(comp_arena()),
 688                   _dead_node_count(0),
 689                   _node_arena(mtCompiler),
 690                   _old_arena(mtCompiler),
 691                   _mach_constant_base_node(NULL),
 692                   _Compile_types(mtCompiler),
 693                   _initial_gvn(NULL),
 694                   _for_igvn(NULL),
 695                   _warm_calls(NULL),
 696                   _late_inlines(comp_arena(), 2, 0, NULL),
 697                   _string_late_inlines(comp_arena(), 2, 0, NULL),
 698                   _boxing_late_inlines(comp_arena(), 2, 0, NULL),
 699                   _late_inlines_pos(0),
 700                   _number_of_mh_late_inlines(0),
 701                   _print_inlining_stream(NULL),
 702                   _print_inlining_list(NULL),
 703                   _print_inlining_idx(0),
 704                   _print_inlining_output(NULL),
 705                   _replay_inline_data(NULL),
 706                   _java_calls(0),
 707                   _inner_loops(0),
 708                   _interpreter_frame_size(0),
 709                   _node_bundling_limit(0),
 710                   _node_bundling_base(NULL),
 711                   _code_buffer("Compile::Fill_buffer"),
 712                   _scratch_const_size(-1),
 713                   _in_scratch_emit_size(false)
 714 #ifndef PRODUCT
 715                   , _in_dump_cnt(0)
 716 #endif
 717 {
 718   C = this;
 719 #ifndef PRODUCT
 720   if (_printer != NULL) {
 721     _printer->set_compile(this);
 722   }
 723 #endif
 724   CompileWrapper cw(this);
 725 
 726   if (CITimeVerbose) {
 727     tty->print(" ");
 728     target->holder()->name()->print();
 729     tty->print(".");
 730     target->print_short_name();
 731     tty->print("  ");
 732   }
 733   TraceTime t1("Total compilation time", &_t_totalCompilation, CITime, CITimeVerbose);
 734   TraceTime t2(NULL, &_t_methodCompilation, CITime, false);
 735 
 736 #if defined(SUPPORT_ASSEMBLY) || defined(SUPPORT_ABSTRACT_ASSEMBLY)
 737   bool print_opto_assembly = directive->PrintOptoAssemblyOption;
 738   // We can always print a disassembly, either abstract (hex dump) or
 739   // with the help of a suitable hsdis library. Thus, we should not
 740   // couple print_assembly and print_opto_assembly controls.
 741   // But: always print opto and regular assembly on compile command 'print'.
 742   bool print_assembly = directive->PrintAssemblyOption;
 743   set_print_assembly(print_opto_assembly || print_assembly);
 744 #else
 745   set_print_assembly(false); // must initialize.
 746 #endif
 747 
 748 #ifndef PRODUCT
 749   set_parsed_irreducible_loop(false);
 750 
 751   if (directive->ReplayInlineOption) {
 752     _replay_inline_data = ciReplay::load_inline_data(method(), entry_bci(), ci_env->comp_level());
 753   }
 754 #endif
 755   set_print_inlining(directive->PrintInliningOption || PrintOptoInlining);
 756   set_print_intrinsics(directive->PrintIntrinsicsOption);
 757   set_has_irreducible_loop(true); // conservative until build_loop_tree() reset it
 758 
 759   if (ProfileTraps RTM_OPT_ONLY( || UseRTMLocking )) {
 760     // Make sure the method being compiled gets its own MDO,
 761     // so we can at least track the decompile_count().
 762     // Need MDO to record RTM code generation state.
 763     method()->ensure_method_data();
 764   }
 765 
 766   Init(::AliasLevel);
 767 
 768 
 769   print_compile_messages();
 770 
 771   _ilt = InlineTree::build_inline_tree_root();
 772 
 773   // Even if NO memory addresses are used, MergeMem nodes must have at least 1 slice
 774   assert(num_alias_types() >= AliasIdxRaw, "");
 775 
 776 #define MINIMUM_NODE_HASH  1023
 777   // Node list that Iterative GVN will start with
 778   Unique_Node_List for_igvn(comp_arena());
 779   set_for_igvn(&for_igvn);
 780 
 781   // GVN that will be run immediately on new nodes
 782   uint estimated_size = method()->code_size()*4+64;
 783   estimated_size = (estimated_size < MINIMUM_NODE_HASH ? MINIMUM_NODE_HASH : estimated_size);
 784   PhaseGVN gvn(node_arena(), estimated_size);
 785   set_initial_gvn(&gvn);
 786 
 787   print_inlining_init();
 788   { // Scope for timing the parser
 789     TracePhase tp("parse", &timers[_t_parser]);
 790 
 791     // Put top into the hash table ASAP.
 792     initial_gvn()->transform_no_reclaim(top());
 793 
 794     // Set up tf(), start(), and find a CallGenerator.
 795     CallGenerator* cg = NULL;
 796     if (is_osr_compilation()) {
 797       const TypeTuple *domain = StartOSRNode::osr_domain();
 798       const TypeTuple *range = TypeTuple::make_range(method()->signature());
 799       init_tf(TypeFunc::make(domain, range));
 800       StartNode* s = new StartOSRNode(root(), domain);
 801       initial_gvn()->set_type_bottom(s);
 802       init_start(s);
 803       cg = CallGenerator::for_osr(method(), entry_bci());
 804     } else {
 805       // Normal case.
 806       init_tf(TypeFunc::make(method()));
 807       StartNode* s = new StartNode(root(), tf()->domain_cc());
 808       initial_gvn()->set_type_bottom(s);
 809       init_start(s);
 810       if (method()->intrinsic_id() == vmIntrinsics::_Reference_get) {
 811         // With java.lang.ref.reference.get() we must go through the
 812         // intrinsic - even when get() is the root
 813         // method of the compile - so that, if necessary, the value in
 814         // the referent field of the reference object gets recorded by
 815         // the pre-barrier code.
 816         cg = find_intrinsic(method(), false);
 817       }
 818       if (cg == NULL) {
 819         float past_uses = method()->interpreter_invocation_count();
 820         float expected_uses = past_uses;
 821         cg = CallGenerator::for_inline(method(), expected_uses);
 822       }
 823     }
 824     if (failing())  return;
 825     if (cg == NULL) {
 826       record_method_not_compilable("cannot parse method");
 827       return;
 828     }
 829     JVMState* jvms = build_start_state(start(), tf());
 830     if ((jvms = cg->generate(jvms)) == NULL) {
 831       if (!failure_reason_is(C2Compiler::retry_class_loading_during_parsing())) {
 832         record_method_not_compilable("method parse failed");
 833       }
 834       return;
 835     }
 836     GraphKit kit(jvms);
 837 
 838     if (!kit.stopped()) {
 839       // Accept return values, and transfer control we know not where.
 840       // This is done by a special, unique ReturnNode bound to root.
 841       return_values(kit.jvms());
 842     }
 843 
 844     if (kit.has_exceptions()) {
 845       // Any exceptions that escape from this call must be rethrown
 846       // to whatever caller is dynamically above us on the stack.
 847       // This is done by a special, unique RethrowNode bound to root.
 848       rethrow_exceptions(kit.transfer_exceptions_into_jvms());
 849     }
 850 
 851     assert(IncrementalInline || (_late_inlines.length() == 0 && !has_mh_late_inlines()), "incremental inlining is off");
 852 
 853     if (_late_inlines.length() == 0 && !has_mh_late_inlines() && !failing() && has_stringbuilder()) {
 854       inline_string_calls(true);
 855     }
 856 
 857     if (failing())  return;
 858 
 859     print_method(PHASE_BEFORE_REMOVEUSELESS, 3);
 860 
 861     // Remove clutter produced by parsing.
 862     if (!failing()) {
 863       ResourceMark rm;
 864       PhaseRemoveUseless pru(initial_gvn(), &for_igvn);
 865     }
 866   }
 867 
 868   // Note:  Large methods are capped off in do_one_bytecode().
 869   if (failing())  return;
 870 
 871   // After parsing, node notes are no longer automagic.
 872   // They must be propagated by register_new_node_with_optimizer(),
 873   // clone(), or the like.
 874   set_default_node_notes(NULL);
 875 
 876   for (;;) {
 877     int successes = Inline_Warm();
 878     if (failing())  return;
 879     if (successes == 0)  break;
 880   }
 881 
 882   // Drain the list.
 883   Finish_Warm();
 884 #ifndef PRODUCT
 885   if (_printer && _printer->should_print(1)) {
 886     _printer->print_inlining();
 887   }
 888 #endif
 889 
 890   if (failing())  return;
 891   NOT_PRODUCT( verify_graph_edges(); )
 892 
 893   // Now optimize
 894   Optimize();
 895   if (failing())  return;
 896   NOT_PRODUCT( verify_graph_edges(); )
 897 
 898 #ifndef PRODUCT
 899   if (PrintIdeal) {
 900     ttyLocker ttyl;  // keep the following output all in one block
 901     // This output goes directly to the tty, not the compiler log.
 902     // To enable tools to match it up with the compilation activity,
 903     // be sure to tag this tty output with the compile ID.
 904     if (xtty != NULL) {
 905       xtty->head("ideal compile_id='%d'%s", compile_id(),
 906                  is_osr_compilation()    ? " compile_kind='osr'" :
 907                  "");
 908     }
 909     root()->dump(9999);
 910     if (xtty != NULL) {
 911       xtty->tail("ideal");
 912     }
 913   }
 914 #endif
 915 
 916 #ifdef ASSERT
 917   BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
 918   bs->verify_gc_barriers(this, BarrierSetC2::BeforeCodeGen);
 919 #endif
 920 
 921   // Dump compilation data to replay it.
 922   if (directive->DumpReplayOption) {
 923     env()->dump_replay_data(_compile_id);
 924   }
 925   if (directive->DumpInlineOption && (ilt() != NULL)) {
 926     env()->dump_inline_data(_compile_id);
 927   }
 928 
 929   // Now that we know the size of all the monitors we can add a fixed slot
 930   // for the original deopt pc.
 931 
 932   _orig_pc_slot = fixed_slots();
 933   int next_slot = _orig_pc_slot + (sizeof(address) / VMRegImpl::stack_slot_size);
 934 
 935   if (needs_stack_repair()) {
 936     // One extra slot for the special stack increment value
 937     _sp_inc_slot = next_slot;
 938     next_slot += 2;
 939   }
 940 
 941   set_fixed_slots(next_slot);
 942 
 943   // Compute when to use implicit null checks. Used by matching trap based
 944   // nodes and NullCheck optimization.
 945   set_allowed_deopt_reasons();
 946 
 947   // Now generate code
 948   Code_Gen();
 949   if (failing())  return;
 950 
 951   // Check if we want to skip execution of all compiled code.
 952   {
 953 #ifndef PRODUCT
 954     if (OptoNoExecute) {
 955       record_method_not_compilable("+OptoNoExecute");  // Flag as failed
 956       return;
 957     }
 958 #endif
 959     TracePhase tp("install_code", &timers[_t_registerMethod]);
 960 
 961     if (is_osr_compilation()) {
 962       _code_offsets.set_value(CodeOffsets::Verified_Entry, 0);
 963       _code_offsets.set_value(CodeOffsets::OSR_Entry, _first_block_size);
 964     } else {
 965       _code_offsets.set_value(CodeOffsets::Verified_Entry, _first_block_size);
 966       if (_code_offsets.value(CodeOffsets::Verified_Value_Entry) == -1) {
 967         _code_offsets.set_value(CodeOffsets::Verified_Value_Entry, _first_block_size);
 968       }
 969       if (_code_offsets.value(CodeOffsets::Verified_Value_Entry_RO) == -1) {
 970         _code_offsets.set_value(CodeOffsets::Verified_Value_Entry_RO, _first_block_size);
 971       }
 972       if (_code_offsets.value(CodeOffsets::Entry) == -1) {
 973         _code_offsets.set_value(CodeOffsets::Entry, _first_block_size);
 974       }
 975       _code_offsets.set_value(CodeOffsets::OSR_Entry, 0);
 976     }
 977 
 978     env()->register_method(_method, _entry_bci,
 979                            &_code_offsets,
 980                            _orig_pc_slot_offset_in_bytes,
 981                            code_buffer(),
 982                            frame_size_in_words(), _oop_map_set,
 983                            &_handler_table, &_inc_table,
 984                            compiler,
 985                            has_unsafe_access(),
 986                            SharedRuntime::is_wide_vector(max_vector_size()),
 987                            rtm_state()
 988                            );
 989 
 990     if (log() != NULL) // Print code cache state into compiler log
 991       log()->code_cache_state();
 992   }
 993 }
 994 
 995 //------------------------------Compile----------------------------------------
 996 // Compile a runtime stub
 997 Compile::Compile( ciEnv* ci_env,
 998                   TypeFunc_generator generator,
 999                   address stub_function,
1000                   const char *stub_name,
1001                   int is_fancy_jump,
1002                   bool pass_tls,
1003                   bool save_arg_registers,
1004                   bool return_pc,
1005                   DirectiveSet* directive)
1006   : Phase(Compiler),
1007     _compile_id(0),
1008     _save_argument_registers(save_arg_registers),
1009     _subsume_loads(true),
1010     _do_escape_analysis(false),
1011     _eliminate_boxing(false),
1012     _method(NULL),
1013     _entry_bci(InvocationEntryBci),
1014     _stub_function(stub_function),
1015     _stub_name(stub_name),
1016     _stub_entry_point(NULL),
1017     _max_node_limit(MaxNodeLimit),
1018     _orig_pc_slot(0),
1019     _orig_pc_slot_offset_in_bytes(0),
1020     _sp_inc_slot(0),
1021     _sp_inc_slot_offset_in_bytes(0),
1022     _inlining_progress(false),
1023     _inlining_incrementally(false),
1024     _has_reserved_stack_access(false),
1025 #ifndef PRODUCT
1026     _trace_opto_output(directive->TraceOptoOutputOption),
1027 #endif
1028     _has_method_handle_invokes(false),
1029     _comp_arena(mtCompiler),
1030     _env(ci_env),
1031     _directive(directive),
1032     _log(ci_env->log()),
1033     _failure_reason(NULL),
1034     _congraph(NULL),
1035 #ifndef PRODUCT
1036     _printer(NULL),
1037 #endif
1038     _dead_node_list(comp_arena()),
1039     _dead_node_count(0),
1040     _node_arena(mtCompiler),
1041     _old_arena(mtCompiler),
1042     _mach_constant_base_node(NULL),
1043     _Compile_types(mtCompiler),
1044     _initial_gvn(NULL),
1045     _for_igvn(NULL),
1046     _warm_calls(NULL),
1047     _number_of_mh_late_inlines(0),
1048     _print_inlining_stream(NULL),
1049     _print_inlining_list(NULL),
1050     _print_inlining_idx(0),
1051     _print_inlining_output(NULL),
1052     _replay_inline_data(NULL),
1053     _java_calls(0),
1054     _inner_loops(0),
1055     _interpreter_frame_size(0),
1056     _node_bundling_limit(0),
1057     _node_bundling_base(NULL),
1058     _code_buffer("Compile::Fill_buffer"),
1059 #ifndef PRODUCT
1060     _in_dump_cnt(0),
1061 #endif
1062     _allowed_reasons(0) {
1063   C = this;
1064 
1065   TraceTime t1(NULL, &_t_totalCompilation, CITime, false);
1066   TraceTime t2(NULL, &_t_stubCompilation, CITime, false);
1067 
1068 #ifndef PRODUCT
1069   set_print_assembly(PrintFrameConverterAssembly);
1070   set_parsed_irreducible_loop(false);
1071 #else
1072   set_print_assembly(false); // Must initialize.
1073 #endif
1074   set_has_irreducible_loop(false); // no loops
1075 
1076   CompileWrapper cw(this);
1077   Init(/*AliasLevel=*/ 0);
1078   init_tf((*generator)());
1079 
1080   {
1081     // The following is a dummy for the sake of GraphKit::gen_stub
1082     Unique_Node_List for_igvn(comp_arena());
1083     set_for_igvn(&for_igvn);  // not used, but some GraphKit guys push on this
1084     PhaseGVN gvn(Thread::current()->resource_area(),255);
1085     set_initial_gvn(&gvn);    // not significant, but GraphKit guys use it pervasively
1086     gvn.transform_no_reclaim(top());
1087 
1088     GraphKit kit;
1089     kit.gen_stub(stub_function, stub_name, is_fancy_jump, pass_tls, return_pc);
1090   }
1091 
1092   NOT_PRODUCT( verify_graph_edges(); )
1093   Code_Gen();
1094   if (failing())  return;
1095 
1096 
1097   // Entry point will be accessed using compile->stub_entry_point();
1098   if (code_buffer() == NULL) {
1099     Matcher::soft_match_failure();
1100   } else {
1101     if (PrintAssembly && (WizardMode || Verbose))
1102       tty->print_cr("### Stub::%s", stub_name);
1103 
1104     if (!failing()) {
1105       assert(_fixed_slots == 0, "no fixed slots used for runtime stubs");
1106 
1107       // Make the NMethod
1108       // For now we mark the frame as never safe for profile stackwalking
1109       RuntimeStub *rs = RuntimeStub::new_runtime_stub(stub_name,
1110                                                       code_buffer(),
1111                                                       CodeOffsets::frame_never_safe,
1112                                                       // _code_offsets.value(CodeOffsets::Frame_Complete),
1113                                                       frame_size_in_words(),
1114                                                       _oop_map_set,
1115                                                       save_arg_registers);
1116       assert(rs != NULL && rs->is_runtime_stub(), "sanity check");
1117 
1118       _stub_entry_point = rs->entry_point();
1119     }
1120   }
1121 }
1122 
1123 //------------------------------Init-------------------------------------------
1124 // Prepare for a single compilation
1125 void Compile::Init(int aliaslevel) {
1126   _unique  = 0;
1127   _regalloc = NULL;
1128 
1129   _tf      = NULL;  // filled in later
1130   _top     = NULL;  // cached later
1131   _matcher = NULL;  // filled in later
1132   _cfg     = NULL;  // filled in later
1133 
1134   set_24_bit_selection_and_mode(Use24BitFP, false);
1135 
1136   _node_note_array = NULL;
1137   _default_node_notes = NULL;
1138   DEBUG_ONLY( _modified_nodes = NULL; ) // Used in Optimize()
1139 
1140   _immutable_memory = NULL; // filled in at first inquiry
1141 
1142   // Globally visible Nodes
1143   // First set TOP to NULL to give safe behavior during creation of RootNode
1144   set_cached_top_node(NULL);
1145   set_root(new RootNode());
1146   // Now that you have a Root to point to, create the real TOP
1147   set_cached_top_node( new ConNode(Type::TOP) );
1148   set_recent_alloc(NULL, NULL);
1149 
1150   // Create Debug Information Recorder to record scopes, oopmaps, etc.
1151   env()->set_oop_recorder(new OopRecorder(env()->arena()));
1152   env()->set_debug_info(new DebugInformationRecorder(env()->oop_recorder()));
1153   env()->set_dependencies(new Dependencies(env()));
1154 
1155   _fixed_slots = 0;
1156   set_has_split_ifs(false);
1157   set_has_loops(has_method() && method()->has_loops()); // first approximation
1158   set_has_stringbuilder(false);
1159   set_has_boxed_value(false);
1160   _trap_can_recompile = false;  // no traps emitted yet
1161   _major_progress = true; // start out assuming good things will happen
1162   set_has_unsafe_access(false);
1163   set_max_vector_size(0);
1164   set_clear_upper_avx(false);  //false as default for clear upper bits of ymm registers
1165   Copy::zero_to_bytes(_trap_hist, sizeof(_trap_hist));
1166   set_decompile_count(0);
1167 
1168   set_do_freq_based_layout(_directive->BlockLayoutByFrequencyOption);
1169   _loop_opts_cnt = LoopOptsCount;
1170   _has_flattened_accesses = false;
1171   _flattened_accesses_share_alias = true;
1172   
1173   set_do_inlining(Inline);
1174   set_max_inline_size(MaxInlineSize);
1175   set_freq_inline_size(FreqInlineSize);
1176   set_do_scheduling(OptoScheduling);
1177   set_do_count_invocations(false);
1178   set_do_method_data_update(false);
1179 
1180   set_do_vector_loop(false);
1181 
1182   if (AllowVectorizeOnDemand) {
1183     if (has_method() && (_directive->VectorizeOption || _directive->VectorizeDebugOption)) {
1184       set_do_vector_loop(true);
1185       NOT_PRODUCT(if (do_vector_loop() && Verbose) {tty->print("Compile::Init: do vectorized loops (SIMD like) for method %s\n",  method()->name()->as_quoted_ascii());})
1186     } else if (has_method() && method()->name() != 0 &&
1187                method()->intrinsic_id() == vmIntrinsics::_forEachRemaining) {
1188       set_do_vector_loop(true);
1189     }
1190   }
1191   set_use_cmove(UseCMoveUnconditionally /* || do_vector_loop()*/); //TODO: consider do_vector_loop() mandate use_cmove unconditionally
1192   NOT_PRODUCT(if (use_cmove() && Verbose && has_method()) {tty->print("Compile::Init: use CMove without profitability tests for method %s\n",  method()->name()->as_quoted_ascii());})
1193 
1194   set_age_code(has_method() && method()->profile_aging());
1195   set_rtm_state(NoRTM); // No RTM lock eliding by default
1196   _max_node_limit = _directive->MaxNodeLimitOption;
1197 
1198 #if INCLUDE_RTM_OPT
1199   if (UseRTMLocking && has_method() && (method()->method_data_or_null() != NULL)) {
1200     int rtm_state = method()->method_data()->rtm_state();
1201     if (method_has_option("NoRTMLockEliding") || ((rtm_state & NoRTM) != 0)) {
1202       // Don't generate RTM lock eliding code.
1203       set_rtm_state(NoRTM);
1204     } else if (method_has_option("UseRTMLockEliding") || ((rtm_state & UseRTM) != 0) || !UseRTMDeopt) {
1205       // Generate RTM lock eliding code without abort ratio calculation code.
1206       set_rtm_state(UseRTM);
1207     } else if (UseRTMDeopt) {
1208       // Generate RTM lock eliding code and include abort ratio calculation
1209       // code if UseRTMDeopt is on.
1210       set_rtm_state(ProfileRTM);
1211     }
1212   }
1213 #endif
1214   if (debug_info()->recording_non_safepoints()) {
1215     set_node_note_array(new(comp_arena()) GrowableArray<Node_Notes*>
1216                         (comp_arena(), 8, 0, NULL));
1217     set_default_node_notes(Node_Notes::make(this));
1218   }
1219 
1220   // // -- Initialize types before each compile --
1221   // // Update cached type information
1222   // if( _method && _method->constants() )
1223   //   Type::update_loaded_types(_method, _method->constants());
1224 
1225   // Init alias_type map.
1226   if (!_do_escape_analysis && aliaslevel == 3)
1227     aliaslevel = 2;  // No unique types without escape analysis
1228   _AliasLevel = aliaslevel;
1229   const int grow_ats = 16;
1230   _max_alias_types = grow_ats;
1231   _alias_types   = NEW_ARENA_ARRAY(comp_arena(), AliasType*, grow_ats);
1232   AliasType* ats = NEW_ARENA_ARRAY(comp_arena(), AliasType,  grow_ats);
1233   Copy::zero_to_bytes(ats, sizeof(AliasType)*grow_ats);
1234   {
1235     for (int i = 0; i < grow_ats; i++)  _alias_types[i] = &ats[i];
1236   }
1237   // Initialize the first few types.
1238   _alias_types[AliasIdxTop]->Init(AliasIdxTop, NULL);
1239   _alias_types[AliasIdxBot]->Init(AliasIdxBot, TypePtr::BOTTOM);
1240   _alias_types[AliasIdxRaw]->Init(AliasIdxRaw, TypeRawPtr::BOTTOM);
1241   _num_alias_types = AliasIdxRaw+1;
1242   // Zero out the alias type cache.
1243   Copy::zero_to_bytes(_alias_cache, sizeof(_alias_cache));
1244   // A NULL adr_type hits in the cache right away.  Preload the right answer.
1245   probe_alias_cache(NULL)->_index = AliasIdxTop;
1246 
1247   _intrinsics = NULL;
1248   _macro_nodes = new(comp_arena()) GrowableArray<Node*>(comp_arena(), 8,  0, NULL);
1249   _predicate_opaqs = new(comp_arena()) GrowableArray<Node*>(comp_arena(), 8,  0, NULL);
1250   _expensive_nodes = new(comp_arena()) GrowableArray<Node*>(comp_arena(), 8,  0, NULL);
1251   _range_check_casts = new(comp_arena()) GrowableArray<Node*>(comp_arena(), 8,  0, NULL);
1252   _opaque4_nodes = new(comp_arena()) GrowableArray<Node*>(comp_arena(), 8,  0, NULL);
1253   _value_type_nodes = new (comp_arena()) Unique_Node_List(comp_arena());
1254   register_library_intrinsics();
1255 }
1256 
1257 //---------------------------init_start----------------------------------------
1258 // Install the StartNode on this compile object.
1259 void Compile::init_start(StartNode* s) {
1260   if (failing())
1261     return; // already failing
1262   assert(s == start(), "");
1263 }
1264 
1265 /**
1266  * Return the 'StartNode'. We must not have a pending failure, since the ideal graph
1267  * can be in an inconsistent state, i.e., we can get segmentation faults when traversing
1268  * the ideal graph.
1269  */
1270 StartNode* Compile::start() const {
1271   assert (!failing(), "Must not have pending failure. Reason is: %s", failure_reason());
1272   for (DUIterator_Fast imax, i = root()->fast_outs(imax); i < imax; i++) {
1273     Node* start = root()->fast_out(i);
1274     if (start->is_Start()) {
1275       return start->as_Start();
1276     }
1277   }
1278   fatal("Did not find Start node!");
1279   return NULL;
1280 }
1281 
1282 //-------------------------------immutable_memory-------------------------------------
1283 // Access immutable memory
1284 Node* Compile::immutable_memory() {
1285   if (_immutable_memory != NULL) {
1286     return _immutable_memory;
1287   }
1288   StartNode* s = start();
1289   for (DUIterator_Fast imax, i = s->fast_outs(imax); true; i++) {
1290     Node *p = s->fast_out(i);
1291     if (p != s && p->as_Proj()->_con == TypeFunc::Memory) {
1292       _immutable_memory = p;
1293       return _immutable_memory;
1294     }
1295   }
1296   ShouldNotReachHere();
1297   return NULL;
1298 }
1299 
1300 //----------------------set_cached_top_node------------------------------------
1301 // Install the cached top node, and make sure Node::is_top works correctly.
1302 void Compile::set_cached_top_node(Node* tn) {
1303   if (tn != NULL)  verify_top(tn);
1304   Node* old_top = _top;
1305   _top = tn;
1306   // Calling Node::setup_is_top allows the nodes the chance to adjust
1307   // their _out arrays.
1308   if (_top != NULL)     _top->setup_is_top();
1309   if (old_top != NULL)  old_top->setup_is_top();
1310   assert(_top == NULL || top()->is_top(), "");
1311 }
1312 
1313 #ifdef ASSERT
1314 uint Compile::count_live_nodes_by_graph_walk() {
1315   Unique_Node_List useful(comp_arena());
1316   // Get useful node list by walking the graph.
1317   identify_useful_nodes(useful);
1318   return useful.size();
1319 }
1320 
1321 void Compile::print_missing_nodes() {
1322 
1323   // Return if CompileLog is NULL and PrintIdealNodeCount is false.
1324   if ((_log == NULL) && (! PrintIdealNodeCount)) {
1325     return;
1326   }
1327 
1328   // This is an expensive function. It is executed only when the user
1329   // specifies VerifyIdealNodeCount option or otherwise knows the
1330   // additional work that needs to be done to identify reachable nodes
1331   // by walking the flow graph and find the missing ones using
1332   // _dead_node_list.
1333 
1334   Unique_Node_List useful(comp_arena());
1335   // Get useful node list by walking the graph.
1336   identify_useful_nodes(useful);
1337 
1338   uint l_nodes = C->live_nodes();
1339   uint l_nodes_by_walk = useful.size();
1340 
1341   if (l_nodes != l_nodes_by_walk) {
1342     if (_log != NULL) {
1343       _log->begin_head("mismatched_nodes count='%d'", abs((int) (l_nodes - l_nodes_by_walk)));
1344       _log->stamp();
1345       _log->end_head();
1346     }
1347     VectorSet& useful_member_set = useful.member_set();
1348     int last_idx = l_nodes_by_walk;
1349     for (int i = 0; i < last_idx; i++) {
1350       if (useful_member_set.test(i)) {
1351         if (_dead_node_list.test(i)) {
1352           if (_log != NULL) {
1353             _log->elem("mismatched_node_info node_idx='%d' type='both live and dead'", i);
1354           }
1355           if (PrintIdealNodeCount) {
1356             // Print the log message to tty
1357               tty->print_cr("mismatched_node idx='%d' both live and dead'", i);
1358               useful.at(i)->dump();
1359           }
1360         }
1361       }
1362       else if (! _dead_node_list.test(i)) {
1363         if (_log != NULL) {
1364           _log->elem("mismatched_node_info node_idx='%d' type='neither live nor dead'", i);
1365         }
1366         if (PrintIdealNodeCount) {
1367           // Print the log message to tty
1368           tty->print_cr("mismatched_node idx='%d' type='neither live nor dead'", i);
1369         }
1370       }
1371     }
1372     if (_log != NULL) {
1373       _log->tail("mismatched_nodes");
1374     }
1375   }
1376 }
1377 void Compile::record_modified_node(Node* n) {
1378   if (_modified_nodes != NULL && !_inlining_incrementally &&
1379       n->outcnt() != 0 && !n->is_Con()) {
1380     _modified_nodes->push(n);
1381   }
1382 }
1383 
1384 void Compile::remove_modified_node(Node* n) {
1385   if (_modified_nodes != NULL) {
1386     _modified_nodes->remove(n);
1387   }
1388 }
1389 #endif
1390 
1391 #ifndef PRODUCT
1392 void Compile::verify_top(Node* tn) const {
1393   if (tn != NULL) {
1394     assert(tn->is_Con(), "top node must be a constant");
1395     assert(((ConNode*)tn)->type() == Type::TOP, "top node must have correct type");
1396     assert(tn->in(0) != NULL, "must have live top node");
1397   }
1398 }
1399 #endif
1400 
1401 
1402 ///-------------------Managing Per-Node Debug & Profile Info-------------------
1403 
1404 void Compile::grow_node_notes(GrowableArray<Node_Notes*>* arr, int grow_by) {
1405   guarantee(arr != NULL, "");
1406   int num_blocks = arr->length();
1407   if (grow_by < num_blocks)  grow_by = num_blocks;
1408   int num_notes = grow_by * _node_notes_block_size;
1409   Node_Notes* notes = NEW_ARENA_ARRAY(node_arena(), Node_Notes, num_notes);
1410   Copy::zero_to_bytes(notes, num_notes * sizeof(Node_Notes));
1411   while (num_notes > 0) {
1412     arr->append(notes);
1413     notes     += _node_notes_block_size;
1414     num_notes -= _node_notes_block_size;
1415   }
1416   assert(num_notes == 0, "exact multiple, please");
1417 }
1418 
1419 bool Compile::copy_node_notes_to(Node* dest, Node* source) {
1420   if (source == NULL || dest == NULL)  return false;
1421 
1422   if (dest->is_Con())
1423     return false;               // Do not push debug info onto constants.
1424 
1425 #ifdef ASSERT
1426   // Leave a bread crumb trail pointing to the original node:
1427   if (dest != NULL && dest != source && dest->debug_orig() == NULL) {
1428     dest->set_debug_orig(source);
1429   }
1430 #endif
1431 
1432   if (node_note_array() == NULL)
1433     return false;               // Not collecting any notes now.
1434 
1435   // This is a copy onto a pre-existing node, which may already have notes.
1436   // If both nodes have notes, do not overwrite any pre-existing notes.
1437   Node_Notes* source_notes = node_notes_at(source->_idx);
1438   if (source_notes == NULL || source_notes->is_clear())  return false;
1439   Node_Notes* dest_notes   = node_notes_at(dest->_idx);
1440   if (dest_notes == NULL || dest_notes->is_clear()) {
1441     return set_node_notes_at(dest->_idx, source_notes);
1442   }
1443 
1444   Node_Notes merged_notes = (*source_notes);
1445   // The order of operations here ensures that dest notes will win...
1446   merged_notes.update_from(dest_notes);
1447   return set_node_notes_at(dest->_idx, &merged_notes);
1448 }
1449 
1450 
1451 //--------------------------allow_range_check_smearing-------------------------
1452 // Gating condition for coalescing similar range checks.
1453 // Sometimes we try 'speculatively' replacing a series of a range checks by a
1454 // single covering check that is at least as strong as any of them.
1455 // If the optimization succeeds, the simplified (strengthened) range check
1456 // will always succeed.  If it fails, we will deopt, and then give up
1457 // on the optimization.
1458 bool Compile::allow_range_check_smearing() const {
1459   // If this method has already thrown a range-check,
1460   // assume it was because we already tried range smearing
1461   // and it failed.
1462   uint already_trapped = trap_count(Deoptimization::Reason_range_check);
1463   return !already_trapped;
1464 }
1465 
1466 
1467 //------------------------------flatten_alias_type-----------------------------
1468 const TypePtr *Compile::flatten_alias_type( const TypePtr *tj ) const {
1469   int offset = tj->offset();
1470   TypePtr::PTR ptr = tj->ptr();
1471 
1472   // Known instance (scalarizable allocation) alias only with itself.
1473   bool is_known_inst = tj->isa_oopptr() != NULL &&
1474                        tj->is_oopptr()->is_known_instance();
1475 
1476   // Process weird unsafe references.
1477   if (offset == Type::OffsetBot && (tj->isa_instptr() /*|| tj->isa_klassptr()*/)) {
1478     bool default_value_load = EnableValhalla && tj->is_instptr()->klass() == ciEnv::current()->Class_klass();
1479     assert(InlineUnsafeOps || default_value_load, "indeterminate pointers come only from unsafe ops");
1480     assert(!is_known_inst, "scalarizable allocation should not have unsafe references");
1481     tj = TypeOopPtr::BOTTOM;
1482     ptr = tj->ptr();
1483     offset = tj->offset();
1484   }
1485 
1486   // Array pointers need some flattening
1487   const TypeAryPtr *ta = tj->isa_aryptr();
1488   if (ta && ta->is_stable()) {
1489     // Erase stability property for alias analysis.
1490     tj = ta = ta->cast_to_stable(false);
1491   }
1492   if( ta && is_known_inst ) {
1493     if ( offset != Type::OffsetBot &&
1494          offset > arrayOopDesc::length_offset_in_bytes() ) {
1495       offset = Type::OffsetBot; // Flatten constant access into array body only
1496       tj = ta = TypeAryPtr::make(ptr, ta->ary(), ta->klass(), true, Type::Offset(offset), ta->field_offset(), ta->instance_id());
1497     }
1498   } else if( ta && _AliasLevel >= 2 ) {
1499     // For arrays indexed by constant indices, we flatten the alias
1500     // space to include all of the array body.  Only the header, klass
1501     // and array length can be accessed un-aliased.
1502     // For flattened value type array, each field has its own slice so
1503     // we must include the field offset.
1504     if( offset != Type::OffsetBot ) {
1505       if( ta->const_oop() ) { // MethodData* or Method*
1506         offset = Type::OffsetBot;   // Flatten constant access into array body
1507         tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),ta->ary(),ta->klass(),false,Type::Offset(offset), ta->field_offset());
1508       } else if( offset == arrayOopDesc::length_offset_in_bytes() ) {
1509         // range is OK as-is.
1510         tj = ta = TypeAryPtr::RANGE;
1511       } else if( offset == oopDesc::klass_offset_in_bytes() ) {
1512         tj = TypeInstPtr::KLASS; // all klass loads look alike
1513         ta = TypeAryPtr::RANGE; // generic ignored junk
1514         ptr = TypePtr::BotPTR;
1515       } else if( offset == oopDesc::mark_offset_in_bytes() ) {
1516         tj = TypeInstPtr::MARK;
1517         ta = TypeAryPtr::RANGE; // generic ignored junk
1518         ptr = TypePtr::BotPTR;
1519       } else if (BarrierSet::barrier_set()->barrier_set_c2()->flatten_gc_alias_type(tj)) {
1520         ta = tj->isa_aryptr();
1521       } else {                  // Random constant offset into array body
1522         offset = Type::OffsetBot;   // Flatten constant access into array body
1523         tj = ta = TypeAryPtr::make(ptr,ta->ary(),ta->klass(),false,Type::Offset(offset), ta->field_offset());
1524       }
1525     }
1526     // Arrays of fixed size alias with arrays of unknown size.
1527     if (ta->size() != TypeInt::POS) {
1528       const TypeAry *tary = TypeAry::make(ta->elem(), TypeInt::POS);
1529       tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,ta->klass(),false,Type::Offset(offset), ta->field_offset());
1530     }
1531     // Arrays of known objects become arrays of unknown objects.
1532     if (ta->elem()->isa_narrowoop() && ta->elem() != TypeNarrowOop::BOTTOM) {
1533       const TypeAry *tary = TypeAry::make(TypeNarrowOop::BOTTOM, ta->size());
1534       tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,NULL,false,Type::Offset(offset), ta->field_offset());
1535     }
1536     if (ta->elem()->isa_oopptr() && ta->elem() != TypeInstPtr::BOTTOM) {
1537       const TypeAry *tary = TypeAry::make(TypeInstPtr::BOTTOM, ta->size());
1538       tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,NULL,false,Type::Offset(offset), ta->field_offset());
1539     }
1540     // Initially all flattened array accesses share a single slice
1541     if (ta->elem()->isa_valuetype() && ta->elem() != TypeValueType::BOTTOM && _flattened_accesses_share_alias) {
1542       const TypeAry *tary = TypeAry::make(TypeValueType::BOTTOM, ta->size());
1543       tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,NULL,false,Type::Offset(offset), Type::Offset(Type::OffsetBot));
1544     }
1545     // Arrays of bytes and of booleans both use 'bastore' and 'baload' so
1546     // cannot be distinguished by bytecode alone.
1547     if (ta->elem() == TypeInt::BOOL) {
1548       const TypeAry *tary = TypeAry::make(TypeInt::BYTE, ta->size());
1549       ciKlass* aklass = ciTypeArrayKlass::make(T_BYTE);
1550       tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,aklass,false,Type::Offset(offset), ta->field_offset());
1551     }
1552     // During the 2nd round of IterGVN, NotNull castings are removed.
1553     // Make sure the Bottom and NotNull variants alias the same.
1554     // Also, make sure exact and non-exact variants alias the same.
1555     if (ptr == TypePtr::NotNull || ta->klass_is_exact() || ta->speculative() != NULL) {
1556       tj = ta = TypeAryPtr::make(TypePtr::BotPTR,ta->ary(),ta->klass(),false,Type::Offset(offset), ta->field_offset());
1557     }
1558   }
1559 
1560   // Oop pointers need some flattening
1561   const TypeInstPtr *to = tj->isa_instptr();
1562   if( to && _AliasLevel >= 2 && to != TypeOopPtr::BOTTOM ) {
1563     ciInstanceKlass *k = to->klass()->as_instance_klass();
1564     if( ptr == TypePtr::Constant ) {
1565       if (to->klass() != ciEnv::current()->Class_klass() ||
1566           offset < k->size_helper() * wordSize) {
1567         // No constant oop pointers (such as Strings); they alias with
1568         // unknown strings.
1569         assert(!is_known_inst, "not scalarizable allocation");
1570         tj = to = TypeInstPtr::make(TypePtr::BotPTR,to->klass(),false,0,Type::Offset(offset));
1571       }
1572     } else if( is_known_inst ) {
1573       tj = to; // Keep NotNull and klass_is_exact for instance type
1574     } else if( ptr == TypePtr::NotNull || to->klass_is_exact() ) {
1575       // During the 2nd round of IterGVN, NotNull castings are removed.
1576       // Make sure the Bottom and NotNull variants alias the same.
1577       // Also, make sure exact and non-exact variants alias the same.
1578       tj = to = TypeInstPtr::make(TypePtr::BotPTR,to->klass(),false,0,Type::Offset(offset));
1579     }
1580     if (to->speculative() != NULL) {
1581       tj = to = TypeInstPtr::make(to->ptr(),to->klass(),to->klass_is_exact(),to->const_oop(),Type::Offset(to->offset()), to->instance_id());
1582     }
1583     // Canonicalize the holder of this field
1584     if (offset >= 0 && offset < instanceOopDesc::base_offset_in_bytes()) {
1585       // First handle header references such as a LoadKlassNode, even if the
1586       // object's klass is unloaded at compile time (4965979).
1587       if (!is_known_inst) { // Do it only for non-instance types
1588         tj = to = TypeInstPtr::make(TypePtr::BotPTR, env()->Object_klass(), false, NULL, Type::Offset(offset));
1589       }
1590     } else if (BarrierSet::barrier_set()->barrier_set_c2()->flatten_gc_alias_type(tj)) {
1591       to = tj->is_instptr();
1592     } else if (offset < 0 || offset >= k->size_helper() * wordSize) {
1593       // Static fields are in the space above the normal instance
1594       // fields in the java.lang.Class instance.
1595       if (to->klass() != ciEnv::current()->Class_klass()) {
1596         to = NULL;
1597         tj = TypeOopPtr::BOTTOM;
1598         offset = tj->offset();
1599       }
1600     } else {
1601       ciInstanceKlass *canonical_holder = k->get_canonical_holder(offset);
1602       if (!k->equals(canonical_holder) || tj->offset() != offset) {
1603         if( is_known_inst ) {
1604           tj = to = TypeInstPtr::make(to->ptr(), canonical_holder, true, NULL, Type::Offset(offset), to->instance_id());
1605         } else {
1606           tj = to = TypeInstPtr::make(to->ptr(), canonical_holder, false, NULL, Type::Offset(offset));
1607         }
1608       }
1609     }
1610   }
1611 
1612   // Klass pointers to object array klasses need some flattening
1613   const TypeKlassPtr *tk = tj->isa_klassptr();
1614   if( tk ) {
1615     // If we are referencing a field within a Klass, we need
1616     // to assume the worst case of an Object.  Both exact and
1617     // inexact types must flatten to the same alias class so
1618     // use NotNull as the PTR.
1619     if ( offset == Type::OffsetBot || (offset >= 0 && (size_t)offset < sizeof(Klass)) ) {
1620 
1621       tj = tk = TypeKlassPtr::make(TypePtr::NotNull,
1622                                    TypeKlassPtr::OBJECT->klass(),
1623                                    Type::Offset(offset));
1624     }
1625 
1626     ciKlass* klass = tk->klass();
1627     if (klass != NULL && klass->is_obj_array_klass()) {
1628       ciKlass* k = TypeAryPtr::OOPS->klass();
1629       if( !k || !k->is_loaded() )                  // Only fails for some -Xcomp runs
1630         k = TypeInstPtr::BOTTOM->klass();
1631       tj = tk = TypeKlassPtr::make(TypePtr::NotNull, k, Type::Offset(offset));
1632     }
1633 
1634     // Check for precise loads from the primary supertype array and force them
1635     // to the supertype cache alias index.  Check for generic array loads from
1636     // the primary supertype array and also force them to the supertype cache
1637     // alias index.  Since the same load can reach both, we need to merge
1638     // these 2 disparate memories into the same alias class.  Since the
1639     // primary supertype array is read-only, there's no chance of confusion
1640     // where we bypass an array load and an array store.
1641     int primary_supers_offset = in_bytes(Klass::primary_supers_offset());
1642     if (offset == Type::OffsetBot ||
1643         (offset >= primary_supers_offset &&
1644          offset < (int)(primary_supers_offset + Klass::primary_super_limit() * wordSize)) ||
1645         offset == (int)in_bytes(Klass::secondary_super_cache_offset())) {
1646       offset = in_bytes(Klass::secondary_super_cache_offset());
1647       tj = tk = TypeKlassPtr::make(TypePtr::NotNull, tk->klass(), Type::Offset(offset));
1648     }
1649   }
1650 
1651   // Flatten all Raw pointers together.
1652   if (tj->base() == Type::RawPtr)
1653     tj = TypeRawPtr::BOTTOM;
1654 
1655   if (tj->base() == Type::AnyPtr)
1656     tj = TypePtr::BOTTOM;      // An error, which the caller must check for.
1657 
1658   // Flatten all to bottom for now
1659   switch( _AliasLevel ) {
1660   case 0:
1661     tj = TypePtr::BOTTOM;
1662     break;
1663   case 1:                       // Flatten to: oop, static, field or array
1664     switch (tj->base()) {
1665     //case Type::AryPtr: tj = TypeAryPtr::RANGE;    break;
1666     case Type::RawPtr:   tj = TypeRawPtr::BOTTOM;   break;
1667     case Type::AryPtr:   // do not distinguish arrays at all
1668     case Type::InstPtr:  tj = TypeInstPtr::BOTTOM;  break;
1669     case Type::KlassPtr: tj = TypeKlassPtr::OBJECT; break;
1670     case Type::AnyPtr:   tj = TypePtr::BOTTOM;      break;  // caller checks it
1671     default: ShouldNotReachHere();
1672     }
1673     break;
1674   case 2:                       // No collapsing at level 2; keep all splits
1675   case 3:                       // No collapsing at level 3; keep all splits
1676     break;
1677   default:
1678     Unimplemented();
1679   }
1680 
1681   offset = tj->offset();
1682   assert( offset != Type::OffsetTop, "Offset has fallen from constant" );
1683 
1684   assert( (offset != Type::OffsetBot && tj->base() != Type::AryPtr) ||
1685           (offset == Type::OffsetBot && tj->base() == Type::AryPtr) ||
1686           (offset == Type::OffsetBot && tj == TypeOopPtr::BOTTOM) ||
1687           (offset == Type::OffsetBot && tj == TypePtr::BOTTOM) ||
1688           (offset == oopDesc::mark_offset_in_bytes() && tj->base() == Type::AryPtr) ||
1689           (offset == oopDesc::klass_offset_in_bytes() && tj->base() == Type::AryPtr) ||
1690           (offset == arrayOopDesc::length_offset_in_bytes() && tj->base() == Type::AryPtr) ||
1691           (BarrierSet::barrier_set()->barrier_set_c2()->verify_gc_alias_type(tj, offset)),
1692           "For oops, klasses, raw offset must be constant; for arrays the offset is never known" );
1693   assert( tj->ptr() != TypePtr::TopPTR &&
1694           tj->ptr() != TypePtr::AnyNull &&
1695           tj->ptr() != TypePtr::Null, "No imprecise addresses" );
1696 //    assert( tj->ptr() != TypePtr::Constant ||
1697 //            tj->base() == Type::RawPtr ||
1698 //            tj->base() == Type::KlassPtr, "No constant oop addresses" );
1699 
1700   return tj;
1701 }
1702 
1703 void Compile::AliasType::Init(int i, const TypePtr* at) {
1704   _index = i;
1705   _adr_type = at;
1706   _field = NULL;
1707   _element = NULL;
1708   _is_rewritable = true; // default
1709   const TypeOopPtr *atoop = (at != NULL) ? at->isa_oopptr() : NULL;
1710   if (atoop != NULL && atoop->is_known_instance()) {
1711     const TypeOopPtr *gt = atoop->cast_to_instance_id(TypeOopPtr::InstanceBot);
1712     _general_index = Compile::current()->get_alias_index(gt);
1713   } else {
1714     _general_index = 0;
1715   }
1716 }
1717 
1718 BasicType Compile::AliasType::basic_type() const {
1719   if (element() != NULL) {
1720     const Type* element = adr_type()->is_aryptr()->elem();
1721     return element->isa_narrowoop() ? T_OBJECT : element->array_element_basic_type();
1722   } if (field() != NULL) {
1723     return field()->layout_type();
1724   } else {
1725     return T_ILLEGAL; // unknown
1726   }
1727 }
1728 
1729 //---------------------------------print_on------------------------------------
1730 #ifndef PRODUCT
1731 void Compile::AliasType::print_on(outputStream* st) {
1732   if (index() < 10)
1733         st->print("@ <%d> ", index());
1734   else  st->print("@ <%d>",  index());
1735   st->print(is_rewritable() ? "   " : " RO");
1736   int offset = adr_type()->offset();
1737   if (offset == Type::OffsetBot)
1738         st->print(" +any");
1739   else  st->print(" +%-3d", offset);
1740   st->print(" in ");
1741   adr_type()->dump_on(st);
1742   const TypeOopPtr* tjp = adr_type()->isa_oopptr();
1743   if (field() != NULL && tjp) {
1744     if (tjp->klass()  != field()->holder() ||
1745         tjp->offset() != field()->offset_in_bytes()) {
1746       st->print(" != ");
1747       field()->print();
1748       st->print(" ***");
1749     }
1750   }
1751 }
1752 
1753 void print_alias_types() {
1754   Compile* C = Compile::current();
1755   tty->print_cr("--- Alias types, AliasIdxBot .. %d", C->num_alias_types()-1);
1756   for (int idx = Compile::AliasIdxBot; idx < C->num_alias_types(); idx++) {
1757     C->alias_type(idx)->print_on(tty);
1758     tty->cr();
1759   }
1760 }
1761 #endif
1762 
1763 
1764 //----------------------------probe_alias_cache--------------------------------
1765 Compile::AliasCacheEntry* Compile::probe_alias_cache(const TypePtr* adr_type) {
1766   intptr_t key = (intptr_t) adr_type;
1767   key ^= key >> logAliasCacheSize;
1768   return &_alias_cache[key & right_n_bits(logAliasCacheSize)];
1769 }
1770 
1771 
1772 //-----------------------------grow_alias_types--------------------------------
1773 void Compile::grow_alias_types() {
1774   const int old_ats  = _max_alias_types; // how many before?
1775   const int new_ats  = old_ats;          // how many more?
1776   const int grow_ats = old_ats+new_ats;  // how many now?
1777   _max_alias_types = grow_ats;
1778   _alias_types =  REALLOC_ARENA_ARRAY(comp_arena(), AliasType*, _alias_types, old_ats, grow_ats);
1779   AliasType* ats =    NEW_ARENA_ARRAY(comp_arena(), AliasType, new_ats);
1780   Copy::zero_to_bytes(ats, sizeof(AliasType)*new_ats);
1781   for (int i = 0; i < new_ats; i++)  _alias_types[old_ats+i] = &ats[i];
1782 }
1783 
1784 
1785 //--------------------------------find_alias_type------------------------------
1786 Compile::AliasType* Compile::find_alias_type(const TypePtr* adr_type, bool no_create, ciField* original_field, bool uncached) {
1787   if (_AliasLevel == 0)
1788     return alias_type(AliasIdxBot);
1789 
1790   AliasCacheEntry* ace = NULL;
1791   if (!uncached) {
1792     ace = probe_alias_cache(adr_type);
1793     if (ace->_adr_type == adr_type) {
1794       return alias_type(ace->_index);
1795     }
1796   }
1797 
1798   // Handle special cases.
1799   if (adr_type == NULL)             return alias_type(AliasIdxTop);
1800   if (adr_type == TypePtr::BOTTOM)  return alias_type(AliasIdxBot);
1801 
1802   // Do it the slow way.
1803   const TypePtr* flat = flatten_alias_type(adr_type);
1804 
1805 #ifdef ASSERT
1806   {
1807     ResourceMark rm;
1808     assert(flat == flatten_alias_type(flat), "not idempotent: adr_type = %s; flat = %s => %s",
1809            Type::str(adr_type), Type::str(flat), Type::str(flatten_alias_type(flat)));
1810     assert(flat != TypePtr::BOTTOM, "cannot alias-analyze an untyped ptr: adr_type = %s",
1811            Type::str(adr_type));
1812     if (flat->isa_oopptr() && !flat->isa_klassptr()) {
1813       const TypeOopPtr* foop = flat->is_oopptr();
1814       // Scalarizable allocations have exact klass always.
1815       bool exact = !foop->klass_is_exact() || foop->is_known_instance();
1816       const TypePtr* xoop = foop->cast_to_exactness(exact)->is_ptr();
1817       assert(foop == flatten_alias_type(xoop), "exactness must not affect alias type: foop = %s; xoop = %s",
1818              Type::str(foop), Type::str(xoop));
1819     }
1820   }
1821 #endif
1822 
1823   int idx = AliasIdxTop;
1824   for (int i = 0; i < num_alias_types(); i++) {
1825     if (alias_type(i)->adr_type() == flat) {
1826       idx = i;
1827       break;
1828     }
1829   }
1830 
1831   if (idx == AliasIdxTop) {
1832     if (no_create)  return NULL;
1833     // Grow the array if necessary.
1834     if (_num_alias_types == _max_alias_types)  grow_alias_types();
1835     // Add a new alias type.
1836     idx = _num_alias_types++;
1837     _alias_types[idx]->Init(idx, flat);
1838     if (flat == TypeInstPtr::KLASS)  alias_type(idx)->set_rewritable(false);
1839     if (flat == TypeAryPtr::RANGE)   alias_type(idx)->set_rewritable(false);
1840     if (flat->isa_instptr()) {
1841       if (flat->offset() == java_lang_Class::klass_offset_in_bytes()
1842           && flat->is_instptr()->klass() == env()->Class_klass())
1843         alias_type(idx)->set_rewritable(false);
1844     }
1845     ciField* field = NULL;
1846     if (flat->isa_aryptr()) {
1847 #ifdef ASSERT
1848       const int header_size_min  = arrayOopDesc::base_offset_in_bytes(T_BYTE);
1849       // (T_BYTE has the weakest alignment and size restrictions...)
1850       assert(flat->offset() < header_size_min, "array body reference must be OffsetBot");
1851 #endif
1852       const Type* elemtype = flat->is_aryptr()->elem();
1853       if (flat->offset() == TypePtr::OffsetBot) {
1854         alias_type(idx)->set_element(elemtype);
1855       }
1856       int field_offset = flat->is_aryptr()->field_offset().get();
1857       if (elemtype->isa_valuetype() &&
1858           elemtype->value_klass() != NULL &&
1859           field_offset != Type::OffsetBot) {
1860         ciValueKlass* vk = elemtype->value_klass();
1861         field_offset += vk->first_field_offset();
1862         field = vk->get_field_by_offset(field_offset, false);
1863       }
1864     }
1865     if (flat->isa_klassptr()) {
1866       if (flat->offset() == in_bytes(Klass::super_check_offset_offset()))
1867         alias_type(idx)->set_rewritable(false);
1868       if (flat->offset() == in_bytes(Klass::modifier_flags_offset()))
1869         alias_type(idx)->set_rewritable(false);
1870       if (flat->offset() == in_bytes(Klass::access_flags_offset()))
1871         alias_type(idx)->set_rewritable(false);
1872       if (flat->offset() == in_bytes(Klass::java_mirror_offset()))
1873         alias_type(idx)->set_rewritable(false);
1874       if (flat->offset() == in_bytes(Klass::layout_helper_offset()))
1875         alias_type(idx)->set_rewritable(false);
1876     }
1877     // %%% (We would like to finalize JavaThread::threadObj_offset(),
1878     // but the base pointer type is not distinctive enough to identify
1879     // references into JavaThread.)
1880 
1881     // Check for final fields.
1882     const TypeInstPtr* tinst = flat->isa_instptr();
1883     if (tinst && tinst->offset() >= instanceOopDesc::base_offset_in_bytes()) {
1884       if (tinst->const_oop() != NULL &&
1885           tinst->klass() == ciEnv::current()->Class_klass() &&
1886           tinst->offset() >= (tinst->klass()->as_instance_klass()->size_helper() * wordSize)) {
1887         // static field
1888         ciInstanceKlass* k = tinst->const_oop()->as_instance()->java_lang_Class_klass()->as_instance_klass();
1889         field = k->get_field_by_offset(tinst->offset(), true);
1890       } else if (tinst->klass()->is_valuetype()) {
1891         // Value type field
1892         ciValueKlass* vk = tinst->value_klass();
1893         field = vk->get_field_by_offset(tinst->offset(), false);
1894       } else {
1895         ciInstanceKlass* k = tinst->klass()->as_instance_klass();
1896         field = k->get_field_by_offset(tinst->offset(), false);
1897       }
1898     }
1899     assert(field == NULL ||
1900            original_field == NULL ||
1901            (field->holder() == original_field->holder() &&
1902             field->offset() == original_field->offset() &&
1903             field->is_static() == original_field->is_static()), "wrong field?");
1904     // Set field() and is_rewritable() attributes.
1905     if (field != NULL)  alias_type(idx)->set_field(field);
1906   }
1907 
1908   // Fill the cache for next time.
1909   if (!uncached) {
1910     ace->_adr_type = adr_type;
1911     ace->_index    = idx;
1912     assert(alias_type(adr_type) == alias_type(idx),  "type must be installed");
1913 
1914     // Might as well try to fill the cache for the flattened version, too.
1915     AliasCacheEntry* face = probe_alias_cache(flat);
1916     if (face->_adr_type == NULL) {
1917       face->_adr_type = flat;
1918       face->_index    = idx;
1919       assert(alias_type(flat) == alias_type(idx), "flat type must work too");
1920     }
1921   }
1922 
1923   return alias_type(idx);
1924 }
1925 
1926 
1927 Compile::AliasType* Compile::alias_type(ciField* field) {
1928   const TypeOopPtr* t;
1929   if (field->is_static())
1930     t = TypeInstPtr::make(field->holder()->java_mirror());
1931   else
1932     t = TypeOopPtr::make_from_klass_raw(field->holder());
1933   AliasType* atp = alias_type(t->add_offset(field->offset_in_bytes()), field);
1934   assert((field->is_final() || field->is_stable()) == !atp->is_rewritable(), "must get the rewritable bits correct");
1935   return atp;
1936 }
1937 
1938 
1939 //------------------------------have_alias_type--------------------------------
1940 bool Compile::have_alias_type(const TypePtr* adr_type) {
1941   AliasCacheEntry* ace = probe_alias_cache(adr_type);
1942   if (ace->_adr_type == adr_type) {
1943     return true;
1944   }
1945 
1946   // Handle special cases.
1947   if (adr_type == NULL)             return true;
1948   if (adr_type == TypePtr::BOTTOM)  return true;
1949 
1950   return find_alias_type(adr_type, true, NULL) != NULL;
1951 }
1952 
1953 //-----------------------------must_alias--------------------------------------
1954 // True if all values of the given address type are in the given alias category.
1955 bool Compile::must_alias(const TypePtr* adr_type, int alias_idx) {
1956   if (alias_idx == AliasIdxBot)         return true;  // the universal category
1957   if (adr_type == NULL)                 return true;  // NULL serves as TypePtr::TOP
1958   if (alias_idx == AliasIdxTop)         return false; // the empty category
1959   if (adr_type->base() == Type::AnyPtr) return false; // TypePtr::BOTTOM or its twins
1960 
1961   // the only remaining possible overlap is identity
1962   int adr_idx = get_alias_index(adr_type);
1963   assert(adr_idx != AliasIdxBot && adr_idx != AliasIdxTop, "");
1964   assert(adr_idx == alias_idx ||
1965          (alias_type(alias_idx)->adr_type() != TypeOopPtr::BOTTOM
1966           && adr_type                       != TypeOopPtr::BOTTOM),
1967          "should not be testing for overlap with an unsafe pointer");
1968   return adr_idx == alias_idx;
1969 }
1970 
1971 //------------------------------can_alias--------------------------------------
1972 // True if any values of the given address type are in the given alias category.
1973 bool Compile::can_alias(const TypePtr* adr_type, int alias_idx) {
1974   if (alias_idx == AliasIdxTop)         return false; // the empty category
1975   if (adr_type == NULL)                 return false; // NULL serves as TypePtr::TOP
1976   if (alias_idx == AliasIdxBot)         return true;  // the universal category
1977   if (adr_type->base() == Type::AnyPtr) return true;  // TypePtr::BOTTOM or its twins
1978 
1979   // the only remaining possible overlap is identity
1980   int adr_idx = get_alias_index(adr_type);
1981   assert(adr_idx != AliasIdxBot && adr_idx != AliasIdxTop, "");
1982   return adr_idx == alias_idx;
1983 }
1984 
1985 
1986 
1987 //---------------------------pop_warm_call-------------------------------------
1988 WarmCallInfo* Compile::pop_warm_call() {
1989   WarmCallInfo* wci = _warm_calls;
1990   if (wci != NULL)  _warm_calls = wci->remove_from(wci);
1991   return wci;
1992 }
1993 
1994 //----------------------------Inline_Warm--------------------------------------
1995 int Compile::Inline_Warm() {
1996   // If there is room, try to inline some more warm call sites.
1997   // %%% Do a graph index compaction pass when we think we're out of space?
1998   if (!InlineWarmCalls)  return 0;
1999 
2000   int calls_made_hot = 0;
2001   int room_to_grow   = NodeCountInliningCutoff - unique();
2002   int amount_to_grow = MIN2(room_to_grow, (int)NodeCountInliningStep);
2003   int amount_grown   = 0;
2004   WarmCallInfo* call;
2005   while (amount_to_grow > 0 && (call = pop_warm_call()) != NULL) {
2006     int est_size = (int)call->size();
2007     if (est_size > (room_to_grow - amount_grown)) {
2008       // This one won't fit anyway.  Get rid of it.
2009       call->make_cold();
2010       continue;
2011     }
2012     call->make_hot();
2013     calls_made_hot++;
2014     amount_grown   += est_size;
2015     amount_to_grow -= est_size;
2016   }
2017 
2018   if (calls_made_hot > 0)  set_major_progress();
2019   return calls_made_hot;
2020 }
2021 
2022 
2023 //----------------------------Finish_Warm--------------------------------------
2024 void Compile::Finish_Warm() {
2025   if (!InlineWarmCalls)  return;
2026   if (failing())  return;
2027   if (warm_calls() == NULL)  return;
2028 
2029   // Clean up loose ends, if we are out of space for inlining.
2030   WarmCallInfo* call;
2031   while ((call = pop_warm_call()) != NULL) {
2032     call->make_cold();
2033   }
2034 }
2035 
2036 //---------------------cleanup_loop_predicates-----------------------
2037 // Remove the opaque nodes that protect the predicates so that all unused
2038 // checks and uncommon_traps will be eliminated from the ideal graph
2039 void Compile::cleanup_loop_predicates(PhaseIterGVN &igvn) {
2040   if (predicate_count()==0) return;
2041   for (int i = predicate_count(); i > 0; i--) {
2042     Node * n = predicate_opaque1_node(i-1);
2043     assert(n->Opcode() == Op_Opaque1, "must be");
2044     igvn.replace_node(n, n->in(1));
2045   }
2046   assert(predicate_count()==0, "should be clean!");
2047 }
2048 
2049 void Compile::add_range_check_cast(Node* n) {
2050   assert(n->isa_CastII()->has_range_check(), "CastII should have range check dependency");
2051   assert(!_range_check_casts->contains(n), "duplicate entry in range check casts");
2052   _range_check_casts->append(n);
2053 }
2054 
2055 // Remove all range check dependent CastIINodes.
2056 void Compile::remove_range_check_casts(PhaseIterGVN &igvn) {
2057   for (int i = range_check_cast_count(); i > 0; i--) {
2058     Node* cast = range_check_cast_node(i-1);
2059     assert(cast->isa_CastII()->has_range_check(), "CastII should have range check dependency");
2060     igvn.replace_node(cast, cast->in(1));
2061   }
2062   assert(range_check_cast_count() == 0, "should be empty");
2063 }
2064 
2065 void Compile::add_opaque4_node(Node* n) {
2066   assert(n->Opcode() == Op_Opaque4, "Opaque4 only");
2067   assert(!_opaque4_nodes->contains(n), "duplicate entry in Opaque4 list");
2068   _opaque4_nodes->append(n);
2069 }
2070 
2071 // Remove all Opaque4 nodes.
2072 void Compile::remove_opaque4_nodes(PhaseIterGVN &igvn) {
2073   for (int i = opaque4_count(); i > 0; i--) {
2074     Node* opaq = opaque4_node(i-1);
2075     assert(opaq->Opcode() == Op_Opaque4, "Opaque4 only");
2076     igvn.replace_node(opaq, opaq->in(2));
2077   }
2078   assert(opaque4_count() == 0, "should be empty");
2079 }
2080 
2081 void Compile::add_value_type(Node* n) {
2082   assert(n->is_ValueTypeBase(), "unexpected node");
2083   if (_value_type_nodes != NULL) {
2084     _value_type_nodes->push(n);
2085   }
2086 }
2087 
2088 void Compile::remove_value_type(Node* n) {
2089   assert(n->is_ValueTypeBase(), "unexpected node");
2090   if (_value_type_nodes != NULL) {
2091     _value_type_nodes->remove(n);
2092   }
2093 }
2094 
2095 // Does the return value keep otherwise useless value type allocations
2096 // alive?
2097 static bool return_val_keeps_allocations_alive(Node* ret_val) {
2098   ResourceMark rm;
2099   Unique_Node_List wq;
2100   wq.push(ret_val);
2101   bool some_allocations = false;
2102   for (uint i = 0; i < wq.size(); i++) {
2103     Node* n = wq.at(i);
2104     assert(!n->is_ValueTypeBase(), "chain of value type nodes");
2105     if (n->outcnt() > 1) {
2106       // Some other use for the allocation
2107       return false;
2108     } else if (n->is_Phi()) {
2109       for (uint j = 1; j < n->req(); j++) {
2110         wq.push(n->in(j));
2111       }
2112     } else if (n->is_CheckCastPP() &&
2113                n->in(1)->is_Proj() &&
2114                n->in(1)->in(0)->is_Allocate()) {
2115       some_allocations = true;
2116     }
2117   }
2118   return some_allocations;
2119 }
2120 
2121 void Compile::process_value_types(PhaseIterGVN &igvn) {
2122   // Make value types scalar in safepoints
2123   while (_value_type_nodes->size() != 0) {
2124     ValueTypeBaseNode* vt = _value_type_nodes->pop()->as_ValueTypeBase();
2125     vt->make_scalar_in_safepoints(&igvn);
2126     if (vt->is_ValueTypePtr()) {
2127       igvn.replace_node(vt, vt->get_oop());
2128     } else if (vt->outcnt() == 0) {
2129       igvn.remove_dead_node(vt);
2130     }
2131   }
2132   _value_type_nodes = NULL;
2133   if (tf()->returns_value_type_as_fields()) {
2134     Node* ret = NULL;
2135     for (uint i = 1; i < root()->req(); i++){
2136       Node* in = root()->in(i);
2137       if (in->Opcode() == Op_Return) {
2138         assert(ret == NULL, "only one return");
2139         ret = in;
2140       }
2141     }
2142     if (ret != NULL) {
2143       Node* ret_val = ret->in(TypeFunc::Parms);
2144       if (igvn.type(ret_val)->isa_oopptr() &&
2145           return_val_keeps_allocations_alive(ret_val)) {
2146         igvn.replace_input_of(ret, TypeFunc::Parms, ValueTypeNode::tagged_klass(igvn.type(ret_val)->value_klass(), igvn));
2147         assert(ret_val->outcnt() == 0, "should be dead now");
2148         igvn.remove_dead_node(ret_val);
2149       }
2150     }
2151   }
2152   igvn.optimize();
2153 }
2154 
2155 void Compile::adjust_flattened_array_access_aliases(PhaseIterGVN& igvn) {
2156   if (!_has_flattened_accesses) {
2157     return;
2158   }
2159   // Initially, all flattened array accesses share the same slice to
2160   // keep dependencies with Object[] array accesses (that could be
2161   // to a flattened array) correct. We're done with parsing so we
2162   // now know all flattened array accesses in this compile
2163   // unit. Let's move flattened array accesses to their own slice,
2164   // one per element field. This should help memory access
2165   // optimizations.
2166   ResourceMark rm;
2167   Unique_Node_List wq;
2168   wq.push(root());
2169 
2170   Node_List mergememnodes;
2171   Node_List memnodes;
2172 
2173   // Alias index currently shared by all flattened memory accesses
2174   int index = get_alias_index(TypeAryPtr::VALUES);
2175 
2176   // Find MergeMem nodes and flattened array accesses
2177   for (uint i = 0; i < wq.size(); i++) {
2178     Node* n = wq.at(i);
2179     if (n->is_Mem()) {
2180       const TypePtr* adr_type = get_adr_type(get_alias_index(n->adr_type()));
2181       if (adr_type == TypeAryPtr::VALUES) {
2182         memnodes.push(n);
2183       }
2184     } else if (n->is_MergeMem()) {
2185       MergeMemNode* mm = n->as_MergeMem();
2186       if (mm->memory_at(index) != mm->base_memory()) {
2187         mergememnodes.push(n);
2188       }
2189     }
2190     for (uint j = 0; j < n->req(); j++) {
2191       Node* m = n->in(j);
2192       if (m != NULL) {
2193         wq.push(m);
2194       }
2195     }
2196   }
2197 
2198   if (memnodes.size() > 0) {
2199     _flattened_accesses_share_alias = false;
2200       
2201     // We are going to change the slice for the flattened array
2202     // accesses so we need to clear the cache entries that refer to
2203     // them.
2204     for (uint i = 0; i < AliasCacheSize; i++) {
2205       AliasCacheEntry* ace = &_alias_cache[i];
2206       if (ace->_adr_type != NULL &&
2207           ace->_adr_type->isa_aryptr() &&
2208           ace->_adr_type->is_aryptr()->elem()->isa_valuetype()) {
2209         ace->_adr_type = NULL;
2210         ace->_index = 0;
2211       }
2212     }
2213 
2214     // Find what aliases we are going to add
2215     int start_alias = num_alias_types()-1;
2216     int stop_alias = 0;
2217     
2218     for (uint i = 0; i < memnodes.size(); i++) {
2219       Node* m = memnodes.at(i);
2220       const TypePtr* adr_type = m->adr_type();
2221 #ifdef ASSERT
2222       m->as_Mem()->set_adr_type(adr_type);
2223 #endif
2224       int idx = get_alias_index(adr_type);
2225       start_alias = MIN2(start_alias, idx);
2226       stop_alias = MAX2(stop_alias, idx);
2227     }
2228       
2229     assert(stop_alias >= start_alias, "should have expanded aliases");
2230                   
2231     Node_Stack stack(0);
2232 #ifdef ASSERT
2233     VectorSet seen(Thread::current()->resource_area());
2234 #endif
2235     // Now let's fix the memory graph so each flattened array access
2236     // is moved to the right slice. Start from the MergeMem nodes.
2237     uint last = unique();
2238     for (uint i = 0; i < mergememnodes.size(); i++) {
2239       MergeMemNode* current = mergememnodes.at(i)->as_MergeMem();
2240       Node* n = current->memory_at(index);
2241       MergeMemNode* mm = NULL;
2242       do {
2243         // Follow memory edges through memory accesses, phis and
2244         // narrow membars and push nodes on the stack. Once we hit
2245         // bottom memory, we pop element off the stack one at a
2246         // time, in reverse order, and move them to the right slice
2247         // by changing their memory edges.
2248         if ((n->is_Phi() && n->adr_type() != TypePtr::BOTTOM) || n->is_Mem() || n->adr_type() == TypeAryPtr::VALUES) {
2249           assert(!seen.test_set(n->_idx), "");
2250           // Uses (a load for instance) will need to be moved to the
2251           // right slice as well and will get a new memory state
2252           // that we don't know yet. The use could also be the
2253           // backedge of a loop. We put a place holder node between
2254           // the memory node and its uses. We replace that place
2255           // holder with the correct memory state once we know it,
2256           // i.e. when nodes are popped off the stack. Using the
2257           // place holder make the logic work in the presence of
2258           // loops.
2259           if (n->outcnt() > 1) {
2260             Node* place_holder = NULL;
2261             assert(!n->has_out_with(Op_Node), "");
2262             for (DUIterator k = n->outs(); n->has_out(k); k++) {
2263               Node* u = n->out(k);
2264               if (u != current && u->_idx < last) {
2265                 bool success = false;
2266                 for (uint l = 0; l < u->req(); l++) {
2267                   if (!stack.is_empty() && u == stack.node() && l == stack.index()) {
2268                     continue;
2269                   }
2270                   Node* in = u->in(l);
2271                   if (in == n) {
2272                     if (place_holder == NULL) {
2273                       place_holder = new Node(1);
2274                       place_holder->init_req(0, n);
2275                     }
2276                     igvn.replace_input_of(u, l, place_holder);
2277                     success = true;
2278                   }
2279                 }
2280                 if (success) {
2281                   --k;
2282                 }
2283               }
2284             }
2285           }
2286           if (n->is_Phi()) {
2287             stack.push(n, 1);
2288             n = n->in(1);
2289           } else if (n->is_Mem()) {
2290             stack.push(n, n->req());
2291             n = n->in(MemNode::Memory);
2292           } else {
2293             assert(n->is_Proj() && n->in(0)->Opcode() == Op_MemBarCPUOrder, "");
2294             stack.push(n, n->req());
2295             n = n->in(0)->in(TypeFunc::Memory);
2296           }
2297         } else {
2298           assert(n->adr_type() == TypePtr::BOTTOM || (n->Opcode() == Op_Node && n->_idx >= last) || (n->is_Proj() && n->in(0)->is_Initialize()), "");
2299           // Build a new MergeMem node to carry the new memory state
2300           // as we build it. IGVN should fold extraneous MergeMem
2301           // nodes.
2302           mm = MergeMemNode::make(n);
2303           igvn.register_new_node_with_optimizer(mm);
2304           while (stack.size() > 0) {
2305             Node* m = stack.node();
2306             uint idx = stack.index();
2307             if (m->is_Mem()) {
2308               // Move memory node to its new slice
2309               const TypePtr* adr_type = m->adr_type();
2310               int alias = get_alias_index(adr_type);
2311               Node* prev = mm->memory_at(alias);
2312               igvn.replace_input_of(m, MemNode::Memory, prev);
2313               mm->set_memory_at(alias, m);
2314             } else if (m->is_Phi()) {
2315               // We need as many new phis as there are new aliases
2316               igvn.replace_input_of(m, idx, mm);
2317               if (idx == m->req()-1) {
2318                 Node* r = m->in(0);
2319                 for (uint j = (uint)start_alias; j <= (uint)stop_alias; j++) {
2320                   const Type* adr_type = get_adr_type(j);
2321                   if (!adr_type->isa_aryptr() || !adr_type->is_aryptr()->elem()->isa_valuetype()) {
2322                     continue;
2323                   }
2324                   Node* phi = new PhiNode(r, Type::MEMORY, get_adr_type(j));
2325                   igvn.register_new_node_with_optimizer(phi);
2326                   for (uint k = 1; k < m->req(); k++) {
2327                     phi->init_req(k, m->in(k)->as_MergeMem()->memory_at(j));
2328                   }
2329                   mm->set_memory_at(j, phi);
2330                 }
2331                 Node* base_phi = new PhiNode(r, Type::MEMORY, TypePtr::BOTTOM);
2332                 igvn.register_new_node_with_optimizer(base_phi);
2333                 for (uint k = 1; k < m->req(); k++) {
2334                   base_phi->init_req(k, m->in(k)->as_MergeMem()->base_memory());
2335                 }
2336                 mm->set_base_memory(base_phi);
2337               }
2338             } else {
2339               // This is a MemBarCPUOrder node from
2340               // Parse::array_load()/Parse::array_store(), in the
2341               // branch that handles flattened arrays hidden under
2342               // an Object[] array. We also need one new membar per
2343               // new alias to keep the unknown access that the
2344               // membars protect properly ordered with accesses to
2345               // known flattened array.
2346               assert(m->is_Proj(), "projection expected");
2347               Node* ctrl = m->in(0)->in(TypeFunc::Control);
2348               igvn.replace_input_of(m->in(0), TypeFunc::Control, top());
2349               for (uint j = (uint)start_alias; j <= (uint)stop_alias; j++) {
2350                 const Type* adr_type = get_adr_type(j);
2351                 if (!adr_type->isa_aryptr() || !adr_type->is_aryptr()->elem()->isa_valuetype()) {
2352                   continue;
2353                 }
2354                 MemBarNode* mb = new MemBarCPUOrderNode(this, j, NULL);
2355                 igvn.register_new_node_with_optimizer(mb);
2356                 Node* mem = mm->memory_at(j);
2357                 mb->init_req(TypeFunc::Control, ctrl);
2358                 mb->init_req(TypeFunc::Memory, mem);
2359                 ctrl = new ProjNode(mb, TypeFunc::Control);
2360                 igvn.register_new_node_with_optimizer(ctrl);
2361                 mem = new ProjNode(mb, TypeFunc::Memory);
2362                 igvn.register_new_node_with_optimizer(mem);
2363                 mm->set_memory_at(j, mem);
2364               }
2365               igvn.replace_node(m->in(0)->as_Multi()->proj_out(TypeFunc::Control), ctrl);
2366             }
2367             if (idx < m->req()-1) {
2368               idx += 1;
2369               stack.set_index(idx);
2370               n = m->in(idx);
2371               break;
2372             }
2373             // Take care of place holder nodes
2374             if (m->has_out_with(Op_Node)) {
2375               Node* place_holder = m->find_out_with(Op_Node);
2376               if (place_holder != NULL) {
2377                 Node* mm_clone = mm->clone();
2378                 igvn.register_new_node_with_optimizer(mm_clone);
2379                 Node* hook = new Node(1);
2380                 hook->init_req(0, mm);
2381                 igvn.replace_node(place_holder, mm_clone);
2382                 hook->destruct();
2383               }
2384               assert(!m->has_out_with(Op_Node), "place holder should be gone now");
2385             }
2386             stack.pop();
2387           }
2388         }
2389       } while(stack.size() > 0);
2390       // Fix the memory state at the MergeMem we started from
2391       igvn.rehash_node_delayed(current);
2392       for (uint j = (uint)start_alias; j <= (uint)stop_alias; j++) {
2393         const Type* adr_type = get_adr_type(j);
2394         if (!adr_type->isa_aryptr() || !adr_type->is_aryptr()->elem()->isa_valuetype()) {
2395           continue;
2396         }
2397         current->set_memory_at(j, mm);
2398       }
2399       current->set_memory_at(index, current->base_memory());
2400     }
2401     igvn.optimize();
2402   }
2403   print_method(PHASE_SPLIT_VALUES_ARRAY, 2);
2404 }
2405 
2406 
2407 // StringOpts and late inlining of string methods
2408 void Compile::inline_string_calls(bool parse_time) {
2409   {
2410     // remove useless nodes to make the usage analysis simpler
2411     ResourceMark rm;
2412     PhaseRemoveUseless pru(initial_gvn(), for_igvn());
2413   }
2414 
2415   {
2416     ResourceMark rm;
2417     print_method(PHASE_BEFORE_STRINGOPTS, 3);
2418     PhaseStringOpts pso(initial_gvn(), for_igvn());
2419     print_method(PHASE_AFTER_STRINGOPTS, 3);
2420   }
2421 
2422   // now inline anything that we skipped the first time around
2423   if (!parse_time) {
2424     _late_inlines_pos = _late_inlines.length();
2425   }
2426 
2427   while (_string_late_inlines.length() > 0) {
2428     CallGenerator* cg = _string_late_inlines.pop();
2429     cg->do_late_inline();
2430     if (failing())  return;
2431   }
2432   _string_late_inlines.trunc_to(0);
2433 }
2434 
2435 // Late inlining of boxing methods
2436 void Compile::inline_boxing_calls(PhaseIterGVN& igvn) {
2437   if (_boxing_late_inlines.length() > 0) {
2438     assert(has_boxed_value(), "inconsistent");
2439 
2440     PhaseGVN* gvn = initial_gvn();
2441     set_inlining_incrementally(true);
2442 
2443     assert( igvn._worklist.size() == 0, "should be done with igvn" );
2444     for_igvn()->clear();
2445     gvn->replace_with(&igvn);
2446 
2447     _late_inlines_pos = _late_inlines.length();
2448 
2449     while (_boxing_late_inlines.length() > 0) {
2450       CallGenerator* cg = _boxing_late_inlines.pop();
2451       cg->do_late_inline();
2452       if (failing())  return;
2453     }
2454     _boxing_late_inlines.trunc_to(0);
2455 
2456     inline_incrementally_cleanup(igvn);
2457 
2458     set_inlining_incrementally(false);
2459   }
2460 }
2461 
2462 bool Compile::inline_incrementally_one() {
2463   assert(IncrementalInline, "incremental inlining should be on");
2464 
2465   TracePhase tp("incrementalInline_inline", &timers[_t_incrInline_inline]);
2466   set_inlining_progress(false);
2467   set_do_cleanup(false);
2468   int i = 0;
2469   for (; i <_late_inlines.length() && !inlining_progress(); i++) {
2470     CallGenerator* cg = _late_inlines.at(i);
2471     _late_inlines_pos = i+1;
2472     cg->do_late_inline();
2473     if (failing())  return false;
2474   }
2475   int j = 0;
2476   for (; i < _late_inlines.length(); i++, j++) {
2477     _late_inlines.at_put(j, _late_inlines.at(i));
2478   }
2479   _late_inlines.trunc_to(j);
2480   assert(inlining_progress() || _late_inlines.length() == 0, "");
2481 
2482   bool needs_cleanup = do_cleanup() || over_inlining_cutoff();
2483 
2484   set_inlining_progress(false);
2485   set_do_cleanup(false);
2486   return (_late_inlines.length() > 0) && !needs_cleanup;
2487 }
2488 
2489 void Compile::inline_incrementally_cleanup(PhaseIterGVN& igvn) {
2490   {
2491     TracePhase tp("incrementalInline_pru", &timers[_t_incrInline_pru]);
2492     ResourceMark rm;
2493     PhaseRemoveUseless pru(initial_gvn(), for_igvn());
2494   }
2495   {
2496     TracePhase tp("incrementalInline_igvn", &timers[_t_incrInline_igvn]);
2497     igvn = PhaseIterGVN(initial_gvn());
2498     igvn.optimize();
2499   }
2500 }
2501 
2502 // Perform incremental inlining until bound on number of live nodes is reached
2503 void Compile::inline_incrementally(PhaseIterGVN& igvn) {
2504   TracePhase tp("incrementalInline", &timers[_t_incrInline]);
2505 
2506   set_inlining_incrementally(true);
2507   uint low_live_nodes = 0;
2508 
2509   while (_late_inlines.length() > 0) {
2510     if (live_nodes() > (uint)LiveNodeCountInliningCutoff) {
2511       if (low_live_nodes < (uint)LiveNodeCountInliningCutoff * 8 / 10) {
2512         TracePhase tp("incrementalInline_ideal", &timers[_t_incrInline_ideal]);
2513         // PhaseIdealLoop is expensive so we only try it once we are
2514         // out of live nodes and we only try it again if the previous
2515         // helped got the number of nodes down significantly
2516         PhaseIdealLoop::optimize(igvn, LoopOptsNone);
2517         if (failing())  return;
2518         low_live_nodes = live_nodes();
2519         _major_progress = true;
2520       }
2521 
2522       if (live_nodes() > (uint)LiveNodeCountInliningCutoff) {
2523         break; // finish
2524       }
2525     }
2526 
2527     for_igvn()->clear();
2528     initial_gvn()->replace_with(&igvn);
2529 
2530     while (inline_incrementally_one()) {
2531       assert(!failing(), "inconsistent");
2532     }
2533 
2534     if (failing())  return;
2535 
2536     inline_incrementally_cleanup(igvn);
2537 
2538     if (failing())  return;
2539   }
2540   assert( igvn._worklist.size() == 0, "should be done with igvn" );
2541 
2542   if (_string_late_inlines.length() > 0) {
2543     assert(has_stringbuilder(), "inconsistent");
2544     for_igvn()->clear();
2545     initial_gvn()->replace_with(&igvn);
2546 
2547     inline_string_calls(false);
2548 
2549     if (failing())  return;
2550 
2551     inline_incrementally_cleanup(igvn);
2552   }
2553 
2554   set_inlining_incrementally(false);
2555 }
2556 
2557 
2558 bool Compile::optimize_loops(PhaseIterGVN& igvn, LoopOptsMode mode) {
2559   if(_loop_opts_cnt > 0) {
2560     debug_only( int cnt = 0; );
2561     while(major_progress() && (_loop_opts_cnt > 0)) {
2562       TracePhase tp("idealLoop", &timers[_t_idealLoop]);
2563       assert( cnt++ < 40, "infinite cycle in loop optimization" );
2564       PhaseIdealLoop::optimize(igvn, mode);
2565       _loop_opts_cnt--;
2566       if (failing())  return false;
2567       if (major_progress()) print_method(PHASE_PHASEIDEALLOOP_ITERATIONS, 2);
2568     }
2569   }
2570   return true;
2571 }
2572 
2573 // Remove edges from "root" to each SafePoint at a backward branch.
2574 // They were inserted during parsing (see add_safepoint()) to make
2575 // infinite loops without calls or exceptions visible to root, i.e.,
2576 // useful.
2577 void Compile::remove_root_to_sfpts_edges(PhaseIterGVN& igvn) {
2578   Node *r = root();
2579   if (r != NULL) {
2580     for (uint i = r->req(); i < r->len(); ++i) {
2581       Node *n = r->in(i);
2582       if (n != NULL && n->is_SafePoint()) {
2583         r->rm_prec(i);
2584         if (n->outcnt() == 0) {
2585           igvn.remove_dead_node(n);
2586         }
2587         --i;
2588       }
2589     }
2590   }
2591 }
2592 
2593 //------------------------------Optimize---------------------------------------
2594 // Given a graph, optimize it.
2595 void Compile::Optimize() {
2596   TracePhase tp("optimizer", &timers[_t_optimizer]);
2597 
2598 #ifndef PRODUCT
2599   if (_directive->BreakAtCompileOption) {
2600     BREAKPOINT;
2601   }
2602 
2603 #endif
2604 
2605 #ifdef ASSERT
2606   BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
2607   bs->verify_gc_barriers(this, BarrierSetC2::BeforeOptimize);
2608 #endif
2609 
2610   ResourceMark rm;
2611 
2612   print_inlining_reinit();
2613 
2614   NOT_PRODUCT( verify_graph_edges(); )
2615 
2616   print_method(PHASE_AFTER_PARSING);
2617 
2618  {
2619   // Iterative Global Value Numbering, including ideal transforms
2620   // Initialize IterGVN with types and values from parse-time GVN
2621   PhaseIterGVN igvn(initial_gvn());
2622 #ifdef ASSERT
2623   _modified_nodes = new (comp_arena()) Unique_Node_List(comp_arena());
2624 #endif
2625   {
2626     TracePhase tp("iterGVN", &timers[_t_iterGVN]);
2627     igvn.optimize();
2628   }
2629 
2630   if (failing())  return;
2631 
2632   print_method(PHASE_ITER_GVN1, 2);
2633 
2634   inline_incrementally(igvn);
2635 
2636   print_method(PHASE_INCREMENTAL_INLINE, 2);
2637 
2638   if (failing())  return;
2639 
2640   if (eliminate_boxing()) {
2641     // Inline valueOf() methods now.
2642     inline_boxing_calls(igvn);
2643 
2644     if (AlwaysIncrementalInline) {
2645       inline_incrementally(igvn);
2646     }
2647 
2648     print_method(PHASE_INCREMENTAL_BOXING_INLINE, 2);
2649 
2650     if (failing())  return;
2651   }
2652 
2653   // Now that all inlining is over, cut edge from root to loop
2654   // safepoints
2655   remove_root_to_sfpts_edges(igvn);
2656 
2657   // Remove the speculative part of types and clean up the graph from
2658   // the extra CastPP nodes whose only purpose is to carry them. Do
2659   // that early so that optimizations are not disrupted by the extra
2660   // CastPP nodes.
2661   remove_speculative_types(igvn);
2662 
2663   // No more new expensive nodes will be added to the list from here
2664   // so keep only the actual candidates for optimizations.
2665   cleanup_expensive_nodes(igvn);
2666 
2667   if (!failing() && RenumberLiveNodes && live_nodes() + NodeLimitFudgeFactor < unique()) {
2668     Compile::TracePhase tp("", &timers[_t_renumberLive]);
2669     initial_gvn()->replace_with(&igvn);
2670     for_igvn()->clear();
2671     Unique_Node_List new_worklist(C->comp_arena());
2672     {
2673       ResourceMark rm;
2674       PhaseRenumberLive prl = PhaseRenumberLive(initial_gvn(), for_igvn(), &new_worklist);
2675     }
2676     set_for_igvn(&new_worklist);
2677     igvn = PhaseIterGVN(initial_gvn());
2678     igvn.optimize();
2679   }
2680 
2681   if (_value_type_nodes->size() > 0) {
2682     // Do this once all inlining is over to avoid getting inconsistent debug info
2683     process_value_types(igvn);
2684   }
2685 
2686   adjust_flattened_array_access_aliases(igvn);
2687 
2688   // Perform escape analysis
2689   if (_do_escape_analysis && ConnectionGraph::has_candidates(this)) {
2690     if (has_loops()) {
2691       // Cleanup graph (remove dead nodes).
2692       TracePhase tp("idealLoop", &timers[_t_idealLoop]);
2693       PhaseIdealLoop::optimize(igvn, LoopOptsNone);
2694       if (major_progress()) print_method(PHASE_PHASEIDEAL_BEFORE_EA, 2);
2695       if (failing())  return;
2696     }
2697     ConnectionGraph::do_analysis(this, &igvn);
2698 
2699     if (failing())  return;
2700 
2701     // Optimize out fields loads from scalar replaceable allocations.
2702     igvn.optimize();
2703     print_method(PHASE_ITER_GVN_AFTER_EA, 2);
2704 
2705     if (failing())  return;
2706 
2707     if (congraph() != NULL && macro_count() > 0) {
2708       TracePhase tp("macroEliminate", &timers[_t_macroEliminate]);
2709       PhaseMacroExpand mexp(igvn);
2710       mexp.eliminate_macro_nodes();
2711       igvn.set_delay_transform(false);
2712 
2713       igvn.optimize();
2714       print_method(PHASE_ITER_GVN_AFTER_ELIMINATION, 2);
2715 
2716       if (failing())  return;
2717     }
2718   }
2719 
2720   // Loop transforms on the ideal graph.  Range Check Elimination,
2721   // peeling, unrolling, etc.
2722 
2723   // Set loop opts counter
2724   if((_loop_opts_cnt > 0) && (has_loops() || has_split_ifs())) {
2725     {
2726       TracePhase tp("idealLoop", &timers[_t_idealLoop]);
2727       PhaseIdealLoop::optimize(igvn, LoopOptsDefault);
2728       _loop_opts_cnt--;
2729       if (major_progress()) print_method(PHASE_PHASEIDEALLOOP1, 2);
2730       if (failing())  return;
2731     }
2732     // Loop opts pass if partial peeling occurred in previous pass
2733     if(PartialPeelLoop && major_progress() && (_loop_opts_cnt > 0)) {
2734       TracePhase tp("idealLoop", &timers[_t_idealLoop]);
2735       PhaseIdealLoop::optimize(igvn, LoopOptsSkipSplitIf);
2736       _loop_opts_cnt--;
2737       if (major_progress()) print_method(PHASE_PHASEIDEALLOOP2, 2);
2738       if (failing())  return;
2739     }
2740     // Loop opts pass for loop-unrolling before CCP
2741     if(major_progress() && (_loop_opts_cnt > 0)) {
2742       TracePhase tp("idealLoop", &timers[_t_idealLoop]);
2743       PhaseIdealLoop::optimize(igvn, LoopOptsSkipSplitIf);
2744       _loop_opts_cnt--;
2745       if (major_progress()) print_method(PHASE_PHASEIDEALLOOP3, 2);
2746     }
2747     if (!failing()) {
2748       // Verify that last round of loop opts produced a valid graph
2749       TracePhase tp("idealLoopVerify", &timers[_t_idealLoopVerify]);
2750       PhaseIdealLoop::verify(igvn);
2751     }
2752   }
2753   if (failing())  return;
2754 
2755   // Conditional Constant Propagation;
2756   PhaseCCP ccp( &igvn );
2757   assert( true, "Break here to ccp.dump_nodes_and_types(_root,999,1)");
2758   {
2759     TracePhase tp("ccp", &timers[_t_ccp]);
2760     ccp.do_transform();
2761   }
2762   print_method(PHASE_CPP1, 2);
2763 
2764   assert( true, "Break here to ccp.dump_old2new_map()");
2765 
2766   // Iterative Global Value Numbering, including ideal transforms
2767   {
2768     TracePhase tp("iterGVN2", &timers[_t_iterGVN2]);
2769     igvn = ccp;
2770     igvn.optimize();
2771   }
2772 
2773   print_method(PHASE_ITER_GVN2, 2);
2774 
2775   if (failing())  return;
2776 
2777   // Loop transforms on the ideal graph.  Range Check Elimination,
2778   // peeling, unrolling, etc.
2779   if (!optimize_loops(igvn, LoopOptsDefault)) {
2780     return;
2781   }
2782 
2783 #if INCLUDE_ZGC
2784   if (UseZGC) {
2785     ZBarrierSetC2::find_dominating_barriers(igvn);
2786   }
2787 #endif
2788 
2789   if (failing())  return;
2790 
2791   // Ensure that major progress is now clear
2792   C->clear_major_progress();
2793 
2794   {
2795     // Verify that all previous optimizations produced a valid graph
2796     // at least to this point, even if no loop optimizations were done.
2797     TracePhase tp("idealLoopVerify", &timers[_t_idealLoopVerify]);
2798     PhaseIdealLoop::verify(igvn);
2799   }
2800 
2801   if (range_check_cast_count() > 0) {
2802     // No more loop optimizations. Remove all range check dependent CastIINodes.
2803     C->remove_range_check_casts(igvn);
2804     igvn.optimize();
2805   }
2806 
2807 #ifdef ASSERT
2808   BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
2809   bs->verify_gc_barriers(this, BarrierSetC2::BeforeExpand);
2810 #endif
2811 
2812   {
2813     TracePhase tp("macroExpand", &timers[_t_macroExpand]);
2814     PhaseMacroExpand  mex(igvn);
2815     print_method(PHASE_BEFORE_MACRO_EXPANSION, 2);
2816     if (mex.expand_macro_nodes()) {
2817       assert(failing(), "must bail out w/ explicit message");
2818       return;
2819     }
2820   }
2821 
2822   {
2823     TracePhase tp("barrierExpand", &timers[_t_barrierExpand]);
2824     print_method(PHASE_BEFORE_BARRIER_EXPAND, 2);
2825     BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
2826     if (bs->expand_barriers(this, igvn)) {
2827       assert(failing(), "must bail out w/ explicit message");
2828       return;
2829     }
2830   }
2831 
2832   if (opaque4_count() > 0) {
2833     C->remove_opaque4_nodes(igvn);
2834     igvn.optimize();
2835   }
2836 
2837   DEBUG_ONLY( _modified_nodes = NULL; )
2838  } // (End scope of igvn; run destructor if necessary for asserts.)
2839 
2840  process_print_inlining();
2841  // A method with only infinite loops has no edges entering loops from root
2842  {
2843    TracePhase tp("graphReshape", &timers[_t_graphReshaping]);
2844    if (final_graph_reshaping()) {
2845      assert(failing(), "must bail out w/ explicit message");
2846      return;
2847    }
2848  }
2849 
2850  print_method(PHASE_OPTIMIZE_FINISHED, 2);
2851 }
2852 
2853 //------------------------------Code_Gen---------------------------------------
2854 // Given a graph, generate code for it
2855 void Compile::Code_Gen() {
2856   if (failing()) {
2857     return;
2858   }
2859 
2860   // Perform instruction selection.  You might think we could reclaim Matcher
2861   // memory PDQ, but actually the Matcher is used in generating spill code.
2862   // Internals of the Matcher (including some VectorSets) must remain live
2863   // for awhile - thus I cannot reclaim Matcher memory lest a VectorSet usage
2864   // set a bit in reclaimed memory.
2865 
2866   // In debug mode can dump m._nodes.dump() for mapping of ideal to machine
2867   // nodes.  Mapping is only valid at the root of each matched subtree.
2868   NOT_PRODUCT( verify_graph_edges(); )
2869 
2870   Matcher matcher;
2871   _matcher = &matcher;
2872   {
2873     TracePhase tp("matcher", &timers[_t_matcher]);
2874     matcher.match();
2875   }
2876   // In debug mode can dump m._nodes.dump() for mapping of ideal to machine
2877   // nodes.  Mapping is only valid at the root of each matched subtree.
2878   NOT_PRODUCT( verify_graph_edges(); )
2879 
2880   // If you have too many nodes, or if matching has failed, bail out
2881   check_node_count(0, "out of nodes matching instructions");
2882   if (failing()) {
2883     return;
2884   }
2885 
2886   print_method(PHASE_MATCHING, 2);
2887 
2888   // Build a proper-looking CFG
2889   PhaseCFG cfg(node_arena(), root(), matcher);
2890   _cfg = &cfg;
2891   {
2892     TracePhase tp("scheduler", &timers[_t_scheduler]);
2893     bool success = cfg.do_global_code_motion();
2894     if (!success) {
2895       return;
2896     }
2897 
2898     print_method(PHASE_GLOBAL_CODE_MOTION, 2);
2899     NOT_PRODUCT( verify_graph_edges(); )
2900     debug_only( cfg.verify(); )
2901   }
2902 
2903   PhaseChaitin regalloc(unique(), cfg, matcher, false);
2904   _regalloc = &regalloc;
2905   {
2906     TracePhase tp("regalloc", &timers[_t_registerAllocation]);
2907     // Perform register allocation.  After Chaitin, use-def chains are
2908     // no longer accurate (at spill code) and so must be ignored.
2909     // Node->LRG->reg mappings are still accurate.
2910     _regalloc->Register_Allocate();
2911 
2912     // Bail out if the allocator builds too many nodes
2913     if (failing()) {
2914       return;
2915     }
2916   }
2917 
2918   // Prior to register allocation we kept empty basic blocks in case the
2919   // the allocator needed a place to spill.  After register allocation we
2920   // are not adding any new instructions.  If any basic block is empty, we
2921   // can now safely remove it.
2922   {
2923     TracePhase tp("blockOrdering", &timers[_t_blockOrdering]);
2924     cfg.remove_empty_blocks();
2925     if (do_freq_based_layout()) {
2926       PhaseBlockLayout layout(cfg);
2927     } else {
2928       cfg.set_loop_alignment();
2929     }
2930     cfg.fixup_flow();
2931   }
2932 
2933   // Apply peephole optimizations
2934   if( OptoPeephole ) {
2935     TracePhase tp("peephole", &timers[_t_peephole]);
2936     PhasePeephole peep( _regalloc, cfg);
2937     peep.do_transform();
2938   }
2939 
2940   // Do late expand if CPU requires this.
2941   if (Matcher::require_postalloc_expand) {
2942     TracePhase tp("postalloc_expand", &timers[_t_postalloc_expand]);
2943     cfg.postalloc_expand(_regalloc);
2944   }
2945 
2946   // Convert Nodes to instruction bits in a buffer
2947   {
2948     TraceTime tp("output", &timers[_t_output], CITime);
2949     Output();
2950   }
2951 
2952   print_method(PHASE_FINAL_CODE);
2953 
2954   // He's dead, Jim.
2955   _cfg     = (PhaseCFG*)((intptr_t)0xdeadbeef);
2956   _regalloc = (PhaseChaitin*)((intptr_t)0xdeadbeef);
2957 }
2958 
2959 
2960 //------------------------------dump_asm---------------------------------------
2961 // Dump formatted assembly
2962 #if defined(SUPPORT_OPTO_ASSEMBLY)
2963 void Compile::dump_asm_on(outputStream* st, int* pcs, uint pc_limit) {
2964 
2965   int pc_digits = 3; // #chars required for pc
2966   int sb_chars  = 3; // #chars for "start bundle" indicator
2967   int tab_size  = 8;
2968   if (pcs != NULL) {
2969     int max_pc = 0;
2970     for (uint i = 0; i < pc_limit; i++) {
2971       max_pc = (max_pc < pcs[i]) ? pcs[i] : max_pc;
2972     }
2973     pc_digits  = ((max_pc < 4096) ? 3 : ((max_pc < 65536) ? 4 : ((max_pc < 65536*256) ? 6 : 8))); // #chars required for pc
2974   }
2975   int prefix_len = ((pc_digits + sb_chars + tab_size - 1)/tab_size)*tab_size;
2976 
2977   bool cut_short = false;
2978   st->print_cr("#");
2979   st->print("#  ");  _tf->dump_on(st);  st->cr();
2980   st->print_cr("#");
2981 
2982   // For all blocks
2983   int pc = 0x0;                 // Program counter
2984   char starts_bundle = ' ';
2985   _regalloc->dump_frame();
2986 
2987   Node *n = NULL;
2988   for (uint i = 0; i < _cfg->number_of_blocks(); i++) {
2989     if (VMThread::should_terminate()) {
2990       cut_short = true;
2991       break;
2992     }
2993     Block* block = _cfg->get_block(i);
2994     if (block->is_connector() && !Verbose) {
2995       continue;
2996     }
2997     n = block->head();
2998     if ((pcs != NULL) && (n->_idx < pc_limit)) {
2999       pc = pcs[n->_idx];
3000       st->print("%*.*x", pc_digits, pc_digits, pc);
3001     }
3002     st->fill_to(prefix_len);
3003     block->dump_head(_cfg, st);
3004     if (block->is_connector()) {
3005       st->fill_to(prefix_len);
3006       st->print_cr("# Empty connector block");
3007     } else if (block->num_preds() == 2 && block->pred(1)->is_CatchProj() && block->pred(1)->as_CatchProj()->_con == CatchProjNode::fall_through_index) {
3008       st->fill_to(prefix_len);
3009       st->print_cr("# Block is sole successor of call");
3010     }
3011 
3012     // For all instructions
3013     Node *delay = NULL;
3014     for (uint j = 0; j < block->number_of_nodes(); j++) {
3015       if (VMThread::should_terminate()) {
3016         cut_short = true;
3017         break;
3018       }
3019       n = block->get_node(j);
3020       if (valid_bundle_info(n)) {
3021         Bundle* bundle = node_bundling(n);
3022         if (bundle->used_in_unconditional_delay()) {
3023           delay = n;
3024           continue;
3025         }
3026         if (bundle->starts_bundle()) {
3027           starts_bundle = '+';
3028         }
3029       }
3030 
3031       if (WizardMode) {
3032         n->dump();
3033       }
3034 
3035       if( !n->is_Region() &&    // Dont print in the Assembly
3036           !n->is_Phi() &&       // a few noisely useless nodes
3037           !n->is_Proj() &&
3038           !n->is_MachTemp() &&
3039           !n->is_SafePointScalarObject() &&
3040           !n->is_Catch() &&     // Would be nice to print exception table targets
3041           !n->is_MergeMem() &&  // Not very interesting
3042           !n->is_top() &&       // Debug info table constants
3043           !(n->is_Con() && !n->is_Mach())// Debug info table constants
3044           ) {
3045         if ((pcs != NULL) && (n->_idx < pc_limit)) {
3046           pc = pcs[n->_idx];
3047           st->print("%*.*x", pc_digits, pc_digits, pc);
3048         } else {
3049           st->fill_to(pc_digits);
3050         }
3051         st->print(" %c ", starts_bundle);
3052         starts_bundle = ' ';
3053         st->fill_to(prefix_len);
3054         n->format(_regalloc, st);
3055         st->cr();
3056       }
3057 
3058       // If we have an instruction with a delay slot, and have seen a delay,
3059       // then back up and print it
3060       if (valid_bundle_info(n) && node_bundling(n)->use_unconditional_delay()) {
3061         // Coverity finding - Explicit null dereferenced.
3062         guarantee(delay != NULL, "no unconditional delay instruction");
3063         if (WizardMode) delay->dump();
3064 
3065         if (node_bundling(delay)->starts_bundle())
3066           starts_bundle = '+';
3067         if ((pcs != NULL) && (n->_idx < pc_limit)) {
3068           pc = pcs[n->_idx];
3069           st->print("%*.*x", pc_digits, pc_digits, pc);
3070         } else {
3071           st->fill_to(pc_digits);
3072         }
3073         st->print(" %c ", starts_bundle);
3074         starts_bundle = ' ';
3075         st->fill_to(prefix_len);
3076         delay->format(_regalloc, st);
3077         st->cr();
3078         delay = NULL;
3079       }
3080 
3081       // Dump the exception table as well
3082       if( n->is_Catch() && (Verbose || WizardMode) ) {
3083         // Print the exception table for this offset
3084         _handler_table.print_subtable_for(pc);
3085       }
3086       st->bol(); // Make sure we start on a new line
3087     }
3088     st->cr(); // one empty line between blocks
3089     assert(cut_short || delay == NULL, "no unconditional delay branch");
3090   } // End of per-block dump
3091 
3092   if (cut_short)  st->print_cr("*** disassembly is cut short ***");
3093 }
3094 #endif
3095 
3096 //------------------------------Final_Reshape_Counts---------------------------
3097 // This class defines counters to help identify when a method
3098 // may/must be executed using hardware with only 24-bit precision.
3099 struct Final_Reshape_Counts : public StackObj {
3100   int  _call_count;             // count non-inlined 'common' calls
3101   int  _float_count;            // count float ops requiring 24-bit precision
3102   int  _double_count;           // count double ops requiring more precision
3103   int  _java_call_count;        // count non-inlined 'java' calls
3104   int  _inner_loop_count;       // count loops which need alignment
3105   VectorSet _visited;           // Visitation flags
3106   Node_List _tests;             // Set of IfNodes & PCTableNodes
3107 
3108   Final_Reshape_Counts() :
3109     _call_count(0), _float_count(0), _double_count(0),
3110     _java_call_count(0), _inner_loop_count(0),
3111     _visited( Thread::current()->resource_area() ) { }
3112 
3113   void inc_call_count  () { _call_count  ++; }
3114   void inc_float_count () { _float_count ++; }
3115   void inc_double_count() { _double_count++; }
3116   void inc_java_call_count() { _java_call_count++; }
3117   void inc_inner_loop_count() { _inner_loop_count++; }
3118 
3119   int  get_call_count  () const { return _call_count  ; }
3120   int  get_float_count () const { return _float_count ; }
3121   int  get_double_count() const { return _double_count; }
3122   int  get_java_call_count() const { return _java_call_count; }
3123   int  get_inner_loop_count() const { return _inner_loop_count; }
3124 };
3125 
3126 #ifdef ASSERT
3127 static bool oop_offset_is_sane(const TypeInstPtr* tp) {
3128   ciInstanceKlass *k = tp->klass()->as_instance_klass();
3129   // Make sure the offset goes inside the instance layout.
3130   return k->contains_field_offset(tp->offset());
3131   // Note that OffsetBot and OffsetTop are very negative.
3132 }
3133 #endif
3134 
3135 // Eliminate trivially redundant StoreCMs and accumulate their
3136 // precedence edges.
3137 void Compile::eliminate_redundant_card_marks(Node* n) {
3138   assert(n->Opcode() == Op_StoreCM, "expected StoreCM");
3139   if (n->in(MemNode::Address)->outcnt() > 1) {
3140     // There are multiple users of the same address so it might be
3141     // possible to eliminate some of the StoreCMs
3142     Node* mem = n->in(MemNode::Memory);
3143     Node* adr = n->in(MemNode::Address);
3144     Node* val = n->in(MemNode::ValueIn);
3145     Node* prev = n;
3146     bool done = false;
3147     // Walk the chain of StoreCMs eliminating ones that match.  As
3148     // long as it's a chain of single users then the optimization is
3149     // safe.  Eliminating partially redundant StoreCMs would require
3150     // cloning copies down the other paths.
3151     while (mem->Opcode() == Op_StoreCM && mem->outcnt() == 1 && !done) {
3152       if (adr == mem->in(MemNode::Address) &&
3153           val == mem->in(MemNode::ValueIn)) {
3154         // redundant StoreCM
3155         if (mem->req() > MemNode::OopStore) {
3156           // Hasn't been processed by this code yet.
3157           n->add_prec(mem->in(MemNode::OopStore));
3158         } else {
3159           // Already converted to precedence edge
3160           for (uint i = mem->req(); i < mem->len(); i++) {
3161             // Accumulate any precedence edges
3162             if (mem->in(i) != NULL) {
3163               n->add_prec(mem->in(i));
3164             }
3165           }
3166           // Everything above this point has been processed.
3167           done = true;
3168         }
3169         // Eliminate the previous StoreCM
3170         prev->set_req(MemNode::Memory, mem->in(MemNode::Memory));
3171         assert(mem->outcnt() == 0, "should be dead");
3172         mem->disconnect_inputs(NULL, this);
3173       } else {
3174         prev = mem;
3175       }
3176       mem = prev->in(MemNode::Memory);
3177     }
3178   }
3179 }
3180 
3181 
3182 //------------------------------final_graph_reshaping_impl----------------------
3183 // Implement items 1-5 from final_graph_reshaping below.
3184 void Compile::final_graph_reshaping_impl( Node *n, Final_Reshape_Counts &frc) {
3185 
3186   if ( n->outcnt() == 0 ) return; // dead node
3187   uint nop = n->Opcode();
3188 
3189   // Check for 2-input instruction with "last use" on right input.
3190   // Swap to left input.  Implements item (2).
3191   if( n->req() == 3 &&          // two-input instruction
3192       n->in(1)->outcnt() > 1 && // left use is NOT a last use
3193       (!n->in(1)->is_Phi() || n->in(1)->in(2) != n) && // it is not data loop
3194       n->in(2)->outcnt() == 1 &&// right use IS a last use
3195       !n->in(2)->is_Con() ) {   // right use is not a constant
3196     // Check for commutative opcode
3197     switch( nop ) {
3198     case Op_AddI:  case Op_AddF:  case Op_AddD:  case Op_AddL:
3199     case Op_MaxI:  case Op_MinI:
3200     case Op_MulI:  case Op_MulF:  case Op_MulD:  case Op_MulL:
3201     case Op_AndL:  case Op_XorL:  case Op_OrL:
3202     case Op_AndI:  case Op_XorI:  case Op_OrI: {
3203       // Move "last use" input to left by swapping inputs
3204       n->swap_edges(1, 2);
3205       break;
3206     }
3207     default:
3208       break;
3209     }
3210   }
3211 
3212 #ifdef ASSERT
3213   if( n->is_Mem() ) {
3214     int alias_idx = get_alias_index(n->as_Mem()->adr_type());
3215     assert( n->in(0) != NULL || alias_idx != Compile::AliasIdxRaw ||
3216             // oop will be recorded in oop map if load crosses safepoint
3217             n->is_Load() && (n->as_Load()->bottom_type()->isa_oopptr() ||
3218                              LoadNode::is_immutable_value(n->in(MemNode::Address))),
3219             "raw memory operations should have control edge");
3220   }
3221   if (n->is_MemBar()) {
3222     MemBarNode* mb = n->as_MemBar();
3223     if (mb->trailing_store() || mb->trailing_load_store()) {
3224       assert(mb->leading_membar()->trailing_membar() == mb, "bad membar pair");
3225       Node* mem = mb->in(MemBarNode::Precedent);
3226       assert((mb->trailing_store() && mem->is_Store() && mem->as_Store()->is_release()) ||
3227              (mb->trailing_load_store() && mem->is_LoadStore()), "missing mem op");
3228     } else if (mb->leading()) {
3229       assert(mb->trailing_membar()->leading_membar() == mb, "bad membar pair");
3230     }
3231   }
3232 #endif
3233   // Count FPU ops and common calls, implements item (3)
3234   bool gc_handled = BarrierSet::barrier_set()->barrier_set_c2()->final_graph_reshaping(this, n, nop);
3235   if (!gc_handled) {
3236     final_graph_reshaping_main_switch(n, frc, nop);
3237   }
3238 
3239   // Collect CFG split points
3240   if (n->is_MultiBranch() && !n->is_RangeCheck()) {
3241     frc._tests.push(n);
3242   }
3243 }
3244 
3245 void Compile::final_graph_reshaping_main_switch(Node* n, Final_Reshape_Counts& frc, uint nop) {
3246   switch( nop ) {
3247   // Count all float operations that may use FPU
3248   case Op_AddF:
3249   case Op_SubF:
3250   case Op_MulF:
3251   case Op_DivF:
3252   case Op_NegF:
3253   case Op_ModF:
3254   case Op_ConvI2F:
3255   case Op_ConF:
3256   case Op_CmpF:
3257   case Op_CmpF3:
3258   // case Op_ConvL2F: // longs are split into 32-bit halves
3259     frc.inc_float_count();
3260     break;
3261 
3262   case Op_ConvF2D:
3263   case Op_ConvD2F:
3264     frc.inc_float_count();
3265     frc.inc_double_count();
3266     break;
3267 
3268   // Count all double operations that may use FPU
3269   case Op_AddD:
3270   case Op_SubD:
3271   case Op_MulD:
3272   case Op_DivD:
3273   case Op_NegD:
3274   case Op_ModD:
3275   case Op_ConvI2D:
3276   case Op_ConvD2I:
3277   // case Op_ConvL2D: // handled by leaf call
3278   // case Op_ConvD2L: // handled by leaf call
3279   case Op_ConD:
3280   case Op_CmpD:
3281   case Op_CmpD3:
3282     frc.inc_double_count();
3283     break;
3284   case Op_Opaque1:              // Remove Opaque Nodes before matching
3285   case Op_Opaque2:              // Remove Opaque Nodes before matching
3286   case Op_Opaque3:
3287     n->subsume_by(n->in(1), this);
3288     break;
3289   case Op_CallStaticJava:
3290   case Op_CallJava:
3291   case Op_CallDynamicJava:
3292     frc.inc_java_call_count(); // Count java call site;
3293   case Op_CallRuntime:
3294   case Op_CallLeaf:
3295   case Op_CallLeafNoFP: {
3296     assert (n->is_Call(), "");
3297     CallNode *call = n->as_Call();
3298     // Count call sites where the FP mode bit would have to be flipped.
3299     // Do not count uncommon runtime calls:
3300     // uncommon_trap, _complete_monitor_locking, _complete_monitor_unlocking,
3301     // _new_Java, _new_typeArray, _new_objArray, _rethrow_Java, ...
3302     if (!call->is_CallStaticJava() || !call->as_CallStaticJava()->_name) {
3303       frc.inc_call_count();   // Count the call site
3304     } else {                  // See if uncommon argument is shared
3305       Node *n = call->in(TypeFunc::Parms);
3306       int nop = n->Opcode();
3307       // Clone shared simple arguments to uncommon calls, item (1).
3308       if (n->outcnt() > 1 &&
3309           !n->is_Proj() &&
3310           nop != Op_CreateEx &&
3311           nop != Op_CheckCastPP &&
3312           nop != Op_DecodeN &&
3313           nop != Op_DecodeNKlass &&
3314           !n->is_Mem() &&
3315           !n->is_Phi()) {
3316         Node *x = n->clone();
3317         call->set_req(TypeFunc::Parms, x);
3318       }
3319     }
3320     break;
3321   }
3322 
3323   case Op_StoreD:
3324   case Op_LoadD:
3325   case Op_LoadD_unaligned:
3326     frc.inc_double_count();
3327     goto handle_mem;
3328   case Op_StoreF:
3329   case Op_LoadF:
3330     frc.inc_float_count();
3331     goto handle_mem;
3332 
3333   case Op_StoreCM:
3334     {
3335       // Convert OopStore dependence into precedence edge
3336       Node* prec = n->in(MemNode::OopStore);
3337       n->del_req(MemNode::OopStore);
3338       n->add_prec(prec);
3339       eliminate_redundant_card_marks(n);
3340     }
3341 
3342     // fall through
3343 
3344   case Op_StoreB:
3345   case Op_StoreC:
3346   case Op_StorePConditional:
3347   case Op_StoreI:
3348   case Op_StoreL:
3349   case Op_StoreIConditional:
3350   case Op_StoreLConditional:
3351   case Op_CompareAndSwapB:
3352   case Op_CompareAndSwapS:
3353   case Op_CompareAndSwapI:
3354   case Op_CompareAndSwapL:
3355   case Op_CompareAndSwapP:
3356   case Op_CompareAndSwapN:
3357   case Op_WeakCompareAndSwapB:
3358   case Op_WeakCompareAndSwapS:
3359   case Op_WeakCompareAndSwapI:
3360   case Op_WeakCompareAndSwapL:
3361   case Op_WeakCompareAndSwapP:
3362   case Op_WeakCompareAndSwapN:
3363   case Op_CompareAndExchangeB:
3364   case Op_CompareAndExchangeS:
3365   case Op_CompareAndExchangeI:
3366   case Op_CompareAndExchangeL:
3367   case Op_CompareAndExchangeP:
3368   case Op_CompareAndExchangeN:
3369   case Op_GetAndAddS:
3370   case Op_GetAndAddB:
3371   case Op_GetAndAddI:
3372   case Op_GetAndAddL:
3373   case Op_GetAndSetS:
3374   case Op_GetAndSetB:
3375   case Op_GetAndSetI:
3376   case Op_GetAndSetL:
3377   case Op_GetAndSetP:
3378   case Op_GetAndSetN:
3379   case Op_StoreP:
3380   case Op_StoreN:
3381   case Op_StoreNKlass:
3382   case Op_LoadB:
3383   case Op_LoadUB:
3384   case Op_LoadUS:
3385   case Op_LoadI:
3386   case Op_LoadKlass:
3387   case Op_LoadNKlass:
3388   case Op_LoadL:
3389   case Op_LoadL_unaligned:
3390   case Op_LoadPLocked:
3391   case Op_LoadP:
3392   case Op_LoadN:
3393   case Op_LoadRange:
3394   case Op_LoadS: {
3395   handle_mem:
3396 #ifdef ASSERT
3397     if( VerifyOptoOopOffsets ) {
3398       MemNode* mem  = n->as_Mem();
3399       // Check to see if address types have grounded out somehow.
3400       const TypeInstPtr *tp = mem->in(MemNode::Address)->bottom_type()->isa_instptr();
3401       assert( !tp || oop_offset_is_sane(tp), "" );
3402     }
3403 #endif
3404     if (nop == Op_LoadKlass || nop == Op_LoadNKlass) {
3405       const TypeKlassPtr* tk = n->bottom_type()->make_ptr()->is_klassptr();
3406       assert(!tk->klass_is_exact(), "should have been folded");
3407       if (tk->klass()->is_obj_array_klass() || tk->klass()->is_java_lang_Object()) {
3408         bool maybe_value_array = tk->klass()->is_java_lang_Object();
3409         if (!maybe_value_array) {
3410           ciArrayKlass* ak = tk->klass()->as_array_klass();
3411           ciKlass* elem = ak->element_klass();
3412           maybe_value_array = elem->is_java_lang_Object() || elem->is_interface() || elem->is_valuetype();
3413         }
3414         if (maybe_value_array) {
3415           // Array load klass needs to filter out property bits (but not
3416           // GetNullFreePropertyNode which needs to extract the null free
3417           // bits)
3418           uint last = unique();
3419           Node* pointer = NULL;
3420           if (nop == Op_LoadKlass) {
3421             Node* cast = new CastP2XNode(NULL, n);
3422             Node* masked = new LShiftXNode(cast, new ConINode(TypeInt::make(oopDesc::storage_props_nof_bits)));
3423             masked = new RShiftXNode(masked, new ConINode(TypeInt::make(oopDesc::storage_props_nof_bits)));
3424             pointer = new CastX2PNode(masked);
3425             pointer = new CheckCastPPNode(NULL, pointer, n->bottom_type());
3426           } else {
3427             Node* cast = new CastN2INode(n);
3428             Node* masked = new AndINode(cast, new ConINode(TypeInt::make(oopDesc::compressed_klass_mask())));
3429             pointer = new CastI2NNode(masked, n->bottom_type());
3430           }
3431           for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
3432             Node* u = n->fast_out(i);
3433             if (u->_idx < last && u->Opcode() != Op_GetNullFreeProperty) {
3434               int nb = u->replace_edge(n, pointer);
3435               --i, imax -= nb;
3436             }
3437           }
3438         }
3439       }
3440     }
3441     break;
3442   }
3443 
3444   case Op_AddP: {               // Assert sane base pointers
3445     Node *addp = n->in(AddPNode::Address);
3446     assert( !addp->is_AddP() ||
3447             addp->in(AddPNode::Base)->is_top() || // Top OK for allocation
3448             addp->in(AddPNode::Base) == n->in(AddPNode::Base),
3449             "Base pointers must match (addp %u)", addp->_idx );
3450 #ifdef _LP64
3451     if ((UseCompressedOops || UseCompressedClassPointers) &&
3452         addp->Opcode() == Op_ConP &&
3453         addp == n->in(AddPNode::Base) &&
3454         n->in(AddPNode::Offset)->is_Con()) {
3455       // If the transformation of ConP to ConN+DecodeN is beneficial depends
3456       // on the platform and on the compressed oops mode.
3457       // Use addressing with narrow klass to load with offset on x86.
3458       // Some platforms can use the constant pool to load ConP.
3459       // Do this transformation here since IGVN will convert ConN back to ConP.
3460       const Type* t = addp->bottom_type();
3461       bool is_oop   = t->isa_oopptr() != NULL;
3462       bool is_klass = t->isa_klassptr() != NULL;
3463 
3464       if ((is_oop   && Matcher::const_oop_prefer_decode()  ) ||
3465           (is_klass && Matcher::const_klass_prefer_decode())) {
3466         Node* nn = NULL;
3467 
3468         int op = is_oop ? Op_ConN : Op_ConNKlass;
3469 
3470         // Look for existing ConN node of the same exact type.
3471         Node* r  = root();
3472         uint cnt = r->outcnt();
3473         for (uint i = 0; i < cnt; i++) {
3474           Node* m = r->raw_out(i);
3475           if (m!= NULL && m->Opcode() == op &&
3476               m->bottom_type()->make_ptr() == t) {
3477             nn = m;
3478             break;
3479           }
3480         }
3481         if (nn != NULL) {
3482           // Decode a narrow oop to match address
3483           // [R12 + narrow_oop_reg<<3 + offset]
3484           if (is_oop) {
3485             nn = new DecodeNNode(nn, t);
3486           } else {
3487             nn = new DecodeNKlassNode(nn, t);
3488           }
3489           // Check for succeeding AddP which uses the same Base.
3490           // Otherwise we will run into the assertion above when visiting that guy.
3491           for (uint i = 0; i < n->outcnt(); ++i) {
3492             Node *out_i = n->raw_out(i);
3493             if (out_i && out_i->is_AddP() && out_i->in(AddPNode::Base) == addp) {
3494               out_i->set_req(AddPNode::Base, nn);
3495 #ifdef ASSERT
3496               for (uint j = 0; j < out_i->outcnt(); ++j) {
3497                 Node *out_j = out_i->raw_out(j);
3498                 assert(out_j == NULL || !out_j->is_AddP() || out_j->in(AddPNode::Base) != addp,
3499                        "more than 2 AddP nodes in a chain (out_j %u)", out_j->_idx);
3500               }
3501 #endif
3502             }
3503           }
3504           n->set_req(AddPNode::Base, nn);
3505           n->set_req(AddPNode::Address, nn);
3506           if (addp->outcnt() == 0) {
3507             addp->disconnect_inputs(NULL, this);
3508           }
3509         }
3510       }
3511     }
3512 #endif
3513     // platform dependent reshaping of the address expression
3514     reshape_address(n->as_AddP());
3515     break;
3516   }
3517 
3518   case Op_CastPP: {
3519     // Remove CastPP nodes to gain more freedom during scheduling but
3520     // keep the dependency they encode as control or precedence edges
3521     // (if control is set already) on memory operations. Some CastPP
3522     // nodes don't have a control (don't carry a dependency): skip
3523     // those.
3524     if (n->in(0) != NULL) {
3525       ResourceMark rm;
3526       Unique_Node_List wq;
3527       wq.push(n);
3528       for (uint next = 0; next < wq.size(); ++next) {
3529         Node *m = wq.at(next);
3530         for (DUIterator_Fast imax, i = m->fast_outs(imax); i < imax; i++) {
3531           Node* use = m->fast_out(i);
3532           if (use->is_Mem() || use->is_EncodeNarrowPtr()) {
3533             use->ensure_control_or_add_prec(n->in(0));
3534           } else {
3535             switch(use->Opcode()) {
3536             case Op_AddP:
3537             case Op_DecodeN:
3538             case Op_DecodeNKlass:
3539             case Op_CheckCastPP:
3540             case Op_CastPP:
3541               wq.push(use);
3542               break;
3543             }
3544           }
3545         }
3546       }
3547     }
3548     const bool is_LP64 = LP64_ONLY(true) NOT_LP64(false);
3549     if (is_LP64 && n->in(1)->is_DecodeN() && Matcher::gen_narrow_oop_implicit_null_checks()) {
3550       Node* in1 = n->in(1);
3551       const Type* t = n->bottom_type();
3552       Node* new_in1 = in1->clone();
3553       new_in1->as_DecodeN()->set_type(t);
3554 
3555       if (!Matcher::narrow_oop_use_complex_address()) {
3556         //
3557         // x86, ARM and friends can handle 2 adds in addressing mode
3558         // and Matcher can fold a DecodeN node into address by using
3559         // a narrow oop directly and do implicit NULL check in address:
3560         //
3561         // [R12 + narrow_oop_reg<<3 + offset]
3562         // NullCheck narrow_oop_reg
3563         //
3564         // On other platforms (Sparc) we have to keep new DecodeN node and
3565         // use it to do implicit NULL check in address:
3566         //
3567         // decode_not_null narrow_oop_reg, base_reg
3568         // [base_reg + offset]
3569         // NullCheck base_reg
3570         //
3571         // Pin the new DecodeN node to non-null path on these platform (Sparc)
3572         // to keep the information to which NULL check the new DecodeN node
3573         // corresponds to use it as value in implicit_null_check().
3574         //
3575         new_in1->set_req(0, n->in(0));
3576       }
3577 
3578       n->subsume_by(new_in1, this);
3579       if (in1->outcnt() == 0) {
3580         in1->disconnect_inputs(NULL, this);
3581       }
3582     } else {
3583       n->subsume_by(n->in(1), this);
3584       if (n->outcnt() == 0) {
3585         n->disconnect_inputs(NULL, this);
3586       }
3587     }
3588     break;
3589   }
3590 #ifdef _LP64
3591   case Op_CmpP:
3592     // Do this transformation here to preserve CmpPNode::sub() and
3593     // other TypePtr related Ideal optimizations (for example, ptr nullness).
3594     if (n->in(1)->is_DecodeNarrowPtr() || n->in(2)->is_DecodeNarrowPtr()) {
3595       Node* in1 = n->in(1);
3596       Node* in2 = n->in(2);
3597       if (!in1->is_DecodeNarrowPtr()) {
3598         in2 = in1;
3599         in1 = n->in(2);
3600       }
3601       assert(in1->is_DecodeNarrowPtr(), "sanity");
3602 
3603       Node* new_in2 = NULL;
3604       if (in2->is_DecodeNarrowPtr()) {
3605         assert(in2->Opcode() == in1->Opcode(), "must be same node type");
3606         new_in2 = in2->in(1);
3607       } else if (in2->Opcode() == Op_ConP) {
3608         const Type* t = in2->bottom_type();
3609         if (t == TypePtr::NULL_PTR) {
3610           assert(in1->is_DecodeN(), "compare klass to null?");
3611           // Don't convert CmpP null check into CmpN if compressed
3612           // oops implicit null check is not generated.
3613           // This will allow to generate normal oop implicit null check.
3614           if (Matcher::gen_narrow_oop_implicit_null_checks())
3615             new_in2 = ConNode::make(TypeNarrowOop::NULL_PTR);
3616           //
3617           // This transformation together with CastPP transformation above
3618           // will generated code for implicit NULL checks for compressed oops.
3619           //
3620           // The original code after Optimize()
3621           //
3622           //    LoadN memory, narrow_oop_reg
3623           //    decode narrow_oop_reg, base_reg
3624           //    CmpP base_reg, NULL
3625           //    CastPP base_reg // NotNull
3626           //    Load [base_reg + offset], val_reg
3627           //
3628           // after these transformations will be
3629           //
3630           //    LoadN memory, narrow_oop_reg
3631           //    CmpN narrow_oop_reg, NULL
3632           //    decode_not_null narrow_oop_reg, base_reg
3633           //    Load [base_reg + offset], val_reg
3634           //
3635           // and the uncommon path (== NULL) will use narrow_oop_reg directly
3636           // since narrow oops can be used in debug info now (see the code in
3637           // final_graph_reshaping_walk()).
3638           //
3639           // At the end the code will be matched to
3640           // on x86:
3641           //
3642           //    Load_narrow_oop memory, narrow_oop_reg
3643           //    Load [R12 + narrow_oop_reg<<3 + offset], val_reg
3644           //    NullCheck narrow_oop_reg
3645           //
3646           // and on sparc:
3647           //
3648           //    Load_narrow_oop memory, narrow_oop_reg
3649           //    decode_not_null narrow_oop_reg, base_reg
3650           //    Load [base_reg + offset], val_reg
3651           //    NullCheck base_reg
3652           //
3653         } else if (t->isa_oopptr()) {
3654           new_in2 = ConNode::make(t->make_narrowoop());
3655         } else if (t->isa_klassptr()) {
3656           new_in2 = ConNode::make(t->make_narrowklass());
3657         }
3658       }
3659       if (new_in2 != NULL) {
3660         Node* cmpN = new CmpNNode(in1->in(1), new_in2);
3661         n->subsume_by(cmpN, this);
3662         if (in1->outcnt() == 0) {
3663           in1->disconnect_inputs(NULL, this);
3664         }
3665         if (in2->outcnt() == 0) {
3666           in2->disconnect_inputs(NULL, this);
3667         }
3668       }
3669     }
3670     break;
3671 
3672   case Op_DecodeN:
3673   case Op_DecodeNKlass:
3674     assert(!n->in(1)->is_EncodeNarrowPtr(), "should be optimized out");
3675     // DecodeN could be pinned when it can't be fold into
3676     // an address expression, see the code for Op_CastPP above.
3677     assert(n->in(0) == NULL || (UseCompressedOops && !Matcher::narrow_oop_use_complex_address()), "no control");
3678     break;
3679 
3680   case Op_EncodeP:
3681   case Op_EncodePKlass: {
3682     Node* in1 = n->in(1);
3683     if (in1->is_DecodeNarrowPtr()) {
3684       n->subsume_by(in1->in(1), this);
3685     } else if (in1->Opcode() == Op_ConP) {
3686       const Type* t = in1->bottom_type();
3687       if (t == TypePtr::NULL_PTR) {
3688         assert(t->isa_oopptr(), "null klass?");
3689         n->subsume_by(ConNode::make(TypeNarrowOop::NULL_PTR), this);
3690       } else if (t->isa_oopptr()) {
3691         n->subsume_by(ConNode::make(t->make_narrowoop()), this);
3692       } else if (t->isa_klassptr()) {
3693         n->subsume_by(ConNode::make(t->make_narrowklass()), this);
3694       }
3695     }
3696     if (in1->outcnt() == 0) {
3697       in1->disconnect_inputs(NULL, this);
3698     }
3699     break;
3700   }
3701 
3702   case Op_Proj: {
3703     if (OptimizeStringConcat) {
3704       ProjNode* p = n->as_Proj();
3705       if (p->_is_io_use) {
3706         // Separate projections were used for the exception path which
3707         // are normally removed by a late inline.  If it wasn't inlined
3708         // then they will hang around and should just be replaced with
3709         // the original one.
3710         Node* proj = NULL;
3711         // Replace with just one
3712         for (SimpleDUIterator i(p->in(0)); i.has_next(); i.next()) {
3713           Node *use = i.get();
3714           if (use->is_Proj() && p != use && use->as_Proj()->_con == p->_con) {
3715             proj = use;
3716             break;
3717           }
3718         }
3719         assert(proj != NULL || p->_con == TypeFunc::I_O, "io may be dropped at an infinite loop");
3720         if (proj != NULL) {
3721           p->subsume_by(proj, this);
3722         }
3723       }
3724     }
3725     break;
3726   }
3727 
3728   case Op_Phi:
3729     if (n->as_Phi()->bottom_type()->isa_narrowoop() || n->as_Phi()->bottom_type()->isa_narrowklass()) {
3730       // The EncodeP optimization may create Phi with the same edges
3731       // for all paths. It is not handled well by Register Allocator.
3732       Node* unique_in = n->in(1);
3733       assert(unique_in != NULL, "");
3734       uint cnt = n->req();
3735       for (uint i = 2; i < cnt; i++) {
3736         Node* m = n->in(i);
3737         assert(m != NULL, "");
3738         if (unique_in != m)
3739           unique_in = NULL;
3740       }
3741       if (unique_in != NULL) {
3742         n->subsume_by(unique_in, this);
3743       }
3744     }
3745     break;
3746 
3747 #endif
3748 
3749 #ifdef ASSERT
3750   case Op_CastII:
3751     // Verify that all range check dependent CastII nodes were removed.
3752     if (n->isa_CastII()->has_range_check()) {
3753       n->dump(3);
3754       assert(false, "Range check dependent CastII node was not removed");
3755     }
3756     break;
3757 #endif
3758 
3759   case Op_ModI:
3760     if (UseDivMod) {
3761       // Check if a%b and a/b both exist
3762       Node* d = n->find_similar(Op_DivI);
3763       if (d) {
3764         // Replace them with a fused divmod if supported
3765         if (Matcher::has_match_rule(Op_DivModI)) {
3766           DivModINode* divmod = DivModINode::make(n);
3767           d->subsume_by(divmod->div_proj(), this);
3768           n->subsume_by(divmod->mod_proj(), this);
3769         } else {
3770           // replace a%b with a-((a/b)*b)
3771           Node* mult = new MulINode(d, d->in(2));
3772           Node* sub  = new SubINode(d->in(1), mult);
3773           n->subsume_by(sub, this);
3774         }
3775       }
3776     }
3777     break;
3778 
3779   case Op_ModL:
3780     if (UseDivMod) {
3781       // Check if a%b and a/b both exist
3782       Node* d = n->find_similar(Op_DivL);
3783       if (d) {
3784         // Replace them with a fused divmod if supported
3785         if (Matcher::has_match_rule(Op_DivModL)) {
3786           DivModLNode* divmod = DivModLNode::make(n);
3787           d->subsume_by(divmod->div_proj(), this);
3788           n->subsume_by(divmod->mod_proj(), this);
3789         } else {
3790           // replace a%b with a-((a/b)*b)
3791           Node* mult = new MulLNode(d, d->in(2));
3792           Node* sub  = new SubLNode(d->in(1), mult);
3793           n->subsume_by(sub, this);
3794         }
3795       }
3796     }
3797     break;
3798 
3799   case Op_LoadVector:
3800   case Op_StoreVector:
3801     break;
3802 
3803   case Op_AddReductionVI:
3804   case Op_AddReductionVL:
3805   case Op_AddReductionVF:
3806   case Op_AddReductionVD:
3807   case Op_MulReductionVI:
3808   case Op_MulReductionVL:
3809   case Op_MulReductionVF:
3810   case Op_MulReductionVD:
3811   case Op_MinReductionV:
3812   case Op_MaxReductionV:
3813     break;
3814 
3815   case Op_PackB:
3816   case Op_PackS:
3817   case Op_PackI:
3818   case Op_PackF:
3819   case Op_PackL:
3820   case Op_PackD:
3821     if (n->req()-1 > 2) {
3822       // Replace many operand PackNodes with a binary tree for matching
3823       PackNode* p = (PackNode*) n;
3824       Node* btp = p->binary_tree_pack(1, n->req());
3825       n->subsume_by(btp, this);
3826     }
3827     break;
3828   case Op_Loop:
3829   case Op_CountedLoop:
3830   case Op_OuterStripMinedLoop:
3831     if (n->as_Loop()->is_inner_loop()) {
3832       frc.inc_inner_loop_count();
3833     }
3834     n->as_Loop()->verify_strip_mined(0);
3835     break;
3836   case Op_LShiftI:
3837   case Op_RShiftI:
3838   case Op_URShiftI:
3839   case Op_LShiftL:
3840   case Op_RShiftL:
3841   case Op_URShiftL:
3842     if (Matcher::need_masked_shift_count) {
3843       // The cpu's shift instructions don't restrict the count to the
3844       // lower 5/6 bits. We need to do the masking ourselves.
3845       Node* in2 = n->in(2);
3846       juint mask = (n->bottom_type() == TypeInt::INT) ? (BitsPerInt - 1) : (BitsPerLong - 1);
3847       const TypeInt* t = in2->find_int_type();
3848       if (t != NULL && t->is_con()) {
3849         juint shift = t->get_con();
3850         if (shift > mask) { // Unsigned cmp
3851           n->set_req(2, ConNode::make(TypeInt::make(shift & mask)));
3852         }
3853       } else {
3854         if (t == NULL || t->_lo < 0 || t->_hi > (int)mask) {
3855           Node* shift = new AndINode(in2, ConNode::make(TypeInt::make(mask)));
3856           n->set_req(2, shift);
3857         }
3858       }
3859       if (in2->outcnt() == 0) { // Remove dead node
3860         in2->disconnect_inputs(NULL, this);
3861       }
3862     }
3863     break;
3864   case Op_MemBarStoreStore:
3865   case Op_MemBarRelease:
3866     // Break the link with AllocateNode: it is no longer useful and
3867     // confuses register allocation.
3868     if (n->req() > MemBarNode::Precedent) {
3869       n->set_req(MemBarNode::Precedent, top());
3870     }
3871     break;
3872   case Op_MemBarAcquire: {
3873     if (n->as_MemBar()->trailing_load() && n->req() > MemBarNode::Precedent) {
3874       // At parse time, the trailing MemBarAcquire for a volatile load
3875       // is created with an edge to the load. After optimizations,
3876       // that input may be a chain of Phis. If those phis have no
3877       // other use, then the MemBarAcquire keeps them alive and
3878       // register allocation can be confused.
3879       ResourceMark rm;
3880       Unique_Node_List wq;
3881       wq.push(n->in(MemBarNode::Precedent));
3882       n->set_req(MemBarNode::Precedent, top());
3883       while (wq.size() > 0) {
3884         Node* m = wq.pop();
3885         if (m->outcnt() == 0) {
3886           for (uint j = 0; j < m->req(); j++) {
3887             Node* in = m->in(j);
3888             if (in != NULL) {
3889               wq.push(in);
3890             }
3891           }
3892           m->disconnect_inputs(NULL, this);
3893         }
3894       }
3895     }
3896     break;
3897   }
3898   case Op_RangeCheck: {
3899     RangeCheckNode* rc = n->as_RangeCheck();
3900     Node* iff = new IfNode(rc->in(0), rc->in(1), rc->_prob, rc->_fcnt);
3901     n->subsume_by(iff, this);
3902     frc._tests.push(iff);
3903     break;
3904   }
3905   case Op_ConvI2L: {
3906     if (!Matcher::convi2l_type_required) {
3907       // Code generation on some platforms doesn't need accurate
3908       // ConvI2L types. Widening the type can help remove redundant
3909       // address computations.
3910       n->as_Type()->set_type(TypeLong::INT);
3911       ResourceMark rm;
3912       Node_List wq;
3913       wq.push(n);
3914       for (uint next = 0; next < wq.size(); next++) {
3915         Node *m = wq.at(next);
3916 
3917         for(;;) {
3918           // Loop over all nodes with identical inputs edges as m
3919           Node* k = m->find_similar(m->Opcode());
3920           if (k == NULL) {
3921             break;
3922           }
3923           // Push their uses so we get a chance to remove node made
3924           // redundant
3925           for (DUIterator_Fast imax, i = k->fast_outs(imax); i < imax; i++) {
3926             Node* u = k->fast_out(i);
3927             assert(!wq.contains(u), "shouldn't process one node several times");
3928             if (u->Opcode() == Op_LShiftL ||
3929                 u->Opcode() == Op_AddL ||
3930                 u->Opcode() == Op_SubL ||
3931                 u->Opcode() == Op_AddP) {
3932               wq.push(u);
3933             }
3934           }
3935           // Replace all nodes with identical edges as m with m
3936           k->subsume_by(m, this);
3937         }
3938       }
3939     }
3940     break;
3941   }
3942   case Op_CmpUL: {
3943     if (!Matcher::has_match_rule(Op_CmpUL)) {
3944       // No support for unsigned long comparisons
3945       ConINode* sign_pos = new ConINode(TypeInt::make(BitsPerLong - 1));
3946       Node* sign_bit_mask = new RShiftLNode(n->in(1), sign_pos);
3947       Node* orl = new OrLNode(n->in(1), sign_bit_mask);
3948       ConLNode* remove_sign_mask = new ConLNode(TypeLong::make(max_jlong));
3949       Node* andl = new AndLNode(orl, remove_sign_mask);
3950       Node* cmp = new CmpLNode(andl, n->in(2));
3951       n->subsume_by(cmp, this);
3952     }
3953     break;
3954   }
3955 #ifdef ASSERT
3956   case Op_ValueTypePtr:
3957   case Op_ValueType: {
3958     n->dump(-1);
3959     assert(false, "value type node was not removed");
3960     break;
3961   }
3962 #endif
3963   case Op_GetNullFreeProperty: {
3964     // Extract the null free bits
3965     uint last = unique();
3966     Node* null_free = NULL;
3967     if (n->in(1)->Opcode() == Op_LoadKlass) {
3968       Node* cast = new CastP2XNode(NULL, n->in(1));
3969       null_free = new AndLNode(cast, new ConLNode(TypeLong::make(((jlong)1)<<(oopDesc::wide_storage_props_shift + ArrayStorageProperties::null_free_bit))));
3970     } else {
3971       assert(n->in(1)->Opcode() == Op_LoadNKlass, "not a compressed klass?");
3972       Node* cast = new CastN2INode(n->in(1));
3973       null_free = new AndINode(cast, new ConINode(TypeInt::make(1<<(oopDesc::narrow_storage_props_shift + ArrayStorageProperties::null_free_bit))));
3974     }
3975     n->replace_by(null_free);
3976     break;
3977   }
3978   default:
3979     assert(!n->is_Call(), "");
3980     assert(!n->is_Mem(), "");
3981     assert(nop != Op_ProfileBoolean, "should be eliminated during IGVN");
3982     break;
3983   }
3984 }
3985 
3986 //------------------------------final_graph_reshaping_walk---------------------
3987 // Replacing Opaque nodes with their input in final_graph_reshaping_impl(),
3988 // requires that the walk visits a node's inputs before visiting the node.
3989 void Compile::final_graph_reshaping_walk( Node_Stack &nstack, Node *root, Final_Reshape_Counts &frc ) {
3990   ResourceArea *area = Thread::current()->resource_area();
3991   Unique_Node_List sfpt(area);
3992 
3993   frc._visited.set(root->_idx); // first, mark node as visited
3994   uint cnt = root->req();
3995   Node *n = root;
3996   uint  i = 0;
3997   while (true) {
3998     if (i < cnt) {
3999       // Place all non-visited non-null inputs onto stack
4000       Node* m = n->in(i);
4001       ++i;
4002       if (m != NULL && !frc._visited.test_set(m->_idx)) {
4003         if (m->is_SafePoint() && m->as_SafePoint()->jvms() != NULL) {
4004           // compute worst case interpreter size in case of a deoptimization
4005           update_interpreter_frame_size(m->as_SafePoint()->jvms()->interpreter_frame_size());
4006 
4007           sfpt.push(m);
4008         }
4009         cnt = m->req();
4010         nstack.push(n, i); // put on stack parent and next input's index
4011         n = m;
4012         i = 0;
4013       }
4014     } else {
4015       // Now do post-visit work
4016       final_graph_reshaping_impl( n, frc );
4017       if (nstack.is_empty())
4018         break;             // finished
4019       n = nstack.node();   // Get node from stack
4020       cnt = n->req();
4021       i = nstack.index();
4022       nstack.pop();        // Shift to the next node on stack
4023     }
4024   }
4025 
4026   // Skip next transformation if compressed oops are not used.
4027   if ((UseCompressedOops && !Matcher::gen_narrow_oop_implicit_null_checks()) ||
4028       (!UseCompressedOops && !UseCompressedClassPointers))
4029     return;
4030 
4031   // Go over safepoints nodes to skip DecodeN/DecodeNKlass nodes for debug edges.
4032   // It could be done for an uncommon traps or any safepoints/calls
4033   // if the DecodeN/DecodeNKlass node is referenced only in a debug info.
4034   while (sfpt.size() > 0) {
4035     n = sfpt.pop();
4036     JVMState *jvms = n->as_SafePoint()->jvms();
4037     assert(jvms != NULL, "sanity");
4038     int start = jvms->debug_start();
4039     int end   = n->req();
4040     bool is_uncommon = (n->is_CallStaticJava() &&
4041                         n->as_CallStaticJava()->uncommon_trap_request() != 0);
4042     for (int j = start; j < end; j++) {
4043       Node* in = n->in(j);
4044       if (in->is_DecodeNarrowPtr()) {
4045         bool safe_to_skip = true;
4046         if (!is_uncommon ) {
4047           // Is it safe to skip?
4048           for (uint i = 0; i < in->outcnt(); i++) {
4049             Node* u = in->raw_out(i);
4050             if (!u->is_SafePoint() ||
4051                 (u->is_Call() && u->as_Call()->has_non_debug_use(n))) {
4052               safe_to_skip = false;
4053             }
4054           }
4055         }
4056         if (safe_to_skip) {
4057           n->set_req(j, in->in(1));
4058         }
4059         if (in->outcnt() == 0) {
4060           in->disconnect_inputs(NULL, this);
4061         }
4062       }
4063     }
4064   }
4065 }
4066 
4067 //------------------------------final_graph_reshaping--------------------------
4068 // Final Graph Reshaping.
4069 //
4070 // (1) Clone simple inputs to uncommon calls, so they can be scheduled late
4071 //     and not commoned up and forced early.  Must come after regular
4072 //     optimizations to avoid GVN undoing the cloning.  Clone constant
4073 //     inputs to Loop Phis; these will be split by the allocator anyways.
4074 //     Remove Opaque nodes.
4075 // (2) Move last-uses by commutative operations to the left input to encourage
4076 //     Intel update-in-place two-address operations and better register usage
4077 //     on RISCs.  Must come after regular optimizations to avoid GVN Ideal
4078 //     calls canonicalizing them back.
4079 // (3) Count the number of double-precision FP ops, single-precision FP ops
4080 //     and call sites.  On Intel, we can get correct rounding either by
4081 //     forcing singles to memory (requires extra stores and loads after each
4082 //     FP bytecode) or we can set a rounding mode bit (requires setting and
4083 //     clearing the mode bit around call sites).  The mode bit is only used
4084 //     if the relative frequency of single FP ops to calls is low enough.
4085 //     This is a key transform for SPEC mpeg_audio.
4086 // (4) Detect infinite loops; blobs of code reachable from above but not
4087 //     below.  Several of the Code_Gen algorithms fail on such code shapes,
4088 //     so we simply bail out.  Happens a lot in ZKM.jar, but also happens
4089 //     from time to time in other codes (such as -Xcomp finalizer loops, etc).
4090 //     Detection is by looking for IfNodes where only 1 projection is
4091 //     reachable from below or CatchNodes missing some targets.
4092 // (5) Assert for insane oop offsets in debug mode.
4093 
4094 bool Compile::final_graph_reshaping() {
4095   // an infinite loop may have been eliminated by the optimizer,
4096   // in which case the graph will be empty.
4097   if (root()->req() == 1) {
4098     record_method_not_compilable("trivial infinite loop");
4099     return true;
4100   }
4101 
4102   // Expensive nodes have their control input set to prevent the GVN
4103   // from freely commoning them. There's no GVN beyond this point so
4104   // no need to keep the control input. We want the expensive nodes to
4105   // be freely moved to the least frequent code path by gcm.
4106   assert(OptimizeExpensiveOps || expensive_count() == 0, "optimization off but list non empty?");
4107   for (int i = 0; i < expensive_count(); i++) {
4108     _expensive_nodes->at(i)->set_req(0, NULL);
4109   }
4110 
4111   Final_Reshape_Counts frc;
4112 
4113   // Visit everybody reachable!
4114   // Allocate stack of size C->live_nodes()/2 to avoid frequent realloc
4115   Node_Stack nstack(live_nodes() >> 1);
4116   final_graph_reshaping_walk(nstack, root(), frc);
4117 
4118   // Check for unreachable (from below) code (i.e., infinite loops).
4119   for( uint i = 0; i < frc._tests.size(); i++ ) {
4120     MultiBranchNode *n = frc._tests[i]->as_MultiBranch();
4121     // Get number of CFG targets.
4122     // Note that PCTables include exception targets after calls.
4123     uint required_outcnt = n->required_outcnt();
4124     if (n->outcnt() != required_outcnt) {
4125       // Check for a few special cases.  Rethrow Nodes never take the
4126       // 'fall-thru' path, so expected kids is 1 less.
4127       if (n->is_PCTable() && n->in(0) && n->in(0)->in(0)) {
4128         if (n->in(0)->in(0)->is_Call()) {
4129           CallNode *call = n->in(0)->in(0)->as_Call();
4130           if (call->entry_point() == OptoRuntime::rethrow_stub()) {
4131             required_outcnt--;      // Rethrow always has 1 less kid
4132           } else if (call->req() > TypeFunc::Parms &&
4133                      call->is_CallDynamicJava()) {
4134             // Check for null receiver. In such case, the optimizer has
4135             // detected that the virtual call will always result in a null
4136             // pointer exception. The fall-through projection of this CatchNode
4137             // will not be populated.
4138             Node *arg0 = call->in(TypeFunc::Parms);
4139             if (arg0->is_Type() &&
4140                 arg0->as_Type()->type()->higher_equal(TypePtr::NULL_PTR)) {
4141               required_outcnt--;
4142             }
4143           } else if (call->entry_point() == OptoRuntime::new_array_Java() &&
4144                      call->req() > TypeFunc::Parms+1 &&
4145                      call->is_CallStaticJava()) {
4146             // Check for negative array length. In such case, the optimizer has
4147             // detected that the allocation attempt will always result in an
4148             // exception. There is no fall-through projection of this CatchNode .
4149             Node *arg1 = call->in(TypeFunc::Parms+1);
4150             if (arg1->is_Type() &&
4151                 arg1->as_Type()->type()->join(TypeInt::POS)->empty()) {
4152               required_outcnt--;
4153             }
4154           }
4155         }
4156       }
4157       // Recheck with a better notion of 'required_outcnt'
4158       if (n->outcnt() != required_outcnt) {
4159         record_method_not_compilable("malformed control flow");
4160         return true;            // Not all targets reachable!
4161       }
4162     }
4163     // Check that I actually visited all kids.  Unreached kids
4164     // must be infinite loops.
4165     for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++)
4166       if (!frc._visited.test(n->fast_out(j)->_idx)) {
4167         record_method_not_compilable("infinite loop");
4168         return true;            // Found unvisited kid; must be unreach
4169       }
4170 
4171     // Here so verification code in final_graph_reshaping_walk()
4172     // always see an OuterStripMinedLoopEnd
4173     if (n->is_OuterStripMinedLoopEnd()) {
4174       IfNode* init_iff = n->as_If();
4175       Node* iff = new IfNode(init_iff->in(0), init_iff->in(1), init_iff->_prob, init_iff->_fcnt);
4176       n->subsume_by(iff, this);
4177     }
4178   }
4179 
4180   // If original bytecodes contained a mixture of floats and doubles
4181   // check if the optimizer has made it homogenous, item (3).
4182   if( Use24BitFPMode && Use24BitFP && UseSSE == 0 &&
4183       frc.get_float_count() > 32 &&
4184       frc.get_double_count() == 0 &&
4185       (10 * frc.get_call_count() < frc.get_float_count()) ) {
4186     set_24_bit_selection_and_mode( false,  true );
4187   }
4188 
4189   set_java_calls(frc.get_java_call_count());
4190   set_inner_loops(frc.get_inner_loop_count());
4191 
4192   // No infinite loops, no reason to bail out.
4193   return false;
4194 }
4195 
4196 //-----------------------------too_many_traps----------------------------------
4197 // Report if there are too many traps at the current method and bci.
4198 // Return true if there was a trap, and/or PerMethodTrapLimit is exceeded.
4199 bool Compile::too_many_traps(ciMethod* method,
4200                              int bci,
4201                              Deoptimization::DeoptReason reason) {
4202   ciMethodData* md = method->method_data();
4203   if (md->is_empty()) {
4204     // Assume the trap has not occurred, or that it occurred only
4205     // because of a transient condition during start-up in the interpreter.
4206     return false;
4207   }
4208   ciMethod* m = Deoptimization::reason_is_speculate(reason) ? this->method() : NULL;
4209   if (md->has_trap_at(bci, m, reason) != 0) {
4210     // Assume PerBytecodeTrapLimit==0, for a more conservative heuristic.
4211     // Also, if there are multiple reasons, or if there is no per-BCI record,
4212     // assume the worst.
4213     if (log())
4214       log()->elem("observe trap='%s' count='%d'",
4215                   Deoptimization::trap_reason_name(reason),
4216                   md->trap_count(reason));
4217     return true;
4218   } else {
4219     // Ignore method/bci and see if there have been too many globally.
4220     return too_many_traps(reason, md);
4221   }
4222 }
4223 
4224 // Less-accurate variant which does not require a method and bci.
4225 bool Compile::too_many_traps(Deoptimization::DeoptReason reason,
4226                              ciMethodData* logmd) {
4227   if (trap_count(reason) >= Deoptimization::per_method_trap_limit(reason)) {
4228     // Too many traps globally.
4229     // Note that we use cumulative trap_count, not just md->trap_count.
4230     if (log()) {
4231       int mcount = (logmd == NULL)? -1: (int)logmd->trap_count(reason);
4232       log()->elem("observe trap='%s' count='0' mcount='%d' ccount='%d'",
4233                   Deoptimization::trap_reason_name(reason),
4234                   mcount, trap_count(reason));
4235     }
4236     return true;
4237   } else {
4238     // The coast is clear.
4239     return false;
4240   }
4241 }
4242 
4243 //--------------------------too_many_recompiles--------------------------------
4244 // Report if there are too many recompiles at the current method and bci.
4245 // Consults PerBytecodeRecompilationCutoff and PerMethodRecompilationCutoff.
4246 // Is not eager to return true, since this will cause the compiler to use
4247 // Action_none for a trap point, to avoid too many recompilations.
4248 bool Compile::too_many_recompiles(ciMethod* method,
4249                                   int bci,
4250                                   Deoptimization::DeoptReason reason) {
4251   ciMethodData* md = method->method_data();
4252   if (md->is_empty()) {
4253     // Assume the trap has not occurred, or that it occurred only
4254     // because of a transient condition during start-up in the interpreter.
4255     return false;
4256   }
4257   // Pick a cutoff point well within PerBytecodeRecompilationCutoff.
4258   uint bc_cutoff = (uint) PerBytecodeRecompilationCutoff / 8;
4259   uint m_cutoff  = (uint) PerMethodRecompilationCutoff / 2 + 1;  // not zero
4260   Deoptimization::DeoptReason per_bc_reason
4261     = Deoptimization::reason_recorded_per_bytecode_if_any(reason);
4262   ciMethod* m = Deoptimization::reason_is_speculate(reason) ? this->method() : NULL;
4263   if ((per_bc_reason == Deoptimization::Reason_none
4264        || md->has_trap_at(bci, m, reason) != 0)
4265       // The trap frequency measure we care about is the recompile count:
4266       && md->trap_recompiled_at(bci, m)
4267       && md->overflow_recompile_count() >= bc_cutoff) {
4268     // Do not emit a trap here if it has already caused recompilations.
4269     // Also, if there are multiple reasons, or if there is no per-BCI record,
4270     // assume the worst.
4271     if (log())
4272       log()->elem("observe trap='%s recompiled' count='%d' recompiles2='%d'",
4273                   Deoptimization::trap_reason_name(reason),
4274                   md->trap_count(reason),
4275                   md->overflow_recompile_count());
4276     return true;
4277   } else if (trap_count(reason) != 0
4278              && decompile_count() >= m_cutoff) {
4279     // Too many recompiles globally, and we have seen this sort of trap.
4280     // Use cumulative decompile_count, not just md->decompile_count.
4281     if (log())
4282       log()->elem("observe trap='%s' count='%d' mcount='%d' decompiles='%d' mdecompiles='%d'",
4283                   Deoptimization::trap_reason_name(reason),
4284                   md->trap_count(reason), trap_count(reason),
4285                   md->decompile_count(), decompile_count());
4286     return true;
4287   } else {
4288     // The coast is clear.
4289     return false;
4290   }
4291 }
4292 
4293 // Compute when not to trap. Used by matching trap based nodes and
4294 // NullCheck optimization.
4295 void Compile::set_allowed_deopt_reasons() {
4296   _allowed_reasons = 0;
4297   if (is_method_compilation()) {
4298     for (int rs = (int)Deoptimization::Reason_none+1; rs < Compile::trapHistLength; rs++) {
4299       assert(rs < BitsPerInt, "recode bit map");
4300       if (!too_many_traps((Deoptimization::DeoptReason) rs)) {
4301         _allowed_reasons |= nth_bit(rs);
4302       }
4303     }
4304   }
4305 }
4306 
4307 bool Compile::is_compiling_clinit_for(ciKlass* k) {
4308   ciMethod* root = method(); // the root method of compilation
4309   return root->is_class_initializer() && root->holder() == k; // access in the context of clinit
4310 }
4311 
4312 #ifndef PRODUCT
4313 //------------------------------verify_graph_edges---------------------------
4314 // Walk the Graph and verify that there is a one-to-one correspondence
4315 // between Use-Def edges and Def-Use edges in the graph.
4316 void Compile::verify_graph_edges(bool no_dead_code) {
4317   if (VerifyGraphEdges) {
4318     ResourceArea *area = Thread::current()->resource_area();
4319     Unique_Node_List visited(area);
4320     // Call recursive graph walk to check edges
4321     _root->verify_edges(visited);
4322     if (no_dead_code) {
4323       // Now make sure that no visited node is used by an unvisited node.
4324       bool dead_nodes = false;
4325       Unique_Node_List checked(area);
4326       while (visited.size() > 0) {
4327         Node* n = visited.pop();
4328         checked.push(n);
4329         for (uint i = 0; i < n->outcnt(); i++) {
4330           Node* use = n->raw_out(i);
4331           if (checked.member(use))  continue;  // already checked
4332           if (visited.member(use))  continue;  // already in the graph
4333           if (use->is_Con())        continue;  // a dead ConNode is OK
4334           // At this point, we have found a dead node which is DU-reachable.
4335           if (!dead_nodes) {
4336             tty->print_cr("*** Dead nodes reachable via DU edges:");
4337             dead_nodes = true;
4338           }
4339           use->dump(2);
4340           tty->print_cr("---");
4341           checked.push(use);  // No repeats; pretend it is now checked.
4342         }
4343       }
4344       assert(!dead_nodes, "using nodes must be reachable from root");
4345     }
4346   }
4347 }
4348 #endif
4349 
4350 // The Compile object keeps track of failure reasons separately from the ciEnv.
4351 // This is required because there is not quite a 1-1 relation between the
4352 // ciEnv and its compilation task and the Compile object.  Note that one
4353 // ciEnv might use two Compile objects, if C2Compiler::compile_method decides
4354 // to backtrack and retry without subsuming loads.  Other than this backtracking
4355 // behavior, the Compile's failure reason is quietly copied up to the ciEnv
4356 // by the logic in C2Compiler.
4357 void Compile::record_failure(const char* reason) {
4358   if (log() != NULL) {
4359     log()->elem("failure reason='%s' phase='compile'", reason);
4360   }
4361   if (_failure_reason == NULL) {
4362     // Record the first failure reason.
4363     _failure_reason = reason;
4364   }
4365 
4366   if (!C->failure_reason_is(C2Compiler::retry_no_subsuming_loads())) {
4367     C->print_method(PHASE_FAILURE);
4368   }
4369   _root = NULL;  // flush the graph, too
4370 }
4371 
4372 Compile::TracePhase::TracePhase(const char* name, elapsedTimer* accumulator)
4373   : TraceTime(name, accumulator, CITime, CITimeVerbose),
4374     _phase_name(name), _dolog(CITimeVerbose)
4375 {
4376   if (_dolog) {
4377     C = Compile::current();
4378     _log = C->log();
4379   } else {
4380     C = NULL;
4381     _log = NULL;
4382   }
4383   if (_log != NULL) {
4384     _log->begin_head("phase name='%s' nodes='%d' live='%d'", _phase_name, C->unique(), C->live_nodes());
4385     _log->stamp();
4386     _log->end_head();
4387   }
4388 }
4389 
4390 Compile::TracePhase::~TracePhase() {
4391 
4392   C = Compile::current();
4393   if (_dolog) {
4394     _log = C->log();
4395   } else {
4396     _log = NULL;
4397   }
4398 
4399 #ifdef ASSERT
4400   if (PrintIdealNodeCount) {
4401     tty->print_cr("phase name='%s' nodes='%d' live='%d' live_graph_walk='%d'",
4402                   _phase_name, C->unique(), C->live_nodes(), C->count_live_nodes_by_graph_walk());
4403   }
4404 
4405   if (VerifyIdealNodeCount) {
4406     Compile::current()->print_missing_nodes();
4407   }
4408 #endif
4409 
4410   if (_log != NULL) {
4411     _log->done("phase name='%s' nodes='%d' live='%d'", _phase_name, C->unique(), C->live_nodes());
4412   }
4413 }
4414 
4415 //=============================================================================
4416 // Two Constant's are equal when the type and the value are equal.
4417 bool Compile::Constant::operator==(const Constant& other) {
4418   if (type()          != other.type()         )  return false;
4419   if (can_be_reused() != other.can_be_reused())  return false;
4420   // For floating point values we compare the bit pattern.
4421   switch (type()) {
4422   case T_INT:
4423   case T_FLOAT:   return (_v._value.i == other._v._value.i);
4424   case T_LONG:
4425   case T_DOUBLE:  return (_v._value.j == other._v._value.j);
4426   case T_OBJECT:
4427   case T_ADDRESS: return (_v._value.l == other._v._value.l);
4428   case T_VOID:    return (_v._value.l == other._v._value.l);  // jump-table entries
4429   case T_METADATA: return (_v._metadata == other._v._metadata);
4430   default: ShouldNotReachHere(); return false;
4431   }
4432 }
4433 
4434 static int type_to_size_in_bytes(BasicType t) {
4435   switch (t) {
4436   case T_INT:     return sizeof(jint   );
4437   case T_LONG:    return sizeof(jlong  );
4438   case T_FLOAT:   return sizeof(jfloat );
4439   case T_DOUBLE:  return sizeof(jdouble);
4440   case T_METADATA: return sizeof(Metadata*);
4441     // We use T_VOID as marker for jump-table entries (labels) which
4442     // need an internal word relocation.
4443   case T_VOID:
4444   case T_ADDRESS:
4445   case T_OBJECT:  return sizeof(jobject);
4446   default:
4447     ShouldNotReachHere();
4448     return -1;
4449   }
4450 }
4451 
4452 int Compile::ConstantTable::qsort_comparator(Constant* a, Constant* b) {
4453   // sort descending
4454   if (a->freq() > b->freq())  return -1;
4455   if (a->freq() < b->freq())  return  1;
4456   return 0;
4457 }
4458 
4459 void Compile::ConstantTable::calculate_offsets_and_size() {
4460   // First, sort the array by frequencies.
4461   _constants.sort(qsort_comparator);
4462 
4463 #ifdef ASSERT
4464   // Make sure all jump-table entries were sorted to the end of the
4465   // array (they have a negative frequency).
4466   bool found_void = false;
4467   for (int i = 0; i < _constants.length(); i++) {
4468     Constant con = _constants.at(i);
4469     if (con.type() == T_VOID)
4470       found_void = true;  // jump-tables
4471     else
4472       assert(!found_void, "wrong sorting");
4473   }
4474 #endif
4475 
4476   int offset = 0;
4477   for (int i = 0; i < _constants.length(); i++) {
4478     Constant* con = _constants.adr_at(i);
4479 
4480     // Align offset for type.
4481     int typesize = type_to_size_in_bytes(con->type());
4482     offset = align_up(offset, typesize);
4483     con->set_offset(offset);   // set constant's offset
4484 
4485     if (con->type() == T_VOID) {
4486       MachConstantNode* n = (MachConstantNode*) con->get_jobject();
4487       offset = offset + typesize * n->outcnt();  // expand jump-table
4488     } else {
4489       offset = offset + typesize;
4490     }
4491   }
4492 
4493   // Align size up to the next section start (which is insts; see
4494   // CodeBuffer::align_at_start).
4495   assert(_size == -1, "already set?");
4496   _size = align_up(offset, (int)CodeEntryAlignment);
4497 }
4498 
4499 void Compile::ConstantTable::emit(CodeBuffer& cb) {
4500   MacroAssembler _masm(&cb);
4501   for (int i = 0; i < _constants.length(); i++) {
4502     Constant con = _constants.at(i);
4503     address constant_addr = NULL;
4504     switch (con.type()) {
4505     case T_INT:    constant_addr = _masm.int_constant(   con.get_jint()   ); break;
4506     case T_LONG:   constant_addr = _masm.long_constant(  con.get_jlong()  ); break;
4507     case T_FLOAT:  constant_addr = _masm.float_constant( con.get_jfloat() ); break;
4508     case T_DOUBLE: constant_addr = _masm.double_constant(con.get_jdouble()); break;
4509     case T_OBJECT: {
4510       jobject obj = con.get_jobject();
4511       int oop_index = _masm.oop_recorder()->find_index(obj);
4512       constant_addr = _masm.address_constant((address) obj, oop_Relocation::spec(oop_index));
4513       break;
4514     }
4515     case T_ADDRESS: {
4516       address addr = (address) con.get_jobject();
4517       constant_addr = _masm.address_constant(addr);
4518       break;
4519     }
4520     // We use T_VOID as marker for jump-table entries (labels) which
4521     // need an internal word relocation.
4522     case T_VOID: {
4523       MachConstantNode* n = (MachConstantNode*) con.get_jobject();
4524       // Fill the jump-table with a dummy word.  The real value is
4525       // filled in later in fill_jump_table.
4526       address dummy = (address) n;
4527       constant_addr = _masm.address_constant(dummy);
4528       // Expand jump-table
4529       for (uint i = 1; i < n->outcnt(); i++) {
4530         address temp_addr = _masm.address_constant(dummy + i);
4531         assert(temp_addr, "consts section too small");
4532       }
4533       break;
4534     }
4535     case T_METADATA: {
4536       Metadata* obj = con.get_metadata();
4537       int metadata_index = _masm.oop_recorder()->find_index(obj);
4538       constant_addr = _masm.address_constant((address) obj, metadata_Relocation::spec(metadata_index));
4539       break;
4540     }
4541     default: ShouldNotReachHere();
4542     }
4543     assert(constant_addr, "consts section too small");
4544     assert((constant_addr - _masm.code()->consts()->start()) == con.offset(),
4545             "must be: %d == %d", (int) (constant_addr - _masm.code()->consts()->start()), (int)(con.offset()));
4546   }
4547 }
4548 
4549 int Compile::ConstantTable::find_offset(Constant& con) const {
4550   int idx = _constants.find(con);
4551   guarantee(idx != -1, "constant must be in constant table");
4552   int offset = _constants.at(idx).offset();
4553   guarantee(offset != -1, "constant table not emitted yet?");
4554   return offset;
4555 }
4556 
4557 void Compile::ConstantTable::add(Constant& con) {
4558   if (con.can_be_reused()) {
4559     int idx = _constants.find(con);
4560     if (idx != -1 && _constants.at(idx).can_be_reused()) {
4561       _constants.adr_at(idx)->inc_freq(con.freq());  // increase the frequency by the current value
4562       return;
4563     }
4564   }
4565   (void) _constants.append(con);
4566 }
4567 
4568 Compile::Constant Compile::ConstantTable::add(MachConstantNode* n, BasicType type, jvalue value) {
4569   Block* b = Compile::current()->cfg()->get_block_for_node(n);
4570   Constant con(type, value, b->_freq);
4571   add(con);
4572   return con;
4573 }
4574 
4575 Compile::Constant Compile::ConstantTable::add(Metadata* metadata) {
4576   Constant con(metadata);
4577   add(con);
4578   return con;
4579 }
4580 
4581 Compile::Constant Compile::ConstantTable::add(MachConstantNode* n, MachOper* oper) {
4582   jvalue value;
4583   BasicType type = oper->type()->basic_type();
4584   switch (type) {
4585   case T_LONG:    value.j = oper->constantL(); break;
4586   case T_FLOAT:   value.f = oper->constantF(); break;
4587   case T_DOUBLE:  value.d = oper->constantD(); break;
4588   case T_OBJECT:
4589   case T_ADDRESS: value.l = (jobject) oper->constant(); break;
4590   case T_METADATA: return add((Metadata*)oper->constant()); break;
4591   default: guarantee(false, "unhandled type: %s", type2name(type));
4592   }
4593   return add(n, type, value);
4594 }
4595 
4596 Compile::Constant Compile::ConstantTable::add_jump_table(MachConstantNode* n) {
4597   jvalue value;
4598   // We can use the node pointer here to identify the right jump-table
4599   // as this method is called from Compile::Fill_buffer right before
4600   // the MachNodes are emitted and the jump-table is filled (means the
4601   // MachNode pointers do not change anymore).
4602   value.l = (jobject) n;
4603   Constant con(T_VOID, value, next_jump_table_freq(), false);  // Labels of a jump-table cannot be reused.
4604   add(con);
4605   return con;
4606 }
4607 
4608 void Compile::ConstantTable::fill_jump_table(CodeBuffer& cb, MachConstantNode* n, GrowableArray<Label*> labels) const {
4609   // If called from Compile::scratch_emit_size do nothing.
4610   if (Compile::current()->in_scratch_emit_size())  return;
4611 
4612   assert(labels.is_nonempty(), "must be");
4613   assert((uint) labels.length() == n->outcnt(), "must be equal: %d == %d", labels.length(), n->outcnt());
4614 
4615   // Since MachConstantNode::constant_offset() also contains
4616   // table_base_offset() we need to subtract the table_base_offset()
4617   // to get the plain offset into the constant table.
4618   int offset = n->constant_offset() - table_base_offset();
4619 
4620   MacroAssembler _masm(&cb);
4621   address* jump_table_base = (address*) (_masm.code()->consts()->start() + offset);
4622 
4623   for (uint i = 0; i < n->outcnt(); i++) {
4624     address* constant_addr = &jump_table_base[i];
4625     assert(*constant_addr == (((address) n) + i), "all jump-table entries must contain adjusted node pointer: " INTPTR_FORMAT " == " INTPTR_FORMAT, p2i(*constant_addr), p2i(((address) n) + i));
4626     *constant_addr = cb.consts()->target(*labels.at(i), (address) constant_addr);
4627     cb.consts()->relocate((address) constant_addr, relocInfo::internal_word_type);
4628   }
4629 }
4630 
4631 //----------------------------static_subtype_check-----------------------------
4632 // Shortcut important common cases when superklass is exact:
4633 // (0) superklass is java.lang.Object (can occur in reflective code)
4634 // (1) subklass is already limited to a subtype of superklass => always ok
4635 // (2) subklass does not overlap with superklass => always fail
4636 // (3) superklass has NO subtypes and we can check with a simple compare.
4637 int Compile::static_subtype_check(ciKlass* superk, ciKlass* subk) {
4638   if (StressReflectiveCode || superk == NULL || subk == NULL) {
4639     return SSC_full_test;       // Let caller generate the general case.
4640   }
4641 
4642   if (superk == env()->Object_klass()) {
4643     return SSC_always_true;     // (0) this test cannot fail
4644   }
4645 
4646   ciType* superelem = superk;
4647   if (superelem->is_array_klass()) {
4648     ciArrayKlass* ak = superelem->as_array_klass();
4649     superelem = superelem->as_array_klass()->base_element_type();
4650   }
4651 
4652   if (!subk->is_interface()) {  // cannot trust static interface types yet
4653     if (subk->is_subtype_of(superk)) {
4654       return SSC_always_true;   // (1) false path dead; no dynamic test needed
4655     }
4656     if (!(superelem->is_klass() && superelem->as_klass()->is_interface()) &&
4657         !superk->is_subtype_of(subk)) {
4658       return SSC_always_false;
4659     }
4660   }
4661 
4662   // Do not fold the subtype check to an array klass pointer comparison for [V? arrays.
4663   // [V is a subtype of [V? but the klass for [V is not equal to the klass for [V?. Perform a full test.
4664   if (superk->is_obj_array_klass() && !superk->as_array_klass()->storage_properties().is_null_free() && superk->as_array_klass()->element_klass()->is_valuetype()) {
4665     return SSC_full_test;
4666   }
4667   // If casting to an instance klass, it must have no subtypes
4668   if (superk->is_interface()) {
4669     // Cannot trust interfaces yet.
4670     // %%% S.B. superk->nof_implementors() == 1
4671   } else if (superelem->is_instance_klass()) {
4672     ciInstanceKlass* ik = superelem->as_instance_klass();
4673     if (!ik->has_subklass() && !ik->is_interface()) {
4674       if (!ik->is_final()) {
4675         // Add a dependency if there is a chance of a later subclass.
4676         dependencies()->assert_leaf_type(ik);
4677       }
4678       return SSC_easy_test;     // (3) caller can do a simple ptr comparison
4679     }
4680   } else {
4681     // A primitive array type has no subtypes.
4682     return SSC_easy_test;       // (3) caller can do a simple ptr comparison
4683   }
4684 
4685   return SSC_full_test;
4686 }
4687 
4688 Node* Compile::conv_I2X_index(PhaseGVN* phase, Node* idx, const TypeInt* sizetype, Node* ctrl) {
4689 #ifdef _LP64
4690   // The scaled index operand to AddP must be a clean 64-bit value.
4691   // Java allows a 32-bit int to be incremented to a negative
4692   // value, which appears in a 64-bit register as a large
4693   // positive number.  Using that large positive number as an
4694   // operand in pointer arithmetic has bad consequences.
4695   // On the other hand, 32-bit overflow is rare, and the possibility
4696   // can often be excluded, if we annotate the ConvI2L node with
4697   // a type assertion that its value is known to be a small positive
4698   // number.  (The prior range check has ensured this.)
4699   // This assertion is used by ConvI2LNode::Ideal.
4700   int index_max = max_jint - 1;  // array size is max_jint, index is one less
4701   if (sizetype != NULL) index_max = sizetype->_hi - 1;
4702   const TypeInt* iidxtype = TypeInt::make(0, index_max, Type::WidenMax);
4703   idx = constrained_convI2L(phase, idx, iidxtype, ctrl);
4704 #endif
4705   return idx;
4706 }
4707 
4708 // Convert integer value to a narrowed long type dependent on ctrl (for example, a range check)
4709 Node* Compile::constrained_convI2L(PhaseGVN* phase, Node* value, const TypeInt* itype, Node* ctrl) {
4710   if (ctrl != NULL) {
4711     // Express control dependency by a CastII node with a narrow type.
4712     value = new CastIINode(value, itype, false, true /* range check dependency */);
4713     // Make the CastII node dependent on the control input to prevent the narrowed ConvI2L
4714     // node from floating above the range check during loop optimizations. Otherwise, the
4715     // ConvI2L node may be eliminated independently of the range check, causing the data path
4716     // to become TOP while the control path is still there (although it's unreachable).
4717     value->set_req(0, ctrl);
4718     // Save CastII node to remove it after loop optimizations.
4719     phase->C->add_range_check_cast(value);
4720     value = phase->transform(value);
4721   }
4722   const TypeLong* ltype = TypeLong::make(itype->_lo, itype->_hi, itype->_widen);
4723   return phase->transform(new ConvI2LNode(value, ltype));
4724 }
4725 
4726 // The message about the current inlining is accumulated in
4727 // _print_inlining_stream and transfered into the _print_inlining_list
4728 // once we know whether inlining succeeds or not. For regular
4729 // inlining, messages are appended to the buffer pointed by
4730 // _print_inlining_idx in the _print_inlining_list. For late inlining,
4731 // a new buffer is added after _print_inlining_idx in the list. This
4732 // way we can update the inlining message for late inlining call site
4733 // when the inlining is attempted again.
4734 void Compile::print_inlining_init() {
4735   if (print_inlining() || print_intrinsics()) {
4736     _print_inlining_stream = new stringStream();
4737     _print_inlining_list = new (comp_arena())GrowableArray<PrintInliningBuffer>(comp_arena(), 1, 1, PrintInliningBuffer());
4738   }
4739 }
4740 
4741 void Compile::print_inlining_reinit() {
4742   if (print_inlining() || print_intrinsics()) {
4743     // Re allocate buffer when we change ResourceMark
4744     _print_inlining_stream = new stringStream();
4745   }
4746 }
4747 
4748 void Compile::print_inlining_reset() {
4749   _print_inlining_stream->reset();
4750 }
4751 
4752 void Compile::print_inlining_commit() {
4753   assert(print_inlining() || print_intrinsics(), "PrintInlining off?");
4754   // Transfer the message from _print_inlining_stream to the current
4755   // _print_inlining_list buffer and clear _print_inlining_stream.
4756   _print_inlining_list->at(_print_inlining_idx).ss()->write(_print_inlining_stream->as_string(), _print_inlining_stream->size());
4757   print_inlining_reset();
4758 }
4759 
4760 void Compile::print_inlining_push() {
4761   // Add new buffer to the _print_inlining_list at current position
4762   _print_inlining_idx++;
4763   _print_inlining_list->insert_before(_print_inlining_idx, PrintInliningBuffer());
4764 }
4765 
4766 Compile::PrintInliningBuffer& Compile::print_inlining_current() {
4767   return _print_inlining_list->at(_print_inlining_idx);
4768 }
4769 
4770 void Compile::print_inlining_update(CallGenerator* cg) {
4771   if (print_inlining() || print_intrinsics()) {
4772     if (!cg->is_late_inline()) {
4773       if (print_inlining_current().cg() != NULL) {
4774         print_inlining_push();
4775       }
4776       print_inlining_commit();
4777     } else {
4778       if (print_inlining_current().cg() != cg &&
4779           (print_inlining_current().cg() != NULL ||
4780            print_inlining_current().ss()->size() != 0)) {
4781         print_inlining_push();
4782       }
4783       print_inlining_commit();
4784       print_inlining_current().set_cg(cg);
4785     }
4786   }
4787 }
4788 
4789 void Compile::print_inlining_move_to(CallGenerator* cg) {
4790   // We resume inlining at a late inlining call site. Locate the
4791   // corresponding inlining buffer so that we can update it.
4792   if (print_inlining()) {
4793     for (int i = 0; i < _print_inlining_list->length(); i++) {
4794       if (_print_inlining_list->adr_at(i)->cg() == cg) {
4795         _print_inlining_idx = i;
4796         return;
4797       }
4798     }
4799     ShouldNotReachHere();
4800   }
4801 }
4802 
4803 void Compile::print_inlining_update_delayed(CallGenerator* cg) {
4804   if (print_inlining()) {
4805     assert(_print_inlining_stream->size() > 0, "missing inlining msg");
4806     assert(print_inlining_current().cg() == cg, "wrong entry");
4807     // replace message with new message
4808     _print_inlining_list->at_put(_print_inlining_idx, PrintInliningBuffer());
4809     print_inlining_commit();
4810     print_inlining_current().set_cg(cg);
4811   }
4812 }
4813 
4814 void Compile::print_inlining_assert_ready() {
4815   assert(!_print_inlining || _print_inlining_stream->size() == 0, "loosing data");
4816 }
4817 
4818 void Compile::process_print_inlining() {
4819   bool do_print_inlining = print_inlining() || print_intrinsics();
4820   if (do_print_inlining || log() != NULL) {
4821     // Print inlining message for candidates that we couldn't inline
4822     // for lack of space
4823     for (int i = 0; i < _late_inlines.length(); i++) {
4824       CallGenerator* cg = _late_inlines.at(i);
4825       if (!cg->is_mh_late_inline()) {
4826         const char* msg = "live nodes > LiveNodeCountInliningCutoff";
4827         if (do_print_inlining) {
4828           cg->print_inlining_late(msg);
4829         }
4830         log_late_inline_failure(cg, msg);
4831       }
4832     }
4833   }
4834   if (do_print_inlining) {
4835     ResourceMark rm;
4836     stringStream ss;
4837     for (int i = 0; i < _print_inlining_list->length(); i++) {
4838       ss.print("%s", _print_inlining_list->adr_at(i)->ss()->as_string());
4839     }
4840     size_t end = ss.size();
4841     _print_inlining_output = NEW_ARENA_ARRAY(comp_arena(), char, end+1);
4842     strncpy(_print_inlining_output, ss.base(), end+1);
4843     _print_inlining_output[end] = 0;
4844   }
4845 }
4846 
4847 void Compile::dump_print_inlining() {
4848   if (_print_inlining_output != NULL) {
4849     tty->print_raw(_print_inlining_output);
4850   }
4851 }
4852 
4853 void Compile::log_late_inline(CallGenerator* cg) {
4854   if (log() != NULL) {
4855     log()->head("late_inline method='%d'  inline_id='" JLONG_FORMAT "'", log()->identify(cg->method()),
4856                 cg->unique_id());
4857     JVMState* p = cg->call_node()->jvms();
4858     while (p != NULL) {
4859       log()->elem("jvms bci='%d' method='%d'", p->bci(), log()->identify(p->method()));
4860       p = p->caller();
4861     }
4862     log()->tail("late_inline");
4863   }
4864 }
4865 
4866 void Compile::log_late_inline_failure(CallGenerator* cg, const char* msg) {
4867   log_late_inline(cg);
4868   if (log() != NULL) {
4869     log()->inline_fail(msg);
4870   }
4871 }
4872 
4873 void Compile::log_inline_id(CallGenerator* cg) {
4874   if (log() != NULL) {
4875     // The LogCompilation tool needs a unique way to identify late
4876     // inline call sites. This id must be unique for this call site in
4877     // this compilation. Try to have it unique across compilations as
4878     // well because it can be convenient when grepping through the log
4879     // file.
4880     // Distinguish OSR compilations from others in case CICountOSR is
4881     // on.
4882     jlong id = ((jlong)unique()) + (((jlong)compile_id()) << 33) + (CICountOSR && is_osr_compilation() ? ((jlong)1) << 32 : 0);
4883     cg->set_unique_id(id);
4884     log()->elem("inline_id id='" JLONG_FORMAT "'", id);
4885   }
4886 }
4887 
4888 void Compile::log_inline_failure(const char* msg) {
4889   if (C->log() != NULL) {
4890     C->log()->inline_fail(msg);
4891   }
4892 }
4893 
4894 
4895 // Dump inlining replay data to the stream.
4896 // Don't change thread state and acquire any locks.
4897 void Compile::dump_inline_data(outputStream* out) {
4898   InlineTree* inl_tree = ilt();
4899   if (inl_tree != NULL) {
4900     out->print(" inline %d", inl_tree->count());
4901     inl_tree->dump_replay_data(out);
4902   }
4903 }
4904 
4905 int Compile::cmp_expensive_nodes(Node* n1, Node* n2) {
4906   if (n1->Opcode() < n2->Opcode())      return -1;
4907   else if (n1->Opcode() > n2->Opcode()) return 1;
4908 
4909   assert(n1->req() == n2->req(), "can't compare %s nodes: n1->req() = %d, n2->req() = %d", NodeClassNames[n1->Opcode()], n1->req(), n2->req());
4910   for (uint i = 1; i < n1->req(); i++) {
4911     if (n1->in(i) < n2->in(i))      return -1;
4912     else if (n1->in(i) > n2->in(i)) return 1;
4913   }
4914 
4915   return 0;
4916 }
4917 
4918 int Compile::cmp_expensive_nodes(Node** n1p, Node** n2p) {
4919   Node* n1 = *n1p;
4920   Node* n2 = *n2p;
4921 
4922   return cmp_expensive_nodes(n1, n2);
4923 }
4924 
4925 void Compile::sort_expensive_nodes() {
4926   if (!expensive_nodes_sorted()) {
4927     _expensive_nodes->sort(cmp_expensive_nodes);
4928   }
4929 }
4930 
4931 bool Compile::expensive_nodes_sorted() const {
4932   for (int i = 1; i < _expensive_nodes->length(); i++) {
4933     if (cmp_expensive_nodes(_expensive_nodes->adr_at(i), _expensive_nodes->adr_at(i-1)) < 0) {
4934       return false;
4935     }
4936   }
4937   return true;
4938 }
4939 
4940 bool Compile::should_optimize_expensive_nodes(PhaseIterGVN &igvn) {
4941   if (_expensive_nodes->length() == 0) {
4942     return false;
4943   }
4944 
4945   assert(OptimizeExpensiveOps, "optimization off?");
4946 
4947   // Take this opportunity to remove dead nodes from the list
4948   int j = 0;
4949   for (int i = 0; i < _expensive_nodes->length(); i++) {
4950     Node* n = _expensive_nodes->at(i);
4951     if (!n->is_unreachable(igvn)) {
4952       assert(n->is_expensive(), "should be expensive");
4953       _expensive_nodes->at_put(j, n);
4954       j++;
4955     }
4956   }
4957   _expensive_nodes->trunc_to(j);
4958 
4959   // Then sort the list so that similar nodes are next to each other
4960   // and check for at least two nodes of identical kind with same data
4961   // inputs.
4962   sort_expensive_nodes();
4963 
4964   for (int i = 0; i < _expensive_nodes->length()-1; i++) {
4965     if (cmp_expensive_nodes(_expensive_nodes->adr_at(i), _expensive_nodes->adr_at(i+1)) == 0) {
4966       return true;
4967     }
4968   }
4969 
4970   return false;
4971 }
4972 
4973 void Compile::cleanup_expensive_nodes(PhaseIterGVN &igvn) {
4974   if (_expensive_nodes->length() == 0) {
4975     return;
4976   }
4977 
4978   assert(OptimizeExpensiveOps, "optimization off?");
4979 
4980   // Sort to bring similar nodes next to each other and clear the
4981   // control input of nodes for which there's only a single copy.
4982   sort_expensive_nodes();
4983 
4984   int j = 0;
4985   int identical = 0;
4986   int i = 0;
4987   bool modified = false;
4988   for (; i < _expensive_nodes->length()-1; i++) {
4989     assert(j <= i, "can't write beyond current index");
4990     if (_expensive_nodes->at(i)->Opcode() == _expensive_nodes->at(i+1)->Opcode()) {
4991       identical++;
4992       _expensive_nodes->at_put(j++, _expensive_nodes->at(i));
4993       continue;
4994     }
4995     if (identical > 0) {
4996       _expensive_nodes->at_put(j++, _expensive_nodes->at(i));
4997       identical = 0;
4998     } else {
4999       Node* n = _expensive_nodes->at(i);
5000       igvn.replace_input_of(n, 0, NULL);
5001       igvn.hash_insert(n);
5002       modified = true;
5003     }
5004   }
5005   if (identical > 0) {
5006     _expensive_nodes->at_put(j++, _expensive_nodes->at(i));
5007   } else if (_expensive_nodes->length() >= 1) {
5008     Node* n = _expensive_nodes->at(i);
5009     igvn.replace_input_of(n, 0, NULL);
5010     igvn.hash_insert(n);
5011     modified = true;
5012   }
5013   _expensive_nodes->trunc_to(j);
5014   if (modified) {
5015     igvn.optimize();
5016   }
5017 }
5018 
5019 void Compile::add_expensive_node(Node * n) {
5020   assert(!_expensive_nodes->contains(n), "duplicate entry in expensive list");
5021   assert(n->is_expensive(), "expensive nodes with non-null control here only");
5022   assert(!n->is_CFG() && !n->is_Mem(), "no cfg or memory nodes here");
5023   if (OptimizeExpensiveOps) {
5024     _expensive_nodes->append(n);
5025   } else {
5026     // Clear control input and let IGVN optimize expensive nodes if
5027     // OptimizeExpensiveOps is off.
5028     n->set_req(0, NULL);
5029   }
5030 }
5031 
5032 /**
5033  * Remove the speculative part of types and clean up the graph
5034  */
5035 void Compile::remove_speculative_types(PhaseIterGVN &igvn) {
5036   if (UseTypeSpeculation) {
5037     Unique_Node_List worklist;
5038     worklist.push(root());
5039     int modified = 0;
5040     // Go over all type nodes that carry a speculative type, drop the
5041     // speculative part of the type and enqueue the node for an igvn
5042     // which may optimize it out.
5043     for (uint next = 0; next < worklist.size(); ++next) {
5044       Node *n  = worklist.at(next);
5045       if (n->is_Type()) {
5046         TypeNode* tn = n->as_Type();
5047         const Type* t = tn->type();
5048         const Type* t_no_spec = t->remove_speculative();
5049         if (t_no_spec != t) {
5050           bool in_hash = igvn.hash_delete(n);
5051           assert(in_hash, "node should be in igvn hash table");
5052           tn->set_type(t_no_spec);
5053           igvn.hash_insert(n);
5054           igvn._worklist.push(n); // give it a chance to go away
5055           modified++;
5056         }
5057       }
5058       uint max = n->len();
5059       for( uint i = 0; i < max; ++i ) {
5060         Node *m = n->in(i);
5061         if (not_a_node(m))  continue;
5062         worklist.push(m);
5063       }
5064     }
5065     // Drop the speculative part of all types in the igvn's type table
5066     igvn.remove_speculative_types();
5067     if (modified > 0) {
5068       igvn.optimize();
5069     }
5070 #ifdef ASSERT
5071     // Verify that after the IGVN is over no speculative type has resurfaced
5072     worklist.clear();
5073     worklist.push(root());
5074     for (uint next = 0; next < worklist.size(); ++next) {
5075       Node *n  = worklist.at(next);
5076       const Type* t = igvn.type_or_null(n);
5077       assert((t == NULL) || (t == t->remove_speculative()), "no more speculative types");
5078       if (n->is_Type()) {
5079         t = n->as_Type()->type();
5080         assert(t == t->remove_speculative(), "no more speculative types");
5081       }
5082       uint max = n->len();
5083       for( uint i = 0; i < max; ++i ) {
5084         Node *m = n->in(i);
5085         if (not_a_node(m))  continue;
5086         worklist.push(m);
5087       }
5088     }
5089     igvn.check_no_speculative_types();
5090 #endif
5091   }
5092 }
5093 
5094 Node* Compile::optimize_acmp(PhaseGVN* phase, Node* a, Node* b) {
5095   const TypeInstPtr* ta = phase->type(a)->isa_instptr();
5096   const TypeInstPtr* tb = phase->type(b)->isa_instptr();
5097   if (!EnableValhalla || ta == NULL || tb == NULL ||
5098       ta->is_zero_type() || tb->is_zero_type() ||
5099       !ta->can_be_value_type() || !tb->can_be_value_type()) {
5100     // Use old acmp if one operand is null or not a value type
5101     return new CmpPNode(a, b);
5102   } else if (ta->is_valuetypeptr() || tb->is_valuetypeptr()) {
5103     // We know that one operand is a value type. Therefore,
5104     // new acmp will only return true if both operands are NULL.
5105     // Check if both operands are null by or'ing the oops.
5106     a = phase->transform(new CastP2XNode(NULL, a));
5107     b = phase->transform(new CastP2XNode(NULL, b));
5108     a = phase->transform(new OrXNode(a, b));
5109     return new CmpXNode(a, phase->MakeConX(0));
5110   }
5111   // Use new acmp
5112   return NULL;
5113 }
5114 
5115 // Auxiliary method to support randomized stressing/fuzzing.
5116 //
5117 // This method can be called the arbitrary number of times, with current count
5118 // as the argument. The logic allows selecting a single candidate from the
5119 // running list of candidates as follows:
5120 //    int count = 0;
5121 //    Cand* selected = null;
5122 //    while(cand = cand->next()) {
5123 //      if (randomized_select(++count)) {
5124 //        selected = cand;
5125 //      }
5126 //    }
5127 //
5128 // Including count equalizes the chances any candidate is "selected".
5129 // This is useful when we don't have the complete list of candidates to choose
5130 // from uniformly. In this case, we need to adjust the randomicity of the
5131 // selection, or else we will end up biasing the selection towards the latter
5132 // candidates.
5133 //
5134 // Quick back-envelope calculation shows that for the list of n candidates
5135 // the equal probability for the candidate to persist as "best" can be
5136 // achieved by replacing it with "next" k-th candidate with the probability
5137 // of 1/k. It can be easily shown that by the end of the run, the
5138 // probability for any candidate is converged to 1/n, thus giving the
5139 // uniform distribution among all the candidates.
5140 //
5141 // We don't care about the domain size as long as (RANDOMIZED_DOMAIN / count) is large.
5142 #define RANDOMIZED_DOMAIN_POW 29
5143 #define RANDOMIZED_DOMAIN (1 << RANDOMIZED_DOMAIN_POW)
5144 #define RANDOMIZED_DOMAIN_MASK ((1 << (RANDOMIZED_DOMAIN_POW + 1)) - 1)
5145 bool Compile::randomized_select(int count) {
5146   assert(count > 0, "only positive");
5147   return (os::random() & RANDOMIZED_DOMAIN_MASK) < (RANDOMIZED_DOMAIN / count);
5148 }
5149 
5150 CloneMap&     Compile::clone_map()                 { return _clone_map; }
5151 void          Compile::set_clone_map(Dict* d)      { _clone_map._dict = d; }
5152 
5153 void NodeCloneInfo::dump() const {
5154   tty->print(" {%d:%d} ", idx(), gen());
5155 }
5156 
5157 void CloneMap::clone(Node* old, Node* nnn, int gen) {
5158   uint64_t val = value(old->_idx);
5159   NodeCloneInfo cio(val);
5160   assert(val != 0, "old node should be in the map");
5161   NodeCloneInfo cin(cio.idx(), gen + cio.gen());
5162   insert(nnn->_idx, cin.get());
5163 #ifndef PRODUCT
5164   if (is_debug()) {
5165     tty->print_cr("CloneMap::clone inserted node %d info {%d:%d} into CloneMap", nnn->_idx, cin.idx(), cin.gen());
5166   }
5167 #endif
5168 }
5169 
5170 void CloneMap::verify_insert_and_clone(Node* old, Node* nnn, int gen) {
5171   NodeCloneInfo cio(value(old->_idx));
5172   if (cio.get() == 0) {
5173     cio.set(old->_idx, 0);
5174     insert(old->_idx, cio.get());
5175 #ifndef PRODUCT
5176     if (is_debug()) {
5177       tty->print_cr("CloneMap::verify_insert_and_clone inserted node %d info {%d:%d} into CloneMap", old->_idx, cio.idx(), cio.gen());
5178     }
5179 #endif
5180   }
5181   clone(old, nnn, gen);
5182 }
5183 
5184 int CloneMap::max_gen() const {
5185   int g = 0;
5186   DictI di(_dict);
5187   for(; di.test(); ++di) {
5188     int t = gen(di._key);
5189     if (g < t) {
5190       g = t;
5191 #ifndef PRODUCT
5192       if (is_debug()) {
5193         tty->print_cr("CloneMap::max_gen() update max=%d from %d", g, _2_node_idx_t(di._key));
5194       }
5195 #endif
5196     }
5197   }
5198   return g;
5199 }
5200 
5201 void CloneMap::dump(node_idx_t key) const {
5202   uint64_t val = value(key);
5203   if (val != 0) {
5204     NodeCloneInfo ni(val);
5205     ni.dump();
5206   }
5207 }