1 /*
   2  * Copyright (c) 1997, 2019, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "asm/macroAssembler.hpp"
  27 #include "asm/macroAssembler.inline.hpp"
  28 #include "ci/ciReplay.hpp"
  29 #include "classfile/systemDictionary.hpp"
  30 #include "code/exceptionHandlerTable.hpp"
  31 #include "code/nmethod.hpp"
  32 #include "compiler/compileBroker.hpp"
  33 #include "compiler/compileLog.hpp"
  34 #include "compiler/disassembler.hpp"
  35 #include "compiler/oopMap.hpp"
  36 #include "gc/shared/barrierSet.hpp"
  37 #include "gc/shared/c2/barrierSetC2.hpp"
  38 #include "memory/resourceArea.hpp"
  39 #include "opto/addnode.hpp"
  40 #include "opto/block.hpp"
  41 #include "opto/c2compiler.hpp"
  42 #include "opto/callGenerator.hpp"
  43 #include "opto/callnode.hpp"
  44 #include "opto/castnode.hpp"
  45 #include "opto/cfgnode.hpp"
  46 #include "opto/chaitin.hpp"
  47 #include "opto/compile.hpp"
  48 #include "opto/connode.hpp"
  49 #include "opto/convertnode.hpp"
  50 #include "opto/divnode.hpp"
  51 #include "opto/escape.hpp"
  52 #include "opto/idealGraphPrinter.hpp"
  53 #include "opto/loopnode.hpp"
  54 #include "opto/machnode.hpp"
  55 #include "opto/macro.hpp"
  56 #include "opto/matcher.hpp"
  57 #include "opto/mathexactnode.hpp"
  58 #include "opto/memnode.hpp"
  59 #include "opto/mulnode.hpp"
  60 #include "opto/narrowptrnode.hpp"
  61 #include "opto/node.hpp"
  62 #include "opto/opcodes.hpp"
  63 #include "opto/output.hpp"
  64 #include "opto/parse.hpp"
  65 #include "opto/phaseX.hpp"
  66 #include "opto/rootnode.hpp"
  67 #include "opto/runtime.hpp"
  68 #include "opto/stringopts.hpp"
  69 #include "opto/type.hpp"
  70 #include "opto/valuetypenode.hpp"
  71 #include "opto/vectornode.hpp"
  72 #include "runtime/arguments.hpp"
  73 #include "runtime/sharedRuntime.hpp"
  74 #include "runtime/signature.hpp"
  75 #include "runtime/stubRoutines.hpp"
  76 #include "runtime/timer.hpp"
  77 #include "utilities/align.hpp"
  78 #include "utilities/copy.hpp"
  79 #include "utilities/macros.hpp"
  80 #if INCLUDE_ZGC
  81 #include "gc/z/c2/zBarrierSetC2.hpp"
  82 #endif
  83 
  84 
  85 // -------------------- Compile::mach_constant_base_node -----------------------
  86 // Constant table base node singleton.
  87 MachConstantBaseNode* Compile::mach_constant_base_node() {
  88   if (_mach_constant_base_node == NULL) {
  89     _mach_constant_base_node = new MachConstantBaseNode();
  90     _mach_constant_base_node->add_req(C->root());
  91   }
  92   return _mach_constant_base_node;
  93 }
  94 
  95 
  96 /// Support for intrinsics.
  97 
  98 // Return the index at which m must be inserted (or already exists).
  99 // The sort order is by the address of the ciMethod, with is_virtual as minor key.
 100 class IntrinsicDescPair {
 101  private:
 102   ciMethod* _m;
 103   bool _is_virtual;
 104  public:
 105   IntrinsicDescPair(ciMethod* m, bool is_virtual) : _m(m), _is_virtual(is_virtual) {}
 106   static int compare(IntrinsicDescPair* const& key, CallGenerator* const& elt) {
 107     ciMethod* m= elt->method();
 108     ciMethod* key_m = key->_m;
 109     if (key_m < m)      return -1;
 110     else if (key_m > m) return 1;
 111     else {
 112       bool is_virtual = elt->is_virtual();
 113       bool key_virtual = key->_is_virtual;
 114       if (key_virtual < is_virtual)      return -1;
 115       else if (key_virtual > is_virtual) return 1;
 116       else                               return 0;
 117     }
 118   }
 119 };
 120 int Compile::intrinsic_insertion_index(ciMethod* m, bool is_virtual, bool& found) {
 121 #ifdef ASSERT
 122   for (int i = 1; i < _intrinsics->length(); i++) {
 123     CallGenerator* cg1 = _intrinsics->at(i-1);
 124     CallGenerator* cg2 = _intrinsics->at(i);
 125     assert(cg1->method() != cg2->method()
 126            ? cg1->method()     < cg2->method()
 127            : cg1->is_virtual() < cg2->is_virtual(),
 128            "compiler intrinsics list must stay sorted");
 129   }
 130 #endif
 131   IntrinsicDescPair pair(m, is_virtual);
 132   return _intrinsics->find_sorted<IntrinsicDescPair*, IntrinsicDescPair::compare>(&pair, found);
 133 }
 134 
 135 void Compile::register_intrinsic(CallGenerator* cg) {
 136   if (_intrinsics == NULL) {
 137     _intrinsics = new (comp_arena())GrowableArray<CallGenerator*>(comp_arena(), 60, 0, NULL);
 138   }
 139   int len = _intrinsics->length();
 140   bool found = false;
 141   int index = intrinsic_insertion_index(cg->method(), cg->is_virtual(), found);
 142   assert(!found, "registering twice");
 143   _intrinsics->insert_before(index, cg);
 144   assert(find_intrinsic(cg->method(), cg->is_virtual()) == cg, "registration worked");
 145 }
 146 
 147 CallGenerator* Compile::find_intrinsic(ciMethod* m, bool is_virtual) {
 148   assert(m->is_loaded(), "don't try this on unloaded methods");
 149   if (_intrinsics != NULL) {
 150     bool found = false;
 151     int index = intrinsic_insertion_index(m, is_virtual, found);
 152      if (found) {
 153       return _intrinsics->at(index);
 154     }
 155   }
 156   // Lazily create intrinsics for intrinsic IDs well-known in the runtime.
 157   if (m->intrinsic_id() != vmIntrinsics::_none &&
 158       m->intrinsic_id() <= vmIntrinsics::LAST_COMPILER_INLINE) {
 159     CallGenerator* cg = make_vm_intrinsic(m, is_virtual);
 160     if (cg != NULL) {
 161       // Save it for next time:
 162       register_intrinsic(cg);
 163       return cg;
 164     } else {
 165       gather_intrinsic_statistics(m->intrinsic_id(), is_virtual, _intrinsic_disabled);
 166     }
 167   }
 168   return NULL;
 169 }
 170 
 171 // Compile:: register_library_intrinsics and make_vm_intrinsic are defined
 172 // in library_call.cpp.
 173 
 174 
 175 #ifndef PRODUCT
 176 // statistics gathering...
 177 
 178 juint  Compile::_intrinsic_hist_count[vmIntrinsics::ID_LIMIT] = {0};
 179 jubyte Compile::_intrinsic_hist_flags[vmIntrinsics::ID_LIMIT] = {0};
 180 
 181 bool Compile::gather_intrinsic_statistics(vmIntrinsics::ID id, bool is_virtual, int flags) {
 182   assert(id > vmIntrinsics::_none && id < vmIntrinsics::ID_LIMIT, "oob");
 183   int oflags = _intrinsic_hist_flags[id];
 184   assert(flags != 0, "what happened?");
 185   if (is_virtual) {
 186     flags |= _intrinsic_virtual;
 187   }
 188   bool changed = (flags != oflags);
 189   if ((flags & _intrinsic_worked) != 0) {
 190     juint count = (_intrinsic_hist_count[id] += 1);
 191     if (count == 1) {
 192       changed = true;           // first time
 193     }
 194     // increment the overall count also:
 195     _intrinsic_hist_count[vmIntrinsics::_none] += 1;
 196   }
 197   if (changed) {
 198     if (((oflags ^ flags) & _intrinsic_virtual) != 0) {
 199       // Something changed about the intrinsic's virtuality.
 200       if ((flags & _intrinsic_virtual) != 0) {
 201         // This is the first use of this intrinsic as a virtual call.
 202         if (oflags != 0) {
 203           // We already saw it as a non-virtual, so note both cases.
 204           flags |= _intrinsic_both;
 205         }
 206       } else if ((oflags & _intrinsic_both) == 0) {
 207         // This is the first use of this intrinsic as a non-virtual
 208         flags |= _intrinsic_both;
 209       }
 210     }
 211     _intrinsic_hist_flags[id] = (jubyte) (oflags | flags);
 212   }
 213   // update the overall flags also:
 214   _intrinsic_hist_flags[vmIntrinsics::_none] |= (jubyte) flags;
 215   return changed;
 216 }
 217 
 218 static char* format_flags(int flags, char* buf) {
 219   buf[0] = 0;
 220   if ((flags & Compile::_intrinsic_worked) != 0)    strcat(buf, ",worked");
 221   if ((flags & Compile::_intrinsic_failed) != 0)    strcat(buf, ",failed");
 222   if ((flags & Compile::_intrinsic_disabled) != 0)  strcat(buf, ",disabled");
 223   if ((flags & Compile::_intrinsic_virtual) != 0)   strcat(buf, ",virtual");
 224   if ((flags & Compile::_intrinsic_both) != 0)      strcat(buf, ",nonvirtual");
 225   if (buf[0] == 0)  strcat(buf, ",");
 226   assert(buf[0] == ',', "must be");
 227   return &buf[1];
 228 }
 229 
 230 void Compile::print_intrinsic_statistics() {
 231   char flagsbuf[100];
 232   ttyLocker ttyl;
 233   if (xtty != NULL)  xtty->head("statistics type='intrinsic'");
 234   tty->print_cr("Compiler intrinsic usage:");
 235   juint total = _intrinsic_hist_count[vmIntrinsics::_none];
 236   if (total == 0)  total = 1;  // avoid div0 in case of no successes
 237   #define PRINT_STAT_LINE(name, c, f) \
 238     tty->print_cr("  %4d (%4.1f%%) %s (%s)", (int)(c), ((c) * 100.0) / total, name, f);
 239   for (int index = 1 + (int)vmIntrinsics::_none; index < (int)vmIntrinsics::ID_LIMIT; index++) {
 240     vmIntrinsics::ID id = (vmIntrinsics::ID) index;
 241     int   flags = _intrinsic_hist_flags[id];
 242     juint count = _intrinsic_hist_count[id];
 243     if ((flags | count) != 0) {
 244       PRINT_STAT_LINE(vmIntrinsics::name_at(id), count, format_flags(flags, flagsbuf));
 245     }
 246   }
 247   PRINT_STAT_LINE("total", total, format_flags(_intrinsic_hist_flags[vmIntrinsics::_none], flagsbuf));
 248   if (xtty != NULL)  xtty->tail("statistics");
 249 }
 250 
 251 void Compile::print_statistics() {
 252   { ttyLocker ttyl;
 253     if (xtty != NULL)  xtty->head("statistics type='opto'");
 254     Parse::print_statistics();
 255     PhaseCCP::print_statistics();
 256     PhaseRegAlloc::print_statistics();
 257     Scheduling::print_statistics();
 258     PhasePeephole::print_statistics();
 259     PhaseIdealLoop::print_statistics();
 260     if (xtty != NULL)  xtty->tail("statistics");
 261   }
 262   if (_intrinsic_hist_flags[vmIntrinsics::_none] != 0) {
 263     // put this under its own <statistics> element.
 264     print_intrinsic_statistics();
 265   }
 266 }
 267 #endif //PRODUCT
 268 
 269 // Support for bundling info
 270 Bundle* Compile::node_bundling(const Node *n) {
 271   assert(valid_bundle_info(n), "oob");
 272   return &_node_bundling_base[n->_idx];
 273 }
 274 
 275 bool Compile::valid_bundle_info(const Node *n) {
 276   return (_node_bundling_limit > n->_idx);
 277 }
 278 
 279 
 280 void Compile::gvn_replace_by(Node* n, Node* nn) {
 281   for (DUIterator_Last imin, i = n->last_outs(imin); i >= imin; ) {
 282     Node* use = n->last_out(i);
 283     bool is_in_table = initial_gvn()->hash_delete(use);
 284     uint uses_found = 0;
 285     for (uint j = 0; j < use->len(); j++) {
 286       if (use->in(j) == n) {
 287         if (j < use->req())
 288           use->set_req(j, nn);
 289         else
 290           use->set_prec(j, nn);
 291         uses_found++;
 292       }
 293     }
 294     if (is_in_table) {
 295       // reinsert into table
 296       initial_gvn()->hash_find_insert(use);
 297     }
 298     record_for_igvn(use);
 299     i -= uses_found;    // we deleted 1 or more copies of this edge
 300   }
 301 }
 302 
 303 
 304 static inline bool not_a_node(const Node* n) {
 305   if (n == NULL)                   return true;
 306   if (((intptr_t)n & 1) != 0)      return true;  // uninitialized, etc.
 307   if (*(address*)n == badAddress)  return true;  // kill by Node::destruct
 308   return false;
 309 }
 310 
 311 // Identify all nodes that are reachable from below, useful.
 312 // Use breadth-first pass that records state in a Unique_Node_List,
 313 // recursive traversal is slower.
 314 void Compile::identify_useful_nodes(Unique_Node_List &useful) {
 315   int estimated_worklist_size = live_nodes();
 316   useful.map( estimated_worklist_size, NULL );  // preallocate space
 317 
 318   // Initialize worklist
 319   if (root() != NULL)     { useful.push(root()); }
 320   // If 'top' is cached, declare it useful to preserve cached node
 321   if( cached_top_node() ) { useful.push(cached_top_node()); }
 322 
 323   // Push all useful nodes onto the list, breadthfirst
 324   for( uint next = 0; next < useful.size(); ++next ) {
 325     assert( next < unique(), "Unique useful nodes < total nodes");
 326     Node *n  = useful.at(next);
 327     uint max = n->len();
 328     for( uint i = 0; i < max; ++i ) {
 329       Node *m = n->in(i);
 330       if (not_a_node(m))  continue;
 331       useful.push(m);
 332     }
 333   }
 334 }
 335 
 336 // Update dead_node_list with any missing dead nodes using useful
 337 // list. Consider all non-useful nodes to be useless i.e., dead nodes.
 338 void Compile::update_dead_node_list(Unique_Node_List &useful) {
 339   uint max_idx = unique();
 340   VectorSet& useful_node_set = useful.member_set();
 341 
 342   for (uint node_idx = 0; node_idx < max_idx; node_idx++) {
 343     // If node with index node_idx is not in useful set,
 344     // mark it as dead in dead node list.
 345     if (! useful_node_set.test(node_idx) ) {
 346       record_dead_node(node_idx);
 347     }
 348   }
 349 }
 350 
 351 void Compile::remove_useless_late_inlines(GrowableArray<CallGenerator*>* inlines, Unique_Node_List &useful) {
 352   int shift = 0;
 353   for (int i = 0; i < inlines->length(); i++) {
 354     CallGenerator* cg = inlines->at(i);
 355     CallNode* call = cg->call_node();
 356     if (shift > 0) {
 357       inlines->at_put(i-shift, cg);
 358     }
 359     if (!useful.member(call)) {
 360       shift++;
 361     }
 362   }
 363   inlines->trunc_to(inlines->length()-shift);
 364 }
 365 
 366 // Disconnect all useless nodes by disconnecting those at the boundary.
 367 void Compile::remove_useless_nodes(Unique_Node_List &useful) {
 368   uint next = 0;
 369   while (next < useful.size()) {
 370     Node *n = useful.at(next++);
 371     if (n->is_SafePoint()) {
 372       // We're done with a parsing phase. Replaced nodes are not valid
 373       // beyond that point.
 374       n->as_SafePoint()->delete_replaced_nodes();
 375     }
 376     // Use raw traversal of out edges since this code removes out edges
 377     int max = n->outcnt();
 378     for (int j = 0; j < max; ++j) {
 379       Node* child = n->raw_out(j);
 380       if (! useful.member(child)) {
 381         assert(!child->is_top() || child != top(),
 382                "If top is cached in Compile object it is in useful list");
 383         // Only need to remove this out-edge to the useless node
 384         n->raw_del_out(j);
 385         --j;
 386         --max;
 387       }
 388     }
 389     if (n->outcnt() == 1 && n->has_special_unique_user()) {
 390       record_for_igvn(n->unique_out());
 391     }
 392   }
 393   // Remove useless macro and predicate opaq nodes
 394   for (int i = C->macro_count()-1; i >= 0; i--) {
 395     Node* n = C->macro_node(i);
 396     if (!useful.member(n)) {
 397       remove_macro_node(n);
 398     }
 399   }
 400   // Remove useless CastII nodes with range check dependency
 401   for (int i = range_check_cast_count() - 1; i >= 0; i--) {
 402     Node* cast = range_check_cast_node(i);
 403     if (!useful.member(cast)) {
 404       remove_range_check_cast(cast);
 405     }
 406   }
 407   // Remove useless expensive nodes
 408   for (int i = C->expensive_count()-1; i >= 0; i--) {
 409     Node* n = C->expensive_node(i);
 410     if (!useful.member(n)) {
 411       remove_expensive_node(n);
 412     }
 413   }
 414   // Remove useless Opaque4 nodes
 415   for (int i = opaque4_count() - 1; i >= 0; i--) {
 416     Node* opaq = opaque4_node(i);
 417     if (!useful.member(opaq)) {
 418       remove_opaque4_node(opaq);
 419     }
 420   }
 421   // Remove useless value type nodes
 422   if (_value_type_nodes != NULL) {
 423     _value_type_nodes->remove_useless_nodes(useful.member_set());
 424   }
 425   BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
 426   bs->eliminate_useless_gc_barriers(useful, this);
 427   // clean up the late inline lists
 428   remove_useless_late_inlines(&_string_late_inlines, useful);
 429   remove_useless_late_inlines(&_boxing_late_inlines, useful);
 430   remove_useless_late_inlines(&_late_inlines, useful);
 431   debug_only(verify_graph_edges(true/*check for no_dead_code*/);)
 432 }
 433 
 434 //------------------------------frame_size_in_words-----------------------------
 435 // frame_slots in units of words
 436 int Compile::frame_size_in_words() const {
 437   // shift is 0 in LP32 and 1 in LP64
 438   const int shift = (LogBytesPerWord - LogBytesPerInt);
 439   int words = _frame_slots >> shift;
 440   assert( words << shift == _frame_slots, "frame size must be properly aligned in LP64" );
 441   return words;
 442 }
 443 
 444 // To bang the stack of this compiled method we use the stack size
 445 // that the interpreter would need in case of a deoptimization. This
 446 // removes the need to bang the stack in the deoptimization blob which
 447 // in turn simplifies stack overflow handling.
 448 int Compile::bang_size_in_bytes() const {
 449   return MAX2(frame_size_in_bytes() + os::extra_bang_size_in_bytes(), _interpreter_frame_size);
 450 }
 451 
 452 // ============================================================================
 453 //------------------------------CompileWrapper---------------------------------
 454 class CompileWrapper : public StackObj {
 455   Compile *const _compile;
 456  public:
 457   CompileWrapper(Compile* compile);
 458 
 459   ~CompileWrapper();
 460 };
 461 
 462 CompileWrapper::CompileWrapper(Compile* compile) : _compile(compile) {
 463   // the Compile* pointer is stored in the current ciEnv:
 464   ciEnv* env = compile->env();
 465   assert(env == ciEnv::current(), "must already be a ciEnv active");
 466   assert(env->compiler_data() == NULL, "compile already active?");
 467   env->set_compiler_data(compile);
 468   assert(compile == Compile::current(), "sanity");
 469 
 470   compile->set_type_dict(NULL);
 471   compile->set_clone_map(new Dict(cmpkey, hashkey, _compile->comp_arena()));
 472   compile->clone_map().set_clone_idx(0);
 473   compile->set_type_hwm(NULL);
 474   compile->set_type_last_size(0);
 475   compile->set_last_tf(NULL, NULL);
 476   compile->set_indexSet_arena(NULL);
 477   compile->set_indexSet_free_block_list(NULL);
 478   compile->init_type_arena();
 479   Type::Initialize(compile);
 480   _compile->set_scratch_buffer_blob(NULL);
 481   _compile->begin_method();
 482   _compile->clone_map().set_debug(_compile->has_method() && _compile->directive()->CloneMapDebugOption);
 483 }
 484 CompileWrapper::~CompileWrapper() {
 485   _compile->end_method();
 486   if (_compile->scratch_buffer_blob() != NULL)
 487     BufferBlob::free(_compile->scratch_buffer_blob());
 488   _compile->env()->set_compiler_data(NULL);
 489 }
 490 
 491 
 492 //----------------------------print_compile_messages---------------------------
 493 void Compile::print_compile_messages() {
 494 #ifndef PRODUCT
 495   // Check if recompiling
 496   if (_subsume_loads == false && PrintOpto) {
 497     // Recompiling without allowing machine instructions to subsume loads
 498     tty->print_cr("*********************************************************");
 499     tty->print_cr("** Bailout: Recompile without subsuming loads          **");
 500     tty->print_cr("*********************************************************");
 501   }
 502   if (_do_escape_analysis != DoEscapeAnalysis && PrintOpto) {
 503     // Recompiling without escape analysis
 504     tty->print_cr("*********************************************************");
 505     tty->print_cr("** Bailout: Recompile without escape analysis          **");
 506     tty->print_cr("*********************************************************");
 507   }
 508   if (_eliminate_boxing != EliminateAutoBox && PrintOpto) {
 509     // Recompiling without boxing elimination
 510     tty->print_cr("*********************************************************");
 511     tty->print_cr("** Bailout: Recompile without boxing elimination       **");
 512     tty->print_cr("*********************************************************");
 513   }
 514   if (C->directive()->BreakAtCompileOption) {
 515     // Open the debugger when compiling this method.
 516     tty->print("### Breaking when compiling: ");
 517     method()->print_short_name();
 518     tty->cr();
 519     BREAKPOINT;
 520   }
 521 
 522   if( PrintOpto ) {
 523     if (is_osr_compilation()) {
 524       tty->print("[OSR]%3d", _compile_id);
 525     } else {
 526       tty->print("%3d", _compile_id);
 527     }
 528   }
 529 #endif
 530 }
 531 
 532 
 533 //-----------------------init_scratch_buffer_blob------------------------------
 534 // Construct a temporary BufferBlob and cache it for this compile.
 535 void Compile::init_scratch_buffer_blob(int const_size) {
 536   // If there is already a scratch buffer blob allocated and the
 537   // constant section is big enough, use it.  Otherwise free the
 538   // current and allocate a new one.
 539   BufferBlob* blob = scratch_buffer_blob();
 540   if ((blob != NULL) && (const_size <= _scratch_const_size)) {
 541     // Use the current blob.
 542   } else {
 543     if (blob != NULL) {
 544       BufferBlob::free(blob);
 545     }
 546 
 547     ResourceMark rm;
 548     _scratch_const_size = const_size;
 549     int size = C2Compiler::initial_code_buffer_size(const_size);
 550 #ifdef ASSERT
 551     if (C->has_scalarized_args()) {
 552       // Oop verification for loading object fields from scalarized value types in the new entry point requires lots of space
 553       size += 5120;
 554     }
 555 #endif
 556     blob = BufferBlob::create("Compile::scratch_buffer", size);
 557     // Record the buffer blob for next time.
 558     set_scratch_buffer_blob(blob);
 559     // Have we run out of code space?
 560     if (scratch_buffer_blob() == NULL) {
 561       // Let CompilerBroker disable further compilations.
 562       record_failure("Not enough space for scratch buffer in CodeCache");
 563       return;
 564     }
 565   }
 566 
 567   // Initialize the relocation buffers
 568   relocInfo* locs_buf = (relocInfo*) blob->content_end() - MAX_locs_size;
 569   set_scratch_locs_memory(locs_buf);
 570 }
 571 
 572 
 573 //-----------------------scratch_emit_size-------------------------------------
 574 // Helper function that computes size by emitting code
 575 uint Compile::scratch_emit_size(const Node* n) {
 576   // Start scratch_emit_size section.
 577   set_in_scratch_emit_size(true);
 578 
 579   // Emit into a trash buffer and count bytes emitted.
 580   // This is a pretty expensive way to compute a size,
 581   // but it works well enough if seldom used.
 582   // All common fixed-size instructions are given a size
 583   // method by the AD file.
 584   // Note that the scratch buffer blob and locs memory are
 585   // allocated at the beginning of the compile task, and
 586   // may be shared by several calls to scratch_emit_size.
 587   // The allocation of the scratch buffer blob is particularly
 588   // expensive, since it has to grab the code cache lock.
 589   BufferBlob* blob = this->scratch_buffer_blob();
 590   assert(blob != NULL, "Initialize BufferBlob at start");
 591   assert(blob->size() > MAX_inst_size, "sanity");
 592   relocInfo* locs_buf = scratch_locs_memory();
 593   address blob_begin = blob->content_begin();
 594   address blob_end   = (address)locs_buf;
 595   assert(blob->contains(blob_end), "sanity");
 596   CodeBuffer buf(blob_begin, blob_end - blob_begin);
 597   buf.initialize_consts_size(_scratch_const_size);
 598   buf.initialize_stubs_size(MAX_stubs_size);
 599   assert(locs_buf != NULL, "sanity");
 600   int lsize = MAX_locs_size / 3;
 601   buf.consts()->initialize_shared_locs(&locs_buf[lsize * 0], lsize);
 602   buf.insts()->initialize_shared_locs( &locs_buf[lsize * 1], lsize);
 603   buf.stubs()->initialize_shared_locs( &locs_buf[lsize * 2], lsize);
 604   // Mark as scratch buffer.
 605   buf.consts()->set_scratch_emit();
 606   buf.insts()->set_scratch_emit();
 607   buf.stubs()->set_scratch_emit();
 608 
 609   // Do the emission.
 610 
 611   Label fakeL; // Fake label for branch instructions.
 612   Label*   saveL = NULL;
 613   uint save_bnum = 0;
 614   bool is_branch = n->is_MachBranch();
 615   if (is_branch) {
 616     MacroAssembler masm(&buf);
 617     masm.bind(fakeL);
 618     n->as_MachBranch()->save_label(&saveL, &save_bnum);
 619     n->as_MachBranch()->label_set(&fakeL, 0);
 620   } else if (n->is_MachProlog()) {
 621     saveL = ((MachPrologNode*)n)->_verified_entry;
 622     ((MachPrologNode*)n)->_verified_entry = &fakeL;
 623   }
 624   n->emit(buf, this->regalloc());
 625 
 626   // Emitting into the scratch buffer should not fail
 627   assert (!failing(), "Must not have pending failure. Reason is: %s", failure_reason());
 628 
 629   // Restore label.
 630   if (is_branch) {
 631     n->as_MachBranch()->label_set(saveL, save_bnum);
 632   } else if (n->is_MachProlog()) {
 633     ((MachPrologNode*)n)->_verified_entry = saveL;
 634   }
 635 
 636   // End scratch_emit_size section.
 637   set_in_scratch_emit_size(false);
 638 
 639   return buf.insts_size();
 640 }
 641 
 642 
 643 // ============================================================================
 644 //------------------------------Compile standard-------------------------------
 645 debug_only( int Compile::_debug_idx = 100000; )
 646 
 647 // Compile a method.  entry_bci is -1 for normal compilations and indicates
 648 // the continuation bci for on stack replacement.
 649 
 650 
 651 Compile::Compile( ciEnv* ci_env, C2Compiler* compiler, ciMethod* target, int osr_bci,
 652                   bool subsume_loads, bool do_escape_analysis, bool eliminate_boxing, DirectiveSet* directive)
 653                 : Phase(Compiler),
 654                   _compile_id(ci_env->compile_id()),
 655                   _save_argument_registers(false),
 656                   _subsume_loads(subsume_loads),
 657                   _do_escape_analysis(do_escape_analysis),
 658                   _eliminate_boxing(eliminate_boxing),
 659                   _method(target),
 660                   _entry_bci(osr_bci),
 661                   _stub_function(NULL),
 662                   _stub_name(NULL),
 663                   _stub_entry_point(NULL),
 664                   _max_node_limit(MaxNodeLimit),
 665                   _orig_pc_slot(0),
 666                   _orig_pc_slot_offset_in_bytes(0),
 667                   _sp_inc_slot(0),
 668                   _sp_inc_slot_offset_in_bytes(0),
 669                   _inlining_progress(false),
 670                   _inlining_incrementally(false),
 671                   _do_cleanup(false),
 672                   _has_reserved_stack_access(target->has_reserved_stack_access()),
 673 #ifndef PRODUCT
 674                   _trace_opto_output(directive->TraceOptoOutputOption),
 675 #endif
 676                   _has_method_handle_invokes(false),
 677                   _clinit_barrier_on_entry(false),
 678                   _comp_arena(mtCompiler),
 679                   _barrier_set_state(BarrierSet::barrier_set()->barrier_set_c2()->create_barrier_state(comp_arena())),
 680                   _env(ci_env),
 681                   _directive(directive),
 682                   _log(ci_env->log()),
 683                   _failure_reason(NULL),
 684                   _congraph(NULL),
 685 #ifndef PRODUCT
 686                   _printer(IdealGraphPrinter::printer()),
 687 #endif
 688                   _dead_node_list(comp_arena()),
 689                   _dead_node_count(0),
 690                   _node_arena(mtCompiler),
 691                   _old_arena(mtCompiler),
 692                   _mach_constant_base_node(NULL),
 693                   _Compile_types(mtCompiler),
 694                   _initial_gvn(NULL),
 695                   _for_igvn(NULL),
 696                   _warm_calls(NULL),
 697                   _late_inlines(comp_arena(), 2, 0, NULL),
 698                   _string_late_inlines(comp_arena(), 2, 0, NULL),
 699                   _boxing_late_inlines(comp_arena(), 2, 0, NULL),
 700                   _late_inlines_pos(0),
 701                   _number_of_mh_late_inlines(0),
 702                   _print_inlining_stream(NULL),
 703                   _print_inlining_list(NULL),
 704                   _print_inlining_idx(0),
 705                   _print_inlining_output(NULL),
 706                   _replay_inline_data(NULL),
 707                   _java_calls(0),
 708                   _inner_loops(0),
 709                   _interpreter_frame_size(0),
 710                   _node_bundling_limit(0),
 711                   _node_bundling_base(NULL),
 712                   _code_buffer("Compile::Fill_buffer"),
 713                   _scratch_const_size(-1),
 714                   _in_scratch_emit_size(false)
 715 #ifndef PRODUCT
 716                   , _in_dump_cnt(0)
 717 #endif
 718 {
 719   C = this;
 720 #ifndef PRODUCT
 721   if (_printer != NULL) {
 722     _printer->set_compile(this);
 723   }
 724 #endif
 725   CompileWrapper cw(this);
 726 
 727   if (CITimeVerbose) {
 728     tty->print(" ");
 729     target->holder()->name()->print();
 730     tty->print(".");
 731     target->print_short_name();
 732     tty->print("  ");
 733   }
 734   TraceTime t1("Total compilation time", &_t_totalCompilation, CITime, CITimeVerbose);
 735   TraceTime t2(NULL, &_t_methodCompilation, CITime, false);
 736 
 737 #if defined(SUPPORT_ASSEMBLY) || defined(SUPPORT_ABSTRACT_ASSEMBLY)
 738   bool print_opto_assembly = directive->PrintOptoAssemblyOption;
 739   // We can always print a disassembly, either abstract (hex dump) or
 740   // with the help of a suitable hsdis library. Thus, we should not
 741   // couple print_assembly and print_opto_assembly controls.
 742   // But: always print opto and regular assembly on compile command 'print'.
 743   bool print_assembly = directive->PrintAssemblyOption;
 744   set_print_assembly(print_opto_assembly || print_assembly);
 745 #else
 746   set_print_assembly(false); // must initialize.
 747 #endif
 748 
 749 #ifndef PRODUCT
 750   set_parsed_irreducible_loop(false);
 751 
 752   if (directive->ReplayInlineOption) {
 753     _replay_inline_data = ciReplay::load_inline_data(method(), entry_bci(), ci_env->comp_level());
 754   }
 755 #endif
 756   set_print_inlining(directive->PrintInliningOption || PrintOptoInlining);
 757   set_print_intrinsics(directive->PrintIntrinsicsOption);
 758   set_has_irreducible_loop(true); // conservative until build_loop_tree() reset it
 759 
 760   if (ProfileTraps RTM_OPT_ONLY( || UseRTMLocking )) {
 761     // Make sure the method being compiled gets its own MDO,
 762     // so we can at least track the decompile_count().
 763     // Need MDO to record RTM code generation state.
 764     method()->ensure_method_data();
 765   }
 766 
 767   Init(::AliasLevel);
 768 
 769 
 770   print_compile_messages();
 771 
 772   _ilt = InlineTree::build_inline_tree_root();
 773 
 774   // Even if NO memory addresses are used, MergeMem nodes must have at least 1 slice
 775   assert(num_alias_types() >= AliasIdxRaw, "");
 776 
 777 #define MINIMUM_NODE_HASH  1023
 778   // Node list that Iterative GVN will start with
 779   Unique_Node_List for_igvn(comp_arena());
 780   set_for_igvn(&for_igvn);
 781 
 782   // GVN that will be run immediately on new nodes
 783   uint estimated_size = method()->code_size()*4+64;
 784   estimated_size = (estimated_size < MINIMUM_NODE_HASH ? MINIMUM_NODE_HASH : estimated_size);
 785   PhaseGVN gvn(node_arena(), estimated_size);
 786   set_initial_gvn(&gvn);
 787 
 788   print_inlining_init();
 789   { // Scope for timing the parser
 790     TracePhase tp("parse", &timers[_t_parser]);
 791 
 792     // Put top into the hash table ASAP.
 793     initial_gvn()->transform_no_reclaim(top());
 794 
 795     // Set up tf(), start(), and find a CallGenerator.
 796     CallGenerator* cg = NULL;
 797     if (is_osr_compilation()) {
 798       const TypeTuple *domain = StartOSRNode::osr_domain();
 799       const TypeTuple *range = TypeTuple::make_range(method()->signature());
 800       init_tf(TypeFunc::make(domain, range));
 801       StartNode* s = new StartOSRNode(root(), domain);
 802       initial_gvn()->set_type_bottom(s);
 803       init_start(s);
 804       cg = CallGenerator::for_osr(method(), entry_bci());
 805     } else {
 806       // Normal case.
 807       init_tf(TypeFunc::make(method()));
 808       StartNode* s = new StartNode(root(), tf()->domain_cc());
 809       initial_gvn()->set_type_bottom(s);
 810       init_start(s);
 811       if (method()->intrinsic_id() == vmIntrinsics::_Reference_get) {
 812         // With java.lang.ref.reference.get() we must go through the
 813         // intrinsic - even when get() is the root
 814         // method of the compile - so that, if necessary, the value in
 815         // the referent field of the reference object gets recorded by
 816         // the pre-barrier code.
 817         cg = find_intrinsic(method(), false);
 818       }
 819       if (cg == NULL) {
 820         float past_uses = method()->interpreter_invocation_count();
 821         float expected_uses = past_uses;
 822         cg = CallGenerator::for_inline(method(), expected_uses);
 823       }
 824     }
 825     if (failing())  return;
 826     if (cg == NULL) {
 827       record_method_not_compilable("cannot parse method");
 828       return;
 829     }
 830     JVMState* jvms = build_start_state(start(), tf());
 831     if ((jvms = cg->generate(jvms)) == NULL) {
 832       if (!failure_reason_is(C2Compiler::retry_class_loading_during_parsing())) {
 833         record_method_not_compilable("method parse failed");
 834       }
 835       return;
 836     }
 837     GraphKit kit(jvms);
 838 
 839     if (!kit.stopped()) {
 840       // Accept return values, and transfer control we know not where.
 841       // This is done by a special, unique ReturnNode bound to root.
 842       return_values(kit.jvms());
 843     }
 844 
 845     if (kit.has_exceptions()) {
 846       // Any exceptions that escape from this call must be rethrown
 847       // to whatever caller is dynamically above us on the stack.
 848       // This is done by a special, unique RethrowNode bound to root.
 849       rethrow_exceptions(kit.transfer_exceptions_into_jvms());
 850     }
 851 
 852     assert(IncrementalInline || (_late_inlines.length() == 0 && !has_mh_late_inlines()), "incremental inlining is off");
 853 
 854     if (_late_inlines.length() == 0 && !has_mh_late_inlines() && !failing() && has_stringbuilder()) {
 855       inline_string_calls(true);
 856     }
 857 
 858     if (failing())  return;
 859 
 860     print_method(PHASE_BEFORE_REMOVEUSELESS, 3);
 861 
 862     // Remove clutter produced by parsing.
 863     if (!failing()) {
 864       ResourceMark rm;
 865       PhaseRemoveUseless pru(initial_gvn(), &for_igvn);
 866     }
 867   }
 868 
 869   // Note:  Large methods are capped off in do_one_bytecode().
 870   if (failing())  return;
 871 
 872   // After parsing, node notes are no longer automagic.
 873   // They must be propagated by register_new_node_with_optimizer(),
 874   // clone(), or the like.
 875   set_default_node_notes(NULL);
 876 
 877   for (;;) {
 878     int successes = Inline_Warm();
 879     if (failing())  return;
 880     if (successes == 0)  break;
 881   }
 882 
 883   // Drain the list.
 884   Finish_Warm();
 885 #ifndef PRODUCT
 886   if (_printer && _printer->should_print(1)) {
 887     _printer->print_inlining();
 888   }
 889 #endif
 890 
 891   if (failing())  return;
 892   NOT_PRODUCT( verify_graph_edges(); )
 893 
 894   // Now optimize
 895   Optimize();
 896   if (failing())  return;
 897   NOT_PRODUCT( verify_graph_edges(); )
 898 
 899 #ifndef PRODUCT
 900   if (PrintIdeal) {
 901     ttyLocker ttyl;  // keep the following output all in one block
 902     // This output goes directly to the tty, not the compiler log.
 903     // To enable tools to match it up with the compilation activity,
 904     // be sure to tag this tty output with the compile ID.
 905     if (xtty != NULL) {
 906       xtty->head("ideal compile_id='%d'%s", compile_id(),
 907                  is_osr_compilation()    ? " compile_kind='osr'" :
 908                  "");
 909     }
 910     root()->dump(9999);
 911     if (xtty != NULL) {
 912       xtty->tail("ideal");
 913     }
 914   }
 915 #endif
 916 
 917 #ifdef ASSERT
 918   BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
 919   bs->verify_gc_barriers(this, BarrierSetC2::BeforeCodeGen);
 920 #endif
 921 
 922   // Dump compilation data to replay it.
 923   if (directive->DumpReplayOption) {
 924     env()->dump_replay_data(_compile_id);
 925   }
 926   if (directive->DumpInlineOption && (ilt() != NULL)) {
 927     env()->dump_inline_data(_compile_id);
 928   }
 929 
 930   // Now that we know the size of all the monitors we can add a fixed slot
 931   // for the original deopt pc.
 932 
 933   _orig_pc_slot = fixed_slots();
 934   int next_slot = _orig_pc_slot + (sizeof(address) / VMRegImpl::stack_slot_size);
 935 
 936   if (needs_stack_repair()) {
 937     // One extra slot for the special stack increment value
 938     _sp_inc_slot = next_slot;
 939     next_slot += 2;
 940   }
 941 
 942   set_fixed_slots(next_slot);
 943 
 944   // Compute when to use implicit null checks. Used by matching trap based
 945   // nodes and NullCheck optimization.
 946   set_allowed_deopt_reasons();
 947 
 948   // Now generate code
 949   Code_Gen();
 950   if (failing())  return;
 951 
 952   // Check if we want to skip execution of all compiled code.
 953   {
 954 #ifndef PRODUCT
 955     if (OptoNoExecute) {
 956       record_method_not_compilable("+OptoNoExecute");  // Flag as failed
 957       return;
 958     }
 959 #endif
 960     TracePhase tp("install_code", &timers[_t_registerMethod]);
 961 
 962     if (is_osr_compilation()) {
 963       _code_offsets.set_value(CodeOffsets::Verified_Entry, 0);
 964       _code_offsets.set_value(CodeOffsets::OSR_Entry, _first_block_size);
 965     } else {
 966       _code_offsets.set_value(CodeOffsets::Verified_Entry, _first_block_size);
 967       if (_code_offsets.value(CodeOffsets::Verified_Value_Entry) == -1) {
 968         _code_offsets.set_value(CodeOffsets::Verified_Value_Entry, _first_block_size);
 969       }
 970       if (_code_offsets.value(CodeOffsets::Verified_Value_Entry_RO) == -1) {
 971         _code_offsets.set_value(CodeOffsets::Verified_Value_Entry_RO, _first_block_size);
 972       }
 973       if (_code_offsets.value(CodeOffsets::Entry) == -1) {
 974         _code_offsets.set_value(CodeOffsets::Entry, _first_block_size);
 975       }
 976       _code_offsets.set_value(CodeOffsets::OSR_Entry, 0);
 977     }
 978 
 979     env()->register_method(_method, _entry_bci,
 980                            &_code_offsets,
 981                            _orig_pc_slot_offset_in_bytes,
 982                            code_buffer(),
 983                            frame_size_in_words(), _oop_map_set,
 984                            &_handler_table, &_inc_table,
 985                            compiler,
 986                            has_unsafe_access(),
 987                            SharedRuntime::is_wide_vector(max_vector_size()),
 988                            rtm_state()
 989                            );
 990 
 991     if (log() != NULL) // Print code cache state into compiler log
 992       log()->code_cache_state();
 993   }
 994 }
 995 
 996 //------------------------------Compile----------------------------------------
 997 // Compile a runtime stub
 998 Compile::Compile( ciEnv* ci_env,
 999                   TypeFunc_generator generator,
1000                   address stub_function,
1001                   const char *stub_name,
1002                   int is_fancy_jump,
1003                   bool pass_tls,
1004                   bool save_arg_registers,
1005                   bool return_pc,
1006                   DirectiveSet* directive)
1007   : Phase(Compiler),
1008     _compile_id(0),
1009     _save_argument_registers(save_arg_registers),
1010     _subsume_loads(true),
1011     _do_escape_analysis(false),
1012     _eliminate_boxing(false),
1013     _method(NULL),
1014     _entry_bci(InvocationEntryBci),
1015     _stub_function(stub_function),
1016     _stub_name(stub_name),
1017     _stub_entry_point(NULL),
1018     _max_node_limit(MaxNodeLimit),
1019     _orig_pc_slot(0),
1020     _orig_pc_slot_offset_in_bytes(0),
1021     _sp_inc_slot(0),
1022     _sp_inc_slot_offset_in_bytes(0),
1023     _inlining_progress(false),
1024     _inlining_incrementally(false),
1025     _has_reserved_stack_access(false),
1026 #ifndef PRODUCT
1027     _trace_opto_output(directive->TraceOptoOutputOption),
1028 #endif
1029     _has_method_handle_invokes(false),
1030     _clinit_barrier_on_entry(false),
1031     _comp_arena(mtCompiler),
1032     _env(ci_env),
1033     _directive(directive),
1034     _log(ci_env->log()),
1035     _failure_reason(NULL),
1036     _congraph(NULL),
1037 #ifndef PRODUCT
1038     _printer(NULL),
1039 #endif
1040     _dead_node_list(comp_arena()),
1041     _dead_node_count(0),
1042     _node_arena(mtCompiler),
1043     _old_arena(mtCompiler),
1044     _mach_constant_base_node(NULL),
1045     _Compile_types(mtCompiler),
1046     _initial_gvn(NULL),
1047     _for_igvn(NULL),
1048     _warm_calls(NULL),
1049     _number_of_mh_late_inlines(0),
1050     _print_inlining_stream(NULL),
1051     _print_inlining_list(NULL),
1052     _print_inlining_idx(0),
1053     _print_inlining_output(NULL),
1054     _replay_inline_data(NULL),
1055     _java_calls(0),
1056     _inner_loops(0),
1057     _interpreter_frame_size(0),
1058     _node_bundling_limit(0),
1059     _node_bundling_base(NULL),
1060     _code_buffer("Compile::Fill_buffer"),
1061 #ifndef PRODUCT
1062     _in_dump_cnt(0),
1063 #endif
1064     _allowed_reasons(0) {
1065   C = this;
1066 
1067   TraceTime t1(NULL, &_t_totalCompilation, CITime, false);
1068   TraceTime t2(NULL, &_t_stubCompilation, CITime, false);
1069 
1070 #ifndef PRODUCT
1071   set_print_assembly(PrintFrameConverterAssembly);
1072   set_parsed_irreducible_loop(false);
1073 #else
1074   set_print_assembly(false); // Must initialize.
1075 #endif
1076   set_has_irreducible_loop(false); // no loops
1077 
1078   CompileWrapper cw(this);
1079   Init(/*AliasLevel=*/ 0);
1080   init_tf((*generator)());
1081 
1082   {
1083     // The following is a dummy for the sake of GraphKit::gen_stub
1084     Unique_Node_List for_igvn(comp_arena());
1085     set_for_igvn(&for_igvn);  // not used, but some GraphKit guys push on this
1086     PhaseGVN gvn(Thread::current()->resource_area(),255);
1087     set_initial_gvn(&gvn);    // not significant, but GraphKit guys use it pervasively
1088     gvn.transform_no_reclaim(top());
1089 
1090     GraphKit kit;
1091     kit.gen_stub(stub_function, stub_name, is_fancy_jump, pass_tls, return_pc);
1092   }
1093 
1094   NOT_PRODUCT( verify_graph_edges(); )
1095   Code_Gen();
1096   if (failing())  return;
1097 
1098 
1099   // Entry point will be accessed using compile->stub_entry_point();
1100   if (code_buffer() == NULL) {
1101     Matcher::soft_match_failure();
1102   } else {
1103     if (PrintAssembly && (WizardMode || Verbose))
1104       tty->print_cr("### Stub::%s", stub_name);
1105 
1106     if (!failing()) {
1107       assert(_fixed_slots == 0, "no fixed slots used for runtime stubs");
1108 
1109       // Make the NMethod
1110       // For now we mark the frame as never safe for profile stackwalking
1111       RuntimeStub *rs = RuntimeStub::new_runtime_stub(stub_name,
1112                                                       code_buffer(),
1113                                                       CodeOffsets::frame_never_safe,
1114                                                       // _code_offsets.value(CodeOffsets::Frame_Complete),
1115                                                       frame_size_in_words(),
1116                                                       _oop_map_set,
1117                                                       save_arg_registers);
1118       assert(rs != NULL && rs->is_runtime_stub(), "sanity check");
1119 
1120       _stub_entry_point = rs->entry_point();
1121     }
1122   }
1123 }
1124 
1125 //------------------------------Init-------------------------------------------
1126 // Prepare for a single compilation
1127 void Compile::Init(int aliaslevel) {
1128   _unique  = 0;
1129   _regalloc = NULL;
1130 
1131   _tf      = NULL;  // filled in later
1132   _top     = NULL;  // cached later
1133   _matcher = NULL;  // filled in later
1134   _cfg     = NULL;  // filled in later
1135 
1136   set_24_bit_selection_and_mode(Use24BitFP, false);
1137 
1138   _node_note_array = NULL;
1139   _default_node_notes = NULL;
1140   DEBUG_ONLY( _modified_nodes = NULL; ) // Used in Optimize()
1141 
1142   _immutable_memory = NULL; // filled in at first inquiry
1143 
1144   // Globally visible Nodes
1145   // First set TOP to NULL to give safe behavior during creation of RootNode
1146   set_cached_top_node(NULL);
1147   set_root(new RootNode());
1148   // Now that you have a Root to point to, create the real TOP
1149   set_cached_top_node( new ConNode(Type::TOP) );
1150   set_recent_alloc(NULL, NULL);
1151 
1152   // Create Debug Information Recorder to record scopes, oopmaps, etc.
1153   env()->set_oop_recorder(new OopRecorder(env()->arena()));
1154   env()->set_debug_info(new DebugInformationRecorder(env()->oop_recorder()));
1155   env()->set_dependencies(new Dependencies(env()));
1156 
1157   _fixed_slots = 0;
1158   set_has_split_ifs(false);
1159   set_has_loops(has_method() && method()->has_loops()); // first approximation
1160   set_has_stringbuilder(false);
1161   set_has_boxed_value(false);
1162   _trap_can_recompile = false;  // no traps emitted yet
1163   _major_progress = true; // start out assuming good things will happen
1164   set_has_unsafe_access(false);
1165   set_max_vector_size(0);
1166   set_clear_upper_avx(false);  //false as default for clear upper bits of ymm registers
1167   Copy::zero_to_bytes(_trap_hist, sizeof(_trap_hist));
1168   set_decompile_count(0);
1169 
1170   set_do_freq_based_layout(_directive->BlockLayoutByFrequencyOption);
1171   _loop_opts_cnt = LoopOptsCount;
1172   _has_flattened_accesses = false;
1173   _flattened_accesses_share_alias = true;
1174 
1175   set_do_inlining(Inline);
1176   set_max_inline_size(MaxInlineSize);
1177   set_freq_inline_size(FreqInlineSize);
1178   set_do_scheduling(OptoScheduling);
1179   set_do_count_invocations(false);
1180   set_do_method_data_update(false);
1181 
1182   set_do_vector_loop(false);
1183 
1184   if (AllowVectorizeOnDemand) {
1185     if (has_method() && (_directive->VectorizeOption || _directive->VectorizeDebugOption)) {
1186       set_do_vector_loop(true);
1187       NOT_PRODUCT(if (do_vector_loop() && Verbose) {tty->print("Compile::Init: do vectorized loops (SIMD like) for method %s\n",  method()->name()->as_quoted_ascii());})
1188     } else if (has_method() && method()->name() != 0 &&
1189                method()->intrinsic_id() == vmIntrinsics::_forEachRemaining) {
1190       set_do_vector_loop(true);
1191     }
1192   }
1193   set_use_cmove(UseCMoveUnconditionally /* || do_vector_loop()*/); //TODO: consider do_vector_loop() mandate use_cmove unconditionally
1194   NOT_PRODUCT(if (use_cmove() && Verbose && has_method()) {tty->print("Compile::Init: use CMove without profitability tests for method %s\n",  method()->name()->as_quoted_ascii());})
1195 
1196   set_age_code(has_method() && method()->profile_aging());
1197   set_rtm_state(NoRTM); // No RTM lock eliding by default
1198   _max_node_limit = _directive->MaxNodeLimitOption;
1199 
1200 #if INCLUDE_RTM_OPT
1201   if (UseRTMLocking && has_method() && (method()->method_data_or_null() != NULL)) {
1202     int rtm_state = method()->method_data()->rtm_state();
1203     if (method_has_option("NoRTMLockEliding") || ((rtm_state & NoRTM) != 0)) {
1204       // Don't generate RTM lock eliding code.
1205       set_rtm_state(NoRTM);
1206     } else if (method_has_option("UseRTMLockEliding") || ((rtm_state & UseRTM) != 0) || !UseRTMDeopt) {
1207       // Generate RTM lock eliding code without abort ratio calculation code.
1208       set_rtm_state(UseRTM);
1209     } else if (UseRTMDeopt) {
1210       // Generate RTM lock eliding code and include abort ratio calculation
1211       // code if UseRTMDeopt is on.
1212       set_rtm_state(ProfileRTM);
1213     }
1214   }
1215 #endif
1216   if (VM_Version::supports_fast_class_init_checks() && has_method() && !is_osr_compilation() && method()->needs_clinit_barrier()) {
1217     set_clinit_barrier_on_entry(true);
1218   }
1219   if (debug_info()->recording_non_safepoints()) {
1220     set_node_note_array(new(comp_arena()) GrowableArray<Node_Notes*>
1221                         (comp_arena(), 8, 0, NULL));
1222     set_default_node_notes(Node_Notes::make(this));
1223   }
1224 
1225   // // -- Initialize types before each compile --
1226   // // Update cached type information
1227   // if( _method && _method->constants() )
1228   //   Type::update_loaded_types(_method, _method->constants());
1229 
1230   // Init alias_type map.
1231   if (!_do_escape_analysis && aliaslevel == 3)
1232     aliaslevel = 2;  // No unique types without escape analysis
1233   _AliasLevel = aliaslevel;
1234   const int grow_ats = 16;
1235   _max_alias_types = grow_ats;
1236   _alias_types   = NEW_ARENA_ARRAY(comp_arena(), AliasType*, grow_ats);
1237   AliasType* ats = NEW_ARENA_ARRAY(comp_arena(), AliasType,  grow_ats);
1238   Copy::zero_to_bytes(ats, sizeof(AliasType)*grow_ats);
1239   {
1240     for (int i = 0; i < grow_ats; i++)  _alias_types[i] = &ats[i];
1241   }
1242   // Initialize the first few types.
1243   _alias_types[AliasIdxTop]->Init(AliasIdxTop, NULL);
1244   _alias_types[AliasIdxBot]->Init(AliasIdxBot, TypePtr::BOTTOM);
1245   _alias_types[AliasIdxRaw]->Init(AliasIdxRaw, TypeRawPtr::BOTTOM);
1246   _num_alias_types = AliasIdxRaw+1;
1247   // Zero out the alias type cache.
1248   Copy::zero_to_bytes(_alias_cache, sizeof(_alias_cache));
1249   // A NULL adr_type hits in the cache right away.  Preload the right answer.
1250   probe_alias_cache(NULL)->_index = AliasIdxTop;
1251 
1252   _intrinsics = NULL;
1253   _macro_nodes = new(comp_arena()) GrowableArray<Node*>(comp_arena(), 8,  0, NULL);
1254   _predicate_opaqs = new(comp_arena()) GrowableArray<Node*>(comp_arena(), 8,  0, NULL);
1255   _expensive_nodes = new(comp_arena()) GrowableArray<Node*>(comp_arena(), 8,  0, NULL);
1256   _range_check_casts = new(comp_arena()) GrowableArray<Node*>(comp_arena(), 8,  0, NULL);
1257   _opaque4_nodes = new(comp_arena()) GrowableArray<Node*>(comp_arena(), 8,  0, NULL);
1258   _value_type_nodes = new (comp_arena()) Unique_Node_List(comp_arena());
1259   register_library_intrinsics();
1260 }
1261 
1262 //---------------------------init_start----------------------------------------
1263 // Install the StartNode on this compile object.
1264 void Compile::init_start(StartNode* s) {
1265   if (failing())
1266     return; // already failing
1267   assert(s == start(), "");
1268 }
1269 
1270 /**
1271  * Return the 'StartNode'. We must not have a pending failure, since the ideal graph
1272  * can be in an inconsistent state, i.e., we can get segmentation faults when traversing
1273  * the ideal graph.
1274  */
1275 StartNode* Compile::start() const {
1276   assert (!failing(), "Must not have pending failure. Reason is: %s", failure_reason());
1277   for (DUIterator_Fast imax, i = root()->fast_outs(imax); i < imax; i++) {
1278     Node* start = root()->fast_out(i);
1279     if (start->is_Start()) {
1280       return start->as_Start();
1281     }
1282   }
1283   fatal("Did not find Start node!");
1284   return NULL;
1285 }
1286 
1287 //-------------------------------immutable_memory-------------------------------------
1288 // Access immutable memory
1289 Node* Compile::immutable_memory() {
1290   if (_immutable_memory != NULL) {
1291     return _immutable_memory;
1292   }
1293   StartNode* s = start();
1294   for (DUIterator_Fast imax, i = s->fast_outs(imax); true; i++) {
1295     Node *p = s->fast_out(i);
1296     if (p != s && p->as_Proj()->_con == TypeFunc::Memory) {
1297       _immutable_memory = p;
1298       return _immutable_memory;
1299     }
1300   }
1301   ShouldNotReachHere();
1302   return NULL;
1303 }
1304 
1305 //----------------------set_cached_top_node------------------------------------
1306 // Install the cached top node, and make sure Node::is_top works correctly.
1307 void Compile::set_cached_top_node(Node* tn) {
1308   if (tn != NULL)  verify_top(tn);
1309   Node* old_top = _top;
1310   _top = tn;
1311   // Calling Node::setup_is_top allows the nodes the chance to adjust
1312   // their _out arrays.
1313   if (_top != NULL)     _top->setup_is_top();
1314   if (old_top != NULL)  old_top->setup_is_top();
1315   assert(_top == NULL || top()->is_top(), "");
1316 }
1317 
1318 #ifdef ASSERT
1319 uint Compile::count_live_nodes_by_graph_walk() {
1320   Unique_Node_List useful(comp_arena());
1321   // Get useful node list by walking the graph.
1322   identify_useful_nodes(useful);
1323   return useful.size();
1324 }
1325 
1326 void Compile::print_missing_nodes() {
1327 
1328   // Return if CompileLog is NULL and PrintIdealNodeCount is false.
1329   if ((_log == NULL) && (! PrintIdealNodeCount)) {
1330     return;
1331   }
1332 
1333   // This is an expensive function. It is executed only when the user
1334   // specifies VerifyIdealNodeCount option or otherwise knows the
1335   // additional work that needs to be done to identify reachable nodes
1336   // by walking the flow graph and find the missing ones using
1337   // _dead_node_list.
1338 
1339   Unique_Node_List useful(comp_arena());
1340   // Get useful node list by walking the graph.
1341   identify_useful_nodes(useful);
1342 
1343   uint l_nodes = C->live_nodes();
1344   uint l_nodes_by_walk = useful.size();
1345 
1346   if (l_nodes != l_nodes_by_walk) {
1347     if (_log != NULL) {
1348       _log->begin_head("mismatched_nodes count='%d'", abs((int) (l_nodes - l_nodes_by_walk)));
1349       _log->stamp();
1350       _log->end_head();
1351     }
1352     VectorSet& useful_member_set = useful.member_set();
1353     int last_idx = l_nodes_by_walk;
1354     for (int i = 0; i < last_idx; i++) {
1355       if (useful_member_set.test(i)) {
1356         if (_dead_node_list.test(i)) {
1357           if (_log != NULL) {
1358             _log->elem("mismatched_node_info node_idx='%d' type='both live and dead'", i);
1359           }
1360           if (PrintIdealNodeCount) {
1361             // Print the log message to tty
1362               tty->print_cr("mismatched_node idx='%d' both live and dead'", i);
1363               useful.at(i)->dump();
1364           }
1365         }
1366       }
1367       else if (! _dead_node_list.test(i)) {
1368         if (_log != NULL) {
1369           _log->elem("mismatched_node_info node_idx='%d' type='neither live nor dead'", i);
1370         }
1371         if (PrintIdealNodeCount) {
1372           // Print the log message to tty
1373           tty->print_cr("mismatched_node idx='%d' type='neither live nor dead'", i);
1374         }
1375       }
1376     }
1377     if (_log != NULL) {
1378       _log->tail("mismatched_nodes");
1379     }
1380   }
1381 }
1382 void Compile::record_modified_node(Node* n) {
1383   if (_modified_nodes != NULL && !_inlining_incrementally &&
1384       n->outcnt() != 0 && !n->is_Con()) {
1385     _modified_nodes->push(n);
1386   }
1387 }
1388 
1389 void Compile::remove_modified_node(Node* n) {
1390   if (_modified_nodes != NULL) {
1391     _modified_nodes->remove(n);
1392   }
1393 }
1394 #endif
1395 
1396 #ifndef PRODUCT
1397 void Compile::verify_top(Node* tn) const {
1398   if (tn != NULL) {
1399     assert(tn->is_Con(), "top node must be a constant");
1400     assert(((ConNode*)tn)->type() == Type::TOP, "top node must have correct type");
1401     assert(tn->in(0) != NULL, "must have live top node");
1402   }
1403 }
1404 #endif
1405 
1406 
1407 ///-------------------Managing Per-Node Debug & Profile Info-------------------
1408 
1409 void Compile::grow_node_notes(GrowableArray<Node_Notes*>* arr, int grow_by) {
1410   guarantee(arr != NULL, "");
1411   int num_blocks = arr->length();
1412   if (grow_by < num_blocks)  grow_by = num_blocks;
1413   int num_notes = grow_by * _node_notes_block_size;
1414   Node_Notes* notes = NEW_ARENA_ARRAY(node_arena(), Node_Notes, num_notes);
1415   Copy::zero_to_bytes(notes, num_notes * sizeof(Node_Notes));
1416   while (num_notes > 0) {
1417     arr->append(notes);
1418     notes     += _node_notes_block_size;
1419     num_notes -= _node_notes_block_size;
1420   }
1421   assert(num_notes == 0, "exact multiple, please");
1422 }
1423 
1424 bool Compile::copy_node_notes_to(Node* dest, Node* source) {
1425   if (source == NULL || dest == NULL)  return false;
1426 
1427   if (dest->is_Con())
1428     return false;               // Do not push debug info onto constants.
1429 
1430 #ifdef ASSERT
1431   // Leave a bread crumb trail pointing to the original node:
1432   if (dest != NULL && dest != source && dest->debug_orig() == NULL) {
1433     dest->set_debug_orig(source);
1434   }
1435 #endif
1436 
1437   if (node_note_array() == NULL)
1438     return false;               // Not collecting any notes now.
1439 
1440   // This is a copy onto a pre-existing node, which may already have notes.
1441   // If both nodes have notes, do not overwrite any pre-existing notes.
1442   Node_Notes* source_notes = node_notes_at(source->_idx);
1443   if (source_notes == NULL || source_notes->is_clear())  return false;
1444   Node_Notes* dest_notes   = node_notes_at(dest->_idx);
1445   if (dest_notes == NULL || dest_notes->is_clear()) {
1446     return set_node_notes_at(dest->_idx, source_notes);
1447   }
1448 
1449   Node_Notes merged_notes = (*source_notes);
1450   // The order of operations here ensures that dest notes will win...
1451   merged_notes.update_from(dest_notes);
1452   return set_node_notes_at(dest->_idx, &merged_notes);
1453 }
1454 
1455 
1456 //--------------------------allow_range_check_smearing-------------------------
1457 // Gating condition for coalescing similar range checks.
1458 // Sometimes we try 'speculatively' replacing a series of a range checks by a
1459 // single covering check that is at least as strong as any of them.
1460 // If the optimization succeeds, the simplified (strengthened) range check
1461 // will always succeed.  If it fails, we will deopt, and then give up
1462 // on the optimization.
1463 bool Compile::allow_range_check_smearing() const {
1464   // If this method has already thrown a range-check,
1465   // assume it was because we already tried range smearing
1466   // and it failed.
1467   uint already_trapped = trap_count(Deoptimization::Reason_range_check);
1468   return !already_trapped;
1469 }
1470 
1471 
1472 //------------------------------flatten_alias_type-----------------------------
1473 const TypePtr *Compile::flatten_alias_type( const TypePtr *tj ) const {
1474   int offset = tj->offset();
1475   TypePtr::PTR ptr = tj->ptr();
1476 
1477   // Known instance (scalarizable allocation) alias only with itself.
1478   bool is_known_inst = tj->isa_oopptr() != NULL &&
1479                        tj->is_oopptr()->is_known_instance();
1480 
1481   // Process weird unsafe references.
1482   if (offset == Type::OffsetBot && (tj->isa_instptr() /*|| tj->isa_klassptr()*/)) {
1483     bool default_value_load = EnableValhalla && tj->is_instptr()->klass() == ciEnv::current()->Class_klass();
1484     assert(InlineUnsafeOps || default_value_load, "indeterminate pointers come only from unsafe ops");
1485     assert(!is_known_inst, "scalarizable allocation should not have unsafe references");
1486     tj = TypeOopPtr::BOTTOM;
1487     ptr = tj->ptr();
1488     offset = tj->offset();
1489   }
1490 
1491   // Array pointers need some flattening
1492   const TypeAryPtr *ta = tj->isa_aryptr();
1493   if (ta && ta->is_stable()) {
1494     // Erase stability property for alias analysis.
1495     tj = ta = ta->cast_to_stable(false);
1496   }
1497   if( ta && is_known_inst ) {
1498     if ( offset != Type::OffsetBot &&
1499          offset > arrayOopDesc::length_offset_in_bytes() ) {
1500       offset = Type::OffsetBot; // Flatten constant access into array body only
1501       tj = ta = TypeAryPtr::make(ptr, ta->ary(), ta->klass(), true, Type::Offset(offset), ta->field_offset(), ta->instance_id());
1502     }
1503   } else if( ta && _AliasLevel >= 2 ) {
1504     // For arrays indexed by constant indices, we flatten the alias
1505     // space to include all of the array body.  Only the header, klass
1506     // and array length can be accessed un-aliased.
1507     // For flattened value type array, each field has its own slice so
1508     // we must include the field offset.
1509     if( offset != Type::OffsetBot ) {
1510       if( ta->const_oop() ) { // MethodData* or Method*
1511         offset = Type::OffsetBot;   // Flatten constant access into array body
1512         tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),ta->ary(),ta->klass(),false,Type::Offset(offset), ta->field_offset());
1513       } else if( offset == arrayOopDesc::length_offset_in_bytes() ) {
1514         // range is OK as-is.
1515         tj = ta = TypeAryPtr::RANGE;
1516       } else if( offset == oopDesc::klass_offset_in_bytes() ) {
1517         tj = TypeInstPtr::KLASS; // all klass loads look alike
1518         ta = TypeAryPtr::RANGE; // generic ignored junk
1519         ptr = TypePtr::BotPTR;
1520       } else if( offset == oopDesc::mark_offset_in_bytes() ) {
1521         tj = TypeInstPtr::MARK;
1522         ta = TypeAryPtr::RANGE; // generic ignored junk
1523         ptr = TypePtr::BotPTR;
1524       } else if (BarrierSet::barrier_set()->barrier_set_c2()->flatten_gc_alias_type(tj)) {
1525         ta = tj->isa_aryptr();
1526       } else {                  // Random constant offset into array body
1527         offset = Type::OffsetBot;   // Flatten constant access into array body
1528         tj = ta = TypeAryPtr::make(ptr,ta->ary(),ta->klass(),false,Type::Offset(offset), ta->field_offset());
1529       }
1530     }
1531     // Arrays of fixed size alias with arrays of unknown size.
1532     if (ta->size() != TypeInt::POS) {
1533       const TypeAry *tary = TypeAry::make(ta->elem(), TypeInt::POS);
1534       tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,ta->klass(),false,Type::Offset(offset), ta->field_offset());
1535     }
1536     // Arrays of known objects become arrays of unknown objects.
1537     if (ta->elem()->isa_narrowoop() && ta->elem() != TypeNarrowOop::BOTTOM) {
1538       const TypeAry *tary = TypeAry::make(TypeNarrowOop::BOTTOM, ta->size());
1539       tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,NULL,false,Type::Offset(offset), ta->field_offset());
1540     }
1541     if (ta->elem()->isa_oopptr() && ta->elem() != TypeInstPtr::BOTTOM) {
1542       const TypeAry *tary = TypeAry::make(TypeInstPtr::BOTTOM, ta->size());
1543       tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,NULL,false,Type::Offset(offset), ta->field_offset());
1544     }
1545     // Initially all flattened array accesses share a single slice
1546     if (ta->elem()->isa_valuetype() && ta->elem() != TypeValueType::BOTTOM && _flattened_accesses_share_alias) {
1547       const TypeAry *tary = TypeAry::make(TypeValueType::BOTTOM, ta->size());
1548       tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,NULL,false,Type::Offset(offset), Type::Offset(Type::OffsetBot));
1549     }
1550     // Arrays of bytes and of booleans both use 'bastore' and 'baload' so
1551     // cannot be distinguished by bytecode alone.
1552     if (ta->elem() == TypeInt::BOOL) {
1553       const TypeAry *tary = TypeAry::make(TypeInt::BYTE, ta->size());
1554       ciKlass* aklass = ciTypeArrayKlass::make(T_BYTE);
1555       tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,aklass,false,Type::Offset(offset), ta->field_offset());
1556     }
1557     // During the 2nd round of IterGVN, NotNull castings are removed.
1558     // Make sure the Bottom and NotNull variants alias the same.
1559     // Also, make sure exact and non-exact variants alias the same.
1560     if (ptr == TypePtr::NotNull || ta->klass_is_exact() || ta->speculative() != NULL) {
1561       tj = ta = TypeAryPtr::make(TypePtr::BotPTR,ta->ary(),ta->klass(),false,Type::Offset(offset), ta->field_offset());
1562     }
1563   }
1564 
1565   // Oop pointers need some flattening
1566   const TypeInstPtr *to = tj->isa_instptr();
1567   if( to && _AliasLevel >= 2 && to != TypeOopPtr::BOTTOM ) {
1568     ciInstanceKlass *k = to->klass()->as_instance_klass();
1569     if( ptr == TypePtr::Constant ) {
1570       if (to->klass() != ciEnv::current()->Class_klass() ||
1571           offset < k->size_helper() * wordSize) {
1572         // No constant oop pointers (such as Strings); they alias with
1573         // unknown strings.
1574         assert(!is_known_inst, "not scalarizable allocation");
1575         tj = to = TypeInstPtr::make(TypePtr::BotPTR,to->klass(),false,0,Type::Offset(offset));
1576       }
1577     } else if( is_known_inst ) {
1578       tj = to; // Keep NotNull and klass_is_exact for instance type
1579     } else if( ptr == TypePtr::NotNull || to->klass_is_exact() ) {
1580       // During the 2nd round of IterGVN, NotNull castings are removed.
1581       // Make sure the Bottom and NotNull variants alias the same.
1582       // Also, make sure exact and non-exact variants alias the same.
1583       tj = to = TypeInstPtr::make(TypePtr::BotPTR,to->klass(),false,0,Type::Offset(offset));
1584     }
1585     if (to->speculative() != NULL) {
1586       tj = to = TypeInstPtr::make(to->ptr(),to->klass(),to->klass_is_exact(),to->const_oop(),Type::Offset(to->offset()), to->instance_id());
1587     }
1588     // Canonicalize the holder of this field
1589     if (offset >= 0 && offset < instanceOopDesc::base_offset_in_bytes()) {
1590       // First handle header references such as a LoadKlassNode, even if the
1591       // object's klass is unloaded at compile time (4965979).
1592       if (!is_known_inst) { // Do it only for non-instance types
1593         tj = to = TypeInstPtr::make(TypePtr::BotPTR, env()->Object_klass(), false, NULL, Type::Offset(offset));
1594       }
1595     } else if (BarrierSet::barrier_set()->barrier_set_c2()->flatten_gc_alias_type(tj)) {
1596       to = tj->is_instptr();
1597     } else if (offset < 0 || offset >= k->size_helper() * wordSize) {
1598       // Static fields are in the space above the normal instance
1599       // fields in the java.lang.Class instance.
1600       if (to->klass() != ciEnv::current()->Class_klass()) {
1601         to = NULL;
1602         tj = TypeOopPtr::BOTTOM;
1603         offset = tj->offset();
1604       }
1605     } else {
1606       ciInstanceKlass *canonical_holder = k->get_canonical_holder(offset);
1607       if (!k->equals(canonical_holder) || tj->offset() != offset) {
1608         if( is_known_inst ) {
1609           tj = to = TypeInstPtr::make(to->ptr(), canonical_holder, true, NULL, Type::Offset(offset), to->instance_id());
1610         } else {
1611           tj = to = TypeInstPtr::make(to->ptr(), canonical_holder, false, NULL, Type::Offset(offset));
1612         }
1613       }
1614     }
1615   }
1616 
1617   // Klass pointers to object array klasses need some flattening
1618   const TypeKlassPtr *tk = tj->isa_klassptr();
1619   if( tk ) {
1620     // If we are referencing a field within a Klass, we need
1621     // to assume the worst case of an Object.  Both exact and
1622     // inexact types must flatten to the same alias class so
1623     // use NotNull as the PTR.
1624     if ( offset == Type::OffsetBot || (offset >= 0 && (size_t)offset < sizeof(Klass)) ) {
1625 
1626       tj = tk = TypeKlassPtr::make(TypePtr::NotNull,
1627                                    TypeKlassPtr::OBJECT->klass(),
1628                                    Type::Offset(offset));
1629     }
1630 
1631     ciKlass* klass = tk->klass();
1632     if (klass != NULL && klass->is_obj_array_klass()) {
1633       ciKlass* k = TypeAryPtr::OOPS->klass();
1634       if( !k || !k->is_loaded() )                  // Only fails for some -Xcomp runs
1635         k = TypeInstPtr::BOTTOM->klass();
1636       tj = tk = TypeKlassPtr::make(TypePtr::NotNull, k, Type::Offset(offset));
1637     }
1638 
1639     // Check for precise loads from the primary supertype array and force them
1640     // to the supertype cache alias index.  Check for generic array loads from
1641     // the primary supertype array and also force them to the supertype cache
1642     // alias index.  Since the same load can reach both, we need to merge
1643     // these 2 disparate memories into the same alias class.  Since the
1644     // primary supertype array is read-only, there's no chance of confusion
1645     // where we bypass an array load and an array store.
1646     int primary_supers_offset = in_bytes(Klass::primary_supers_offset());
1647     if (offset == Type::OffsetBot ||
1648         (offset >= primary_supers_offset &&
1649          offset < (int)(primary_supers_offset + Klass::primary_super_limit() * wordSize)) ||
1650         offset == (int)in_bytes(Klass::secondary_super_cache_offset())) {
1651       offset = in_bytes(Klass::secondary_super_cache_offset());
1652       tj = tk = TypeKlassPtr::make(TypePtr::NotNull, tk->klass(), Type::Offset(offset));
1653     }
1654   }
1655 
1656   // Flatten all Raw pointers together.
1657   if (tj->base() == Type::RawPtr)
1658     tj = TypeRawPtr::BOTTOM;
1659 
1660   if (tj->base() == Type::AnyPtr)
1661     tj = TypePtr::BOTTOM;      // An error, which the caller must check for.
1662 
1663   // Flatten all to bottom for now
1664   switch( _AliasLevel ) {
1665   case 0:
1666     tj = TypePtr::BOTTOM;
1667     break;
1668   case 1:                       // Flatten to: oop, static, field or array
1669     switch (tj->base()) {
1670     //case Type::AryPtr: tj = TypeAryPtr::RANGE;    break;
1671     case Type::RawPtr:   tj = TypeRawPtr::BOTTOM;   break;
1672     case Type::AryPtr:   // do not distinguish arrays at all
1673     case Type::InstPtr:  tj = TypeInstPtr::BOTTOM;  break;
1674     case Type::KlassPtr: tj = TypeKlassPtr::OBJECT; break;
1675     case Type::AnyPtr:   tj = TypePtr::BOTTOM;      break;  // caller checks it
1676     default: ShouldNotReachHere();
1677     }
1678     break;
1679   case 2:                       // No collapsing at level 2; keep all splits
1680   case 3:                       // No collapsing at level 3; keep all splits
1681     break;
1682   default:
1683     Unimplemented();
1684   }
1685 
1686   offset = tj->offset();
1687   assert( offset != Type::OffsetTop, "Offset has fallen from constant" );
1688 
1689   assert( (offset != Type::OffsetBot && tj->base() != Type::AryPtr) ||
1690           (offset == Type::OffsetBot && tj->base() == Type::AryPtr) ||
1691           (offset == Type::OffsetBot && tj == TypeOopPtr::BOTTOM) ||
1692           (offset == Type::OffsetBot && tj == TypePtr::BOTTOM) ||
1693           (offset == oopDesc::mark_offset_in_bytes() && tj->base() == Type::AryPtr) ||
1694           (offset == oopDesc::klass_offset_in_bytes() && tj->base() == Type::AryPtr) ||
1695           (offset == arrayOopDesc::length_offset_in_bytes() && tj->base() == Type::AryPtr) ||
1696           (BarrierSet::barrier_set()->barrier_set_c2()->verify_gc_alias_type(tj, offset)),
1697           "For oops, klasses, raw offset must be constant; for arrays the offset is never known" );
1698   assert( tj->ptr() != TypePtr::TopPTR &&
1699           tj->ptr() != TypePtr::AnyNull &&
1700           tj->ptr() != TypePtr::Null, "No imprecise addresses" );
1701 //    assert( tj->ptr() != TypePtr::Constant ||
1702 //            tj->base() == Type::RawPtr ||
1703 //            tj->base() == Type::KlassPtr, "No constant oop addresses" );
1704 
1705   return tj;
1706 }
1707 
1708 void Compile::AliasType::Init(int i, const TypePtr* at) {
1709   _index = i;
1710   _adr_type = at;
1711   _field = NULL;
1712   _element = NULL;
1713   _is_rewritable = true; // default
1714   const TypeOopPtr *atoop = (at != NULL) ? at->isa_oopptr() : NULL;
1715   if (atoop != NULL && atoop->is_known_instance()) {
1716     const TypeOopPtr *gt = atoop->cast_to_instance_id(TypeOopPtr::InstanceBot);
1717     _general_index = Compile::current()->get_alias_index(gt);
1718   } else {
1719     _general_index = 0;
1720   }
1721 }
1722 
1723 BasicType Compile::AliasType::basic_type() const {
1724   if (element() != NULL) {
1725     const Type* element = adr_type()->is_aryptr()->elem();
1726     return element->isa_narrowoop() ? T_OBJECT : element->array_element_basic_type();
1727   } if (field() != NULL) {
1728     return field()->layout_type();
1729   } else {
1730     return T_ILLEGAL; // unknown
1731   }
1732 }
1733 
1734 //---------------------------------print_on------------------------------------
1735 #ifndef PRODUCT
1736 void Compile::AliasType::print_on(outputStream* st) {
1737   if (index() < 10)
1738         st->print("@ <%d> ", index());
1739   else  st->print("@ <%d>",  index());
1740   st->print(is_rewritable() ? "   " : " RO");
1741   int offset = adr_type()->offset();
1742   if (offset == Type::OffsetBot)
1743         st->print(" +any");
1744   else  st->print(" +%-3d", offset);
1745   st->print(" in ");
1746   adr_type()->dump_on(st);
1747   const TypeOopPtr* tjp = adr_type()->isa_oopptr();
1748   if (field() != NULL && tjp) {
1749     if (tjp->klass()  != field()->holder() ||
1750         tjp->offset() != field()->offset_in_bytes()) {
1751       st->print(" != ");
1752       field()->print();
1753       st->print(" ***");
1754     }
1755   }
1756 }
1757 
1758 void print_alias_types() {
1759   Compile* C = Compile::current();
1760   tty->print_cr("--- Alias types, AliasIdxBot .. %d", C->num_alias_types()-1);
1761   for (int idx = Compile::AliasIdxBot; idx < C->num_alias_types(); idx++) {
1762     C->alias_type(idx)->print_on(tty);
1763     tty->cr();
1764   }
1765 }
1766 #endif
1767 
1768 
1769 //----------------------------probe_alias_cache--------------------------------
1770 Compile::AliasCacheEntry* Compile::probe_alias_cache(const TypePtr* adr_type) {
1771   intptr_t key = (intptr_t) adr_type;
1772   key ^= key >> logAliasCacheSize;
1773   return &_alias_cache[key & right_n_bits(logAliasCacheSize)];
1774 }
1775 
1776 
1777 //-----------------------------grow_alias_types--------------------------------
1778 void Compile::grow_alias_types() {
1779   const int old_ats  = _max_alias_types; // how many before?
1780   const int new_ats  = old_ats;          // how many more?
1781   const int grow_ats = old_ats+new_ats;  // how many now?
1782   _max_alias_types = grow_ats;
1783   _alias_types =  REALLOC_ARENA_ARRAY(comp_arena(), AliasType*, _alias_types, old_ats, grow_ats);
1784   AliasType* ats =    NEW_ARENA_ARRAY(comp_arena(), AliasType, new_ats);
1785   Copy::zero_to_bytes(ats, sizeof(AliasType)*new_ats);
1786   for (int i = 0; i < new_ats; i++)  _alias_types[old_ats+i] = &ats[i];
1787 }
1788 
1789 
1790 //--------------------------------find_alias_type------------------------------
1791 Compile::AliasType* Compile::find_alias_type(const TypePtr* adr_type, bool no_create, ciField* original_field, bool uncached) {
1792   if (_AliasLevel == 0)
1793     return alias_type(AliasIdxBot);
1794 
1795   AliasCacheEntry* ace = NULL;
1796   if (!uncached) {
1797     ace = probe_alias_cache(adr_type);
1798     if (ace->_adr_type == adr_type) {
1799       return alias_type(ace->_index);
1800     }
1801   }
1802 
1803   // Handle special cases.
1804   if (adr_type == NULL)             return alias_type(AliasIdxTop);
1805   if (adr_type == TypePtr::BOTTOM)  return alias_type(AliasIdxBot);
1806 
1807   // Do it the slow way.
1808   const TypePtr* flat = flatten_alias_type(adr_type);
1809 
1810 #ifdef ASSERT
1811   {
1812     ResourceMark rm;
1813     assert(flat == flatten_alias_type(flat), "not idempotent: adr_type = %s; flat = %s => %s",
1814            Type::str(adr_type), Type::str(flat), Type::str(flatten_alias_type(flat)));
1815     assert(flat != TypePtr::BOTTOM, "cannot alias-analyze an untyped ptr: adr_type = %s",
1816            Type::str(adr_type));
1817     if (flat->isa_oopptr() && !flat->isa_klassptr()) {
1818       const TypeOopPtr* foop = flat->is_oopptr();
1819       // Scalarizable allocations have exact klass always.
1820       bool exact = !foop->klass_is_exact() || foop->is_known_instance();
1821       const TypePtr* xoop = foop->cast_to_exactness(exact)->is_ptr();
1822       assert(foop == flatten_alias_type(xoop), "exactness must not affect alias type: foop = %s; xoop = %s",
1823              Type::str(foop), Type::str(xoop));
1824     }
1825   }
1826 #endif
1827 
1828   int idx = AliasIdxTop;
1829   for (int i = 0; i < num_alias_types(); i++) {
1830     if (alias_type(i)->adr_type() == flat) {
1831       idx = i;
1832       break;
1833     }
1834   }
1835 
1836   if (idx == AliasIdxTop) {
1837     if (no_create)  return NULL;
1838     // Grow the array if necessary.
1839     if (_num_alias_types == _max_alias_types)  grow_alias_types();
1840     // Add a new alias type.
1841     idx = _num_alias_types++;
1842     _alias_types[idx]->Init(idx, flat);
1843     if (flat == TypeInstPtr::KLASS)  alias_type(idx)->set_rewritable(false);
1844     if (flat == TypeAryPtr::RANGE)   alias_type(idx)->set_rewritable(false);
1845     if (flat->isa_instptr()) {
1846       if (flat->offset() == java_lang_Class::klass_offset_in_bytes()
1847           && flat->is_instptr()->klass() == env()->Class_klass())
1848         alias_type(idx)->set_rewritable(false);
1849     }
1850     ciField* field = NULL;
1851     if (flat->isa_aryptr()) {
1852 #ifdef ASSERT
1853       const int header_size_min  = arrayOopDesc::base_offset_in_bytes(T_BYTE);
1854       // (T_BYTE has the weakest alignment and size restrictions...)
1855       assert(flat->offset() < header_size_min, "array body reference must be OffsetBot");
1856 #endif
1857       const Type* elemtype = flat->is_aryptr()->elem();
1858       if (flat->offset() == TypePtr::OffsetBot) {
1859         alias_type(idx)->set_element(elemtype);
1860       }
1861       int field_offset = flat->is_aryptr()->field_offset().get();
1862       if (elemtype->isa_valuetype() &&
1863           elemtype->value_klass() != NULL &&
1864           field_offset != Type::OffsetBot) {
1865         ciValueKlass* vk = elemtype->value_klass();
1866         field_offset += vk->first_field_offset();
1867         field = vk->get_field_by_offset(field_offset, false);
1868       }
1869     }
1870     if (flat->isa_klassptr()) {
1871       if (flat->offset() == in_bytes(Klass::super_check_offset_offset()))
1872         alias_type(idx)->set_rewritable(false);
1873       if (flat->offset() == in_bytes(Klass::modifier_flags_offset()))
1874         alias_type(idx)->set_rewritable(false);
1875       if (flat->offset() == in_bytes(Klass::access_flags_offset()))
1876         alias_type(idx)->set_rewritable(false);
1877       if (flat->offset() == in_bytes(Klass::java_mirror_offset()))
1878         alias_type(idx)->set_rewritable(false);
1879       if (flat->offset() == in_bytes(Klass::layout_helper_offset()))
1880         alias_type(idx)->set_rewritable(false);
1881     }
1882     // %%% (We would like to finalize JavaThread::threadObj_offset(),
1883     // but the base pointer type is not distinctive enough to identify
1884     // references into JavaThread.)
1885 
1886     // Check for final fields.
1887     const TypeInstPtr* tinst = flat->isa_instptr();
1888     if (tinst && tinst->offset() >= instanceOopDesc::base_offset_in_bytes()) {
1889       if (tinst->const_oop() != NULL &&
1890           tinst->klass() == ciEnv::current()->Class_klass() &&
1891           tinst->offset() >= (tinst->klass()->as_instance_klass()->size_helper() * wordSize)) {
1892         // static field
1893         ciInstanceKlass* k = tinst->const_oop()->as_instance()->java_lang_Class_klass()->as_instance_klass();
1894         field = k->get_field_by_offset(tinst->offset(), true);
1895       } else if (tinst->klass()->is_valuetype()) {
1896         // Value type field
1897         ciValueKlass* vk = tinst->value_klass();
1898         field = vk->get_field_by_offset(tinst->offset(), false);
1899       } else {
1900         ciInstanceKlass* k = tinst->klass()->as_instance_klass();
1901         field = k->get_field_by_offset(tinst->offset(), false);
1902       }
1903     }
1904     assert(field == NULL ||
1905            original_field == NULL ||
1906            (field->holder() == original_field->holder() &&
1907             field->offset() == original_field->offset() &&
1908             field->is_static() == original_field->is_static()), "wrong field?");
1909     // Set field() and is_rewritable() attributes.
1910     if (field != NULL)  alias_type(idx)->set_field(field);
1911   }
1912 
1913   // Fill the cache for next time.
1914   if (!uncached) {
1915     ace->_adr_type = adr_type;
1916     ace->_index    = idx;
1917     assert(alias_type(adr_type) == alias_type(idx),  "type must be installed");
1918 
1919     // Might as well try to fill the cache for the flattened version, too.
1920     AliasCacheEntry* face = probe_alias_cache(flat);
1921     if (face->_adr_type == NULL) {
1922       face->_adr_type = flat;
1923       face->_index    = idx;
1924       assert(alias_type(flat) == alias_type(idx), "flat type must work too");
1925     }
1926   }
1927 
1928   return alias_type(idx);
1929 }
1930 
1931 
1932 Compile::AliasType* Compile::alias_type(ciField* field) {
1933   const TypeOopPtr* t;
1934   if (field->is_static())
1935     t = TypeInstPtr::make(field->holder()->java_mirror());
1936   else
1937     t = TypeOopPtr::make_from_klass_raw(field->holder());
1938   AliasType* atp = alias_type(t->add_offset(field->offset_in_bytes()), field);
1939   assert((field->is_final() || field->is_stable()) == !atp->is_rewritable(), "must get the rewritable bits correct");
1940   return atp;
1941 }
1942 
1943 
1944 //------------------------------have_alias_type--------------------------------
1945 bool Compile::have_alias_type(const TypePtr* adr_type) {
1946   AliasCacheEntry* ace = probe_alias_cache(adr_type);
1947   if (ace->_adr_type == adr_type) {
1948     return true;
1949   }
1950 
1951   // Handle special cases.
1952   if (adr_type == NULL)             return true;
1953   if (adr_type == TypePtr::BOTTOM)  return true;
1954 
1955   return find_alias_type(adr_type, true, NULL) != NULL;
1956 }
1957 
1958 //-----------------------------must_alias--------------------------------------
1959 // True if all values of the given address type are in the given alias category.
1960 bool Compile::must_alias(const TypePtr* adr_type, int alias_idx) {
1961   if (alias_idx == AliasIdxBot)         return true;  // the universal category
1962   if (adr_type == NULL)                 return true;  // NULL serves as TypePtr::TOP
1963   if (alias_idx == AliasIdxTop)         return false; // the empty category
1964   if (adr_type->base() == Type::AnyPtr) return false; // TypePtr::BOTTOM or its twins
1965 
1966   // the only remaining possible overlap is identity
1967   int adr_idx = get_alias_index(adr_type);
1968   assert(adr_idx != AliasIdxBot && adr_idx != AliasIdxTop, "");
1969   assert(adr_idx == alias_idx ||
1970          (alias_type(alias_idx)->adr_type() != TypeOopPtr::BOTTOM
1971           && adr_type                       != TypeOopPtr::BOTTOM),
1972          "should not be testing for overlap with an unsafe pointer");
1973   return adr_idx == alias_idx;
1974 }
1975 
1976 //------------------------------can_alias--------------------------------------
1977 // True if any values of the given address type are in the given alias category.
1978 bool Compile::can_alias(const TypePtr* adr_type, int alias_idx) {
1979   if (alias_idx == AliasIdxTop)         return false; // the empty category
1980   if (adr_type == NULL)                 return false; // NULL serves as TypePtr::TOP
1981   if (alias_idx == AliasIdxBot)         return true;  // the universal category
1982   if (adr_type->base() == Type::AnyPtr) return true;  // TypePtr::BOTTOM or its twins
1983 
1984   // the only remaining possible overlap is identity
1985   int adr_idx = get_alias_index(adr_type);
1986   assert(adr_idx != AliasIdxBot && adr_idx != AliasIdxTop, "");
1987   return adr_idx == alias_idx;
1988 }
1989 
1990 
1991 
1992 //---------------------------pop_warm_call-------------------------------------
1993 WarmCallInfo* Compile::pop_warm_call() {
1994   WarmCallInfo* wci = _warm_calls;
1995   if (wci != NULL)  _warm_calls = wci->remove_from(wci);
1996   return wci;
1997 }
1998 
1999 //----------------------------Inline_Warm--------------------------------------
2000 int Compile::Inline_Warm() {
2001   // If there is room, try to inline some more warm call sites.
2002   // %%% Do a graph index compaction pass when we think we're out of space?
2003   if (!InlineWarmCalls)  return 0;
2004 
2005   int calls_made_hot = 0;
2006   int room_to_grow   = NodeCountInliningCutoff - unique();
2007   int amount_to_grow = MIN2(room_to_grow, (int)NodeCountInliningStep);
2008   int amount_grown   = 0;
2009   WarmCallInfo* call;
2010   while (amount_to_grow > 0 && (call = pop_warm_call()) != NULL) {
2011     int est_size = (int)call->size();
2012     if (est_size > (room_to_grow - amount_grown)) {
2013       // This one won't fit anyway.  Get rid of it.
2014       call->make_cold();
2015       continue;
2016     }
2017     call->make_hot();
2018     calls_made_hot++;
2019     amount_grown   += est_size;
2020     amount_to_grow -= est_size;
2021   }
2022 
2023   if (calls_made_hot > 0)  set_major_progress();
2024   return calls_made_hot;
2025 }
2026 
2027 
2028 //----------------------------Finish_Warm--------------------------------------
2029 void Compile::Finish_Warm() {
2030   if (!InlineWarmCalls)  return;
2031   if (failing())  return;
2032   if (warm_calls() == NULL)  return;
2033 
2034   // Clean up loose ends, if we are out of space for inlining.
2035   WarmCallInfo* call;
2036   while ((call = pop_warm_call()) != NULL) {
2037     call->make_cold();
2038   }
2039 }
2040 
2041 //---------------------cleanup_loop_predicates-----------------------
2042 // Remove the opaque nodes that protect the predicates so that all unused
2043 // checks and uncommon_traps will be eliminated from the ideal graph
2044 void Compile::cleanup_loop_predicates(PhaseIterGVN &igvn) {
2045   if (predicate_count()==0) return;
2046   for (int i = predicate_count(); i > 0; i--) {
2047     Node * n = predicate_opaque1_node(i-1);
2048     assert(n->Opcode() == Op_Opaque1, "must be");
2049     igvn.replace_node(n, n->in(1));
2050   }
2051   assert(predicate_count()==0, "should be clean!");
2052 }
2053 
2054 void Compile::add_range_check_cast(Node* n) {
2055   assert(n->isa_CastII()->has_range_check(), "CastII should have range check dependency");
2056   assert(!_range_check_casts->contains(n), "duplicate entry in range check casts");
2057   _range_check_casts->append(n);
2058 }
2059 
2060 // Remove all range check dependent CastIINodes.
2061 void Compile::remove_range_check_casts(PhaseIterGVN &igvn) {
2062   for (int i = range_check_cast_count(); i > 0; i--) {
2063     Node* cast = range_check_cast_node(i-1);
2064     assert(cast->isa_CastII()->has_range_check(), "CastII should have range check dependency");
2065     igvn.replace_node(cast, cast->in(1));
2066   }
2067   assert(range_check_cast_count() == 0, "should be empty");
2068 }
2069 
2070 void Compile::add_opaque4_node(Node* n) {
2071   assert(n->Opcode() == Op_Opaque4, "Opaque4 only");
2072   assert(!_opaque4_nodes->contains(n), "duplicate entry in Opaque4 list");
2073   _opaque4_nodes->append(n);
2074 }
2075 
2076 // Remove all Opaque4 nodes.
2077 void Compile::remove_opaque4_nodes(PhaseIterGVN &igvn) {
2078   for (int i = opaque4_count(); i > 0; i--) {
2079     Node* opaq = opaque4_node(i-1);
2080     assert(opaq->Opcode() == Op_Opaque4, "Opaque4 only");
2081     igvn.replace_node(opaq, opaq->in(2));
2082   }
2083   assert(opaque4_count() == 0, "should be empty");
2084 }
2085 
2086 void Compile::add_value_type(Node* n) {
2087   assert(n->is_ValueTypeBase(), "unexpected node");
2088   if (_value_type_nodes != NULL) {
2089     _value_type_nodes->push(n);
2090   }
2091 }
2092 
2093 void Compile::remove_value_type(Node* n) {
2094   assert(n->is_ValueTypeBase(), "unexpected node");
2095   if (_value_type_nodes != NULL) {
2096     _value_type_nodes->remove(n);
2097   }
2098 }
2099 
2100 // Does the return value keep otherwise useless value type allocations
2101 // alive?
2102 static bool return_val_keeps_allocations_alive(Node* ret_val) {
2103   ResourceMark rm;
2104   Unique_Node_List wq;
2105   wq.push(ret_val);
2106   bool some_allocations = false;
2107   for (uint i = 0; i < wq.size(); i++) {
2108     Node* n = wq.at(i);
2109     assert(!n->is_ValueTypeBase(), "chain of value type nodes");
2110     if (n->outcnt() > 1) {
2111       // Some other use for the allocation
2112       return false;
2113     } else if (n->is_Phi()) {
2114       for (uint j = 1; j < n->req(); j++) {
2115         wq.push(n->in(j));
2116       }
2117     } else if (n->is_CheckCastPP() &&
2118                n->in(1)->is_Proj() &&
2119                n->in(1)->in(0)->is_Allocate()) {
2120       some_allocations = true;
2121     }
2122   }
2123   return some_allocations;
2124 }
2125 
2126 void Compile::process_value_types(PhaseIterGVN &igvn) {
2127   // Make value types scalar in safepoints
2128   while (_value_type_nodes->size() != 0) {
2129     ValueTypeBaseNode* vt = _value_type_nodes->pop()->as_ValueTypeBase();
2130     vt->make_scalar_in_safepoints(&igvn);
2131     if (vt->is_ValueTypePtr()) {
2132       igvn.replace_node(vt, vt->get_oop());
2133     } else if (vt->outcnt() == 0) {
2134       igvn.remove_dead_node(vt);
2135     }
2136   }
2137   _value_type_nodes = NULL;
2138   if (tf()->returns_value_type_as_fields()) {
2139     Node* ret = NULL;
2140     for (uint i = 1; i < root()->req(); i++){
2141       Node* in = root()->in(i);
2142       if (in->Opcode() == Op_Return) {
2143         assert(ret == NULL, "only one return");
2144         ret = in;
2145       }
2146     }
2147     if (ret != NULL) {
2148       Node* ret_val = ret->in(TypeFunc::Parms);
2149       if (igvn.type(ret_val)->isa_oopptr() &&
2150           return_val_keeps_allocations_alive(ret_val)) {
2151         igvn.replace_input_of(ret, TypeFunc::Parms, ValueTypeNode::tagged_klass(igvn.type(ret_val)->value_klass(), igvn));
2152         assert(ret_val->outcnt() == 0, "should be dead now");
2153         igvn.remove_dead_node(ret_val);
2154       }
2155     }
2156   }
2157   igvn.optimize();
2158 }
2159 
2160 void Compile::adjust_flattened_array_access_aliases(PhaseIterGVN& igvn) {
2161   if (!_has_flattened_accesses) {
2162     return;
2163   }
2164   // Initially, all flattened array accesses share the same slice to
2165   // keep dependencies with Object[] array accesses (that could be
2166   // to a flattened array) correct. We're done with parsing so we
2167   // now know all flattened array accesses in this compile
2168   // unit. Let's move flattened array accesses to their own slice,
2169   // one per element field. This should help memory access
2170   // optimizations.
2171   ResourceMark rm;
2172   Unique_Node_List wq;
2173   wq.push(root());
2174 
2175   Node_List mergememnodes;
2176   Node_List memnodes;
2177 
2178   // Alias index currently shared by all flattened memory accesses
2179   int index = get_alias_index(TypeAryPtr::VALUES);
2180 
2181   // Find MergeMem nodes and flattened array accesses
2182   for (uint i = 0; i < wq.size(); i++) {
2183     Node* n = wq.at(i);
2184     if (n->is_Mem()) {
2185       const TypePtr* adr_type = NULL;
2186       if (n->Opcode() == Op_StoreCM) {
2187         adr_type = get_adr_type(get_alias_index(n->in(MemNode::OopStore)->adr_type()));
2188       } else {
2189         adr_type = get_adr_type(get_alias_index(n->adr_type()));
2190       }
2191       if (adr_type == TypeAryPtr::VALUES) {
2192         memnodes.push(n);
2193       }
2194     } else if (n->is_MergeMem()) {
2195       MergeMemNode* mm = n->as_MergeMem();
2196       if (mm->memory_at(index) != mm->base_memory()) {
2197         mergememnodes.push(n);
2198       }
2199     }
2200     for (uint j = 0; j < n->req(); j++) {
2201       Node* m = n->in(j);
2202       if (m != NULL) {
2203         wq.push(m);
2204       }
2205     }
2206   }
2207 
2208   if (memnodes.size() > 0) {
2209     _flattened_accesses_share_alias = false;
2210 
2211     // We are going to change the slice for the flattened array
2212     // accesses so we need to clear the cache entries that refer to
2213     // them.
2214     for (uint i = 0; i < AliasCacheSize; i++) {
2215       AliasCacheEntry* ace = &_alias_cache[i];
2216       if (ace->_adr_type != NULL &&
2217           ace->_adr_type->isa_aryptr() &&
2218           ace->_adr_type->is_aryptr()->elem()->isa_valuetype()) {
2219         ace->_adr_type = NULL;
2220         ace->_index = 0;
2221       }
2222     }
2223 
2224     // Find what aliases we are going to add
2225     int start_alias = num_alias_types()-1;
2226     int stop_alias = 0;
2227 
2228     for (uint i = 0; i < memnodes.size(); i++) {
2229       Node* m = memnodes.at(i);
2230       const TypePtr* adr_type = NULL;
2231       if (m->Opcode() == Op_StoreCM) {
2232         adr_type = m->in(MemNode::OopStore)->adr_type();
2233         Node* clone = new StoreCMNode(m->in(MemNode::Control), m->in(MemNode::Memory), m->in(MemNode::Address), 
2234                                       m->adr_type(), m->in(MemNode::ValueIn), m->in(MemNode::OopStore),
2235                                       get_alias_index(adr_type));
2236         igvn.register_new_node_with_optimizer(clone);
2237         igvn.replace_node(m, clone);
2238       } else {
2239         adr_type = m->adr_type();
2240 #ifdef ASSERT
2241         m->as_Mem()->set_adr_type(adr_type);
2242 #endif
2243       }
2244       int idx = get_alias_index(adr_type);
2245       start_alias = MIN2(start_alias, idx);
2246       stop_alias = MAX2(stop_alias, idx);
2247     }
2248 
2249     assert(stop_alias >= start_alias, "should have expanded aliases");
2250 
2251     Node_Stack stack(0);
2252 #ifdef ASSERT
2253     VectorSet seen(Thread::current()->resource_area());
2254 #endif
2255     // Now let's fix the memory graph so each flattened array access
2256     // is moved to the right slice. Start from the MergeMem nodes.
2257     uint last = unique();
2258     for (uint i = 0; i < mergememnodes.size(); i++) {
2259       MergeMemNode* current = mergememnodes.at(i)->as_MergeMem();
2260       Node* n = current->memory_at(index);
2261       MergeMemNode* mm = NULL;
2262       do {
2263         // Follow memory edges through memory accesses, phis and
2264         // narrow membars and push nodes on the stack. Once we hit
2265         // bottom memory, we pop element off the stack one at a
2266         // time, in reverse order, and move them to the right slice
2267         // by changing their memory edges.
2268         if ((n->is_Phi() && n->adr_type() != TypePtr::BOTTOM) || n->is_Mem() || n->adr_type() == TypeAryPtr::VALUES) {
2269           assert(!seen.test_set(n->_idx), "");
2270           // Uses (a load for instance) will need to be moved to the
2271           // right slice as well and will get a new memory state
2272           // that we don't know yet. The use could also be the
2273           // backedge of a loop. We put a place holder node between
2274           // the memory node and its uses. We replace that place
2275           // holder with the correct memory state once we know it,
2276           // i.e. when nodes are popped off the stack. Using the
2277           // place holder make the logic work in the presence of
2278           // loops.
2279           if (n->outcnt() > 1) {
2280             Node* place_holder = NULL;
2281             assert(!n->has_out_with(Op_Node), "");
2282             for (DUIterator k = n->outs(); n->has_out(k); k++) {
2283               Node* u = n->out(k);
2284               if (u != current && u->_idx < last) {
2285                 bool success = false;
2286                 for (uint l = 0; l < u->req(); l++) {
2287                   if (!stack.is_empty() && u == stack.node() && l == stack.index()) {
2288                     continue;
2289                   }
2290                   Node* in = u->in(l);
2291                   if (in == n) {
2292                     if (place_holder == NULL) {
2293                       place_holder = new Node(1);
2294                       place_holder->init_req(0, n);
2295                     }
2296                     igvn.replace_input_of(u, l, place_holder);
2297                     success = true;
2298                   }
2299                 }
2300                 if (success) {
2301                   --k;
2302                 }
2303               }
2304             }
2305           }
2306           if (n->is_Phi()) {
2307             stack.push(n, 1);
2308             n = n->in(1);
2309           } else if (n->is_Mem()) {
2310             stack.push(n, n->req());
2311             n = n->in(MemNode::Memory);
2312           } else {
2313             assert(n->is_Proj() && n->in(0)->Opcode() == Op_MemBarCPUOrder, "");
2314             stack.push(n, n->req());
2315             n = n->in(0)->in(TypeFunc::Memory);
2316           }
2317         } else {
2318           assert(n->adr_type() == TypePtr::BOTTOM || (n->Opcode() == Op_Node && n->_idx >= last) || (n->is_Proj() && n->in(0)->is_Initialize()), "");
2319           // Build a new MergeMem node to carry the new memory state
2320           // as we build it. IGVN should fold extraneous MergeMem
2321           // nodes.
2322           mm = MergeMemNode::make(n);
2323           igvn.register_new_node_with_optimizer(mm);
2324           while (stack.size() > 0) {
2325             Node* m = stack.node();
2326             uint idx = stack.index();
2327             if (m->is_Mem()) {
2328               // Move memory node to its new slice
2329               const TypePtr* adr_type = m->adr_type();
2330               int alias = get_alias_index(adr_type);
2331               Node* prev = mm->memory_at(alias);
2332               igvn.replace_input_of(m, MemNode::Memory, prev);
2333               mm->set_memory_at(alias, m);
2334             } else if (m->is_Phi()) {
2335               // We need as many new phis as there are new aliases
2336               igvn.replace_input_of(m, idx, mm);
2337               if (idx == m->req()-1) {
2338                 Node* r = m->in(0);
2339                 for (uint j = (uint)start_alias; j <= (uint)stop_alias; j++) {
2340                   const Type* adr_type = get_adr_type(j);
2341                   if (!adr_type->isa_aryptr() || !adr_type->is_aryptr()->elem()->isa_valuetype()) {
2342                     continue;
2343                   }
2344                   Node* phi = new PhiNode(r, Type::MEMORY, get_adr_type(j));
2345                   igvn.register_new_node_with_optimizer(phi);
2346                   for (uint k = 1; k < m->req(); k++) {
2347                     phi->init_req(k, m->in(k)->as_MergeMem()->memory_at(j));
2348                   }
2349                   mm->set_memory_at(j, phi);
2350                 }
2351                 Node* base_phi = new PhiNode(r, Type::MEMORY, TypePtr::BOTTOM);
2352                 igvn.register_new_node_with_optimizer(base_phi);
2353                 for (uint k = 1; k < m->req(); k++) {
2354                   base_phi->init_req(k, m->in(k)->as_MergeMem()->base_memory());
2355                 }
2356                 mm->set_base_memory(base_phi);
2357               }
2358             } else {
2359               // This is a MemBarCPUOrder node from
2360               // Parse::array_load()/Parse::array_store(), in the
2361               // branch that handles flattened arrays hidden under
2362               // an Object[] array. We also need one new membar per
2363               // new alias to keep the unknown access that the
2364               // membars protect properly ordered with accesses to
2365               // known flattened array.
2366               assert(m->is_Proj(), "projection expected");
2367               Node* ctrl = m->in(0)->in(TypeFunc::Control);
2368               igvn.replace_input_of(m->in(0), TypeFunc::Control, top());
2369               for (uint j = (uint)start_alias; j <= (uint)stop_alias; j++) {
2370                 const Type* adr_type = get_adr_type(j);
2371                 if (!adr_type->isa_aryptr() || !adr_type->is_aryptr()->elem()->isa_valuetype()) {
2372                   continue;
2373                 }
2374                 MemBarNode* mb = new MemBarCPUOrderNode(this, j, NULL);
2375                 igvn.register_new_node_with_optimizer(mb);
2376                 Node* mem = mm->memory_at(j);
2377                 mb->init_req(TypeFunc::Control, ctrl);
2378                 mb->init_req(TypeFunc::Memory, mem);
2379                 ctrl = new ProjNode(mb, TypeFunc::Control);
2380                 igvn.register_new_node_with_optimizer(ctrl);
2381                 mem = new ProjNode(mb, TypeFunc::Memory);
2382                 igvn.register_new_node_with_optimizer(mem);
2383                 mm->set_memory_at(j, mem);
2384               }
2385               igvn.replace_node(m->in(0)->as_Multi()->proj_out(TypeFunc::Control), ctrl);
2386             }
2387             if (idx < m->req()-1) {
2388               idx += 1;
2389               stack.set_index(idx);
2390               n = m->in(idx);
2391               break;
2392             }
2393             // Take care of place holder nodes
2394             if (m->has_out_with(Op_Node)) {
2395               Node* place_holder = m->find_out_with(Op_Node);
2396               if (place_holder != NULL) {
2397                 Node* mm_clone = mm->clone();
2398                 igvn.register_new_node_with_optimizer(mm_clone);
2399                 Node* hook = new Node(1);
2400                 hook->init_req(0, mm);
2401                 igvn.replace_node(place_holder, mm_clone);
2402                 hook->destruct();
2403               }
2404               assert(!m->has_out_with(Op_Node), "place holder should be gone now");
2405             }
2406             stack.pop();
2407           }
2408         }
2409       } while(stack.size() > 0);
2410       // Fix the memory state at the MergeMem we started from
2411       igvn.rehash_node_delayed(current);
2412       for (uint j = (uint)start_alias; j <= (uint)stop_alias; j++) {
2413         const Type* adr_type = get_adr_type(j);
2414         if (!adr_type->isa_aryptr() || !adr_type->is_aryptr()->elem()->isa_valuetype()) {
2415           continue;
2416         }
2417         current->set_memory_at(j, mm);
2418       }
2419       current->set_memory_at(index, current->base_memory());
2420     }
2421     igvn.optimize();
2422   }
2423   print_method(PHASE_SPLIT_VALUES_ARRAY, 2);
2424 }
2425 
2426 
2427 // StringOpts and late inlining of string methods
2428 void Compile::inline_string_calls(bool parse_time) {
2429   {
2430     // remove useless nodes to make the usage analysis simpler
2431     ResourceMark rm;
2432     PhaseRemoveUseless pru(initial_gvn(), for_igvn());
2433   }
2434 
2435   {
2436     ResourceMark rm;
2437     print_method(PHASE_BEFORE_STRINGOPTS, 3);
2438     PhaseStringOpts pso(initial_gvn(), for_igvn());
2439     print_method(PHASE_AFTER_STRINGOPTS, 3);
2440   }
2441 
2442   // now inline anything that we skipped the first time around
2443   if (!parse_time) {
2444     _late_inlines_pos = _late_inlines.length();
2445   }
2446 
2447   while (_string_late_inlines.length() > 0) {
2448     CallGenerator* cg = _string_late_inlines.pop();
2449     cg->do_late_inline();
2450     if (failing())  return;
2451   }
2452   _string_late_inlines.trunc_to(0);
2453 }
2454 
2455 // Late inlining of boxing methods
2456 void Compile::inline_boxing_calls(PhaseIterGVN& igvn) {
2457   if (_boxing_late_inlines.length() > 0) {
2458     assert(has_boxed_value(), "inconsistent");
2459 
2460     PhaseGVN* gvn = initial_gvn();
2461     set_inlining_incrementally(true);
2462 
2463     assert( igvn._worklist.size() == 0, "should be done with igvn" );
2464     for_igvn()->clear();
2465     gvn->replace_with(&igvn);
2466 
2467     _late_inlines_pos = _late_inlines.length();
2468 
2469     while (_boxing_late_inlines.length() > 0) {
2470       CallGenerator* cg = _boxing_late_inlines.pop();
2471       cg->do_late_inline();
2472       if (failing())  return;
2473     }
2474     _boxing_late_inlines.trunc_to(0);
2475 
2476     inline_incrementally_cleanup(igvn);
2477 
2478     set_inlining_incrementally(false);
2479   }
2480 }
2481 
2482 bool Compile::inline_incrementally_one() {
2483   assert(IncrementalInline, "incremental inlining should be on");
2484 
2485   TracePhase tp("incrementalInline_inline", &timers[_t_incrInline_inline]);
2486   set_inlining_progress(false);
2487   set_do_cleanup(false);
2488   int i = 0;
2489   for (; i <_late_inlines.length() && !inlining_progress(); i++) {
2490     CallGenerator* cg = _late_inlines.at(i);
2491     _late_inlines_pos = i+1;
2492     cg->do_late_inline();
2493     if (failing())  return false;
2494   }
2495   int j = 0;
2496   for (; i < _late_inlines.length(); i++, j++) {
2497     _late_inlines.at_put(j, _late_inlines.at(i));
2498   }
2499   _late_inlines.trunc_to(j);
2500   assert(inlining_progress() || _late_inlines.length() == 0, "");
2501 
2502   bool needs_cleanup = do_cleanup() || over_inlining_cutoff();
2503 
2504   set_inlining_progress(false);
2505   set_do_cleanup(false);
2506   return (_late_inlines.length() > 0) && !needs_cleanup;
2507 }
2508 
2509 void Compile::inline_incrementally_cleanup(PhaseIterGVN& igvn) {
2510   {
2511     TracePhase tp("incrementalInline_pru", &timers[_t_incrInline_pru]);
2512     ResourceMark rm;
2513     PhaseRemoveUseless pru(initial_gvn(), for_igvn());
2514   }
2515   {
2516     TracePhase tp("incrementalInline_igvn", &timers[_t_incrInline_igvn]);
2517     igvn = PhaseIterGVN(initial_gvn());
2518     igvn.optimize();
2519   }
2520 }
2521 
2522 // Perform incremental inlining until bound on number of live nodes is reached
2523 void Compile::inline_incrementally(PhaseIterGVN& igvn) {
2524   TracePhase tp("incrementalInline", &timers[_t_incrInline]);
2525 
2526   set_inlining_incrementally(true);
2527   uint low_live_nodes = 0;
2528 
2529   while (_late_inlines.length() > 0) {
2530     if (live_nodes() > (uint)LiveNodeCountInliningCutoff) {
2531       if (low_live_nodes < (uint)LiveNodeCountInliningCutoff * 8 / 10) {
2532         TracePhase tp("incrementalInline_ideal", &timers[_t_incrInline_ideal]);
2533         // PhaseIdealLoop is expensive so we only try it once we are
2534         // out of live nodes and we only try it again if the previous
2535         // helped got the number of nodes down significantly
2536         PhaseIdealLoop::optimize(igvn, LoopOptsNone);
2537         if (failing())  return;
2538         low_live_nodes = live_nodes();
2539         _major_progress = true;
2540       }
2541 
2542       if (live_nodes() > (uint)LiveNodeCountInliningCutoff) {
2543         break; // finish
2544       }
2545     }
2546 
2547     for_igvn()->clear();
2548     initial_gvn()->replace_with(&igvn);
2549 
2550     while (inline_incrementally_one()) {
2551       assert(!failing(), "inconsistent");
2552     }
2553 
2554     if (failing())  return;
2555 
2556     inline_incrementally_cleanup(igvn);
2557 
2558     if (failing())  return;
2559   }
2560   assert( igvn._worklist.size() == 0, "should be done with igvn" );
2561 
2562   if (_string_late_inlines.length() > 0) {
2563     assert(has_stringbuilder(), "inconsistent");
2564     for_igvn()->clear();
2565     initial_gvn()->replace_with(&igvn);
2566 
2567     inline_string_calls(false);
2568 
2569     if (failing())  return;
2570 
2571     inline_incrementally_cleanup(igvn);
2572   }
2573 
2574   set_inlining_incrementally(false);
2575 }
2576 
2577 
2578 bool Compile::optimize_loops(PhaseIterGVN& igvn, LoopOptsMode mode) {
2579   if(_loop_opts_cnt > 0) {
2580     debug_only( int cnt = 0; );
2581     while(major_progress() && (_loop_opts_cnt > 0)) {
2582       TracePhase tp("idealLoop", &timers[_t_idealLoop]);
2583       assert( cnt++ < 40, "infinite cycle in loop optimization" );
2584       PhaseIdealLoop::optimize(igvn, mode);
2585       _loop_opts_cnt--;
2586       if (failing())  return false;
2587       if (major_progress()) print_method(PHASE_PHASEIDEALLOOP_ITERATIONS, 2);
2588     }
2589   }
2590   return true;
2591 }
2592 
2593 // Remove edges from "root" to each SafePoint at a backward branch.
2594 // They were inserted during parsing (see add_safepoint()) to make
2595 // infinite loops without calls or exceptions visible to root, i.e.,
2596 // useful.
2597 void Compile::remove_root_to_sfpts_edges(PhaseIterGVN& igvn) {
2598   Node *r = root();
2599   if (r != NULL) {
2600     for (uint i = r->req(); i < r->len(); ++i) {
2601       Node *n = r->in(i);
2602       if (n != NULL && n->is_SafePoint()) {
2603         r->rm_prec(i);
2604         if (n->outcnt() == 0) {
2605           igvn.remove_dead_node(n);
2606         }
2607         --i;
2608       }
2609     }
2610   }
2611 }
2612 
2613 //------------------------------Optimize---------------------------------------
2614 // Given a graph, optimize it.
2615 void Compile::Optimize() {
2616   TracePhase tp("optimizer", &timers[_t_optimizer]);
2617 
2618 #ifndef PRODUCT
2619   if (_directive->BreakAtCompileOption) {
2620     BREAKPOINT;
2621   }
2622 
2623 #endif
2624 
2625 #ifdef ASSERT
2626   BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
2627   bs->verify_gc_barriers(this, BarrierSetC2::BeforeOptimize);
2628 #endif
2629 
2630   ResourceMark rm;
2631 
2632   print_inlining_reinit();
2633 
2634   NOT_PRODUCT( verify_graph_edges(); )
2635 
2636   print_method(PHASE_AFTER_PARSING);
2637 
2638  {
2639   // Iterative Global Value Numbering, including ideal transforms
2640   // Initialize IterGVN with types and values from parse-time GVN
2641   PhaseIterGVN igvn(initial_gvn());
2642 #ifdef ASSERT
2643   _modified_nodes = new (comp_arena()) Unique_Node_List(comp_arena());
2644 #endif
2645   {
2646     TracePhase tp("iterGVN", &timers[_t_iterGVN]);
2647     igvn.optimize();
2648   }
2649 
2650   if (failing())  return;
2651 
2652   print_method(PHASE_ITER_GVN1, 2);
2653 
2654   inline_incrementally(igvn);
2655 
2656   print_method(PHASE_INCREMENTAL_INLINE, 2);
2657 
2658   if (failing())  return;
2659 
2660   if (eliminate_boxing()) {
2661     // Inline valueOf() methods now.
2662     inline_boxing_calls(igvn);
2663 
2664     if (AlwaysIncrementalInline) {
2665       inline_incrementally(igvn);
2666     }
2667 
2668     print_method(PHASE_INCREMENTAL_BOXING_INLINE, 2);
2669 
2670     if (failing())  return;
2671   }
2672 
2673   // Now that all inlining is over, cut edge from root to loop
2674   // safepoints
2675   remove_root_to_sfpts_edges(igvn);
2676 
2677   // Remove the speculative part of types and clean up the graph from
2678   // the extra CastPP nodes whose only purpose is to carry them. Do
2679   // that early so that optimizations are not disrupted by the extra
2680   // CastPP nodes.
2681   remove_speculative_types(igvn);
2682 
2683   // No more new expensive nodes will be added to the list from here
2684   // so keep only the actual candidates for optimizations.
2685   cleanup_expensive_nodes(igvn);
2686 
2687   if (!failing() && RenumberLiveNodes && live_nodes() + NodeLimitFudgeFactor < unique()) {
2688     Compile::TracePhase tp("", &timers[_t_renumberLive]);
2689     initial_gvn()->replace_with(&igvn);
2690     for_igvn()->clear();
2691     Unique_Node_List new_worklist(C->comp_arena());
2692     {
2693       ResourceMark rm;
2694       PhaseRenumberLive prl = PhaseRenumberLive(initial_gvn(), for_igvn(), &new_worklist);
2695     }
2696     set_for_igvn(&new_worklist);
2697     igvn = PhaseIterGVN(initial_gvn());
2698     igvn.optimize();
2699   }
2700 
2701   if (_value_type_nodes->size() > 0) {
2702     // Do this once all inlining is over to avoid getting inconsistent debug info
2703     process_value_types(igvn);
2704   }
2705 
2706   adjust_flattened_array_access_aliases(igvn);
2707 
2708   // Perform escape analysis
2709   if (_do_escape_analysis && ConnectionGraph::has_candidates(this)) {
2710     if (has_loops()) {
2711       // Cleanup graph (remove dead nodes).
2712       TracePhase tp("idealLoop", &timers[_t_idealLoop]);
2713       PhaseIdealLoop::optimize(igvn, LoopOptsNone);
2714       if (major_progress()) print_method(PHASE_PHASEIDEAL_BEFORE_EA, 2);
2715       if (failing())  return;
2716     }
2717     ConnectionGraph::do_analysis(this, &igvn);
2718 
2719     if (failing())  return;
2720 
2721     // Optimize out fields loads from scalar replaceable allocations.
2722     igvn.optimize();
2723     print_method(PHASE_ITER_GVN_AFTER_EA, 2);
2724 
2725     if (failing())  return;
2726 
2727     if (congraph() != NULL && macro_count() > 0) {
2728       TracePhase tp("macroEliminate", &timers[_t_macroEliminate]);
2729       PhaseMacroExpand mexp(igvn);
2730       mexp.eliminate_macro_nodes();
2731       igvn.set_delay_transform(false);
2732 
2733       igvn.optimize();
2734       print_method(PHASE_ITER_GVN_AFTER_ELIMINATION, 2);
2735 
2736       if (failing())  return;
2737     }
2738   }
2739 
2740   // Loop transforms on the ideal graph.  Range Check Elimination,
2741   // peeling, unrolling, etc.
2742 
2743   // Set loop opts counter
2744   if((_loop_opts_cnt > 0) && (has_loops() || has_split_ifs())) {
2745     {
2746       TracePhase tp("idealLoop", &timers[_t_idealLoop]);
2747       PhaseIdealLoop::optimize(igvn, LoopOptsDefault);
2748       _loop_opts_cnt--;
2749       if (major_progress()) print_method(PHASE_PHASEIDEALLOOP1, 2);
2750       if (failing())  return;
2751     }
2752     // Loop opts pass if partial peeling occurred in previous pass
2753     if(PartialPeelLoop && major_progress() && (_loop_opts_cnt > 0)) {
2754       TracePhase tp("idealLoop", &timers[_t_idealLoop]);
2755       PhaseIdealLoop::optimize(igvn, LoopOptsSkipSplitIf);
2756       _loop_opts_cnt--;
2757       if (major_progress()) print_method(PHASE_PHASEIDEALLOOP2, 2);
2758       if (failing())  return;
2759     }
2760     // Loop opts pass for loop-unrolling before CCP
2761     if(major_progress() && (_loop_opts_cnt > 0)) {
2762       TracePhase tp("idealLoop", &timers[_t_idealLoop]);
2763       PhaseIdealLoop::optimize(igvn, LoopOptsSkipSplitIf);
2764       _loop_opts_cnt--;
2765       if (major_progress()) print_method(PHASE_PHASEIDEALLOOP3, 2);
2766     }
2767     if (!failing()) {
2768       // Verify that last round of loop opts produced a valid graph
2769       TracePhase tp("idealLoopVerify", &timers[_t_idealLoopVerify]);
2770       PhaseIdealLoop::verify(igvn);
2771     }
2772   }
2773   if (failing())  return;
2774 
2775   // Conditional Constant Propagation;
2776   PhaseCCP ccp( &igvn );
2777   assert( true, "Break here to ccp.dump_nodes_and_types(_root,999,1)");
2778   {
2779     TracePhase tp("ccp", &timers[_t_ccp]);
2780     ccp.do_transform();
2781   }
2782   print_method(PHASE_CPP1, 2);
2783 
2784   assert( true, "Break here to ccp.dump_old2new_map()");
2785 
2786   // Iterative Global Value Numbering, including ideal transforms
2787   {
2788     TracePhase tp("iterGVN2", &timers[_t_iterGVN2]);
2789     igvn = ccp;
2790     igvn.optimize();
2791   }
2792 
2793   print_method(PHASE_ITER_GVN2, 2);
2794 
2795   if (failing())  return;
2796 
2797   // Loop transforms on the ideal graph.  Range Check Elimination,
2798   // peeling, unrolling, etc.
2799   if (!optimize_loops(igvn, LoopOptsDefault)) {
2800     return;
2801   }
2802 
2803 #if INCLUDE_ZGC
2804   if (UseZGC) {
2805     ZBarrierSetC2::find_dominating_barriers(igvn);
2806   }
2807 #endif
2808 
2809   if (failing())  return;
2810 
2811   // Ensure that major progress is now clear
2812   C->clear_major_progress();
2813 
2814   {
2815     // Verify that all previous optimizations produced a valid graph
2816     // at least to this point, even if no loop optimizations were done.
2817     TracePhase tp("idealLoopVerify", &timers[_t_idealLoopVerify]);
2818     PhaseIdealLoop::verify(igvn);
2819   }
2820 
2821   if (range_check_cast_count() > 0) {
2822     // No more loop optimizations. Remove all range check dependent CastIINodes.
2823     C->remove_range_check_casts(igvn);
2824     igvn.optimize();
2825   }
2826 
2827 #ifdef ASSERT
2828   BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
2829   bs->verify_gc_barriers(this, BarrierSetC2::BeforeExpand);
2830 #endif
2831 
2832   {
2833     TracePhase tp("macroExpand", &timers[_t_macroExpand]);
2834     PhaseMacroExpand  mex(igvn);
2835     print_method(PHASE_BEFORE_MACRO_EXPANSION, 2);
2836     if (mex.expand_macro_nodes()) {
2837       assert(failing(), "must bail out w/ explicit message");
2838       return;
2839     }
2840   }
2841 
2842   {
2843     TracePhase tp("barrierExpand", &timers[_t_barrierExpand]);
2844     print_method(PHASE_BEFORE_BARRIER_EXPAND, 2);
2845     BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
2846     if (bs->expand_barriers(this, igvn)) {
2847       assert(failing(), "must bail out w/ explicit message");
2848       return;
2849     }
2850   }
2851 
2852   if (opaque4_count() > 0) {
2853     C->remove_opaque4_nodes(igvn);
2854     igvn.optimize();
2855   }
2856 
2857   DEBUG_ONLY( _modified_nodes = NULL; )
2858  } // (End scope of igvn; run destructor if necessary for asserts.)
2859 
2860  process_print_inlining();
2861  // A method with only infinite loops has no edges entering loops from root
2862  {
2863    TracePhase tp("graphReshape", &timers[_t_graphReshaping]);
2864    if (final_graph_reshaping()) {
2865      assert(failing(), "must bail out w/ explicit message");
2866      return;
2867    }
2868  }
2869 
2870  print_method(PHASE_OPTIMIZE_FINISHED, 2);
2871 }
2872 
2873 //------------------------------Code_Gen---------------------------------------
2874 // Given a graph, generate code for it
2875 void Compile::Code_Gen() {
2876   if (failing()) {
2877     return;
2878   }
2879 
2880   // Perform instruction selection.  You might think we could reclaim Matcher
2881   // memory PDQ, but actually the Matcher is used in generating spill code.
2882   // Internals of the Matcher (including some VectorSets) must remain live
2883   // for awhile - thus I cannot reclaim Matcher memory lest a VectorSet usage
2884   // set a bit in reclaimed memory.
2885 
2886   // In debug mode can dump m._nodes.dump() for mapping of ideal to machine
2887   // nodes.  Mapping is only valid at the root of each matched subtree.
2888   NOT_PRODUCT( verify_graph_edges(); )
2889 
2890   Matcher matcher;
2891   _matcher = &matcher;
2892   {
2893     TracePhase tp("matcher", &timers[_t_matcher]);
2894     matcher.match();
2895   }
2896   // In debug mode can dump m._nodes.dump() for mapping of ideal to machine
2897   // nodes.  Mapping is only valid at the root of each matched subtree.
2898   NOT_PRODUCT( verify_graph_edges(); )
2899 
2900   // If you have too many nodes, or if matching has failed, bail out
2901   check_node_count(0, "out of nodes matching instructions");
2902   if (failing()) {
2903     return;
2904   }
2905 
2906   print_method(PHASE_MATCHING, 2);
2907 
2908   // Build a proper-looking CFG
2909   PhaseCFG cfg(node_arena(), root(), matcher);
2910   _cfg = &cfg;
2911   {
2912     TracePhase tp("scheduler", &timers[_t_scheduler]);
2913     bool success = cfg.do_global_code_motion();
2914     if (!success) {
2915       return;
2916     }
2917 
2918     print_method(PHASE_GLOBAL_CODE_MOTION, 2);
2919     NOT_PRODUCT( verify_graph_edges(); )
2920     debug_only( cfg.verify(); )
2921   }
2922 
2923   PhaseChaitin regalloc(unique(), cfg, matcher, false);
2924   _regalloc = &regalloc;
2925   {
2926     TracePhase tp("regalloc", &timers[_t_registerAllocation]);
2927     // Perform register allocation.  After Chaitin, use-def chains are
2928     // no longer accurate (at spill code) and so must be ignored.
2929     // Node->LRG->reg mappings are still accurate.
2930     _regalloc->Register_Allocate();
2931 
2932     // Bail out if the allocator builds too many nodes
2933     if (failing()) {
2934       return;
2935     }
2936   }
2937 
2938   // Prior to register allocation we kept empty basic blocks in case the
2939   // the allocator needed a place to spill.  After register allocation we
2940   // are not adding any new instructions.  If any basic block is empty, we
2941   // can now safely remove it.
2942   {
2943     TracePhase tp("blockOrdering", &timers[_t_blockOrdering]);
2944     cfg.remove_empty_blocks();
2945     if (do_freq_based_layout()) {
2946       PhaseBlockLayout layout(cfg);
2947     } else {
2948       cfg.set_loop_alignment();
2949     }
2950     cfg.fixup_flow();
2951   }
2952 
2953   // Apply peephole optimizations
2954   if( OptoPeephole ) {
2955     TracePhase tp("peephole", &timers[_t_peephole]);
2956     PhasePeephole peep( _regalloc, cfg);
2957     peep.do_transform();
2958   }
2959 
2960   // Do late expand if CPU requires this.
2961   if (Matcher::require_postalloc_expand) {
2962     TracePhase tp("postalloc_expand", &timers[_t_postalloc_expand]);
2963     cfg.postalloc_expand(_regalloc);
2964   }
2965 
2966   // Convert Nodes to instruction bits in a buffer
2967   {
2968     TraceTime tp("output", &timers[_t_output], CITime);
2969     Output();
2970   }
2971 
2972   print_method(PHASE_FINAL_CODE);
2973 
2974   // He's dead, Jim.
2975   _cfg     = (PhaseCFG*)((intptr_t)0xdeadbeef);
2976   _regalloc = (PhaseChaitin*)((intptr_t)0xdeadbeef);
2977 }
2978 
2979 
2980 //------------------------------dump_asm---------------------------------------
2981 // Dump formatted assembly
2982 #if defined(SUPPORT_OPTO_ASSEMBLY)
2983 void Compile::dump_asm_on(outputStream* st, int* pcs, uint pc_limit) {
2984 
2985   int pc_digits = 3; // #chars required for pc
2986   int sb_chars  = 3; // #chars for "start bundle" indicator
2987   int tab_size  = 8;
2988   if (pcs != NULL) {
2989     int max_pc = 0;
2990     for (uint i = 0; i < pc_limit; i++) {
2991       max_pc = (max_pc < pcs[i]) ? pcs[i] : max_pc;
2992     }
2993     pc_digits  = ((max_pc < 4096) ? 3 : ((max_pc < 65536) ? 4 : ((max_pc < 65536*256) ? 6 : 8))); // #chars required for pc
2994   }
2995   int prefix_len = ((pc_digits + sb_chars + tab_size - 1)/tab_size)*tab_size;
2996 
2997   bool cut_short = false;
2998   st->print_cr("#");
2999   st->print("#  ");  _tf->dump_on(st);  st->cr();
3000   st->print_cr("#");
3001 
3002   // For all blocks
3003   int pc = 0x0;                 // Program counter
3004   char starts_bundle = ' ';
3005   _regalloc->dump_frame();
3006 
3007   Node *n = NULL;
3008   for (uint i = 0; i < _cfg->number_of_blocks(); i++) {
3009     if (VMThread::should_terminate()) {
3010       cut_short = true;
3011       break;
3012     }
3013     Block* block = _cfg->get_block(i);
3014     if (block->is_connector() && !Verbose) {
3015       continue;
3016     }
3017     n = block->head();
3018     if ((pcs != NULL) && (n->_idx < pc_limit)) {
3019       pc = pcs[n->_idx];
3020       st->print("%*.*x", pc_digits, pc_digits, pc);
3021     }
3022     st->fill_to(prefix_len);
3023     block->dump_head(_cfg, st);
3024     if (block->is_connector()) {
3025       st->fill_to(prefix_len);
3026       st->print_cr("# Empty connector block");
3027     } else if (block->num_preds() == 2 && block->pred(1)->is_CatchProj() && block->pred(1)->as_CatchProj()->_con == CatchProjNode::fall_through_index) {
3028       st->fill_to(prefix_len);
3029       st->print_cr("# Block is sole successor of call");
3030     }
3031 
3032     // For all instructions
3033     Node *delay = NULL;
3034     for (uint j = 0; j < block->number_of_nodes(); j++) {
3035       if (VMThread::should_terminate()) {
3036         cut_short = true;
3037         break;
3038       }
3039       n = block->get_node(j);
3040       if (valid_bundle_info(n)) {
3041         Bundle* bundle = node_bundling(n);
3042         if (bundle->used_in_unconditional_delay()) {
3043           delay = n;
3044           continue;
3045         }
3046         if (bundle->starts_bundle()) {
3047           starts_bundle = '+';
3048         }
3049       }
3050 
3051       if (WizardMode) {
3052         n->dump();
3053       }
3054 
3055       if( !n->is_Region() &&    // Dont print in the Assembly
3056           !n->is_Phi() &&       // a few noisely useless nodes
3057           !n->is_Proj() &&
3058           !n->is_MachTemp() &&
3059           !n->is_SafePointScalarObject() &&
3060           !n->is_Catch() &&     // Would be nice to print exception table targets
3061           !n->is_MergeMem() &&  // Not very interesting
3062           !n->is_top() &&       // Debug info table constants
3063           !(n->is_Con() && !n->is_Mach())// Debug info table constants
3064           ) {
3065         if ((pcs != NULL) && (n->_idx < pc_limit)) {
3066           pc = pcs[n->_idx];
3067           st->print("%*.*x", pc_digits, pc_digits, pc);
3068         } else {
3069           st->fill_to(pc_digits);
3070         }
3071         st->print(" %c ", starts_bundle);
3072         starts_bundle = ' ';
3073         st->fill_to(prefix_len);
3074         n->format(_regalloc, st);
3075         st->cr();
3076       }
3077 
3078       // If we have an instruction with a delay slot, and have seen a delay,
3079       // then back up and print it
3080       if (valid_bundle_info(n) && node_bundling(n)->use_unconditional_delay()) {
3081         // Coverity finding - Explicit null dereferenced.
3082         guarantee(delay != NULL, "no unconditional delay instruction");
3083         if (WizardMode) delay->dump();
3084 
3085         if (node_bundling(delay)->starts_bundle())
3086           starts_bundle = '+';
3087         if ((pcs != NULL) && (n->_idx < pc_limit)) {
3088           pc = pcs[n->_idx];
3089           st->print("%*.*x", pc_digits, pc_digits, pc);
3090         } else {
3091           st->fill_to(pc_digits);
3092         }
3093         st->print(" %c ", starts_bundle);
3094         starts_bundle = ' ';
3095         st->fill_to(prefix_len);
3096         delay->format(_regalloc, st);
3097         st->cr();
3098         delay = NULL;
3099       }
3100 
3101       // Dump the exception table as well
3102       if( n->is_Catch() && (Verbose || WizardMode) ) {
3103         // Print the exception table for this offset
3104         _handler_table.print_subtable_for(pc);
3105       }
3106       st->bol(); // Make sure we start on a new line
3107     }
3108     st->cr(); // one empty line between blocks
3109     assert(cut_short || delay == NULL, "no unconditional delay branch");
3110   } // End of per-block dump
3111 
3112   if (cut_short)  st->print_cr("*** disassembly is cut short ***");
3113 }
3114 #endif
3115 
3116 //------------------------------Final_Reshape_Counts---------------------------
3117 // This class defines counters to help identify when a method
3118 // may/must be executed using hardware with only 24-bit precision.
3119 struct Final_Reshape_Counts : public StackObj {
3120   int  _call_count;             // count non-inlined 'common' calls
3121   int  _float_count;            // count float ops requiring 24-bit precision
3122   int  _double_count;           // count double ops requiring more precision
3123   int  _java_call_count;        // count non-inlined 'java' calls
3124   int  _inner_loop_count;       // count loops which need alignment
3125   VectorSet _visited;           // Visitation flags
3126   Node_List _tests;             // Set of IfNodes & PCTableNodes
3127 
3128   Final_Reshape_Counts() :
3129     _call_count(0), _float_count(0), _double_count(0),
3130     _java_call_count(0), _inner_loop_count(0),
3131     _visited( Thread::current()->resource_area() ) { }
3132 
3133   void inc_call_count  () { _call_count  ++; }
3134   void inc_float_count () { _float_count ++; }
3135   void inc_double_count() { _double_count++; }
3136   void inc_java_call_count() { _java_call_count++; }
3137   void inc_inner_loop_count() { _inner_loop_count++; }
3138 
3139   int  get_call_count  () const { return _call_count  ; }
3140   int  get_float_count () const { return _float_count ; }
3141   int  get_double_count() const { return _double_count; }
3142   int  get_java_call_count() const { return _java_call_count; }
3143   int  get_inner_loop_count() const { return _inner_loop_count; }
3144 };
3145 
3146 #ifdef ASSERT
3147 static bool oop_offset_is_sane(const TypeInstPtr* tp) {
3148   ciInstanceKlass *k = tp->klass()->as_instance_klass();
3149   // Make sure the offset goes inside the instance layout.
3150   return k->contains_field_offset(tp->offset());
3151   // Note that OffsetBot and OffsetTop are very negative.
3152 }
3153 #endif
3154 
3155 // Eliminate trivially redundant StoreCMs and accumulate their
3156 // precedence edges.
3157 void Compile::eliminate_redundant_card_marks(Node* n) {
3158   assert(n->Opcode() == Op_StoreCM, "expected StoreCM");
3159   if (n->in(MemNode::Address)->outcnt() > 1) {
3160     // There are multiple users of the same address so it might be
3161     // possible to eliminate some of the StoreCMs
3162     Node* mem = n->in(MemNode::Memory);
3163     Node* adr = n->in(MemNode::Address);
3164     Node* val = n->in(MemNode::ValueIn);
3165     Node* prev = n;
3166     bool done = false;
3167     // Walk the chain of StoreCMs eliminating ones that match.  As
3168     // long as it's a chain of single users then the optimization is
3169     // safe.  Eliminating partially redundant StoreCMs would require
3170     // cloning copies down the other paths.
3171     while (mem->Opcode() == Op_StoreCM && mem->outcnt() == 1 && !done) {
3172       if (adr == mem->in(MemNode::Address) &&
3173           val == mem->in(MemNode::ValueIn)) {
3174         // redundant StoreCM
3175         if (mem->req() > MemNode::OopStore) {
3176           // Hasn't been processed by this code yet.
3177           n->add_prec(mem->in(MemNode::OopStore));
3178         } else {
3179           // Already converted to precedence edge
3180           for (uint i = mem->req(); i < mem->len(); i++) {
3181             // Accumulate any precedence edges
3182             if (mem->in(i) != NULL) {
3183               n->add_prec(mem->in(i));
3184             }
3185           }
3186           // Everything above this point has been processed.
3187           done = true;
3188         }
3189         // Eliminate the previous StoreCM
3190         prev->set_req(MemNode::Memory, mem->in(MemNode::Memory));
3191         assert(mem->outcnt() == 0, "should be dead");
3192         mem->disconnect_inputs(NULL, this);
3193       } else {
3194         prev = mem;
3195       }
3196       mem = prev->in(MemNode::Memory);
3197     }
3198   }
3199 }
3200 
3201 
3202 //------------------------------final_graph_reshaping_impl----------------------
3203 // Implement items 1-5 from final_graph_reshaping below.
3204 void Compile::final_graph_reshaping_impl( Node *n, Final_Reshape_Counts &frc) {
3205 
3206   if ( n->outcnt() == 0 ) return; // dead node
3207   uint nop = n->Opcode();
3208 
3209   // Check for 2-input instruction with "last use" on right input.
3210   // Swap to left input.  Implements item (2).
3211   if( n->req() == 3 &&          // two-input instruction
3212       n->in(1)->outcnt() > 1 && // left use is NOT a last use
3213       (!n->in(1)->is_Phi() || n->in(1)->in(2) != n) && // it is not data loop
3214       n->in(2)->outcnt() == 1 &&// right use IS a last use
3215       !n->in(2)->is_Con() ) {   // right use is not a constant
3216     // Check for commutative opcode
3217     switch( nop ) {
3218     case Op_AddI:  case Op_AddF:  case Op_AddD:  case Op_AddL:
3219     case Op_MaxI:  case Op_MinI:
3220     case Op_MulI:  case Op_MulF:  case Op_MulD:  case Op_MulL:
3221     case Op_AndL:  case Op_XorL:  case Op_OrL:
3222     case Op_AndI:  case Op_XorI:  case Op_OrI: {
3223       // Move "last use" input to left by swapping inputs
3224       n->swap_edges(1, 2);
3225       break;
3226     }
3227     default:
3228       break;
3229     }
3230   }
3231 
3232 #ifdef ASSERT
3233   if( n->is_Mem() ) {
3234     int alias_idx = get_alias_index(n->as_Mem()->adr_type());
3235     assert( n->in(0) != NULL || alias_idx != Compile::AliasIdxRaw ||
3236             // oop will be recorded in oop map if load crosses safepoint
3237             n->is_Load() && (n->as_Load()->bottom_type()->isa_oopptr() ||
3238                              LoadNode::is_immutable_value(n->in(MemNode::Address))),
3239             "raw memory operations should have control edge");
3240   }
3241   if (n->is_MemBar()) {
3242     MemBarNode* mb = n->as_MemBar();
3243     if (mb->trailing_store() || mb->trailing_load_store()) {
3244       assert(mb->leading_membar()->trailing_membar() == mb, "bad membar pair");
3245       Node* mem = mb->in(MemBarNode::Precedent);
3246       assert((mb->trailing_store() && mem->is_Store() && mem->as_Store()->is_release()) ||
3247              (mb->trailing_load_store() && mem->is_LoadStore()), "missing mem op");
3248     } else if (mb->leading()) {
3249       assert(mb->trailing_membar()->leading_membar() == mb, "bad membar pair");
3250     }
3251   }
3252 #endif
3253   // Count FPU ops and common calls, implements item (3)
3254   bool gc_handled = BarrierSet::barrier_set()->barrier_set_c2()->final_graph_reshaping(this, n, nop);
3255   if (!gc_handled) {
3256     final_graph_reshaping_main_switch(n, frc, nop);
3257   }
3258 
3259   // Collect CFG split points
3260   if (n->is_MultiBranch() && !n->is_RangeCheck()) {
3261     frc._tests.push(n);
3262   }
3263 }
3264 
3265 void Compile::final_graph_reshaping_main_switch(Node* n, Final_Reshape_Counts& frc, uint nop) {
3266   switch( nop ) {
3267   // Count all float operations that may use FPU
3268   case Op_AddF:
3269   case Op_SubF:
3270   case Op_MulF:
3271   case Op_DivF:
3272   case Op_NegF:
3273   case Op_ModF:
3274   case Op_ConvI2F:
3275   case Op_ConF:
3276   case Op_CmpF:
3277   case Op_CmpF3:
3278   // case Op_ConvL2F: // longs are split into 32-bit halves
3279     frc.inc_float_count();
3280     break;
3281 
3282   case Op_ConvF2D:
3283   case Op_ConvD2F:
3284     frc.inc_float_count();
3285     frc.inc_double_count();
3286     break;
3287 
3288   // Count all double operations that may use FPU
3289   case Op_AddD:
3290   case Op_SubD:
3291   case Op_MulD:
3292   case Op_DivD:
3293   case Op_NegD:
3294   case Op_ModD:
3295   case Op_ConvI2D:
3296   case Op_ConvD2I:
3297   // case Op_ConvL2D: // handled by leaf call
3298   // case Op_ConvD2L: // handled by leaf call
3299   case Op_ConD:
3300   case Op_CmpD:
3301   case Op_CmpD3:
3302     frc.inc_double_count();
3303     break;
3304   case Op_Opaque1:              // Remove Opaque Nodes before matching
3305   case Op_Opaque2:              // Remove Opaque Nodes before matching
3306   case Op_Opaque3:
3307     n->subsume_by(n->in(1), this);
3308     break;
3309   case Op_CallStaticJava:
3310   case Op_CallJava:
3311   case Op_CallDynamicJava:
3312     frc.inc_java_call_count(); // Count java call site;
3313   case Op_CallRuntime:
3314   case Op_CallLeaf:
3315   case Op_CallLeafNoFP: {
3316     assert (n->is_Call(), "");
3317     CallNode *call = n->as_Call();
3318     // Count call sites where the FP mode bit would have to be flipped.
3319     // Do not count uncommon runtime calls:
3320     // uncommon_trap, _complete_monitor_locking, _complete_monitor_unlocking,
3321     // _new_Java, _new_typeArray, _new_objArray, _rethrow_Java, ...
3322     if (!call->is_CallStaticJava() || !call->as_CallStaticJava()->_name) {
3323       frc.inc_call_count();   // Count the call site
3324     } else {                  // See if uncommon argument is shared
3325       Node *n = call->in(TypeFunc::Parms);
3326       int nop = n->Opcode();
3327       // Clone shared simple arguments to uncommon calls, item (1).
3328       if (n->outcnt() > 1 &&
3329           !n->is_Proj() &&
3330           nop != Op_CreateEx &&
3331           nop != Op_CheckCastPP &&
3332           nop != Op_DecodeN &&
3333           nop != Op_DecodeNKlass &&
3334           !n->is_Mem() &&
3335           !n->is_Phi()) {
3336         Node *x = n->clone();
3337         call->set_req(TypeFunc::Parms, x);
3338       }
3339     }
3340     break;
3341   }
3342 
3343   case Op_StoreD:
3344   case Op_LoadD:
3345   case Op_LoadD_unaligned:
3346     frc.inc_double_count();
3347     goto handle_mem;
3348   case Op_StoreF:
3349   case Op_LoadF:
3350     frc.inc_float_count();
3351     goto handle_mem;
3352 
3353   case Op_StoreCM:
3354     {
3355       // Convert OopStore dependence into precedence edge
3356       Node* prec = n->in(MemNode::OopStore);
3357       n->del_req(MemNode::OopStore);
3358       n->add_prec(prec);
3359       eliminate_redundant_card_marks(n);
3360     }
3361 
3362     // fall through
3363 
3364   case Op_StoreB:
3365   case Op_StoreC:
3366   case Op_StorePConditional:
3367   case Op_StoreI:
3368   case Op_StoreL:
3369   case Op_StoreIConditional:
3370   case Op_StoreLConditional:
3371   case Op_CompareAndSwapB:
3372   case Op_CompareAndSwapS:
3373   case Op_CompareAndSwapI:
3374   case Op_CompareAndSwapL:
3375   case Op_CompareAndSwapP:
3376   case Op_CompareAndSwapN:
3377   case Op_WeakCompareAndSwapB:
3378   case Op_WeakCompareAndSwapS:
3379   case Op_WeakCompareAndSwapI:
3380   case Op_WeakCompareAndSwapL:
3381   case Op_WeakCompareAndSwapP:
3382   case Op_WeakCompareAndSwapN:
3383   case Op_CompareAndExchangeB:
3384   case Op_CompareAndExchangeS:
3385   case Op_CompareAndExchangeI:
3386   case Op_CompareAndExchangeL:
3387   case Op_CompareAndExchangeP:
3388   case Op_CompareAndExchangeN:
3389   case Op_GetAndAddS:
3390   case Op_GetAndAddB:
3391   case Op_GetAndAddI:
3392   case Op_GetAndAddL:
3393   case Op_GetAndSetS:
3394   case Op_GetAndSetB:
3395   case Op_GetAndSetI:
3396   case Op_GetAndSetL:
3397   case Op_GetAndSetP:
3398   case Op_GetAndSetN:
3399   case Op_StoreP:
3400   case Op_StoreN:
3401   case Op_StoreNKlass:
3402   case Op_LoadB:
3403   case Op_LoadUB:
3404   case Op_LoadUS:
3405   case Op_LoadI:
3406   case Op_LoadKlass:
3407   case Op_LoadNKlass:
3408   case Op_LoadL:
3409   case Op_LoadL_unaligned:
3410   case Op_LoadPLocked:
3411   case Op_LoadP:
3412   case Op_LoadN:
3413   case Op_LoadRange:
3414   case Op_LoadS: {
3415   handle_mem:
3416 #ifdef ASSERT
3417     if( VerifyOptoOopOffsets ) {
3418       MemNode* mem  = n->as_Mem();
3419       // Check to see if address types have grounded out somehow.
3420       const TypeInstPtr *tp = mem->in(MemNode::Address)->bottom_type()->isa_instptr();
3421       assert( !tp || oop_offset_is_sane(tp), "" );
3422     }
3423 #endif
3424     if (nop == Op_LoadKlass || nop == Op_LoadNKlass) {
3425       const TypeKlassPtr* tk = n->bottom_type()->make_ptr()->is_klassptr();
3426       assert(!tk->klass_is_exact(), "should have been folded");
3427       if (tk->klass()->is_obj_array_klass() || tk->klass()->is_java_lang_Object()) {
3428         bool maybe_value_array = tk->klass()->is_java_lang_Object();
3429         if (!maybe_value_array) {
3430           ciArrayKlass* ak = tk->klass()->as_array_klass();
3431           ciKlass* elem = ak->element_klass();
3432           maybe_value_array = elem->is_java_lang_Object() || elem->is_interface() || elem->is_valuetype();
3433         }
3434         if (maybe_value_array) {
3435           // Array load klass needs to filter out property bits (but not
3436           // GetNullFreePropertyNode which needs to extract the null free
3437           // bits)
3438           uint last = unique();
3439           Node* pointer = NULL;
3440           if (nop == Op_LoadKlass) {
3441             Node* cast = new CastP2XNode(NULL, n);
3442             Node* masked = new LShiftXNode(cast, new ConINode(TypeInt::make(oopDesc::storage_props_nof_bits)));
3443             masked = new RShiftXNode(masked, new ConINode(TypeInt::make(oopDesc::storage_props_nof_bits)));
3444             pointer = new CastX2PNode(masked);
3445             pointer = new CheckCastPPNode(NULL, pointer, n->bottom_type());
3446           } else {
3447             Node* cast = new CastN2INode(n);
3448             Node* masked = new AndINode(cast, new ConINode(TypeInt::make(oopDesc::compressed_klass_mask())));
3449             pointer = new CastI2NNode(masked, n->bottom_type());
3450           }
3451           for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
3452             Node* u = n->fast_out(i);
3453             if (u->_idx < last && u->Opcode() != Op_GetNullFreeProperty) {
3454               int nb = u->replace_edge(n, pointer);
3455               --i, imax -= nb;
3456             }
3457           }
3458         }
3459       }
3460     }
3461     break;
3462   }
3463 
3464   case Op_AddP: {               // Assert sane base pointers
3465     Node *addp = n->in(AddPNode::Address);
3466     assert( !addp->is_AddP() ||
3467             addp->in(AddPNode::Base)->is_top() || // Top OK for allocation
3468             addp->in(AddPNode::Base) == n->in(AddPNode::Base),
3469             "Base pointers must match (addp %u)", addp->_idx );
3470 #ifdef _LP64
3471     if ((UseCompressedOops || UseCompressedClassPointers) &&
3472         addp->Opcode() == Op_ConP &&
3473         addp == n->in(AddPNode::Base) &&
3474         n->in(AddPNode::Offset)->is_Con()) {
3475       // If the transformation of ConP to ConN+DecodeN is beneficial depends
3476       // on the platform and on the compressed oops mode.
3477       // Use addressing with narrow klass to load with offset on x86.
3478       // Some platforms can use the constant pool to load ConP.
3479       // Do this transformation here since IGVN will convert ConN back to ConP.
3480       const Type* t = addp->bottom_type();
3481       bool is_oop   = t->isa_oopptr() != NULL;
3482       bool is_klass = t->isa_klassptr() != NULL;
3483 
3484       if ((is_oop   && Matcher::const_oop_prefer_decode()  ) ||
3485           (is_klass && Matcher::const_klass_prefer_decode())) {
3486         Node* nn = NULL;
3487 
3488         int op = is_oop ? Op_ConN : Op_ConNKlass;
3489 
3490         // Look for existing ConN node of the same exact type.
3491         Node* r  = root();
3492         uint cnt = r->outcnt();
3493         for (uint i = 0; i < cnt; i++) {
3494           Node* m = r->raw_out(i);
3495           if (m!= NULL && m->Opcode() == op &&
3496               m->bottom_type()->make_ptr() == t) {
3497             nn = m;
3498             break;
3499           }
3500         }
3501         if (nn != NULL) {
3502           // Decode a narrow oop to match address
3503           // [R12 + narrow_oop_reg<<3 + offset]
3504           if (is_oop) {
3505             nn = new DecodeNNode(nn, t);
3506           } else {
3507             nn = new DecodeNKlassNode(nn, t);
3508           }
3509           // Check for succeeding AddP which uses the same Base.
3510           // Otherwise we will run into the assertion above when visiting that guy.
3511           for (uint i = 0; i < n->outcnt(); ++i) {
3512             Node *out_i = n->raw_out(i);
3513             if (out_i && out_i->is_AddP() && out_i->in(AddPNode::Base) == addp) {
3514               out_i->set_req(AddPNode::Base, nn);
3515 #ifdef ASSERT
3516               for (uint j = 0; j < out_i->outcnt(); ++j) {
3517                 Node *out_j = out_i->raw_out(j);
3518                 assert(out_j == NULL || !out_j->is_AddP() || out_j->in(AddPNode::Base) != addp,
3519                        "more than 2 AddP nodes in a chain (out_j %u)", out_j->_idx);
3520               }
3521 #endif
3522             }
3523           }
3524           n->set_req(AddPNode::Base, nn);
3525           n->set_req(AddPNode::Address, nn);
3526           if (addp->outcnt() == 0) {
3527             addp->disconnect_inputs(NULL, this);
3528           }
3529         }
3530       }
3531     }
3532 #endif
3533     // platform dependent reshaping of the address expression
3534     reshape_address(n->as_AddP());
3535     break;
3536   }
3537 
3538   case Op_CastPP: {
3539     // Remove CastPP nodes to gain more freedom during scheduling but
3540     // keep the dependency they encode as control or precedence edges
3541     // (if control is set already) on memory operations. Some CastPP
3542     // nodes don't have a control (don't carry a dependency): skip
3543     // those.
3544     if (n->in(0) != NULL) {
3545       ResourceMark rm;
3546       Unique_Node_List wq;
3547       wq.push(n);
3548       for (uint next = 0; next < wq.size(); ++next) {
3549         Node *m = wq.at(next);
3550         for (DUIterator_Fast imax, i = m->fast_outs(imax); i < imax; i++) {
3551           Node* use = m->fast_out(i);
3552           if (use->is_Mem() || use->is_EncodeNarrowPtr()) {
3553             use->ensure_control_or_add_prec(n->in(0));
3554           } else {
3555             switch(use->Opcode()) {
3556             case Op_AddP:
3557             case Op_DecodeN:
3558             case Op_DecodeNKlass:
3559             case Op_CheckCastPP:
3560             case Op_CastPP:
3561               wq.push(use);
3562               break;
3563             }
3564           }
3565         }
3566       }
3567     }
3568     const bool is_LP64 = LP64_ONLY(true) NOT_LP64(false);
3569     if (is_LP64 && n->in(1)->is_DecodeN() && Matcher::gen_narrow_oop_implicit_null_checks()) {
3570       Node* in1 = n->in(1);
3571       const Type* t = n->bottom_type();
3572       Node* new_in1 = in1->clone();
3573       new_in1->as_DecodeN()->set_type(t);
3574 
3575       if (!Matcher::narrow_oop_use_complex_address()) {
3576         //
3577         // x86, ARM and friends can handle 2 adds in addressing mode
3578         // and Matcher can fold a DecodeN node into address by using
3579         // a narrow oop directly and do implicit NULL check in address:
3580         //
3581         // [R12 + narrow_oop_reg<<3 + offset]
3582         // NullCheck narrow_oop_reg
3583         //
3584         // On other platforms (Sparc) we have to keep new DecodeN node and
3585         // use it to do implicit NULL check in address:
3586         //
3587         // decode_not_null narrow_oop_reg, base_reg
3588         // [base_reg + offset]
3589         // NullCheck base_reg
3590         //
3591         // Pin the new DecodeN node to non-null path on these platform (Sparc)
3592         // to keep the information to which NULL check the new DecodeN node
3593         // corresponds to use it as value in implicit_null_check().
3594         //
3595         new_in1->set_req(0, n->in(0));
3596       }
3597 
3598       n->subsume_by(new_in1, this);
3599       if (in1->outcnt() == 0) {
3600         in1->disconnect_inputs(NULL, this);
3601       }
3602     } else {
3603       n->subsume_by(n->in(1), this);
3604       if (n->outcnt() == 0) {
3605         n->disconnect_inputs(NULL, this);
3606       }
3607     }
3608     break;
3609   }
3610 #ifdef _LP64
3611   case Op_CmpP:
3612     // Do this transformation here to preserve CmpPNode::sub() and
3613     // other TypePtr related Ideal optimizations (for example, ptr nullness).
3614     if (n->in(1)->is_DecodeNarrowPtr() || n->in(2)->is_DecodeNarrowPtr()) {
3615       Node* in1 = n->in(1);
3616       Node* in2 = n->in(2);
3617       if (!in1->is_DecodeNarrowPtr()) {
3618         in2 = in1;
3619         in1 = n->in(2);
3620       }
3621       assert(in1->is_DecodeNarrowPtr(), "sanity");
3622 
3623       Node* new_in2 = NULL;
3624       if (in2->is_DecodeNarrowPtr()) {
3625         assert(in2->Opcode() == in1->Opcode(), "must be same node type");
3626         new_in2 = in2->in(1);
3627       } else if (in2->Opcode() == Op_ConP) {
3628         const Type* t = in2->bottom_type();
3629         if (t == TypePtr::NULL_PTR) {
3630           assert(in1->is_DecodeN(), "compare klass to null?");
3631           // Don't convert CmpP null check into CmpN if compressed
3632           // oops implicit null check is not generated.
3633           // This will allow to generate normal oop implicit null check.
3634           if (Matcher::gen_narrow_oop_implicit_null_checks())
3635             new_in2 = ConNode::make(TypeNarrowOop::NULL_PTR);
3636           //
3637           // This transformation together with CastPP transformation above
3638           // will generated code for implicit NULL checks for compressed oops.
3639           //
3640           // The original code after Optimize()
3641           //
3642           //    LoadN memory, narrow_oop_reg
3643           //    decode narrow_oop_reg, base_reg
3644           //    CmpP base_reg, NULL
3645           //    CastPP base_reg // NotNull
3646           //    Load [base_reg + offset], val_reg
3647           //
3648           // after these transformations will be
3649           //
3650           //    LoadN memory, narrow_oop_reg
3651           //    CmpN narrow_oop_reg, NULL
3652           //    decode_not_null narrow_oop_reg, base_reg
3653           //    Load [base_reg + offset], val_reg
3654           //
3655           // and the uncommon path (== NULL) will use narrow_oop_reg directly
3656           // since narrow oops can be used in debug info now (see the code in
3657           // final_graph_reshaping_walk()).
3658           //
3659           // At the end the code will be matched to
3660           // on x86:
3661           //
3662           //    Load_narrow_oop memory, narrow_oop_reg
3663           //    Load [R12 + narrow_oop_reg<<3 + offset], val_reg
3664           //    NullCheck narrow_oop_reg
3665           //
3666           // and on sparc:
3667           //
3668           //    Load_narrow_oop memory, narrow_oop_reg
3669           //    decode_not_null narrow_oop_reg, base_reg
3670           //    Load [base_reg + offset], val_reg
3671           //    NullCheck base_reg
3672           //
3673         } else if (t->isa_oopptr()) {
3674           new_in2 = ConNode::make(t->make_narrowoop());
3675         } else if (t->isa_klassptr()) {
3676           new_in2 = ConNode::make(t->make_narrowklass());
3677         }
3678       }
3679       if (new_in2 != NULL) {
3680         Node* cmpN = new CmpNNode(in1->in(1), new_in2);
3681         n->subsume_by(cmpN, this);
3682         if (in1->outcnt() == 0) {
3683           in1->disconnect_inputs(NULL, this);
3684         }
3685         if (in2->outcnt() == 0) {
3686           in2->disconnect_inputs(NULL, this);
3687         }
3688       }
3689     }
3690     break;
3691 
3692   case Op_DecodeN:
3693   case Op_DecodeNKlass:
3694     assert(!n->in(1)->is_EncodeNarrowPtr(), "should be optimized out");
3695     // DecodeN could be pinned when it can't be fold into
3696     // an address expression, see the code for Op_CastPP above.
3697     assert(n->in(0) == NULL || (UseCompressedOops && !Matcher::narrow_oop_use_complex_address()), "no control");
3698     break;
3699 
3700   case Op_EncodeP:
3701   case Op_EncodePKlass: {
3702     Node* in1 = n->in(1);
3703     if (in1->is_DecodeNarrowPtr()) {
3704       n->subsume_by(in1->in(1), this);
3705     } else if (in1->Opcode() == Op_ConP) {
3706       const Type* t = in1->bottom_type();
3707       if (t == TypePtr::NULL_PTR) {
3708         assert(t->isa_oopptr(), "null klass?");
3709         n->subsume_by(ConNode::make(TypeNarrowOop::NULL_PTR), this);
3710       } else if (t->isa_oopptr()) {
3711         n->subsume_by(ConNode::make(t->make_narrowoop()), this);
3712       } else if (t->isa_klassptr()) {
3713         n->subsume_by(ConNode::make(t->make_narrowklass()), this);
3714       }
3715     }
3716     if (in1->outcnt() == 0) {
3717       in1->disconnect_inputs(NULL, this);
3718     }
3719     break;
3720   }
3721 
3722   case Op_Proj: {
3723     if (OptimizeStringConcat) {
3724       ProjNode* p = n->as_Proj();
3725       if (p->_is_io_use) {
3726         // Separate projections were used for the exception path which
3727         // are normally removed by a late inline.  If it wasn't inlined
3728         // then they will hang around and should just be replaced with
3729         // the original one.
3730         Node* proj = NULL;
3731         // Replace with just one
3732         for (SimpleDUIterator i(p->in(0)); i.has_next(); i.next()) {
3733           Node *use = i.get();
3734           if (use->is_Proj() && p != use && use->as_Proj()->_con == p->_con) {
3735             proj = use;
3736             break;
3737           }
3738         }
3739         assert(proj != NULL || p->_con == TypeFunc::I_O, "io may be dropped at an infinite loop");
3740         if (proj != NULL) {
3741           p->subsume_by(proj, this);
3742         }
3743       }
3744     }
3745     break;
3746   }
3747 
3748   case Op_Phi:
3749     if (n->as_Phi()->bottom_type()->isa_narrowoop() || n->as_Phi()->bottom_type()->isa_narrowklass()) {
3750       // The EncodeP optimization may create Phi with the same edges
3751       // for all paths. It is not handled well by Register Allocator.
3752       Node* unique_in = n->in(1);
3753       assert(unique_in != NULL, "");
3754       uint cnt = n->req();
3755       for (uint i = 2; i < cnt; i++) {
3756         Node* m = n->in(i);
3757         assert(m != NULL, "");
3758         if (unique_in != m)
3759           unique_in = NULL;
3760       }
3761       if (unique_in != NULL) {
3762         n->subsume_by(unique_in, this);
3763       }
3764     }
3765     break;
3766 
3767 #endif
3768 
3769 #ifdef ASSERT
3770   case Op_CastII:
3771     // Verify that all range check dependent CastII nodes were removed.
3772     if (n->isa_CastII()->has_range_check()) {
3773       n->dump(3);
3774       assert(false, "Range check dependent CastII node was not removed");
3775     }
3776     break;
3777 #endif
3778 
3779   case Op_ModI:
3780     if (UseDivMod) {
3781       // Check if a%b and a/b both exist
3782       Node* d = n->find_similar(Op_DivI);
3783       if (d) {
3784         // Replace them with a fused divmod if supported
3785         if (Matcher::has_match_rule(Op_DivModI)) {
3786           DivModINode* divmod = DivModINode::make(n);
3787           d->subsume_by(divmod->div_proj(), this);
3788           n->subsume_by(divmod->mod_proj(), this);
3789         } else {
3790           // replace a%b with a-((a/b)*b)
3791           Node* mult = new MulINode(d, d->in(2));
3792           Node* sub  = new SubINode(d->in(1), mult);
3793           n->subsume_by(sub, this);
3794         }
3795       }
3796     }
3797     break;
3798 
3799   case Op_ModL:
3800     if (UseDivMod) {
3801       // Check if a%b and a/b both exist
3802       Node* d = n->find_similar(Op_DivL);
3803       if (d) {
3804         // Replace them with a fused divmod if supported
3805         if (Matcher::has_match_rule(Op_DivModL)) {
3806           DivModLNode* divmod = DivModLNode::make(n);
3807           d->subsume_by(divmod->div_proj(), this);
3808           n->subsume_by(divmod->mod_proj(), this);
3809         } else {
3810           // replace a%b with a-((a/b)*b)
3811           Node* mult = new MulLNode(d, d->in(2));
3812           Node* sub  = new SubLNode(d->in(1), mult);
3813           n->subsume_by(sub, this);
3814         }
3815       }
3816     }
3817     break;
3818 
3819   case Op_LoadVector:
3820   case Op_StoreVector:
3821     break;
3822 
3823   case Op_AddReductionVI:
3824   case Op_AddReductionVL:
3825   case Op_AddReductionVF:
3826   case Op_AddReductionVD:
3827   case Op_MulReductionVI:
3828   case Op_MulReductionVL:
3829   case Op_MulReductionVF:
3830   case Op_MulReductionVD:
3831   case Op_MinReductionV:
3832   case Op_MaxReductionV:
3833     break;
3834 
3835   case Op_PackB:
3836   case Op_PackS:
3837   case Op_PackI:
3838   case Op_PackF:
3839   case Op_PackL:
3840   case Op_PackD:
3841     if (n->req()-1 > 2) {
3842       // Replace many operand PackNodes with a binary tree for matching
3843       PackNode* p = (PackNode*) n;
3844       Node* btp = p->binary_tree_pack(1, n->req());
3845       n->subsume_by(btp, this);
3846     }
3847     break;
3848   case Op_Loop:
3849   case Op_CountedLoop:
3850   case Op_OuterStripMinedLoop:
3851     if (n->as_Loop()->is_inner_loop()) {
3852       frc.inc_inner_loop_count();
3853     }
3854     n->as_Loop()->verify_strip_mined(0);
3855     break;
3856   case Op_LShiftI:
3857   case Op_RShiftI:
3858   case Op_URShiftI:
3859   case Op_LShiftL:
3860   case Op_RShiftL:
3861   case Op_URShiftL:
3862     if (Matcher::need_masked_shift_count) {
3863       // The cpu's shift instructions don't restrict the count to the
3864       // lower 5/6 bits. We need to do the masking ourselves.
3865       Node* in2 = n->in(2);
3866       juint mask = (n->bottom_type() == TypeInt::INT) ? (BitsPerInt - 1) : (BitsPerLong - 1);
3867       const TypeInt* t = in2->find_int_type();
3868       if (t != NULL && t->is_con()) {
3869         juint shift = t->get_con();
3870         if (shift > mask) { // Unsigned cmp
3871           n->set_req(2, ConNode::make(TypeInt::make(shift & mask)));
3872         }
3873       } else {
3874         if (t == NULL || t->_lo < 0 || t->_hi > (int)mask) {
3875           Node* shift = new AndINode(in2, ConNode::make(TypeInt::make(mask)));
3876           n->set_req(2, shift);
3877         }
3878       }
3879       if (in2->outcnt() == 0) { // Remove dead node
3880         in2->disconnect_inputs(NULL, this);
3881       }
3882     }
3883     break;
3884   case Op_MemBarStoreStore:
3885   case Op_MemBarRelease:
3886     // Break the link with AllocateNode: it is no longer useful and
3887     // confuses register allocation.
3888     if (n->req() > MemBarNode::Precedent) {
3889       n->set_req(MemBarNode::Precedent, top());
3890     }
3891     break;
3892   case Op_MemBarAcquire: {
3893     if (n->as_MemBar()->trailing_load() && n->req() > MemBarNode::Precedent) {
3894       // At parse time, the trailing MemBarAcquire for a volatile load
3895       // is created with an edge to the load. After optimizations,
3896       // that input may be a chain of Phis. If those phis have no
3897       // other use, then the MemBarAcquire keeps them alive and
3898       // register allocation can be confused.
3899       ResourceMark rm;
3900       Unique_Node_List wq;
3901       wq.push(n->in(MemBarNode::Precedent));
3902       n->set_req(MemBarNode::Precedent, top());
3903       while (wq.size() > 0) {
3904         Node* m = wq.pop();
3905         if (m->outcnt() == 0) {
3906           for (uint j = 0; j < m->req(); j++) {
3907             Node* in = m->in(j);
3908             if (in != NULL) {
3909               wq.push(in);
3910             }
3911           }
3912           m->disconnect_inputs(NULL, this);
3913         }
3914       }
3915     }
3916     break;
3917   }
3918   case Op_RangeCheck: {
3919     RangeCheckNode* rc = n->as_RangeCheck();
3920     Node* iff = new IfNode(rc->in(0), rc->in(1), rc->_prob, rc->_fcnt);
3921     n->subsume_by(iff, this);
3922     frc._tests.push(iff);
3923     break;
3924   }
3925   case Op_ConvI2L: {
3926     if (!Matcher::convi2l_type_required) {
3927       // Code generation on some platforms doesn't need accurate
3928       // ConvI2L types. Widening the type can help remove redundant
3929       // address computations.
3930       n->as_Type()->set_type(TypeLong::INT);
3931       ResourceMark rm;
3932       Node_List wq;
3933       wq.push(n);
3934       for (uint next = 0; next < wq.size(); next++) {
3935         Node *m = wq.at(next);
3936 
3937         for(;;) {
3938           // Loop over all nodes with identical inputs edges as m
3939           Node* k = m->find_similar(m->Opcode());
3940           if (k == NULL) {
3941             break;
3942           }
3943           // Push their uses so we get a chance to remove node made
3944           // redundant
3945           for (DUIterator_Fast imax, i = k->fast_outs(imax); i < imax; i++) {
3946             Node* u = k->fast_out(i);
3947             assert(!wq.contains(u), "shouldn't process one node several times");
3948             if (u->Opcode() == Op_LShiftL ||
3949                 u->Opcode() == Op_AddL ||
3950                 u->Opcode() == Op_SubL ||
3951                 u->Opcode() == Op_AddP) {
3952               wq.push(u);
3953             }
3954           }
3955           // Replace all nodes with identical edges as m with m
3956           k->subsume_by(m, this);
3957         }
3958       }
3959     }
3960     break;
3961   }
3962   case Op_CmpUL: {
3963     if (!Matcher::has_match_rule(Op_CmpUL)) {
3964       // No support for unsigned long comparisons
3965       ConINode* sign_pos = new ConINode(TypeInt::make(BitsPerLong - 1));
3966       Node* sign_bit_mask = new RShiftLNode(n->in(1), sign_pos);
3967       Node* orl = new OrLNode(n->in(1), sign_bit_mask);
3968       ConLNode* remove_sign_mask = new ConLNode(TypeLong::make(max_jlong));
3969       Node* andl = new AndLNode(orl, remove_sign_mask);
3970       Node* cmp = new CmpLNode(andl, n->in(2));
3971       n->subsume_by(cmp, this);
3972     }
3973     break;
3974   }
3975 #ifdef ASSERT
3976   case Op_ValueTypePtr:
3977   case Op_ValueType: {
3978     n->dump(-1);
3979     assert(false, "value type node was not removed");
3980     break;
3981   }
3982 #endif
3983   case Op_GetNullFreeProperty: {
3984     // Extract the null free bits
3985     uint last = unique();
3986     Node* null_free = NULL;
3987     if (n->in(1)->Opcode() == Op_LoadKlass) {
3988       Node* cast = new CastP2XNode(NULL, n->in(1));
3989       null_free = new AndLNode(cast, new ConLNode(TypeLong::make(((jlong)1)<<(oopDesc::wide_storage_props_shift + ArrayStorageProperties::null_free_bit))));
3990     } else {
3991       assert(n->in(1)->Opcode() == Op_LoadNKlass, "not a compressed klass?");
3992       Node* cast = new CastN2INode(n->in(1));
3993       null_free = new AndINode(cast, new ConINode(TypeInt::make(1<<(oopDesc::narrow_storage_props_shift + ArrayStorageProperties::null_free_bit))));
3994     }
3995     n->replace_by(null_free);
3996     break;
3997   }
3998   default:
3999     assert(!n->is_Call(), "");
4000     assert(!n->is_Mem(), "");
4001     assert(nop != Op_ProfileBoolean, "should be eliminated during IGVN");
4002     break;
4003   }
4004 }
4005 
4006 //------------------------------final_graph_reshaping_walk---------------------
4007 // Replacing Opaque nodes with their input in final_graph_reshaping_impl(),
4008 // requires that the walk visits a node's inputs before visiting the node.
4009 void Compile::final_graph_reshaping_walk( Node_Stack &nstack, Node *root, Final_Reshape_Counts &frc ) {
4010   ResourceArea *area = Thread::current()->resource_area();
4011   Unique_Node_List sfpt(area);
4012 
4013   frc._visited.set(root->_idx); // first, mark node as visited
4014   uint cnt = root->req();
4015   Node *n = root;
4016   uint  i = 0;
4017   while (true) {
4018     if (i < cnt) {
4019       // Place all non-visited non-null inputs onto stack
4020       Node* m = n->in(i);
4021       ++i;
4022       if (m != NULL && !frc._visited.test_set(m->_idx)) {
4023         if (m->is_SafePoint() && m->as_SafePoint()->jvms() != NULL) {
4024           // compute worst case interpreter size in case of a deoptimization
4025           update_interpreter_frame_size(m->as_SafePoint()->jvms()->interpreter_frame_size());
4026 
4027           sfpt.push(m);
4028         }
4029         cnt = m->req();
4030         nstack.push(n, i); // put on stack parent and next input's index
4031         n = m;
4032         i = 0;
4033       }
4034     } else {
4035       // Now do post-visit work
4036       final_graph_reshaping_impl( n, frc );
4037       if (nstack.is_empty())
4038         break;             // finished
4039       n = nstack.node();   // Get node from stack
4040       cnt = n->req();
4041       i = nstack.index();
4042       nstack.pop();        // Shift to the next node on stack
4043     }
4044   }
4045 
4046   // Skip next transformation if compressed oops are not used.
4047   if ((UseCompressedOops && !Matcher::gen_narrow_oop_implicit_null_checks()) ||
4048       (!UseCompressedOops && !UseCompressedClassPointers))
4049     return;
4050 
4051   // Go over safepoints nodes to skip DecodeN/DecodeNKlass nodes for debug edges.
4052   // It could be done for an uncommon traps or any safepoints/calls
4053   // if the DecodeN/DecodeNKlass node is referenced only in a debug info.
4054   while (sfpt.size() > 0) {
4055     n = sfpt.pop();
4056     JVMState *jvms = n->as_SafePoint()->jvms();
4057     assert(jvms != NULL, "sanity");
4058     int start = jvms->debug_start();
4059     int end   = n->req();
4060     bool is_uncommon = (n->is_CallStaticJava() &&
4061                         n->as_CallStaticJava()->uncommon_trap_request() != 0);
4062     for (int j = start; j < end; j++) {
4063       Node* in = n->in(j);
4064       if (in->is_DecodeNarrowPtr()) {
4065         bool safe_to_skip = true;
4066         if (!is_uncommon ) {
4067           // Is it safe to skip?
4068           for (uint i = 0; i < in->outcnt(); i++) {
4069             Node* u = in->raw_out(i);
4070             if (!u->is_SafePoint() ||
4071                 (u->is_Call() && u->as_Call()->has_non_debug_use(n))) {
4072               safe_to_skip = false;
4073             }
4074           }
4075         }
4076         if (safe_to_skip) {
4077           n->set_req(j, in->in(1));
4078         }
4079         if (in->outcnt() == 0) {
4080           in->disconnect_inputs(NULL, this);
4081         }
4082       }
4083     }
4084   }
4085 }
4086 
4087 //------------------------------final_graph_reshaping--------------------------
4088 // Final Graph Reshaping.
4089 //
4090 // (1) Clone simple inputs to uncommon calls, so they can be scheduled late
4091 //     and not commoned up and forced early.  Must come after regular
4092 //     optimizations to avoid GVN undoing the cloning.  Clone constant
4093 //     inputs to Loop Phis; these will be split by the allocator anyways.
4094 //     Remove Opaque nodes.
4095 // (2) Move last-uses by commutative operations to the left input to encourage
4096 //     Intel update-in-place two-address operations and better register usage
4097 //     on RISCs.  Must come after regular optimizations to avoid GVN Ideal
4098 //     calls canonicalizing them back.
4099 // (3) Count the number of double-precision FP ops, single-precision FP ops
4100 //     and call sites.  On Intel, we can get correct rounding either by
4101 //     forcing singles to memory (requires extra stores and loads after each
4102 //     FP bytecode) or we can set a rounding mode bit (requires setting and
4103 //     clearing the mode bit around call sites).  The mode bit is only used
4104 //     if the relative frequency of single FP ops to calls is low enough.
4105 //     This is a key transform for SPEC mpeg_audio.
4106 // (4) Detect infinite loops; blobs of code reachable from above but not
4107 //     below.  Several of the Code_Gen algorithms fail on such code shapes,
4108 //     so we simply bail out.  Happens a lot in ZKM.jar, but also happens
4109 //     from time to time in other codes (such as -Xcomp finalizer loops, etc).
4110 //     Detection is by looking for IfNodes where only 1 projection is
4111 //     reachable from below or CatchNodes missing some targets.
4112 // (5) Assert for insane oop offsets in debug mode.
4113 
4114 bool Compile::final_graph_reshaping() {
4115   // an infinite loop may have been eliminated by the optimizer,
4116   // in which case the graph will be empty.
4117   if (root()->req() == 1) {
4118     record_method_not_compilable("trivial infinite loop");
4119     return true;
4120   }
4121 
4122   // Expensive nodes have their control input set to prevent the GVN
4123   // from freely commoning them. There's no GVN beyond this point so
4124   // no need to keep the control input. We want the expensive nodes to
4125   // be freely moved to the least frequent code path by gcm.
4126   assert(OptimizeExpensiveOps || expensive_count() == 0, "optimization off but list non empty?");
4127   for (int i = 0; i < expensive_count(); i++) {
4128     _expensive_nodes->at(i)->set_req(0, NULL);
4129   }
4130 
4131   Final_Reshape_Counts frc;
4132 
4133   // Visit everybody reachable!
4134   // Allocate stack of size C->live_nodes()/2 to avoid frequent realloc
4135   Node_Stack nstack(live_nodes() >> 1);
4136   final_graph_reshaping_walk(nstack, root(), frc);
4137 
4138   // Check for unreachable (from below) code (i.e., infinite loops).
4139   for( uint i = 0; i < frc._tests.size(); i++ ) {
4140     MultiBranchNode *n = frc._tests[i]->as_MultiBranch();
4141     // Get number of CFG targets.
4142     // Note that PCTables include exception targets after calls.
4143     uint required_outcnt = n->required_outcnt();
4144     if (n->outcnt() != required_outcnt) {
4145       // Check for a few special cases.  Rethrow Nodes never take the
4146       // 'fall-thru' path, so expected kids is 1 less.
4147       if (n->is_PCTable() && n->in(0) && n->in(0)->in(0)) {
4148         if (n->in(0)->in(0)->is_Call()) {
4149           CallNode *call = n->in(0)->in(0)->as_Call();
4150           if (call->entry_point() == OptoRuntime::rethrow_stub()) {
4151             required_outcnt--;      // Rethrow always has 1 less kid
4152           } else if (call->req() > TypeFunc::Parms &&
4153                      call->is_CallDynamicJava()) {
4154             // Check for null receiver. In such case, the optimizer has
4155             // detected that the virtual call will always result in a null
4156             // pointer exception. The fall-through projection of this CatchNode
4157             // will not be populated.
4158             Node *arg0 = call->in(TypeFunc::Parms);
4159             if (arg0->is_Type() &&
4160                 arg0->as_Type()->type()->higher_equal(TypePtr::NULL_PTR)) {
4161               required_outcnt--;
4162             }
4163           } else if (call->entry_point() == OptoRuntime::new_array_Java() &&
4164                      call->req() > TypeFunc::Parms+1 &&
4165                      call->is_CallStaticJava()) {
4166             // Check for negative array length. In such case, the optimizer has
4167             // detected that the allocation attempt will always result in an
4168             // exception. There is no fall-through projection of this CatchNode .
4169             Node *arg1 = call->in(TypeFunc::Parms+1);
4170             if (arg1->is_Type() &&
4171                 arg1->as_Type()->type()->join(TypeInt::POS)->empty()) {
4172               required_outcnt--;
4173             }
4174           }
4175         }
4176       }
4177       // Recheck with a better notion of 'required_outcnt'
4178       if (n->outcnt() != required_outcnt) {
4179         record_method_not_compilable("malformed control flow");
4180         return true;            // Not all targets reachable!
4181       }
4182     }
4183     // Check that I actually visited all kids.  Unreached kids
4184     // must be infinite loops.
4185     for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++)
4186       if (!frc._visited.test(n->fast_out(j)->_idx)) {
4187         record_method_not_compilable("infinite loop");
4188         return true;            // Found unvisited kid; must be unreach
4189       }
4190 
4191     // Here so verification code in final_graph_reshaping_walk()
4192     // always see an OuterStripMinedLoopEnd
4193     if (n->is_OuterStripMinedLoopEnd()) {
4194       IfNode* init_iff = n->as_If();
4195       Node* iff = new IfNode(init_iff->in(0), init_iff->in(1), init_iff->_prob, init_iff->_fcnt);
4196       n->subsume_by(iff, this);
4197     }
4198   }
4199 
4200   // If original bytecodes contained a mixture of floats and doubles
4201   // check if the optimizer has made it homogenous, item (3).
4202   if( Use24BitFPMode && Use24BitFP && UseSSE == 0 &&
4203       frc.get_float_count() > 32 &&
4204       frc.get_double_count() == 0 &&
4205       (10 * frc.get_call_count() < frc.get_float_count()) ) {
4206     set_24_bit_selection_and_mode( false,  true );
4207   }
4208 
4209   set_java_calls(frc.get_java_call_count());
4210   set_inner_loops(frc.get_inner_loop_count());
4211 
4212   // No infinite loops, no reason to bail out.
4213   return false;
4214 }
4215 
4216 //-----------------------------too_many_traps----------------------------------
4217 // Report if there are too many traps at the current method and bci.
4218 // Return true if there was a trap, and/or PerMethodTrapLimit is exceeded.
4219 bool Compile::too_many_traps(ciMethod* method,
4220                              int bci,
4221                              Deoptimization::DeoptReason reason) {
4222   ciMethodData* md = method->method_data();
4223   if (md->is_empty()) {
4224     // Assume the trap has not occurred, or that it occurred only
4225     // because of a transient condition during start-up in the interpreter.
4226     return false;
4227   }
4228   ciMethod* m = Deoptimization::reason_is_speculate(reason) ? this->method() : NULL;
4229   if (md->has_trap_at(bci, m, reason) != 0) {
4230     // Assume PerBytecodeTrapLimit==0, for a more conservative heuristic.
4231     // Also, if there are multiple reasons, or if there is no per-BCI record,
4232     // assume the worst.
4233     if (log())
4234       log()->elem("observe trap='%s' count='%d'",
4235                   Deoptimization::trap_reason_name(reason),
4236                   md->trap_count(reason));
4237     return true;
4238   } else {
4239     // Ignore method/bci and see if there have been too many globally.
4240     return too_many_traps(reason, md);
4241   }
4242 }
4243 
4244 // Less-accurate variant which does not require a method and bci.
4245 bool Compile::too_many_traps(Deoptimization::DeoptReason reason,
4246                              ciMethodData* logmd) {
4247   if (trap_count(reason) >= Deoptimization::per_method_trap_limit(reason)) {
4248     // Too many traps globally.
4249     // Note that we use cumulative trap_count, not just md->trap_count.
4250     if (log()) {
4251       int mcount = (logmd == NULL)? -1: (int)logmd->trap_count(reason);
4252       log()->elem("observe trap='%s' count='0' mcount='%d' ccount='%d'",
4253                   Deoptimization::trap_reason_name(reason),
4254                   mcount, trap_count(reason));
4255     }
4256     return true;
4257   } else {
4258     // The coast is clear.
4259     return false;
4260   }
4261 }
4262 
4263 //--------------------------too_many_recompiles--------------------------------
4264 // Report if there are too many recompiles at the current method and bci.
4265 // Consults PerBytecodeRecompilationCutoff and PerMethodRecompilationCutoff.
4266 // Is not eager to return true, since this will cause the compiler to use
4267 // Action_none for a trap point, to avoid too many recompilations.
4268 bool Compile::too_many_recompiles(ciMethod* method,
4269                                   int bci,
4270                                   Deoptimization::DeoptReason reason) {
4271   ciMethodData* md = method->method_data();
4272   if (md->is_empty()) {
4273     // Assume the trap has not occurred, or that it occurred only
4274     // because of a transient condition during start-up in the interpreter.
4275     return false;
4276   }
4277   // Pick a cutoff point well within PerBytecodeRecompilationCutoff.
4278   uint bc_cutoff = (uint) PerBytecodeRecompilationCutoff / 8;
4279   uint m_cutoff  = (uint) PerMethodRecompilationCutoff / 2 + 1;  // not zero
4280   Deoptimization::DeoptReason per_bc_reason
4281     = Deoptimization::reason_recorded_per_bytecode_if_any(reason);
4282   ciMethod* m = Deoptimization::reason_is_speculate(reason) ? this->method() : NULL;
4283   if ((per_bc_reason == Deoptimization::Reason_none
4284        || md->has_trap_at(bci, m, reason) != 0)
4285       // The trap frequency measure we care about is the recompile count:
4286       && md->trap_recompiled_at(bci, m)
4287       && md->overflow_recompile_count() >= bc_cutoff) {
4288     // Do not emit a trap here if it has already caused recompilations.
4289     // Also, if there are multiple reasons, or if there is no per-BCI record,
4290     // assume the worst.
4291     if (log())
4292       log()->elem("observe trap='%s recompiled' count='%d' recompiles2='%d'",
4293                   Deoptimization::trap_reason_name(reason),
4294                   md->trap_count(reason),
4295                   md->overflow_recompile_count());
4296     return true;
4297   } else if (trap_count(reason) != 0
4298              && decompile_count() >= m_cutoff) {
4299     // Too many recompiles globally, and we have seen this sort of trap.
4300     // Use cumulative decompile_count, not just md->decompile_count.
4301     if (log())
4302       log()->elem("observe trap='%s' count='%d' mcount='%d' decompiles='%d' mdecompiles='%d'",
4303                   Deoptimization::trap_reason_name(reason),
4304                   md->trap_count(reason), trap_count(reason),
4305                   md->decompile_count(), decompile_count());
4306     return true;
4307   } else {
4308     // The coast is clear.
4309     return false;
4310   }
4311 }
4312 
4313 // Compute when not to trap. Used by matching trap based nodes and
4314 // NullCheck optimization.
4315 void Compile::set_allowed_deopt_reasons() {
4316   _allowed_reasons = 0;
4317   if (is_method_compilation()) {
4318     for (int rs = (int)Deoptimization::Reason_none+1; rs < Compile::trapHistLength; rs++) {
4319       assert(rs < BitsPerInt, "recode bit map");
4320       if (!too_many_traps((Deoptimization::DeoptReason) rs)) {
4321         _allowed_reasons |= nth_bit(rs);
4322       }
4323     }
4324   }
4325 }
4326 
4327 bool Compile::needs_clinit_barrier(ciMethod* method, ciMethod* accessing_method) {
4328   return method->is_static() && needs_clinit_barrier(method->holder(), accessing_method);
4329 }
4330 
4331 bool Compile::needs_clinit_barrier(ciField* field, ciMethod* accessing_method) {
4332   return field->is_static() && needs_clinit_barrier(field->holder(), accessing_method);
4333 }
4334 
4335 bool Compile::needs_clinit_barrier(ciInstanceKlass* holder, ciMethod* accessing_method) {
4336   if (holder->is_initialized()) {
4337     return false;
4338   }
4339   if (holder->is_being_initialized()) {
4340     if (accessing_method->holder() == holder) {
4341       // Access inside a class. The barrier can be elided when access happens in <clinit>,
4342       // <init>, or a static method. In all those cases, there was an initialization
4343       // barrier on the holder klass passed.
4344       if (accessing_method->is_class_initializer() ||
4345           accessing_method->is_object_constructor() ||
4346           accessing_method->is_static()) {
4347         return false;
4348       }
4349     } else if (accessing_method->holder()->is_subclass_of(holder)) {
4350       // Access from a subclass. The barrier can be elided only when access happens in <clinit>.
4351       // In case of <init> or a static method, the barrier is on the subclass is not enough:
4352       // child class can become fully initialized while its parent class is still being initialized.
4353       if (accessing_method->is_class_initializer()) {
4354         return false;
4355       }
4356     }
4357     ciMethod* root = method(); // the root method of compilation
4358     if (root != accessing_method) {
4359       return needs_clinit_barrier(holder, root); // check access in the context of compilation root
4360     }
4361   }
4362   return true;
4363 }
4364 
4365 #ifndef PRODUCT
4366 //------------------------------verify_graph_edges---------------------------
4367 // Walk the Graph and verify that there is a one-to-one correspondence
4368 // between Use-Def edges and Def-Use edges in the graph.
4369 void Compile::verify_graph_edges(bool no_dead_code) {
4370   if (VerifyGraphEdges) {
4371     ResourceArea *area = Thread::current()->resource_area();
4372     Unique_Node_List visited(area);
4373     // Call recursive graph walk to check edges
4374     _root->verify_edges(visited);
4375     if (no_dead_code) {
4376       // Now make sure that no visited node is used by an unvisited node.
4377       bool dead_nodes = false;
4378       Unique_Node_List checked(area);
4379       while (visited.size() > 0) {
4380         Node* n = visited.pop();
4381         checked.push(n);
4382         for (uint i = 0; i < n->outcnt(); i++) {
4383           Node* use = n->raw_out(i);
4384           if (checked.member(use))  continue;  // already checked
4385           if (visited.member(use))  continue;  // already in the graph
4386           if (use->is_Con())        continue;  // a dead ConNode is OK
4387           // At this point, we have found a dead node which is DU-reachable.
4388           if (!dead_nodes) {
4389             tty->print_cr("*** Dead nodes reachable via DU edges:");
4390             dead_nodes = true;
4391           }
4392           use->dump(2);
4393           tty->print_cr("---");
4394           checked.push(use);  // No repeats; pretend it is now checked.
4395         }
4396       }
4397       assert(!dead_nodes, "using nodes must be reachable from root");
4398     }
4399   }
4400 }
4401 #endif
4402 
4403 // The Compile object keeps track of failure reasons separately from the ciEnv.
4404 // This is required because there is not quite a 1-1 relation between the
4405 // ciEnv and its compilation task and the Compile object.  Note that one
4406 // ciEnv might use two Compile objects, if C2Compiler::compile_method decides
4407 // to backtrack and retry without subsuming loads.  Other than this backtracking
4408 // behavior, the Compile's failure reason is quietly copied up to the ciEnv
4409 // by the logic in C2Compiler.
4410 void Compile::record_failure(const char* reason) {
4411   if (log() != NULL) {
4412     log()->elem("failure reason='%s' phase='compile'", reason);
4413   }
4414   if (_failure_reason == NULL) {
4415     // Record the first failure reason.
4416     _failure_reason = reason;
4417   }
4418 
4419   if (!C->failure_reason_is(C2Compiler::retry_no_subsuming_loads())) {
4420     C->print_method(PHASE_FAILURE);
4421   }
4422   _root = NULL;  // flush the graph, too
4423 }
4424 
4425 Compile::TracePhase::TracePhase(const char* name, elapsedTimer* accumulator)
4426   : TraceTime(name, accumulator, CITime, CITimeVerbose),
4427     _phase_name(name), _dolog(CITimeVerbose)
4428 {
4429   if (_dolog) {
4430     C = Compile::current();
4431     _log = C->log();
4432   } else {
4433     C = NULL;
4434     _log = NULL;
4435   }
4436   if (_log != NULL) {
4437     _log->begin_head("phase name='%s' nodes='%d' live='%d'", _phase_name, C->unique(), C->live_nodes());
4438     _log->stamp();
4439     _log->end_head();
4440   }
4441 }
4442 
4443 Compile::TracePhase::~TracePhase() {
4444 
4445   C = Compile::current();
4446   if (_dolog) {
4447     _log = C->log();
4448   } else {
4449     _log = NULL;
4450   }
4451 
4452 #ifdef ASSERT
4453   if (PrintIdealNodeCount) {
4454     tty->print_cr("phase name='%s' nodes='%d' live='%d' live_graph_walk='%d'",
4455                   _phase_name, C->unique(), C->live_nodes(), C->count_live_nodes_by_graph_walk());
4456   }
4457 
4458   if (VerifyIdealNodeCount) {
4459     Compile::current()->print_missing_nodes();
4460   }
4461 #endif
4462 
4463   if (_log != NULL) {
4464     _log->done("phase name='%s' nodes='%d' live='%d'", _phase_name, C->unique(), C->live_nodes());
4465   }
4466 }
4467 
4468 //=============================================================================
4469 // Two Constant's are equal when the type and the value are equal.
4470 bool Compile::Constant::operator==(const Constant& other) {
4471   if (type()          != other.type()         )  return false;
4472   if (can_be_reused() != other.can_be_reused())  return false;
4473   // For floating point values we compare the bit pattern.
4474   switch (type()) {
4475   case T_INT:
4476   case T_FLOAT:   return (_v._value.i == other._v._value.i);
4477   case T_LONG:
4478   case T_DOUBLE:  return (_v._value.j == other._v._value.j);
4479   case T_OBJECT:
4480   case T_ADDRESS: return (_v._value.l == other._v._value.l);
4481   case T_VOID:    return (_v._value.l == other._v._value.l);  // jump-table entries
4482   case T_METADATA: return (_v._metadata == other._v._metadata);
4483   default: ShouldNotReachHere(); return false;
4484   }
4485 }
4486 
4487 static int type_to_size_in_bytes(BasicType t) {
4488   switch (t) {
4489   case T_INT:     return sizeof(jint   );
4490   case T_LONG:    return sizeof(jlong  );
4491   case T_FLOAT:   return sizeof(jfloat );
4492   case T_DOUBLE:  return sizeof(jdouble);
4493   case T_METADATA: return sizeof(Metadata*);
4494     // We use T_VOID as marker for jump-table entries (labels) which
4495     // need an internal word relocation.
4496   case T_VOID:
4497   case T_ADDRESS:
4498   case T_OBJECT:  return sizeof(jobject);
4499   default:
4500     ShouldNotReachHere();
4501     return -1;
4502   }
4503 }
4504 
4505 int Compile::ConstantTable::qsort_comparator(Constant* a, Constant* b) {
4506   // sort descending
4507   if (a->freq() > b->freq())  return -1;
4508   if (a->freq() < b->freq())  return  1;
4509   return 0;
4510 }
4511 
4512 void Compile::ConstantTable::calculate_offsets_and_size() {
4513   // First, sort the array by frequencies.
4514   _constants.sort(qsort_comparator);
4515 
4516 #ifdef ASSERT
4517   // Make sure all jump-table entries were sorted to the end of the
4518   // array (they have a negative frequency).
4519   bool found_void = false;
4520   for (int i = 0; i < _constants.length(); i++) {
4521     Constant con = _constants.at(i);
4522     if (con.type() == T_VOID)
4523       found_void = true;  // jump-tables
4524     else
4525       assert(!found_void, "wrong sorting");
4526   }
4527 #endif
4528 
4529   int offset = 0;
4530   for (int i = 0; i < _constants.length(); i++) {
4531     Constant* con = _constants.adr_at(i);
4532 
4533     // Align offset for type.
4534     int typesize = type_to_size_in_bytes(con->type());
4535     offset = align_up(offset, typesize);
4536     con->set_offset(offset);   // set constant's offset
4537 
4538     if (con->type() == T_VOID) {
4539       MachConstantNode* n = (MachConstantNode*) con->get_jobject();
4540       offset = offset + typesize * n->outcnt();  // expand jump-table
4541     } else {
4542       offset = offset + typesize;
4543     }
4544   }
4545 
4546   // Align size up to the next section start (which is insts; see
4547   // CodeBuffer::align_at_start).
4548   assert(_size == -1, "already set?");
4549   _size = align_up(offset, (int)CodeEntryAlignment);
4550 }
4551 
4552 void Compile::ConstantTable::emit(CodeBuffer& cb) {
4553   MacroAssembler _masm(&cb);
4554   for (int i = 0; i < _constants.length(); i++) {
4555     Constant con = _constants.at(i);
4556     address constant_addr = NULL;
4557     switch (con.type()) {
4558     case T_INT:    constant_addr = _masm.int_constant(   con.get_jint()   ); break;
4559     case T_LONG:   constant_addr = _masm.long_constant(  con.get_jlong()  ); break;
4560     case T_FLOAT:  constant_addr = _masm.float_constant( con.get_jfloat() ); break;
4561     case T_DOUBLE: constant_addr = _masm.double_constant(con.get_jdouble()); break;
4562     case T_OBJECT: {
4563       jobject obj = con.get_jobject();
4564       int oop_index = _masm.oop_recorder()->find_index(obj);
4565       constant_addr = _masm.address_constant((address) obj, oop_Relocation::spec(oop_index));
4566       break;
4567     }
4568     case T_ADDRESS: {
4569       address addr = (address) con.get_jobject();
4570       constant_addr = _masm.address_constant(addr);
4571       break;
4572     }
4573     // We use T_VOID as marker for jump-table entries (labels) which
4574     // need an internal word relocation.
4575     case T_VOID: {
4576       MachConstantNode* n = (MachConstantNode*) con.get_jobject();
4577       // Fill the jump-table with a dummy word.  The real value is
4578       // filled in later in fill_jump_table.
4579       address dummy = (address) n;
4580       constant_addr = _masm.address_constant(dummy);
4581       // Expand jump-table
4582       for (uint i = 1; i < n->outcnt(); i++) {
4583         address temp_addr = _masm.address_constant(dummy + i);
4584         assert(temp_addr, "consts section too small");
4585       }
4586       break;
4587     }
4588     case T_METADATA: {
4589       Metadata* obj = con.get_metadata();
4590       int metadata_index = _masm.oop_recorder()->find_index(obj);
4591       constant_addr = _masm.address_constant((address) obj, metadata_Relocation::spec(metadata_index));
4592       break;
4593     }
4594     default: ShouldNotReachHere();
4595     }
4596     assert(constant_addr, "consts section too small");
4597     assert((constant_addr - _masm.code()->consts()->start()) == con.offset(),
4598             "must be: %d == %d", (int) (constant_addr - _masm.code()->consts()->start()), (int)(con.offset()));
4599   }
4600 }
4601 
4602 int Compile::ConstantTable::find_offset(Constant& con) const {
4603   int idx = _constants.find(con);
4604   guarantee(idx != -1, "constant must be in constant table");
4605   int offset = _constants.at(idx).offset();
4606   guarantee(offset != -1, "constant table not emitted yet?");
4607   return offset;
4608 }
4609 
4610 void Compile::ConstantTable::add(Constant& con) {
4611   if (con.can_be_reused()) {
4612     int idx = _constants.find(con);
4613     if (idx != -1 && _constants.at(idx).can_be_reused()) {
4614       _constants.adr_at(idx)->inc_freq(con.freq());  // increase the frequency by the current value
4615       return;
4616     }
4617   }
4618   (void) _constants.append(con);
4619 }
4620 
4621 Compile::Constant Compile::ConstantTable::add(MachConstantNode* n, BasicType type, jvalue value) {
4622   Block* b = Compile::current()->cfg()->get_block_for_node(n);
4623   Constant con(type, value, b->_freq);
4624   add(con);
4625   return con;
4626 }
4627 
4628 Compile::Constant Compile::ConstantTable::add(Metadata* metadata) {
4629   Constant con(metadata);
4630   add(con);
4631   return con;
4632 }
4633 
4634 Compile::Constant Compile::ConstantTable::add(MachConstantNode* n, MachOper* oper) {
4635   jvalue value;
4636   BasicType type = oper->type()->basic_type();
4637   switch (type) {
4638   case T_LONG:    value.j = oper->constantL(); break;
4639   case T_FLOAT:   value.f = oper->constantF(); break;
4640   case T_DOUBLE:  value.d = oper->constantD(); break;
4641   case T_OBJECT:
4642   case T_ADDRESS: value.l = (jobject) oper->constant(); break;
4643   case T_METADATA: return add((Metadata*)oper->constant()); break;
4644   default: guarantee(false, "unhandled type: %s", type2name(type));
4645   }
4646   return add(n, type, value);
4647 }
4648 
4649 Compile::Constant Compile::ConstantTable::add_jump_table(MachConstantNode* n) {
4650   jvalue value;
4651   // We can use the node pointer here to identify the right jump-table
4652   // as this method is called from Compile::Fill_buffer right before
4653   // the MachNodes are emitted and the jump-table is filled (means the
4654   // MachNode pointers do not change anymore).
4655   value.l = (jobject) n;
4656   Constant con(T_VOID, value, next_jump_table_freq(), false);  // Labels of a jump-table cannot be reused.
4657   add(con);
4658   return con;
4659 }
4660 
4661 void Compile::ConstantTable::fill_jump_table(CodeBuffer& cb, MachConstantNode* n, GrowableArray<Label*> labels) const {
4662   // If called from Compile::scratch_emit_size do nothing.
4663   if (Compile::current()->in_scratch_emit_size())  return;
4664 
4665   assert(labels.is_nonempty(), "must be");
4666   assert((uint) labels.length() == n->outcnt(), "must be equal: %d == %d", labels.length(), n->outcnt());
4667 
4668   // Since MachConstantNode::constant_offset() also contains
4669   // table_base_offset() we need to subtract the table_base_offset()
4670   // to get the plain offset into the constant table.
4671   int offset = n->constant_offset() - table_base_offset();
4672 
4673   MacroAssembler _masm(&cb);
4674   address* jump_table_base = (address*) (_masm.code()->consts()->start() + offset);
4675 
4676   for (uint i = 0; i < n->outcnt(); i++) {
4677     address* constant_addr = &jump_table_base[i];
4678     assert(*constant_addr == (((address) n) + i), "all jump-table entries must contain adjusted node pointer: " INTPTR_FORMAT " == " INTPTR_FORMAT, p2i(*constant_addr), p2i(((address) n) + i));
4679     *constant_addr = cb.consts()->target(*labels.at(i), (address) constant_addr);
4680     cb.consts()->relocate((address) constant_addr, relocInfo::internal_word_type);
4681   }
4682 }
4683 
4684 //----------------------------static_subtype_check-----------------------------
4685 // Shortcut important common cases when superklass is exact:
4686 // (0) superklass is java.lang.Object (can occur in reflective code)
4687 // (1) subklass is already limited to a subtype of superklass => always ok
4688 // (2) subklass does not overlap with superklass => always fail
4689 // (3) superklass has NO subtypes and we can check with a simple compare.
4690 int Compile::static_subtype_check(ciKlass* superk, ciKlass* subk) {
4691   if (StressReflectiveCode || superk == NULL || subk == NULL) {
4692     return SSC_full_test;       // Let caller generate the general case.
4693   }
4694 
4695   if (superk == env()->Object_klass()) {
4696     return SSC_always_true;     // (0) this test cannot fail
4697   }
4698 
4699   ciType* superelem = superk;
4700   if (superelem->is_array_klass()) {
4701     ciArrayKlass* ak = superelem->as_array_klass();
4702     superelem = superelem->as_array_klass()->base_element_type();
4703   }
4704 
4705   if (!subk->is_interface()) {  // cannot trust static interface types yet
4706     if (subk->is_subtype_of(superk)) {
4707       return SSC_always_true;   // (1) false path dead; no dynamic test needed
4708     }
4709     if (!(superelem->is_klass() && superelem->as_klass()->is_interface()) &&
4710         !superk->is_subtype_of(subk)) {
4711       return SSC_always_false;
4712     }
4713   }
4714 
4715   // Do not fold the subtype check to an array klass pointer comparison for [V? arrays.
4716   // [V is a subtype of [V? but the klass for [V is not equal to the klass for [V?. Perform a full test.
4717   if (superk->is_obj_array_klass() && !superk->as_array_klass()->storage_properties().is_null_free() && superk->as_array_klass()->element_klass()->is_valuetype()) {
4718     return SSC_full_test;
4719   }
4720   // If casting to an instance klass, it must have no subtypes
4721   if (superk->is_interface()) {
4722     // Cannot trust interfaces yet.
4723     // %%% S.B. superk->nof_implementors() == 1
4724   } else if (superelem->is_instance_klass()) {
4725     ciInstanceKlass* ik = superelem->as_instance_klass();
4726     if (!ik->has_subklass() && !ik->is_interface()) {
4727       if (!ik->is_final()) {
4728         // Add a dependency if there is a chance of a later subclass.
4729         dependencies()->assert_leaf_type(ik);
4730       }
4731       return SSC_easy_test;     // (3) caller can do a simple ptr comparison
4732     }
4733   } else {
4734     // A primitive array type has no subtypes.
4735     return SSC_easy_test;       // (3) caller can do a simple ptr comparison
4736   }
4737 
4738   return SSC_full_test;
4739 }
4740 
4741 Node* Compile::conv_I2X_index(PhaseGVN* phase, Node* idx, const TypeInt* sizetype, Node* ctrl) {
4742 #ifdef _LP64
4743   // The scaled index operand to AddP must be a clean 64-bit value.
4744   // Java allows a 32-bit int to be incremented to a negative
4745   // value, which appears in a 64-bit register as a large
4746   // positive number.  Using that large positive number as an
4747   // operand in pointer arithmetic has bad consequences.
4748   // On the other hand, 32-bit overflow is rare, and the possibility
4749   // can often be excluded, if we annotate the ConvI2L node with
4750   // a type assertion that its value is known to be a small positive
4751   // number.  (The prior range check has ensured this.)
4752   // This assertion is used by ConvI2LNode::Ideal.
4753   int index_max = max_jint - 1;  // array size is max_jint, index is one less
4754   if (sizetype != NULL) index_max = sizetype->_hi - 1;
4755   const TypeInt* iidxtype = TypeInt::make(0, index_max, Type::WidenMax);
4756   idx = constrained_convI2L(phase, idx, iidxtype, ctrl);
4757 #endif
4758   return idx;
4759 }
4760 
4761 // Convert integer value to a narrowed long type dependent on ctrl (for example, a range check)
4762 Node* Compile::constrained_convI2L(PhaseGVN* phase, Node* value, const TypeInt* itype, Node* ctrl) {
4763   if (ctrl != NULL) {
4764     // Express control dependency by a CastII node with a narrow type.
4765     value = new CastIINode(value, itype, false, true /* range check dependency */);
4766     // Make the CastII node dependent on the control input to prevent the narrowed ConvI2L
4767     // node from floating above the range check during loop optimizations. Otherwise, the
4768     // ConvI2L node may be eliminated independently of the range check, causing the data path
4769     // to become TOP while the control path is still there (although it's unreachable).
4770     value->set_req(0, ctrl);
4771     // Save CastII node to remove it after loop optimizations.
4772     phase->C->add_range_check_cast(value);
4773     value = phase->transform(value);
4774   }
4775   const TypeLong* ltype = TypeLong::make(itype->_lo, itype->_hi, itype->_widen);
4776   return phase->transform(new ConvI2LNode(value, ltype));
4777 }
4778 
4779 // The message about the current inlining is accumulated in
4780 // _print_inlining_stream and transfered into the _print_inlining_list
4781 // once we know whether inlining succeeds or not. For regular
4782 // inlining, messages are appended to the buffer pointed by
4783 // _print_inlining_idx in the _print_inlining_list. For late inlining,
4784 // a new buffer is added after _print_inlining_idx in the list. This
4785 // way we can update the inlining message for late inlining call site
4786 // when the inlining is attempted again.
4787 void Compile::print_inlining_init() {
4788   if (print_inlining() || print_intrinsics()) {
4789     _print_inlining_stream = new stringStream();
4790     _print_inlining_list = new (comp_arena())GrowableArray<PrintInliningBuffer>(comp_arena(), 1, 1, PrintInliningBuffer());
4791   }
4792 }
4793 
4794 void Compile::print_inlining_reinit() {
4795   if (print_inlining() || print_intrinsics()) {
4796     // Re allocate buffer when we change ResourceMark
4797     _print_inlining_stream = new stringStream();
4798   }
4799 }
4800 
4801 void Compile::print_inlining_reset() {
4802   _print_inlining_stream->reset();
4803 }
4804 
4805 void Compile::print_inlining_commit() {
4806   assert(print_inlining() || print_intrinsics(), "PrintInlining off?");
4807   // Transfer the message from _print_inlining_stream to the current
4808   // _print_inlining_list buffer and clear _print_inlining_stream.
4809   _print_inlining_list->at(_print_inlining_idx).ss()->write(_print_inlining_stream->as_string(), _print_inlining_stream->size());
4810   print_inlining_reset();
4811 }
4812 
4813 void Compile::print_inlining_push() {
4814   // Add new buffer to the _print_inlining_list at current position
4815   _print_inlining_idx++;
4816   _print_inlining_list->insert_before(_print_inlining_idx, PrintInliningBuffer());
4817 }
4818 
4819 Compile::PrintInliningBuffer& Compile::print_inlining_current() {
4820   return _print_inlining_list->at(_print_inlining_idx);
4821 }
4822 
4823 void Compile::print_inlining_update(CallGenerator* cg) {
4824   if (print_inlining() || print_intrinsics()) {
4825     if (!cg->is_late_inline()) {
4826       if (print_inlining_current().cg() != NULL) {
4827         print_inlining_push();
4828       }
4829       print_inlining_commit();
4830     } else {
4831       if (print_inlining_current().cg() != cg &&
4832           (print_inlining_current().cg() != NULL ||
4833            print_inlining_current().ss()->size() != 0)) {
4834         print_inlining_push();
4835       }
4836       print_inlining_commit();
4837       print_inlining_current().set_cg(cg);
4838     }
4839   }
4840 }
4841 
4842 void Compile::print_inlining_move_to(CallGenerator* cg) {
4843   // We resume inlining at a late inlining call site. Locate the
4844   // corresponding inlining buffer so that we can update it.
4845   if (print_inlining()) {
4846     for (int i = 0; i < _print_inlining_list->length(); i++) {
4847       if (_print_inlining_list->adr_at(i)->cg() == cg) {
4848         _print_inlining_idx = i;
4849         return;
4850       }
4851     }
4852     ShouldNotReachHere();
4853   }
4854 }
4855 
4856 void Compile::print_inlining_update_delayed(CallGenerator* cg) {
4857   if (print_inlining()) {
4858     assert(_print_inlining_stream->size() > 0, "missing inlining msg");
4859     assert(print_inlining_current().cg() == cg, "wrong entry");
4860     // replace message with new message
4861     _print_inlining_list->at_put(_print_inlining_idx, PrintInliningBuffer());
4862     print_inlining_commit();
4863     print_inlining_current().set_cg(cg);
4864   }
4865 }
4866 
4867 void Compile::print_inlining_assert_ready() {
4868   assert(!_print_inlining || _print_inlining_stream->size() == 0, "loosing data");
4869 }
4870 
4871 void Compile::process_print_inlining() {
4872   bool do_print_inlining = print_inlining() || print_intrinsics();
4873   if (do_print_inlining || log() != NULL) {
4874     // Print inlining message for candidates that we couldn't inline
4875     // for lack of space
4876     for (int i = 0; i < _late_inlines.length(); i++) {
4877       CallGenerator* cg = _late_inlines.at(i);
4878       if (!cg->is_mh_late_inline()) {
4879         const char* msg = "live nodes > LiveNodeCountInliningCutoff";
4880         if (do_print_inlining) {
4881           cg->print_inlining_late(msg);
4882         }
4883         log_late_inline_failure(cg, msg);
4884       }
4885     }
4886   }
4887   if (do_print_inlining) {
4888     ResourceMark rm;
4889     stringStream ss;
4890     for (int i = 0; i < _print_inlining_list->length(); i++) {
4891       ss.print("%s", _print_inlining_list->adr_at(i)->ss()->as_string());
4892     }
4893     size_t end = ss.size();
4894     _print_inlining_output = NEW_ARENA_ARRAY(comp_arena(), char, end+1);
4895     strncpy(_print_inlining_output, ss.base(), end+1);
4896     _print_inlining_output[end] = 0;
4897   }
4898 }
4899 
4900 void Compile::dump_print_inlining() {
4901   if (_print_inlining_output != NULL) {
4902     tty->print_raw(_print_inlining_output);
4903   }
4904 }
4905 
4906 void Compile::log_late_inline(CallGenerator* cg) {
4907   if (log() != NULL) {
4908     log()->head("late_inline method='%d'  inline_id='" JLONG_FORMAT "'", log()->identify(cg->method()),
4909                 cg->unique_id());
4910     JVMState* p = cg->call_node()->jvms();
4911     while (p != NULL) {
4912       log()->elem("jvms bci='%d' method='%d'", p->bci(), log()->identify(p->method()));
4913       p = p->caller();
4914     }
4915     log()->tail("late_inline");
4916   }
4917 }
4918 
4919 void Compile::log_late_inline_failure(CallGenerator* cg, const char* msg) {
4920   log_late_inline(cg);
4921   if (log() != NULL) {
4922     log()->inline_fail(msg);
4923   }
4924 }
4925 
4926 void Compile::log_inline_id(CallGenerator* cg) {
4927   if (log() != NULL) {
4928     // The LogCompilation tool needs a unique way to identify late
4929     // inline call sites. This id must be unique for this call site in
4930     // this compilation. Try to have it unique across compilations as
4931     // well because it can be convenient when grepping through the log
4932     // file.
4933     // Distinguish OSR compilations from others in case CICountOSR is
4934     // on.
4935     jlong id = ((jlong)unique()) + (((jlong)compile_id()) << 33) + (CICountOSR && is_osr_compilation() ? ((jlong)1) << 32 : 0);
4936     cg->set_unique_id(id);
4937     log()->elem("inline_id id='" JLONG_FORMAT "'", id);
4938   }
4939 }
4940 
4941 void Compile::log_inline_failure(const char* msg) {
4942   if (C->log() != NULL) {
4943     C->log()->inline_fail(msg);
4944   }
4945 }
4946 
4947 
4948 // Dump inlining replay data to the stream.
4949 // Don't change thread state and acquire any locks.
4950 void Compile::dump_inline_data(outputStream* out) {
4951   InlineTree* inl_tree = ilt();
4952   if (inl_tree != NULL) {
4953     out->print(" inline %d", inl_tree->count());
4954     inl_tree->dump_replay_data(out);
4955   }
4956 }
4957 
4958 int Compile::cmp_expensive_nodes(Node* n1, Node* n2) {
4959   if (n1->Opcode() < n2->Opcode())      return -1;
4960   else if (n1->Opcode() > n2->Opcode()) return 1;
4961 
4962   assert(n1->req() == n2->req(), "can't compare %s nodes: n1->req() = %d, n2->req() = %d", NodeClassNames[n1->Opcode()], n1->req(), n2->req());
4963   for (uint i = 1; i < n1->req(); i++) {
4964     if (n1->in(i) < n2->in(i))      return -1;
4965     else if (n1->in(i) > n2->in(i)) return 1;
4966   }
4967 
4968   return 0;
4969 }
4970 
4971 int Compile::cmp_expensive_nodes(Node** n1p, Node** n2p) {
4972   Node* n1 = *n1p;
4973   Node* n2 = *n2p;
4974 
4975   return cmp_expensive_nodes(n1, n2);
4976 }
4977 
4978 void Compile::sort_expensive_nodes() {
4979   if (!expensive_nodes_sorted()) {
4980     _expensive_nodes->sort(cmp_expensive_nodes);
4981   }
4982 }
4983 
4984 bool Compile::expensive_nodes_sorted() const {
4985   for (int i = 1; i < _expensive_nodes->length(); i++) {
4986     if (cmp_expensive_nodes(_expensive_nodes->adr_at(i), _expensive_nodes->adr_at(i-1)) < 0) {
4987       return false;
4988     }
4989   }
4990   return true;
4991 }
4992 
4993 bool Compile::should_optimize_expensive_nodes(PhaseIterGVN &igvn) {
4994   if (_expensive_nodes->length() == 0) {
4995     return false;
4996   }
4997 
4998   assert(OptimizeExpensiveOps, "optimization off?");
4999 
5000   // Take this opportunity to remove dead nodes from the list
5001   int j = 0;
5002   for (int i = 0; i < _expensive_nodes->length(); i++) {
5003     Node* n = _expensive_nodes->at(i);
5004     if (!n->is_unreachable(igvn)) {
5005       assert(n->is_expensive(), "should be expensive");
5006       _expensive_nodes->at_put(j, n);
5007       j++;
5008     }
5009   }
5010   _expensive_nodes->trunc_to(j);
5011 
5012   // Then sort the list so that similar nodes are next to each other
5013   // and check for at least two nodes of identical kind with same data
5014   // inputs.
5015   sort_expensive_nodes();
5016 
5017   for (int i = 0; i < _expensive_nodes->length()-1; i++) {
5018     if (cmp_expensive_nodes(_expensive_nodes->adr_at(i), _expensive_nodes->adr_at(i+1)) == 0) {
5019       return true;
5020     }
5021   }
5022 
5023   return false;
5024 }
5025 
5026 void Compile::cleanup_expensive_nodes(PhaseIterGVN &igvn) {
5027   if (_expensive_nodes->length() == 0) {
5028     return;
5029   }
5030 
5031   assert(OptimizeExpensiveOps, "optimization off?");
5032 
5033   // Sort to bring similar nodes next to each other and clear the
5034   // control input of nodes for which there's only a single copy.
5035   sort_expensive_nodes();
5036 
5037   int j = 0;
5038   int identical = 0;
5039   int i = 0;
5040   bool modified = false;
5041   for (; i < _expensive_nodes->length()-1; i++) {
5042     assert(j <= i, "can't write beyond current index");
5043     if (_expensive_nodes->at(i)->Opcode() == _expensive_nodes->at(i+1)->Opcode()) {
5044       identical++;
5045       _expensive_nodes->at_put(j++, _expensive_nodes->at(i));
5046       continue;
5047     }
5048     if (identical > 0) {
5049       _expensive_nodes->at_put(j++, _expensive_nodes->at(i));
5050       identical = 0;
5051     } else {
5052       Node* n = _expensive_nodes->at(i);
5053       igvn.replace_input_of(n, 0, NULL);
5054       igvn.hash_insert(n);
5055       modified = true;
5056     }
5057   }
5058   if (identical > 0) {
5059     _expensive_nodes->at_put(j++, _expensive_nodes->at(i));
5060   } else if (_expensive_nodes->length() >= 1) {
5061     Node* n = _expensive_nodes->at(i);
5062     igvn.replace_input_of(n, 0, NULL);
5063     igvn.hash_insert(n);
5064     modified = true;
5065   }
5066   _expensive_nodes->trunc_to(j);
5067   if (modified) {
5068     igvn.optimize();
5069   }
5070 }
5071 
5072 void Compile::add_expensive_node(Node * n) {
5073   assert(!_expensive_nodes->contains(n), "duplicate entry in expensive list");
5074   assert(n->is_expensive(), "expensive nodes with non-null control here only");
5075   assert(!n->is_CFG() && !n->is_Mem(), "no cfg or memory nodes here");
5076   if (OptimizeExpensiveOps) {
5077     _expensive_nodes->append(n);
5078   } else {
5079     // Clear control input and let IGVN optimize expensive nodes if
5080     // OptimizeExpensiveOps is off.
5081     n->set_req(0, NULL);
5082   }
5083 }
5084 
5085 /**
5086  * Remove the speculative part of types and clean up the graph
5087  */
5088 void Compile::remove_speculative_types(PhaseIterGVN &igvn) {
5089   if (UseTypeSpeculation) {
5090     Unique_Node_List worklist;
5091     worklist.push(root());
5092     int modified = 0;
5093     // Go over all type nodes that carry a speculative type, drop the
5094     // speculative part of the type and enqueue the node for an igvn
5095     // which may optimize it out.
5096     for (uint next = 0; next < worklist.size(); ++next) {
5097       Node *n  = worklist.at(next);
5098       if (n->is_Type()) {
5099         TypeNode* tn = n->as_Type();
5100         const Type* t = tn->type();
5101         const Type* t_no_spec = t->remove_speculative();
5102         if (t_no_spec != t) {
5103           bool in_hash = igvn.hash_delete(n);
5104           assert(in_hash, "node should be in igvn hash table");
5105           tn->set_type(t_no_spec);
5106           igvn.hash_insert(n);
5107           igvn._worklist.push(n); // give it a chance to go away
5108           modified++;
5109         }
5110       }
5111       uint max = n->len();
5112       for( uint i = 0; i < max; ++i ) {
5113         Node *m = n->in(i);
5114         if (not_a_node(m))  continue;
5115         worklist.push(m);
5116       }
5117     }
5118     // Drop the speculative part of all types in the igvn's type table
5119     igvn.remove_speculative_types();
5120     if (modified > 0) {
5121       igvn.optimize();
5122     }
5123 #ifdef ASSERT
5124     // Verify that after the IGVN is over no speculative type has resurfaced
5125     worklist.clear();
5126     worklist.push(root());
5127     for (uint next = 0; next < worklist.size(); ++next) {
5128       Node *n  = worklist.at(next);
5129       const Type* t = igvn.type_or_null(n);
5130       assert((t == NULL) || (t == t->remove_speculative()), "no more speculative types");
5131       if (n->is_Type()) {
5132         t = n->as_Type()->type();
5133         assert(t == t->remove_speculative(), "no more speculative types");
5134       }
5135       uint max = n->len();
5136       for( uint i = 0; i < max; ++i ) {
5137         Node *m = n->in(i);
5138         if (not_a_node(m))  continue;
5139         worklist.push(m);
5140       }
5141     }
5142     igvn.check_no_speculative_types();
5143 #endif
5144   }
5145 }
5146 
5147 Node* Compile::optimize_acmp(PhaseGVN* phase, Node* a, Node* b) {
5148   const TypeInstPtr* ta = phase->type(a)->isa_instptr();
5149   const TypeInstPtr* tb = phase->type(b)->isa_instptr();
5150   if (!EnableValhalla || ta == NULL || tb == NULL ||
5151       ta->is_zero_type() || tb->is_zero_type() ||
5152       !ta->can_be_value_type() || !tb->can_be_value_type()) {
5153     // Use old acmp if one operand is null or not a value type
5154     return new CmpPNode(a, b);
5155   } else if (ta->is_valuetypeptr() || tb->is_valuetypeptr()) {
5156     // We know that one operand is a value type. Therefore,
5157     // new acmp will only return true if both operands are NULL.
5158     // Check if both operands are null by or'ing the oops.
5159     a = phase->transform(new CastP2XNode(NULL, a));
5160     b = phase->transform(new CastP2XNode(NULL, b));
5161     a = phase->transform(new OrXNode(a, b));
5162     return new CmpXNode(a, phase->MakeConX(0));
5163   }
5164   // Use new acmp
5165   return NULL;
5166 }
5167 
5168 // Auxiliary method to support randomized stressing/fuzzing.
5169 //
5170 // This method can be called the arbitrary number of times, with current count
5171 // as the argument. The logic allows selecting a single candidate from the
5172 // running list of candidates as follows:
5173 //    int count = 0;
5174 //    Cand* selected = null;
5175 //    while(cand = cand->next()) {
5176 //      if (randomized_select(++count)) {
5177 //        selected = cand;
5178 //      }
5179 //    }
5180 //
5181 // Including count equalizes the chances any candidate is "selected".
5182 // This is useful when we don't have the complete list of candidates to choose
5183 // from uniformly. In this case, we need to adjust the randomicity of the
5184 // selection, or else we will end up biasing the selection towards the latter
5185 // candidates.
5186 //
5187 // Quick back-envelope calculation shows that for the list of n candidates
5188 // the equal probability for the candidate to persist as "best" can be
5189 // achieved by replacing it with "next" k-th candidate with the probability
5190 // of 1/k. It can be easily shown that by the end of the run, the
5191 // probability for any candidate is converged to 1/n, thus giving the
5192 // uniform distribution among all the candidates.
5193 //
5194 // We don't care about the domain size as long as (RANDOMIZED_DOMAIN / count) is large.
5195 #define RANDOMIZED_DOMAIN_POW 29
5196 #define RANDOMIZED_DOMAIN (1 << RANDOMIZED_DOMAIN_POW)
5197 #define RANDOMIZED_DOMAIN_MASK ((1 << (RANDOMIZED_DOMAIN_POW + 1)) - 1)
5198 bool Compile::randomized_select(int count) {
5199   assert(count > 0, "only positive");
5200   return (os::random() & RANDOMIZED_DOMAIN_MASK) < (RANDOMIZED_DOMAIN / count);
5201 }
5202 
5203 CloneMap&     Compile::clone_map()                 { return _clone_map; }
5204 void          Compile::set_clone_map(Dict* d)      { _clone_map._dict = d; }
5205 
5206 void NodeCloneInfo::dump() const {
5207   tty->print(" {%d:%d} ", idx(), gen());
5208 }
5209 
5210 void CloneMap::clone(Node* old, Node* nnn, int gen) {
5211   uint64_t val = value(old->_idx);
5212   NodeCloneInfo cio(val);
5213   assert(val != 0, "old node should be in the map");
5214   NodeCloneInfo cin(cio.idx(), gen + cio.gen());
5215   insert(nnn->_idx, cin.get());
5216 #ifndef PRODUCT
5217   if (is_debug()) {
5218     tty->print_cr("CloneMap::clone inserted node %d info {%d:%d} into CloneMap", nnn->_idx, cin.idx(), cin.gen());
5219   }
5220 #endif
5221 }
5222 
5223 void CloneMap::verify_insert_and_clone(Node* old, Node* nnn, int gen) {
5224   NodeCloneInfo cio(value(old->_idx));
5225   if (cio.get() == 0) {
5226     cio.set(old->_idx, 0);
5227     insert(old->_idx, cio.get());
5228 #ifndef PRODUCT
5229     if (is_debug()) {
5230       tty->print_cr("CloneMap::verify_insert_and_clone inserted node %d info {%d:%d} into CloneMap", old->_idx, cio.idx(), cio.gen());
5231     }
5232 #endif
5233   }
5234   clone(old, nnn, gen);
5235 }
5236 
5237 int CloneMap::max_gen() const {
5238   int g = 0;
5239   DictI di(_dict);
5240   for(; di.test(); ++di) {
5241     int t = gen(di._key);
5242     if (g < t) {
5243       g = t;
5244 #ifndef PRODUCT
5245       if (is_debug()) {
5246         tty->print_cr("CloneMap::max_gen() update max=%d from %d", g, _2_node_idx_t(di._key));
5247       }
5248 #endif
5249     }
5250   }
5251   return g;
5252 }
5253 
5254 void CloneMap::dump(node_idx_t key) const {
5255   uint64_t val = value(key);
5256   if (val != 0) {
5257     NodeCloneInfo ni(val);
5258     ni.dump();
5259   }
5260 }