1 //
   2 // Copyright (c) 1998, 2011, Oracle and/or its affiliates. All rights reserved.
   3 // DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4 //
   5 // This code is free software; you can redistribute it and/or modify it
   6 // under the terms of the GNU General Public License version 2 only, as
   7 // published by the Free Software Foundation.
   8 //
   9 // This code is distributed in the hope that it will be useful, but WITHOUT
  10 // ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11 // FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12 // version 2 for more details (a copy is included in the LICENSE file that
  13 // accompanied this code).
  14 //
  15 // You should have received a copy of the GNU General Public License version
  16 // 2 along with this work; if not, write to the Free Software Foundation,
  17 // Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18 //
  19 // Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20 // or visit www.oracle.com if you need additional information or have any
  21 // questions.
  22 //
  23 //
  24 
  25 // SPARC Architecture Description File
  26 
  27 //----------REGISTER DEFINITION BLOCK------------------------------------------
  28 // This information is used by the matcher and the register allocator to
  29 // describe individual registers and classes of registers within the target
  30 // archtecture.
  31 register %{
  32 //----------Architecture Description Register Definitions----------------------
  33 // General Registers
  34 // "reg_def"  name ( register save type, C convention save type,
  35 //                   ideal register type, encoding, vm name );
  36 // Register Save Types:
  37 //
  38 // NS  = No-Save:       The register allocator assumes that these registers
  39 //                      can be used without saving upon entry to the method, &
  40 //                      that they do not need to be saved at call sites.
  41 //
  42 // SOC = Save-On-Call:  The register allocator assumes that these registers
  43 //                      can be used without saving upon entry to the method,
  44 //                      but that they must be saved at call sites.
  45 //
  46 // SOE = Save-On-Entry: The register allocator assumes that these registers
  47 //                      must be saved before using them upon entry to the
  48 //                      method, but they do not need to be saved at call
  49 //                      sites.
  50 //
  51 // AS  = Always-Save:   The register allocator assumes that these registers
  52 //                      must be saved before using them upon entry to the
  53 //                      method, & that they must be saved at call sites.
  54 //
  55 // Ideal Register Type is used to determine how to save & restore a
  56 // register.  Op_RegI will get spilled with LoadI/StoreI, Op_RegP will get
  57 // spilled with LoadP/StoreP.  If the register supports both, use Op_RegI.
  58 //
  59 // The encoding number is the actual bit-pattern placed into the opcodes.
  60 
  61 
  62 // ----------------------------
  63 // Integer/Long Registers
  64 // ----------------------------
  65 
  66 // Need to expose the hi/lo aspect of 64-bit registers
  67 // This register set is used for both the 64-bit build and
  68 // the 32-bit build with 1-register longs.
  69 
  70 // Global Registers 0-7
  71 reg_def R_G0H( NS,  NS, Op_RegI,128, G0->as_VMReg()->next());
  72 reg_def R_G0 ( NS,  NS, Op_RegI,  0, G0->as_VMReg());
  73 reg_def R_G1H(SOC, SOC, Op_RegI,129, G1->as_VMReg()->next());
  74 reg_def R_G1 (SOC, SOC, Op_RegI,  1, G1->as_VMReg());
  75 reg_def R_G2H( NS,  NS, Op_RegI,130, G2->as_VMReg()->next());
  76 reg_def R_G2 ( NS,  NS, Op_RegI,  2, G2->as_VMReg());
  77 reg_def R_G3H(SOC, SOC, Op_RegI,131, G3->as_VMReg()->next());
  78 reg_def R_G3 (SOC, SOC, Op_RegI,  3, G3->as_VMReg());
  79 reg_def R_G4H(SOC, SOC, Op_RegI,132, G4->as_VMReg()->next());
  80 reg_def R_G4 (SOC, SOC, Op_RegI,  4, G4->as_VMReg());
  81 reg_def R_G5H(SOC, SOC, Op_RegI,133, G5->as_VMReg()->next());
  82 reg_def R_G5 (SOC, SOC, Op_RegI,  5, G5->as_VMReg());
  83 reg_def R_G6H( NS,  NS, Op_RegI,134, G6->as_VMReg()->next());
  84 reg_def R_G6 ( NS,  NS, Op_RegI,  6, G6->as_VMReg());
  85 reg_def R_G7H( NS,  NS, Op_RegI,135, G7->as_VMReg()->next());
  86 reg_def R_G7 ( NS,  NS, Op_RegI,  7, G7->as_VMReg());
  87 
  88 // Output Registers 0-7
  89 reg_def R_O0H(SOC, SOC, Op_RegI,136, O0->as_VMReg()->next());
  90 reg_def R_O0 (SOC, SOC, Op_RegI,  8, O0->as_VMReg());
  91 reg_def R_O1H(SOC, SOC, Op_RegI,137, O1->as_VMReg()->next());
  92 reg_def R_O1 (SOC, SOC, Op_RegI,  9, O1->as_VMReg());
  93 reg_def R_O2H(SOC, SOC, Op_RegI,138, O2->as_VMReg()->next());
  94 reg_def R_O2 (SOC, SOC, Op_RegI, 10, O2->as_VMReg());
  95 reg_def R_O3H(SOC, SOC, Op_RegI,139, O3->as_VMReg()->next());
  96 reg_def R_O3 (SOC, SOC, Op_RegI, 11, O3->as_VMReg());
  97 reg_def R_O4H(SOC, SOC, Op_RegI,140, O4->as_VMReg()->next());
  98 reg_def R_O4 (SOC, SOC, Op_RegI, 12, O4->as_VMReg());
  99 reg_def R_O5H(SOC, SOC, Op_RegI,141, O5->as_VMReg()->next());
 100 reg_def R_O5 (SOC, SOC, Op_RegI, 13, O5->as_VMReg());
 101 reg_def R_SPH( NS,  NS, Op_RegI,142, SP->as_VMReg()->next());
 102 reg_def R_SP ( NS,  NS, Op_RegI, 14, SP->as_VMReg());
 103 reg_def R_O7H(SOC, SOC, Op_RegI,143, O7->as_VMReg()->next());
 104 reg_def R_O7 (SOC, SOC, Op_RegI, 15, O7->as_VMReg());
 105 
 106 // Local Registers 0-7
 107 reg_def R_L0H( NS,  NS, Op_RegI,144, L0->as_VMReg()->next());
 108 reg_def R_L0 ( NS,  NS, Op_RegI, 16, L0->as_VMReg());
 109 reg_def R_L1H( NS,  NS, Op_RegI,145, L1->as_VMReg()->next());
 110 reg_def R_L1 ( NS,  NS, Op_RegI, 17, L1->as_VMReg());
 111 reg_def R_L2H( NS,  NS, Op_RegI,146, L2->as_VMReg()->next());
 112 reg_def R_L2 ( NS,  NS, Op_RegI, 18, L2->as_VMReg());
 113 reg_def R_L3H( NS,  NS, Op_RegI,147, L3->as_VMReg()->next());
 114 reg_def R_L3 ( NS,  NS, Op_RegI, 19, L3->as_VMReg());
 115 reg_def R_L4H( NS,  NS, Op_RegI,148, L4->as_VMReg()->next());
 116 reg_def R_L4 ( NS,  NS, Op_RegI, 20, L4->as_VMReg());
 117 reg_def R_L5H( NS,  NS, Op_RegI,149, L5->as_VMReg()->next());
 118 reg_def R_L5 ( NS,  NS, Op_RegI, 21, L5->as_VMReg());
 119 reg_def R_L6H( NS,  NS, Op_RegI,150, L6->as_VMReg()->next());
 120 reg_def R_L6 ( NS,  NS, Op_RegI, 22, L6->as_VMReg());
 121 reg_def R_L7H( NS,  NS, Op_RegI,151, L7->as_VMReg()->next());
 122 reg_def R_L7 ( NS,  NS, Op_RegI, 23, L7->as_VMReg());
 123 
 124 // Input Registers 0-7
 125 reg_def R_I0H( NS,  NS, Op_RegI,152, I0->as_VMReg()->next());
 126 reg_def R_I0 ( NS,  NS, Op_RegI, 24, I0->as_VMReg());
 127 reg_def R_I1H( NS,  NS, Op_RegI,153, I1->as_VMReg()->next());
 128 reg_def R_I1 ( NS,  NS, Op_RegI, 25, I1->as_VMReg());
 129 reg_def R_I2H( NS,  NS, Op_RegI,154, I2->as_VMReg()->next());
 130 reg_def R_I2 ( NS,  NS, Op_RegI, 26, I2->as_VMReg());
 131 reg_def R_I3H( NS,  NS, Op_RegI,155, I3->as_VMReg()->next());
 132 reg_def R_I3 ( NS,  NS, Op_RegI, 27, I3->as_VMReg());
 133 reg_def R_I4H( NS,  NS, Op_RegI,156, I4->as_VMReg()->next());
 134 reg_def R_I4 ( NS,  NS, Op_RegI, 28, I4->as_VMReg());
 135 reg_def R_I5H( NS,  NS, Op_RegI,157, I5->as_VMReg()->next());
 136 reg_def R_I5 ( NS,  NS, Op_RegI, 29, I5->as_VMReg());
 137 reg_def R_FPH( NS,  NS, Op_RegI,158, FP->as_VMReg()->next());
 138 reg_def R_FP ( NS,  NS, Op_RegI, 30, FP->as_VMReg());
 139 reg_def R_I7H( NS,  NS, Op_RegI,159, I7->as_VMReg()->next());
 140 reg_def R_I7 ( NS,  NS, Op_RegI, 31, I7->as_VMReg());
 141 
 142 // ----------------------------
 143 // Float/Double Registers
 144 // ----------------------------
 145 
 146 // Float Registers
 147 reg_def R_F0 ( SOC, SOC, Op_RegF,  0, F0->as_VMReg());
 148 reg_def R_F1 ( SOC, SOC, Op_RegF,  1, F1->as_VMReg());
 149 reg_def R_F2 ( SOC, SOC, Op_RegF,  2, F2->as_VMReg());
 150 reg_def R_F3 ( SOC, SOC, Op_RegF,  3, F3->as_VMReg());
 151 reg_def R_F4 ( SOC, SOC, Op_RegF,  4, F4->as_VMReg());
 152 reg_def R_F5 ( SOC, SOC, Op_RegF,  5, F5->as_VMReg());
 153 reg_def R_F6 ( SOC, SOC, Op_RegF,  6, F6->as_VMReg());
 154 reg_def R_F7 ( SOC, SOC, Op_RegF,  7, F7->as_VMReg());
 155 reg_def R_F8 ( SOC, SOC, Op_RegF,  8, F8->as_VMReg());
 156 reg_def R_F9 ( SOC, SOC, Op_RegF,  9, F9->as_VMReg());
 157 reg_def R_F10( SOC, SOC, Op_RegF, 10, F10->as_VMReg());
 158 reg_def R_F11( SOC, SOC, Op_RegF, 11, F11->as_VMReg());
 159 reg_def R_F12( SOC, SOC, Op_RegF, 12, F12->as_VMReg());
 160 reg_def R_F13( SOC, SOC, Op_RegF, 13, F13->as_VMReg());
 161 reg_def R_F14( SOC, SOC, Op_RegF, 14, F14->as_VMReg());
 162 reg_def R_F15( SOC, SOC, Op_RegF, 15, F15->as_VMReg());
 163 reg_def R_F16( SOC, SOC, Op_RegF, 16, F16->as_VMReg());
 164 reg_def R_F17( SOC, SOC, Op_RegF, 17, F17->as_VMReg());
 165 reg_def R_F18( SOC, SOC, Op_RegF, 18, F18->as_VMReg());
 166 reg_def R_F19( SOC, SOC, Op_RegF, 19, F19->as_VMReg());
 167 reg_def R_F20( SOC, SOC, Op_RegF, 20, F20->as_VMReg());
 168 reg_def R_F21( SOC, SOC, Op_RegF, 21, F21->as_VMReg());
 169 reg_def R_F22( SOC, SOC, Op_RegF, 22, F22->as_VMReg());
 170 reg_def R_F23( SOC, SOC, Op_RegF, 23, F23->as_VMReg());
 171 reg_def R_F24( SOC, SOC, Op_RegF, 24, F24->as_VMReg());
 172 reg_def R_F25( SOC, SOC, Op_RegF, 25, F25->as_VMReg());
 173 reg_def R_F26( SOC, SOC, Op_RegF, 26, F26->as_VMReg());
 174 reg_def R_F27( SOC, SOC, Op_RegF, 27, F27->as_VMReg());
 175 reg_def R_F28( SOC, SOC, Op_RegF, 28, F28->as_VMReg());
 176 reg_def R_F29( SOC, SOC, Op_RegF, 29, F29->as_VMReg());
 177 reg_def R_F30( SOC, SOC, Op_RegF, 30, F30->as_VMReg());
 178 reg_def R_F31( SOC, SOC, Op_RegF, 31, F31->as_VMReg());
 179 
 180 // Double Registers
 181 // The rules of ADL require that double registers be defined in pairs.
 182 // Each pair must be two 32-bit values, but not necessarily a pair of
 183 // single float registers.  In each pair, ADLC-assigned register numbers
 184 // must be adjacent, with the lower number even.  Finally, when the
 185 // CPU stores such a register pair to memory, the word associated with
 186 // the lower ADLC-assigned number must be stored to the lower address.
 187 
 188 // These definitions specify the actual bit encodings of the sparc
 189 // double fp register numbers.  FloatRegisterImpl in register_sparc.hpp
 190 // wants 0-63, so we have to convert every time we want to use fp regs
 191 // with the macroassembler, using reg_to_DoubleFloatRegister_object().
 192 // 255 is a flag meaning "don't go here".
 193 // I believe we can't handle callee-save doubles D32 and up until
 194 // the place in the sparc stack crawler that asserts on the 255 is
 195 // fixed up.
 196 reg_def R_D32 (SOC, SOC, Op_RegD,  1, F32->as_VMReg());
 197 reg_def R_D32x(SOC, SOC, Op_RegD,255, F32->as_VMReg()->next());
 198 reg_def R_D34 (SOC, SOC, Op_RegD,  3, F34->as_VMReg());
 199 reg_def R_D34x(SOC, SOC, Op_RegD,255, F34->as_VMReg()->next());
 200 reg_def R_D36 (SOC, SOC, Op_RegD,  5, F36->as_VMReg());
 201 reg_def R_D36x(SOC, SOC, Op_RegD,255, F36->as_VMReg()->next());
 202 reg_def R_D38 (SOC, SOC, Op_RegD,  7, F38->as_VMReg());
 203 reg_def R_D38x(SOC, SOC, Op_RegD,255, F38->as_VMReg()->next());
 204 reg_def R_D40 (SOC, SOC, Op_RegD,  9, F40->as_VMReg());
 205 reg_def R_D40x(SOC, SOC, Op_RegD,255, F40->as_VMReg()->next());
 206 reg_def R_D42 (SOC, SOC, Op_RegD, 11, F42->as_VMReg());
 207 reg_def R_D42x(SOC, SOC, Op_RegD,255, F42->as_VMReg()->next());
 208 reg_def R_D44 (SOC, SOC, Op_RegD, 13, F44->as_VMReg());
 209 reg_def R_D44x(SOC, SOC, Op_RegD,255, F44->as_VMReg()->next());
 210 reg_def R_D46 (SOC, SOC, Op_RegD, 15, F46->as_VMReg());
 211 reg_def R_D46x(SOC, SOC, Op_RegD,255, F46->as_VMReg()->next());
 212 reg_def R_D48 (SOC, SOC, Op_RegD, 17, F48->as_VMReg());
 213 reg_def R_D48x(SOC, SOC, Op_RegD,255, F48->as_VMReg()->next());
 214 reg_def R_D50 (SOC, SOC, Op_RegD, 19, F50->as_VMReg());
 215 reg_def R_D50x(SOC, SOC, Op_RegD,255, F50->as_VMReg()->next());
 216 reg_def R_D52 (SOC, SOC, Op_RegD, 21, F52->as_VMReg());
 217 reg_def R_D52x(SOC, SOC, Op_RegD,255, F52->as_VMReg()->next());
 218 reg_def R_D54 (SOC, SOC, Op_RegD, 23, F54->as_VMReg());
 219 reg_def R_D54x(SOC, SOC, Op_RegD,255, F54->as_VMReg()->next());
 220 reg_def R_D56 (SOC, SOC, Op_RegD, 25, F56->as_VMReg());
 221 reg_def R_D56x(SOC, SOC, Op_RegD,255, F56->as_VMReg()->next());
 222 reg_def R_D58 (SOC, SOC, Op_RegD, 27, F58->as_VMReg());
 223 reg_def R_D58x(SOC, SOC, Op_RegD,255, F58->as_VMReg()->next());
 224 reg_def R_D60 (SOC, SOC, Op_RegD, 29, F60->as_VMReg());
 225 reg_def R_D60x(SOC, SOC, Op_RegD,255, F60->as_VMReg()->next());
 226 reg_def R_D62 (SOC, SOC, Op_RegD, 31, F62->as_VMReg());
 227 reg_def R_D62x(SOC, SOC, Op_RegD,255, F62->as_VMReg()->next());
 228 
 229 
 230 // ----------------------------
 231 // Special Registers
 232 // Condition Codes Flag Registers
 233 // I tried to break out ICC and XCC but it's not very pretty.
 234 // Every Sparc instruction which defs/kills one also kills the other.
 235 // Hence every compare instruction which defs one kind of flags ends
 236 // up needing a kill of the other.
 237 reg_def CCR (SOC, SOC,  Op_RegFlags, 0, VMRegImpl::Bad());
 238 
 239 reg_def FCC0(SOC, SOC,  Op_RegFlags, 0, VMRegImpl::Bad());
 240 reg_def FCC1(SOC, SOC,  Op_RegFlags, 1, VMRegImpl::Bad());
 241 reg_def FCC2(SOC, SOC,  Op_RegFlags, 2, VMRegImpl::Bad());
 242 reg_def FCC3(SOC, SOC,  Op_RegFlags, 3, VMRegImpl::Bad());
 243 
 244 // ----------------------------
 245 // Specify the enum values for the registers.  These enums are only used by the
 246 // OptoReg "class". We can convert these enum values at will to VMReg when needed
 247 // for visibility to the rest of the vm. The order of this enum influences the
 248 // register allocator so having the freedom to set this order and not be stuck
 249 // with the order that is natural for the rest of the vm is worth it.
 250 alloc_class chunk0(
 251   R_L0,R_L0H, R_L1,R_L1H, R_L2,R_L2H, R_L3,R_L3H, R_L4,R_L4H, R_L5,R_L5H, R_L6,R_L6H, R_L7,R_L7H,
 252   R_G0,R_G0H, R_G1,R_G1H, R_G2,R_G2H, R_G3,R_G3H, R_G4,R_G4H, R_G5,R_G5H, R_G6,R_G6H, R_G7,R_G7H,
 253   R_O7,R_O7H, R_SP,R_SPH, R_O0,R_O0H, R_O1,R_O1H, R_O2,R_O2H, R_O3,R_O3H, R_O4,R_O4H, R_O5,R_O5H,
 254   R_I0,R_I0H, R_I1,R_I1H, R_I2,R_I2H, R_I3,R_I3H, R_I4,R_I4H, R_I5,R_I5H, R_FP,R_FPH, R_I7,R_I7H);
 255 
 256 // Note that a register is not allocatable unless it is also mentioned
 257 // in a widely-used reg_class below.  Thus, R_G7 and R_G0 are outside i_reg.
 258 
 259 alloc_class chunk1(
 260   // The first registers listed here are those most likely to be used
 261   // as temporaries.  We move F0..F7 away from the front of the list,
 262   // to reduce the likelihood of interferences with parameters and
 263   // return values.  Likewise, we avoid using F0/F1 for parameters,
 264   // since they are used for return values.
 265   // This FPU fine-tuning is worth about 1% on the SPEC geomean.
 266   R_F8 ,R_F9 ,R_F10,R_F11,R_F12,R_F13,R_F14,R_F15,
 267   R_F16,R_F17,R_F18,R_F19,R_F20,R_F21,R_F22,R_F23,
 268   R_F24,R_F25,R_F26,R_F27,R_F28,R_F29,R_F30,R_F31,
 269   R_F0 ,R_F1 ,R_F2 ,R_F3 ,R_F4 ,R_F5 ,R_F6 ,R_F7 , // used for arguments and return values
 270   R_D32,R_D32x,R_D34,R_D34x,R_D36,R_D36x,R_D38,R_D38x,
 271   R_D40,R_D40x,R_D42,R_D42x,R_D44,R_D44x,R_D46,R_D46x,
 272   R_D48,R_D48x,R_D50,R_D50x,R_D52,R_D52x,R_D54,R_D54x,
 273   R_D56,R_D56x,R_D58,R_D58x,R_D60,R_D60x,R_D62,R_D62x);
 274 
 275 alloc_class chunk2(CCR, FCC0, FCC1, FCC2, FCC3);
 276 
 277 //----------Architecture Description Register Classes--------------------------
 278 // Several register classes are automatically defined based upon information in
 279 // this architecture description.
 280 // 1) reg_class inline_cache_reg           ( as defined in frame section )
 281 // 2) reg_class interpreter_method_oop_reg ( as defined in frame section )
 282 // 3) reg_class stack_slots( /* one chunk of stack-based "registers" */ )
 283 //
 284 
 285 // G0 is not included in integer class since it has special meaning.
 286 reg_class g0_reg(R_G0);
 287 
 288 // ----------------------------
 289 // Integer Register Classes
 290 // ----------------------------
 291 // Exclusions from i_reg:
 292 // R_G0: hardwired zero
 293 // R_G2: reserved by HotSpot to the TLS register (invariant within Java)
 294 // R_G6: reserved by Solaris ABI to tools
 295 // R_G7: reserved by Solaris ABI to libthread
 296 // R_O7: Used as a temp in many encodings
 297 reg_class int_reg(R_G1,R_G3,R_G4,R_G5,R_O0,R_O1,R_O2,R_O3,R_O4,R_O5,R_L0,R_L1,R_L2,R_L3,R_L4,R_L5,R_L6,R_L7,R_I0,R_I1,R_I2,R_I3,R_I4,R_I5);
 298 
 299 // Class for all integer registers, except the G registers.  This is used for
 300 // encodings which use G registers as temps.  The regular inputs to such
 301 // instructions use a "notemp_" prefix, as a hack to ensure that the allocator
 302 // will not put an input into a temp register.
 303 reg_class notemp_int_reg(R_O0,R_O1,R_O2,R_O3,R_O4,R_O5,R_L0,R_L1,R_L2,R_L3,R_L4,R_L5,R_L6,R_L7,R_I0,R_I1,R_I2,R_I3,R_I4,R_I5);
 304 
 305 reg_class g1_regI(R_G1);
 306 reg_class g3_regI(R_G3);
 307 reg_class g4_regI(R_G4);
 308 reg_class o0_regI(R_O0);
 309 reg_class o7_regI(R_O7);
 310 
 311 // ----------------------------
 312 // Pointer Register Classes
 313 // ----------------------------
 314 #ifdef _LP64
 315 // 64-bit build means 64-bit pointers means hi/lo pairs
 316 reg_class ptr_reg(            R_G1H,R_G1,             R_G3H,R_G3, R_G4H,R_G4, R_G5H,R_G5,
 317                   R_O0H,R_O0, R_O1H,R_O1, R_O2H,R_O2, R_O3H,R_O3, R_O4H,R_O4, R_O5H,R_O5,
 318                   R_L0H,R_L0, R_L1H,R_L1, R_L2H,R_L2, R_L3H,R_L3, R_L4H,R_L4, R_L5H,R_L5, R_L6H,R_L6, R_L7H,R_L7,
 319                   R_I0H,R_I0, R_I1H,R_I1, R_I2H,R_I2, R_I3H,R_I3, R_I4H,R_I4, R_I5H,R_I5 );
 320 // Lock encodings use G3 and G4 internally
 321 reg_class lock_ptr_reg(       R_G1H,R_G1,                                     R_G5H,R_G5,
 322                   R_O0H,R_O0, R_O1H,R_O1, R_O2H,R_O2, R_O3H,R_O3, R_O4H,R_O4, R_O5H,R_O5,
 323                   R_L0H,R_L0, R_L1H,R_L1, R_L2H,R_L2, R_L3H,R_L3, R_L4H,R_L4, R_L5H,R_L5, R_L6H,R_L6, R_L7H,R_L7,
 324                   R_I0H,R_I0, R_I1H,R_I1, R_I2H,R_I2, R_I3H,R_I3, R_I4H,R_I4, R_I5H,R_I5 );
 325 // Special class for storeP instructions, which can store SP or RPC to TLS.
 326 // It is also used for memory addressing, allowing direct TLS addressing.
 327 reg_class sp_ptr_reg(         R_G1H,R_G1, R_G2H,R_G2, R_G3H,R_G3, R_G4H,R_G4, R_G5H,R_G5,
 328                   R_O0H,R_O0, R_O1H,R_O1, R_O2H,R_O2, R_O3H,R_O3, R_O4H,R_O4, R_O5H,R_O5, R_SPH,R_SP,
 329                   R_L0H,R_L0, R_L1H,R_L1, R_L2H,R_L2, R_L3H,R_L3, R_L4H,R_L4, R_L5H,R_L5, R_L6H,R_L6, R_L7H,R_L7,
 330                   R_I0H,R_I0, R_I1H,R_I1, R_I2H,R_I2, R_I3H,R_I3, R_I4H,R_I4, R_I5H,R_I5, R_FPH,R_FP );
 331 // R_L7 is the lowest-priority callee-save (i.e., NS) register
 332 // We use it to save R_G2 across calls out of Java.
 333 reg_class l7_regP(R_L7H,R_L7);
 334 
 335 // Other special pointer regs
 336 reg_class g1_regP(R_G1H,R_G1);
 337 reg_class g2_regP(R_G2H,R_G2);
 338 reg_class g3_regP(R_G3H,R_G3);
 339 reg_class g4_regP(R_G4H,R_G4);
 340 reg_class g5_regP(R_G5H,R_G5);
 341 reg_class i0_regP(R_I0H,R_I0);
 342 reg_class o0_regP(R_O0H,R_O0);
 343 reg_class o1_regP(R_O1H,R_O1);
 344 reg_class o2_regP(R_O2H,R_O2);
 345 reg_class o7_regP(R_O7H,R_O7);
 346 
 347 #else // _LP64
 348 // 32-bit build means 32-bit pointers means 1 register.
 349 reg_class ptr_reg(     R_G1,     R_G3,R_G4,R_G5,
 350                   R_O0,R_O1,R_O2,R_O3,R_O4,R_O5,
 351                   R_L0,R_L1,R_L2,R_L3,R_L4,R_L5,R_L6,R_L7,
 352                   R_I0,R_I1,R_I2,R_I3,R_I4,R_I5);
 353 // Lock encodings use G3 and G4 internally
 354 reg_class lock_ptr_reg(R_G1,               R_G5,
 355                   R_O0,R_O1,R_O2,R_O3,R_O4,R_O5,
 356                   R_L0,R_L1,R_L2,R_L3,R_L4,R_L5,R_L6,R_L7,
 357                   R_I0,R_I1,R_I2,R_I3,R_I4,R_I5);
 358 // Special class for storeP instructions, which can store SP or RPC to TLS.
 359 // It is also used for memory addressing, allowing direct TLS addressing.
 360 reg_class sp_ptr_reg(  R_G1,R_G2,R_G3,R_G4,R_G5,
 361                   R_O0,R_O1,R_O2,R_O3,R_O4,R_O5,R_SP,
 362                   R_L0,R_L1,R_L2,R_L3,R_L4,R_L5,R_L6,R_L7,
 363                   R_I0,R_I1,R_I2,R_I3,R_I4,R_I5,R_FP);
 364 // R_L7 is the lowest-priority callee-save (i.e., NS) register
 365 // We use it to save R_G2 across calls out of Java.
 366 reg_class l7_regP(R_L7);
 367 
 368 // Other special pointer regs
 369 reg_class g1_regP(R_G1);
 370 reg_class g2_regP(R_G2);
 371 reg_class g3_regP(R_G3);
 372 reg_class g4_regP(R_G4);
 373 reg_class g5_regP(R_G5);
 374 reg_class i0_regP(R_I0);
 375 reg_class o0_regP(R_O0);
 376 reg_class o1_regP(R_O1);
 377 reg_class o2_regP(R_O2);
 378 reg_class o7_regP(R_O7);
 379 #endif // _LP64
 380 
 381 
 382 // ----------------------------
 383 // Long Register Classes
 384 // ----------------------------
 385 // Longs in 1 register.  Aligned adjacent hi/lo pairs.
 386 // Note:  O7 is never in this class; it is sometimes used as an encoding temp.
 387 reg_class long_reg(             R_G1H,R_G1,             R_G3H,R_G3, R_G4H,R_G4, R_G5H,R_G5
 388                    ,R_O0H,R_O0, R_O1H,R_O1, R_O2H,R_O2, R_O3H,R_O3, R_O4H,R_O4, R_O5H,R_O5
 389 #ifdef _LP64
 390 // 64-bit, longs in 1 register: use all 64-bit integer registers
 391 // 32-bit, longs in 1 register: cannot use I's and L's.  Restrict to O's and G's.
 392                    ,R_L0H,R_L0, R_L1H,R_L1, R_L2H,R_L2, R_L3H,R_L3, R_L4H,R_L4, R_L5H,R_L5, R_L6H,R_L6, R_L7H,R_L7
 393                    ,R_I0H,R_I0, R_I1H,R_I1, R_I2H,R_I2, R_I3H,R_I3, R_I4H,R_I4, R_I5H,R_I5
 394 #endif // _LP64
 395                   );
 396 
 397 reg_class g1_regL(R_G1H,R_G1);
 398 reg_class g3_regL(R_G3H,R_G3);
 399 reg_class o2_regL(R_O2H,R_O2);
 400 reg_class o7_regL(R_O7H,R_O7);
 401 
 402 // ----------------------------
 403 // Special Class for Condition Code Flags Register
 404 reg_class int_flags(CCR);
 405 reg_class float_flags(FCC0,FCC1,FCC2,FCC3);
 406 reg_class float_flag0(FCC0);
 407 
 408 
 409 // ----------------------------
 410 // Float Point Register Classes
 411 // ----------------------------
 412 // Skip F30/F31, they are reserved for mem-mem copies
 413 reg_class sflt_reg(R_F0,R_F1,R_F2,R_F3,R_F4,R_F5,R_F6,R_F7,R_F8,R_F9,R_F10,R_F11,R_F12,R_F13,R_F14,R_F15,R_F16,R_F17,R_F18,R_F19,R_F20,R_F21,R_F22,R_F23,R_F24,R_F25,R_F26,R_F27,R_F28,R_F29);
 414 
 415 // Paired floating point registers--they show up in the same order as the floats,
 416 // but they are used with the "Op_RegD" type, and always occur in even/odd pairs.
 417 reg_class dflt_reg(R_F0, R_F1, R_F2, R_F3, R_F4, R_F5, R_F6, R_F7, R_F8, R_F9, R_F10,R_F11,R_F12,R_F13,R_F14,R_F15,
 418                    R_F16,R_F17,R_F18,R_F19,R_F20,R_F21,R_F22,R_F23,R_F24,R_F25,R_F26,R_F27,R_F28,R_F29,
 419                    /* Use extra V9 double registers; this AD file does not support V8 */
 420                    R_D32,R_D32x,R_D34,R_D34x,R_D36,R_D36x,R_D38,R_D38x,R_D40,R_D40x,R_D42,R_D42x,R_D44,R_D44x,R_D46,R_D46x,
 421                    R_D48,R_D48x,R_D50,R_D50x,R_D52,R_D52x,R_D54,R_D54x,R_D56,R_D56x,R_D58,R_D58x,R_D60,R_D60x,R_D62,R_D62x
 422                    );
 423 
 424 // Paired floating point registers--they show up in the same order as the floats,
 425 // but they are used with the "Op_RegD" type, and always occur in even/odd pairs.
 426 // This class is usable for mis-aligned loads as happen in I2C adapters.
 427 reg_class dflt_low_reg(R_F0, R_F1, R_F2, R_F3, R_F4, R_F5, R_F6, R_F7, R_F8, R_F9, R_F10,R_F11,R_F12,R_F13,R_F14,R_F15,
 428                    R_F16,R_F17,R_F18,R_F19,R_F20,R_F21,R_F22,R_F23,R_F24,R_F25,R_F26,R_F27,R_F28,R_F29,R_F30,R_F31 );
 429 %}
 430 
 431 //----------DEFINITION BLOCK---------------------------------------------------
 432 // Define name --> value mappings to inform the ADLC of an integer valued name
 433 // Current support includes integer values in the range [0, 0x7FFFFFFF]
 434 // Format:
 435 //        int_def  <name>         ( <int_value>, <expression>);
 436 // Generated Code in ad_<arch>.hpp
 437 //        #define  <name>   (<expression>)
 438 //        // value == <int_value>
 439 // Generated code in ad_<arch>.cpp adlc_verification()
 440 //        assert( <name> == <int_value>, "Expect (<expression>) to equal <int_value>");
 441 //
 442 definitions %{
 443 // The default cost (of an ALU instruction).
 444   int_def DEFAULT_COST      (    100,     100);
 445   int_def HUGE_COST         (1000000, 1000000);
 446 
 447 // Memory refs are twice as expensive as run-of-the-mill.
 448   int_def MEMORY_REF_COST   (    200, DEFAULT_COST * 2);
 449 
 450 // Branches are even more expensive.
 451   int_def BRANCH_COST       (    300, DEFAULT_COST * 3);
 452   int_def CALL_COST         (    300, DEFAULT_COST * 3);
 453 %}
 454 
 455 
 456 //----------SOURCE BLOCK-------------------------------------------------------
 457 // This is a block of C++ code which provides values, functions, and
 458 // definitions necessary in the rest of the architecture description
 459 source_hpp %{
 460 // Must be visible to the DFA in dfa_sparc.cpp
 461 extern bool can_branch_register( Node *bol, Node *cmp );
 462 
 463 // Macros to extract hi & lo halves from a long pair.
 464 // G0 is not part of any long pair, so assert on that.
 465 // Prevents accidentally using G1 instead of G0.
 466 #define LONG_HI_REG(x) (x)
 467 #define LONG_LO_REG(x) (x)
 468 
 469 %}
 470 
 471 source %{
 472 #define __ _masm.
 473 
 474 // Block initializing store
 475 #define ASI_BLK_INIT_QUAD_LDD_P    0xE2
 476 
 477 // tertiary op of a LoadP or StoreP encoding
 478 #define REGP_OP true
 479 
 480 static FloatRegister reg_to_SingleFloatRegister_object(int register_encoding);
 481 static FloatRegister reg_to_DoubleFloatRegister_object(int register_encoding);
 482 static Register reg_to_register_object(int register_encoding);
 483 
 484 // Used by the DFA in dfa_sparc.cpp.
 485 // Check for being able to use a V9 branch-on-register.  Requires a
 486 // compare-vs-zero, equal/not-equal, of a value which was zero- or sign-
 487 // extended.  Doesn't work following an integer ADD, for example, because of
 488 // overflow (-1 incremented yields 0 plus a carry in the high-order word).  On
 489 // 32-bit V9 systems, interrupts currently blow away the high-order 32 bits and
 490 // replace them with zero, which could become sign-extension in a different OS
 491 // release.  There's no obvious reason why an interrupt will ever fill these
 492 // bits with non-zero junk (the registers are reloaded with standard LD
 493 // instructions which either zero-fill or sign-fill).
 494 bool can_branch_register( Node *bol, Node *cmp ) {
 495   if( !BranchOnRegister ) return false;
 496 #ifdef _LP64
 497   if( cmp->Opcode() == Op_CmpP )
 498     return true;  // No problems with pointer compares
 499 #endif
 500   if( cmp->Opcode() == Op_CmpL )
 501     return true;  // No problems with long compares
 502 
 503   if( !SparcV9RegsHiBitsZero ) return false;
 504   if( bol->as_Bool()->_test._test != BoolTest::ne &&
 505       bol->as_Bool()->_test._test != BoolTest::eq )
 506      return false;
 507 
 508   // Check for comparing against a 'safe' value.  Any operation which
 509   // clears out the high word is safe.  Thus, loads and certain shifts
 510   // are safe, as are non-negative constants.  Any operation which
 511   // preserves zero bits in the high word is safe as long as each of its
 512   // inputs are safe.  Thus, phis and bitwise booleans are safe if their
 513   // inputs are safe.  At present, the only important case to recognize
 514   // seems to be loads.  Constants should fold away, and shifts &
 515   // logicals can use the 'cc' forms.
 516   Node *x = cmp->in(1);
 517   if( x->is_Load() ) return true;
 518   if( x->is_Phi() ) {
 519     for( uint i = 1; i < x->req(); i++ )
 520       if( !x->in(i)->is_Load() )
 521         return false;
 522     return true;
 523   }
 524   return false;
 525 }
 526 
 527 // ****************************************************************************
 528 
 529 // REQUIRED FUNCTIONALITY
 530 
 531 // !!!!! Special hack to get all type of calls to specify the byte offset
 532 //       from the start of the call to the point where the return address
 533 //       will point.
 534 //       The "return address" is the address of the call instruction, plus 8.
 535 
 536 int MachCallStaticJavaNode::ret_addr_offset() {
 537   int offset = NativeCall::instruction_size;  // call; delay slot
 538   if (_method_handle_invoke)
 539     offset += 4;  // restore SP
 540   return offset;
 541 }
 542 
 543 int MachCallDynamicJavaNode::ret_addr_offset() {
 544   int vtable_index = this->_vtable_index;
 545   if (vtable_index < 0) {
 546     // must be invalid_vtable_index, not nonvirtual_vtable_index
 547     assert(vtable_index == methodOopDesc::invalid_vtable_index, "correct sentinel value");
 548     return (NativeMovConstReg::instruction_size +
 549            NativeCall::instruction_size);  // sethi; setlo; call; delay slot
 550   } else {
 551     assert(!UseInlineCaches, "expect vtable calls only if not using ICs");
 552     int entry_offset = instanceKlass::vtable_start_offset() + vtable_index*vtableEntry::size();
 553     int v_off = entry_offset*wordSize + vtableEntry::method_offset_in_bytes();
 554     int klass_load_size;
 555     if (UseCompressedOops) {
 556       assert(Universe::heap() != NULL, "java heap should be initialized");
 557       if (Universe::narrow_oop_base() == NULL)
 558         klass_load_size = 2*BytesPerInstWord; // see MacroAssembler::load_klass()
 559       else
 560         klass_load_size = 3*BytesPerInstWord;
 561     } else {
 562       klass_load_size = 1*BytesPerInstWord;
 563     }
 564     if( Assembler::is_simm13(v_off) ) {
 565       return klass_load_size +
 566              (2*BytesPerInstWord +           // ld_ptr, ld_ptr
 567              NativeCall::instruction_size);  // call; delay slot
 568     } else {
 569       return klass_load_size +
 570              (4*BytesPerInstWord +           // set_hi, set, ld_ptr, ld_ptr
 571              NativeCall::instruction_size);  // call; delay slot
 572     }
 573   }
 574 }
 575 
 576 int MachCallRuntimeNode::ret_addr_offset() {
 577 #ifdef _LP64
 578   if (MacroAssembler::is_far_target(entry_point())) {
 579     return NativeFarCall::instruction_size;
 580   } else {
 581     return NativeCall::instruction_size;
 582   }
 583 #else
 584   return NativeCall::instruction_size;  // call; delay slot
 585 #endif
 586 }
 587 
 588 // Indicate if the safepoint node needs the polling page as an input.
 589 // Since Sparc does not have absolute addressing, it does.
 590 bool SafePointNode::needs_polling_address_input() {
 591   return true;
 592 }
 593 
 594 // emit an interrupt that is caught by the debugger (for debugging compiler)
 595 void emit_break(CodeBuffer &cbuf) {
 596   MacroAssembler _masm(&cbuf);
 597   __ breakpoint_trap();
 598 }
 599 
 600 #ifndef PRODUCT
 601 void MachBreakpointNode::format( PhaseRegAlloc *, outputStream *st ) const {
 602   st->print("TA");
 603 }
 604 #endif
 605 
 606 void MachBreakpointNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
 607   emit_break(cbuf);
 608 }
 609 
 610 uint MachBreakpointNode::size(PhaseRegAlloc *ra_) const {
 611   return MachNode::size(ra_);
 612 }
 613 
 614 // Traceable jump
 615 void  emit_jmpl(CodeBuffer &cbuf, int jump_target) {
 616   MacroAssembler _masm(&cbuf);
 617   Register rdest = reg_to_register_object(jump_target);
 618   __ JMP(rdest, 0);
 619   __ delayed()->nop();
 620 }
 621 
 622 // Traceable jump and set exception pc
 623 void  emit_jmpl_set_exception_pc(CodeBuffer &cbuf, int jump_target) {
 624   MacroAssembler _masm(&cbuf);
 625   Register rdest = reg_to_register_object(jump_target);
 626   __ JMP(rdest, 0);
 627   __ delayed()->add(O7, frame::pc_return_offset, Oissuing_pc );
 628 }
 629 
 630 void emit_nop(CodeBuffer &cbuf) {
 631   MacroAssembler _masm(&cbuf);
 632   __ nop();
 633 }
 634 
 635 void emit_illtrap(CodeBuffer &cbuf) {
 636   MacroAssembler _masm(&cbuf);
 637   __ illtrap(0);
 638 }
 639 
 640 
 641 intptr_t get_offset_from_base(const MachNode* n, const TypePtr* atype, int disp32) {
 642   assert(n->rule() != loadUB_rule, "");
 643 
 644   intptr_t offset = 0;
 645   const TypePtr *adr_type = TYPE_PTR_SENTINAL;  // Check for base==RegI, disp==immP
 646   const Node* addr = n->get_base_and_disp(offset, adr_type);
 647   assert(adr_type == (const TypePtr*)-1, "VerifyOops: no support for sparc operands with base==RegI, disp==immP");
 648   assert(addr != NULL && addr != (Node*)-1, "invalid addr");
 649   assert(addr->bottom_type()->isa_oopptr() == atype, "");
 650   atype = atype->add_offset(offset);
 651   assert(disp32 == offset, "wrong disp32");
 652   return atype->_offset;
 653 }
 654 
 655 
 656 intptr_t get_offset_from_base_2(const MachNode* n, const TypePtr* atype, int disp32) {
 657   assert(n->rule() != loadUB_rule, "");
 658 
 659   intptr_t offset = 0;
 660   Node* addr = n->in(2);
 661   assert(addr->bottom_type()->isa_oopptr() == atype, "");
 662   if (addr->is_Mach() && addr->as_Mach()->ideal_Opcode() == Op_AddP) {
 663     Node* a = addr->in(2/*AddPNode::Address*/);
 664     Node* o = addr->in(3/*AddPNode::Offset*/);
 665     offset = o->is_Con() ? o->bottom_type()->is_intptr_t()->get_con() : Type::OffsetBot;
 666     atype = a->bottom_type()->is_ptr()->add_offset(offset);
 667     assert(atype->isa_oop_ptr(), "still an oop");
 668   }
 669   offset = atype->is_ptr()->_offset;
 670   if (offset != Type::OffsetBot)  offset += disp32;
 671   return offset;
 672 }
 673 
 674 static inline jdouble replicate_immI(int con, int count, int width) {
 675   // Load a constant replicated "count" times with width "width"
 676   int bit_width = width * 8;
 677   jlong elt_val = con;
 678   elt_val &= (((jlong) 1) << bit_width) - 1;  // mask off sign bits
 679   jlong val = elt_val;
 680   for (int i = 0; i < count - 1; i++) {
 681     val <<= bit_width;
 682     val |= elt_val;
 683   }
 684   jdouble dval = *((jdouble*) &val);  // coerce to double type
 685   return dval;
 686 }
 687 
 688 // Standard Sparc opcode form2 field breakdown
 689 static inline void emit2_19(CodeBuffer &cbuf, int f30, int f29, int f25, int f22, int f20, int f19, int f0 ) {
 690   f0 &= (1<<19)-1;     // Mask displacement to 19 bits
 691   int op = (f30 << 30) |
 692            (f29 << 29) |
 693            (f25 << 25) |
 694            (f22 << 22) |
 695            (f20 << 20) |
 696            (f19 << 19) |
 697            (f0  <<  0);
 698   cbuf.insts()->emit_int32(op);
 699 }
 700 
 701 // Standard Sparc opcode form2 field breakdown
 702 static inline void emit2_22(CodeBuffer &cbuf, int f30, int f25, int f22, int f0 ) {
 703   f0 >>= 10;           // Drop 10 bits
 704   f0 &= (1<<22)-1;     // Mask displacement to 22 bits
 705   int op = (f30 << 30) |
 706            (f25 << 25) |
 707            (f22 << 22) |
 708            (f0  <<  0);
 709   cbuf.insts()->emit_int32(op);
 710 }
 711 
 712 // Standard Sparc opcode form3 field breakdown
 713 static inline void emit3(CodeBuffer &cbuf, int f30, int f25, int f19, int f14, int f5, int f0 ) {
 714   int op = (f30 << 30) |
 715            (f25 << 25) |
 716            (f19 << 19) |
 717            (f14 << 14) |
 718            (f5  <<  5) |
 719            (f0  <<  0);
 720   cbuf.insts()->emit_int32(op);
 721 }
 722 
 723 // Standard Sparc opcode form3 field breakdown
 724 static inline void emit3_simm13(CodeBuffer &cbuf, int f30, int f25, int f19, int f14, int simm13 ) {
 725   simm13 &= (1<<13)-1; // Mask to 13 bits
 726   int op = (f30 << 30) |
 727            (f25 << 25) |
 728            (f19 << 19) |
 729            (f14 << 14) |
 730            (1   << 13) | // bit to indicate immediate-mode
 731            (simm13<<0);
 732   cbuf.insts()->emit_int32(op);
 733 }
 734 
 735 static inline void emit3_simm10(CodeBuffer &cbuf, int f30, int f25, int f19, int f14, int simm10 ) {
 736   simm10 &= (1<<10)-1; // Mask to 10 bits
 737   emit3_simm13(cbuf,f30,f25,f19,f14,simm10);
 738 }
 739 
 740 #ifdef ASSERT
 741 // Helper function for VerifyOops in emit_form3_mem_reg
 742 void verify_oops_warning(const MachNode *n, int ideal_op, int mem_op) {
 743   warning("VerifyOops encountered unexpected instruction:");
 744   n->dump(2);
 745   warning("Instruction has ideal_Opcode==Op_%s and op_ld==Op_%s \n", NodeClassNames[ideal_op], NodeClassNames[mem_op]);
 746 }
 747 #endif
 748 
 749 
 750 void emit_form3_mem_reg(CodeBuffer &cbuf, const MachNode* n, int primary, int tertiary,
 751                         int src1_enc, int disp32, int src2_enc, int dst_enc) {
 752 
 753 #ifdef ASSERT
 754   // The following code implements the +VerifyOops feature.
 755   // It verifies oop values which are loaded into or stored out of
 756   // the current method activation.  +VerifyOops complements techniques
 757   // like ScavengeALot, because it eagerly inspects oops in transit,
 758   // as they enter or leave the stack, as opposed to ScavengeALot,
 759   // which inspects oops "at rest", in the stack or heap, at safepoints.
 760   // For this reason, +VerifyOops can sometimes detect bugs very close
 761   // to their point of creation.  It can also serve as a cross-check
 762   // on the validity of oop maps, when used toegether with ScavengeALot.
 763 
 764   // It would be good to verify oops at other points, especially
 765   // when an oop is used as a base pointer for a load or store.
 766   // This is presently difficult, because it is hard to know when
 767   // a base address is biased or not.  (If we had such information,
 768   // it would be easy and useful to make a two-argument version of
 769   // verify_oop which unbiases the base, and performs verification.)
 770 
 771   assert((uint)tertiary == 0xFFFFFFFF || tertiary == REGP_OP, "valid tertiary");
 772   bool is_verified_oop_base  = false;
 773   bool is_verified_oop_load  = false;
 774   bool is_verified_oop_store = false;
 775   int tmp_enc = -1;
 776   if (VerifyOops && src1_enc != R_SP_enc) {
 777     // classify the op, mainly for an assert check
 778     int st_op = 0, ld_op = 0;
 779     switch (primary) {
 780     case Assembler::stb_op3:  st_op = Op_StoreB; break;
 781     case Assembler::sth_op3:  st_op = Op_StoreC; break;
 782     case Assembler::stx_op3:  // may become StoreP or stay StoreI or StoreD0
 783     case Assembler::stw_op3:  st_op = Op_StoreI; break;
 784     case Assembler::std_op3:  st_op = Op_StoreL; break;
 785     case Assembler::stf_op3:  st_op = Op_StoreF; break;
 786     case Assembler::stdf_op3: st_op = Op_StoreD; break;
 787 
 788     case Assembler::ldsb_op3: ld_op = Op_LoadB; break;
 789     case Assembler::lduh_op3: ld_op = Op_LoadUS; break;
 790     case Assembler::ldsh_op3: ld_op = Op_LoadS; break;
 791     case Assembler::ldx_op3:  // may become LoadP or stay LoadI
 792     case Assembler::ldsw_op3: // may become LoadP or stay LoadI
 793     case Assembler::lduw_op3: ld_op = Op_LoadI; break;
 794     case Assembler::ldd_op3:  ld_op = Op_LoadL; break;
 795     case Assembler::ldf_op3:  ld_op = Op_LoadF; break;
 796     case Assembler::lddf_op3: ld_op = Op_LoadD; break;
 797     case Assembler::ldub_op3: ld_op = Op_LoadB; break;
 798     case Assembler::prefetch_op3: ld_op = Op_LoadI; break;
 799 
 800     default: ShouldNotReachHere();
 801     }
 802     if (tertiary == REGP_OP) {
 803       if      (st_op == Op_StoreI)  st_op = Op_StoreP;
 804       else if (ld_op == Op_LoadI)   ld_op = Op_LoadP;
 805       else                          ShouldNotReachHere();
 806       if (st_op) {
 807         // a store
 808         // inputs are (0:control, 1:memory, 2:address, 3:value)
 809         Node* n2 = n->in(3);
 810         if (n2 != NULL) {
 811           const Type* t = n2->bottom_type();
 812           is_verified_oop_store = t->isa_oop_ptr() ? (t->is_ptr()->_offset==0) : false;
 813         }
 814       } else {
 815         // a load
 816         const Type* t = n->bottom_type();
 817         is_verified_oop_load = t->isa_oop_ptr() ? (t->is_ptr()->_offset==0) : false;
 818       }
 819     }
 820 
 821     if (ld_op) {
 822       // a Load
 823       // inputs are (0:control, 1:memory, 2:address)
 824       if (!(n->ideal_Opcode()==ld_op)       && // Following are special cases
 825           !(n->ideal_Opcode()==Op_LoadLLocked && ld_op==Op_LoadI) &&
 826           !(n->ideal_Opcode()==Op_LoadPLocked && ld_op==Op_LoadP) &&
 827           !(n->ideal_Opcode()==Op_LoadI     && ld_op==Op_LoadF) &&
 828           !(n->ideal_Opcode()==Op_LoadF     && ld_op==Op_LoadI) &&
 829           !(n->ideal_Opcode()==Op_LoadRange && ld_op==Op_LoadI) &&
 830           !(n->ideal_Opcode()==Op_LoadKlass && ld_op==Op_LoadP) &&
 831           !(n->ideal_Opcode()==Op_LoadL     && ld_op==Op_LoadI) &&
 832           !(n->ideal_Opcode()==Op_LoadL_unaligned && ld_op==Op_LoadI) &&
 833           !(n->ideal_Opcode()==Op_LoadD_unaligned && ld_op==Op_LoadF) &&
 834           !(n->ideal_Opcode()==Op_ConvI2F   && ld_op==Op_LoadF) &&
 835           !(n->ideal_Opcode()==Op_ConvI2D   && ld_op==Op_LoadF) &&
 836           !(n->ideal_Opcode()==Op_PrefetchRead  && ld_op==Op_LoadI) &&
 837           !(n->ideal_Opcode()==Op_PrefetchWrite && ld_op==Op_LoadI) &&
 838           !(n->ideal_Opcode()==Op_Load2I    && ld_op==Op_LoadD) &&
 839           !(n->ideal_Opcode()==Op_Load4C    && ld_op==Op_LoadD) &&
 840           !(n->ideal_Opcode()==Op_Load4S    && ld_op==Op_LoadD) &&
 841           !(n->ideal_Opcode()==Op_Load8B    && ld_op==Op_LoadD) &&
 842           !(n->rule() == loadUB_rule)) {
 843         verify_oops_warning(n, n->ideal_Opcode(), ld_op);
 844       }
 845     } else if (st_op) {
 846       // a Store
 847       // inputs are (0:control, 1:memory, 2:address, 3:value)
 848       if (!(n->ideal_Opcode()==st_op)    && // Following are special cases
 849           !(n->ideal_Opcode()==Op_StoreCM && st_op==Op_StoreB) &&
 850           !(n->ideal_Opcode()==Op_StoreI && st_op==Op_StoreF) &&
 851           !(n->ideal_Opcode()==Op_StoreF && st_op==Op_StoreI) &&
 852           !(n->ideal_Opcode()==Op_StoreL && st_op==Op_StoreI) &&
 853           !(n->ideal_Opcode()==Op_Store2I && st_op==Op_StoreD) &&
 854           !(n->ideal_Opcode()==Op_Store4C && st_op==Op_StoreD) &&
 855           !(n->ideal_Opcode()==Op_Store8B && st_op==Op_StoreD) &&
 856           !(n->ideal_Opcode()==Op_StoreD && st_op==Op_StoreI && n->rule() == storeD0_rule)) {
 857         verify_oops_warning(n, n->ideal_Opcode(), st_op);
 858       }
 859     }
 860 
 861     if (src2_enc == R_G0_enc && n->rule() != loadUB_rule && n->ideal_Opcode() != Op_StoreCM ) {
 862       Node* addr = n->in(2);
 863       if (!(addr->is_Mach() && addr->as_Mach()->ideal_Opcode() == Op_AddP)) {
 864         const TypeOopPtr* atype = addr->bottom_type()->isa_instptr();  // %%% oopptr?
 865         if (atype != NULL) {
 866           intptr_t offset = get_offset_from_base(n, atype, disp32);
 867           intptr_t offset_2 = get_offset_from_base_2(n, atype, disp32);
 868           if (offset != offset_2) {
 869             get_offset_from_base(n, atype, disp32);
 870             get_offset_from_base_2(n, atype, disp32);
 871           }
 872           assert(offset == offset_2, "different offsets");
 873           if (offset == disp32) {
 874             // we now know that src1 is a true oop pointer
 875             is_verified_oop_base = true;
 876             if (ld_op && src1_enc == dst_enc && ld_op != Op_LoadF && ld_op != Op_LoadD) {
 877               if( primary == Assembler::ldd_op3 ) {
 878                 is_verified_oop_base = false; // Cannot 'ldd' into O7
 879               } else {
 880                 tmp_enc = dst_enc;
 881                 dst_enc = R_O7_enc; // Load into O7; preserve source oop
 882                 assert(src1_enc != dst_enc, "");
 883               }
 884             }
 885           }
 886           if (st_op && (( offset == oopDesc::klass_offset_in_bytes())
 887                        || offset == oopDesc::mark_offset_in_bytes())) {
 888                       // loading the mark should not be allowed either, but
 889                       // we don't check this since it conflicts with InlineObjectHash
 890                       // usage of LoadINode to get the mark. We could keep the
 891                       // check if we create a new LoadMarkNode
 892             // but do not verify the object before its header is initialized
 893             ShouldNotReachHere();
 894           }
 895         }
 896       }
 897     }
 898   }
 899 #endif
 900 
 901   uint instr;
 902   instr = (Assembler::ldst_op << 30)
 903         | (dst_enc        << 25)
 904         | (primary        << 19)
 905         | (src1_enc       << 14);
 906 
 907   uint index = src2_enc;
 908   int disp = disp32;
 909 
 910   if (src1_enc == R_SP_enc || src1_enc == R_FP_enc)
 911     disp += STACK_BIAS;
 912 
 913   // We should have a compiler bailout here rather than a guarantee.
 914   // Better yet would be some mechanism to handle variable-size matches correctly.
 915   guarantee(Assembler::is_simm13(disp), "Do not match large constant offsets" );
 916 
 917   if( disp == 0 ) {
 918     // use reg-reg form
 919     // bit 13 is already zero
 920     instr |= index;
 921   } else {
 922     // use reg-imm form
 923     instr |= 0x00002000;          // set bit 13 to one
 924     instr |= disp & 0x1FFF;
 925   }
 926 
 927   cbuf.insts()->emit_int32(instr);
 928 
 929 #ifdef ASSERT
 930   {
 931     MacroAssembler _masm(&cbuf);
 932     if (is_verified_oop_base) {
 933       __ verify_oop(reg_to_register_object(src1_enc));
 934     }
 935     if (is_verified_oop_store) {
 936       __ verify_oop(reg_to_register_object(dst_enc));
 937     }
 938     if (tmp_enc != -1) {
 939       __ mov(O7, reg_to_register_object(tmp_enc));
 940     }
 941     if (is_verified_oop_load) {
 942       __ verify_oop(reg_to_register_object(dst_enc));
 943     }
 944   }
 945 #endif
 946 }
 947 
 948 void emit_call_reloc(CodeBuffer &cbuf, intptr_t entry_point, relocInfo::relocType rtype, bool preserve_g2 = false) {
 949   // The method which records debug information at every safepoint
 950   // expects the call to be the first instruction in the snippet as
 951   // it creates a PcDesc structure which tracks the offset of a call
 952   // from the start of the codeBlob. This offset is computed as
 953   // code_end() - code_begin() of the code which has been emitted
 954   // so far.
 955   // In this particular case we have skirted around the problem by
 956   // putting the "mov" instruction in the delay slot but the problem
 957   // may bite us again at some other point and a cleaner/generic
 958   // solution using relocations would be needed.
 959   MacroAssembler _masm(&cbuf);
 960   __ set_inst_mark();
 961 
 962   // We flush the current window just so that there is a valid stack copy
 963   // the fact that the current window becomes active again instantly is
 964   // not a problem there is nothing live in it.
 965 
 966 #ifdef ASSERT
 967   int startpos = __ offset();
 968 #endif /* ASSERT */
 969 
 970   __ call((address)entry_point, rtype);
 971 
 972   if (preserve_g2)   __ delayed()->mov(G2, L7);
 973   else __ delayed()->nop();
 974 
 975   if (preserve_g2)   __ mov(L7, G2);
 976 
 977 #ifdef ASSERT
 978   if (preserve_g2 && (VerifyCompiledCode || VerifyOops)) {
 979 #ifdef _LP64
 980     // Trash argument dump slots.
 981     __ set(0xb0b8ac0db0b8ac0d, G1);
 982     __ mov(G1, G5);
 983     __ stx(G1, SP, STACK_BIAS + 0x80);
 984     __ stx(G1, SP, STACK_BIAS + 0x88);
 985     __ stx(G1, SP, STACK_BIAS + 0x90);
 986     __ stx(G1, SP, STACK_BIAS + 0x98);
 987     __ stx(G1, SP, STACK_BIAS + 0xA0);
 988     __ stx(G1, SP, STACK_BIAS + 0xA8);
 989 #else // _LP64
 990     // this is also a native call, so smash the first 7 stack locations,
 991     // and the various registers
 992 
 993     // Note:  [SP+0x40] is sp[callee_aggregate_return_pointer_sp_offset],
 994     // while [SP+0x44..0x58] are the argument dump slots.
 995     __ set((intptr_t)0xbaadf00d, G1);
 996     __ mov(G1, G5);
 997     __ sllx(G1, 32, G1);
 998     __ or3(G1, G5, G1);
 999     __ mov(G1, G5);
1000     __ stx(G1, SP, 0x40);
1001     __ stx(G1, SP, 0x48);
1002     __ stx(G1, SP, 0x50);
1003     __ stw(G1, SP, 0x58); // Do not trash [SP+0x5C] which is a usable spill slot
1004 #endif // _LP64
1005   }
1006 #endif /*ASSERT*/
1007 }
1008 
1009 //=============================================================================
1010 // REQUIRED FUNCTIONALITY for encoding
1011 void emit_lo(CodeBuffer &cbuf, int val) {  }
1012 void emit_hi(CodeBuffer &cbuf, int val) {  }
1013 
1014 
1015 //=============================================================================
1016 const bool Matcher::constant_table_absolute_addressing = false;
1017 const RegMask& MachConstantBaseNode::_out_RegMask = PTR_REG_mask;
1018 
1019 void MachConstantBaseNode::emit(CodeBuffer& cbuf, PhaseRegAlloc* ra_) const {
1020   Compile* C = ra_->C;
1021   Compile::ConstantTable& constant_table = C->constant_table();
1022   MacroAssembler _masm(&cbuf);
1023 
1024   Register r = as_Register(ra_->get_encode(this));
1025   CodeSection* cs = __ code()->consts();
1026   int consts_size = cs->align_at_start(cs->size());
1027 
1028   if (UseRDPCForConstantTableBase) {
1029     // For the following RDPC logic to work correctly the consts
1030     // section must be allocated right before the insts section.  This
1031     // assert checks for that.  The layout and the SECT_* constants
1032     // are defined in src/share/vm/asm/codeBuffer.hpp.
1033     assert(CodeBuffer::SECT_CONSTS + 1 == CodeBuffer::SECT_INSTS, "must be");
1034     int offset = __ offset();
1035     int disp;
1036 
1037     // If the displacement from the current PC to the constant table
1038     // base fits into simm13 we set the constant table base to the
1039     // current PC.
1040     if (__ is_simm13(-(consts_size + offset))) {
1041       constant_table.set_table_base_offset(-(consts_size + offset));
1042       disp = 0;
1043     } else {
1044       // If the offset of the top constant (last entry in the table)
1045       // fits into simm13 we set the constant table base to the actual
1046       // table base.
1047       if (__ is_simm13(constant_table.top_offset())) {
1048         constant_table.set_table_base_offset(0);
1049         disp = consts_size + offset;
1050       } else {
1051         // Otherwise we set the constant table base in the middle of the
1052         // constant table.
1053         int half_consts_size = consts_size / 2;
1054         assert(half_consts_size * 2 == consts_size, "sanity");
1055         constant_table.set_table_base_offset(-half_consts_size);  // table base offset gets added to the load displacement.
1056         disp = half_consts_size + offset;
1057       }
1058     }
1059 
1060     __ rdpc(r);
1061 
1062     if (disp != 0) {
1063       assert(r != O7, "need temporary");
1064       __ sub(r, __ ensure_simm13_or_reg(disp, O7), r);
1065     }
1066   }
1067   else {
1068     // Materialize the constant table base.
1069     assert(constant_table.size() == consts_size, err_msg("must be: %d == %d", constant_table.size(), consts_size));
1070     address baseaddr = cs->start() + -(constant_table.table_base_offset());
1071     RelocationHolder rspec = internal_word_Relocation::spec(baseaddr);
1072     AddressLiteral base(baseaddr, rspec);
1073     __ set(base, r);
1074   }
1075 }
1076 
1077 uint MachConstantBaseNode::size(PhaseRegAlloc*) const {
1078   if (UseRDPCForConstantTableBase) {
1079     // This is really the worst case but generally it's only 1 instruction.
1080     return (1 /*rdpc*/ + 1 /*sub*/ + MacroAssembler::worst_case_insts_for_set()) * BytesPerInstWord;
1081   } else {
1082     return MacroAssembler::worst_case_insts_for_set() * BytesPerInstWord;
1083   }
1084 }
1085 
1086 #ifndef PRODUCT
1087 void MachConstantBaseNode::format(PhaseRegAlloc* ra_, outputStream* st) const {
1088   char reg[128];
1089   ra_->dump_register(this, reg);
1090   if (UseRDPCForConstantTableBase) {
1091     st->print("RDPC   %s\t! constant table base", reg);
1092   } else {
1093     st->print("SET    &constanttable,%s\t! constant table base", reg);
1094   }
1095 }
1096 #endif
1097 
1098 
1099 //=============================================================================
1100 
1101 #ifndef PRODUCT
1102 void MachPrologNode::format( PhaseRegAlloc *ra_, outputStream *st ) const {
1103   Compile* C = ra_->C;
1104 
1105   for (int i = 0; i < OptoPrologueNops; i++) {
1106     st->print_cr("NOP"); st->print("\t");
1107   }
1108 
1109   if( VerifyThread ) {
1110     st->print_cr("Verify_Thread"); st->print("\t");
1111   }
1112 
1113   size_t framesize = C->frame_slots() << LogBytesPerInt;
1114 
1115   // Calls to C2R adapters often do not accept exceptional returns.
1116   // We require that their callers must bang for them.  But be careful, because
1117   // some VM calls (such as call site linkage) can use several kilobytes of
1118   // stack.  But the stack safety zone should account for that.
1119   // See bugs 4446381, 4468289, 4497237.
1120   if (C->need_stack_bang(framesize)) {
1121     st->print_cr("! stack bang"); st->print("\t");
1122   }
1123 
1124   if (Assembler::is_simm13(-framesize)) {
1125     st->print   ("SAVE   R_SP,-%d,R_SP",framesize);
1126   } else {
1127     st->print_cr("SETHI  R_SP,hi%%(-%d),R_G3",framesize); st->print("\t");
1128     st->print_cr("ADD    R_G3,lo%%(-%d),R_G3",framesize); st->print("\t");
1129     st->print   ("SAVE   R_SP,R_G3,R_SP");
1130   }
1131 
1132 }
1133 #endif
1134 
1135 void MachPrologNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
1136   Compile* C = ra_->C;
1137   MacroAssembler _masm(&cbuf);
1138 
1139   for (int i = 0; i < OptoPrologueNops; i++) {
1140     __ nop();
1141   }
1142 
1143   __ verify_thread();
1144 
1145   size_t framesize = C->frame_slots() << LogBytesPerInt;
1146   assert(framesize >= 16*wordSize, "must have room for reg. save area");
1147   assert(framesize%(2*wordSize) == 0, "must preserve 2*wordSize alignment");
1148 
1149   // Calls to C2R adapters often do not accept exceptional returns.
1150   // We require that their callers must bang for them.  But be careful, because
1151   // some VM calls (such as call site linkage) can use several kilobytes of
1152   // stack.  But the stack safety zone should account for that.
1153   // See bugs 4446381, 4468289, 4497237.
1154   if (C->need_stack_bang(framesize)) {
1155     __ generate_stack_overflow_check(framesize);
1156   }
1157 
1158   if (Assembler::is_simm13(-framesize)) {
1159     __ save(SP, -framesize, SP);
1160   } else {
1161     __ sethi(-framesize & ~0x3ff, G3);
1162     __ add(G3, -framesize & 0x3ff, G3);
1163     __ save(SP, G3, SP);
1164   }
1165   C->set_frame_complete( __ offset() );
1166 }
1167 
1168 uint MachPrologNode::size(PhaseRegAlloc *ra_) const {
1169   return MachNode::size(ra_);
1170 }
1171 
1172 int MachPrologNode::reloc() const {
1173   return 10; // a large enough number
1174 }
1175 
1176 //=============================================================================
1177 #ifndef PRODUCT
1178 void MachEpilogNode::format( PhaseRegAlloc *ra_, outputStream *st ) const {
1179   Compile* C = ra_->C;
1180 
1181   if( do_polling() && ra_->C->is_method_compilation() ) {
1182     st->print("SETHI  #PollAddr,L0\t! Load Polling address\n\t");
1183 #ifdef _LP64
1184     st->print("LDX    [L0],G0\t!Poll for Safepointing\n\t");
1185 #else
1186     st->print("LDUW   [L0],G0\t!Poll for Safepointing\n\t");
1187 #endif
1188   }
1189 
1190   if( do_polling() )
1191     st->print("RET\n\t");
1192 
1193   st->print("RESTORE");
1194 }
1195 #endif
1196 
1197 void MachEpilogNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
1198   MacroAssembler _masm(&cbuf);
1199   Compile* C = ra_->C;
1200 
1201   __ verify_thread();
1202 
1203   // If this does safepoint polling, then do it here
1204   if( do_polling() && ra_->C->is_method_compilation() ) {
1205     AddressLiteral polling_page(os::get_polling_page());
1206     __ sethi(polling_page, L0);
1207     __ relocate(relocInfo::poll_return_type);
1208     __ ld_ptr( L0, 0, G0 );
1209   }
1210 
1211   // If this is a return, then stuff the restore in the delay slot
1212   if( do_polling() ) {
1213     __ ret();
1214     __ delayed()->restore();
1215   } else {
1216     __ restore();
1217   }
1218 }
1219 
1220 uint MachEpilogNode::size(PhaseRegAlloc *ra_) const {
1221   return MachNode::size(ra_);
1222 }
1223 
1224 int MachEpilogNode::reloc() const {
1225   return 16; // a large enough number
1226 }
1227 
1228 const Pipeline * MachEpilogNode::pipeline() const {
1229   return MachNode::pipeline_class();
1230 }
1231 
1232 int MachEpilogNode::safepoint_offset() const {
1233   assert( do_polling(), "no return for this epilog node");
1234   return MacroAssembler::insts_for_sethi(os::get_polling_page()) * BytesPerInstWord;
1235 }
1236 
1237 //=============================================================================
1238 
1239 // Figure out which register class each belongs in: rc_int, rc_float, rc_stack
1240 enum RC { rc_bad, rc_int, rc_float, rc_stack };
1241 static enum RC rc_class( OptoReg::Name reg ) {
1242   if( !OptoReg::is_valid(reg)  ) return rc_bad;
1243   if (OptoReg::is_stack(reg)) return rc_stack;
1244   VMReg r = OptoReg::as_VMReg(reg);
1245   if (r->is_Register()) return rc_int;
1246   assert(r->is_FloatRegister(), "must be");
1247   return rc_float;
1248 }
1249 
1250 static int impl_helper( const MachNode *mach, CodeBuffer *cbuf, PhaseRegAlloc *ra_, bool do_size, bool is_load, int offset, int reg, int opcode, const char *op_str, int size, outputStream* st ) {
1251   if( cbuf ) {
1252     // Better yet would be some mechanism to handle variable-size matches correctly
1253     if (!Assembler::is_simm13(offset + STACK_BIAS)) {
1254       ra_->C->record_method_not_compilable("unable to handle large constant offsets");
1255     } else {
1256       emit_form3_mem_reg(*cbuf, mach, opcode, -1, R_SP_enc, offset, 0, Matcher::_regEncode[reg]);
1257     }
1258   }
1259 #ifndef PRODUCT
1260   else if( !do_size ) {
1261     if( size != 0 ) st->print("\n\t");
1262     if( is_load ) st->print("%s   [R_SP + #%d],R_%s\t! spill",op_str,offset,OptoReg::regname(reg));
1263     else          st->print("%s   R_%s,[R_SP + #%d]\t! spill",op_str,OptoReg::regname(reg),offset);
1264   }
1265 #endif
1266   return size+4;
1267 }
1268 
1269 static int impl_mov_helper( CodeBuffer *cbuf, bool do_size, int src, int dst, int op1, int op2, const char *op_str, int size, outputStream* st ) {
1270   if( cbuf ) emit3( *cbuf, Assembler::arith_op, Matcher::_regEncode[dst], op1, 0, op2, Matcher::_regEncode[src] );
1271 #ifndef PRODUCT
1272   else if( !do_size ) {
1273     if( size != 0 ) st->print("\n\t");
1274     st->print("%s  R_%s,R_%s\t! spill",op_str,OptoReg::regname(src),OptoReg::regname(dst));
1275   }
1276 #endif
1277   return size+4;
1278 }
1279 
1280 uint MachSpillCopyNode::implementation( CodeBuffer *cbuf,
1281                                         PhaseRegAlloc *ra_,
1282                                         bool do_size,
1283                                         outputStream* st ) const {
1284   // Get registers to move
1285   OptoReg::Name src_second = ra_->get_reg_second(in(1));
1286   OptoReg::Name src_first = ra_->get_reg_first(in(1));
1287   OptoReg::Name dst_second = ra_->get_reg_second(this );
1288   OptoReg::Name dst_first = ra_->get_reg_first(this );
1289 
1290   enum RC src_second_rc = rc_class(src_second);
1291   enum RC src_first_rc = rc_class(src_first);
1292   enum RC dst_second_rc = rc_class(dst_second);
1293   enum RC dst_first_rc = rc_class(dst_first);
1294 
1295   assert( OptoReg::is_valid(src_first) && OptoReg::is_valid(dst_first), "must move at least 1 register" );
1296 
1297   // Generate spill code!
1298   int size = 0;
1299 
1300   if( src_first == dst_first && src_second == dst_second )
1301     return size;            // Self copy, no move
1302 
1303   // --------------------------------------
1304   // Check for mem-mem move.  Load into unused float registers and fall into
1305   // the float-store case.
1306   if( src_first_rc == rc_stack && dst_first_rc == rc_stack ) {
1307     int offset = ra_->reg2offset(src_first);
1308     // Further check for aligned-adjacent pair, so we can use a double load
1309     if( (src_first&1)==0 && src_first+1 == src_second ) {
1310       src_second    = OptoReg::Name(R_F31_num);
1311       src_second_rc = rc_float;
1312       size = impl_helper(this,cbuf,ra_,do_size,true,offset,R_F30_num,Assembler::lddf_op3,"LDDF",size, st);
1313     } else {
1314       size = impl_helper(this,cbuf,ra_,do_size,true,offset,R_F30_num,Assembler::ldf_op3 ,"LDF ",size, st);
1315     }
1316     src_first    = OptoReg::Name(R_F30_num);
1317     src_first_rc = rc_float;
1318   }
1319 
1320   if( src_second_rc == rc_stack && dst_second_rc == rc_stack ) {
1321     int offset = ra_->reg2offset(src_second);
1322     size = impl_helper(this,cbuf,ra_,do_size,true,offset,R_F31_num,Assembler::ldf_op3,"LDF ",size, st);
1323     src_second    = OptoReg::Name(R_F31_num);
1324     src_second_rc = rc_float;
1325   }
1326 
1327   // --------------------------------------
1328   // Check for float->int copy; requires a trip through memory
1329   if( src_first_rc == rc_float && dst_first_rc == rc_int ) {
1330     int offset = frame::register_save_words*wordSize;
1331     if( cbuf ) {
1332       emit3_simm13( *cbuf, Assembler::arith_op, R_SP_enc, Assembler::sub_op3, R_SP_enc, 16 );
1333       impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stf_op3 ,"STF ",size, st);
1334       impl_helper(this,cbuf,ra_,do_size,true ,offset,dst_first,Assembler::lduw_op3,"LDUW",size, st);
1335       emit3_simm13( *cbuf, Assembler::arith_op, R_SP_enc, Assembler::add_op3, R_SP_enc, 16 );
1336     }
1337 #ifndef PRODUCT
1338     else if( !do_size ) {
1339       if( size != 0 ) st->print("\n\t");
1340       st->print(  "SUB    R_SP,16,R_SP\n");
1341       impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stf_op3 ,"STF ",size, st);
1342       impl_helper(this,cbuf,ra_,do_size,true ,offset,dst_first,Assembler::lduw_op3,"LDUW",size, st);
1343       st->print("\tADD    R_SP,16,R_SP\n");
1344     }
1345 #endif
1346     size += 16;
1347   }
1348 
1349   // --------------------------------------
1350   // In the 32-bit 1-reg-longs build ONLY, I see mis-aligned long destinations.
1351   // In such cases, I have to do the big-endian swap.  For aligned targets, the
1352   // hardware does the flop for me.  Doubles are always aligned, so no problem
1353   // there.  Misaligned sources only come from native-long-returns (handled
1354   // special below).
1355 #ifndef _LP64
1356   if( src_first_rc == rc_int &&     // source is already big-endian
1357       src_second_rc != rc_bad &&    // 64-bit move
1358       ((dst_first&1)!=0 || dst_second != dst_first+1) ) { // misaligned dst
1359     assert( (src_first&1)==0 && src_second == src_first+1, "source must be aligned" );
1360     // Do the big-endian flop.
1361     OptoReg::Name tmp    = dst_first   ; dst_first    = dst_second   ; dst_second    = tmp   ;
1362     enum RC       tmp_rc = dst_first_rc; dst_first_rc = dst_second_rc; dst_second_rc = tmp_rc;
1363   }
1364 #endif
1365 
1366   // --------------------------------------
1367   // Check for integer reg-reg copy
1368   if( src_first_rc == rc_int && dst_first_rc == rc_int ) {
1369 #ifndef _LP64
1370     if( src_first == R_O0_num && src_second == R_O1_num ) {  // Check for the evil O0/O1 native long-return case
1371       // Note: The _first and _second suffixes refer to the addresses of the the 2 halves of the 64-bit value
1372       //       as stored in memory.  On a big-endian machine like SPARC, this means that the _second
1373       //       operand contains the least significant word of the 64-bit value and vice versa.
1374       OptoReg::Name tmp = OptoReg::Name(R_O7_num);
1375       assert( (dst_first&1)==0 && dst_second == dst_first+1, "return a native O0/O1 long to an aligned-adjacent 64-bit reg" );
1376       // Shift O0 left in-place, zero-extend O1, then OR them into the dst
1377       if( cbuf ) {
1378         emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[tmp], Assembler::sllx_op3, Matcher::_regEncode[src_first], 0x1020 );
1379         emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[src_second], Assembler::srl_op3, Matcher::_regEncode[src_second], 0x0000 );
1380         emit3       ( *cbuf, Assembler::arith_op, Matcher::_regEncode[dst_first], Assembler:: or_op3, Matcher::_regEncode[tmp], 0, Matcher::_regEncode[src_second] );
1381 #ifndef PRODUCT
1382       } else if( !do_size ) {
1383         if( size != 0 ) st->print("\n\t");
1384         st->print("SLLX   R_%s,32,R_%s\t! Move O0-first to O7-high\n\t", OptoReg::regname(src_first), OptoReg::regname(tmp));
1385         st->print("SRL    R_%s, 0,R_%s\t! Zero-extend O1\n\t", OptoReg::regname(src_second), OptoReg::regname(src_second));
1386         st->print("OR     R_%s,R_%s,R_%s\t! spill",OptoReg::regname(tmp), OptoReg::regname(src_second), OptoReg::regname(dst_first));
1387 #endif
1388       }
1389       return size+12;
1390     }
1391     else if( dst_first == R_I0_num && dst_second == R_I1_num ) {
1392       // returning a long value in I0/I1
1393       // a SpillCopy must be able to target a return instruction's reg_class
1394       // Note: The _first and _second suffixes refer to the addresses of the the 2 halves of the 64-bit value
1395       //       as stored in memory.  On a big-endian machine like SPARC, this means that the _second
1396       //       operand contains the least significant word of the 64-bit value and vice versa.
1397       OptoReg::Name tdest = dst_first;
1398 
1399       if (src_first == dst_first) {
1400         tdest = OptoReg::Name(R_O7_num);
1401         size += 4;
1402       }
1403 
1404       if( cbuf ) {
1405         assert( (src_first&1) == 0 && (src_first+1) == src_second, "return value was in an aligned-adjacent 64-bit reg");
1406         // Shift value in upper 32-bits of src to lower 32-bits of I0; move lower 32-bits to I1
1407         // ShrL_reg_imm6
1408         emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[tdest], Assembler::srlx_op3, Matcher::_regEncode[src_second], 32 | 0x1000 );
1409         // ShrR_reg_imm6  src, 0, dst
1410         emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[dst_second], Assembler::srl_op3, Matcher::_regEncode[src_first], 0x0000 );
1411         if (tdest != dst_first) {
1412           emit3     ( *cbuf, Assembler::arith_op, Matcher::_regEncode[dst_first], Assembler::or_op3, 0/*G0*/, 0/*op2*/, Matcher::_regEncode[tdest] );
1413         }
1414       }
1415 #ifndef PRODUCT
1416       else if( !do_size ) {
1417         if( size != 0 ) st->print("\n\t");  // %%%%% !!!!!
1418         st->print("SRLX   R_%s,32,R_%s\t! Extract MSW\n\t",OptoReg::regname(src_second),OptoReg::regname(tdest));
1419         st->print("SRL    R_%s, 0,R_%s\t! Extract LSW\n\t",OptoReg::regname(src_first),OptoReg::regname(dst_second));
1420         if (tdest != dst_first) {
1421           st->print("MOV    R_%s,R_%s\t! spill\n\t", OptoReg::regname(tdest), OptoReg::regname(dst_first));
1422         }
1423       }
1424 #endif // PRODUCT
1425       return size+8;
1426     }
1427 #endif // !_LP64
1428     // Else normal reg-reg copy
1429     assert( src_second != dst_first, "smashed second before evacuating it" );
1430     size = impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::or_op3,0,"MOV  ",size, st);
1431     assert( (src_first&1) == 0 && (dst_first&1) == 0, "never move second-halves of int registers" );
1432     // This moves an aligned adjacent pair.
1433     // See if we are done.
1434     if( src_first+1 == src_second && dst_first+1 == dst_second )
1435       return size;
1436   }
1437 
1438   // Check for integer store
1439   if( src_first_rc == rc_int && dst_first_rc == rc_stack ) {
1440     int offset = ra_->reg2offset(dst_first);
1441     // Further check for aligned-adjacent pair, so we can use a double store
1442     if( (src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second )
1443       return impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stx_op3,"STX ",size, st);
1444     size  =  impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stw_op3,"STW ",size, st);
1445   }
1446 
1447   // Check for integer load
1448   if( dst_first_rc == rc_int && src_first_rc == rc_stack ) {
1449     int offset = ra_->reg2offset(src_first);
1450     // Further check for aligned-adjacent pair, so we can use a double load
1451     if( (src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second )
1452       return impl_helper(this,cbuf,ra_,do_size,true,offset,dst_first,Assembler::ldx_op3 ,"LDX ",size, st);
1453     size  =  impl_helper(this,cbuf,ra_,do_size,true,offset,dst_first,Assembler::lduw_op3,"LDUW",size, st);
1454   }
1455 
1456   // Check for float reg-reg copy
1457   if( src_first_rc == rc_float && dst_first_rc == rc_float ) {
1458     // Further check for aligned-adjacent pair, so we can use a double move
1459     if( (src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second )
1460       return impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::fpop1_op3,Assembler::fmovd_opf,"FMOVD",size, st);
1461     size  =  impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::fpop1_op3,Assembler::fmovs_opf,"FMOVS",size, st);
1462   }
1463 
1464   // Check for float store
1465   if( src_first_rc == rc_float && dst_first_rc == rc_stack ) {
1466     int offset = ra_->reg2offset(dst_first);
1467     // Further check for aligned-adjacent pair, so we can use a double store
1468     if( (src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second )
1469       return impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stdf_op3,"STDF",size, st);
1470     size  =  impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stf_op3 ,"STF ",size, st);
1471   }
1472 
1473   // Check for float load
1474   if( dst_first_rc == rc_float && src_first_rc == rc_stack ) {
1475     int offset = ra_->reg2offset(src_first);
1476     // Further check for aligned-adjacent pair, so we can use a double load
1477     if( (src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second )
1478       return impl_helper(this,cbuf,ra_,do_size,true,offset,dst_first,Assembler::lddf_op3,"LDDF",size, st);
1479     size  =  impl_helper(this,cbuf,ra_,do_size,true,offset,dst_first,Assembler::ldf_op3 ,"LDF ",size, st);
1480   }
1481 
1482   // --------------------------------------------------------------------
1483   // Check for hi bits still needing moving.  Only happens for misaligned
1484   // arguments to native calls.
1485   if( src_second == dst_second )
1486     return size;               // Self copy; no move
1487   assert( src_second_rc != rc_bad && dst_second_rc != rc_bad, "src_second & dst_second cannot be Bad" );
1488 
1489 #ifndef _LP64
1490   // In the LP64 build, all registers can be moved as aligned/adjacent
1491   // pairs, so there's never any need to move the high bits separately.
1492   // The 32-bit builds have to deal with the 32-bit ABI which can force
1493   // all sorts of silly alignment problems.
1494 
1495   // Check for integer reg-reg copy.  Hi bits are stuck up in the top
1496   // 32-bits of a 64-bit register, but are needed in low bits of another
1497   // register (else it's a hi-bits-to-hi-bits copy which should have
1498   // happened already as part of a 64-bit move)
1499   if( src_second_rc == rc_int && dst_second_rc == rc_int ) {
1500     assert( (src_second&1)==1, "its the evil O0/O1 native return case" );
1501     assert( (dst_second&1)==0, "should have moved with 1 64-bit move" );
1502     // Shift src_second down to dst_second's low bits.
1503     if( cbuf ) {
1504       emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[dst_second], Assembler::srlx_op3, Matcher::_regEncode[src_second-1], 0x1020 );
1505 #ifndef PRODUCT
1506     } else if( !do_size ) {
1507       if( size != 0 ) st->print("\n\t");
1508       st->print("SRLX   R_%s,32,R_%s\t! spill: Move high bits down low",OptoReg::regname(src_second-1),OptoReg::regname(dst_second));
1509 #endif
1510     }
1511     return size+4;
1512   }
1513 
1514   // Check for high word integer store.  Must down-shift the hi bits
1515   // into a temp register, then fall into the case of storing int bits.
1516   if( src_second_rc == rc_int && dst_second_rc == rc_stack && (src_second&1)==1 ) {
1517     // Shift src_second down to dst_second's low bits.
1518     if( cbuf ) {
1519       emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[R_O7_num], Assembler::srlx_op3, Matcher::_regEncode[src_second-1], 0x1020 );
1520 #ifndef PRODUCT
1521     } else if( !do_size ) {
1522       if( size != 0 ) st->print("\n\t");
1523       st->print("SRLX   R_%s,32,R_%s\t! spill: Move high bits down low",OptoReg::regname(src_second-1),OptoReg::regname(R_O7_num));
1524 #endif
1525     }
1526     size+=4;
1527     src_second = OptoReg::Name(R_O7_num); // Not R_O7H_num!
1528   }
1529 
1530   // Check for high word integer load
1531   if( dst_second_rc == rc_int && src_second_rc == rc_stack )
1532     return impl_helper(this,cbuf,ra_,do_size,true ,ra_->reg2offset(src_second),dst_second,Assembler::lduw_op3,"LDUW",size, st);
1533 
1534   // Check for high word integer store
1535   if( src_second_rc == rc_int && dst_second_rc == rc_stack )
1536     return impl_helper(this,cbuf,ra_,do_size,false,ra_->reg2offset(dst_second),src_second,Assembler::stw_op3 ,"STW ",size, st);
1537 
1538   // Check for high word float store
1539   if( src_second_rc == rc_float && dst_second_rc == rc_stack )
1540     return impl_helper(this,cbuf,ra_,do_size,false,ra_->reg2offset(dst_second),src_second,Assembler::stf_op3 ,"STF ",size, st);
1541 
1542 #endif // !_LP64
1543 
1544   Unimplemented();
1545 }
1546 
1547 #ifndef PRODUCT
1548 void MachSpillCopyNode::format( PhaseRegAlloc *ra_, outputStream *st ) const {
1549   implementation( NULL, ra_, false, st );
1550 }
1551 #endif
1552 
1553 void MachSpillCopyNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
1554   implementation( &cbuf, ra_, false, NULL );
1555 }
1556 
1557 uint MachSpillCopyNode::size(PhaseRegAlloc *ra_) const {
1558   return implementation( NULL, ra_, true, NULL );
1559 }
1560 
1561 //=============================================================================
1562 #ifndef PRODUCT
1563 void MachNopNode::format( PhaseRegAlloc *, outputStream *st ) const {
1564   st->print("NOP \t# %d bytes pad for loops and calls", 4 * _count);
1565 }
1566 #endif
1567 
1568 void MachNopNode::emit(CodeBuffer &cbuf, PhaseRegAlloc * ) const {
1569   MacroAssembler _masm(&cbuf);
1570   for(int i = 0; i < _count; i += 1) {
1571     __ nop();
1572   }
1573 }
1574 
1575 uint MachNopNode::size(PhaseRegAlloc *ra_) const {
1576   return 4 * _count;
1577 }
1578 
1579 
1580 //=============================================================================
1581 #ifndef PRODUCT
1582 void BoxLockNode::format( PhaseRegAlloc *ra_, outputStream *st ) const {
1583   int offset = ra_->reg2offset(in_RegMask(0).find_first_elem());
1584   int reg = ra_->get_reg_first(this);
1585   st->print("LEA    [R_SP+#%d+BIAS],%s",offset,Matcher::regName[reg]);
1586 }
1587 #endif
1588 
1589 void BoxLockNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
1590   MacroAssembler _masm(&cbuf);
1591   int offset = ra_->reg2offset(in_RegMask(0).find_first_elem()) + STACK_BIAS;
1592   int reg = ra_->get_encode(this);
1593 
1594   if (Assembler::is_simm13(offset)) {
1595      __ add(SP, offset, reg_to_register_object(reg));
1596   } else {
1597      __ set(offset, O7);
1598      __ add(SP, O7, reg_to_register_object(reg));
1599   }
1600 }
1601 
1602 uint BoxLockNode::size(PhaseRegAlloc *ra_) const {
1603   // BoxLockNode is not a MachNode, so we can't just call MachNode::size(ra_)
1604   assert(ra_ == ra_->C->regalloc(), "sanity");
1605   return ra_->C->scratch_emit_size(this);
1606 }
1607 
1608 //=============================================================================
1609 
1610 // emit call stub, compiled java to interpretor
1611 void emit_java_to_interp(CodeBuffer &cbuf ) {
1612 
1613   // Stub is fixed up when the corresponding call is converted from calling
1614   // compiled code to calling interpreted code.
1615   // set (empty), G5
1616   // jmp -1
1617 
1618   address mark = cbuf.insts_mark();  // get mark within main instrs section
1619 
1620   MacroAssembler _masm(&cbuf);
1621 
1622   address base =
1623   __ start_a_stub(Compile::MAX_stubs_size);
1624   if (base == NULL)  return;  // CodeBuffer::expand failed
1625 
1626   // static stub relocation stores the instruction address of the call
1627   __ relocate(static_stub_Relocation::spec(mark));
1628 
1629   __ set_oop(NULL, reg_to_register_object(Matcher::inline_cache_reg_encode()));
1630 
1631   __ set_inst_mark();
1632   AddressLiteral addrlit(-1);
1633   __ JUMP(addrlit, G3, 0);
1634 
1635   __ delayed()->nop();
1636 
1637   // Update current stubs pointer and restore code_end.
1638   __ end_a_stub();
1639 }
1640 
1641 // size of call stub, compiled java to interpretor
1642 uint size_java_to_interp() {
1643   // This doesn't need to be accurate but it must be larger or equal to
1644   // the real size of the stub.
1645   return (NativeMovConstReg::instruction_size +  // sethi/setlo;
1646           NativeJump::instruction_size + // sethi; jmp; nop
1647           (TraceJumps ? 20 * BytesPerInstWord : 0) );
1648 }
1649 // relocation entries for call stub, compiled java to interpretor
1650 uint reloc_java_to_interp() {
1651   return 10;  // 4 in emit_java_to_interp + 1 in Java_Static_Call
1652 }
1653 
1654 
1655 //=============================================================================
1656 #ifndef PRODUCT
1657 void MachUEPNode::format( PhaseRegAlloc *ra_, outputStream *st ) const {
1658   st->print_cr("\nUEP:");
1659 #ifdef    _LP64
1660   if (UseCompressedOops) {
1661     assert(Universe::heap() != NULL, "java heap should be initialized");
1662     st->print_cr("\tLDUW   [R_O0 + oopDesc::klass_offset_in_bytes],R_G5\t! Inline cache check - compressed klass");
1663     st->print_cr("\tSLL    R_G5,3,R_G5");
1664     if (Universe::narrow_oop_base() != NULL)
1665       st->print_cr("\tADD    R_G5,R_G6_heap_base,R_G5");
1666   } else {
1667     st->print_cr("\tLDX    [R_O0 + oopDesc::klass_offset_in_bytes],R_G5\t! Inline cache check");
1668   }
1669   st->print_cr("\tCMP    R_G5,R_G3" );
1670   st->print   ("\tTne    xcc,R_G0+ST_RESERVED_FOR_USER_0+2");
1671 #else  // _LP64
1672   st->print_cr("\tLDUW   [R_O0 + oopDesc::klass_offset_in_bytes],R_G5\t! Inline cache check");
1673   st->print_cr("\tCMP    R_G5,R_G3" );
1674   st->print   ("\tTne    icc,R_G0+ST_RESERVED_FOR_USER_0+2");
1675 #endif // _LP64
1676 }
1677 #endif
1678 
1679 void MachUEPNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
1680   MacroAssembler _masm(&cbuf);
1681   Label L;
1682   Register G5_ic_reg  = reg_to_register_object(Matcher::inline_cache_reg_encode());
1683   Register temp_reg   = G3;
1684   assert( G5_ic_reg != temp_reg, "conflicting registers" );
1685 
1686   // Load klass from receiver
1687   __ load_klass(O0, temp_reg);
1688   // Compare against expected klass
1689   __ cmp(temp_reg, G5_ic_reg);
1690   // Branch to miss code, checks xcc or icc depending
1691   __ trap(Assembler::notEqual, Assembler::ptr_cc, G0, ST_RESERVED_FOR_USER_0+2);
1692 }
1693 
1694 uint MachUEPNode::size(PhaseRegAlloc *ra_) const {
1695   return MachNode::size(ra_);
1696 }
1697 
1698 
1699 //=============================================================================
1700 
1701 uint size_exception_handler() {
1702   if (TraceJumps) {
1703     return (400); // just a guess
1704   }
1705   return ( NativeJump::instruction_size ); // sethi;jmp;nop
1706 }
1707 
1708 uint size_deopt_handler() {
1709   if (TraceJumps) {
1710     return (400); // just a guess
1711   }
1712   return ( 4+  NativeJump::instruction_size ); // save;sethi;jmp;restore
1713 }
1714 
1715 // Emit exception handler code.
1716 int emit_exception_handler(CodeBuffer& cbuf) {
1717   Register temp_reg = G3;
1718   AddressLiteral exception_blob(OptoRuntime::exception_blob()->entry_point());
1719   MacroAssembler _masm(&cbuf);
1720 
1721   address base =
1722   __ start_a_stub(size_exception_handler());
1723   if (base == NULL)  return 0;  // CodeBuffer::expand failed
1724 
1725   int offset = __ offset();
1726 
1727   __ JUMP(exception_blob, temp_reg, 0); // sethi;jmp
1728   __ delayed()->nop();
1729 
1730   assert(__ offset() - offset <= (int) size_exception_handler(), "overflow");
1731 
1732   __ end_a_stub();
1733 
1734   return offset;
1735 }
1736 
1737 int emit_deopt_handler(CodeBuffer& cbuf) {
1738   // Can't use any of the current frame's registers as we may have deopted
1739   // at a poll and everything (including G3) can be live.
1740   Register temp_reg = L0;
1741   AddressLiteral deopt_blob(SharedRuntime::deopt_blob()->unpack());
1742   MacroAssembler _masm(&cbuf);
1743 
1744   address base =
1745   __ start_a_stub(size_deopt_handler());
1746   if (base == NULL)  return 0;  // CodeBuffer::expand failed
1747 
1748   int offset = __ offset();
1749   __ save_frame(0);
1750   __ JUMP(deopt_blob, temp_reg, 0); // sethi;jmp
1751   __ delayed()->restore();
1752 
1753   assert(__ offset() - offset <= (int) size_deopt_handler(), "overflow");
1754 
1755   __ end_a_stub();
1756   return offset;
1757 
1758 }
1759 
1760 // Given a register encoding, produce a Integer Register object
1761 static Register reg_to_register_object(int register_encoding) {
1762   assert(L5->encoding() == R_L5_enc && G1->encoding() == R_G1_enc, "right coding");
1763   return as_Register(register_encoding);
1764 }
1765 
1766 // Given a register encoding, produce a single-precision Float Register object
1767 static FloatRegister reg_to_SingleFloatRegister_object(int register_encoding) {
1768   assert(F5->encoding(FloatRegisterImpl::S) == R_F5_enc && F12->encoding(FloatRegisterImpl::S) == R_F12_enc, "right coding");
1769   return as_SingleFloatRegister(register_encoding);
1770 }
1771 
1772 // Given a register encoding, produce a double-precision Float Register object
1773 static FloatRegister reg_to_DoubleFloatRegister_object(int register_encoding) {
1774   assert(F4->encoding(FloatRegisterImpl::D) == R_F4_enc, "right coding");
1775   assert(F32->encoding(FloatRegisterImpl::D) == R_D32_enc, "right coding");
1776   return as_DoubleFloatRegister(register_encoding);
1777 }
1778 
1779 const bool Matcher::match_rule_supported(int opcode) {
1780   if (!has_match_rule(opcode))
1781     return false;
1782 
1783   switch (opcode) {
1784   case Op_CountLeadingZerosI:
1785   case Op_CountLeadingZerosL:
1786   case Op_CountTrailingZerosI:
1787   case Op_CountTrailingZerosL:
1788     if (!UsePopCountInstruction)
1789       return false;
1790     break;
1791   }
1792 
1793   return true;  // Per default match rules are supported.
1794 }
1795 
1796 int Matcher::regnum_to_fpu_offset(int regnum) {
1797   return regnum - 32; // The FP registers are in the second chunk
1798 }
1799 
1800 #ifdef ASSERT
1801 address last_rethrow = NULL;  // debugging aid for Rethrow encoding
1802 #endif
1803 
1804 // Vector width in bytes
1805 const uint Matcher::vector_width_in_bytes(void) {
1806   return 8;
1807 }
1808 
1809 // Vector ideal reg
1810 const uint Matcher::vector_ideal_reg(void) {
1811   return Op_RegD;
1812 }
1813 
1814 // USII supports fxtof through the whole range of number, USIII doesn't
1815 const bool Matcher::convL2FSupported(void) {
1816   return VM_Version::has_fast_fxtof();
1817 }
1818 
1819 // Is this branch offset short enough that a short branch can be used?
1820 //
1821 // NOTE: If the platform does not provide any short branch variants, then
1822 //       this method should return false for offset 0.
1823 bool Matcher::is_short_branch_offset(int rule, int offset) {
1824   return false;
1825 }
1826 
1827 const bool Matcher::isSimpleConstant64(jlong value) {
1828   // Will one (StoreL ConL) be cheaper than two (StoreI ConI)?.
1829   // Depends on optimizations in MacroAssembler::setx.
1830   int hi = (int)(value >> 32);
1831   int lo = (int)(value & ~0);
1832   return (hi == 0) || (hi == -1) || (lo == 0);
1833 }
1834 
1835 // No scaling for the parameter the ClearArray node.
1836 const bool Matcher::init_array_count_is_in_bytes = true;
1837 
1838 // Threshold size for cleararray.
1839 const int Matcher::init_array_short_size = 8 * BytesPerLong;
1840 
1841 // Should the Matcher clone shifts on addressing modes, expecting them to
1842 // be subsumed into complex addressing expressions or compute them into
1843 // registers?  True for Intel but false for most RISCs
1844 const bool Matcher::clone_shift_expressions = false;
1845 
1846 // Do we need to mask the count passed to shift instructions or does
1847 // the cpu only look at the lower 5/6 bits anyway?
1848 const bool Matcher::need_masked_shift_count = false;
1849 
1850 bool Matcher::narrow_oop_use_complex_address() {
1851   NOT_LP64(ShouldNotCallThis());
1852   assert(UseCompressedOops, "only for compressed oops code");
1853   return false;
1854 }
1855 
1856 // Is it better to copy float constants, or load them directly from memory?
1857 // Intel can load a float constant from a direct address, requiring no
1858 // extra registers.  Most RISCs will have to materialize an address into a
1859 // register first, so they would do better to copy the constant from stack.
1860 const bool Matcher::rematerialize_float_constants = false;
1861 
1862 // If CPU can load and store mis-aligned doubles directly then no fixup is
1863 // needed.  Else we split the double into 2 integer pieces and move it
1864 // piece-by-piece.  Only happens when passing doubles into C code as the
1865 // Java calling convention forces doubles to be aligned.
1866 #ifdef _LP64
1867 const bool Matcher::misaligned_doubles_ok = true;
1868 #else
1869 const bool Matcher::misaligned_doubles_ok = false;
1870 #endif
1871 
1872 // No-op on SPARC.
1873 void Matcher::pd_implicit_null_fixup(MachNode *node, uint idx) {
1874 }
1875 
1876 // Advertise here if the CPU requires explicit rounding operations
1877 // to implement the UseStrictFP mode.
1878 const bool Matcher::strict_fp_requires_explicit_rounding = false;
1879 
1880 // Are floats conerted to double when stored to stack during deoptimization?
1881 // Sparc does not handle callee-save floats.
1882 bool Matcher::float_in_double() { return false; }
1883 
1884 // Do ints take an entire long register or just half?
1885 // Note that we if-def off of _LP64.
1886 // The relevant question is how the int is callee-saved.  In _LP64
1887 // the whole long is written but de-opt'ing will have to extract
1888 // the relevant 32 bits, in not-_LP64 only the low 32 bits is written.
1889 #ifdef _LP64
1890 const bool Matcher::int_in_long = true;
1891 #else
1892 const bool Matcher::int_in_long = false;
1893 #endif
1894 
1895 // Return whether or not this register is ever used as an argument.  This
1896 // function is used on startup to build the trampoline stubs in generateOptoStub.
1897 // Registers not mentioned will be killed by the VM call in the trampoline, and
1898 // arguments in those registers not be available to the callee.
1899 bool Matcher::can_be_java_arg( int reg ) {
1900   // Standard sparc 6 args in registers
1901   if( reg == R_I0_num ||
1902       reg == R_I1_num ||
1903       reg == R_I2_num ||
1904       reg == R_I3_num ||
1905       reg == R_I4_num ||
1906       reg == R_I5_num ) return true;
1907 #ifdef _LP64
1908   // 64-bit builds can pass 64-bit pointers and longs in
1909   // the high I registers
1910   if( reg == R_I0H_num ||
1911       reg == R_I1H_num ||
1912       reg == R_I2H_num ||
1913       reg == R_I3H_num ||
1914       reg == R_I4H_num ||
1915       reg == R_I5H_num ) return true;
1916 
1917   if ((UseCompressedOops) && (reg == R_G6_num || reg == R_G6H_num)) {
1918     return true;
1919   }
1920 
1921 #else
1922   // 32-bit builds with longs-in-one-entry pass longs in G1 & G4.
1923   // Longs cannot be passed in O regs, because O regs become I regs
1924   // after a 'save' and I regs get their high bits chopped off on
1925   // interrupt.
1926   if( reg == R_G1H_num || reg == R_G1_num ) return true;
1927   if( reg == R_G4H_num || reg == R_G4_num ) return true;
1928 #endif
1929   // A few float args in registers
1930   if( reg >= R_F0_num && reg <= R_F7_num ) return true;
1931 
1932   return false;
1933 }
1934 
1935 bool Matcher::is_spillable_arg( int reg ) {
1936   return can_be_java_arg(reg);
1937 }
1938 
1939 bool Matcher::use_asm_for_ldiv_by_con( jlong divisor ) {
1940   // Use hardware SDIVX instruction when it is
1941   // faster than a code which use multiply.
1942   return VM_Version::has_fast_idiv();
1943 }
1944 
1945 // Register for DIVI projection of divmodI
1946 RegMask Matcher::divI_proj_mask() {
1947   ShouldNotReachHere();
1948   return RegMask();
1949 }
1950 
1951 // Register for MODI projection of divmodI
1952 RegMask Matcher::modI_proj_mask() {
1953   ShouldNotReachHere();
1954   return RegMask();
1955 }
1956 
1957 // Register for DIVL projection of divmodL
1958 RegMask Matcher::divL_proj_mask() {
1959   ShouldNotReachHere();
1960   return RegMask();
1961 }
1962 
1963 // Register for MODL projection of divmodL
1964 RegMask Matcher::modL_proj_mask() {
1965   ShouldNotReachHere();
1966   return RegMask();
1967 }
1968 
1969 const RegMask Matcher::method_handle_invoke_SP_save_mask() {
1970   return L7_REGP_mask;
1971 }
1972 
1973 %}
1974 
1975 
1976 // The intptr_t operand types, defined by textual substitution.
1977 // (Cf. opto/type.hpp.  This lets us avoid many, many other ifdefs.)
1978 #ifdef _LP64
1979 #define immX      immL
1980 #define immX13    immL13
1981 #define immX13m7  immL13m7
1982 #define iRegX     iRegL
1983 #define g1RegX    g1RegL
1984 #else
1985 #define immX      immI
1986 #define immX13    immI13
1987 #define immX13m7  immI13m7
1988 #define iRegX     iRegI
1989 #define g1RegX    g1RegI
1990 #endif
1991 
1992 //----------ENCODING BLOCK-----------------------------------------------------
1993 // This block specifies the encoding classes used by the compiler to output
1994 // byte streams.  Encoding classes are parameterized macros used by
1995 // Machine Instruction Nodes in order to generate the bit encoding of the
1996 // instruction.  Operands specify their base encoding interface with the
1997 // interface keyword.  There are currently supported four interfaces,
1998 // REG_INTER, CONST_INTER, MEMORY_INTER, & COND_INTER.  REG_INTER causes an
1999 // operand to generate a function which returns its register number when
2000 // queried.   CONST_INTER causes an operand to generate a function which
2001 // returns the value of the constant when queried.  MEMORY_INTER causes an
2002 // operand to generate four functions which return the Base Register, the
2003 // Index Register, the Scale Value, and the Offset Value of the operand when
2004 // queried.  COND_INTER causes an operand to generate six functions which
2005 // return the encoding code (ie - encoding bits for the instruction)
2006 // associated with each basic boolean condition for a conditional instruction.
2007 //
2008 // Instructions specify two basic values for encoding.  Again, a function
2009 // is available to check if the constant displacement is an oop. They use the
2010 // ins_encode keyword to specify their encoding classes (which must be
2011 // a sequence of enc_class names, and their parameters, specified in
2012 // the encoding block), and they use the
2013 // opcode keyword to specify, in order, their primary, secondary, and
2014 // tertiary opcode.  Only the opcode sections which a particular instruction
2015 // needs for encoding need to be specified.
2016 encode %{
2017   enc_class enc_untested %{
2018 #ifdef ASSERT
2019     MacroAssembler _masm(&cbuf);
2020     __ untested("encoding");
2021 #endif
2022   %}
2023 
2024   enc_class form3_mem_reg( memory mem, iRegI dst ) %{
2025     emit_form3_mem_reg(cbuf, this, $primary, $tertiary,
2026                        $mem$$base, $mem$$disp, $mem$$index, $dst$$reg);
2027   %}
2028 
2029   enc_class simple_form3_mem_reg( memory mem, iRegI dst ) %{
2030     emit_form3_mem_reg(cbuf, this, $primary, -1,
2031                        $mem$$base, $mem$$disp, $mem$$index, $dst$$reg);
2032   %}
2033 
2034   enc_class form3_mem_prefetch_read( memory mem ) %{
2035     emit_form3_mem_reg(cbuf, this, $primary, -1,
2036                        $mem$$base, $mem$$disp, $mem$$index, 0/*prefetch function many-reads*/);
2037   %}
2038 
2039   enc_class form3_mem_prefetch_write( memory mem ) %{
2040     emit_form3_mem_reg(cbuf, this, $primary, -1,
2041                        $mem$$base, $mem$$disp, $mem$$index, 2/*prefetch function many-writes*/);
2042   %}
2043 
2044   enc_class form3_mem_reg_long_unaligned_marshal( memory mem, iRegL reg ) %{
2045     assert( Assembler::is_simm13($mem$$disp  ), "need disp and disp+4" );
2046     assert( Assembler::is_simm13($mem$$disp+4), "need disp and disp+4" );
2047     guarantee($mem$$index == R_G0_enc, "double index?");
2048     emit_form3_mem_reg(cbuf, this, $primary, -1, $mem$$base, $mem$$disp+4, R_G0_enc, R_O7_enc );
2049     emit_form3_mem_reg(cbuf, this, $primary, -1, $mem$$base, $mem$$disp,   R_G0_enc, $reg$$reg );
2050     emit3_simm13( cbuf, Assembler::arith_op, $reg$$reg, Assembler::sllx_op3, $reg$$reg, 0x1020 );
2051     emit3( cbuf, Assembler::arith_op, $reg$$reg, Assembler::or_op3, $reg$$reg, 0, R_O7_enc );
2052   %}
2053 
2054   enc_class form3_mem_reg_double_unaligned( memory mem, RegD_low reg ) %{
2055     assert( Assembler::is_simm13($mem$$disp  ), "need disp and disp+4" );
2056     assert( Assembler::is_simm13($mem$$disp+4), "need disp and disp+4" );
2057     guarantee($mem$$index == R_G0_enc, "double index?");
2058     // Load long with 2 instructions
2059     emit_form3_mem_reg(cbuf, this, $primary, -1, $mem$$base, $mem$$disp,   R_G0_enc, $reg$$reg+0 );
2060     emit_form3_mem_reg(cbuf, this, $primary, -1, $mem$$base, $mem$$disp+4, R_G0_enc, $reg$$reg+1 );
2061   %}
2062 
2063   //%%% form3_mem_plus_4_reg is a hack--get rid of it
2064   enc_class form3_mem_plus_4_reg( memory mem, iRegI dst ) %{
2065     guarantee($mem$$disp, "cannot offset a reg-reg operand by 4");
2066     emit_form3_mem_reg(cbuf, this, $primary, -1, $mem$$base, $mem$$disp + 4, $mem$$index, $dst$$reg);
2067   %}
2068 
2069   enc_class form3_g0_rs2_rd_move( iRegI rs2, iRegI rd ) %{
2070     // Encode a reg-reg copy.  If it is useless, then empty encoding.
2071     if( $rs2$$reg != $rd$$reg )
2072       emit3( cbuf, Assembler::arith_op, $rd$$reg, Assembler::or_op3, 0, 0, $rs2$$reg );
2073   %}
2074 
2075   // Target lo half of long
2076   enc_class form3_g0_rs2_rd_move_lo( iRegI rs2, iRegL rd ) %{
2077     // Encode a reg-reg copy.  If it is useless, then empty encoding.
2078     if( $rs2$$reg != LONG_LO_REG($rd$$reg) )
2079       emit3( cbuf, Assembler::arith_op, LONG_LO_REG($rd$$reg), Assembler::or_op3, 0, 0, $rs2$$reg );
2080   %}
2081 
2082   // Source lo half of long
2083   enc_class form3_g0_rs2_rd_move_lo2( iRegL rs2, iRegI rd ) %{
2084     // Encode a reg-reg copy.  If it is useless, then empty encoding.
2085     if( LONG_LO_REG($rs2$$reg) != $rd$$reg )
2086       emit3( cbuf, Assembler::arith_op, $rd$$reg, Assembler::or_op3, 0, 0, LONG_LO_REG($rs2$$reg) );
2087   %}
2088 
2089   // Target hi half of long
2090   enc_class form3_rs1_rd_copysign_hi( iRegI rs1, iRegL rd ) %{
2091     emit3_simm13( cbuf, Assembler::arith_op, $rd$$reg, Assembler::sra_op3, $rs1$$reg, 31 );
2092   %}
2093 
2094   // Source lo half of long, and leave it sign extended.
2095   enc_class form3_rs1_rd_signextend_lo1( iRegL rs1, iRegI rd ) %{
2096     // Sign extend low half
2097     emit3( cbuf, Assembler::arith_op, $rd$$reg, Assembler::sra_op3, $rs1$$reg, 0, 0 );
2098   %}
2099 
2100   // Source hi half of long, and leave it sign extended.
2101   enc_class form3_rs1_rd_copy_hi1( iRegL rs1, iRegI rd ) %{
2102     // Shift high half to low half
2103     emit3_simm13( cbuf, Assembler::arith_op, $rd$$reg, Assembler::srlx_op3, $rs1$$reg, 32 );
2104   %}
2105 
2106   // Source hi half of long
2107   enc_class form3_g0_rs2_rd_move_hi2( iRegL rs2, iRegI rd ) %{
2108     // Encode a reg-reg copy.  If it is useless, then empty encoding.
2109     if( LONG_HI_REG($rs2$$reg) != $rd$$reg )
2110       emit3( cbuf, Assembler::arith_op, $rd$$reg, Assembler::or_op3, 0, 0, LONG_HI_REG($rs2$$reg) );
2111   %}
2112 
2113   enc_class form3_rs1_rs2_rd( iRegI rs1, iRegI rs2, iRegI rd ) %{
2114     emit3( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, 0, $rs2$$reg );
2115   %}
2116 
2117   enc_class enc_to_bool( iRegI src, iRegI dst ) %{
2118     emit3       ( cbuf, Assembler::arith_op,         0, Assembler::subcc_op3, 0, 0, $src$$reg );
2119     emit3_simm13( cbuf, Assembler::arith_op, $dst$$reg, Assembler::addc_op3 , 0, 0 );
2120   %}
2121 
2122   enc_class enc_ltmask( iRegI p, iRegI q, iRegI dst ) %{
2123     emit3       ( cbuf, Assembler::arith_op,         0, Assembler::subcc_op3, $p$$reg, 0, $q$$reg );
2124     // clear if nothing else is happening
2125     emit3_simm13( cbuf, Assembler::arith_op, $dst$$reg, Assembler::or_op3, 0,  0 );
2126     // blt,a,pn done
2127     emit2_19    ( cbuf, Assembler::branch_op, 1/*annul*/, Assembler::less, Assembler::bp_op2, Assembler::icc, 0/*predict not taken*/, 2 );
2128     // mov dst,-1 in delay slot
2129     emit3_simm13( cbuf, Assembler::arith_op, $dst$$reg, Assembler::or_op3, 0, -1 );
2130   %}
2131 
2132   enc_class form3_rs1_imm5_rd( iRegI rs1, immU5 imm5, iRegI rd ) %{
2133     emit3_simm13( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, $imm5$$constant & 0x1F );
2134   %}
2135 
2136   enc_class form3_sd_rs1_imm6_rd( iRegL rs1, immU6 imm6, iRegL rd ) %{
2137     emit3_simm13( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, ($imm6$$constant & 0x3F) | 0x1000 );
2138   %}
2139 
2140   enc_class form3_sd_rs1_rs2_rd( iRegL rs1, iRegI rs2, iRegL rd ) %{
2141     emit3( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, 0x80, $rs2$$reg );
2142   %}
2143 
2144   enc_class form3_rs1_simm13_rd( iRegI rs1, immI13 simm13, iRegI rd ) %{
2145     emit3_simm13( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, $simm13$$constant );
2146   %}
2147 
2148   enc_class move_return_pc_to_o1() %{
2149     emit3_simm13( cbuf, Assembler::arith_op, R_O1_enc, Assembler::add_op3, R_O7_enc, frame::pc_return_offset );
2150   %}
2151 
2152 #ifdef _LP64
2153   /* %%% merge with enc_to_bool */
2154   enc_class enc_convP2B( iRegI dst, iRegP src ) %{
2155     MacroAssembler _masm(&cbuf);
2156 
2157     Register   src_reg = reg_to_register_object($src$$reg);
2158     Register   dst_reg = reg_to_register_object($dst$$reg);
2159     __ movr(Assembler::rc_nz, src_reg, 1, dst_reg);
2160   %}
2161 #endif
2162 
2163   enc_class enc_cadd_cmpLTMask( iRegI p, iRegI q, iRegI y, iRegI tmp ) %{
2164     // (Set p (AddI (AndI (CmpLTMask p q) y) (SubI p q)))
2165     MacroAssembler _masm(&cbuf);
2166 
2167     Register   p_reg = reg_to_register_object($p$$reg);
2168     Register   q_reg = reg_to_register_object($q$$reg);
2169     Register   y_reg = reg_to_register_object($y$$reg);
2170     Register tmp_reg = reg_to_register_object($tmp$$reg);
2171 
2172     __ subcc( p_reg, q_reg,   p_reg );
2173     __ add  ( p_reg, y_reg, tmp_reg );
2174     __ movcc( Assembler::less, false, Assembler::icc, tmp_reg, p_reg );
2175   %}
2176 
2177   enc_class form_d2i_helper(regD src, regF dst) %{
2178     // fcmp %fcc0,$src,$src
2179     emit3( cbuf, Assembler::arith_op , Assembler::fcc0, Assembler::fpop2_op3, $src$$reg, Assembler::fcmpd_opf, $src$$reg );
2180     // branch %fcc0 not-nan, predict taken
2181     emit2_19( cbuf, Assembler::branch_op, 0/*annul*/, Assembler::f_ordered, Assembler::fbp_op2, Assembler::fcc0, 1/*predict taken*/, 4 );
2182     // fdtoi $src,$dst
2183     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fdtoi_opf, $src$$reg );
2184     // fitos $dst,$dst (if nan)
2185     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fitos_opf, $dst$$reg );
2186     // clear $dst (if nan)
2187     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3, $dst$$reg, Assembler::fsubs_opf, $dst$$reg );
2188     // carry on here...
2189   %}
2190 
2191   enc_class form_d2l_helper(regD src, regD dst) %{
2192     // fcmp %fcc0,$src,$src  check for NAN
2193     emit3( cbuf, Assembler::arith_op , Assembler::fcc0, Assembler::fpop2_op3, $src$$reg, Assembler::fcmpd_opf, $src$$reg );
2194     // branch %fcc0 not-nan, predict taken
2195     emit2_19( cbuf, Assembler::branch_op, 0/*annul*/, Assembler::f_ordered, Assembler::fbp_op2, Assembler::fcc0, 1/*predict taken*/, 4 );
2196     // fdtox $src,$dst   convert in delay slot
2197     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fdtox_opf, $src$$reg );
2198     // fxtod $dst,$dst  (if nan)
2199     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fxtod_opf, $dst$$reg );
2200     // clear $dst (if nan)
2201     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3, $dst$$reg, Assembler::fsubd_opf, $dst$$reg );
2202     // carry on here...
2203   %}
2204 
2205   enc_class form_f2i_helper(regF src, regF dst) %{
2206     // fcmps %fcc0,$src,$src
2207     emit3( cbuf, Assembler::arith_op , Assembler::fcc0, Assembler::fpop2_op3, $src$$reg, Assembler::fcmps_opf, $src$$reg );
2208     // branch %fcc0 not-nan, predict taken
2209     emit2_19( cbuf, Assembler::branch_op, 0/*annul*/, Assembler::f_ordered, Assembler::fbp_op2, Assembler::fcc0, 1/*predict taken*/, 4 );
2210     // fstoi $src,$dst
2211     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fstoi_opf, $src$$reg );
2212     // fitos $dst,$dst (if nan)
2213     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fitos_opf, $dst$$reg );
2214     // clear $dst (if nan)
2215     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3, $dst$$reg, Assembler::fsubs_opf, $dst$$reg );
2216     // carry on here...
2217   %}
2218 
2219   enc_class form_f2l_helper(regF src, regD dst) %{
2220     // fcmps %fcc0,$src,$src
2221     emit3( cbuf, Assembler::arith_op , Assembler::fcc0, Assembler::fpop2_op3, $src$$reg, Assembler::fcmps_opf, $src$$reg );
2222     // branch %fcc0 not-nan, predict taken
2223     emit2_19( cbuf, Assembler::branch_op, 0/*annul*/, Assembler::f_ordered, Assembler::fbp_op2, Assembler::fcc0, 1/*predict taken*/, 4 );
2224     // fstox $src,$dst
2225     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fstox_opf, $src$$reg );
2226     // fxtod $dst,$dst (if nan)
2227     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fxtod_opf, $dst$$reg );
2228     // clear $dst (if nan)
2229     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3, $dst$$reg, Assembler::fsubd_opf, $dst$$reg );
2230     // carry on here...
2231   %}
2232 
2233   enc_class form3_opf_rs2F_rdF(regF rs2, regF rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg); %}
2234   enc_class form3_opf_rs2F_rdD(regF rs2, regD rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg); %}
2235   enc_class form3_opf_rs2D_rdF(regD rs2, regF rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg); %}
2236   enc_class form3_opf_rs2D_rdD(regD rs2, regD rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg); %}
2237 
2238   enc_class form3_opf_rs2D_lo_rdF(regD rs2, regF rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg+1); %}
2239 
2240   enc_class form3_opf_rs2D_hi_rdD_hi(regD rs2, regD rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg); %}
2241   enc_class form3_opf_rs2D_lo_rdD_lo(regD rs2, regD rd) %{ emit3(cbuf,$secondary,$rd$$reg+1,$primary,0,$tertiary,$rs2$$reg+1); %}
2242 
2243   enc_class form3_opf_rs1F_rs2F_rdF( regF rs1, regF rs2, regF rd ) %{
2244     emit3( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, $tertiary, $rs2$$reg );
2245   %}
2246 
2247   enc_class form3_opf_rs1D_rs2D_rdD( regD rs1, regD rs2, regD rd ) %{
2248     emit3( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, $tertiary, $rs2$$reg );
2249   %}
2250 
2251   enc_class form3_opf_rs1F_rs2F_fcc( regF rs1, regF rs2, flagsRegF fcc ) %{
2252     emit3( cbuf, $secondary, $fcc$$reg, $primary, $rs1$$reg, $tertiary, $rs2$$reg );
2253   %}
2254 
2255   enc_class form3_opf_rs1D_rs2D_fcc( regD rs1, regD rs2, flagsRegF fcc ) %{
2256     emit3( cbuf, $secondary, $fcc$$reg, $primary, $rs1$$reg, $tertiary, $rs2$$reg );
2257   %}
2258 
2259   enc_class form3_convI2F(regF rs2, regF rd) %{
2260     emit3(cbuf,Assembler::arith_op,$rd$$reg,Assembler::fpop1_op3,0,$secondary,$rs2$$reg);
2261   %}
2262 
2263   // Encloding class for traceable jumps
2264   enc_class form_jmpl(g3RegP dest) %{
2265     emit_jmpl(cbuf, $dest$$reg);
2266   %}
2267 
2268   enc_class form_jmpl_set_exception_pc(g1RegP dest) %{
2269     emit_jmpl_set_exception_pc(cbuf, $dest$$reg);
2270   %}
2271 
2272   enc_class form2_nop() %{
2273     emit_nop(cbuf);
2274   %}
2275 
2276   enc_class form2_illtrap() %{
2277     emit_illtrap(cbuf);
2278   %}
2279 
2280 
2281   // Compare longs and convert into -1, 0, 1.
2282   enc_class cmpl_flag( iRegL src1, iRegL src2, iRegI dst ) %{
2283     // CMP $src1,$src2
2284     emit3( cbuf, Assembler::arith_op, 0, Assembler::subcc_op3, $src1$$reg, 0, $src2$$reg );
2285     // blt,a,pn done
2286     emit2_19( cbuf, Assembler::branch_op, 1/*annul*/, Assembler::less   , Assembler::bp_op2, Assembler::xcc, 0/*predict not taken*/, 5 );
2287     // mov dst,-1 in delay slot
2288     emit3_simm13( cbuf, Assembler::arith_op, $dst$$reg, Assembler::or_op3, 0, -1 );
2289     // bgt,a,pn done
2290     emit2_19( cbuf, Assembler::branch_op, 1/*annul*/, Assembler::greater, Assembler::bp_op2, Assembler::xcc, 0/*predict not taken*/, 3 );
2291     // mov dst,1 in delay slot
2292     emit3_simm13( cbuf, Assembler::arith_op, $dst$$reg, Assembler::or_op3, 0,  1 );
2293     // CLR    $dst
2294     emit3( cbuf, Assembler::arith_op, $dst$$reg, Assembler::or_op3 , 0, 0, 0 );
2295   %}
2296 
2297   enc_class enc_PartialSubtypeCheck() %{
2298     MacroAssembler _masm(&cbuf);
2299     __ call(StubRoutines::Sparc::partial_subtype_check(), relocInfo::runtime_call_type);
2300     __ delayed()->nop();
2301   %}
2302 
2303   enc_class enc_bp( Label labl, cmpOp cmp, flagsReg cc ) %{
2304     MacroAssembler _masm(&cbuf);
2305     Label &L = *($labl$$label);
2306     Assembler::Predict predict_taken =
2307       cbuf.is_backward_branch(L) ? Assembler::pt : Assembler::pn;
2308 
2309     __ bp( (Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, L);
2310     __ delayed()->nop();
2311   %}
2312 
2313   enc_class enc_bpl( Label labl, cmpOp cmp, flagsRegL cc ) %{
2314     MacroAssembler _masm(&cbuf);
2315     Label &L = *($labl$$label);
2316     Assembler::Predict predict_taken =
2317       cbuf.is_backward_branch(L) ? Assembler::pt : Assembler::pn;
2318 
2319     __ bp( (Assembler::Condition)($cmp$$cmpcode), false, Assembler::xcc, predict_taken, L);
2320     __ delayed()->nop();
2321   %}
2322 
2323   enc_class enc_bpx( Label labl, cmpOp cmp, flagsRegP cc ) %{
2324     MacroAssembler _masm(&cbuf);
2325     Label &L = *($labl$$label);
2326     Assembler::Predict predict_taken =
2327       cbuf.is_backward_branch(L) ? Assembler::pt : Assembler::pn;
2328 
2329     __ bp( (Assembler::Condition)($cmp$$cmpcode), false, Assembler::ptr_cc, predict_taken, L);
2330     __ delayed()->nop();
2331   %}
2332 
2333   enc_class enc_fbp( Label labl, cmpOpF cmp, flagsRegF cc ) %{
2334     MacroAssembler _masm(&cbuf);
2335     Label &L = *($labl$$label);
2336     Assembler::Predict predict_taken =
2337       cbuf.is_backward_branch(L) ? Assembler::pt : Assembler::pn;
2338 
2339     __ fbp( (Assembler::Condition)($cmp$$cmpcode), false, (Assembler::CC)($cc$$reg), predict_taken, L);
2340     __ delayed()->nop();
2341   %}
2342 
2343   enc_class enc_ba( Label labl ) %{
2344     MacroAssembler _masm(&cbuf);
2345     Label &L = *($labl$$label);
2346     __ ba(false, L);
2347     __ delayed()->nop();
2348   %}
2349 
2350   enc_class enc_bpr( Label labl, cmpOp_reg cmp, iRegI op1 ) %{
2351     MacroAssembler _masm(&cbuf);
2352     Label &L = *$labl$$label;
2353     Assembler::Predict predict_taken =
2354       cbuf.is_backward_branch(L) ? Assembler::pt : Assembler::pn;
2355 
2356     __ bpr( (Assembler::RCondition)($cmp$$cmpcode), false, predict_taken, as_Register($op1$$reg), L);
2357     __ delayed()->nop();
2358   %}
2359 
2360   enc_class enc_cmov_reg( cmpOp cmp, iRegI dst, iRegI src, immI pcc) %{
2361     int op = (Assembler::arith_op << 30) |
2362              ($dst$$reg << 25) |
2363              (Assembler::movcc_op3 << 19) |
2364              (1 << 18) |                    // cc2 bit for 'icc'
2365              ($cmp$$cmpcode << 14) |
2366              (0 << 13) |                    // select register move
2367              ($pcc$$constant << 11) |       // cc1, cc0 bits for 'icc' or 'xcc'
2368              ($src$$reg << 0);
2369     cbuf.insts()->emit_int32(op);
2370   %}
2371 
2372   enc_class enc_cmov_imm( cmpOp cmp, iRegI dst, immI11 src, immI pcc ) %{
2373     int simm11 = $src$$constant & ((1<<11)-1); // Mask to 11 bits
2374     int op = (Assembler::arith_op << 30) |
2375              ($dst$$reg << 25) |
2376              (Assembler::movcc_op3 << 19) |
2377              (1 << 18) |                    // cc2 bit for 'icc'
2378              ($cmp$$cmpcode << 14) |
2379              (1 << 13) |                    // select immediate move
2380              ($pcc$$constant << 11) |       // cc1, cc0 bits for 'icc'
2381              (simm11 << 0);
2382     cbuf.insts()->emit_int32(op);
2383   %}
2384 
2385   enc_class enc_cmov_reg_f( cmpOpF cmp, iRegI dst, iRegI src, flagsRegF fcc ) %{
2386     int op = (Assembler::arith_op << 30) |
2387              ($dst$$reg << 25) |
2388              (Assembler::movcc_op3 << 19) |
2389              (0 << 18) |                    // cc2 bit for 'fccX'
2390              ($cmp$$cmpcode << 14) |
2391              (0 << 13) |                    // select register move
2392              ($fcc$$reg << 11) |            // cc1, cc0 bits for fcc0-fcc3
2393              ($src$$reg << 0);
2394     cbuf.insts()->emit_int32(op);
2395   %}
2396 
2397   enc_class enc_cmov_imm_f( cmpOp cmp, iRegI dst, immI11 src, flagsRegF fcc ) %{
2398     int simm11 = $src$$constant & ((1<<11)-1); // Mask to 11 bits
2399     int op = (Assembler::arith_op << 30) |
2400              ($dst$$reg << 25) |
2401              (Assembler::movcc_op3 << 19) |
2402              (0 << 18) |                    // cc2 bit for 'fccX'
2403              ($cmp$$cmpcode << 14) |
2404              (1 << 13) |                    // select immediate move
2405              ($fcc$$reg << 11) |            // cc1, cc0 bits for fcc0-fcc3
2406              (simm11 << 0);
2407     cbuf.insts()->emit_int32(op);
2408   %}
2409 
2410   enc_class enc_cmovf_reg( cmpOp cmp, regD dst, regD src, immI pcc ) %{
2411     int op = (Assembler::arith_op << 30) |
2412              ($dst$$reg << 25) |
2413              (Assembler::fpop2_op3 << 19) |
2414              (0 << 18) |
2415              ($cmp$$cmpcode << 14) |
2416              (1 << 13) |                    // select register move
2417              ($pcc$$constant << 11) |       // cc1-cc0 bits for 'icc' or 'xcc'
2418              ($primary << 5) |              // select single, double or quad
2419              ($src$$reg << 0);
2420     cbuf.insts()->emit_int32(op);
2421   %}
2422 
2423   enc_class enc_cmovff_reg( cmpOpF cmp, flagsRegF fcc, regD dst, regD src ) %{
2424     int op = (Assembler::arith_op << 30) |
2425              ($dst$$reg << 25) |
2426              (Assembler::fpop2_op3 << 19) |
2427              (0 << 18) |
2428              ($cmp$$cmpcode << 14) |
2429              ($fcc$$reg << 11) |            // cc2-cc0 bits for 'fccX'
2430              ($primary << 5) |              // select single, double or quad
2431              ($src$$reg << 0);
2432     cbuf.insts()->emit_int32(op);
2433   %}
2434 
2435   // Used by the MIN/MAX encodings.  Same as a CMOV, but
2436   // the condition comes from opcode-field instead of an argument.
2437   enc_class enc_cmov_reg_minmax( iRegI dst, iRegI src ) %{
2438     int op = (Assembler::arith_op << 30) |
2439              ($dst$$reg << 25) |
2440              (Assembler::movcc_op3 << 19) |
2441              (1 << 18) |                    // cc2 bit for 'icc'
2442              ($primary << 14) |
2443              (0 << 13) |                    // select register move
2444              (0 << 11) |                    // cc1, cc0 bits for 'icc'
2445              ($src$$reg << 0);
2446     cbuf.insts()->emit_int32(op);
2447   %}
2448 
2449   enc_class enc_cmov_reg_minmax_long( iRegL dst, iRegL src ) %{
2450     int op = (Assembler::arith_op << 30) |
2451              ($dst$$reg << 25) |
2452              (Assembler::movcc_op3 << 19) |
2453              (6 << 16) |                    // cc2 bit for 'xcc'
2454              ($primary << 14) |
2455              (0 << 13) |                    // select register move
2456              (0 << 11) |                    // cc1, cc0 bits for 'icc'
2457              ($src$$reg << 0);
2458     cbuf.insts()->emit_int32(op);
2459   %}
2460 
2461   enc_class Set13( immI13 src, iRegI rd ) %{
2462     emit3_simm13( cbuf, Assembler::arith_op, $rd$$reg, Assembler::or_op3, 0, $src$$constant );
2463   %}
2464 
2465   enc_class SetHi22( immI src, iRegI rd ) %{
2466     emit2_22( cbuf, Assembler::branch_op, $rd$$reg, Assembler::sethi_op2, $src$$constant );
2467   %}
2468 
2469   enc_class Set32( immI src, iRegI rd ) %{
2470     MacroAssembler _masm(&cbuf);
2471     __ set($src$$constant, reg_to_register_object($rd$$reg));
2472   %}
2473 
2474   enc_class call_epilog %{
2475     if( VerifyStackAtCalls ) {
2476       MacroAssembler _masm(&cbuf);
2477       int framesize = ra_->C->frame_slots() << LogBytesPerInt;
2478       Register temp_reg = G3;
2479       __ add(SP, framesize, temp_reg);
2480       __ cmp(temp_reg, FP);
2481       __ breakpoint_trap(Assembler::notEqual, Assembler::ptr_cc);
2482     }
2483   %}
2484 
2485   // Long values come back from native calls in O0:O1 in the 32-bit VM, copy the value
2486   // to G1 so the register allocator will not have to deal with the misaligned register
2487   // pair.
2488   enc_class adjust_long_from_native_call %{
2489 #ifndef _LP64
2490     if (returns_long()) {
2491       //    sllx  O0,32,O0
2492       emit3_simm13( cbuf, Assembler::arith_op, R_O0_enc, Assembler::sllx_op3, R_O0_enc, 0x1020 );
2493       //    srl   O1,0,O1
2494       emit3_simm13( cbuf, Assembler::arith_op, R_O1_enc, Assembler::srl_op3, R_O1_enc, 0x0000 );
2495       //    or    O0,O1,G1
2496       emit3       ( cbuf, Assembler::arith_op, R_G1_enc, Assembler:: or_op3, R_O0_enc, 0, R_O1_enc );
2497     }
2498 #endif
2499   %}
2500 
2501   enc_class Java_To_Runtime (method meth) %{    // CALL Java_To_Runtime
2502     // CALL directly to the runtime
2503     // The user of this is responsible for ensuring that R_L7 is empty (killed).
2504     emit_call_reloc(cbuf, $meth$$method, relocInfo::runtime_call_type,
2505                     /*preserve_g2=*/true);
2506   %}
2507 
2508   enc_class preserve_SP %{
2509     MacroAssembler _masm(&cbuf);
2510     __ mov(SP, L7_mh_SP_save);
2511   %}
2512 
2513   enc_class restore_SP %{
2514     MacroAssembler _masm(&cbuf);
2515     __ mov(L7_mh_SP_save, SP);
2516   %}
2517 
2518   enc_class Java_Static_Call (method meth) %{    // JAVA STATIC CALL
2519     // CALL to fixup routine.  Fixup routine uses ScopeDesc info to determine
2520     // who we intended to call.
2521     if ( !_method ) {
2522       emit_call_reloc(cbuf, $meth$$method, relocInfo::runtime_call_type);
2523     } else if (_optimized_virtual) {
2524       emit_call_reloc(cbuf, $meth$$method, relocInfo::opt_virtual_call_type);
2525     } else {
2526       emit_call_reloc(cbuf, $meth$$method, relocInfo::static_call_type);
2527     }
2528     if( _method ) {  // Emit stub for static call
2529       emit_java_to_interp(cbuf);
2530     }
2531   %}
2532 
2533   enc_class Java_Dynamic_Call (method meth) %{    // JAVA DYNAMIC CALL
2534     MacroAssembler _masm(&cbuf);
2535     __ set_inst_mark();
2536     int vtable_index = this->_vtable_index;
2537     // MachCallDynamicJavaNode::ret_addr_offset uses this same test
2538     if (vtable_index < 0) {
2539       // must be invalid_vtable_index, not nonvirtual_vtable_index
2540       assert(vtable_index == methodOopDesc::invalid_vtable_index, "correct sentinel value");
2541       Register G5_ic_reg = reg_to_register_object(Matcher::inline_cache_reg_encode());
2542       assert(G5_ic_reg == G5_inline_cache_reg, "G5_inline_cache_reg used in assemble_ic_buffer_code()");
2543       assert(G5_ic_reg == G5_megamorphic_method, "G5_megamorphic_method used in megamorphic call stub");
2544       // !!!!!
2545       // Generate  "set 0x01, R_G5", placeholder instruction to load oop-info
2546       // emit_call_dynamic_prologue( cbuf );
2547       __ set_oop((jobject)Universe::non_oop_word(), G5_ic_reg);
2548 
2549       address  virtual_call_oop_addr = __ inst_mark();
2550       // CALL to fixup routine.  Fixup routine uses ScopeDesc info to determine
2551       // who we intended to call.
2552       __ relocate(virtual_call_Relocation::spec(virtual_call_oop_addr));
2553       emit_call_reloc(cbuf, $meth$$method, relocInfo::none);
2554     } else {
2555       assert(!UseInlineCaches, "expect vtable calls only if not using ICs");
2556       // Just go thru the vtable
2557       // get receiver klass (receiver already checked for non-null)
2558       // If we end up going thru a c2i adapter interpreter expects method in G5
2559       int off = __ offset();
2560       __ load_klass(O0, G3_scratch);
2561       int klass_load_size;
2562       if (UseCompressedOops) {
2563         assert(Universe::heap() != NULL, "java heap should be initialized");
2564         if (Universe::narrow_oop_base() == NULL)
2565           klass_load_size = 2*BytesPerInstWord;
2566         else
2567           klass_load_size = 3*BytesPerInstWord;
2568       } else {
2569         klass_load_size = 1*BytesPerInstWord;
2570       }
2571       int entry_offset = instanceKlass::vtable_start_offset() + vtable_index*vtableEntry::size();
2572       int v_off = entry_offset*wordSize + vtableEntry::method_offset_in_bytes();
2573       if( __ is_simm13(v_off) ) {
2574         __ ld_ptr(G3, v_off, G5_method);
2575       } else {
2576         // Generate 2 instructions
2577         __ Assembler::sethi(v_off & ~0x3ff, G5_method);
2578         __ or3(G5_method, v_off & 0x3ff, G5_method);
2579         // ld_ptr, set_hi, set
2580         assert(__ offset() - off == klass_load_size + 2*BytesPerInstWord,
2581                "Unexpected instruction size(s)");
2582         __ ld_ptr(G3, G5_method, G5_method);
2583       }
2584       // NOTE: for vtable dispatches, the vtable entry will never be null.
2585       // However it may very well end up in handle_wrong_method if the
2586       // method is abstract for the particular class.
2587       __ ld_ptr(G5_method, in_bytes(methodOopDesc::from_compiled_offset()), G3_scratch);
2588       // jump to target (either compiled code or c2iadapter)
2589       __ jmpl(G3_scratch, G0, O7);
2590       __ delayed()->nop();
2591     }
2592   %}
2593 
2594   enc_class Java_Compiled_Call (method meth) %{    // JAVA COMPILED CALL
2595     MacroAssembler _masm(&cbuf);
2596 
2597     Register G5_ic_reg = reg_to_register_object(Matcher::inline_cache_reg_encode());
2598     Register temp_reg = G3;   // caller must kill G3!  We cannot reuse G5_ic_reg here because
2599                               // we might be calling a C2I adapter which needs it.
2600 
2601     assert(temp_reg != G5_ic_reg, "conflicting registers");
2602     // Load nmethod
2603     __ ld_ptr(G5_ic_reg, in_bytes(methodOopDesc::from_compiled_offset()), temp_reg);
2604 
2605     // CALL to compiled java, indirect the contents of G3
2606     __ set_inst_mark();
2607     __ callr(temp_reg, G0);
2608     __ delayed()->nop();
2609   %}
2610 
2611 enc_class idiv_reg(iRegIsafe src1, iRegIsafe src2, iRegIsafe dst) %{
2612     MacroAssembler _masm(&cbuf);
2613     Register Rdividend = reg_to_register_object($src1$$reg);
2614     Register Rdivisor = reg_to_register_object($src2$$reg);
2615     Register Rresult = reg_to_register_object($dst$$reg);
2616 
2617     __ sra(Rdivisor, 0, Rdivisor);
2618     __ sra(Rdividend, 0, Rdividend);
2619     __ sdivx(Rdividend, Rdivisor, Rresult);
2620 %}
2621 
2622 enc_class idiv_imm(iRegIsafe src1, immI13 imm, iRegIsafe dst) %{
2623     MacroAssembler _masm(&cbuf);
2624 
2625     Register Rdividend = reg_to_register_object($src1$$reg);
2626     int divisor = $imm$$constant;
2627     Register Rresult = reg_to_register_object($dst$$reg);
2628 
2629     __ sra(Rdividend, 0, Rdividend);
2630     __ sdivx(Rdividend, divisor, Rresult);
2631 %}
2632 
2633 enc_class enc_mul_hi(iRegIsafe dst, iRegIsafe src1, iRegIsafe src2) %{
2634     MacroAssembler _masm(&cbuf);
2635     Register Rsrc1 = reg_to_register_object($src1$$reg);
2636     Register Rsrc2 = reg_to_register_object($src2$$reg);
2637     Register Rdst  = reg_to_register_object($dst$$reg);
2638 
2639     __ sra( Rsrc1, 0, Rsrc1 );
2640     __ sra( Rsrc2, 0, Rsrc2 );
2641     __ mulx( Rsrc1, Rsrc2, Rdst );
2642     __ srlx( Rdst, 32, Rdst );
2643 %}
2644 
2645 enc_class irem_reg(iRegIsafe src1, iRegIsafe src2, iRegIsafe dst, o7RegL scratch) %{
2646     MacroAssembler _masm(&cbuf);
2647     Register Rdividend = reg_to_register_object($src1$$reg);
2648     Register Rdivisor = reg_to_register_object($src2$$reg);
2649     Register Rresult = reg_to_register_object($dst$$reg);
2650     Register Rscratch = reg_to_register_object($scratch$$reg);
2651 
2652     assert(Rdividend != Rscratch, "");
2653     assert(Rdivisor  != Rscratch, "");
2654 
2655     __ sra(Rdividend, 0, Rdividend);
2656     __ sra(Rdivisor, 0, Rdivisor);
2657     __ sdivx(Rdividend, Rdivisor, Rscratch);
2658     __ mulx(Rscratch, Rdivisor, Rscratch);
2659     __ sub(Rdividend, Rscratch, Rresult);
2660 %}
2661 
2662 enc_class irem_imm(iRegIsafe src1, immI13 imm, iRegIsafe dst, o7RegL scratch) %{
2663     MacroAssembler _masm(&cbuf);
2664 
2665     Register Rdividend = reg_to_register_object($src1$$reg);
2666     int divisor = $imm$$constant;
2667     Register Rresult = reg_to_register_object($dst$$reg);
2668     Register Rscratch = reg_to_register_object($scratch$$reg);
2669 
2670     assert(Rdividend != Rscratch, "");
2671 
2672     __ sra(Rdividend, 0, Rdividend);
2673     __ sdivx(Rdividend, divisor, Rscratch);
2674     __ mulx(Rscratch, divisor, Rscratch);
2675     __ sub(Rdividend, Rscratch, Rresult);
2676 %}
2677 
2678 enc_class fabss (sflt_reg dst, sflt_reg src) %{
2679     MacroAssembler _masm(&cbuf);
2680 
2681     FloatRegister Fdst = reg_to_SingleFloatRegister_object($dst$$reg);
2682     FloatRegister Fsrc = reg_to_SingleFloatRegister_object($src$$reg);
2683 
2684     __ fabs(FloatRegisterImpl::S, Fsrc, Fdst);
2685 %}
2686 
2687 enc_class fabsd (dflt_reg dst, dflt_reg src) %{
2688     MacroAssembler _masm(&cbuf);
2689 
2690     FloatRegister Fdst = reg_to_DoubleFloatRegister_object($dst$$reg);
2691     FloatRegister Fsrc = reg_to_DoubleFloatRegister_object($src$$reg);
2692 
2693     __ fabs(FloatRegisterImpl::D, Fsrc, Fdst);
2694 %}
2695 
2696 enc_class fnegd (dflt_reg dst, dflt_reg src) %{
2697     MacroAssembler _masm(&cbuf);
2698 
2699     FloatRegister Fdst = reg_to_DoubleFloatRegister_object($dst$$reg);
2700     FloatRegister Fsrc = reg_to_DoubleFloatRegister_object($src$$reg);
2701 
2702     __ fneg(FloatRegisterImpl::D, Fsrc, Fdst);
2703 %}
2704 
2705 enc_class fsqrts (sflt_reg dst, sflt_reg src) %{
2706     MacroAssembler _masm(&cbuf);
2707 
2708     FloatRegister Fdst = reg_to_SingleFloatRegister_object($dst$$reg);
2709     FloatRegister Fsrc = reg_to_SingleFloatRegister_object($src$$reg);
2710 
2711     __ fsqrt(FloatRegisterImpl::S, Fsrc, Fdst);
2712 %}
2713 
2714 enc_class fsqrtd (dflt_reg dst, dflt_reg src) %{
2715     MacroAssembler _masm(&cbuf);
2716 
2717     FloatRegister Fdst = reg_to_DoubleFloatRegister_object($dst$$reg);
2718     FloatRegister Fsrc = reg_to_DoubleFloatRegister_object($src$$reg);
2719 
2720     __ fsqrt(FloatRegisterImpl::D, Fsrc, Fdst);
2721 %}
2722 
2723 enc_class fmovs (dflt_reg dst, dflt_reg src) %{
2724     MacroAssembler _masm(&cbuf);
2725 
2726     FloatRegister Fdst = reg_to_SingleFloatRegister_object($dst$$reg);
2727     FloatRegister Fsrc = reg_to_SingleFloatRegister_object($src$$reg);
2728 
2729     __ fmov(FloatRegisterImpl::S, Fsrc, Fdst);
2730 %}
2731 
2732 enc_class fmovd (dflt_reg dst, dflt_reg src) %{
2733     MacroAssembler _masm(&cbuf);
2734 
2735     FloatRegister Fdst = reg_to_DoubleFloatRegister_object($dst$$reg);
2736     FloatRegister Fsrc = reg_to_DoubleFloatRegister_object($src$$reg);
2737 
2738     __ fmov(FloatRegisterImpl::D, Fsrc, Fdst);
2739 %}
2740 
2741 enc_class Fast_Lock(iRegP oop, iRegP box, o7RegP scratch, iRegP scratch2) %{
2742     MacroAssembler _masm(&cbuf);
2743 
2744     Register Roop  = reg_to_register_object($oop$$reg);
2745     Register Rbox  = reg_to_register_object($box$$reg);
2746     Register Rscratch = reg_to_register_object($scratch$$reg);
2747     Register Rmark =    reg_to_register_object($scratch2$$reg);
2748 
2749     assert(Roop  != Rscratch, "");
2750     assert(Roop  != Rmark, "");
2751     assert(Rbox  != Rscratch, "");
2752     assert(Rbox  != Rmark, "");
2753 
2754     __ compiler_lock_object(Roop, Rmark, Rbox, Rscratch, _counters, UseBiasedLocking && !UseOptoBiasInlining);
2755 %}
2756 
2757 enc_class Fast_Unlock(iRegP oop, iRegP box, o7RegP scratch, iRegP scratch2) %{
2758     MacroAssembler _masm(&cbuf);
2759 
2760     Register Roop  = reg_to_register_object($oop$$reg);
2761     Register Rbox  = reg_to_register_object($box$$reg);
2762     Register Rscratch = reg_to_register_object($scratch$$reg);
2763     Register Rmark =    reg_to_register_object($scratch2$$reg);
2764 
2765     assert(Roop  != Rscratch, "");
2766     assert(Roop  != Rmark, "");
2767     assert(Rbox  != Rscratch, "");
2768     assert(Rbox  != Rmark, "");
2769 
2770     __ compiler_unlock_object(Roop, Rmark, Rbox, Rscratch, UseBiasedLocking && !UseOptoBiasInlining);
2771   %}
2772 
2773   enc_class enc_cas( iRegP mem, iRegP old, iRegP new ) %{
2774     MacroAssembler _masm(&cbuf);
2775     Register Rmem = reg_to_register_object($mem$$reg);
2776     Register Rold = reg_to_register_object($old$$reg);
2777     Register Rnew = reg_to_register_object($new$$reg);
2778 
2779     // casx_under_lock picks 1 of 3 encodings:
2780     // For 32-bit pointers you get a 32-bit CAS
2781     // For 64-bit pointers you get a 64-bit CASX
2782     __ casn(Rmem, Rold, Rnew); // Swap(*Rmem,Rnew) if *Rmem == Rold
2783     __ cmp( Rold, Rnew );
2784   %}
2785 
2786   enc_class enc_casx( iRegP mem, iRegL old, iRegL new) %{
2787     Register Rmem = reg_to_register_object($mem$$reg);
2788     Register Rold = reg_to_register_object($old$$reg);
2789     Register Rnew = reg_to_register_object($new$$reg);
2790 
2791     MacroAssembler _masm(&cbuf);
2792     __ mov(Rnew, O7);
2793     __ casx(Rmem, Rold, O7);
2794     __ cmp( Rold, O7 );
2795   %}
2796 
2797   // raw int cas, used for compareAndSwap
2798   enc_class enc_casi( iRegP mem, iRegL old, iRegL new) %{
2799     Register Rmem = reg_to_register_object($mem$$reg);
2800     Register Rold = reg_to_register_object($old$$reg);
2801     Register Rnew = reg_to_register_object($new$$reg);
2802 
2803     MacroAssembler _masm(&cbuf);
2804     __ mov(Rnew, O7);
2805     __ cas(Rmem, Rold, O7);
2806     __ cmp( Rold, O7 );
2807   %}
2808 
2809   enc_class enc_lflags_ne_to_boolean( iRegI res ) %{
2810     Register Rres = reg_to_register_object($res$$reg);
2811 
2812     MacroAssembler _masm(&cbuf);
2813     __ mov(1, Rres);
2814     __ movcc( Assembler::notEqual, false, Assembler::xcc, G0, Rres );
2815   %}
2816 
2817   enc_class enc_iflags_ne_to_boolean( iRegI res ) %{
2818     Register Rres = reg_to_register_object($res$$reg);
2819 
2820     MacroAssembler _masm(&cbuf);
2821     __ mov(1, Rres);
2822     __ movcc( Assembler::notEqual, false, Assembler::icc, G0, Rres );
2823   %}
2824 
2825   enc_class floating_cmp ( iRegP dst, regF src1, regF src2 ) %{
2826     MacroAssembler _masm(&cbuf);
2827     Register Rdst = reg_to_register_object($dst$$reg);
2828     FloatRegister Fsrc1 = $primary ? reg_to_SingleFloatRegister_object($src1$$reg)
2829                                      : reg_to_DoubleFloatRegister_object($src1$$reg);
2830     FloatRegister Fsrc2 = $primary ? reg_to_SingleFloatRegister_object($src2$$reg)
2831                                      : reg_to_DoubleFloatRegister_object($src2$$reg);
2832 
2833     // Convert condition code fcc0 into -1,0,1; unordered reports less-than (-1)
2834     __ float_cmp( $primary, -1, Fsrc1, Fsrc2, Rdst);
2835   %}
2836 
2837   // Compiler ensures base is doubleword aligned and cnt is count of doublewords
2838   enc_class enc_Clear_Array(iRegX cnt, iRegP base, iRegX temp) %{
2839     MacroAssembler _masm(&cbuf);
2840     Register    nof_bytes_arg   = reg_to_register_object($cnt$$reg);
2841     Register    nof_bytes_tmp    = reg_to_register_object($temp$$reg);
2842     Register    base_pointer_arg = reg_to_register_object($base$$reg);
2843 
2844     Label loop;
2845     __ mov(nof_bytes_arg, nof_bytes_tmp);
2846 
2847     // Loop and clear, walking backwards through the array.
2848     // nof_bytes_tmp (if >0) is always the number of bytes to zero
2849     __ bind(loop);
2850     __ deccc(nof_bytes_tmp, 8);
2851     __ br(Assembler::greaterEqual, true, Assembler::pt, loop);
2852     __ delayed()-> stx(G0, base_pointer_arg, nof_bytes_tmp);
2853     // %%%% this mini-loop must not cross a cache boundary!
2854   %}
2855 
2856 
2857   enc_class enc_String_Compare(o0RegP str1, o1RegP str2, g3RegI cnt1, g4RegI cnt2, notemp_iRegI result) %{
2858     Label Ldone, Lloop;
2859     MacroAssembler _masm(&cbuf);
2860 
2861     Register   str1_reg = reg_to_register_object($str1$$reg);
2862     Register   str2_reg = reg_to_register_object($str2$$reg);
2863     Register   cnt1_reg = reg_to_register_object($cnt1$$reg);
2864     Register   cnt2_reg = reg_to_register_object($cnt2$$reg);
2865     Register result_reg = reg_to_register_object($result$$reg);
2866 
2867     assert(result_reg != str1_reg &&
2868            result_reg != str2_reg &&
2869            result_reg != cnt1_reg &&
2870            result_reg != cnt2_reg ,
2871            "need different registers");
2872 
2873     // Compute the minimum of the string lengths(str1_reg) and the
2874     // difference of the string lengths (stack)
2875 
2876     // See if the lengths are different, and calculate min in str1_reg.
2877     // Stash diff in O7 in case we need it for a tie-breaker.
2878     Label Lskip;
2879     __ subcc(cnt1_reg, cnt2_reg, O7);
2880     __ sll(cnt1_reg, exact_log2(sizeof(jchar)), cnt1_reg); // scale the limit
2881     __ br(Assembler::greater, true, Assembler::pt, Lskip);
2882     // cnt2 is shorter, so use its count:
2883     __ delayed()->sll(cnt2_reg, exact_log2(sizeof(jchar)), cnt1_reg); // scale the limit
2884     __ bind(Lskip);
2885 
2886     // reallocate cnt1_reg, cnt2_reg, result_reg
2887     // Note:  limit_reg holds the string length pre-scaled by 2
2888     Register limit_reg =   cnt1_reg;
2889     Register  chr2_reg =   cnt2_reg;
2890     Register  chr1_reg = result_reg;
2891     // str{12} are the base pointers
2892 
2893     // Is the minimum length zero?
2894     __ cmp(limit_reg, (int)(0 * sizeof(jchar))); // use cast to resolve overloading ambiguity
2895     __ br(Assembler::equal, true, Assembler::pn, Ldone);
2896     __ delayed()->mov(O7, result_reg);  // result is difference in lengths
2897 
2898     // Load first characters
2899     __ lduh(str1_reg, 0, chr1_reg);
2900     __ lduh(str2_reg, 0, chr2_reg);
2901 
2902     // Compare first characters
2903     __ subcc(chr1_reg, chr2_reg, chr1_reg);
2904     __ br(Assembler::notZero, false, Assembler::pt,  Ldone);
2905     assert(chr1_reg == result_reg, "result must be pre-placed");
2906     __ delayed()->nop();
2907 
2908     {
2909       // Check after comparing first character to see if strings are equivalent
2910       Label LSkip2;
2911       // Check if the strings start at same location
2912       __ cmp(str1_reg, str2_reg);
2913       __ brx(Assembler::notEqual, true, Assembler::pt, LSkip2);
2914       __ delayed()->nop();
2915 
2916       // Check if the length difference is zero (in O7)
2917       __ cmp(G0, O7);
2918       __ br(Assembler::equal, true, Assembler::pn, Ldone);
2919       __ delayed()->mov(G0, result_reg);  // result is zero
2920 
2921       // Strings might not be equal
2922       __ bind(LSkip2);
2923     }
2924 
2925     __ subcc(limit_reg, 1 * sizeof(jchar), chr1_reg);
2926     __ br(Assembler::equal, true, Assembler::pn, Ldone);
2927     __ delayed()->mov(O7, result_reg);  // result is difference in lengths
2928 
2929     // Shift str1_reg and str2_reg to the end of the arrays, negate limit
2930     __ add(str1_reg, limit_reg, str1_reg);
2931     __ add(str2_reg, limit_reg, str2_reg);
2932     __ neg(chr1_reg, limit_reg);  // limit = -(limit-2)
2933 
2934     // Compare the rest of the characters
2935     __ lduh(str1_reg, limit_reg, chr1_reg);
2936     __ bind(Lloop);
2937     // __ lduh(str1_reg, limit_reg, chr1_reg); // hoisted
2938     __ lduh(str2_reg, limit_reg, chr2_reg);
2939     __ subcc(chr1_reg, chr2_reg, chr1_reg);
2940     __ br(Assembler::notZero, false, Assembler::pt, Ldone);
2941     assert(chr1_reg == result_reg, "result must be pre-placed");
2942     __ delayed()->inccc(limit_reg, sizeof(jchar));
2943     // annul LDUH if branch is not taken to prevent access past end of string
2944     __ br(Assembler::notZero, true, Assembler::pt, Lloop);
2945     __ delayed()->lduh(str1_reg, limit_reg, chr1_reg); // hoisted
2946 
2947     // If strings are equal up to min length, return the length difference.
2948     __ mov(O7, result_reg);
2949 
2950     // Otherwise, return the difference between the first mismatched chars.
2951     __ bind(Ldone);
2952   %}
2953 
2954 enc_class enc_String_Equals(o0RegP str1, o1RegP str2, g3RegI cnt, notemp_iRegI result) %{
2955     Label Lword_loop, Lpost_word, Lchar, Lchar_loop, Ldone;
2956     MacroAssembler _masm(&cbuf);
2957 
2958     Register   str1_reg = reg_to_register_object($str1$$reg);
2959     Register   str2_reg = reg_to_register_object($str2$$reg);
2960     Register    cnt_reg = reg_to_register_object($cnt$$reg);
2961     Register   tmp1_reg = O7;
2962     Register result_reg = reg_to_register_object($result$$reg);
2963 
2964     assert(result_reg != str1_reg &&
2965            result_reg != str2_reg &&
2966            result_reg !=  cnt_reg &&
2967            result_reg != tmp1_reg ,
2968            "need different registers");
2969 
2970     __ cmp(str1_reg, str2_reg); //same char[] ?
2971     __ brx(Assembler::equal, true, Assembler::pn, Ldone);
2972     __ delayed()->add(G0, 1, result_reg);
2973 
2974     __ br_on_reg_cond(Assembler::rc_z, true, Assembler::pn, cnt_reg, Ldone);
2975     __ delayed()->add(G0, 1, result_reg); // count == 0
2976 
2977     //rename registers
2978     Register limit_reg =    cnt_reg;
2979     Register  chr1_reg = result_reg;
2980     Register  chr2_reg =   tmp1_reg;
2981 
2982     //check for alignment and position the pointers to the ends
2983     __ or3(str1_reg, str2_reg, chr1_reg);
2984     __ andcc(chr1_reg, 0x3, chr1_reg);
2985     // notZero means at least one not 4-byte aligned.
2986     // We could optimize the case when both arrays are not aligned
2987     // but it is not frequent case and it requires additional checks.
2988     __ br(Assembler::notZero, false, Assembler::pn, Lchar); // char by char compare
2989     __ delayed()->sll(limit_reg, exact_log2(sizeof(jchar)), limit_reg); // set byte count
2990 
2991     // Compare char[] arrays aligned to 4 bytes.
2992     __ char_arrays_equals(str1_reg, str2_reg, limit_reg, result_reg,
2993                           chr1_reg, chr2_reg, Ldone);
2994     __ ba(false,Ldone);
2995     __ delayed()->add(G0, 1, result_reg);
2996 
2997     // char by char compare
2998     __ bind(Lchar);
2999     __ add(str1_reg, limit_reg, str1_reg);
3000     __ add(str2_reg, limit_reg, str2_reg);
3001     __ neg(limit_reg); //negate count
3002 
3003     __ lduh(str1_reg, limit_reg, chr1_reg);
3004     // Lchar_loop
3005     __ bind(Lchar_loop);
3006     __ lduh(str2_reg, limit_reg, chr2_reg);
3007     __ cmp(chr1_reg, chr2_reg);
3008     __ br(Assembler::notEqual, true, Assembler::pt, Ldone);
3009     __ delayed()->mov(G0, result_reg); //not equal
3010     __ inccc(limit_reg, sizeof(jchar));
3011     // annul LDUH if branch is not taken to prevent access past end of string
3012     __ br(Assembler::notZero, true, Assembler::pt, Lchar_loop);
3013     __ delayed()->lduh(str1_reg, limit_reg, chr1_reg); // hoisted
3014 
3015     __ add(G0, 1, result_reg);  //equal
3016 
3017     __ bind(Ldone);
3018   %}
3019 
3020 enc_class enc_Array_Equals(o0RegP ary1, o1RegP ary2, g3RegP tmp1, notemp_iRegI result) %{
3021     Label Lvector, Ldone, Lloop;
3022     MacroAssembler _masm(&cbuf);
3023 
3024     Register   ary1_reg = reg_to_register_object($ary1$$reg);
3025     Register   ary2_reg = reg_to_register_object($ary2$$reg);
3026     Register   tmp1_reg = reg_to_register_object($tmp1$$reg);
3027     Register   tmp2_reg = O7;
3028     Register result_reg = reg_to_register_object($result$$reg);
3029 
3030     int length_offset  = arrayOopDesc::length_offset_in_bytes();
3031     int base_offset    = arrayOopDesc::base_offset_in_bytes(T_CHAR);
3032 
3033     // return true if the same array
3034     __ cmp(ary1_reg, ary2_reg);
3035     __ brx(Assembler::equal, true, Assembler::pn, Ldone);
3036     __ delayed()->add(G0, 1, result_reg); // equal
3037 
3038     __ br_null(ary1_reg, true, Assembler::pn, Ldone);
3039     __ delayed()->mov(G0, result_reg);    // not equal
3040 
3041     __ br_null(ary2_reg, true, Assembler::pn, Ldone);
3042     __ delayed()->mov(G0, result_reg);    // not equal
3043 
3044     //load the lengths of arrays
3045     __ ld(Address(ary1_reg, length_offset), tmp1_reg);
3046     __ ld(Address(ary2_reg, length_offset), tmp2_reg);
3047 
3048     // return false if the two arrays are not equal length
3049     __ cmp(tmp1_reg, tmp2_reg);
3050     __ br(Assembler::notEqual, true, Assembler::pn, Ldone);
3051     __ delayed()->mov(G0, result_reg);     // not equal
3052 
3053     __ br_on_reg_cond(Assembler::rc_z, true, Assembler::pn, tmp1_reg, Ldone);
3054     __ delayed()->add(G0, 1, result_reg); // zero-length arrays are equal
3055 
3056     // load array addresses
3057     __ add(ary1_reg, base_offset, ary1_reg);
3058     __ add(ary2_reg, base_offset, ary2_reg);
3059 
3060     // renaming registers
3061     Register chr1_reg  =  result_reg; // for characters in ary1
3062     Register chr2_reg  =  tmp2_reg;   // for characters in ary2
3063     Register limit_reg =  tmp1_reg;   // length
3064 
3065     // set byte count
3066     __ sll(limit_reg, exact_log2(sizeof(jchar)), limit_reg);
3067 
3068     // Compare char[] arrays aligned to 4 bytes.
3069     __ char_arrays_equals(ary1_reg, ary2_reg, limit_reg, result_reg,
3070                           chr1_reg, chr2_reg, Ldone);
3071     __ add(G0, 1, result_reg); // equals
3072 
3073     __ bind(Ldone);
3074   %}
3075 
3076   enc_class enc_rethrow() %{
3077     cbuf.set_insts_mark();
3078     Register temp_reg = G3;
3079     AddressLiteral rethrow_stub(OptoRuntime::rethrow_stub());
3080     assert(temp_reg != reg_to_register_object(R_I0_num), "temp must not break oop_reg");
3081     MacroAssembler _masm(&cbuf);
3082 #ifdef ASSERT
3083     __ save_frame(0);
3084     AddressLiteral last_rethrow_addrlit(&last_rethrow);
3085     __ sethi(last_rethrow_addrlit, L1);
3086     Address addr(L1, last_rethrow_addrlit.low10());
3087     __ get_pc(L2);
3088     __ inc(L2, 3 * BytesPerInstWord);  // skip this & 2 more insns to point at jump_to
3089     __ st_ptr(L2, addr);
3090     __ restore();
3091 #endif
3092     __ JUMP(rethrow_stub, temp_reg, 0); // sethi;jmp
3093     __ delayed()->nop();
3094   %}
3095 
3096   enc_class emit_mem_nop() %{
3097     // Generates the instruction LDUXA [o6,g0],#0x82,g0
3098     cbuf.insts()->emit_int32((unsigned int) 0xc0839040);
3099   %}
3100 
3101   enc_class emit_fadd_nop() %{
3102     // Generates the instruction FMOVS f31,f31
3103     cbuf.insts()->emit_int32((unsigned int) 0xbfa0003f);
3104   %}
3105 
3106   enc_class emit_br_nop() %{
3107     // Generates the instruction BPN,PN .
3108     cbuf.insts()->emit_int32((unsigned int) 0x00400000);
3109   %}
3110 
3111   enc_class enc_membar_acquire %{
3112     MacroAssembler _masm(&cbuf);
3113     __ membar( Assembler::Membar_mask_bits(Assembler::LoadStore | Assembler::LoadLoad) );
3114   %}
3115 
3116   enc_class enc_membar_release %{
3117     MacroAssembler _masm(&cbuf);
3118     __ membar( Assembler::Membar_mask_bits(Assembler::LoadStore | Assembler::StoreStore) );
3119   %}
3120 
3121   enc_class enc_membar_volatile %{
3122     MacroAssembler _masm(&cbuf);
3123     __ membar( Assembler::Membar_mask_bits(Assembler::StoreLoad) );
3124   %}
3125 
3126   enc_class enc_repl8b( iRegI src, iRegL dst ) %{
3127     MacroAssembler _masm(&cbuf);
3128     Register src_reg = reg_to_register_object($src$$reg);
3129     Register dst_reg = reg_to_register_object($dst$$reg);
3130     __ sllx(src_reg, 56, dst_reg);
3131     __ srlx(dst_reg,  8, O7);
3132     __ or3 (dst_reg, O7, dst_reg);
3133     __ srlx(dst_reg, 16, O7);
3134     __ or3 (dst_reg, O7, dst_reg);
3135     __ srlx(dst_reg, 32, O7);
3136     __ or3 (dst_reg, O7, dst_reg);
3137   %}
3138 
3139   enc_class enc_repl4b( iRegI src, iRegL dst ) %{
3140     MacroAssembler _masm(&cbuf);
3141     Register src_reg = reg_to_register_object($src$$reg);
3142     Register dst_reg = reg_to_register_object($dst$$reg);
3143     __ sll(src_reg, 24, dst_reg);
3144     __ srl(dst_reg,  8, O7);
3145     __ or3(dst_reg, O7, dst_reg);
3146     __ srl(dst_reg, 16, O7);
3147     __ or3(dst_reg, O7, dst_reg);
3148   %}
3149 
3150   enc_class enc_repl4s( iRegI src, iRegL dst ) %{
3151     MacroAssembler _masm(&cbuf);
3152     Register src_reg = reg_to_register_object($src$$reg);
3153     Register dst_reg = reg_to_register_object($dst$$reg);
3154     __ sllx(src_reg, 48, dst_reg);
3155     __ srlx(dst_reg, 16, O7);
3156     __ or3 (dst_reg, O7, dst_reg);
3157     __ srlx(dst_reg, 32, O7);
3158     __ or3 (dst_reg, O7, dst_reg);
3159   %}
3160 
3161   enc_class enc_repl2i( iRegI src, iRegL dst ) %{
3162     MacroAssembler _masm(&cbuf);
3163     Register src_reg = reg_to_register_object($src$$reg);
3164     Register dst_reg = reg_to_register_object($dst$$reg);
3165     __ sllx(src_reg, 32, dst_reg);
3166     __ srlx(dst_reg, 32, O7);
3167     __ or3 (dst_reg, O7, dst_reg);
3168   %}
3169 
3170 %}
3171 
3172 //----------FRAME--------------------------------------------------------------
3173 // Definition of frame structure and management information.
3174 //
3175 //  S T A C K   L A Y O U T    Allocators stack-slot number
3176 //                             |   (to get allocators register number
3177 //  G  Owned by    |        |  v    add VMRegImpl::stack0)
3178 //  r   CALLER     |        |
3179 //  o     |        +--------+      pad to even-align allocators stack-slot
3180 //  w     V        |  pad0  |        numbers; owned by CALLER
3181 //  t   -----------+--------+----> Matcher::_in_arg_limit, unaligned
3182 //  h     ^        |   in   |  5
3183 //        |        |  args  |  4   Holes in incoming args owned by SELF
3184 //  |     |        |        |  3
3185 //  |     |        +--------+
3186 //  V     |        | old out|      Empty on Intel, window on Sparc
3187 //        |    old |preserve|      Must be even aligned.
3188 //        |     SP-+--------+----> Matcher::_old_SP, 8 (or 16 in LP64)-byte aligned
3189 //        |        |   in   |  3   area for Intel ret address
3190 //     Owned by    |preserve|      Empty on Sparc.
3191 //       SELF      +--------+
3192 //        |        |  pad2  |  2   pad to align old SP
3193 //        |        +--------+  1
3194 //        |        | locks  |  0
3195 //        |        +--------+----> VMRegImpl::stack0, 8 (or 16 in LP64)-byte aligned
3196 //        |        |  pad1  | 11   pad to align new SP
3197 //        |        +--------+
3198 //        |        |        | 10
3199 //        |        | spills |  9   spills
3200 //        V        |        |  8   (pad0 slot for callee)
3201 //      -----------+--------+----> Matcher::_out_arg_limit, unaligned
3202 //        ^        |  out   |  7
3203 //        |        |  args  |  6   Holes in outgoing args owned by CALLEE
3204 //     Owned by    +--------+
3205 //      CALLEE     | new out|  6   Empty on Intel, window on Sparc
3206 //        |    new |preserve|      Must be even-aligned.
3207 //        |     SP-+--------+----> Matcher::_new_SP, even aligned
3208 //        |        |        |
3209 //
3210 // Note 1: Only region 8-11 is determined by the allocator.  Region 0-5 is
3211 //         known from SELF's arguments and the Java calling convention.
3212 //         Region 6-7 is determined per call site.
3213 // Note 2: If the calling convention leaves holes in the incoming argument
3214 //         area, those holes are owned by SELF.  Holes in the outgoing area
3215 //         are owned by the CALLEE.  Holes should not be nessecary in the
3216 //         incoming area, as the Java calling convention is completely under
3217 //         the control of the AD file.  Doubles can be sorted and packed to
3218 //         avoid holes.  Holes in the outgoing arguments may be nessecary for
3219 //         varargs C calling conventions.
3220 // Note 3: Region 0-3 is even aligned, with pad2 as needed.  Region 3-5 is
3221 //         even aligned with pad0 as needed.
3222 //         Region 6 is even aligned.  Region 6-7 is NOT even aligned;
3223 //         region 6-11 is even aligned; it may be padded out more so that
3224 //         the region from SP to FP meets the minimum stack alignment.
3225 
3226 frame %{
3227   // What direction does stack grow in (assumed to be same for native & Java)
3228   stack_direction(TOWARDS_LOW);
3229 
3230   // These two registers define part of the calling convention
3231   // between compiled code and the interpreter.
3232   inline_cache_reg(R_G5);                // Inline Cache Register or methodOop for I2C
3233   interpreter_method_oop_reg(R_G5);      // Method Oop Register when calling interpreter
3234 
3235   // Optional: name the operand used by cisc-spilling to access [stack_pointer + offset]
3236   cisc_spilling_operand_name(indOffset);
3237 
3238   // Number of stack slots consumed by a Monitor enter
3239 #ifdef _LP64
3240   sync_stack_slots(2);
3241 #else
3242   sync_stack_slots(1);
3243 #endif
3244 
3245   // Compiled code's Frame Pointer
3246   frame_pointer(R_SP);
3247 
3248   // Stack alignment requirement
3249   stack_alignment(StackAlignmentInBytes);
3250   //  LP64: Alignment size in bytes (128-bit -> 16 bytes)
3251   // !LP64: Alignment size in bytes (64-bit  ->  8 bytes)
3252 
3253   // Number of stack slots between incoming argument block and the start of
3254   // a new frame.  The PROLOG must add this many slots to the stack.  The
3255   // EPILOG must remove this many slots.
3256   in_preserve_stack_slots(0);
3257 
3258   // Number of outgoing stack slots killed above the out_preserve_stack_slots
3259   // for calls to C.  Supports the var-args backing area for register parms.
3260   // ADLC doesn't support parsing expressions, so I folded the math by hand.
3261 #ifdef _LP64
3262   // (callee_register_argument_save_area_words (6) + callee_aggregate_return_pointer_words (0)) * 2-stack-slots-per-word
3263   varargs_C_out_slots_killed(12);
3264 #else
3265   // (callee_register_argument_save_area_words (6) + callee_aggregate_return_pointer_words (1)) * 1-stack-slots-per-word
3266   varargs_C_out_slots_killed( 7);
3267 #endif
3268 
3269   // The after-PROLOG location of the return address.  Location of
3270   // return address specifies a type (REG or STACK) and a number
3271   // representing the register number (i.e. - use a register name) or
3272   // stack slot.
3273   return_addr(REG R_I7);          // Ret Addr is in register I7
3274 
3275   // Body of function which returns an OptoRegs array locating
3276   // arguments either in registers or in stack slots for calling
3277   // java
3278   calling_convention %{
3279     (void) SharedRuntime::java_calling_convention(sig_bt, regs, length, is_outgoing);
3280 
3281   %}
3282 
3283   // Body of function which returns an OptoRegs array locating
3284   // arguments either in registers or in stack slots for callin
3285   // C.
3286   c_calling_convention %{
3287     // This is obviously always outgoing
3288     (void) SharedRuntime::c_calling_convention(sig_bt, regs, length);
3289   %}
3290 
3291   // Location of native (C/C++) and interpreter return values.  This is specified to
3292   // be the  same as Java.  In the 32-bit VM, long values are actually returned from
3293   // native calls in O0:O1 and returned to the interpreter in I0:I1.  The copying
3294   // to and from the register pairs is done by the appropriate call and epilog
3295   // opcodes.  This simplifies the register allocator.
3296   c_return_value %{
3297     assert( ideal_reg >= Op_RegI && ideal_reg <= Op_RegL, "only return normal values" );
3298 #ifdef     _LP64
3299     static int lo_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_O0_num,     R_O0_num,     R_O0_num,     R_F0_num,     R_F0_num, R_O0_num };
3300     static int hi_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_O0H_num,    OptoReg::Bad, R_F1_num, R_O0H_num};
3301     static int lo_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_I0_num,     R_I0_num,     R_I0_num,     R_F0_num,     R_F0_num, R_I0_num };
3302     static int hi_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_I0H_num,    OptoReg::Bad, R_F1_num, R_I0H_num};
3303 #else  // !_LP64
3304     static int lo_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_O0_num,     R_O0_num,     R_O0_num,     R_F0_num,     R_F0_num, R_G1_num };
3305     static int hi_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_F1_num, R_G1H_num };
3306     static int lo_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_I0_num,     R_I0_num,     R_I0_num,     R_F0_num,     R_F0_num, R_G1_num };
3307     static int hi_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_F1_num, R_G1H_num };
3308 #endif
3309     return OptoRegPair( (is_outgoing?hi_out:hi_in)[ideal_reg],
3310                         (is_outgoing?lo_out:lo_in)[ideal_reg] );
3311   %}
3312 
3313   // Location of compiled Java return values.  Same as C
3314   return_value %{
3315     assert( ideal_reg >= Op_RegI && ideal_reg <= Op_RegL, "only return normal values" );
3316 #ifdef     _LP64
3317     static int lo_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_O0_num,     R_O0_num,     R_O0_num,     R_F0_num,     R_F0_num, R_O0_num };
3318     static int hi_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_O0H_num,    OptoReg::Bad, R_F1_num, R_O0H_num};
3319     static int lo_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_I0_num,     R_I0_num,     R_I0_num,     R_F0_num,     R_F0_num, R_I0_num };
3320     static int hi_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_I0H_num,    OptoReg::Bad, R_F1_num, R_I0H_num};
3321 #else  // !_LP64
3322     static int lo_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_O0_num,     R_O0_num,     R_O0_num,     R_F0_num,     R_F0_num, R_G1_num };
3323     static int hi_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_F1_num, R_G1H_num};
3324     static int lo_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_I0_num,     R_I0_num,     R_I0_num,     R_F0_num,     R_F0_num, R_G1_num };
3325     static int hi_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_F1_num, R_G1H_num};
3326 #endif
3327     return OptoRegPair( (is_outgoing?hi_out:hi_in)[ideal_reg],
3328                         (is_outgoing?lo_out:lo_in)[ideal_reg] );
3329   %}
3330 
3331 %}
3332 
3333 
3334 //----------ATTRIBUTES---------------------------------------------------------
3335 //----------Operand Attributes-------------------------------------------------
3336 op_attrib op_cost(1);          // Required cost attribute
3337 
3338 //----------Instruction Attributes---------------------------------------------
3339 ins_attrib ins_cost(DEFAULT_COST); // Required cost attribute
3340 ins_attrib ins_size(32);       // Required size attribute (in bits)
3341 ins_attrib ins_pc_relative(0); // Required PC Relative flag
3342 ins_attrib ins_short_branch(0); // Required flag: is this instruction a
3343                                 // non-matching short branch variant of some
3344                                                             // long branch?
3345 
3346 //----------OPERANDS-----------------------------------------------------------
3347 // Operand definitions must precede instruction definitions for correct parsing
3348 // in the ADLC because operands constitute user defined types which are used in
3349 // instruction definitions.
3350 
3351 //----------Simple Operands----------------------------------------------------
3352 // Immediate Operands
3353 // Integer Immediate: 32-bit
3354 operand immI() %{
3355   match(ConI);
3356 
3357   op_cost(0);
3358   // formats are generated automatically for constants and base registers
3359   format %{ %}
3360   interface(CONST_INTER);
3361 %}
3362 
3363 // Integer Immediate: 8-bit
3364 operand immI8() %{
3365   predicate(Assembler::is_simm(n->get_int(), 8));
3366   match(ConI);
3367   op_cost(0);
3368   format %{ %}
3369   interface(CONST_INTER);
3370 %}
3371 
3372 // Integer Immediate: 13-bit
3373 operand immI13() %{
3374   predicate(Assembler::is_simm13(n->get_int()));
3375   match(ConI);
3376   op_cost(0);
3377 
3378   format %{ %}
3379   interface(CONST_INTER);
3380 %}
3381 
3382 // Integer Immediate: 13-bit minus 7
3383 operand immI13m7() %{
3384   predicate((-4096 < n->get_int()) && ((n->get_int() + 7) <= 4095));
3385   match(ConI);
3386   op_cost(0);
3387 
3388   format %{ %}
3389   interface(CONST_INTER);
3390 %}
3391 
3392 // Integer Immediate: 16-bit
3393 operand immI16() %{
3394   predicate(Assembler::is_simm(n->get_int(), 16));
3395   match(ConI);
3396   op_cost(0);
3397   format %{ %}
3398   interface(CONST_INTER);
3399 %}
3400 
3401 // Unsigned (positive) Integer Immediate: 13-bit
3402 operand immU13() %{
3403   predicate((0 <= n->get_int()) && Assembler::is_simm13(n->get_int()));
3404   match(ConI);
3405   op_cost(0);
3406 
3407   format %{ %}
3408   interface(CONST_INTER);
3409 %}
3410 
3411 // Integer Immediate: 6-bit
3412 operand immU6() %{
3413   predicate(n->get_int() >= 0 && n->get_int() <= 63);
3414   match(ConI);
3415   op_cost(0);
3416   format %{ %}
3417   interface(CONST_INTER);
3418 %}
3419 
3420 // Integer Immediate: 11-bit
3421 operand immI11() %{
3422   predicate(Assembler::is_simm(n->get_int(),11));
3423   match(ConI);
3424   op_cost(0);
3425   format %{ %}
3426   interface(CONST_INTER);
3427 %}
3428 
3429 // Integer Immediate: 0-bit
3430 operand immI0() %{
3431   predicate(n->get_int() == 0);
3432   match(ConI);
3433   op_cost(0);
3434 
3435   format %{ %}
3436   interface(CONST_INTER);
3437 %}
3438 
3439 // Integer Immediate: the value 10
3440 operand immI10() %{
3441   predicate(n->get_int() == 10);
3442   match(ConI);
3443   op_cost(0);
3444 
3445   format %{ %}
3446   interface(CONST_INTER);
3447 %}
3448 
3449 // Integer Immediate: the values 0-31
3450 operand immU5() %{
3451   predicate(n->get_int() >= 0 && n->get_int() <= 31);
3452   match(ConI);
3453   op_cost(0);
3454 
3455   format %{ %}
3456   interface(CONST_INTER);
3457 %}
3458 
3459 // Integer Immediate: the values 1-31
3460 operand immI_1_31() %{
3461   predicate(n->get_int() >= 1 && n->get_int() <= 31);
3462   match(ConI);
3463   op_cost(0);
3464 
3465   format %{ %}
3466   interface(CONST_INTER);
3467 %}
3468 
3469 // Integer Immediate: the values 32-63
3470 operand immI_32_63() %{
3471   predicate(n->get_int() >= 32 && n->get_int() <= 63);
3472   match(ConI);
3473   op_cost(0);
3474 
3475   format %{ %}
3476   interface(CONST_INTER);
3477 %}
3478 
3479 // Immediates for special shifts (sign extend)
3480 
3481 // Integer Immediate: the value 16
3482 operand immI_16() %{
3483   predicate(n->get_int() == 16);
3484   match(ConI);
3485   op_cost(0);
3486 
3487   format %{ %}
3488   interface(CONST_INTER);
3489 %}
3490 
3491 // Integer Immediate: the value 24
3492 operand immI_24() %{
3493   predicate(n->get_int() == 24);
3494   match(ConI);
3495   op_cost(0);
3496 
3497   format %{ %}
3498   interface(CONST_INTER);
3499 %}
3500 
3501 // Integer Immediate: the value 255
3502 operand immI_255() %{
3503   predicate( n->get_int() == 255 );
3504   match(ConI);
3505   op_cost(0);
3506 
3507   format %{ %}
3508   interface(CONST_INTER);
3509 %}
3510 
3511 // Integer Immediate: the value 65535
3512 operand immI_65535() %{
3513   predicate(n->get_int() == 65535);
3514   match(ConI);
3515   op_cost(0);
3516 
3517   format %{ %}
3518   interface(CONST_INTER);
3519 %}
3520 
3521 // Long Immediate: the value FF
3522 operand immL_FF() %{
3523   predicate( n->get_long() == 0xFFL );
3524   match(ConL);
3525   op_cost(0);
3526 
3527   format %{ %}
3528   interface(CONST_INTER);
3529 %}
3530 
3531 // Long Immediate: the value FFFF
3532 operand immL_FFFF() %{
3533   predicate( n->get_long() == 0xFFFFL );
3534   match(ConL);
3535   op_cost(0);
3536 
3537   format %{ %}
3538   interface(CONST_INTER);
3539 %}
3540 
3541 // Pointer Immediate: 32 or 64-bit
3542 operand immP() %{
3543   match(ConP);
3544 
3545   op_cost(5);
3546   // formats are generated automatically for constants and base registers
3547   format %{ %}
3548   interface(CONST_INTER);
3549 %}
3550 
3551 #ifdef _LP64
3552 // Pointer Immediate: 64-bit
3553 operand immP_set() %{
3554   predicate(!VM_Version::is_niagara_plus());
3555   match(ConP);
3556 
3557   op_cost(5);
3558   // formats are generated automatically for constants and base registers
3559   format %{ %}
3560   interface(CONST_INTER);
3561 %}
3562 
3563 // Pointer Immediate: 64-bit
3564 // From Niagara2 processors on a load should be better than materializing.
3565 operand immP_load() %{
3566   predicate(VM_Version::is_niagara_plus() && (n->bottom_type()->isa_oop_ptr() || (MacroAssembler::insts_for_set(n->get_ptr()) > 3)));
3567   match(ConP);
3568 
3569   op_cost(5);
3570   // formats are generated automatically for constants and base registers
3571   format %{ %}
3572   interface(CONST_INTER);
3573 %}
3574 
3575 // Pointer Immediate: 64-bit
3576 operand immP_no_oop_cheap() %{
3577   predicate(VM_Version::is_niagara_plus() && !n->bottom_type()->isa_oop_ptr() && (MacroAssembler::insts_for_set(n->get_ptr()) <= 3));
3578   match(ConP);
3579 
3580   op_cost(5);
3581   // formats are generated automatically for constants and base registers
3582   format %{ %}
3583   interface(CONST_INTER);
3584 %}
3585 #endif
3586 
3587 operand immP13() %{
3588   predicate((-4096 < n->get_ptr()) && (n->get_ptr() <= 4095));
3589   match(ConP);
3590   op_cost(0);
3591 
3592   format %{ %}
3593   interface(CONST_INTER);
3594 %}
3595 
3596 operand immP0() %{
3597   predicate(n->get_ptr() == 0);
3598   match(ConP);
3599   op_cost(0);
3600 
3601   format %{ %}
3602   interface(CONST_INTER);
3603 %}
3604 
3605 operand immP_poll() %{
3606   predicate(n->get_ptr() != 0 && n->get_ptr() == (intptr_t)os::get_polling_page());
3607   match(ConP);
3608 
3609   // formats are generated automatically for constants and base registers
3610   format %{ %}
3611   interface(CONST_INTER);
3612 %}
3613 
3614 // Pointer Immediate
3615 operand immN()
3616 %{
3617   match(ConN);
3618 
3619   op_cost(10);
3620   format %{ %}
3621   interface(CONST_INTER);
3622 %}
3623 
3624 // NULL Pointer Immediate
3625 operand immN0()
3626 %{
3627   predicate(n->get_narrowcon() == 0);
3628   match(ConN);
3629 
3630   op_cost(0);
3631   format %{ %}
3632   interface(CONST_INTER);
3633 %}
3634 
3635 operand immL() %{
3636   match(ConL);
3637   op_cost(40);
3638   // formats are generated automatically for constants and base registers
3639   format %{ %}
3640   interface(CONST_INTER);
3641 %}
3642 
3643 operand immL0() %{
3644   predicate(n->get_long() == 0L);
3645   match(ConL);
3646   op_cost(0);
3647   // formats are generated automatically for constants and base registers
3648   format %{ %}
3649   interface(CONST_INTER);
3650 %}
3651 
3652 // Long Immediate: 13-bit
3653 operand immL13() %{
3654   predicate((-4096L < n->get_long()) && (n->get_long() <= 4095L));
3655   match(ConL);
3656   op_cost(0);
3657 
3658   format %{ %}
3659   interface(CONST_INTER);
3660 %}
3661 
3662 // Long Immediate: 13-bit minus 7
3663 operand immL13m7() %{
3664   predicate((-4096L < n->get_long()) && ((n->get_long() + 7L) <= 4095L));
3665   match(ConL);
3666   op_cost(0);
3667 
3668   format %{ %}
3669   interface(CONST_INTER);
3670 %}
3671 
3672 // Long Immediate: low 32-bit mask
3673 operand immL_32bits() %{
3674   predicate(n->get_long() == 0xFFFFFFFFL);
3675   match(ConL);
3676   op_cost(0);
3677 
3678   format %{ %}
3679   interface(CONST_INTER);
3680 %}
3681 
3682 // Long Immediate: cheap (materialize in <= 3 instructions)
3683 operand immL_cheap() %{
3684   predicate(!VM_Version::is_niagara_plus() || MacroAssembler::insts_for_set64(n->get_long()) <= 3);
3685   match(ConL);
3686   op_cost(0);
3687 
3688   format %{ %}
3689   interface(CONST_INTER);
3690 %}
3691 
3692 // Long Immediate: expensive (materialize in > 3 instructions)
3693 operand immL_expensive() %{
3694   predicate(VM_Version::is_niagara_plus() && MacroAssembler::insts_for_set64(n->get_long()) > 3);
3695   match(ConL);
3696   op_cost(0);
3697 
3698   format %{ %}
3699   interface(CONST_INTER);
3700 %}
3701 
3702 // Double Immediate
3703 operand immD() %{
3704   match(ConD);
3705 
3706   op_cost(40);
3707   format %{ %}
3708   interface(CONST_INTER);
3709 %}
3710 
3711 operand immD0() %{
3712 #ifdef _LP64
3713   // on 64-bit architectures this comparision is faster
3714   predicate(jlong_cast(n->getd()) == 0);
3715 #else
3716   predicate((n->getd() == 0) && (fpclass(n->getd()) == FP_PZERO));
3717 #endif
3718   match(ConD);
3719 
3720   op_cost(0);
3721   format %{ %}
3722   interface(CONST_INTER);
3723 %}
3724 
3725 // Float Immediate
3726 operand immF() %{
3727   match(ConF);
3728 
3729   op_cost(20);
3730   format %{ %}
3731   interface(CONST_INTER);
3732 %}
3733 
3734 // Float Immediate: 0
3735 operand immF0() %{
3736   predicate((n->getf() == 0) && (fpclass(n->getf()) == FP_PZERO));
3737   match(ConF);
3738 
3739   op_cost(0);
3740   format %{ %}
3741   interface(CONST_INTER);
3742 %}
3743 
3744 // Integer Register Operands
3745 // Integer Register
3746 operand iRegI() %{
3747   constraint(ALLOC_IN_RC(int_reg));
3748   match(RegI);
3749 
3750   match(notemp_iRegI);
3751   match(g1RegI);
3752   match(o0RegI);
3753   match(iRegIsafe);
3754 
3755   format %{ %}
3756   interface(REG_INTER);
3757 %}
3758 
3759 operand notemp_iRegI() %{
3760   constraint(ALLOC_IN_RC(notemp_int_reg));
3761   match(RegI);
3762 
3763   match(o0RegI);
3764 
3765   format %{ %}
3766   interface(REG_INTER);
3767 %}
3768 
3769 operand o0RegI() %{
3770   constraint(ALLOC_IN_RC(o0_regI));
3771   match(iRegI);
3772 
3773   format %{ %}
3774   interface(REG_INTER);
3775 %}
3776 
3777 // Pointer Register
3778 operand iRegP() %{
3779   constraint(ALLOC_IN_RC(ptr_reg));
3780   match(RegP);
3781 
3782   match(lock_ptr_RegP);
3783   match(g1RegP);
3784   match(g2RegP);
3785   match(g3RegP);
3786   match(g4RegP);
3787   match(i0RegP);
3788   match(o0RegP);
3789   match(o1RegP);
3790   match(l7RegP);
3791 
3792   format %{ %}
3793   interface(REG_INTER);
3794 %}
3795 
3796 operand sp_ptr_RegP() %{
3797   constraint(ALLOC_IN_RC(sp_ptr_reg));
3798   match(RegP);
3799   match(iRegP);
3800 
3801   format %{ %}
3802   interface(REG_INTER);
3803 %}
3804 
3805 operand lock_ptr_RegP() %{
3806   constraint(ALLOC_IN_RC(lock_ptr_reg));
3807   match(RegP);
3808   match(i0RegP);
3809   match(o0RegP);
3810   match(o1RegP);
3811   match(l7RegP);
3812 
3813   format %{ %}
3814   interface(REG_INTER);
3815 %}
3816 
3817 operand g1RegP() %{
3818   constraint(ALLOC_IN_RC(g1_regP));
3819   match(iRegP);
3820 
3821   format %{ %}
3822   interface(REG_INTER);
3823 %}
3824 
3825 operand g2RegP() %{
3826   constraint(ALLOC_IN_RC(g2_regP));
3827   match(iRegP);
3828 
3829   format %{ %}
3830   interface(REG_INTER);
3831 %}
3832 
3833 operand g3RegP() %{
3834   constraint(ALLOC_IN_RC(g3_regP));
3835   match(iRegP);
3836 
3837   format %{ %}
3838   interface(REG_INTER);
3839 %}
3840 
3841 operand g1RegI() %{
3842   constraint(ALLOC_IN_RC(g1_regI));
3843   match(iRegI);
3844 
3845   format %{ %}
3846   interface(REG_INTER);
3847 %}
3848 
3849 operand g3RegI() %{
3850   constraint(ALLOC_IN_RC(g3_regI));
3851   match(iRegI);
3852 
3853   format %{ %}
3854   interface(REG_INTER);
3855 %}
3856 
3857 operand g4RegI() %{
3858   constraint(ALLOC_IN_RC(g4_regI));
3859   match(iRegI);
3860 
3861   format %{ %}
3862   interface(REG_INTER);
3863 %}
3864 
3865 operand g4RegP() %{
3866   constraint(ALLOC_IN_RC(g4_regP));
3867   match(iRegP);
3868 
3869   format %{ %}
3870   interface(REG_INTER);
3871 %}
3872 
3873 operand i0RegP() %{
3874   constraint(ALLOC_IN_RC(i0_regP));
3875   match(iRegP);
3876 
3877   format %{ %}
3878   interface(REG_INTER);
3879 %}
3880 
3881 operand o0RegP() %{
3882   constraint(ALLOC_IN_RC(o0_regP));
3883   match(iRegP);
3884 
3885   format %{ %}
3886   interface(REG_INTER);
3887 %}
3888 
3889 operand o1RegP() %{
3890   constraint(ALLOC_IN_RC(o1_regP));
3891   match(iRegP);
3892 
3893   format %{ %}
3894   interface(REG_INTER);
3895 %}
3896 
3897 operand o2RegP() %{
3898   constraint(ALLOC_IN_RC(o2_regP));
3899   match(iRegP);
3900 
3901   format %{ %}
3902   interface(REG_INTER);
3903 %}
3904 
3905 operand o7RegP() %{
3906   constraint(ALLOC_IN_RC(o7_regP));
3907   match(iRegP);
3908 
3909   format %{ %}
3910   interface(REG_INTER);
3911 %}
3912 
3913 operand l7RegP() %{
3914   constraint(ALLOC_IN_RC(l7_regP));
3915   match(iRegP);
3916 
3917   format %{ %}
3918   interface(REG_INTER);
3919 %}
3920 
3921 operand o7RegI() %{
3922   constraint(ALLOC_IN_RC(o7_regI));
3923   match(iRegI);
3924 
3925   format %{ %}
3926   interface(REG_INTER);
3927 %}
3928 
3929 operand iRegN() %{
3930   constraint(ALLOC_IN_RC(int_reg));
3931   match(RegN);
3932 
3933   format %{ %}
3934   interface(REG_INTER);
3935 %}
3936 
3937 // Long Register
3938 operand iRegL() %{
3939   constraint(ALLOC_IN_RC(long_reg));
3940   match(RegL);
3941 
3942   format %{ %}
3943   interface(REG_INTER);
3944 %}
3945 
3946 operand o2RegL() %{
3947   constraint(ALLOC_IN_RC(o2_regL));
3948   match(iRegL);
3949 
3950   format %{ %}
3951   interface(REG_INTER);
3952 %}
3953 
3954 operand o7RegL() %{
3955   constraint(ALLOC_IN_RC(o7_regL));
3956   match(iRegL);
3957 
3958   format %{ %}
3959   interface(REG_INTER);
3960 %}
3961 
3962 operand g1RegL() %{
3963   constraint(ALLOC_IN_RC(g1_regL));
3964   match(iRegL);
3965 
3966   format %{ %}
3967   interface(REG_INTER);
3968 %}
3969 
3970 operand g3RegL() %{
3971   constraint(ALLOC_IN_RC(g3_regL));
3972   match(iRegL);
3973 
3974   format %{ %}
3975   interface(REG_INTER);
3976 %}
3977 
3978 // Int Register safe
3979 // This is 64bit safe
3980 operand iRegIsafe() %{
3981   constraint(ALLOC_IN_RC(long_reg));
3982 
3983   match(iRegI);
3984 
3985   format %{ %}
3986   interface(REG_INTER);
3987 %}
3988 
3989 // Condition Code Flag Register
3990 operand flagsReg() %{
3991   constraint(ALLOC_IN_RC(int_flags));
3992   match(RegFlags);
3993 
3994   format %{ "ccr" %} // both ICC and XCC
3995   interface(REG_INTER);
3996 %}
3997 
3998 // Condition Code Register, unsigned comparisons.
3999 operand flagsRegU() %{
4000   constraint(ALLOC_IN_RC(int_flags));
4001   match(RegFlags);
4002 
4003   format %{ "icc_U" %}
4004   interface(REG_INTER);
4005 %}
4006 
4007 // Condition Code Register, pointer comparisons.
4008 operand flagsRegP() %{
4009   constraint(ALLOC_IN_RC(int_flags));
4010   match(RegFlags);
4011 
4012 #ifdef _LP64
4013   format %{ "xcc_P" %}
4014 #else
4015   format %{ "icc_P" %}
4016 #endif
4017   interface(REG_INTER);
4018 %}
4019 
4020 // Condition Code Register, long comparisons.
4021 operand flagsRegL() %{
4022   constraint(ALLOC_IN_RC(int_flags));
4023   match(RegFlags);
4024 
4025   format %{ "xcc_L" %}
4026   interface(REG_INTER);
4027 %}
4028 
4029 // Condition Code Register, floating comparisons, unordered same as "less".
4030 operand flagsRegF() %{
4031   constraint(ALLOC_IN_RC(float_flags));
4032   match(RegFlags);
4033   match(flagsRegF0);
4034 
4035   format %{ %}
4036   interface(REG_INTER);
4037 %}
4038 
4039 operand flagsRegF0() %{
4040   constraint(ALLOC_IN_RC(float_flag0));
4041   match(RegFlags);
4042 
4043   format %{ %}
4044   interface(REG_INTER);
4045 %}
4046 
4047 
4048 // Condition Code Flag Register used by long compare
4049 operand flagsReg_long_LTGE() %{
4050   constraint(ALLOC_IN_RC(int_flags));
4051   match(RegFlags);
4052   format %{ "icc_LTGE" %}
4053   interface(REG_INTER);
4054 %}
4055 operand flagsReg_long_EQNE() %{
4056   constraint(ALLOC_IN_RC(int_flags));
4057   match(RegFlags);
4058   format %{ "icc_EQNE" %}
4059   interface(REG_INTER);
4060 %}
4061 operand flagsReg_long_LEGT() %{
4062   constraint(ALLOC_IN_RC(int_flags));
4063   match(RegFlags);
4064   format %{ "icc_LEGT" %}
4065   interface(REG_INTER);
4066 %}
4067 
4068 
4069 operand regD() %{
4070   constraint(ALLOC_IN_RC(dflt_reg));
4071   match(RegD);
4072 
4073   match(regD_low);
4074 
4075   format %{ %}
4076   interface(REG_INTER);
4077 %}
4078 
4079 operand regF() %{
4080   constraint(ALLOC_IN_RC(sflt_reg));
4081   match(RegF);
4082 
4083   format %{ %}
4084   interface(REG_INTER);
4085 %}
4086 
4087 operand regD_low() %{
4088   constraint(ALLOC_IN_RC(dflt_low_reg));
4089   match(regD);
4090 
4091   format %{ %}
4092   interface(REG_INTER);
4093 %}
4094 
4095 // Special Registers
4096 
4097 // Method Register
4098 operand inline_cache_regP(iRegP reg) %{
4099   constraint(ALLOC_IN_RC(g5_regP)); // G5=inline_cache_reg but uses 2 bits instead of 1
4100   match(reg);
4101   format %{ %}
4102   interface(REG_INTER);
4103 %}
4104 
4105 operand interpreter_method_oop_regP(iRegP reg) %{
4106   constraint(ALLOC_IN_RC(g5_regP)); // G5=interpreter_method_oop_reg but uses 2 bits instead of 1
4107   match(reg);
4108   format %{ %}
4109   interface(REG_INTER);
4110 %}
4111 
4112 
4113 //----------Complex Operands---------------------------------------------------
4114 // Indirect Memory Reference
4115 operand indirect(sp_ptr_RegP reg) %{
4116   constraint(ALLOC_IN_RC(sp_ptr_reg));
4117   match(reg);
4118 
4119   op_cost(100);
4120   format %{ "[$reg]" %}
4121   interface(MEMORY_INTER) %{
4122     base($reg);
4123     index(0x0);
4124     scale(0x0);
4125     disp(0x0);
4126   %}
4127 %}
4128 
4129 // Indirect with simm13 Offset
4130 operand indOffset13(sp_ptr_RegP reg, immX13 offset) %{
4131   constraint(ALLOC_IN_RC(sp_ptr_reg));
4132   match(AddP reg offset);
4133 
4134   op_cost(100);
4135   format %{ "[$reg + $offset]" %}
4136   interface(MEMORY_INTER) %{
4137     base($reg);
4138     index(0x0);
4139     scale(0x0);
4140     disp($offset);
4141   %}
4142 %}
4143 
4144 // Indirect with simm13 Offset minus 7
4145 operand indOffset13m7(sp_ptr_RegP reg, immX13m7 offset) %{
4146   constraint(ALLOC_IN_RC(sp_ptr_reg));
4147   match(AddP reg offset);
4148 
4149   op_cost(100);
4150   format %{ "[$reg + $offset]" %}
4151   interface(MEMORY_INTER) %{
4152     base($reg);
4153     index(0x0);
4154     scale(0x0);
4155     disp($offset);
4156   %}
4157 %}
4158 
4159 // Note:  Intel has a swapped version also, like this:
4160 //operand indOffsetX(iRegI reg, immP offset) %{
4161 //  constraint(ALLOC_IN_RC(int_reg));
4162 //  match(AddP offset reg);
4163 //
4164 //  op_cost(100);
4165 //  format %{ "[$reg + $offset]" %}
4166 //  interface(MEMORY_INTER) %{
4167 //    base($reg);
4168 //    index(0x0);
4169 //    scale(0x0);
4170 //    disp($offset);
4171 //  %}
4172 //%}
4173 //// However, it doesn't make sense for SPARC, since
4174 // we have no particularly good way to embed oops in
4175 // single instructions.
4176 
4177 // Indirect with Register Index
4178 operand indIndex(iRegP addr, iRegX index) %{
4179   constraint(ALLOC_IN_RC(ptr_reg));
4180   match(AddP addr index);
4181 
4182   op_cost(100);
4183   format %{ "[$addr + $index]" %}
4184   interface(MEMORY_INTER) %{
4185     base($addr);
4186     index($index);
4187     scale(0x0);
4188     disp(0x0);
4189   %}
4190 %}
4191 
4192 //----------Special Memory Operands--------------------------------------------
4193 // Stack Slot Operand - This operand is used for loading and storing temporary
4194 //                      values on the stack where a match requires a value to
4195 //                      flow through memory.
4196 operand stackSlotI(sRegI reg) %{
4197   constraint(ALLOC_IN_RC(stack_slots));
4198   op_cost(100);
4199   //match(RegI);
4200   format %{ "[$reg]" %}
4201   interface(MEMORY_INTER) %{
4202     base(0xE);   // R_SP
4203     index(0x0);
4204     scale(0x0);
4205     disp($reg);  // Stack Offset
4206   %}
4207 %}
4208 
4209 operand stackSlotP(sRegP reg) %{
4210   constraint(ALLOC_IN_RC(stack_slots));
4211   op_cost(100);
4212   //match(RegP);
4213   format %{ "[$reg]" %}
4214   interface(MEMORY_INTER) %{
4215     base(0xE);   // R_SP
4216     index(0x0);
4217     scale(0x0);
4218     disp($reg);  // Stack Offset
4219   %}
4220 %}
4221 
4222 operand stackSlotF(sRegF reg) %{
4223   constraint(ALLOC_IN_RC(stack_slots));
4224   op_cost(100);
4225   //match(RegF);
4226   format %{ "[$reg]" %}
4227   interface(MEMORY_INTER) %{
4228     base(0xE);   // R_SP
4229     index(0x0);
4230     scale(0x0);
4231     disp($reg);  // Stack Offset
4232   %}
4233 %}
4234 operand stackSlotD(sRegD reg) %{
4235   constraint(ALLOC_IN_RC(stack_slots));
4236   op_cost(100);
4237   //match(RegD);
4238   format %{ "[$reg]" %}
4239   interface(MEMORY_INTER) %{
4240     base(0xE);   // R_SP
4241     index(0x0);
4242     scale(0x0);
4243     disp($reg);  // Stack Offset
4244   %}
4245 %}
4246 operand stackSlotL(sRegL reg) %{
4247   constraint(ALLOC_IN_RC(stack_slots));
4248   op_cost(100);
4249   //match(RegL);
4250   format %{ "[$reg]" %}
4251   interface(MEMORY_INTER) %{
4252     base(0xE);   // R_SP
4253     index(0x0);
4254     scale(0x0);
4255     disp($reg);  // Stack Offset
4256   %}
4257 %}
4258 
4259 // Operands for expressing Control Flow
4260 // NOTE:  Label is a predefined operand which should not be redefined in
4261 //        the AD file.  It is generically handled within the ADLC.
4262 
4263 //----------Conditional Branch Operands----------------------------------------
4264 // Comparison Op  - This is the operation of the comparison, and is limited to
4265 //                  the following set of codes:
4266 //                  L (<), LE (<=), G (>), GE (>=), E (==), NE (!=)
4267 //
4268 // Other attributes of the comparison, such as unsignedness, are specified
4269 // by the comparison instruction that sets a condition code flags register.
4270 // That result is represented by a flags operand whose subtype is appropriate
4271 // to the unsignedness (etc.) of the comparison.
4272 //
4273 // Later, the instruction which matches both the Comparison Op (a Bool) and
4274 // the flags (produced by the Cmp) specifies the coding of the comparison op
4275 // by matching a specific subtype of Bool operand below, such as cmpOpU.
4276 
4277 operand cmpOp() %{
4278   match(Bool);
4279 
4280   format %{ "" %}
4281   interface(COND_INTER) %{
4282     equal(0x1);
4283     not_equal(0x9);
4284     less(0x3);
4285     greater_equal(0xB);
4286     less_equal(0x2);
4287     greater(0xA);
4288   %}
4289 %}
4290 
4291 // Comparison Op, unsigned
4292 operand cmpOpU() %{
4293   match(Bool);
4294 
4295   format %{ "u" %}
4296   interface(COND_INTER) %{
4297     equal(0x1);
4298     not_equal(0x9);
4299     less(0x5);
4300     greater_equal(0xD);
4301     less_equal(0x4);
4302     greater(0xC);
4303   %}
4304 %}
4305 
4306 // Comparison Op, pointer (same as unsigned)
4307 operand cmpOpP() %{
4308   match(Bool);
4309 
4310   format %{ "p" %}
4311   interface(COND_INTER) %{
4312     equal(0x1);
4313     not_equal(0x9);
4314     less(0x5);
4315     greater_equal(0xD);
4316     less_equal(0x4);
4317     greater(0xC);
4318   %}
4319 %}
4320 
4321 // Comparison Op, branch-register encoding
4322 operand cmpOp_reg() %{
4323   match(Bool);
4324 
4325   format %{ "" %}
4326   interface(COND_INTER) %{
4327     equal        (0x1);
4328     not_equal    (0x5);
4329     less         (0x3);
4330     greater_equal(0x7);
4331     less_equal   (0x2);
4332     greater      (0x6);
4333   %}
4334 %}
4335 
4336 // Comparison Code, floating, unordered same as less
4337 operand cmpOpF() %{
4338   match(Bool);
4339 
4340   format %{ "fl" %}
4341   interface(COND_INTER) %{
4342     equal(0x9);
4343     not_equal(0x1);
4344     less(0x3);
4345     greater_equal(0xB);
4346     less_equal(0xE);
4347     greater(0x6);
4348   %}
4349 %}
4350 
4351 // Used by long compare
4352 operand cmpOp_commute() %{
4353   match(Bool);
4354 
4355   format %{ "" %}
4356   interface(COND_INTER) %{
4357     equal(0x1);
4358     not_equal(0x9);
4359     less(0xA);
4360     greater_equal(0x2);
4361     less_equal(0xB);
4362     greater(0x3);
4363   %}
4364 %}
4365 
4366 //----------OPERAND CLASSES----------------------------------------------------
4367 // Operand Classes are groups of operands that are used to simplify
4368 // instruction definitions by not requiring the AD writer to specify separate
4369 // instructions for every form of operand when the instruction accepts
4370 // multiple operand types with the same basic encoding and format.  The classic
4371 // case of this is memory operands.
4372 opclass memory( indirect, indOffset13, indIndex );
4373 opclass indIndexMemory( indIndex );
4374 
4375 //----------PIPELINE-----------------------------------------------------------
4376 pipeline %{
4377 
4378 //----------ATTRIBUTES---------------------------------------------------------
4379 attributes %{
4380   fixed_size_instructions;           // Fixed size instructions
4381   branch_has_delay_slot;             // Branch has delay slot following
4382   max_instructions_per_bundle = 4;   // Up to 4 instructions per bundle
4383   instruction_unit_size = 4;         // An instruction is 4 bytes long
4384   instruction_fetch_unit_size = 16;  // The processor fetches one line
4385   instruction_fetch_units = 1;       // of 16 bytes
4386 
4387   // List of nop instructions
4388   nops( Nop_A0, Nop_A1, Nop_MS, Nop_FA, Nop_BR );
4389 %}
4390 
4391 //----------RESOURCES----------------------------------------------------------
4392 // Resources are the functional units available to the machine
4393 resources(A0, A1, MS, BR, FA, FM, IDIV, FDIV, IALU = A0 | A1);
4394 
4395 //----------PIPELINE DESCRIPTION-----------------------------------------------
4396 // Pipeline Description specifies the stages in the machine's pipeline
4397 
4398 pipe_desc(A, P, F, B, I, J, S, R, E, C, M, W, X, T, D);
4399 
4400 //----------PIPELINE CLASSES---------------------------------------------------
4401 // Pipeline Classes describe the stages in which input and output are
4402 // referenced by the hardware pipeline.
4403 
4404 // Integer ALU reg-reg operation
4405 pipe_class ialu_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
4406     single_instruction;
4407     dst   : E(write);
4408     src1  : R(read);
4409     src2  : R(read);
4410     IALU  : R;
4411 %}
4412 
4413 // Integer ALU reg-reg long operation
4414 pipe_class ialu_reg_reg_2(iRegL dst, iRegL src1, iRegL src2) %{
4415     instruction_count(2);
4416     dst   : E(write);
4417     src1  : R(read);
4418     src2  : R(read);
4419     IALU  : R;
4420     IALU  : R;
4421 %}
4422 
4423 // Integer ALU reg-reg long dependent operation
4424 pipe_class ialu_reg_reg_2_dep(iRegL dst, iRegL src1, iRegL src2, flagsReg cr) %{
4425     instruction_count(1); multiple_bundles;
4426     dst   : E(write);
4427     src1  : R(read);
4428     src2  : R(read);
4429     cr    : E(write);
4430     IALU  : R(2);
4431 %}
4432 
4433 // Integer ALU reg-imm operaion
4434 pipe_class ialu_reg_imm(iRegI dst, iRegI src1, immI13 src2) %{
4435     single_instruction;
4436     dst   : E(write);
4437     src1  : R(read);
4438     IALU  : R;
4439 %}
4440 
4441 // Integer ALU reg-reg operation with condition code
4442 pipe_class ialu_cc_reg_reg(iRegI dst, iRegI src1, iRegI src2, flagsReg cr) %{
4443     single_instruction;
4444     dst   : E(write);
4445     cr    : E(write);
4446     src1  : R(read);
4447     src2  : R(read);
4448     IALU  : R;
4449 %}
4450 
4451 // Integer ALU reg-imm operation with condition code
4452 pipe_class ialu_cc_reg_imm(iRegI dst, iRegI src1, immI13 src2, flagsReg cr) %{
4453     single_instruction;
4454     dst   : E(write);
4455     cr    : E(write);
4456     src1  : R(read);
4457     IALU  : R;
4458 %}
4459 
4460 // Integer ALU zero-reg operation
4461 pipe_class ialu_zero_reg(iRegI dst, immI0 zero, iRegI src2) %{
4462     single_instruction;
4463     dst   : E(write);
4464     src2  : R(read);
4465     IALU  : R;
4466 %}
4467 
4468 // Integer ALU zero-reg operation with condition code only
4469 pipe_class ialu_cconly_zero_reg(flagsReg cr, iRegI src) %{
4470     single_instruction;
4471     cr    : E(write);
4472     src   : R(read);
4473     IALU  : R;
4474 %}
4475 
4476 // Integer ALU reg-reg operation with condition code only
4477 pipe_class ialu_cconly_reg_reg(flagsReg cr, iRegI src1, iRegI src2) %{
4478     single_instruction;
4479     cr    : E(write);
4480     src1  : R(read);
4481     src2  : R(read);
4482     IALU  : R;
4483 %}
4484 
4485 // Integer ALU reg-imm operation with condition code only
4486 pipe_class ialu_cconly_reg_imm(flagsReg cr, iRegI src1, immI13 src2) %{
4487     single_instruction;
4488     cr    : E(write);
4489     src1  : R(read);
4490     IALU  : R;
4491 %}
4492 
4493 // Integer ALU reg-reg-zero operation with condition code only
4494 pipe_class ialu_cconly_reg_reg_zero(flagsReg cr, iRegI src1, iRegI src2, immI0 zero) %{
4495     single_instruction;
4496     cr    : E(write);
4497     src1  : R(read);
4498     src2  : R(read);
4499     IALU  : R;
4500 %}
4501 
4502 // Integer ALU reg-imm-zero operation with condition code only
4503 pipe_class ialu_cconly_reg_imm_zero(flagsReg cr, iRegI src1, immI13 src2, immI0 zero) %{
4504     single_instruction;
4505     cr    : E(write);
4506     src1  : R(read);
4507     IALU  : R;
4508 %}
4509 
4510 // Integer ALU reg-reg operation with condition code, src1 modified
4511 pipe_class ialu_cc_rwreg_reg(flagsReg cr, iRegI src1, iRegI src2) %{
4512     single_instruction;
4513     cr    : E(write);
4514     src1  : E(write);
4515     src1  : R(read);
4516     src2  : R(read);
4517     IALU  : R;
4518 %}
4519 
4520 // Integer ALU reg-imm operation with condition code, src1 modified
4521 pipe_class ialu_cc_rwreg_imm(flagsReg cr, iRegI src1, immI13 src2) %{
4522     single_instruction;
4523     cr    : E(write);
4524     src1  : E(write);
4525     src1  : R(read);
4526     IALU  : R;
4527 %}
4528 
4529 pipe_class cmpL_reg(iRegI dst, iRegL src1, iRegL src2, flagsReg cr ) %{
4530     multiple_bundles;
4531     dst   : E(write)+4;
4532     cr    : E(write);
4533     src1  : R(read);
4534     src2  : R(read);
4535     IALU  : R(3);
4536     BR    : R(2);
4537 %}
4538 
4539 // Integer ALU operation
4540 pipe_class ialu_none(iRegI dst) %{
4541     single_instruction;
4542     dst   : E(write);
4543     IALU  : R;
4544 %}
4545 
4546 // Integer ALU reg operation
4547 pipe_class ialu_reg(iRegI dst, iRegI src) %{
4548     single_instruction; may_have_no_code;
4549     dst   : E(write);
4550     src   : R(read);
4551     IALU  : R;
4552 %}
4553 
4554 // Integer ALU reg conditional operation
4555 // This instruction has a 1 cycle stall, and cannot execute
4556 // in the same cycle as the instruction setting the condition
4557 // code. We kludge this by pretending to read the condition code
4558 // 1 cycle earlier, and by marking the functional units as busy
4559 // for 2 cycles with the result available 1 cycle later than
4560 // is really the case.
4561 pipe_class ialu_reg_flags( iRegI op2_out, iRegI op2_in, iRegI op1, flagsReg cr ) %{
4562     single_instruction;
4563     op2_out : C(write);
4564     op1     : R(read);
4565     cr      : R(read);       // This is really E, with a 1 cycle stall
4566     BR      : R(2);
4567     MS      : R(2);
4568 %}
4569 
4570 #ifdef _LP64
4571 pipe_class ialu_clr_and_mover( iRegI dst, iRegP src ) %{
4572     instruction_count(1); multiple_bundles;
4573     dst     : C(write)+1;
4574     src     : R(read)+1;
4575     IALU    : R(1);
4576     BR      : E(2);
4577     MS      : E(2);
4578 %}
4579 #endif
4580 
4581 // Integer ALU reg operation
4582 pipe_class ialu_move_reg_L_to_I(iRegI dst, iRegL src) %{
4583     single_instruction; may_have_no_code;
4584     dst   : E(write);
4585     src   : R(read);
4586     IALU  : R;
4587 %}
4588 pipe_class ialu_move_reg_I_to_L(iRegL dst, iRegI src) %{
4589     single_instruction; may_have_no_code;
4590     dst   : E(write);
4591     src   : R(read);
4592     IALU  : R;
4593 %}
4594 
4595 // Two integer ALU reg operations
4596 pipe_class ialu_reg_2(iRegL dst, iRegL src) %{
4597     instruction_count(2);
4598     dst   : E(write);
4599     src   : R(read);
4600     A0    : R;
4601     A1    : R;
4602 %}
4603 
4604 // Two integer ALU reg operations
4605 pipe_class ialu_move_reg_L_to_L(iRegL dst, iRegL src) %{
4606     instruction_count(2); may_have_no_code;
4607     dst   : E(write);
4608     src   : R(read);
4609     A0    : R;
4610     A1    : R;
4611 %}
4612 
4613 // Integer ALU imm operation
4614 pipe_class ialu_imm(iRegI dst, immI13 src) %{
4615     single_instruction;
4616     dst   : E(write);
4617     IALU  : R;
4618 %}
4619 
4620 // Integer ALU reg-reg with carry operation
4621 pipe_class ialu_reg_reg_cy(iRegI dst, iRegI src1, iRegI src2, iRegI cy) %{
4622     single_instruction;
4623     dst   : E(write);
4624     src1  : R(read);
4625     src2  : R(read);
4626     IALU  : R;
4627 %}
4628 
4629 // Integer ALU cc operation
4630 pipe_class ialu_cc(iRegI dst, flagsReg cc) %{
4631     single_instruction;
4632     dst   : E(write);
4633     cc    : R(read);
4634     IALU  : R;
4635 %}
4636 
4637 // Integer ALU cc / second IALU operation
4638 pipe_class ialu_reg_ialu( iRegI dst, iRegI src ) %{
4639     instruction_count(1); multiple_bundles;
4640     dst   : E(write)+1;
4641     src   : R(read);
4642     IALU  : R;
4643 %}
4644 
4645 // Integer ALU cc / second IALU operation
4646 pipe_class ialu_reg_reg_ialu( iRegI dst, iRegI p, iRegI q ) %{
4647     instruction_count(1); multiple_bundles;
4648     dst   : E(write)+1;
4649     p     : R(read);
4650     q     : R(read);
4651     IALU  : R;
4652 %}
4653 
4654 // Integer ALU hi-lo-reg operation
4655 pipe_class ialu_hi_lo_reg(iRegI dst, immI src) %{
4656     instruction_count(1); multiple_bundles;
4657     dst   : E(write)+1;
4658     IALU  : R(2);
4659 %}
4660 
4661 // Float ALU hi-lo-reg operation (with temp)
4662 pipe_class ialu_hi_lo_reg_temp(regF dst, immF src, g3RegP tmp) %{
4663     instruction_count(1); multiple_bundles;
4664     dst   : E(write)+1;
4665     IALU  : R(2);
4666 %}
4667 
4668 // Long Constant
4669 pipe_class loadConL( iRegL dst, immL src ) %{
4670     instruction_count(2); multiple_bundles;
4671     dst   : E(write)+1;
4672     IALU  : R(2);
4673     IALU  : R(2);
4674 %}
4675 
4676 // Pointer Constant
4677 pipe_class loadConP( iRegP dst, immP src ) %{
4678     instruction_count(0); multiple_bundles;
4679     fixed_latency(6);
4680 %}
4681 
4682 // Polling Address
4683 pipe_class loadConP_poll( iRegP dst, immP_poll src ) %{
4684 #ifdef _LP64
4685     instruction_count(0); multiple_bundles;
4686     fixed_latency(6);
4687 #else
4688     dst   : E(write);
4689     IALU  : R;
4690 #endif
4691 %}
4692 
4693 // Long Constant small
4694 pipe_class loadConLlo( iRegL dst, immL src ) %{
4695     instruction_count(2);
4696     dst   : E(write);
4697     IALU  : R;
4698     IALU  : R;
4699 %}
4700 
4701 // [PHH] This is wrong for 64-bit.  See LdImmF/D.
4702 pipe_class loadConFD(regF dst, immF src, g3RegP tmp) %{
4703     instruction_count(1); multiple_bundles;
4704     src   : R(read);
4705     dst   : M(write)+1;
4706     IALU  : R;
4707     MS    : E;
4708 %}
4709 
4710 // Integer ALU nop operation
4711 pipe_class ialu_nop() %{
4712     single_instruction;
4713     IALU  : R;
4714 %}
4715 
4716 // Integer ALU nop operation
4717 pipe_class ialu_nop_A0() %{
4718     single_instruction;
4719     A0    : R;
4720 %}
4721 
4722 // Integer ALU nop operation
4723 pipe_class ialu_nop_A1() %{
4724     single_instruction;
4725     A1    : R;
4726 %}
4727 
4728 // Integer Multiply reg-reg operation
4729 pipe_class imul_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
4730     single_instruction;
4731     dst   : E(write);
4732     src1  : R(read);
4733     src2  : R(read);
4734     MS    : R(5);
4735 %}
4736 
4737 // Integer Multiply reg-imm operation
4738 pipe_class imul_reg_imm(iRegI dst, iRegI src1, immI13 src2) %{
4739     single_instruction;
4740     dst   : E(write);
4741     src1  : R(read);
4742     MS    : R(5);
4743 %}
4744 
4745 pipe_class mulL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
4746     single_instruction;
4747     dst   : E(write)+4;
4748     src1  : R(read);
4749     src2  : R(read);
4750     MS    : R(6);
4751 %}
4752 
4753 pipe_class mulL_reg_imm(iRegL dst, iRegL src1, immL13 src2) %{
4754     single_instruction;
4755     dst   : E(write)+4;
4756     src1  : R(read);
4757     MS    : R(6);
4758 %}
4759 
4760 // Integer Divide reg-reg
4761 pipe_class sdiv_reg_reg(iRegI dst, iRegI src1, iRegI src2, iRegI temp, flagsReg cr) %{
4762     instruction_count(1); multiple_bundles;
4763     dst   : E(write);
4764     temp  : E(write);
4765     src1  : R(read);
4766     src2  : R(read);
4767     temp  : R(read);
4768     MS    : R(38);
4769 %}
4770 
4771 // Integer Divide reg-imm
4772 pipe_class sdiv_reg_imm(iRegI dst, iRegI src1, immI13 src2, iRegI temp, flagsReg cr) %{
4773     instruction_count(1); multiple_bundles;
4774     dst   : E(write);
4775     temp  : E(write);
4776     src1  : R(read);
4777     temp  : R(read);
4778     MS    : R(38);
4779 %}
4780 
4781 // Long Divide
4782 pipe_class divL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
4783     dst  : E(write)+71;
4784     src1 : R(read);
4785     src2 : R(read)+1;
4786     MS   : R(70);
4787 %}
4788 
4789 pipe_class divL_reg_imm(iRegL dst, iRegL src1, immL13 src2) %{
4790     dst  : E(write)+71;
4791     src1 : R(read);
4792     MS   : R(70);
4793 %}
4794 
4795 // Floating Point Add Float
4796 pipe_class faddF_reg_reg(regF dst, regF src1, regF src2) %{
4797     single_instruction;
4798     dst   : X(write);
4799     src1  : E(read);
4800     src2  : E(read);
4801     FA    : R;
4802 %}
4803 
4804 // Floating Point Add Double
4805 pipe_class faddD_reg_reg(regD dst, regD src1, regD src2) %{
4806     single_instruction;
4807     dst   : X(write);
4808     src1  : E(read);
4809     src2  : E(read);
4810     FA    : R;
4811 %}
4812 
4813 // Floating Point Conditional Move based on integer flags
4814 pipe_class int_conditional_float_move (cmpOp cmp, flagsReg cr, regF dst, regF src) %{
4815     single_instruction;
4816     dst   : X(write);
4817     src   : E(read);
4818     cr    : R(read);
4819     FA    : R(2);
4820     BR    : R(2);
4821 %}
4822 
4823 // Floating Point Conditional Move based on integer flags
4824 pipe_class int_conditional_double_move (cmpOp cmp, flagsReg cr, regD dst, regD src) %{
4825     single_instruction;
4826     dst   : X(write);
4827     src   : E(read);
4828     cr    : R(read);
4829     FA    : R(2);
4830     BR    : R(2);
4831 %}
4832 
4833 // Floating Point Multiply Float
4834 pipe_class fmulF_reg_reg(regF dst, regF src1, regF src2) %{
4835     single_instruction;
4836     dst   : X(write);
4837     src1  : E(read);
4838     src2  : E(read);
4839     FM    : R;
4840 %}
4841 
4842 // Floating Point Multiply Double
4843 pipe_class fmulD_reg_reg(regD dst, regD src1, regD src2) %{
4844     single_instruction;
4845     dst   : X(write);
4846     src1  : E(read);
4847     src2  : E(read);
4848     FM    : R;
4849 %}
4850 
4851 // Floating Point Divide Float
4852 pipe_class fdivF_reg_reg(regF dst, regF src1, regF src2) %{
4853     single_instruction;
4854     dst   : X(write);
4855     src1  : E(read);
4856     src2  : E(read);
4857     FM    : R;
4858     FDIV  : C(14);
4859 %}
4860 
4861 // Floating Point Divide Double
4862 pipe_class fdivD_reg_reg(regD dst, regD src1, regD src2) %{
4863     single_instruction;
4864     dst   : X(write);
4865     src1  : E(read);
4866     src2  : E(read);
4867     FM    : R;
4868     FDIV  : C(17);
4869 %}
4870 
4871 // Floating Point Move/Negate/Abs Float
4872 pipe_class faddF_reg(regF dst, regF src) %{
4873     single_instruction;
4874     dst   : W(write);
4875     src   : E(read);
4876     FA    : R(1);
4877 %}
4878 
4879 // Floating Point Move/Negate/Abs Double
4880 pipe_class faddD_reg(regD dst, regD src) %{
4881     single_instruction;
4882     dst   : W(write);
4883     src   : E(read);
4884     FA    : R;
4885 %}
4886 
4887 // Floating Point Convert F->D
4888 pipe_class fcvtF2D(regD dst, regF src) %{
4889     single_instruction;
4890     dst   : X(write);
4891     src   : E(read);
4892     FA    : R;
4893 %}
4894 
4895 // Floating Point Convert I->D
4896 pipe_class fcvtI2D(regD dst, regF src) %{
4897     single_instruction;
4898     dst   : X(write);
4899     src   : E(read);
4900     FA    : R;
4901 %}
4902 
4903 // Floating Point Convert LHi->D
4904 pipe_class fcvtLHi2D(regD dst, regD src) %{
4905     single_instruction;
4906     dst   : X(write);
4907     src   : E(read);
4908     FA    : R;
4909 %}
4910 
4911 // Floating Point Convert L->D
4912 pipe_class fcvtL2D(regD dst, regF src) %{
4913     single_instruction;
4914     dst   : X(write);
4915     src   : E(read);
4916     FA    : R;
4917 %}
4918 
4919 // Floating Point Convert L->F
4920 pipe_class fcvtL2F(regD dst, regF src) %{
4921     single_instruction;
4922     dst   : X(write);
4923     src   : E(read);
4924     FA    : R;
4925 %}
4926 
4927 // Floating Point Convert D->F
4928 pipe_class fcvtD2F(regD dst, regF src) %{
4929     single_instruction;
4930     dst   : X(write);
4931     src   : E(read);
4932     FA    : R;
4933 %}
4934 
4935 // Floating Point Convert I->L
4936 pipe_class fcvtI2L(regD dst, regF src) %{
4937     single_instruction;
4938     dst   : X(write);
4939     src   : E(read);
4940     FA    : R;
4941 %}
4942 
4943 // Floating Point Convert D->F
4944 pipe_class fcvtD2I(regF dst, regD src, flagsReg cr) %{
4945     instruction_count(1); multiple_bundles;
4946     dst   : X(write)+6;
4947     src   : E(read);
4948     FA    : R;
4949 %}
4950 
4951 // Floating Point Convert D->L
4952 pipe_class fcvtD2L(regD dst, regD src, flagsReg cr) %{
4953     instruction_count(1); multiple_bundles;
4954     dst   : X(write)+6;
4955     src   : E(read);
4956     FA    : R;
4957 %}
4958 
4959 // Floating Point Convert F->I
4960 pipe_class fcvtF2I(regF dst, regF src, flagsReg cr) %{
4961     instruction_count(1); multiple_bundles;
4962     dst   : X(write)+6;
4963     src   : E(read);
4964     FA    : R;
4965 %}
4966 
4967 // Floating Point Convert F->L
4968 pipe_class fcvtF2L(regD dst, regF src, flagsReg cr) %{
4969     instruction_count(1); multiple_bundles;
4970     dst   : X(write)+6;
4971     src   : E(read);
4972     FA    : R;
4973 %}
4974 
4975 // Floating Point Convert I->F
4976 pipe_class fcvtI2F(regF dst, regF src) %{
4977     single_instruction;
4978     dst   : X(write);
4979     src   : E(read);
4980     FA    : R;
4981 %}
4982 
4983 // Floating Point Compare
4984 pipe_class faddF_fcc_reg_reg_zero(flagsRegF cr, regF src1, regF src2, immI0 zero) %{
4985     single_instruction;
4986     cr    : X(write);
4987     src1  : E(read);
4988     src2  : E(read);
4989     FA    : R;
4990 %}
4991 
4992 // Floating Point Compare
4993 pipe_class faddD_fcc_reg_reg_zero(flagsRegF cr, regD src1, regD src2, immI0 zero) %{
4994     single_instruction;
4995     cr    : X(write);
4996     src1  : E(read);
4997     src2  : E(read);
4998     FA    : R;
4999 %}
5000 
5001 // Floating Add Nop
5002 pipe_class fadd_nop() %{
5003     single_instruction;
5004     FA  : R;
5005 %}
5006 
5007 // Integer Store to Memory
5008 pipe_class istore_mem_reg(memory mem, iRegI src) %{
5009     single_instruction;
5010     mem   : R(read);
5011     src   : C(read);
5012     MS    : R;
5013 %}
5014 
5015 // Integer Store to Memory
5016 pipe_class istore_mem_spORreg(memory mem, sp_ptr_RegP src) %{
5017     single_instruction;
5018     mem   : R(read);
5019     src   : C(read);
5020     MS    : R;
5021 %}
5022 
5023 // Integer Store Zero to Memory
5024 pipe_class istore_mem_zero(memory mem, immI0 src) %{
5025     single_instruction;
5026     mem   : R(read);
5027     MS    : R;
5028 %}
5029 
5030 // Special Stack Slot Store
5031 pipe_class istore_stk_reg(stackSlotI stkSlot, iRegI src) %{
5032     single_instruction;
5033     stkSlot : R(read);
5034     src     : C(read);
5035     MS      : R;
5036 %}
5037 
5038 // Special Stack Slot Store
5039 pipe_class lstoreI_stk_reg(stackSlotL stkSlot, iRegI src) %{
5040     instruction_count(2); multiple_bundles;
5041     stkSlot : R(read);
5042     src     : C(read);
5043     MS      : R(2);
5044 %}
5045 
5046 // Float Store
5047 pipe_class fstoreF_mem_reg(memory mem, RegF src) %{
5048     single_instruction;
5049     mem : R(read);
5050     src : C(read);
5051     MS  : R;
5052 %}
5053 
5054 // Float Store
5055 pipe_class fstoreF_mem_zero(memory mem, immF0 src) %{
5056     single_instruction;
5057     mem : R(read);
5058     MS  : R;
5059 %}
5060 
5061 // Double Store
5062 pipe_class fstoreD_mem_reg(memory mem, RegD src) %{
5063     instruction_count(1);
5064     mem : R(read);
5065     src : C(read);
5066     MS  : R;
5067 %}
5068 
5069 // Double Store
5070 pipe_class fstoreD_mem_zero(memory mem, immD0 src) %{
5071     single_instruction;
5072     mem : R(read);
5073     MS  : R;
5074 %}
5075 
5076 // Special Stack Slot Float Store
5077 pipe_class fstoreF_stk_reg(stackSlotI stkSlot, RegF src) %{
5078     single_instruction;
5079     stkSlot : R(read);
5080     src     : C(read);
5081     MS      : R;
5082 %}
5083 
5084 // Special Stack Slot Double Store
5085 pipe_class fstoreD_stk_reg(stackSlotI stkSlot, RegD src) %{
5086     single_instruction;
5087     stkSlot : R(read);
5088     src     : C(read);
5089     MS      : R;
5090 %}
5091 
5092 // Integer Load (when sign bit propagation not needed)
5093 pipe_class iload_mem(iRegI dst, memory mem) %{
5094     single_instruction;
5095     mem : R(read);
5096     dst : C(write);
5097     MS  : R;
5098 %}
5099 
5100 // Integer Load from stack operand
5101 pipe_class iload_stkD(iRegI dst, stackSlotD mem ) %{
5102     single_instruction;
5103     mem : R(read);
5104     dst : C(write);
5105     MS  : R;
5106 %}
5107 
5108 // Integer Load (when sign bit propagation or masking is needed)
5109 pipe_class iload_mask_mem(iRegI dst, memory mem) %{
5110     single_instruction;
5111     mem : R(read);
5112     dst : M(write);
5113     MS  : R;
5114 %}
5115 
5116 // Float Load
5117 pipe_class floadF_mem(regF dst, memory mem) %{
5118     single_instruction;
5119     mem : R(read);
5120     dst : M(write);
5121     MS  : R;
5122 %}
5123 
5124 // Float Load
5125 pipe_class floadD_mem(regD dst, memory mem) %{
5126     instruction_count(1); multiple_bundles; // Again, unaligned argument is only multiple case
5127     mem : R(read);
5128     dst : M(write);
5129     MS  : R;
5130 %}
5131 
5132 // Float Load
5133 pipe_class floadF_stk(regF dst, stackSlotI stkSlot) %{
5134     single_instruction;
5135     stkSlot : R(read);
5136     dst : M(write);
5137     MS  : R;
5138 %}
5139 
5140 // Float Load
5141 pipe_class floadD_stk(regD dst, stackSlotI stkSlot) %{
5142     single_instruction;
5143     stkSlot : R(read);
5144     dst : M(write);
5145     MS  : R;
5146 %}
5147 
5148 // Memory Nop
5149 pipe_class mem_nop() %{
5150     single_instruction;
5151     MS  : R;
5152 %}
5153 
5154 pipe_class sethi(iRegP dst, immI src) %{
5155     single_instruction;
5156     dst  : E(write);
5157     IALU : R;
5158 %}
5159 
5160 pipe_class loadPollP(iRegP poll) %{
5161     single_instruction;
5162     poll : R(read);
5163     MS   : R;
5164 %}
5165 
5166 pipe_class br(Universe br, label labl) %{
5167     single_instruction_with_delay_slot;
5168     BR  : R;
5169 %}
5170 
5171 pipe_class br_cc(Universe br, cmpOp cmp, flagsReg cr, label labl) %{
5172     single_instruction_with_delay_slot;
5173     cr    : E(read);
5174     BR    : R;
5175 %}
5176 
5177 pipe_class br_reg(Universe br, cmpOp cmp, iRegI op1, label labl) %{
5178     single_instruction_with_delay_slot;
5179     op1 : E(read);
5180     BR  : R;
5181     MS  : R;
5182 %}
5183 
5184 pipe_class br_fcc(Universe br, cmpOpF cc, flagsReg cr, label labl) %{
5185     single_instruction_with_delay_slot;
5186     cr    : E(read);
5187     BR    : R;
5188 %}
5189 
5190 pipe_class br_nop() %{
5191     single_instruction;
5192     BR  : R;
5193 %}
5194 
5195 pipe_class simple_call(method meth) %{
5196     instruction_count(2); multiple_bundles; force_serialization;
5197     fixed_latency(100);
5198     BR  : R(1);
5199     MS  : R(1);
5200     A0  : R(1);
5201 %}
5202 
5203 pipe_class compiled_call(method meth) %{
5204     instruction_count(1); multiple_bundles; force_serialization;
5205     fixed_latency(100);
5206     MS  : R(1);
5207 %}
5208 
5209 pipe_class call(method meth) %{
5210     instruction_count(0); multiple_bundles; force_serialization;
5211     fixed_latency(100);
5212 %}
5213 
5214 pipe_class tail_call(Universe ignore, label labl) %{
5215     single_instruction; has_delay_slot;
5216     fixed_latency(100);
5217     BR  : R(1);
5218     MS  : R(1);
5219 %}
5220 
5221 pipe_class ret(Universe ignore) %{
5222     single_instruction; has_delay_slot;
5223     BR  : R(1);
5224     MS  : R(1);
5225 %}
5226 
5227 pipe_class ret_poll(g3RegP poll) %{
5228     instruction_count(3); has_delay_slot;
5229     poll : E(read);
5230     MS   : R;
5231 %}
5232 
5233 // The real do-nothing guy
5234 pipe_class empty( ) %{
5235     instruction_count(0);
5236 %}
5237 
5238 pipe_class long_memory_op() %{
5239     instruction_count(0); multiple_bundles; force_serialization;
5240     fixed_latency(25);
5241     MS  : R(1);
5242 %}
5243 
5244 // Check-cast
5245 pipe_class partial_subtype_check_pipe(Universe ignore, iRegP array, iRegP match ) %{
5246     array : R(read);
5247     match  : R(read);
5248     IALU   : R(2);
5249     BR     : R(2);
5250     MS     : R;
5251 %}
5252 
5253 // Convert FPU flags into +1,0,-1
5254 pipe_class floating_cmp( iRegI dst, regF src1, regF src2 ) %{
5255     src1  : E(read);
5256     src2  : E(read);
5257     dst   : E(write);
5258     FA    : R;
5259     MS    : R(2);
5260     BR    : R(2);
5261 %}
5262 
5263 // Compare for p < q, and conditionally add y
5264 pipe_class cadd_cmpltmask( iRegI p, iRegI q, iRegI y ) %{
5265     p     : E(read);
5266     q     : E(read);
5267     y     : E(read);
5268     IALU  : R(3)
5269 %}
5270 
5271 // Perform a compare, then move conditionally in a branch delay slot.
5272 pipe_class min_max( iRegI src2, iRegI srcdst ) %{
5273     src2   : E(read);
5274     srcdst : E(read);
5275     IALU   : R;
5276     BR     : R;
5277 %}
5278 
5279 // Define the class for the Nop node
5280 define %{
5281    MachNop = ialu_nop;
5282 %}
5283 
5284 %}
5285 
5286 //----------INSTRUCTIONS-------------------------------------------------------
5287 
5288 //------------Special Stack Slot instructions - no match rules-----------------
5289 instruct stkI_to_regF(regF dst, stackSlotI src) %{
5290   // No match rule to avoid chain rule match.
5291   effect(DEF dst, USE src);
5292   ins_cost(MEMORY_REF_COST);
5293   size(4);
5294   format %{ "LDF    $src,$dst\t! stkI to regF" %}
5295   opcode(Assembler::ldf_op3);
5296   ins_encode(simple_form3_mem_reg(src, dst));
5297   ins_pipe(floadF_stk);
5298 %}
5299 
5300 instruct stkL_to_regD(regD dst, stackSlotL src) %{
5301   // No match rule to avoid chain rule match.
5302   effect(DEF dst, USE src);
5303   ins_cost(MEMORY_REF_COST);
5304   size(4);
5305   format %{ "LDDF   $src,$dst\t! stkL to regD" %}
5306   opcode(Assembler::lddf_op3);
5307   ins_encode(simple_form3_mem_reg(src, dst));
5308   ins_pipe(floadD_stk);
5309 %}
5310 
5311 instruct regF_to_stkI(stackSlotI dst, regF src) %{
5312   // No match rule to avoid chain rule match.
5313   effect(DEF dst, USE src);
5314   ins_cost(MEMORY_REF_COST);
5315   size(4);
5316   format %{ "STF    $src,$dst\t! regF to stkI" %}
5317   opcode(Assembler::stf_op3);
5318   ins_encode(simple_form3_mem_reg(dst, src));
5319   ins_pipe(fstoreF_stk_reg);
5320 %}
5321 
5322 instruct regD_to_stkL(stackSlotL dst, regD src) %{
5323   // No match rule to avoid chain rule match.
5324   effect(DEF dst, USE src);
5325   ins_cost(MEMORY_REF_COST);
5326   size(4);
5327   format %{ "STDF   $src,$dst\t! regD to stkL" %}
5328   opcode(Assembler::stdf_op3);
5329   ins_encode(simple_form3_mem_reg(dst, src));
5330   ins_pipe(fstoreD_stk_reg);
5331 %}
5332 
5333 instruct regI_to_stkLHi(stackSlotL dst, iRegI src) %{
5334   effect(DEF dst, USE src);
5335   ins_cost(MEMORY_REF_COST*2);
5336   size(8);
5337   format %{ "STW    $src,$dst.hi\t! long\n\t"
5338             "STW    R_G0,$dst.lo" %}
5339   opcode(Assembler::stw_op3);
5340   ins_encode(simple_form3_mem_reg(dst, src), form3_mem_plus_4_reg(dst, R_G0));
5341   ins_pipe(lstoreI_stk_reg);
5342 %}
5343 
5344 instruct regL_to_stkD(stackSlotD dst, iRegL src) %{
5345   // No match rule to avoid chain rule match.
5346   effect(DEF dst, USE src);
5347   ins_cost(MEMORY_REF_COST);
5348   size(4);
5349   format %{ "STX    $src,$dst\t! regL to stkD" %}
5350   opcode(Assembler::stx_op3);
5351   ins_encode(simple_form3_mem_reg( dst, src ) );
5352   ins_pipe(istore_stk_reg);
5353 %}
5354 
5355 //---------- Chain stack slots between similar types --------
5356 
5357 // Load integer from stack slot
5358 instruct stkI_to_regI( iRegI dst, stackSlotI src ) %{
5359   match(Set dst src);
5360   ins_cost(MEMORY_REF_COST);
5361 
5362   size(4);
5363   format %{ "LDUW   $src,$dst\t!stk" %}
5364   opcode(Assembler::lduw_op3);
5365   ins_encode(simple_form3_mem_reg( src, dst ) );
5366   ins_pipe(iload_mem);
5367 %}
5368 
5369 // Store integer to stack slot
5370 instruct regI_to_stkI( stackSlotI dst, iRegI src ) %{
5371   match(Set dst src);
5372   ins_cost(MEMORY_REF_COST);
5373 
5374   size(4);
5375   format %{ "STW    $src,$dst\t!stk" %}
5376   opcode(Assembler::stw_op3);
5377   ins_encode(simple_form3_mem_reg( dst, src ) );
5378   ins_pipe(istore_mem_reg);
5379 %}
5380 
5381 // Load long from stack slot
5382 instruct stkL_to_regL( iRegL dst, stackSlotL src ) %{
5383   match(Set dst src);
5384 
5385   ins_cost(MEMORY_REF_COST);
5386   size(4);
5387   format %{ "LDX    $src,$dst\t! long" %}
5388   opcode(Assembler::ldx_op3);
5389   ins_encode(simple_form3_mem_reg( src, dst ) );
5390   ins_pipe(iload_mem);
5391 %}
5392 
5393 // Store long to stack slot
5394 instruct regL_to_stkL(stackSlotL dst, iRegL src) %{
5395   match(Set dst src);
5396 
5397   ins_cost(MEMORY_REF_COST);
5398   size(4);
5399   format %{ "STX    $src,$dst\t! long" %}
5400   opcode(Assembler::stx_op3);
5401   ins_encode(simple_form3_mem_reg( dst, src ) );
5402   ins_pipe(istore_mem_reg);
5403 %}
5404 
5405 #ifdef _LP64
5406 // Load pointer from stack slot, 64-bit encoding
5407 instruct stkP_to_regP( iRegP dst, stackSlotP src ) %{
5408   match(Set dst src);
5409   ins_cost(MEMORY_REF_COST);
5410   size(4);
5411   format %{ "LDX    $src,$dst\t!ptr" %}
5412   opcode(Assembler::ldx_op3);
5413   ins_encode(simple_form3_mem_reg( src, dst ) );
5414   ins_pipe(iload_mem);
5415 %}
5416 
5417 // Store pointer to stack slot
5418 instruct regP_to_stkP(stackSlotP dst, iRegP src) %{
5419   match(Set dst src);
5420   ins_cost(MEMORY_REF_COST);
5421   size(4);
5422   format %{ "STX    $src,$dst\t!ptr" %}
5423   opcode(Assembler::stx_op3);
5424   ins_encode(simple_form3_mem_reg( dst, src ) );
5425   ins_pipe(istore_mem_reg);
5426 %}
5427 #else // _LP64
5428 // Load pointer from stack slot, 32-bit encoding
5429 instruct stkP_to_regP( iRegP dst, stackSlotP src ) %{
5430   match(Set dst src);
5431   ins_cost(MEMORY_REF_COST);
5432   format %{ "LDUW   $src,$dst\t!ptr" %}
5433   opcode(Assembler::lduw_op3, Assembler::ldst_op);
5434   ins_encode(simple_form3_mem_reg( src, dst ) );
5435   ins_pipe(iload_mem);
5436 %}
5437 
5438 // Store pointer to stack slot
5439 instruct regP_to_stkP(stackSlotP dst, iRegP src) %{
5440   match(Set dst src);
5441   ins_cost(MEMORY_REF_COST);
5442   format %{ "STW    $src,$dst\t!ptr" %}
5443   opcode(Assembler::stw_op3, Assembler::ldst_op);
5444   ins_encode(simple_form3_mem_reg( dst, src ) );
5445   ins_pipe(istore_mem_reg);
5446 %}
5447 #endif // _LP64
5448 
5449 //------------Special Nop instructions for bundling - no match rules-----------
5450 // Nop using the A0 functional unit
5451 instruct Nop_A0() %{
5452   ins_cost(0);
5453 
5454   format %{ "NOP    ! Alu Pipeline" %}
5455   opcode(Assembler::or_op3, Assembler::arith_op);
5456   ins_encode( form2_nop() );
5457   ins_pipe(ialu_nop_A0);
5458 %}
5459 
5460 // Nop using the A1 functional unit
5461 instruct Nop_A1( ) %{
5462   ins_cost(0);
5463 
5464   format %{ "NOP    ! Alu Pipeline" %}
5465   opcode(Assembler::or_op3, Assembler::arith_op);
5466   ins_encode( form2_nop() );
5467   ins_pipe(ialu_nop_A1);
5468 %}
5469 
5470 // Nop using the memory functional unit
5471 instruct Nop_MS( ) %{
5472   ins_cost(0);
5473 
5474   format %{ "NOP    ! Memory Pipeline" %}
5475   ins_encode( emit_mem_nop );
5476   ins_pipe(mem_nop);
5477 %}
5478 
5479 // Nop using the floating add functional unit
5480 instruct Nop_FA( ) %{
5481   ins_cost(0);
5482 
5483   format %{ "NOP    ! Floating Add Pipeline" %}
5484   ins_encode( emit_fadd_nop );
5485   ins_pipe(fadd_nop);
5486 %}
5487 
5488 // Nop using the branch functional unit
5489 instruct Nop_BR( ) %{
5490   ins_cost(0);
5491 
5492   format %{ "NOP    ! Branch Pipeline" %}
5493   ins_encode( emit_br_nop );
5494   ins_pipe(br_nop);
5495 %}
5496 
5497 //----------Load/Store/Move Instructions---------------------------------------
5498 //----------Load Instructions--------------------------------------------------
5499 // Load Byte (8bit signed)
5500 instruct loadB(iRegI dst, memory mem) %{
5501   match(Set dst (LoadB mem));
5502   ins_cost(MEMORY_REF_COST);
5503 
5504   size(4);
5505   format %{ "LDSB   $mem,$dst\t! byte" %}
5506   ins_encode %{
5507     __ ldsb($mem$$Address, $dst$$Register);
5508   %}
5509   ins_pipe(iload_mask_mem);
5510 %}
5511 
5512 // Load Byte (8bit signed) into a Long Register
5513 instruct loadB2L(iRegL dst, memory mem) %{
5514   match(Set dst (ConvI2L (LoadB mem)));
5515   ins_cost(MEMORY_REF_COST);
5516 
5517   size(4);
5518   format %{ "LDSB   $mem,$dst\t! byte -> long" %}
5519   ins_encode %{
5520     __ ldsb($mem$$Address, $dst$$Register);
5521   %}
5522   ins_pipe(iload_mask_mem);
5523 %}
5524 
5525 // Load Unsigned Byte (8bit UNsigned) into an int reg
5526 instruct loadUB(iRegI dst, memory mem) %{
5527   match(Set dst (LoadUB mem));
5528   ins_cost(MEMORY_REF_COST);
5529 
5530   size(4);
5531   format %{ "LDUB   $mem,$dst\t! ubyte" %}
5532   ins_encode %{
5533     __ ldub($mem$$Address, $dst$$Register);
5534   %}
5535   ins_pipe(iload_mem);
5536 %}
5537 
5538 // Load Unsigned Byte (8bit UNsigned) into a Long Register
5539 instruct loadUB2L(iRegL dst, memory mem) %{
5540   match(Set dst (ConvI2L (LoadUB mem)));
5541   ins_cost(MEMORY_REF_COST);
5542 
5543   size(4);
5544   format %{ "LDUB   $mem,$dst\t! ubyte -> long" %}
5545   ins_encode %{
5546     __ ldub($mem$$Address, $dst$$Register);
5547   %}
5548   ins_pipe(iload_mem);
5549 %}
5550 
5551 // Load Unsigned Byte (8 bit UNsigned) with 8-bit mask into Long Register
5552 instruct loadUB2L_immI8(iRegL dst, memory mem, immI8 mask) %{
5553   match(Set dst (ConvI2L (AndI (LoadUB mem) mask)));
5554   ins_cost(MEMORY_REF_COST + DEFAULT_COST);
5555 
5556   size(2*4);
5557   format %{ "LDUB   $mem,$dst\t# ubyte & 8-bit mask -> long\n\t"
5558             "AND    $dst,$mask,$dst" %}
5559   ins_encode %{
5560     __ ldub($mem$$Address, $dst$$Register);
5561     __ and3($dst$$Register, $mask$$constant, $dst$$Register);
5562   %}
5563   ins_pipe(iload_mem);
5564 %}
5565 
5566 // Load Short (16bit signed)
5567 instruct loadS(iRegI dst, memory mem) %{
5568   match(Set dst (LoadS mem));
5569   ins_cost(MEMORY_REF_COST);
5570 
5571   size(4);
5572   format %{ "LDSH   $mem,$dst\t! short" %}
5573   ins_encode %{
5574     __ ldsh($mem$$Address, $dst$$Register);
5575   %}
5576   ins_pipe(iload_mask_mem);
5577 %}
5578 
5579 // Load Short (16 bit signed) to Byte (8 bit signed)
5580 instruct loadS2B(iRegI dst, indOffset13m7 mem, immI_24 twentyfour) %{
5581   match(Set dst (RShiftI (LShiftI (LoadS mem) twentyfour) twentyfour));
5582   ins_cost(MEMORY_REF_COST);
5583 
5584   size(4);
5585 
5586   format %{ "LDSB   $mem+1,$dst\t! short -> byte" %}
5587   ins_encode %{
5588     __ ldsb($mem$$Address, $dst$$Register, 1);
5589   %}
5590   ins_pipe(iload_mask_mem);
5591 %}
5592 
5593 // Load Short (16bit signed) into a Long Register
5594 instruct loadS2L(iRegL dst, memory mem) %{
5595   match(Set dst (ConvI2L (LoadS mem)));
5596   ins_cost(MEMORY_REF_COST);
5597 
5598   size(4);
5599   format %{ "LDSH   $mem,$dst\t! short -> long" %}
5600   ins_encode %{
5601     __ ldsh($mem$$Address, $dst$$Register);
5602   %}
5603   ins_pipe(iload_mask_mem);
5604 %}
5605 
5606 // Load Unsigned Short/Char (16bit UNsigned)
5607 instruct loadUS(iRegI dst, memory mem) %{
5608   match(Set dst (LoadUS mem));
5609   ins_cost(MEMORY_REF_COST);
5610 
5611   size(4);
5612   format %{ "LDUH   $mem,$dst\t! ushort/char" %}
5613   ins_encode %{
5614     __ lduh($mem$$Address, $dst$$Register);
5615   %}
5616   ins_pipe(iload_mem);
5617 %}
5618 
5619 // Load Unsigned Short/Char (16 bit UNsigned) to Byte (8 bit signed)
5620 instruct loadUS2B(iRegI dst, indOffset13m7 mem, immI_24 twentyfour) %{
5621   match(Set dst (RShiftI (LShiftI (LoadUS mem) twentyfour) twentyfour));
5622   ins_cost(MEMORY_REF_COST);
5623 
5624   size(4);
5625   format %{ "LDSB   $mem+1,$dst\t! ushort -> byte" %}
5626   ins_encode %{
5627     __ ldsb($mem$$Address, $dst$$Register, 1);
5628   %}
5629   ins_pipe(iload_mask_mem);
5630 %}
5631 
5632 // Load Unsigned Short/Char (16bit UNsigned) into a Long Register
5633 instruct loadUS2L(iRegL dst, memory mem) %{
5634   match(Set dst (ConvI2L (LoadUS mem)));
5635   ins_cost(MEMORY_REF_COST);
5636 
5637   size(4);
5638   format %{ "LDUH   $mem,$dst\t! ushort/char -> long" %}
5639   ins_encode %{
5640     __ lduh($mem$$Address, $dst$$Register);
5641   %}
5642   ins_pipe(iload_mem);
5643 %}
5644 
5645 // Load Unsigned Short/Char (16bit UNsigned) with mask 0xFF into a Long Register
5646 instruct loadUS2L_immI_255(iRegL dst, indOffset13m7 mem, immI_255 mask) %{
5647   match(Set dst (ConvI2L (AndI (LoadUS mem) mask)));
5648   ins_cost(MEMORY_REF_COST);
5649 
5650   size(4);
5651   format %{ "LDUB   $mem+1,$dst\t! ushort/char & 0xFF -> long" %}
5652   ins_encode %{
5653     __ ldub($mem$$Address, $dst$$Register, 1);  // LSB is index+1 on BE
5654   %}
5655   ins_pipe(iload_mem);
5656 %}
5657 
5658 // Load Unsigned Short/Char (16bit UNsigned) with a 13-bit mask into a Long Register
5659 instruct loadUS2L_immI13(iRegL dst, memory mem, immI13 mask) %{
5660   match(Set dst (ConvI2L (AndI (LoadUS mem) mask)));
5661   ins_cost(MEMORY_REF_COST + DEFAULT_COST);
5662 
5663   size(2*4);
5664   format %{ "LDUH   $mem,$dst\t! ushort/char & 13-bit mask -> long\n\t"
5665             "AND    $dst,$mask,$dst" %}
5666   ins_encode %{
5667     Register Rdst = $dst$$Register;
5668     __ lduh($mem$$Address, Rdst);
5669     __ and3(Rdst, $mask$$constant, Rdst);
5670   %}
5671   ins_pipe(iload_mem);
5672 %}
5673 
5674 // Load Unsigned Short/Char (16bit UNsigned) with a 16-bit mask into a Long Register
5675 instruct loadUS2L_immI16(iRegL dst, memory mem, immI16 mask, iRegL tmp) %{
5676   match(Set dst (ConvI2L (AndI (LoadUS mem) mask)));
5677   effect(TEMP dst, TEMP tmp);
5678   ins_cost(MEMORY_REF_COST + 2*DEFAULT_COST);
5679 
5680   size((3+1)*4);  // set may use two instructions.
5681   format %{ "LDUH   $mem,$dst\t! ushort/char & 16-bit mask -> long\n\t"
5682             "SET    $mask,$tmp\n\t"
5683             "AND    $dst,$tmp,$dst" %}
5684   ins_encode %{
5685     Register Rdst = $dst$$Register;
5686     Register Rtmp = $tmp$$Register;
5687     __ lduh($mem$$Address, Rdst);
5688     __ set($mask$$constant, Rtmp);
5689     __ and3(Rdst, Rtmp, Rdst);
5690   %}
5691   ins_pipe(iload_mem);
5692 %}
5693 
5694 // Load Integer
5695 instruct loadI(iRegI dst, memory mem) %{
5696   match(Set dst (LoadI mem));
5697   ins_cost(MEMORY_REF_COST);
5698 
5699   size(4);
5700   format %{ "LDUW   $mem,$dst\t! int" %}
5701   ins_encode %{
5702     __ lduw($mem$$Address, $dst$$Register);
5703   %}
5704   ins_pipe(iload_mem);
5705 %}
5706 
5707 // Load Integer to Byte (8 bit signed)
5708 instruct loadI2B(iRegI dst, indOffset13m7 mem, immI_24 twentyfour) %{
5709   match(Set dst (RShiftI (LShiftI (LoadI mem) twentyfour) twentyfour));
5710   ins_cost(MEMORY_REF_COST);
5711 
5712   size(4);
5713 
5714   format %{ "LDSB   $mem+3,$dst\t! int -> byte" %}
5715   ins_encode %{
5716     __ ldsb($mem$$Address, $dst$$Register, 3);
5717   %}
5718   ins_pipe(iload_mask_mem);
5719 %}
5720 
5721 // Load Integer to Unsigned Byte (8 bit UNsigned)
5722 instruct loadI2UB(iRegI dst, indOffset13m7 mem, immI_255 mask) %{
5723   match(Set dst (AndI (LoadI mem) mask));
5724   ins_cost(MEMORY_REF_COST);
5725 
5726   size(4);
5727 
5728   format %{ "LDUB   $mem+3,$dst\t! int -> ubyte" %}
5729   ins_encode %{
5730     __ ldub($mem$$Address, $dst$$Register, 3);
5731   %}
5732   ins_pipe(iload_mask_mem);
5733 %}
5734 
5735 // Load Integer to Short (16 bit signed)
5736 instruct loadI2S(iRegI dst, indOffset13m7 mem, immI_16 sixteen) %{
5737   match(Set dst (RShiftI (LShiftI (LoadI mem) sixteen) sixteen));
5738   ins_cost(MEMORY_REF_COST);
5739 
5740   size(4);
5741 
5742   format %{ "LDSH   $mem+2,$dst\t! int -> short" %}
5743   ins_encode %{
5744     __ ldsh($mem$$Address, $dst$$Register, 2);
5745   %}
5746   ins_pipe(iload_mask_mem);
5747 %}
5748 
5749 // Load Integer to Unsigned Short (16 bit UNsigned)
5750 instruct loadI2US(iRegI dst, indOffset13m7 mem, immI_65535 mask) %{
5751   match(Set dst (AndI (LoadI mem) mask));
5752   ins_cost(MEMORY_REF_COST);
5753 
5754   size(4);
5755 
5756   format %{ "LDUH   $mem+2,$dst\t! int -> ushort/char" %}
5757   ins_encode %{
5758     __ lduh($mem$$Address, $dst$$Register, 2);
5759   %}
5760   ins_pipe(iload_mask_mem);
5761 %}
5762 
5763 // Load Integer into a Long Register
5764 instruct loadI2L(iRegL dst, memory mem) %{
5765   match(Set dst (ConvI2L (LoadI mem)));
5766   ins_cost(MEMORY_REF_COST);
5767 
5768   size(4);
5769   format %{ "LDSW   $mem,$dst\t! int -> long" %}
5770   ins_encode %{
5771     __ ldsw($mem$$Address, $dst$$Register);
5772   %}
5773   ins_pipe(iload_mask_mem);
5774 %}
5775 
5776 // Load Integer with mask 0xFF into a Long Register
5777 instruct loadI2L_immI_255(iRegL dst, indOffset13m7 mem, immI_255 mask) %{
5778   match(Set dst (ConvI2L (AndI (LoadI mem) mask)));
5779   ins_cost(MEMORY_REF_COST);
5780 
5781   size(4);
5782   format %{ "LDUB   $mem+3,$dst\t! int & 0xFF -> long" %}
5783   ins_encode %{
5784     __ ldub($mem$$Address, $dst$$Register, 3);  // LSB is index+3 on BE
5785   %}
5786   ins_pipe(iload_mem);
5787 %}
5788 
5789 // Load Integer with mask 0xFFFF into a Long Register
5790 instruct loadI2L_immI_65535(iRegL dst, indOffset13m7 mem, immI_65535 mask) %{
5791   match(Set dst (ConvI2L (AndI (LoadI mem) mask)));
5792   ins_cost(MEMORY_REF_COST);
5793 
5794   size(4);
5795   format %{ "LDUH   $mem+2,$dst\t! int & 0xFFFF -> long" %}
5796   ins_encode %{
5797     __ lduh($mem$$Address, $dst$$Register, 2);  // LSW is index+2 on BE
5798   %}
5799   ins_pipe(iload_mem);
5800 %}
5801 
5802 // Load Integer with a 13-bit mask into a Long Register
5803 instruct loadI2L_immI13(iRegL dst, memory mem, immI13 mask) %{
5804   match(Set dst (ConvI2L (AndI (LoadI mem) mask)));
5805   ins_cost(MEMORY_REF_COST + DEFAULT_COST);
5806 
5807   size(2*4);
5808   format %{ "LDUW   $mem,$dst\t! int & 13-bit mask -> long\n\t"
5809             "AND    $dst,$mask,$dst" %}
5810   ins_encode %{
5811     Register Rdst = $dst$$Register;
5812     __ lduw($mem$$Address, Rdst);
5813     __ and3(Rdst, $mask$$constant, Rdst);
5814   %}
5815   ins_pipe(iload_mem);
5816 %}
5817 
5818 // Load Integer with a 32-bit mask into a Long Register
5819 instruct loadI2L_immI(iRegL dst, memory mem, immI mask, iRegL tmp) %{
5820   match(Set dst (ConvI2L (AndI (LoadI mem) mask)));
5821   effect(TEMP dst, TEMP tmp);
5822   ins_cost(MEMORY_REF_COST + 2*DEFAULT_COST);
5823 
5824   size((3+1)*4);  // set may use two instructions.
5825   format %{ "LDUW   $mem,$dst\t! int & 32-bit mask -> long\n\t"
5826             "SET    $mask,$tmp\n\t"
5827             "AND    $dst,$tmp,$dst" %}
5828   ins_encode %{
5829     Register Rdst = $dst$$Register;
5830     Register Rtmp = $tmp$$Register;
5831     __ lduw($mem$$Address, Rdst);
5832     __ set($mask$$constant, Rtmp);
5833     __ and3(Rdst, Rtmp, Rdst);
5834   %}
5835   ins_pipe(iload_mem);
5836 %}
5837 
5838 // Load Unsigned Integer into a Long Register
5839 instruct loadUI2L(iRegL dst, memory mem) %{
5840   match(Set dst (LoadUI2L mem));
5841   ins_cost(MEMORY_REF_COST);
5842 
5843   size(4);
5844   format %{ "LDUW   $mem,$dst\t! uint -> long" %}
5845   ins_encode %{
5846     __ lduw($mem$$Address, $dst$$Register);
5847   %}
5848   ins_pipe(iload_mem);
5849 %}
5850 
5851 // Load Long - aligned
5852 instruct loadL(iRegL dst, memory mem ) %{
5853   match(Set dst (LoadL mem));
5854   ins_cost(MEMORY_REF_COST);
5855 
5856   size(4);
5857   format %{ "LDX    $mem,$dst\t! long" %}
5858   ins_encode %{
5859     __ ldx($mem$$Address, $dst$$Register);
5860   %}
5861   ins_pipe(iload_mem);
5862 %}
5863 
5864 // Load Long - UNaligned
5865 instruct loadL_unaligned(iRegL dst, memory mem, o7RegI tmp) %{
5866   match(Set dst (LoadL_unaligned mem));
5867   effect(KILL tmp);
5868   ins_cost(MEMORY_REF_COST*2+DEFAULT_COST);
5869   size(16);
5870   format %{ "LDUW   $mem+4,R_O7\t! misaligned long\n"
5871           "\tLDUW   $mem  ,$dst\n"
5872           "\tSLLX   #32, $dst, $dst\n"
5873           "\tOR     $dst, R_O7, $dst" %}
5874   opcode(Assembler::lduw_op3);
5875   ins_encode(form3_mem_reg_long_unaligned_marshal( mem, dst ));
5876   ins_pipe(iload_mem);
5877 %}
5878 
5879 // Load Aligned Packed Byte into a Double Register
5880 instruct loadA8B(regD dst, memory mem) %{
5881   match(Set dst (Load8B mem));
5882   ins_cost(MEMORY_REF_COST);
5883   size(4);
5884   format %{ "LDDF   $mem,$dst\t! packed8B" %}
5885   opcode(Assembler::lddf_op3);
5886   ins_encode(simple_form3_mem_reg( mem, dst ) );
5887   ins_pipe(floadD_mem);
5888 %}
5889 
5890 // Load Aligned Packed Char into a Double Register
5891 instruct loadA4C(regD dst, memory mem) %{
5892   match(Set dst (Load4C mem));
5893   ins_cost(MEMORY_REF_COST);
5894   size(4);
5895   format %{ "LDDF   $mem,$dst\t! packed4C" %}
5896   opcode(Assembler::lddf_op3);
5897   ins_encode(simple_form3_mem_reg( mem, dst ) );
5898   ins_pipe(floadD_mem);
5899 %}
5900 
5901 // Load Aligned Packed Short into a Double Register
5902 instruct loadA4S(regD dst, memory mem) %{
5903   match(Set dst (Load4S mem));
5904   ins_cost(MEMORY_REF_COST);
5905   size(4);
5906   format %{ "LDDF   $mem,$dst\t! packed4S" %}
5907   opcode(Assembler::lddf_op3);
5908   ins_encode(simple_form3_mem_reg( mem, dst ) );
5909   ins_pipe(floadD_mem);
5910 %}
5911 
5912 // Load Aligned Packed Int into a Double Register
5913 instruct loadA2I(regD dst, memory mem) %{
5914   match(Set dst (Load2I mem));
5915   ins_cost(MEMORY_REF_COST);
5916   size(4);
5917   format %{ "LDDF   $mem,$dst\t! packed2I" %}
5918   opcode(Assembler::lddf_op3);
5919   ins_encode(simple_form3_mem_reg( mem, dst ) );
5920   ins_pipe(floadD_mem);
5921 %}
5922 
5923 // Load Range
5924 instruct loadRange(iRegI dst, memory mem) %{
5925   match(Set dst (LoadRange mem));
5926   ins_cost(MEMORY_REF_COST);
5927 
5928   size(4);
5929   format %{ "LDUW   $mem,$dst\t! range" %}
5930   opcode(Assembler::lduw_op3);
5931   ins_encode(simple_form3_mem_reg( mem, dst ) );
5932   ins_pipe(iload_mem);
5933 %}
5934 
5935 // Load Integer into %f register (for fitos/fitod)
5936 instruct loadI_freg(regF dst, memory mem) %{
5937   match(Set dst (LoadI mem));
5938   ins_cost(MEMORY_REF_COST);
5939   size(4);
5940 
5941   format %{ "LDF    $mem,$dst\t! for fitos/fitod" %}
5942   opcode(Assembler::ldf_op3);
5943   ins_encode(simple_form3_mem_reg( mem, dst ) );
5944   ins_pipe(floadF_mem);
5945 %}
5946 
5947 // Load Pointer
5948 instruct loadP(iRegP dst, memory mem) %{
5949   match(Set dst (LoadP mem));
5950   ins_cost(MEMORY_REF_COST);
5951   size(4);
5952 
5953 #ifndef _LP64
5954   format %{ "LDUW   $mem,$dst\t! ptr" %}
5955   ins_encode %{
5956     __ lduw($mem$$Address, $dst$$Register);
5957   %}
5958 #else
5959   format %{ "LDX    $mem,$dst\t! ptr" %}
5960   ins_encode %{
5961     __ ldx($mem$$Address, $dst$$Register);
5962   %}
5963 #endif
5964   ins_pipe(iload_mem);
5965 %}
5966 
5967 // Load Compressed Pointer
5968 instruct loadN(iRegN dst, memory mem) %{
5969   match(Set dst (LoadN mem));
5970   ins_cost(MEMORY_REF_COST);
5971   size(4);
5972 
5973   format %{ "LDUW   $mem,$dst\t! compressed ptr" %}
5974   ins_encode %{
5975     __ lduw($mem$$Address, $dst$$Register);
5976   %}
5977   ins_pipe(iload_mem);
5978 %}
5979 
5980 // Load Klass Pointer
5981 instruct loadKlass(iRegP dst, memory mem) %{
5982   match(Set dst (LoadKlass mem));
5983   ins_cost(MEMORY_REF_COST);
5984   size(4);
5985 
5986 #ifndef _LP64
5987   format %{ "LDUW   $mem,$dst\t! klass ptr" %}
5988   ins_encode %{
5989     __ lduw($mem$$Address, $dst$$Register);
5990   %}
5991 #else
5992   format %{ "LDX    $mem,$dst\t! klass ptr" %}
5993   ins_encode %{
5994     __ ldx($mem$$Address, $dst$$Register);
5995   %}
5996 #endif
5997   ins_pipe(iload_mem);
5998 %}
5999 
6000 // Load narrow Klass Pointer
6001 instruct loadNKlass(iRegN dst, memory mem) %{
6002   match(Set dst (LoadNKlass mem));
6003   ins_cost(MEMORY_REF_COST);
6004   size(4);
6005 
6006   format %{ "LDUW   $mem,$dst\t! compressed klass ptr" %}
6007   ins_encode %{
6008     __ lduw($mem$$Address, $dst$$Register);
6009   %}
6010   ins_pipe(iload_mem);
6011 %}
6012 
6013 // Load Double
6014 instruct loadD(regD dst, memory mem) %{
6015   match(Set dst (LoadD mem));
6016   ins_cost(MEMORY_REF_COST);
6017 
6018   size(4);
6019   format %{ "LDDF   $mem,$dst" %}
6020   opcode(Assembler::lddf_op3);
6021   ins_encode(simple_form3_mem_reg( mem, dst ) );
6022   ins_pipe(floadD_mem);
6023 %}
6024 
6025 // Load Double - UNaligned
6026 instruct loadD_unaligned(regD_low dst, memory mem ) %{
6027   match(Set dst (LoadD_unaligned mem));
6028   ins_cost(MEMORY_REF_COST*2+DEFAULT_COST);
6029   size(8);
6030   format %{ "LDF    $mem  ,$dst.hi\t! misaligned double\n"
6031           "\tLDF    $mem+4,$dst.lo\t!" %}
6032   opcode(Assembler::ldf_op3);
6033   ins_encode( form3_mem_reg_double_unaligned( mem, dst ));
6034   ins_pipe(iload_mem);
6035 %}
6036 
6037 // Load Float
6038 instruct loadF(regF dst, memory mem) %{
6039   match(Set dst (LoadF mem));
6040   ins_cost(MEMORY_REF_COST);
6041 
6042   size(4);
6043   format %{ "LDF    $mem,$dst" %}
6044   opcode(Assembler::ldf_op3);
6045   ins_encode(simple_form3_mem_reg( mem, dst ) );
6046   ins_pipe(floadF_mem);
6047 %}
6048 
6049 // Load Constant
6050 instruct loadConI( iRegI dst, immI src ) %{
6051   match(Set dst src);
6052   ins_cost(DEFAULT_COST * 3/2);
6053   format %{ "SET    $src,$dst" %}
6054   ins_encode( Set32(src, dst) );
6055   ins_pipe(ialu_hi_lo_reg);
6056 %}
6057 
6058 instruct loadConI13( iRegI dst, immI13 src ) %{
6059   match(Set dst src);
6060 
6061   size(4);
6062   format %{ "MOV    $src,$dst" %}
6063   ins_encode( Set13( src, dst ) );
6064   ins_pipe(ialu_imm);
6065 %}
6066 
6067 #ifndef _LP64
6068 instruct loadConP(iRegP dst, immP con) %{
6069   match(Set dst con);
6070   ins_cost(DEFAULT_COST * 3/2);
6071   format %{ "SET    $con,$dst\t!ptr" %}
6072   ins_encode %{
6073     // [RGV] This next line should be generated from ADLC
6074     if (_opnds[1]->constant_is_oop()) {
6075       intptr_t val = $con$$constant;
6076       __ set_oop_constant((jobject) val, $dst$$Register);
6077     } else {          // non-oop pointers, e.g. card mark base, heap top
6078       __ set($con$$constant, $dst$$Register);
6079     }
6080   %}
6081   ins_pipe(loadConP);
6082 %}
6083 #else
6084 instruct loadConP_set(iRegP dst, immP_set con) %{
6085   match(Set dst con);
6086   ins_cost(DEFAULT_COST * 3/2);
6087   format %{ "SET    $con,$dst\t! ptr" %}
6088   ins_encode %{
6089     // [RGV] This next line should be generated from ADLC
6090     if (_opnds[1]->constant_is_oop()) {
6091       intptr_t val = $con$$constant;
6092       __ set_oop_constant((jobject) val, $dst$$Register);
6093     } else {          // non-oop pointers, e.g. card mark base, heap top
6094       __ set($con$$constant, $dst$$Register);
6095     }
6096   %}
6097   ins_pipe(loadConP);
6098 %}
6099 
6100 instruct loadConP_load(iRegP dst, immP_load con) %{
6101   match(Set dst con);
6102   ins_cost(MEMORY_REF_COST);
6103   format %{ "LD     [$constanttablebase + $constantoffset],$dst\t! load from constant table: ptr=$con" %}
6104   ins_encode %{
6105     RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset($con), $dst$$Register);
6106     __ ld_ptr($constanttablebase, con_offset, $dst$$Register);
6107   %}
6108   ins_pipe(loadConP);
6109 %}
6110 
6111 instruct loadConP_no_oop_cheap(iRegP dst, immP_no_oop_cheap con) %{
6112   match(Set dst con);
6113   ins_cost(DEFAULT_COST * 3/2);
6114   format %{ "SET    $con,$dst\t! non-oop ptr" %}
6115   ins_encode %{
6116     __ set($con$$constant, $dst$$Register);
6117   %}
6118   ins_pipe(loadConP);
6119 %}
6120 #endif // _LP64
6121 
6122 instruct loadConP0(iRegP dst, immP0 src) %{
6123   match(Set dst src);
6124 
6125   size(4);
6126   format %{ "CLR    $dst\t!ptr" %}
6127   ins_encode %{
6128     __ clr($dst$$Register);
6129   %}
6130   ins_pipe(ialu_imm);
6131 %}
6132 
6133 instruct loadConP_poll(iRegP dst, immP_poll src) %{
6134   match(Set dst src);
6135   ins_cost(DEFAULT_COST);
6136   format %{ "SET    $src,$dst\t!ptr" %}
6137   ins_encode %{
6138     AddressLiteral polling_page(os::get_polling_page());
6139     __ sethi(polling_page, reg_to_register_object($dst$$reg));
6140   %}
6141   ins_pipe(loadConP_poll);
6142 %}
6143 
6144 instruct loadConN0(iRegN dst, immN0 src) %{
6145   match(Set dst src);
6146 
6147   size(4);
6148   format %{ "CLR    $dst\t! compressed NULL ptr" %}
6149   ins_encode %{
6150     __ clr($dst$$Register);
6151   %}
6152   ins_pipe(ialu_imm);
6153 %}
6154 
6155 instruct loadConN(iRegN dst, immN src) %{
6156   match(Set dst src);
6157   ins_cost(DEFAULT_COST * 3/2);
6158   format %{ "SET    $src,$dst\t! compressed ptr" %}
6159   ins_encode %{
6160     Register dst = $dst$$Register;
6161     __ set_narrow_oop((jobject)$src$$constant, dst);
6162   %}
6163   ins_pipe(ialu_hi_lo_reg);
6164 %}
6165 
6166 // Materialize long value (predicated by immL_cheap).
6167 instruct loadConL_set64(iRegL dst, immL_cheap con, o7RegL tmp) %{
6168   match(Set dst con);
6169   effect(KILL tmp);
6170   ins_cost(DEFAULT_COST * 3);
6171   format %{ "SET64   $con,$dst KILL $tmp\t! cheap long" %}
6172   ins_encode %{
6173     __ set64($con$$constant, $dst$$Register, $tmp$$Register);
6174   %}
6175   ins_pipe(loadConL);
6176 %}
6177 
6178 // Load long value from constant table (predicated by immL_expensive).
6179 instruct loadConL_ldx(iRegL dst, immL_expensive con) %{
6180   match(Set dst con);
6181   ins_cost(MEMORY_REF_COST);
6182   format %{ "LDX     [$constanttablebase + $constantoffset],$dst\t! load from constant table: long=$con" %}
6183   ins_encode %{
6184       RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset($con), $dst$$Register);
6185     __ ldx($constanttablebase, con_offset, $dst$$Register);
6186   %}
6187   ins_pipe(loadConL);
6188 %}
6189 
6190 instruct loadConL0( iRegL dst, immL0 src ) %{
6191   match(Set dst src);
6192   ins_cost(DEFAULT_COST);
6193   size(4);
6194   format %{ "CLR    $dst\t! long" %}
6195   ins_encode( Set13( src, dst ) );
6196   ins_pipe(ialu_imm);
6197 %}
6198 
6199 instruct loadConL13( iRegL dst, immL13 src ) %{
6200   match(Set dst src);
6201   ins_cost(DEFAULT_COST * 2);
6202 
6203   size(4);
6204   format %{ "MOV    $src,$dst\t! long" %}
6205   ins_encode( Set13( src, dst ) );
6206   ins_pipe(ialu_imm);
6207 %}
6208 
6209 instruct loadConF(regF dst, immF con, o7RegI tmp) %{
6210   match(Set dst con);
6211   effect(KILL tmp);
6212   format %{ "LDF    [$constanttablebase + $constantoffset],$dst\t! load from constant table: float=$con" %}
6213   ins_encode %{
6214       RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset($con), $tmp$$Register);
6215     __ ldf(FloatRegisterImpl::S, $constanttablebase, con_offset, $dst$$FloatRegister);
6216   %}
6217   ins_pipe(loadConFD);
6218 %}
6219 
6220 instruct loadConD(regD dst, immD con, o7RegI tmp) %{
6221   match(Set dst con);
6222   effect(KILL tmp);
6223   format %{ "LDDF   [$constanttablebase + $constantoffset],$dst\t! load from constant table: double=$con" %}
6224   ins_encode %{
6225     // XXX This is a quick fix for 6833573.
6226     //__ ldf(FloatRegisterImpl::D, $constanttablebase, $constantoffset($con), $dst$$FloatRegister);
6227     RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset($con), $tmp$$Register);
6228     __ ldf(FloatRegisterImpl::D, $constanttablebase, con_offset, as_DoubleFloatRegister($dst$$reg));
6229   %}
6230   ins_pipe(loadConFD);
6231 %}
6232 
6233 // Prefetch instructions.
6234 // Must be safe to execute with invalid address (cannot fault).
6235 
6236 instruct prefetchr( memory mem ) %{
6237   match( PrefetchRead mem );
6238   ins_cost(MEMORY_REF_COST);
6239 
6240   format %{ "PREFETCH $mem,0\t! Prefetch read-many" %}
6241   opcode(Assembler::prefetch_op3);
6242   ins_encode( form3_mem_prefetch_read( mem ) );
6243   ins_pipe(iload_mem);
6244 %}
6245 
6246 instruct prefetchw( memory mem ) %{
6247   predicate(AllocatePrefetchStyle != 3 );
6248   match( PrefetchWrite mem );
6249   ins_cost(MEMORY_REF_COST);
6250 
6251   format %{ "PREFETCH $mem,2\t! Prefetch write-many (and read)" %}
6252   opcode(Assembler::prefetch_op3);
6253   ins_encode( form3_mem_prefetch_write( mem ) );
6254   ins_pipe(iload_mem);
6255 %}
6256 
6257 // Use BIS instruction to prefetch.
6258 instruct prefetchw_bis( memory mem ) %{
6259   predicate(AllocatePrefetchStyle == 3);
6260   match( PrefetchWrite mem );
6261   ins_cost(MEMORY_REF_COST);
6262 
6263   format %{ "STXA   G0,$mem\t! // Block initializing store" %}
6264   ins_encode %{
6265      Register base = as_Register($mem$$base);
6266      int disp = $mem$$disp;
6267      if (disp != 0) {
6268        __ add(base, AllocatePrefetchStepSize, base);
6269      }
6270      __ stxa(G0, base, G0, ASI_BLK_INIT_QUAD_LDD_P);
6271   %}
6272   ins_pipe(istore_mem_reg);
6273 %}
6274 
6275 //----------Store Instructions-------------------------------------------------
6276 // Store Byte
6277 instruct storeB(memory mem, iRegI src) %{
6278   match(Set mem (StoreB mem src));
6279   ins_cost(MEMORY_REF_COST);
6280 
6281   size(4);
6282   format %{ "STB    $src,$mem\t! byte" %}
6283   opcode(Assembler::stb_op3);
6284   ins_encode(simple_form3_mem_reg( mem, src ) );
6285   ins_pipe(istore_mem_reg);
6286 %}
6287 
6288 instruct storeB0(memory mem, immI0 src) %{
6289   match(Set mem (StoreB mem src));
6290   ins_cost(MEMORY_REF_COST);
6291 
6292   size(4);
6293   format %{ "STB    $src,$mem\t! byte" %}
6294   opcode(Assembler::stb_op3);
6295   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
6296   ins_pipe(istore_mem_zero);
6297 %}
6298 
6299 instruct storeCM0(memory mem, immI0 src) %{
6300   match(Set mem (StoreCM mem src));
6301   ins_cost(MEMORY_REF_COST);
6302 
6303   size(4);
6304   format %{ "STB    $src,$mem\t! CMS card-mark byte 0" %}
6305   opcode(Assembler::stb_op3);
6306   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
6307   ins_pipe(istore_mem_zero);
6308 %}
6309 
6310 // Store Char/Short
6311 instruct storeC(memory mem, iRegI src) %{
6312   match(Set mem (StoreC mem src));
6313   ins_cost(MEMORY_REF_COST);
6314 
6315   size(4);
6316   format %{ "STH    $src,$mem\t! short" %}
6317   opcode(Assembler::sth_op3);
6318   ins_encode(simple_form3_mem_reg( mem, src ) );
6319   ins_pipe(istore_mem_reg);
6320 %}
6321 
6322 instruct storeC0(memory mem, immI0 src) %{
6323   match(Set mem (StoreC mem src));
6324   ins_cost(MEMORY_REF_COST);
6325 
6326   size(4);
6327   format %{ "STH    $src,$mem\t! short" %}
6328   opcode(Assembler::sth_op3);
6329   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
6330   ins_pipe(istore_mem_zero);
6331 %}
6332 
6333 // Store Integer
6334 instruct storeI(memory mem, iRegI src) %{
6335   match(Set mem (StoreI mem src));
6336   ins_cost(MEMORY_REF_COST);
6337 
6338   size(4);
6339   format %{ "STW    $src,$mem" %}
6340   opcode(Assembler::stw_op3);
6341   ins_encode(simple_form3_mem_reg( mem, src ) );
6342   ins_pipe(istore_mem_reg);
6343 %}
6344 
6345 // Store Long
6346 instruct storeL(memory mem, iRegL src) %{
6347   match(Set mem (StoreL mem src));
6348   ins_cost(MEMORY_REF_COST);
6349   size(4);
6350   format %{ "STX    $src,$mem\t! long" %}
6351   opcode(Assembler::stx_op3);
6352   ins_encode(simple_form3_mem_reg( mem, src ) );
6353   ins_pipe(istore_mem_reg);
6354 %}
6355 
6356 instruct storeI0(memory mem, immI0 src) %{
6357   match(Set mem (StoreI mem src));
6358   ins_cost(MEMORY_REF_COST);
6359 
6360   size(4);
6361   format %{ "STW    $src,$mem" %}
6362   opcode(Assembler::stw_op3);
6363   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
6364   ins_pipe(istore_mem_zero);
6365 %}
6366 
6367 instruct storeL0(memory mem, immL0 src) %{
6368   match(Set mem (StoreL mem src));
6369   ins_cost(MEMORY_REF_COST);
6370 
6371   size(4);
6372   format %{ "STX    $src,$mem" %}
6373   opcode(Assembler::stx_op3);
6374   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
6375   ins_pipe(istore_mem_zero);
6376 %}
6377 
6378 // Store Integer from float register (used after fstoi)
6379 instruct storeI_Freg(memory mem, regF src) %{
6380   match(Set mem (StoreI mem src));
6381   ins_cost(MEMORY_REF_COST);
6382 
6383   size(4);
6384   format %{ "STF    $src,$mem\t! after fstoi/fdtoi" %}
6385   opcode(Assembler::stf_op3);
6386   ins_encode(simple_form3_mem_reg( mem, src ) );
6387   ins_pipe(fstoreF_mem_reg);
6388 %}
6389 
6390 // Store Pointer
6391 instruct storeP(memory dst, sp_ptr_RegP src) %{
6392   match(Set dst (StoreP dst src));
6393   ins_cost(MEMORY_REF_COST);
6394   size(4);
6395 
6396 #ifndef _LP64
6397   format %{ "STW    $src,$dst\t! ptr" %}
6398   opcode(Assembler::stw_op3, 0, REGP_OP);
6399 #else
6400   format %{ "STX    $src,$dst\t! ptr" %}
6401   opcode(Assembler::stx_op3, 0, REGP_OP);
6402 #endif
6403   ins_encode( form3_mem_reg( dst, src ) );
6404   ins_pipe(istore_mem_spORreg);
6405 %}
6406 
6407 instruct storeP0(memory dst, immP0 src) %{
6408   match(Set dst (StoreP dst src));
6409   ins_cost(MEMORY_REF_COST);
6410   size(4);
6411 
6412 #ifndef _LP64
6413   format %{ "STW    $src,$dst\t! ptr" %}
6414   opcode(Assembler::stw_op3, 0, REGP_OP);
6415 #else
6416   format %{ "STX    $src,$dst\t! ptr" %}
6417   opcode(Assembler::stx_op3, 0, REGP_OP);
6418 #endif
6419   ins_encode( form3_mem_reg( dst, R_G0 ) );
6420   ins_pipe(istore_mem_zero);
6421 %}
6422 
6423 // Store Compressed Pointer
6424 instruct storeN(memory dst, iRegN src) %{
6425    match(Set dst (StoreN dst src));
6426    ins_cost(MEMORY_REF_COST);
6427    size(4);
6428 
6429    format %{ "STW    $src,$dst\t! compressed ptr" %}
6430    ins_encode %{
6431      Register base = as_Register($dst$$base);
6432      Register index = as_Register($dst$$index);
6433      Register src = $src$$Register;
6434      if (index != G0) {
6435        __ stw(src, base, index);
6436      } else {
6437        __ stw(src, base, $dst$$disp);
6438      }
6439    %}
6440    ins_pipe(istore_mem_spORreg);
6441 %}
6442 
6443 instruct storeN0(memory dst, immN0 src) %{
6444    match(Set dst (StoreN dst src));
6445    ins_cost(MEMORY_REF_COST);
6446    size(4);
6447 
6448    format %{ "STW    $src,$dst\t! compressed ptr" %}
6449    ins_encode %{
6450      Register base = as_Register($dst$$base);
6451      Register index = as_Register($dst$$index);
6452      if (index != G0) {
6453        __ stw(0, base, index);
6454      } else {
6455        __ stw(0, base, $dst$$disp);
6456      }
6457    %}
6458    ins_pipe(istore_mem_zero);
6459 %}
6460 
6461 // Store Double
6462 instruct storeD( memory mem, regD src) %{
6463   match(Set mem (StoreD mem src));
6464   ins_cost(MEMORY_REF_COST);
6465 
6466   size(4);
6467   format %{ "STDF   $src,$mem" %}
6468   opcode(Assembler::stdf_op3);
6469   ins_encode(simple_form3_mem_reg( mem, src ) );
6470   ins_pipe(fstoreD_mem_reg);
6471 %}
6472 
6473 instruct storeD0( memory mem, immD0 src) %{
6474   match(Set mem (StoreD mem src));
6475   ins_cost(MEMORY_REF_COST);
6476 
6477   size(4);
6478   format %{ "STX    $src,$mem" %}
6479   opcode(Assembler::stx_op3);
6480   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
6481   ins_pipe(fstoreD_mem_zero);
6482 %}
6483 
6484 // Store Float
6485 instruct storeF( memory mem, regF src) %{
6486   match(Set mem (StoreF mem src));
6487   ins_cost(MEMORY_REF_COST);
6488 
6489   size(4);
6490   format %{ "STF    $src,$mem" %}
6491   opcode(Assembler::stf_op3);
6492   ins_encode(simple_form3_mem_reg( mem, src ) );
6493   ins_pipe(fstoreF_mem_reg);
6494 %}
6495 
6496 instruct storeF0( memory mem, immF0 src) %{
6497   match(Set mem (StoreF mem src));
6498   ins_cost(MEMORY_REF_COST);
6499 
6500   size(4);
6501   format %{ "STW    $src,$mem\t! storeF0" %}
6502   opcode(Assembler::stw_op3);
6503   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
6504   ins_pipe(fstoreF_mem_zero);
6505 %}
6506 
6507 // Store Aligned Packed Bytes in Double register to memory
6508 instruct storeA8B(memory mem, regD src) %{
6509   match(Set mem (Store8B mem src));
6510   ins_cost(MEMORY_REF_COST);
6511   size(4);
6512   format %{ "STDF   $src,$mem\t! packed8B" %}
6513   opcode(Assembler::stdf_op3);
6514   ins_encode(simple_form3_mem_reg( mem, src ) );
6515   ins_pipe(fstoreD_mem_reg);
6516 %}
6517 
6518 // Convert oop pointer into compressed form
6519 instruct encodeHeapOop(iRegN dst, iRegP src) %{
6520   predicate(n->bottom_type()->make_ptr()->ptr() != TypePtr::NotNull);
6521   match(Set dst (EncodeP src));
6522   format %{ "encode_heap_oop $src, $dst" %}
6523   ins_encode %{
6524     __ encode_heap_oop($src$$Register, $dst$$Register);
6525   %}
6526   ins_pipe(ialu_reg);
6527 %}
6528 
6529 instruct encodeHeapOop_not_null(iRegN dst, iRegP src) %{
6530   predicate(n->bottom_type()->make_ptr()->ptr() == TypePtr::NotNull);
6531   match(Set dst (EncodeP src));
6532   format %{ "encode_heap_oop_not_null $src, $dst" %}
6533   ins_encode %{
6534     __ encode_heap_oop_not_null($src$$Register, $dst$$Register);
6535   %}
6536   ins_pipe(ialu_reg);
6537 %}
6538 
6539 instruct decodeHeapOop(iRegP dst, iRegN src) %{
6540   predicate(n->bottom_type()->is_oopptr()->ptr() != TypePtr::NotNull &&
6541             n->bottom_type()->is_oopptr()->ptr() != TypePtr::Constant);
6542   match(Set dst (DecodeN src));
6543   format %{ "decode_heap_oop $src, $dst" %}
6544   ins_encode %{
6545     __ decode_heap_oop($src$$Register, $dst$$Register);
6546   %}
6547   ins_pipe(ialu_reg);
6548 %}
6549 
6550 instruct decodeHeapOop_not_null(iRegP dst, iRegN src) %{
6551   predicate(n->bottom_type()->is_oopptr()->ptr() == TypePtr::NotNull ||
6552             n->bottom_type()->is_oopptr()->ptr() == TypePtr::Constant);
6553   match(Set dst (DecodeN src));
6554   format %{ "decode_heap_oop_not_null $src, $dst" %}
6555   ins_encode %{
6556     __ decode_heap_oop_not_null($src$$Register, $dst$$Register);
6557   %}
6558   ins_pipe(ialu_reg);
6559 %}
6560 
6561 
6562 // Store Zero into Aligned Packed Bytes
6563 instruct storeA8B0(memory mem, immI0 zero) %{
6564   match(Set mem (Store8B mem zero));
6565   ins_cost(MEMORY_REF_COST);
6566   size(4);
6567   format %{ "STX    $zero,$mem\t! packed8B" %}
6568   opcode(Assembler::stx_op3);
6569   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
6570   ins_pipe(fstoreD_mem_zero);
6571 %}
6572 
6573 // Store Aligned Packed Chars/Shorts in Double register to memory
6574 instruct storeA4C(memory mem, regD src) %{
6575   match(Set mem (Store4C mem src));
6576   ins_cost(MEMORY_REF_COST);
6577   size(4);
6578   format %{ "STDF   $src,$mem\t! packed4C" %}
6579   opcode(Assembler::stdf_op3);
6580   ins_encode(simple_form3_mem_reg( mem, src ) );
6581   ins_pipe(fstoreD_mem_reg);
6582 %}
6583 
6584 // Store Zero into Aligned Packed Chars/Shorts
6585 instruct storeA4C0(memory mem, immI0 zero) %{
6586   match(Set mem (Store4C mem (Replicate4C zero)));
6587   ins_cost(MEMORY_REF_COST);
6588   size(4);
6589   format %{ "STX    $zero,$mem\t! packed4C" %}
6590   opcode(Assembler::stx_op3);
6591   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
6592   ins_pipe(fstoreD_mem_zero);
6593 %}
6594 
6595 // Store Aligned Packed Ints in Double register to memory
6596 instruct storeA2I(memory mem, regD src) %{
6597   match(Set mem (Store2I mem src));
6598   ins_cost(MEMORY_REF_COST);
6599   size(4);
6600   format %{ "STDF   $src,$mem\t! packed2I" %}
6601   opcode(Assembler::stdf_op3);
6602   ins_encode(simple_form3_mem_reg( mem, src ) );
6603   ins_pipe(fstoreD_mem_reg);
6604 %}
6605 
6606 // Store Zero into Aligned Packed Ints
6607 instruct storeA2I0(memory mem, immI0 zero) %{
6608   match(Set mem (Store2I mem zero));
6609   ins_cost(MEMORY_REF_COST);
6610   size(4);
6611   format %{ "STX    $zero,$mem\t! packed2I" %}
6612   opcode(Assembler::stx_op3);
6613   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
6614   ins_pipe(fstoreD_mem_zero);
6615 %}
6616 
6617 
6618 //----------MemBar Instructions-----------------------------------------------
6619 // Memory barrier flavors
6620 
6621 instruct membar_acquire() %{
6622   match(MemBarAcquire);
6623   ins_cost(4*MEMORY_REF_COST);
6624 
6625   size(0);
6626   format %{ "MEMBAR-acquire" %}
6627   ins_encode( enc_membar_acquire );
6628   ins_pipe(long_memory_op);
6629 %}
6630 
6631 instruct membar_release() %{
6632   match(MemBarRelease);
6633   ins_cost(4*MEMORY_REF_COST);
6634 
6635   size(0);
6636   format %{ "MEMBAR-release" %}
6637   ins_encode( enc_membar_release );
6638   ins_pipe(long_memory_op);
6639 %}
6640 
6641 instruct membar_volatile() %{
6642   match(MemBarVolatile);
6643   ins_cost(4*MEMORY_REF_COST);
6644 
6645   size(4);
6646   format %{ "MEMBAR-volatile" %}
6647   ins_encode( enc_membar_volatile );
6648   ins_pipe(long_memory_op);
6649 %}
6650 
6651 instruct unnecessary_membar_volatile() %{
6652   match(MemBarVolatile);
6653   predicate(Matcher::post_store_load_barrier(n));
6654   ins_cost(0);
6655 
6656   size(0);
6657   format %{ "!MEMBAR-volatile (unnecessary so empty encoding)" %}
6658   ins_encode( );
6659   ins_pipe(empty);
6660 %}
6661 
6662 //----------Register Move Instructions-----------------------------------------
6663 instruct roundDouble_nop(regD dst) %{
6664   match(Set dst (RoundDouble dst));
6665   ins_cost(0);
6666   // SPARC results are already "rounded" (i.e., normal-format IEEE)
6667   ins_encode( );
6668   ins_pipe(empty);
6669 %}
6670 
6671 
6672 instruct roundFloat_nop(regF dst) %{
6673   match(Set dst (RoundFloat dst));
6674   ins_cost(0);
6675   // SPARC results are already "rounded" (i.e., normal-format IEEE)
6676   ins_encode( );
6677   ins_pipe(empty);
6678 %}
6679 
6680 
6681 // Cast Index to Pointer for unsafe natives
6682 instruct castX2P(iRegX src, iRegP dst) %{
6683   match(Set dst (CastX2P src));
6684 
6685   format %{ "MOV    $src,$dst\t! IntX->Ptr" %}
6686   ins_encode( form3_g0_rs2_rd_move( src, dst ) );
6687   ins_pipe(ialu_reg);
6688 %}
6689 
6690 // Cast Pointer to Index for unsafe natives
6691 instruct castP2X(iRegP src, iRegX dst) %{
6692   match(Set dst (CastP2X src));
6693 
6694   format %{ "MOV    $src,$dst\t! Ptr->IntX" %}
6695   ins_encode( form3_g0_rs2_rd_move( src, dst ) );
6696   ins_pipe(ialu_reg);
6697 %}
6698 
6699 instruct stfSSD(stackSlotD stkSlot, regD src) %{
6700   // %%%% TO DO: Tell the coalescer that this kind of node is a copy!
6701   match(Set stkSlot src);   // chain rule
6702   ins_cost(MEMORY_REF_COST);
6703   format %{ "STDF   $src,$stkSlot\t!stk" %}
6704   opcode(Assembler::stdf_op3);
6705   ins_encode(simple_form3_mem_reg(stkSlot, src));
6706   ins_pipe(fstoreD_stk_reg);
6707 %}
6708 
6709 instruct ldfSSD(regD dst, stackSlotD stkSlot) %{
6710   // %%%% TO DO: Tell the coalescer that this kind of node is a copy!
6711   match(Set dst stkSlot);   // chain rule
6712   ins_cost(MEMORY_REF_COST);
6713   format %{ "LDDF   $stkSlot,$dst\t!stk" %}
6714   opcode(Assembler::lddf_op3);
6715   ins_encode(simple_form3_mem_reg(stkSlot, dst));
6716   ins_pipe(floadD_stk);
6717 %}
6718 
6719 instruct stfSSF(stackSlotF stkSlot, regF src) %{
6720   // %%%% TO DO: Tell the coalescer that this kind of node is a copy!
6721   match(Set stkSlot src);   // chain rule
6722   ins_cost(MEMORY_REF_COST);
6723   format %{ "STF   $src,$stkSlot\t!stk" %}
6724   opcode(Assembler::stf_op3);
6725   ins_encode(simple_form3_mem_reg(stkSlot, src));
6726   ins_pipe(fstoreF_stk_reg);
6727 %}
6728 
6729 //----------Conditional Move---------------------------------------------------
6730 // Conditional move
6731 instruct cmovIP_reg(cmpOpP cmp, flagsRegP pcc, iRegI dst, iRegI src) %{
6732   match(Set dst (CMoveI (Binary cmp pcc) (Binary dst src)));
6733   ins_cost(150);
6734   format %{ "MOV$cmp $pcc,$src,$dst" %}
6735   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::ptr_cc)) );
6736   ins_pipe(ialu_reg);
6737 %}
6738 
6739 instruct cmovIP_imm(cmpOpP cmp, flagsRegP pcc, iRegI dst, immI11 src) %{
6740   match(Set dst (CMoveI (Binary cmp pcc) (Binary dst src)));
6741   ins_cost(140);
6742   format %{ "MOV$cmp $pcc,$src,$dst" %}
6743   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::ptr_cc)) );
6744   ins_pipe(ialu_imm);
6745 %}
6746 
6747 instruct cmovII_reg(cmpOp cmp, flagsReg icc, iRegI dst, iRegI src) %{
6748   match(Set dst (CMoveI (Binary cmp icc) (Binary dst src)));
6749   ins_cost(150);
6750   size(4);
6751   format %{ "MOV$cmp  $icc,$src,$dst" %}
6752   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
6753   ins_pipe(ialu_reg);
6754 %}
6755 
6756 instruct cmovII_imm(cmpOp cmp, flagsReg icc, iRegI dst, immI11 src) %{
6757   match(Set dst (CMoveI (Binary cmp icc) (Binary dst src)));
6758   ins_cost(140);
6759   size(4);
6760   format %{ "MOV$cmp  $icc,$src,$dst" %}
6761   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::icc)) );
6762   ins_pipe(ialu_imm);
6763 %}
6764 
6765 instruct cmovIIu_reg(cmpOpU cmp, flagsRegU icc, iRegI dst, iRegI src) %{
6766   match(Set dst (CMoveI (Binary cmp icc) (Binary dst src)));
6767   ins_cost(150);
6768   size(4);
6769   format %{ "MOV$cmp  $icc,$src,$dst" %}
6770   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
6771   ins_pipe(ialu_reg);
6772 %}
6773 
6774 instruct cmovIIu_imm(cmpOpU cmp, flagsRegU icc, iRegI dst, immI11 src) %{
6775   match(Set dst (CMoveI (Binary cmp icc) (Binary dst src)));
6776   ins_cost(140);
6777   size(4);
6778   format %{ "MOV$cmp  $icc,$src,$dst" %}
6779   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::icc)) );
6780   ins_pipe(ialu_imm);
6781 %}
6782 
6783 instruct cmovIF_reg(cmpOpF cmp, flagsRegF fcc, iRegI dst, iRegI src) %{
6784   match(Set dst (CMoveI (Binary cmp fcc) (Binary dst src)));
6785   ins_cost(150);
6786   size(4);
6787   format %{ "MOV$cmp $fcc,$src,$dst" %}
6788   ins_encode( enc_cmov_reg_f(cmp,dst,src, fcc) );
6789   ins_pipe(ialu_reg);
6790 %}
6791 
6792 instruct cmovIF_imm(cmpOpF cmp, flagsRegF fcc, iRegI dst, immI11 src) %{
6793   match(Set dst (CMoveI (Binary cmp fcc) (Binary dst src)));
6794   ins_cost(140);
6795   size(4);
6796   format %{ "MOV$cmp $fcc,$src,$dst" %}
6797   ins_encode( enc_cmov_imm_f(cmp,dst,src, fcc) );
6798   ins_pipe(ialu_imm);
6799 %}
6800 
6801 // Conditional move for RegN. Only cmov(reg,reg).
6802 instruct cmovNP_reg(cmpOpP cmp, flagsRegP pcc, iRegN dst, iRegN src) %{
6803   match(Set dst (CMoveN (Binary cmp pcc) (Binary dst src)));
6804   ins_cost(150);
6805   format %{ "MOV$cmp $pcc,$src,$dst" %}
6806   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::ptr_cc)) );
6807   ins_pipe(ialu_reg);
6808 %}
6809 
6810 // This instruction also works with CmpN so we don't need cmovNN_reg.
6811 instruct cmovNI_reg(cmpOp cmp, flagsReg icc, iRegN dst, iRegN src) %{
6812   match(Set dst (CMoveN (Binary cmp icc) (Binary dst src)));
6813   ins_cost(150);
6814   size(4);
6815   format %{ "MOV$cmp  $icc,$src,$dst" %}
6816   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
6817   ins_pipe(ialu_reg);
6818 %}
6819 
6820 // This instruction also works with CmpN so we don't need cmovNN_reg.
6821 instruct cmovNIu_reg(cmpOpU cmp, flagsRegU icc, iRegN dst, iRegN src) %{
6822   match(Set dst (CMoveN (Binary cmp icc) (Binary dst src)));
6823   ins_cost(150);
6824   size(4);
6825   format %{ "MOV$cmp  $icc,$src,$dst" %}
6826   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
6827   ins_pipe(ialu_reg);
6828 %}
6829 
6830 instruct cmovNF_reg(cmpOpF cmp, flagsRegF fcc, iRegN dst, iRegN src) %{
6831   match(Set dst (CMoveN (Binary cmp fcc) (Binary dst src)));
6832   ins_cost(150);
6833   size(4);
6834   format %{ "MOV$cmp $fcc,$src,$dst" %}
6835   ins_encode( enc_cmov_reg_f(cmp,dst,src, fcc) );
6836   ins_pipe(ialu_reg);
6837 %}
6838 
6839 // Conditional move
6840 instruct cmovPP_reg(cmpOpP cmp, flagsRegP pcc, iRegP dst, iRegP src) %{
6841   match(Set dst (CMoveP (Binary cmp pcc) (Binary dst src)));
6842   ins_cost(150);
6843   format %{ "MOV$cmp $pcc,$src,$dst\t! ptr" %}
6844   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::ptr_cc)) );
6845   ins_pipe(ialu_reg);
6846 %}
6847 
6848 instruct cmovPP_imm(cmpOpP cmp, flagsRegP pcc, iRegP dst, immP0 src) %{
6849   match(Set dst (CMoveP (Binary cmp pcc) (Binary dst src)));
6850   ins_cost(140);
6851   format %{ "MOV$cmp $pcc,$src,$dst\t! ptr" %}
6852   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::ptr_cc)) );
6853   ins_pipe(ialu_imm);
6854 %}
6855 
6856 // This instruction also works with CmpN so we don't need cmovPN_reg.
6857 instruct cmovPI_reg(cmpOp cmp, flagsReg icc, iRegP dst, iRegP src) %{
6858   match(Set dst (CMoveP (Binary cmp icc) (Binary dst src)));
6859   ins_cost(150);
6860 
6861   size(4);
6862   format %{ "MOV$cmp  $icc,$src,$dst\t! ptr" %}
6863   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
6864   ins_pipe(ialu_reg);
6865 %}
6866 
6867 instruct cmovPIu_reg(cmpOpU cmp, flagsRegU icc, iRegP dst, iRegP src) %{
6868   match(Set dst (CMoveP (Binary cmp icc) (Binary dst src)));
6869   ins_cost(150);
6870 
6871   size(4);
6872   format %{ "MOV$cmp  $icc,$src,$dst\t! ptr" %}
6873   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
6874   ins_pipe(ialu_reg);
6875 %}
6876 
6877 instruct cmovPI_imm(cmpOp cmp, flagsReg icc, iRegP dst, immP0 src) %{
6878   match(Set dst (CMoveP (Binary cmp icc) (Binary dst src)));
6879   ins_cost(140);
6880 
6881   size(4);
6882   format %{ "MOV$cmp  $icc,$src,$dst\t! ptr" %}
6883   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::icc)) );
6884   ins_pipe(ialu_imm);
6885 %}
6886 
6887 instruct cmovPIu_imm(cmpOpU cmp, flagsRegU icc, iRegP dst, immP0 src) %{
6888   match(Set dst (CMoveP (Binary cmp icc) (Binary dst src)));
6889   ins_cost(140);
6890 
6891   size(4);
6892   format %{ "MOV$cmp  $icc,$src,$dst\t! ptr" %}
6893   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::icc)) );
6894   ins_pipe(ialu_imm);
6895 %}
6896 
6897 instruct cmovPF_reg(cmpOpF cmp, flagsRegF fcc, iRegP dst, iRegP src) %{
6898   match(Set dst (CMoveP (Binary cmp fcc) (Binary dst src)));
6899   ins_cost(150);
6900   size(4);
6901   format %{ "MOV$cmp $fcc,$src,$dst" %}
6902   ins_encode( enc_cmov_reg_f(cmp,dst,src, fcc) );
6903   ins_pipe(ialu_imm);
6904 %}
6905 
6906 instruct cmovPF_imm(cmpOpF cmp, flagsRegF fcc, iRegP dst, immP0 src) %{
6907   match(Set dst (CMoveP (Binary cmp fcc) (Binary dst src)));
6908   ins_cost(140);
6909   size(4);
6910   format %{ "MOV$cmp $fcc,$src,$dst" %}
6911   ins_encode( enc_cmov_imm_f(cmp,dst,src, fcc) );
6912   ins_pipe(ialu_imm);
6913 %}
6914 
6915 // Conditional move
6916 instruct cmovFP_reg(cmpOpP cmp, flagsRegP pcc, regF dst, regF src) %{
6917   match(Set dst (CMoveF (Binary cmp pcc) (Binary dst src)));
6918   ins_cost(150);
6919   opcode(0x101);
6920   format %{ "FMOVD$cmp $pcc,$src,$dst" %}
6921   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::ptr_cc)) );
6922   ins_pipe(int_conditional_float_move);
6923 %}
6924 
6925 instruct cmovFI_reg(cmpOp cmp, flagsReg icc, regF dst, regF src) %{
6926   match(Set dst (CMoveF (Binary cmp icc) (Binary dst src)));
6927   ins_cost(150);
6928 
6929   size(4);
6930   format %{ "FMOVS$cmp $icc,$src,$dst" %}
6931   opcode(0x101);
6932   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::icc)) );
6933   ins_pipe(int_conditional_float_move);
6934 %}
6935 
6936 instruct cmovFIu_reg(cmpOpU cmp, flagsRegU icc, regF dst, regF src) %{
6937   match(Set dst (CMoveF (Binary cmp icc) (Binary dst src)));
6938   ins_cost(150);
6939 
6940   size(4);
6941   format %{ "FMOVS$cmp $icc,$src,$dst" %}
6942   opcode(0x101);
6943   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::icc)) );
6944   ins_pipe(int_conditional_float_move);
6945 %}
6946 
6947 // Conditional move,
6948 instruct cmovFF_reg(cmpOpF cmp, flagsRegF fcc, regF dst, regF src) %{
6949   match(Set dst (CMoveF (Binary cmp fcc) (Binary dst src)));
6950   ins_cost(150);
6951   size(4);
6952   format %{ "FMOVF$cmp $fcc,$src,$dst" %}
6953   opcode(0x1);
6954   ins_encode( enc_cmovff_reg(cmp,fcc,dst,src) );
6955   ins_pipe(int_conditional_double_move);
6956 %}
6957 
6958 // Conditional move
6959 instruct cmovDP_reg(cmpOpP cmp, flagsRegP pcc, regD dst, regD src) %{
6960   match(Set dst (CMoveD (Binary cmp pcc) (Binary dst src)));
6961   ins_cost(150);
6962   size(4);
6963   opcode(0x102);
6964   format %{ "FMOVD$cmp $pcc,$src,$dst" %}
6965   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::ptr_cc)) );
6966   ins_pipe(int_conditional_double_move);
6967 %}
6968 
6969 instruct cmovDI_reg(cmpOp cmp, flagsReg icc, regD dst, regD src) %{
6970   match(Set dst (CMoveD (Binary cmp icc) (Binary dst src)));
6971   ins_cost(150);
6972 
6973   size(4);
6974   format %{ "FMOVD$cmp $icc,$src,$dst" %}
6975   opcode(0x102);
6976   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::icc)) );
6977   ins_pipe(int_conditional_double_move);
6978 %}
6979 
6980 instruct cmovDIu_reg(cmpOpU cmp, flagsRegU icc, regD dst, regD src) %{
6981   match(Set dst (CMoveD (Binary cmp icc) (Binary dst src)));
6982   ins_cost(150);
6983 
6984   size(4);
6985   format %{ "FMOVD$cmp $icc,$src,$dst" %}
6986   opcode(0x102);
6987   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::icc)) );
6988   ins_pipe(int_conditional_double_move);
6989 %}
6990 
6991 // Conditional move,
6992 instruct cmovDF_reg(cmpOpF cmp, flagsRegF fcc, regD dst, regD src) %{
6993   match(Set dst (CMoveD (Binary cmp fcc) (Binary dst src)));
6994   ins_cost(150);
6995   size(4);
6996   format %{ "FMOVD$cmp $fcc,$src,$dst" %}
6997   opcode(0x2);
6998   ins_encode( enc_cmovff_reg(cmp,fcc,dst,src) );
6999   ins_pipe(int_conditional_double_move);
7000 %}
7001 
7002 // Conditional move
7003 instruct cmovLP_reg(cmpOpP cmp, flagsRegP pcc, iRegL dst, iRegL src) %{
7004   match(Set dst (CMoveL (Binary cmp pcc) (Binary dst src)));
7005   ins_cost(150);
7006   format %{ "MOV$cmp $pcc,$src,$dst\t! long" %}
7007   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::ptr_cc)) );
7008   ins_pipe(ialu_reg);
7009 %}
7010 
7011 instruct cmovLP_imm(cmpOpP cmp, flagsRegP pcc, iRegL dst, immI11 src) %{
7012   match(Set dst (CMoveL (Binary cmp pcc) (Binary dst src)));
7013   ins_cost(140);
7014   format %{ "MOV$cmp $pcc,$src,$dst\t! long" %}
7015   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::ptr_cc)) );
7016   ins_pipe(ialu_imm);
7017 %}
7018 
7019 instruct cmovLI_reg(cmpOp cmp, flagsReg icc, iRegL dst, iRegL src) %{
7020   match(Set dst (CMoveL (Binary cmp icc) (Binary dst src)));
7021   ins_cost(150);
7022 
7023   size(4);
7024   format %{ "MOV$cmp  $icc,$src,$dst\t! long" %}
7025   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
7026   ins_pipe(ialu_reg);
7027 %}
7028 
7029 
7030 instruct cmovLIu_reg(cmpOpU cmp, flagsRegU icc, iRegL dst, iRegL src) %{
7031   match(Set dst (CMoveL (Binary cmp icc) (Binary dst src)));
7032   ins_cost(150);
7033 
7034   size(4);
7035   format %{ "MOV$cmp  $icc,$src,$dst\t! long" %}
7036   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
7037   ins_pipe(ialu_reg);
7038 %}
7039 
7040 
7041 instruct cmovLF_reg(cmpOpF cmp, flagsRegF fcc, iRegL dst, iRegL src) %{
7042   match(Set dst (CMoveL (Binary cmp fcc) (Binary dst src)));
7043   ins_cost(150);
7044 
7045   size(4);
7046   format %{ "MOV$cmp  $fcc,$src,$dst\t! long" %}
7047   ins_encode( enc_cmov_reg_f(cmp,dst,src, fcc) );
7048   ins_pipe(ialu_reg);
7049 %}
7050 
7051 
7052 
7053 //----------OS and Locking Instructions----------------------------------------
7054 
7055 // This name is KNOWN by the ADLC and cannot be changed.
7056 // The ADLC forces a 'TypeRawPtr::BOTTOM' output type
7057 // for this guy.
7058 instruct tlsLoadP(g2RegP dst) %{
7059   match(Set dst (ThreadLocal));
7060 
7061   size(0);
7062   ins_cost(0);
7063   format %{ "# TLS is in G2" %}
7064   ins_encode( /*empty encoding*/ );
7065   ins_pipe(ialu_none);
7066 %}
7067 
7068 instruct checkCastPP( iRegP dst ) %{
7069   match(Set dst (CheckCastPP dst));
7070 
7071   size(0);
7072   format %{ "# checkcastPP of $dst" %}
7073   ins_encode( /*empty encoding*/ );
7074   ins_pipe(empty);
7075 %}
7076 
7077 
7078 instruct castPP( iRegP dst ) %{
7079   match(Set dst (CastPP dst));
7080   format %{ "# castPP of $dst" %}
7081   ins_encode( /*empty encoding*/ );
7082   ins_pipe(empty);
7083 %}
7084 
7085 instruct castII( iRegI dst ) %{
7086   match(Set dst (CastII dst));
7087   format %{ "# castII of $dst" %}
7088   ins_encode( /*empty encoding*/ );
7089   ins_cost(0);
7090   ins_pipe(empty);
7091 %}
7092 
7093 //----------Arithmetic Instructions--------------------------------------------
7094 // Addition Instructions
7095 // Register Addition
7096 instruct addI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
7097   match(Set dst (AddI src1 src2));
7098 
7099   size(4);
7100   format %{ "ADD    $src1,$src2,$dst" %}
7101   ins_encode %{
7102     __ add($src1$$Register, $src2$$Register, $dst$$Register);
7103   %}
7104   ins_pipe(ialu_reg_reg);
7105 %}
7106 
7107 // Immediate Addition
7108 instruct addI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
7109   match(Set dst (AddI src1 src2));
7110 
7111   size(4);
7112   format %{ "ADD    $src1,$src2,$dst" %}
7113   opcode(Assembler::add_op3, Assembler::arith_op);
7114   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
7115   ins_pipe(ialu_reg_imm);
7116 %}
7117 
7118 // Pointer Register Addition
7119 instruct addP_reg_reg(iRegP dst, iRegP src1, iRegX src2) %{
7120   match(Set dst (AddP src1 src2));
7121 
7122   size(4);
7123   format %{ "ADD    $src1,$src2,$dst" %}
7124   opcode(Assembler::add_op3, Assembler::arith_op);
7125   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7126   ins_pipe(ialu_reg_reg);
7127 %}
7128 
7129 // Pointer Immediate Addition
7130 instruct addP_reg_imm13(iRegP dst, iRegP src1, immX13 src2) %{
7131   match(Set dst (AddP src1 src2));
7132 
7133   size(4);
7134   format %{ "ADD    $src1,$src2,$dst" %}
7135   opcode(Assembler::add_op3, Assembler::arith_op);
7136   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
7137   ins_pipe(ialu_reg_imm);
7138 %}
7139 
7140 // Long Addition
7141 instruct addL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
7142   match(Set dst (AddL src1 src2));
7143 
7144   size(4);
7145   format %{ "ADD    $src1,$src2,$dst\t! long" %}
7146   opcode(Assembler::add_op3, Assembler::arith_op);
7147   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7148   ins_pipe(ialu_reg_reg);
7149 %}
7150 
7151 instruct addL_reg_imm13(iRegL dst, iRegL src1, immL13 con) %{
7152   match(Set dst (AddL src1 con));
7153 
7154   size(4);
7155   format %{ "ADD    $src1,$con,$dst" %}
7156   opcode(Assembler::add_op3, Assembler::arith_op);
7157   ins_encode( form3_rs1_simm13_rd( src1, con, dst ) );
7158   ins_pipe(ialu_reg_imm);
7159 %}
7160 
7161 //----------Conditional_store--------------------------------------------------
7162 // Conditional-store of the updated heap-top.
7163 // Used during allocation of the shared heap.
7164 // Sets flags (EQ) on success.  Implemented with a CASA on Sparc.
7165 
7166 // LoadP-locked.  Same as a regular pointer load when used with a compare-swap
7167 instruct loadPLocked(iRegP dst, memory mem) %{
7168   match(Set dst (LoadPLocked mem));
7169   ins_cost(MEMORY_REF_COST);
7170 
7171 #ifndef _LP64
7172   size(4);
7173   format %{ "LDUW   $mem,$dst\t! ptr" %}
7174   opcode(Assembler::lduw_op3, 0, REGP_OP);
7175 #else
7176   format %{ "LDX    $mem,$dst\t! ptr" %}
7177   opcode(Assembler::ldx_op3, 0, REGP_OP);
7178 #endif
7179   ins_encode( form3_mem_reg( mem, dst ) );
7180   ins_pipe(iload_mem);
7181 %}
7182 
7183 // LoadL-locked.  Same as a regular long load when used with a compare-swap
7184 instruct loadLLocked(iRegL dst, memory mem) %{
7185   match(Set dst (LoadLLocked mem));
7186   ins_cost(MEMORY_REF_COST);
7187   size(4);
7188   format %{ "LDX    $mem,$dst\t! long" %}
7189   opcode(Assembler::ldx_op3);
7190   ins_encode(simple_form3_mem_reg( mem, dst ) );
7191   ins_pipe(iload_mem);
7192 %}
7193 
7194 instruct storePConditional( iRegP heap_top_ptr, iRegP oldval, g3RegP newval, flagsRegP pcc ) %{
7195   match(Set pcc (StorePConditional heap_top_ptr (Binary oldval newval)));
7196   effect( KILL newval );
7197   format %{ "CASA   [$heap_top_ptr],$oldval,R_G3\t! If $oldval==[$heap_top_ptr] Then store R_G3 into [$heap_top_ptr], set R_G3=[$heap_top_ptr] in any case\n\t"
7198             "CMP    R_G3,$oldval\t\t! See if we made progress"  %}
7199   ins_encode( enc_cas(heap_top_ptr,oldval,newval) );
7200   ins_pipe( long_memory_op );
7201 %}
7202 
7203 // Conditional-store of an int value.
7204 instruct storeIConditional( iRegP mem_ptr, iRegI oldval, g3RegI newval, flagsReg icc ) %{
7205   match(Set icc (StoreIConditional mem_ptr (Binary oldval newval)));
7206   effect( KILL newval );
7207   format %{ "CASA   [$mem_ptr],$oldval,$newval\t! If $oldval==[$mem_ptr] Then store $newval into [$mem_ptr], set $newval=[$mem_ptr] in any case\n\t"
7208             "CMP    $oldval,$newval\t\t! See if we made progress"  %}
7209   ins_encode( enc_cas(mem_ptr,oldval,newval) );
7210   ins_pipe( long_memory_op );
7211 %}
7212 
7213 // Conditional-store of a long value.
7214 instruct storeLConditional( iRegP mem_ptr, iRegL oldval, g3RegL newval, flagsRegL xcc ) %{
7215   match(Set xcc (StoreLConditional mem_ptr (Binary oldval newval)));
7216   effect( KILL newval );
7217   format %{ "CASXA  [$mem_ptr],$oldval,$newval\t! If $oldval==[$mem_ptr] Then store $newval into [$mem_ptr], set $newval=[$mem_ptr] in any case\n\t"
7218             "CMP    $oldval,$newval\t\t! See if we made progress"  %}
7219   ins_encode( enc_cas(mem_ptr,oldval,newval) );
7220   ins_pipe( long_memory_op );
7221 %}
7222 
7223 // No flag versions for CompareAndSwap{P,I,L} because matcher can't match them
7224 
7225 instruct compareAndSwapL_bool(iRegP mem_ptr, iRegL oldval, iRegL newval, iRegI res, o7RegI tmp1, flagsReg ccr ) %{
7226   match(Set res (CompareAndSwapL mem_ptr (Binary oldval newval)));
7227   effect( USE mem_ptr, KILL ccr, KILL tmp1);
7228   format %{
7229             "MOV    $newval,O7\n\t"
7230             "CASXA  [$mem_ptr],$oldval,O7\t! If $oldval==[$mem_ptr] Then store O7 into [$mem_ptr], set O7=[$mem_ptr] in any case\n\t"
7231             "CMP    $oldval,O7\t\t! See if we made progress\n\t"
7232             "MOV    1,$res\n\t"
7233             "MOVne  xcc,R_G0,$res"
7234   %}
7235   ins_encode( enc_casx(mem_ptr, oldval, newval),
7236               enc_lflags_ne_to_boolean(res) );
7237   ins_pipe( long_memory_op );
7238 %}
7239 
7240 
7241 instruct compareAndSwapI_bool(iRegP mem_ptr, iRegI oldval, iRegI newval, iRegI res, o7RegI tmp1, flagsReg ccr ) %{
7242   match(Set res (CompareAndSwapI mem_ptr (Binary oldval newval)));
7243   effect( USE mem_ptr, KILL ccr, KILL tmp1);
7244   format %{
7245             "MOV    $newval,O7\n\t"
7246             "CASA   [$mem_ptr],$oldval,O7\t! If $oldval==[$mem_ptr] Then store O7 into [$mem_ptr], set O7=[$mem_ptr] in any case\n\t"
7247             "CMP    $oldval,O7\t\t! See if we made progress\n\t"
7248             "MOV    1,$res\n\t"
7249             "MOVne  icc,R_G0,$res"
7250   %}
7251   ins_encode( enc_casi(mem_ptr, oldval, newval),
7252               enc_iflags_ne_to_boolean(res) );
7253   ins_pipe( long_memory_op );
7254 %}
7255 
7256 instruct compareAndSwapP_bool(iRegP mem_ptr, iRegP oldval, iRegP newval, iRegI res, o7RegI tmp1, flagsReg ccr ) %{
7257   match(Set res (CompareAndSwapP mem_ptr (Binary oldval newval)));
7258   effect( USE mem_ptr, KILL ccr, KILL tmp1);
7259   format %{
7260             "MOV    $newval,O7\n\t"
7261             "CASA_PTR  [$mem_ptr],$oldval,O7\t! If $oldval==[$mem_ptr] Then store O7 into [$mem_ptr], set O7=[$mem_ptr] in any case\n\t"
7262             "CMP    $oldval,O7\t\t! See if we made progress\n\t"
7263             "MOV    1,$res\n\t"
7264             "MOVne  xcc,R_G0,$res"
7265   %}
7266 #ifdef _LP64
7267   ins_encode( enc_casx(mem_ptr, oldval, newval),
7268               enc_lflags_ne_to_boolean(res) );
7269 #else
7270   ins_encode( enc_casi(mem_ptr, oldval, newval),
7271               enc_iflags_ne_to_boolean(res) );
7272 #endif
7273   ins_pipe( long_memory_op );
7274 %}
7275 
7276 instruct compareAndSwapN_bool(iRegP mem_ptr, iRegN oldval, iRegN newval, iRegI res, o7RegI tmp1, flagsReg ccr ) %{
7277   match(Set res (CompareAndSwapN mem_ptr (Binary oldval newval)));
7278   effect( USE mem_ptr, KILL ccr, KILL tmp1);
7279   format %{
7280             "MOV    $newval,O7\n\t"
7281             "CASA   [$mem_ptr],$oldval,O7\t! If $oldval==[$mem_ptr] Then store O7 into [$mem_ptr], set O7=[$mem_ptr] in any case\n\t"
7282             "CMP    $oldval,O7\t\t! See if we made progress\n\t"
7283             "MOV    1,$res\n\t"
7284             "MOVne  icc,R_G0,$res"
7285   %}
7286   ins_encode( enc_casi(mem_ptr, oldval, newval),
7287               enc_iflags_ne_to_boolean(res) );
7288   ins_pipe( long_memory_op );
7289 %}
7290 
7291 //---------------------
7292 // Subtraction Instructions
7293 // Register Subtraction
7294 instruct subI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
7295   match(Set dst (SubI src1 src2));
7296 
7297   size(4);
7298   format %{ "SUB    $src1,$src2,$dst" %}
7299   opcode(Assembler::sub_op3, Assembler::arith_op);
7300   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7301   ins_pipe(ialu_reg_reg);
7302 %}
7303 
7304 // Immediate Subtraction
7305 instruct subI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
7306   match(Set dst (SubI src1 src2));
7307 
7308   size(4);
7309   format %{ "SUB    $src1,$src2,$dst" %}
7310   opcode(Assembler::sub_op3, Assembler::arith_op);
7311   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
7312   ins_pipe(ialu_reg_imm);
7313 %}
7314 
7315 instruct subI_zero_reg(iRegI dst, immI0 zero, iRegI src2) %{
7316   match(Set dst (SubI zero src2));
7317 
7318   size(4);
7319   format %{ "NEG    $src2,$dst" %}
7320   opcode(Assembler::sub_op3, Assembler::arith_op);
7321   ins_encode( form3_rs1_rs2_rd( R_G0, src2, dst ) );
7322   ins_pipe(ialu_zero_reg);
7323 %}
7324 
7325 // Long subtraction
7326 instruct subL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
7327   match(Set dst (SubL src1 src2));
7328 
7329   size(4);
7330   format %{ "SUB    $src1,$src2,$dst\t! long" %}
7331   opcode(Assembler::sub_op3, Assembler::arith_op);
7332   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7333   ins_pipe(ialu_reg_reg);
7334 %}
7335 
7336 // Immediate Subtraction
7337 instruct subL_reg_imm13(iRegL dst, iRegL src1, immL13 con) %{
7338   match(Set dst (SubL src1 con));
7339 
7340   size(4);
7341   format %{ "SUB    $src1,$con,$dst\t! long" %}
7342   opcode(Assembler::sub_op3, Assembler::arith_op);
7343   ins_encode( form3_rs1_simm13_rd( src1, con, dst ) );
7344   ins_pipe(ialu_reg_imm);
7345 %}
7346 
7347 // Long negation
7348 instruct negL_reg_reg(iRegL dst, immL0 zero, iRegL src2) %{
7349   match(Set dst (SubL zero src2));
7350 
7351   size(4);
7352   format %{ "NEG    $src2,$dst\t! long" %}
7353   opcode(Assembler::sub_op3, Assembler::arith_op);
7354   ins_encode( form3_rs1_rs2_rd( R_G0, src2, dst ) );
7355   ins_pipe(ialu_zero_reg);
7356 %}
7357 
7358 // Multiplication Instructions
7359 // Integer Multiplication
7360 // Register Multiplication
7361 instruct mulI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
7362   match(Set dst (MulI src1 src2));
7363 
7364   size(4);
7365   format %{ "MULX   $src1,$src2,$dst" %}
7366   opcode(Assembler::mulx_op3, Assembler::arith_op);
7367   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7368   ins_pipe(imul_reg_reg);
7369 %}
7370 
7371 // Immediate Multiplication
7372 instruct mulI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
7373   match(Set dst (MulI src1 src2));
7374 
7375   size(4);
7376   format %{ "MULX   $src1,$src2,$dst" %}
7377   opcode(Assembler::mulx_op3, Assembler::arith_op);
7378   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
7379   ins_pipe(imul_reg_imm);
7380 %}
7381 
7382 instruct mulL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
7383   match(Set dst (MulL src1 src2));
7384   ins_cost(DEFAULT_COST * 5);
7385   size(4);
7386   format %{ "MULX   $src1,$src2,$dst\t! long" %}
7387   opcode(Assembler::mulx_op3, Assembler::arith_op);
7388   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7389   ins_pipe(mulL_reg_reg);
7390 %}
7391 
7392 // Immediate Multiplication
7393 instruct mulL_reg_imm13(iRegL dst, iRegL src1, immL13 src2) %{
7394   match(Set dst (MulL src1 src2));
7395   ins_cost(DEFAULT_COST * 5);
7396   size(4);
7397   format %{ "MULX   $src1,$src2,$dst" %}
7398   opcode(Assembler::mulx_op3, Assembler::arith_op);
7399   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
7400   ins_pipe(mulL_reg_imm);
7401 %}
7402 
7403 // Integer Division
7404 // Register Division
7405 instruct divI_reg_reg(iRegI dst, iRegIsafe src1, iRegIsafe src2) %{
7406   match(Set dst (DivI src1 src2));
7407   ins_cost((2+71)*DEFAULT_COST);
7408 
7409   format %{ "SRA     $src2,0,$src2\n\t"
7410             "SRA     $src1,0,$src1\n\t"
7411             "SDIVX   $src1,$src2,$dst" %}
7412   ins_encode( idiv_reg( src1, src2, dst ) );
7413   ins_pipe(sdiv_reg_reg);
7414 %}
7415 
7416 // Immediate Division
7417 instruct divI_reg_imm13(iRegI dst, iRegIsafe src1, immI13 src2) %{
7418   match(Set dst (DivI src1 src2));
7419   ins_cost((2+71)*DEFAULT_COST);
7420 
7421   format %{ "SRA     $src1,0,$src1\n\t"
7422             "SDIVX   $src1,$src2,$dst" %}
7423   ins_encode( idiv_imm( src1, src2, dst ) );
7424   ins_pipe(sdiv_reg_imm);
7425 %}
7426 
7427 //----------Div-By-10-Expansion------------------------------------------------
7428 // Extract hi bits of a 32x32->64 bit multiply.
7429 // Expand rule only, not matched
7430 instruct mul_hi(iRegIsafe dst, iRegIsafe src1, iRegIsafe src2 ) %{
7431   effect( DEF dst, USE src1, USE src2 );
7432   format %{ "MULX   $src1,$src2,$dst\t! Used in div-by-10\n\t"
7433             "SRLX   $dst,#32,$dst\t\t! Extract only hi word of result" %}
7434   ins_encode( enc_mul_hi(dst,src1,src2));
7435   ins_pipe(sdiv_reg_reg);
7436 %}
7437 
7438 // Magic constant, reciprocal of 10
7439 instruct loadConI_x66666667(iRegIsafe dst) %{
7440   effect( DEF dst );
7441 
7442   size(8);
7443   format %{ "SET    0x66666667,$dst\t! Used in div-by-10" %}
7444   ins_encode( Set32(0x66666667, dst) );
7445   ins_pipe(ialu_hi_lo_reg);
7446 %}
7447 
7448 // Register Shift Right Arithmetic Long by 32-63
7449 instruct sra_31( iRegI dst, iRegI src ) %{
7450   effect( DEF dst, USE src );
7451   format %{ "SRA    $src,31,$dst\t! Used in div-by-10" %}
7452   ins_encode( form3_rs1_rd_copysign_hi(src,dst) );
7453   ins_pipe(ialu_reg_reg);
7454 %}
7455 
7456 // Arithmetic Shift Right by 8-bit immediate
7457 instruct sra_reg_2( iRegI dst, iRegI src ) %{
7458   effect( DEF dst, USE src );
7459   format %{ "SRA    $src,2,$dst\t! Used in div-by-10" %}
7460   opcode(Assembler::sra_op3, Assembler::arith_op);
7461   ins_encode( form3_rs1_simm13_rd( src, 0x2, dst ) );
7462   ins_pipe(ialu_reg_imm);
7463 %}
7464 
7465 // Integer DIV with 10
7466 instruct divI_10( iRegI dst, iRegIsafe src, immI10 div ) %{
7467   match(Set dst (DivI src div));
7468   ins_cost((6+6)*DEFAULT_COST);
7469   expand %{
7470     iRegIsafe tmp1;               // Killed temps;
7471     iRegIsafe tmp2;               // Killed temps;
7472     iRegI tmp3;                   // Killed temps;
7473     iRegI tmp4;                   // Killed temps;
7474     loadConI_x66666667( tmp1 );   // SET  0x66666667 -> tmp1
7475     mul_hi( tmp2, src, tmp1 );    // MUL  hibits(src * tmp1) -> tmp2
7476     sra_31( tmp3, src );          // SRA  src,31 -> tmp3
7477     sra_reg_2( tmp4, tmp2 );      // SRA  tmp2,2 -> tmp4
7478     subI_reg_reg( dst,tmp4,tmp3); // SUB  tmp4 - tmp3 -> dst
7479   %}
7480 %}
7481 
7482 // Register Long Division
7483 instruct divL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
7484   match(Set dst (DivL src1 src2));
7485   ins_cost(DEFAULT_COST*71);
7486   size(4);
7487   format %{ "SDIVX  $src1,$src2,$dst\t! long" %}
7488   opcode(Assembler::sdivx_op3, Assembler::arith_op);
7489   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7490   ins_pipe(divL_reg_reg);
7491 %}
7492 
7493 // Register Long Division
7494 instruct divL_reg_imm13(iRegL dst, iRegL src1, immL13 src2) %{
7495   match(Set dst (DivL src1 src2));
7496   ins_cost(DEFAULT_COST*71);
7497   size(4);
7498   format %{ "SDIVX  $src1,$src2,$dst\t! long" %}
7499   opcode(Assembler::sdivx_op3, Assembler::arith_op);
7500   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
7501   ins_pipe(divL_reg_imm);
7502 %}
7503 
7504 // Integer Remainder
7505 // Register Remainder
7506 instruct modI_reg_reg(iRegI dst, iRegIsafe src1, iRegIsafe src2, o7RegP temp, flagsReg ccr ) %{
7507   match(Set dst (ModI src1 src2));
7508   effect( KILL ccr, KILL temp);
7509 
7510   format %{ "SREM   $src1,$src2,$dst" %}
7511   ins_encode( irem_reg(src1, src2, dst, temp) );
7512   ins_pipe(sdiv_reg_reg);
7513 %}
7514 
7515 // Immediate Remainder
7516 instruct modI_reg_imm13(iRegI dst, iRegIsafe src1, immI13 src2, o7RegP temp, flagsReg ccr ) %{
7517   match(Set dst (ModI src1 src2));
7518   effect( KILL ccr, KILL temp);
7519 
7520   format %{ "SREM   $src1,$src2,$dst" %}
7521   ins_encode( irem_imm(src1, src2, dst, temp) );
7522   ins_pipe(sdiv_reg_imm);
7523 %}
7524 
7525 // Register Long Remainder
7526 instruct divL_reg_reg_1(iRegL dst, iRegL src1, iRegL src2) %{
7527   effect(DEF dst, USE src1, USE src2);
7528   size(4);
7529   format %{ "SDIVX  $src1,$src2,$dst\t! long" %}
7530   opcode(Assembler::sdivx_op3, Assembler::arith_op);
7531   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7532   ins_pipe(divL_reg_reg);
7533 %}
7534 
7535 // Register Long Division
7536 instruct divL_reg_imm13_1(iRegL dst, iRegL src1, immL13 src2) %{
7537   effect(DEF dst, USE src1, USE src2);
7538   size(4);
7539   format %{ "SDIVX  $src1,$src2,$dst\t! long" %}
7540   opcode(Assembler::sdivx_op3, Assembler::arith_op);
7541   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
7542   ins_pipe(divL_reg_imm);
7543 %}
7544 
7545 instruct mulL_reg_reg_1(iRegL dst, iRegL src1, iRegL src2) %{
7546   effect(DEF dst, USE src1, USE src2);
7547   size(4);
7548   format %{ "MULX   $src1,$src2,$dst\t! long" %}
7549   opcode(Assembler::mulx_op3, Assembler::arith_op);
7550   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7551   ins_pipe(mulL_reg_reg);
7552 %}
7553 
7554 // Immediate Multiplication
7555 instruct mulL_reg_imm13_1(iRegL dst, iRegL src1, immL13 src2) %{
7556   effect(DEF dst, USE src1, USE src2);
7557   size(4);
7558   format %{ "MULX   $src1,$src2,$dst" %}
7559   opcode(Assembler::mulx_op3, Assembler::arith_op);
7560   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
7561   ins_pipe(mulL_reg_imm);
7562 %}
7563 
7564 instruct subL_reg_reg_1(iRegL dst, iRegL src1, iRegL src2) %{
7565   effect(DEF dst, USE src1, USE src2);
7566   size(4);
7567   format %{ "SUB    $src1,$src2,$dst\t! long" %}
7568   opcode(Assembler::sub_op3, Assembler::arith_op);
7569   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7570   ins_pipe(ialu_reg_reg);
7571 %}
7572 
7573 instruct subL_reg_reg_2(iRegL dst, iRegL src1, iRegL src2) %{
7574   effect(DEF dst, USE src1, USE src2);
7575   size(4);
7576   format %{ "SUB    $src1,$src2,$dst\t! long" %}
7577   opcode(Assembler::sub_op3, Assembler::arith_op);
7578   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7579   ins_pipe(ialu_reg_reg);
7580 %}
7581 
7582 // Register Long Remainder
7583 instruct modL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
7584   match(Set dst (ModL src1 src2));
7585   ins_cost(DEFAULT_COST*(71 + 6 + 1));
7586   expand %{
7587     iRegL tmp1;
7588     iRegL tmp2;
7589     divL_reg_reg_1(tmp1, src1, src2);
7590     mulL_reg_reg_1(tmp2, tmp1, src2);
7591     subL_reg_reg_1(dst,  src1, tmp2);
7592   %}
7593 %}
7594 
7595 // Register Long Remainder
7596 instruct modL_reg_imm13(iRegL dst, iRegL src1, immL13 src2) %{
7597   match(Set dst (ModL src1 src2));
7598   ins_cost(DEFAULT_COST*(71 + 6 + 1));
7599   expand %{
7600     iRegL tmp1;
7601     iRegL tmp2;
7602     divL_reg_imm13_1(tmp1, src1, src2);
7603     mulL_reg_imm13_1(tmp2, tmp1, src2);
7604     subL_reg_reg_2  (dst,  src1, tmp2);
7605   %}
7606 %}
7607 
7608 // Integer Shift Instructions
7609 // Register Shift Left
7610 instruct shlI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
7611   match(Set dst (LShiftI src1 src2));
7612 
7613   size(4);
7614   format %{ "SLL    $src1,$src2,$dst" %}
7615   opcode(Assembler::sll_op3, Assembler::arith_op);
7616   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7617   ins_pipe(ialu_reg_reg);
7618 %}
7619 
7620 // Register Shift Left Immediate
7621 instruct shlI_reg_imm5(iRegI dst, iRegI src1, immU5 src2) %{
7622   match(Set dst (LShiftI src1 src2));
7623 
7624   size(4);
7625   format %{ "SLL    $src1,$src2,$dst" %}
7626   opcode(Assembler::sll_op3, Assembler::arith_op);
7627   ins_encode( form3_rs1_imm5_rd( src1, src2, dst ) );
7628   ins_pipe(ialu_reg_imm);
7629 %}
7630 
7631 // Register Shift Left
7632 instruct shlL_reg_reg(iRegL dst, iRegL src1, iRegI src2) %{
7633   match(Set dst (LShiftL src1 src2));
7634 
7635   size(4);
7636   format %{ "SLLX   $src1,$src2,$dst" %}
7637   opcode(Assembler::sllx_op3, Assembler::arith_op);
7638   ins_encode( form3_sd_rs1_rs2_rd( src1, src2, dst ) );
7639   ins_pipe(ialu_reg_reg);
7640 %}
7641 
7642 // Register Shift Left Immediate
7643 instruct shlL_reg_imm6(iRegL dst, iRegL src1, immU6 src2) %{
7644   match(Set dst (LShiftL src1 src2));
7645 
7646   size(4);
7647   format %{ "SLLX   $src1,$src2,$dst" %}
7648   opcode(Assembler::sllx_op3, Assembler::arith_op);
7649   ins_encode( form3_sd_rs1_imm6_rd( src1, src2, dst ) );
7650   ins_pipe(ialu_reg_imm);
7651 %}
7652 
7653 // Register Arithmetic Shift Right
7654 instruct sarI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
7655   match(Set dst (RShiftI src1 src2));
7656   size(4);
7657   format %{ "SRA    $src1,$src2,$dst" %}
7658   opcode(Assembler::sra_op3, Assembler::arith_op);
7659   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7660   ins_pipe(ialu_reg_reg);
7661 %}
7662 
7663 // Register Arithmetic Shift Right Immediate
7664 instruct sarI_reg_imm5(iRegI dst, iRegI src1, immU5 src2) %{
7665   match(Set dst (RShiftI src1 src2));
7666 
7667   size(4);
7668   format %{ "SRA    $src1,$src2,$dst" %}
7669   opcode(Assembler::sra_op3, Assembler::arith_op);
7670   ins_encode( form3_rs1_imm5_rd( src1, src2, dst ) );
7671   ins_pipe(ialu_reg_imm);
7672 %}
7673 
7674 // Register Shift Right Arithmatic Long
7675 instruct sarL_reg_reg(iRegL dst, iRegL src1, iRegI src2) %{
7676   match(Set dst (RShiftL src1 src2));
7677 
7678   size(4);
7679   format %{ "SRAX   $src1,$src2,$dst" %}
7680   opcode(Assembler::srax_op3, Assembler::arith_op);
7681   ins_encode( form3_sd_rs1_rs2_rd( src1, src2, dst ) );
7682   ins_pipe(ialu_reg_reg);
7683 %}
7684 
7685 // Register Shift Left Immediate
7686 instruct sarL_reg_imm6(iRegL dst, iRegL src1, immU6 src2) %{
7687   match(Set dst (RShiftL src1 src2));
7688 
7689   size(4);
7690   format %{ "SRAX   $src1,$src2,$dst" %}
7691   opcode(Assembler::srax_op3, Assembler::arith_op);
7692   ins_encode( form3_sd_rs1_imm6_rd( src1, src2, dst ) );
7693   ins_pipe(ialu_reg_imm);
7694 %}
7695 
7696 // Register Shift Right
7697 instruct shrI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
7698   match(Set dst (URShiftI src1 src2));
7699 
7700   size(4);
7701   format %{ "SRL    $src1,$src2,$dst" %}
7702   opcode(Assembler::srl_op3, Assembler::arith_op);
7703   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7704   ins_pipe(ialu_reg_reg);
7705 %}
7706 
7707 // Register Shift Right Immediate
7708 instruct shrI_reg_imm5(iRegI dst, iRegI src1, immU5 src2) %{
7709   match(Set dst (URShiftI src1 src2));
7710 
7711   size(4);
7712   format %{ "SRL    $src1,$src2,$dst" %}
7713   opcode(Assembler::srl_op3, Assembler::arith_op);
7714   ins_encode( form3_rs1_imm5_rd( src1, src2, dst ) );
7715   ins_pipe(ialu_reg_imm);
7716 %}
7717 
7718 // Register Shift Right
7719 instruct shrL_reg_reg(iRegL dst, iRegL src1, iRegI src2) %{
7720   match(Set dst (URShiftL src1 src2));
7721 
7722   size(4);
7723   format %{ "SRLX   $src1,$src2,$dst" %}
7724   opcode(Assembler::srlx_op3, Assembler::arith_op);
7725   ins_encode( form3_sd_rs1_rs2_rd( src1, src2, dst ) );
7726   ins_pipe(ialu_reg_reg);
7727 %}
7728 
7729 // Register Shift Right Immediate
7730 instruct shrL_reg_imm6(iRegL dst, iRegL src1, immU6 src2) %{
7731   match(Set dst (URShiftL src1 src2));
7732 
7733   size(4);
7734   format %{ "SRLX   $src1,$src2,$dst" %}
7735   opcode(Assembler::srlx_op3, Assembler::arith_op);
7736   ins_encode( form3_sd_rs1_imm6_rd( src1, src2, dst ) );
7737   ins_pipe(ialu_reg_imm);
7738 %}
7739 
7740 // Register Shift Right Immediate with a CastP2X
7741 #ifdef _LP64
7742 instruct shrP_reg_imm6(iRegL dst, iRegP src1, immU6 src2) %{
7743   match(Set dst (URShiftL (CastP2X src1) src2));
7744   size(4);
7745   format %{ "SRLX   $src1,$src2,$dst\t! Cast ptr $src1 to long and shift" %}
7746   opcode(Assembler::srlx_op3, Assembler::arith_op);
7747   ins_encode( form3_sd_rs1_imm6_rd( src1, src2, dst ) );
7748   ins_pipe(ialu_reg_imm);
7749 %}
7750 #else
7751 instruct shrP_reg_imm5(iRegI dst, iRegP src1, immU5 src2) %{
7752   match(Set dst (URShiftI (CastP2X src1) src2));
7753   size(4);
7754   format %{ "SRL    $src1,$src2,$dst\t! Cast ptr $src1 to int and shift" %}
7755   opcode(Assembler::srl_op3, Assembler::arith_op);
7756   ins_encode( form3_rs1_imm5_rd( src1, src2, dst ) );
7757   ins_pipe(ialu_reg_imm);
7758 %}
7759 #endif
7760 
7761 
7762 //----------Floating Point Arithmetic Instructions-----------------------------
7763 
7764 //  Add float single precision
7765 instruct addF_reg_reg(regF dst, regF src1, regF src2) %{
7766   match(Set dst (AddF src1 src2));
7767 
7768   size(4);
7769   format %{ "FADDS  $src1,$src2,$dst" %}
7770   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fadds_opf);
7771   ins_encode(form3_opf_rs1F_rs2F_rdF(src1, src2, dst));
7772   ins_pipe(faddF_reg_reg);
7773 %}
7774 
7775 //  Add float double precision
7776 instruct addD_reg_reg(regD dst, regD src1, regD src2) %{
7777   match(Set dst (AddD src1 src2));
7778 
7779   size(4);
7780   format %{ "FADDD  $src1,$src2,$dst" %}
7781   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::faddd_opf);
7782   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
7783   ins_pipe(faddD_reg_reg);
7784 %}
7785 
7786 //  Sub float single precision
7787 instruct subF_reg_reg(regF dst, regF src1, regF src2) %{
7788   match(Set dst (SubF src1 src2));
7789 
7790   size(4);
7791   format %{ "FSUBS  $src1,$src2,$dst" %}
7792   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fsubs_opf);
7793   ins_encode(form3_opf_rs1F_rs2F_rdF(src1, src2, dst));
7794   ins_pipe(faddF_reg_reg);
7795 %}
7796 
7797 //  Sub float double precision
7798 instruct subD_reg_reg(regD dst, regD src1, regD src2) %{
7799   match(Set dst (SubD src1 src2));
7800 
7801   size(4);
7802   format %{ "FSUBD  $src1,$src2,$dst" %}
7803   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fsubd_opf);
7804   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
7805   ins_pipe(faddD_reg_reg);
7806 %}
7807 
7808 //  Mul float single precision
7809 instruct mulF_reg_reg(regF dst, regF src1, regF src2) %{
7810   match(Set dst (MulF src1 src2));
7811 
7812   size(4);
7813   format %{ "FMULS  $src1,$src2,$dst" %}
7814   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fmuls_opf);
7815   ins_encode(form3_opf_rs1F_rs2F_rdF(src1, src2, dst));
7816   ins_pipe(fmulF_reg_reg);
7817 %}
7818 
7819 //  Mul float double precision
7820 instruct mulD_reg_reg(regD dst, regD src1, regD src2) %{
7821   match(Set dst (MulD src1 src2));
7822 
7823   size(4);
7824   format %{ "FMULD  $src1,$src2,$dst" %}
7825   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fmuld_opf);
7826   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
7827   ins_pipe(fmulD_reg_reg);
7828 %}
7829 
7830 //  Div float single precision
7831 instruct divF_reg_reg(regF dst, regF src1, regF src2) %{
7832   match(Set dst (DivF src1 src2));
7833 
7834   size(4);
7835   format %{ "FDIVS  $src1,$src2,$dst" %}
7836   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fdivs_opf);
7837   ins_encode(form3_opf_rs1F_rs2F_rdF(src1, src2, dst));
7838   ins_pipe(fdivF_reg_reg);
7839 %}
7840 
7841 //  Div float double precision
7842 instruct divD_reg_reg(regD dst, regD src1, regD src2) %{
7843   match(Set dst (DivD src1 src2));
7844 
7845   size(4);
7846   format %{ "FDIVD  $src1,$src2,$dst" %}
7847   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fdivd_opf);
7848   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
7849   ins_pipe(fdivD_reg_reg);
7850 %}
7851 
7852 //  Absolute float double precision
7853 instruct absD_reg(regD dst, regD src) %{
7854   match(Set dst (AbsD src));
7855 
7856   format %{ "FABSd  $src,$dst" %}
7857   ins_encode(fabsd(dst, src));
7858   ins_pipe(faddD_reg);
7859 %}
7860 
7861 //  Absolute float single precision
7862 instruct absF_reg(regF dst, regF src) %{
7863   match(Set dst (AbsF src));
7864 
7865   format %{ "FABSs  $src,$dst" %}
7866   ins_encode(fabss(dst, src));
7867   ins_pipe(faddF_reg);
7868 %}
7869 
7870 instruct negF_reg(regF dst, regF src) %{
7871   match(Set dst (NegF src));
7872 
7873   size(4);
7874   format %{ "FNEGs  $src,$dst" %}
7875   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fnegs_opf);
7876   ins_encode(form3_opf_rs2F_rdF(src, dst));
7877   ins_pipe(faddF_reg);
7878 %}
7879 
7880 instruct negD_reg(regD dst, regD src) %{
7881   match(Set dst (NegD src));
7882 
7883   format %{ "FNEGd  $src,$dst" %}
7884   ins_encode(fnegd(dst, src));
7885   ins_pipe(faddD_reg);
7886 %}
7887 
7888 //  Sqrt float double precision
7889 instruct sqrtF_reg_reg(regF dst, regF src) %{
7890   match(Set dst (ConvD2F (SqrtD (ConvF2D src))));
7891 
7892   size(4);
7893   format %{ "FSQRTS $src,$dst" %}
7894   ins_encode(fsqrts(dst, src));
7895   ins_pipe(fdivF_reg_reg);
7896 %}
7897 
7898 //  Sqrt float double precision
7899 instruct sqrtD_reg_reg(regD dst, regD src) %{
7900   match(Set dst (SqrtD src));
7901 
7902   size(4);
7903   format %{ "FSQRTD $src,$dst" %}
7904   ins_encode(fsqrtd(dst, src));
7905   ins_pipe(fdivD_reg_reg);
7906 %}
7907 
7908 //----------Logical Instructions-----------------------------------------------
7909 // And Instructions
7910 // Register And
7911 instruct andI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
7912   match(Set dst (AndI src1 src2));
7913 
7914   size(4);
7915   format %{ "AND    $src1,$src2,$dst" %}
7916   opcode(Assembler::and_op3, Assembler::arith_op);
7917   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7918   ins_pipe(ialu_reg_reg);
7919 %}
7920 
7921 // Immediate And
7922 instruct andI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
7923   match(Set dst (AndI src1 src2));
7924 
7925   size(4);
7926   format %{ "AND    $src1,$src2,$dst" %}
7927   opcode(Assembler::and_op3, Assembler::arith_op);
7928   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
7929   ins_pipe(ialu_reg_imm);
7930 %}
7931 
7932 // Register And Long
7933 instruct andL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
7934   match(Set dst (AndL src1 src2));
7935 
7936   ins_cost(DEFAULT_COST);
7937   size(4);
7938   format %{ "AND    $src1,$src2,$dst\t! long" %}
7939   opcode(Assembler::and_op3, Assembler::arith_op);
7940   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7941   ins_pipe(ialu_reg_reg);
7942 %}
7943 
7944 instruct andL_reg_imm13(iRegL dst, iRegL src1, immL13 con) %{
7945   match(Set dst (AndL src1 con));
7946 
7947   ins_cost(DEFAULT_COST);
7948   size(4);
7949   format %{ "AND    $src1,$con,$dst\t! long" %}
7950   opcode(Assembler::and_op3, Assembler::arith_op);
7951   ins_encode( form3_rs1_simm13_rd( src1, con, dst ) );
7952   ins_pipe(ialu_reg_imm);
7953 %}
7954 
7955 // Or Instructions
7956 // Register Or
7957 instruct orI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
7958   match(Set dst (OrI src1 src2));
7959 
7960   size(4);
7961   format %{ "OR     $src1,$src2,$dst" %}
7962   opcode(Assembler::or_op3, Assembler::arith_op);
7963   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7964   ins_pipe(ialu_reg_reg);
7965 %}
7966 
7967 // Immediate Or
7968 instruct orI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
7969   match(Set dst (OrI src1 src2));
7970 
7971   size(4);
7972   format %{ "OR     $src1,$src2,$dst" %}
7973   opcode(Assembler::or_op3, Assembler::arith_op);
7974   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
7975   ins_pipe(ialu_reg_imm);
7976 %}
7977 
7978 // Register Or Long
7979 instruct orL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
7980   match(Set dst (OrL src1 src2));
7981 
7982   ins_cost(DEFAULT_COST);
7983   size(4);
7984   format %{ "OR     $src1,$src2,$dst\t! long" %}
7985   opcode(Assembler::or_op3, Assembler::arith_op);
7986   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7987   ins_pipe(ialu_reg_reg);
7988 %}
7989 
7990 instruct orL_reg_imm13(iRegL dst, iRegL src1, immL13 con) %{
7991   match(Set dst (OrL src1 con));
7992   ins_cost(DEFAULT_COST*2);
7993 
7994   ins_cost(DEFAULT_COST);
7995   size(4);
7996   format %{ "OR     $src1,$con,$dst\t! long" %}
7997   opcode(Assembler::or_op3, Assembler::arith_op);
7998   ins_encode( form3_rs1_simm13_rd( src1, con, dst ) );
7999   ins_pipe(ialu_reg_imm);
8000 %}
8001 
8002 #ifndef _LP64
8003 
8004 // Use sp_ptr_RegP to match G2 (TLS register) without spilling.
8005 instruct orI_reg_castP2X(iRegI dst, iRegI src1, sp_ptr_RegP src2) %{
8006   match(Set dst (OrI src1 (CastP2X src2)));
8007 
8008   size(4);
8009   format %{ "OR     $src1,$src2,$dst" %}
8010   opcode(Assembler::or_op3, Assembler::arith_op);
8011   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
8012   ins_pipe(ialu_reg_reg);
8013 %}
8014 
8015 #else
8016 
8017 instruct orL_reg_castP2X(iRegL dst, iRegL src1, sp_ptr_RegP src2) %{
8018   match(Set dst (OrL src1 (CastP2X src2)));
8019 
8020   ins_cost(DEFAULT_COST);
8021   size(4);
8022   format %{ "OR     $src1,$src2,$dst\t! long" %}
8023   opcode(Assembler::or_op3, Assembler::arith_op);
8024   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
8025   ins_pipe(ialu_reg_reg);
8026 %}
8027 
8028 #endif
8029 
8030 // Xor Instructions
8031 // Register Xor
8032 instruct xorI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
8033   match(Set dst (XorI src1 src2));
8034 
8035   size(4);
8036   format %{ "XOR    $src1,$src2,$dst" %}
8037   opcode(Assembler::xor_op3, Assembler::arith_op);
8038   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
8039   ins_pipe(ialu_reg_reg);
8040 %}
8041 
8042 // Immediate Xor
8043 instruct xorI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
8044   match(Set dst (XorI src1 src2));
8045 
8046   size(4);
8047   format %{ "XOR    $src1,$src2,$dst" %}
8048   opcode(Assembler::xor_op3, Assembler::arith_op);
8049   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
8050   ins_pipe(ialu_reg_imm);
8051 %}
8052 
8053 // Register Xor Long
8054 instruct xorL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
8055   match(Set dst (XorL src1 src2));
8056 
8057   ins_cost(DEFAULT_COST);
8058   size(4);
8059   format %{ "XOR    $src1,$src2,$dst\t! long" %}
8060   opcode(Assembler::xor_op3, Assembler::arith_op);
8061   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
8062   ins_pipe(ialu_reg_reg);
8063 %}
8064 
8065 instruct xorL_reg_imm13(iRegL dst, iRegL src1, immL13 con) %{
8066   match(Set dst (XorL src1 con));
8067 
8068   ins_cost(DEFAULT_COST);
8069   size(4);
8070   format %{ "XOR    $src1,$con,$dst\t! long" %}
8071   opcode(Assembler::xor_op3, Assembler::arith_op);
8072   ins_encode( form3_rs1_simm13_rd( src1, con, dst ) );
8073   ins_pipe(ialu_reg_imm);
8074 %}
8075 
8076 //----------Convert to Boolean-------------------------------------------------
8077 // Nice hack for 32-bit tests but doesn't work for
8078 // 64-bit pointers.
8079 instruct convI2B( iRegI dst, iRegI src, flagsReg ccr ) %{
8080   match(Set dst (Conv2B src));
8081   effect( KILL ccr );
8082   ins_cost(DEFAULT_COST*2);
8083   format %{ "CMP    R_G0,$src\n\t"
8084             "ADDX   R_G0,0,$dst" %}
8085   ins_encode( enc_to_bool( src, dst ) );
8086   ins_pipe(ialu_reg_ialu);
8087 %}
8088 
8089 #ifndef _LP64
8090 instruct convP2B( iRegI dst, iRegP src, flagsReg ccr ) %{
8091   match(Set dst (Conv2B src));
8092   effect( KILL ccr );
8093   ins_cost(DEFAULT_COST*2);
8094   format %{ "CMP    R_G0,$src\n\t"
8095             "ADDX   R_G0,0,$dst" %}
8096   ins_encode( enc_to_bool( src, dst ) );
8097   ins_pipe(ialu_reg_ialu);
8098 %}
8099 #else
8100 instruct convP2B( iRegI dst, iRegP src ) %{
8101   match(Set dst (Conv2B src));
8102   ins_cost(DEFAULT_COST*2);
8103   format %{ "MOV    $src,$dst\n\t"
8104             "MOVRNZ $src,1,$dst" %}
8105   ins_encode( form3_g0_rs2_rd_move( src, dst ), enc_convP2B( dst, src ) );
8106   ins_pipe(ialu_clr_and_mover);
8107 %}
8108 #endif
8109 
8110 instruct cmpLTMask0( iRegI dst, iRegI src, immI0 zero, flagsReg ccr ) %{
8111   match(Set dst (CmpLTMask src zero));
8112   effect(KILL ccr);
8113   size(4);
8114   format %{ "SRA    $src,#31,$dst\t# cmpLTMask0" %}
8115   ins_encode %{
8116     __ sra($src$$Register, 31, $dst$$Register);
8117   %}
8118   ins_pipe(ialu_reg_imm);
8119 %}
8120 
8121 instruct cmpLTMask_reg_reg( iRegI dst, iRegI p, iRegI q, flagsReg ccr ) %{
8122   match(Set dst (CmpLTMask p q));
8123   effect( KILL ccr );
8124   ins_cost(DEFAULT_COST*4);
8125   format %{ "CMP    $p,$q\n\t"
8126             "MOV    #0,$dst\n\t"
8127             "BLT,a  .+8\n\t"
8128             "MOV    #-1,$dst" %}
8129   ins_encode( enc_ltmask(p,q,dst) );
8130   ins_pipe(ialu_reg_reg_ialu);
8131 %}
8132 
8133 instruct cadd_cmpLTMask( iRegI p, iRegI q, iRegI y, iRegI tmp, flagsReg ccr ) %{
8134   match(Set p (AddI (AndI (CmpLTMask p q) y) (SubI p q)));
8135   effect(KILL ccr, TEMP tmp);
8136   ins_cost(DEFAULT_COST*3);
8137 
8138   format %{ "SUBcc  $p,$q,$p\t! p' = p-q\n\t"
8139             "ADD    $p,$y,$tmp\t! g3=p-q+y\n\t"
8140             "MOVlt  $tmp,$p\t! p' < 0 ? p'+y : p'" %}
8141   ins_encode( enc_cadd_cmpLTMask(p, q, y, tmp) );
8142   ins_pipe( cadd_cmpltmask );
8143 %}
8144 
8145 //----------Arithmetic Conversion Instructions---------------------------------
8146 // The conversions operations are all Alpha sorted.  Please keep it that way!
8147 
8148 instruct convD2F_reg(regF dst, regD src) %{
8149   match(Set dst (ConvD2F src));
8150   size(4);
8151   format %{ "FDTOS  $src,$dst" %}
8152   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fdtos_opf);
8153   ins_encode(form3_opf_rs2D_rdF(src, dst));
8154   ins_pipe(fcvtD2F);
8155 %}
8156 
8157 
8158 // Convert a double to an int in a float register.
8159 // If the double is a NAN, stuff a zero in instead.
8160 instruct convD2I_helper(regF dst, regD src, flagsRegF0 fcc0) %{
8161   effect(DEF dst, USE src, KILL fcc0);
8162   format %{ "FCMPd  fcc0,$src,$src\t! check for NAN\n\t"
8163             "FBO,pt fcc0,skip\t! branch on ordered, predict taken\n\t"
8164             "FDTOI  $src,$dst\t! convert in delay slot\n\t"
8165             "FITOS  $dst,$dst\t! change NaN/max-int to valid float\n\t"
8166             "FSUBs  $dst,$dst,$dst\t! cleared only if nan\n"
8167       "skip:" %}
8168   ins_encode(form_d2i_helper(src,dst));
8169   ins_pipe(fcvtD2I);
8170 %}
8171 
8172 instruct convD2I_reg(stackSlotI dst, regD src) %{
8173   match(Set dst (ConvD2I src));
8174   ins_cost(DEFAULT_COST*2 + MEMORY_REF_COST*2 + BRANCH_COST);
8175   expand %{
8176     regF tmp;
8177     convD2I_helper(tmp, src);
8178     regF_to_stkI(dst, tmp);
8179   %}
8180 %}
8181 
8182 // Convert a double to a long in a double register.
8183 // If the double is a NAN, stuff a zero in instead.
8184 instruct convD2L_helper(regD dst, regD src, flagsRegF0 fcc0) %{
8185   effect(DEF dst, USE src, KILL fcc0);
8186   format %{ "FCMPd  fcc0,$src,$src\t! check for NAN\n\t"
8187             "FBO,pt fcc0,skip\t! branch on ordered, predict taken\n\t"
8188             "FDTOX  $src,$dst\t! convert in delay slot\n\t"
8189             "FXTOD  $dst,$dst\t! change NaN/max-long to valid double\n\t"
8190             "FSUBd  $dst,$dst,$dst\t! cleared only if nan\n"
8191       "skip:" %}
8192   ins_encode(form_d2l_helper(src,dst));
8193   ins_pipe(fcvtD2L);
8194 %}
8195 
8196 
8197 // Double to Long conversion
8198 instruct convD2L_reg(stackSlotL dst, regD src) %{
8199   match(Set dst (ConvD2L src));
8200   ins_cost(DEFAULT_COST*2 + MEMORY_REF_COST*2 + BRANCH_COST);
8201   expand %{
8202     regD tmp;
8203     convD2L_helper(tmp, src);
8204     regD_to_stkL(dst, tmp);
8205   %}
8206 %}
8207 
8208 
8209 instruct convF2D_reg(regD dst, regF src) %{
8210   match(Set dst (ConvF2D src));
8211   format %{ "FSTOD  $src,$dst" %}
8212   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fstod_opf);
8213   ins_encode(form3_opf_rs2F_rdD(src, dst));
8214   ins_pipe(fcvtF2D);
8215 %}
8216 
8217 
8218 instruct convF2I_helper(regF dst, regF src, flagsRegF0 fcc0) %{
8219   effect(DEF dst, USE src, KILL fcc0);
8220   format %{ "FCMPs  fcc0,$src,$src\t! check for NAN\n\t"
8221             "FBO,pt fcc0,skip\t! branch on ordered, predict taken\n\t"
8222             "FSTOI  $src,$dst\t! convert in delay slot\n\t"
8223             "FITOS  $dst,$dst\t! change NaN/max-int to valid float\n\t"
8224             "FSUBs  $dst,$dst,$dst\t! cleared only if nan\n"
8225       "skip:" %}
8226   ins_encode(form_f2i_helper(src,dst));
8227   ins_pipe(fcvtF2I);
8228 %}
8229 
8230 instruct convF2I_reg(stackSlotI dst, regF src) %{
8231   match(Set dst (ConvF2I src));
8232   ins_cost(DEFAULT_COST*2 + MEMORY_REF_COST*2 + BRANCH_COST);
8233   expand %{
8234     regF tmp;
8235     convF2I_helper(tmp, src);
8236     regF_to_stkI(dst, tmp);
8237   %}
8238 %}
8239 
8240 
8241 instruct convF2L_helper(regD dst, regF src, flagsRegF0 fcc0) %{
8242   effect(DEF dst, USE src, KILL fcc0);
8243   format %{ "FCMPs  fcc0,$src,$src\t! check for NAN\n\t"
8244             "FBO,pt fcc0,skip\t! branch on ordered, predict taken\n\t"
8245             "FSTOX  $src,$dst\t! convert in delay slot\n\t"
8246             "FXTOD  $dst,$dst\t! change NaN/max-long to valid double\n\t"
8247             "FSUBd  $dst,$dst,$dst\t! cleared only if nan\n"
8248       "skip:" %}
8249   ins_encode(form_f2l_helper(src,dst));
8250   ins_pipe(fcvtF2L);
8251 %}
8252 
8253 // Float to Long conversion
8254 instruct convF2L_reg(stackSlotL dst, regF src) %{
8255   match(Set dst (ConvF2L src));
8256   ins_cost(DEFAULT_COST*2 + MEMORY_REF_COST*2 + BRANCH_COST);
8257   expand %{
8258     regD tmp;
8259     convF2L_helper(tmp, src);
8260     regD_to_stkL(dst, tmp);
8261   %}
8262 %}
8263 
8264 
8265 instruct convI2D_helper(regD dst, regF tmp) %{
8266   effect(USE tmp, DEF dst);
8267   format %{ "FITOD  $tmp,$dst" %}
8268   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fitod_opf);
8269   ins_encode(form3_opf_rs2F_rdD(tmp, dst));
8270   ins_pipe(fcvtI2D);
8271 %}
8272 
8273 instruct convI2D_reg(stackSlotI src, regD dst) %{
8274   match(Set dst (ConvI2D src));
8275   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
8276   expand %{
8277     regF tmp;
8278     stkI_to_regF( tmp, src);
8279     convI2D_helper( dst, tmp);
8280   %}
8281 %}
8282 
8283 instruct convI2D_mem( regD_low dst, memory mem ) %{
8284   match(Set dst (ConvI2D (LoadI mem)));
8285   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
8286   size(8);
8287   format %{ "LDF    $mem,$dst\n\t"
8288             "FITOD  $dst,$dst" %}
8289   opcode(Assembler::ldf_op3, Assembler::fitod_opf);
8290   ins_encode(simple_form3_mem_reg( mem, dst ), form3_convI2F(dst, dst));
8291   ins_pipe(floadF_mem);
8292 %}
8293 
8294 
8295 instruct convI2F_helper(regF dst, regF tmp) %{
8296   effect(DEF dst, USE tmp);
8297   format %{ "FITOS  $tmp,$dst" %}
8298   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fitos_opf);
8299   ins_encode(form3_opf_rs2F_rdF(tmp, dst));
8300   ins_pipe(fcvtI2F);
8301 %}
8302 
8303 instruct convI2F_reg( regF dst, stackSlotI src ) %{
8304   match(Set dst (ConvI2F src));
8305   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
8306   expand %{
8307     regF tmp;
8308     stkI_to_regF(tmp,src);
8309     convI2F_helper(dst, tmp);
8310   %}
8311 %}
8312 
8313 instruct convI2F_mem( regF dst, memory mem ) %{
8314   match(Set dst (ConvI2F (LoadI mem)));
8315   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
8316   size(8);
8317   format %{ "LDF    $mem,$dst\n\t"
8318             "FITOS  $dst,$dst" %}
8319   opcode(Assembler::ldf_op3, Assembler::fitos_opf);
8320   ins_encode(simple_form3_mem_reg( mem, dst ), form3_convI2F(dst, dst));
8321   ins_pipe(floadF_mem);
8322 %}
8323 
8324 
8325 instruct convI2L_reg(iRegL dst, iRegI src) %{
8326   match(Set dst (ConvI2L src));
8327   size(4);
8328   format %{ "SRA    $src,0,$dst\t! int->long" %}
8329   opcode(Assembler::sra_op3, Assembler::arith_op);
8330   ins_encode( form3_rs1_rs2_rd( src, R_G0, dst ) );
8331   ins_pipe(ialu_reg_reg);
8332 %}
8333 
8334 // Zero-extend convert int to long
8335 instruct convI2L_reg_zex(iRegL dst, iRegI src, immL_32bits mask ) %{
8336   match(Set dst (AndL (ConvI2L src) mask) );
8337   size(4);
8338   format %{ "SRL    $src,0,$dst\t! zero-extend int to long" %}
8339   opcode(Assembler::srl_op3, Assembler::arith_op);
8340   ins_encode( form3_rs1_rs2_rd( src, R_G0, dst ) );
8341   ins_pipe(ialu_reg_reg);
8342 %}
8343 
8344 // Zero-extend long
8345 instruct zerox_long(iRegL dst, iRegL src, immL_32bits mask ) %{
8346   match(Set dst (AndL src mask) );
8347   size(4);
8348   format %{ "SRL    $src,0,$dst\t! zero-extend long" %}
8349   opcode(Assembler::srl_op3, Assembler::arith_op);
8350   ins_encode( form3_rs1_rs2_rd( src, R_G0, dst ) );
8351   ins_pipe(ialu_reg_reg);
8352 %}
8353 
8354 instruct MoveF2I_stack_reg(iRegI dst, stackSlotF src) %{
8355   match(Set dst (MoveF2I src));
8356   effect(DEF dst, USE src);
8357   ins_cost(MEMORY_REF_COST);
8358 
8359   size(4);
8360   format %{ "LDUW   $src,$dst\t! MoveF2I" %}
8361   opcode(Assembler::lduw_op3);
8362   ins_encode(simple_form3_mem_reg( src, dst ) );
8363   ins_pipe(iload_mem);
8364 %}
8365 
8366 instruct MoveI2F_stack_reg(regF dst, stackSlotI src) %{
8367   match(Set dst (MoveI2F src));
8368   effect(DEF dst, USE src);
8369   ins_cost(MEMORY_REF_COST);
8370 
8371   size(4);
8372   format %{ "LDF    $src,$dst\t! MoveI2F" %}
8373   opcode(Assembler::ldf_op3);
8374   ins_encode(simple_form3_mem_reg(src, dst));
8375   ins_pipe(floadF_stk);
8376 %}
8377 
8378 instruct MoveD2L_stack_reg(iRegL dst, stackSlotD src) %{
8379   match(Set dst (MoveD2L src));
8380   effect(DEF dst, USE src);
8381   ins_cost(MEMORY_REF_COST);
8382 
8383   size(4);
8384   format %{ "LDX    $src,$dst\t! MoveD2L" %}
8385   opcode(Assembler::ldx_op3);
8386   ins_encode(simple_form3_mem_reg( src, dst ) );
8387   ins_pipe(iload_mem);
8388 %}
8389 
8390 instruct MoveL2D_stack_reg(regD dst, stackSlotL src) %{
8391   match(Set dst (MoveL2D src));
8392   effect(DEF dst, USE src);
8393   ins_cost(MEMORY_REF_COST);
8394 
8395   size(4);
8396   format %{ "LDDF   $src,$dst\t! MoveL2D" %}
8397   opcode(Assembler::lddf_op3);
8398   ins_encode(simple_form3_mem_reg(src, dst));
8399   ins_pipe(floadD_stk);
8400 %}
8401 
8402 instruct MoveF2I_reg_stack(stackSlotI dst, regF src) %{
8403   match(Set dst (MoveF2I src));
8404   effect(DEF dst, USE src);
8405   ins_cost(MEMORY_REF_COST);
8406 
8407   size(4);
8408   format %{ "STF   $src,$dst\t!MoveF2I" %}
8409   opcode(Assembler::stf_op3);
8410   ins_encode(simple_form3_mem_reg(dst, src));
8411   ins_pipe(fstoreF_stk_reg);
8412 %}
8413 
8414 instruct MoveI2F_reg_stack(stackSlotF dst, iRegI src) %{
8415   match(Set dst (MoveI2F src));
8416   effect(DEF dst, USE src);
8417   ins_cost(MEMORY_REF_COST);
8418 
8419   size(4);
8420   format %{ "STW    $src,$dst\t!MoveI2F" %}
8421   opcode(Assembler::stw_op3);
8422   ins_encode(simple_form3_mem_reg( dst, src ) );
8423   ins_pipe(istore_mem_reg);
8424 %}
8425 
8426 instruct MoveD2L_reg_stack(stackSlotL dst, regD src) %{
8427   match(Set dst (MoveD2L src));
8428   effect(DEF dst, USE src);
8429   ins_cost(MEMORY_REF_COST);
8430 
8431   size(4);
8432   format %{ "STDF   $src,$dst\t!MoveD2L" %}
8433   opcode(Assembler::stdf_op3);
8434   ins_encode(simple_form3_mem_reg(dst, src));
8435   ins_pipe(fstoreD_stk_reg);
8436 %}
8437 
8438 instruct MoveL2D_reg_stack(stackSlotD dst, iRegL src) %{
8439   match(Set dst (MoveL2D src));
8440   effect(DEF dst, USE src);
8441   ins_cost(MEMORY_REF_COST);
8442 
8443   size(4);
8444   format %{ "STX    $src,$dst\t!MoveL2D" %}
8445   opcode(Assembler::stx_op3);
8446   ins_encode(simple_form3_mem_reg( dst, src ) );
8447   ins_pipe(istore_mem_reg);
8448 %}
8449 
8450 
8451 //-----------
8452 // Long to Double conversion using V8 opcodes.
8453 // Still useful because cheetah traps and becomes
8454 // amazingly slow for some common numbers.
8455 
8456 // Magic constant, 0x43300000
8457 instruct loadConI_x43300000(iRegI dst) %{
8458   effect(DEF dst);
8459   size(4);
8460   format %{ "SETHI  HI(0x43300000),$dst\t! 2^52" %}
8461   ins_encode(SetHi22(0x43300000, dst));
8462   ins_pipe(ialu_none);
8463 %}
8464 
8465 // Magic constant, 0x41f00000
8466 instruct loadConI_x41f00000(iRegI dst) %{
8467   effect(DEF dst);
8468   size(4);
8469   format %{ "SETHI  HI(0x41f00000),$dst\t! 2^32" %}
8470   ins_encode(SetHi22(0x41f00000, dst));
8471   ins_pipe(ialu_none);
8472 %}
8473 
8474 // Construct a double from two float halves
8475 instruct regDHi_regDLo_to_regD(regD_low dst, regD_low src1, regD_low src2) %{
8476   effect(DEF dst, USE src1, USE src2);
8477   size(8);
8478   format %{ "FMOVS  $src1.hi,$dst.hi\n\t"
8479             "FMOVS  $src2.lo,$dst.lo" %}
8480   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fmovs_opf);
8481   ins_encode(form3_opf_rs2D_hi_rdD_hi(src1, dst), form3_opf_rs2D_lo_rdD_lo(src2, dst));
8482   ins_pipe(faddD_reg_reg);
8483 %}
8484 
8485 // Convert integer in high half of a double register (in the lower half of
8486 // the double register file) to double
8487 instruct convI2D_regDHi_regD(regD dst, regD_low src) %{
8488   effect(DEF dst, USE src);
8489   size(4);
8490   format %{ "FITOD  $src,$dst" %}
8491   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fitod_opf);
8492   ins_encode(form3_opf_rs2D_rdD(src, dst));
8493   ins_pipe(fcvtLHi2D);
8494 %}
8495 
8496 // Add float double precision
8497 instruct addD_regD_regD(regD dst, regD src1, regD src2) %{
8498   effect(DEF dst, USE src1, USE src2);
8499   size(4);
8500   format %{ "FADDD  $src1,$src2,$dst" %}
8501   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::faddd_opf);
8502   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
8503   ins_pipe(faddD_reg_reg);
8504 %}
8505 
8506 // Sub float double precision
8507 instruct subD_regD_regD(regD dst, regD src1, regD src2) %{
8508   effect(DEF dst, USE src1, USE src2);
8509   size(4);
8510   format %{ "FSUBD  $src1,$src2,$dst" %}
8511   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fsubd_opf);
8512   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
8513   ins_pipe(faddD_reg_reg);
8514 %}
8515 
8516 // Mul float double precision
8517 instruct mulD_regD_regD(regD dst, regD src1, regD src2) %{
8518   effect(DEF dst, USE src1, USE src2);
8519   size(4);
8520   format %{ "FMULD  $src1,$src2,$dst" %}
8521   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fmuld_opf);
8522   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
8523   ins_pipe(fmulD_reg_reg);
8524 %}
8525 
8526 instruct convL2D_reg_slow_fxtof(regD dst, stackSlotL src) %{
8527   match(Set dst (ConvL2D src));
8528   ins_cost(DEFAULT_COST*8 + MEMORY_REF_COST*6);
8529 
8530   expand %{
8531     regD_low   tmpsrc;
8532     iRegI      ix43300000;
8533     iRegI      ix41f00000;
8534     stackSlotL lx43300000;
8535     stackSlotL lx41f00000;
8536     regD_low   dx43300000;
8537     regD       dx41f00000;
8538     regD       tmp1;
8539     regD_low   tmp2;
8540     regD       tmp3;
8541     regD       tmp4;
8542 
8543     stkL_to_regD(tmpsrc, src);
8544 
8545     loadConI_x43300000(ix43300000);
8546     loadConI_x41f00000(ix41f00000);
8547     regI_to_stkLHi(lx43300000, ix43300000);
8548     regI_to_stkLHi(lx41f00000, ix41f00000);
8549     stkL_to_regD(dx43300000, lx43300000);
8550     stkL_to_regD(dx41f00000, lx41f00000);
8551 
8552     convI2D_regDHi_regD(tmp1, tmpsrc);
8553     regDHi_regDLo_to_regD(tmp2, dx43300000, tmpsrc);
8554     subD_regD_regD(tmp3, tmp2, dx43300000);
8555     mulD_regD_regD(tmp4, tmp1, dx41f00000);
8556     addD_regD_regD(dst, tmp3, tmp4);
8557   %}
8558 %}
8559 
8560 // Long to Double conversion using fast fxtof
8561 instruct convL2D_helper(regD dst, regD tmp) %{
8562   effect(DEF dst, USE tmp);
8563   size(4);
8564   format %{ "FXTOD  $tmp,$dst" %}
8565   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fxtod_opf);
8566   ins_encode(form3_opf_rs2D_rdD(tmp, dst));
8567   ins_pipe(fcvtL2D);
8568 %}
8569 
8570 instruct convL2D_reg_fast_fxtof(regD dst, stackSlotL src) %{
8571   predicate(VM_Version::has_fast_fxtof());
8572   match(Set dst (ConvL2D src));
8573   ins_cost(DEFAULT_COST + 3 * MEMORY_REF_COST);
8574   expand %{
8575     regD tmp;
8576     stkL_to_regD(tmp, src);
8577     convL2D_helper(dst, tmp);
8578   %}
8579 %}
8580 
8581 //-----------
8582 // Long to Float conversion using V8 opcodes.
8583 // Still useful because cheetah traps and becomes
8584 // amazingly slow for some common numbers.
8585 
8586 // Long to Float conversion using fast fxtof
8587 instruct convL2F_helper(regF dst, regD tmp) %{
8588   effect(DEF dst, USE tmp);
8589   size(4);
8590   format %{ "FXTOS  $tmp,$dst" %}
8591   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fxtos_opf);
8592   ins_encode(form3_opf_rs2D_rdF(tmp, dst));
8593   ins_pipe(fcvtL2F);
8594 %}
8595 
8596 instruct convL2F_reg_fast_fxtof(regF dst, stackSlotL src) %{
8597   match(Set dst (ConvL2F src));
8598   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
8599   expand %{
8600     regD tmp;
8601     stkL_to_regD(tmp, src);
8602     convL2F_helper(dst, tmp);
8603   %}
8604 %}
8605 //-----------
8606 
8607 instruct convL2I_reg(iRegI dst, iRegL src) %{
8608   match(Set dst (ConvL2I src));
8609 #ifndef _LP64
8610   format %{ "MOV    $src.lo,$dst\t! long->int" %}
8611   ins_encode( form3_g0_rs2_rd_move_lo2( src, dst ) );
8612   ins_pipe(ialu_move_reg_I_to_L);
8613 #else
8614   size(4);
8615   format %{ "SRA    $src,R_G0,$dst\t! long->int" %}
8616   ins_encode( form3_rs1_rd_signextend_lo1( src, dst ) );
8617   ins_pipe(ialu_reg);
8618 #endif
8619 %}
8620 
8621 // Register Shift Right Immediate
8622 instruct shrL_reg_imm6_L2I(iRegI dst, iRegL src, immI_32_63 cnt) %{
8623   match(Set dst (ConvL2I (RShiftL src cnt)));
8624 
8625   size(4);
8626   format %{ "SRAX   $src,$cnt,$dst" %}
8627   opcode(Assembler::srax_op3, Assembler::arith_op);
8628   ins_encode( form3_sd_rs1_imm6_rd( src, cnt, dst ) );
8629   ins_pipe(ialu_reg_imm);
8630 %}
8631 
8632 // Replicate scalar to packed byte values in Double register
8633 instruct Repl8B_reg_helper(iRegL dst, iRegI src) %{
8634   effect(DEF dst, USE src);
8635   format %{ "SLLX  $src,56,$dst\n\t"
8636             "SRLX  $dst, 8,O7\n\t"
8637             "OR    $dst,O7,$dst\n\t"
8638             "SRLX  $dst,16,O7\n\t"
8639             "OR    $dst,O7,$dst\n\t"
8640             "SRLX  $dst,32,O7\n\t"
8641             "OR    $dst,O7,$dst\t! replicate8B" %}
8642   ins_encode( enc_repl8b(src, dst));
8643   ins_pipe(ialu_reg);
8644 %}
8645 
8646 // Replicate scalar to packed byte values in Double register
8647 instruct Repl8B_reg(stackSlotD dst, iRegI src) %{
8648   match(Set dst (Replicate8B src));
8649   expand %{
8650     iRegL tmp;
8651     Repl8B_reg_helper(tmp, src);
8652     regL_to_stkD(dst, tmp);
8653   %}
8654 %}
8655 
8656 // Replicate scalar constant to packed byte values in Double register
8657 instruct Repl8B_immI(regD dst, immI13 con, o7RegI tmp) %{
8658   match(Set dst (Replicate8B con));
8659   effect(KILL tmp);
8660   format %{ "LDDF   [$constanttablebase + $constantoffset],$dst\t! load from constant table: Repl8B($con)" %}
8661   ins_encode %{
8662     // XXX This is a quick fix for 6833573.
8663     //__ ldf(FloatRegisterImpl::D, $constanttablebase, $constantoffset(replicate_immI($con$$constant, 8, 1)), $dst$$FloatRegister);
8664     RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset(replicate_immI($con$$constant, 8, 1)), $tmp$$Register);
8665     __ ldf(FloatRegisterImpl::D, $constanttablebase, con_offset, as_DoubleFloatRegister($dst$$reg));
8666   %}
8667   ins_pipe(loadConFD);
8668 %}
8669 
8670 // Replicate scalar to packed char values into stack slot
8671 instruct Repl4C_reg_helper(iRegL dst, iRegI src) %{
8672   effect(DEF dst, USE src);
8673   format %{ "SLLX  $src,48,$dst\n\t"
8674             "SRLX  $dst,16,O7\n\t"
8675             "OR    $dst,O7,$dst\n\t"
8676             "SRLX  $dst,32,O7\n\t"
8677             "OR    $dst,O7,$dst\t! replicate4C" %}
8678   ins_encode( enc_repl4s(src, dst) );
8679   ins_pipe(ialu_reg);
8680 %}
8681 
8682 // Replicate scalar to packed char values into stack slot
8683 instruct Repl4C_reg(stackSlotD dst, iRegI src) %{
8684   match(Set dst (Replicate4C src));
8685   expand %{
8686     iRegL tmp;
8687     Repl4C_reg_helper(tmp, src);
8688     regL_to_stkD(dst, tmp);
8689   %}
8690 %}
8691 
8692 // Replicate scalar constant to packed char values in Double register
8693 instruct Repl4C_immI(regD dst, immI con, o7RegI tmp) %{
8694   match(Set dst (Replicate4C con));
8695   effect(KILL tmp);
8696   format %{ "LDDF   [$constanttablebase + $constantoffset],$dst\t! load from constant table: Repl4C($con)" %}
8697   ins_encode %{
8698     // XXX This is a quick fix for 6833573.
8699     //__ ldf(FloatRegisterImpl::D, $constanttablebase, $constantoffset(replicate_immI($con$$constant, 4, 2)), $dst$$FloatRegister);
8700     RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset(replicate_immI($con$$constant, 4, 2)), $tmp$$Register);
8701     __ ldf(FloatRegisterImpl::D, $constanttablebase, con_offset, as_DoubleFloatRegister($dst$$reg));
8702   %}
8703   ins_pipe(loadConFD);
8704 %}
8705 
8706 // Replicate scalar to packed short values into stack slot
8707 instruct Repl4S_reg_helper(iRegL dst, iRegI src) %{
8708   effect(DEF dst, USE src);
8709   format %{ "SLLX  $src,48,$dst\n\t"
8710             "SRLX  $dst,16,O7\n\t"
8711             "OR    $dst,O7,$dst\n\t"
8712             "SRLX  $dst,32,O7\n\t"
8713             "OR    $dst,O7,$dst\t! replicate4S" %}
8714   ins_encode( enc_repl4s(src, dst) );
8715   ins_pipe(ialu_reg);
8716 %}
8717 
8718 // Replicate scalar to packed short values into stack slot
8719 instruct Repl4S_reg(stackSlotD dst, iRegI src) %{
8720   match(Set dst (Replicate4S src));
8721   expand %{
8722     iRegL tmp;
8723     Repl4S_reg_helper(tmp, src);
8724     regL_to_stkD(dst, tmp);
8725   %}
8726 %}
8727 
8728 // Replicate scalar constant to packed short values in Double register
8729 instruct Repl4S_immI(regD dst, immI con, o7RegI tmp) %{
8730   match(Set dst (Replicate4S con));
8731   effect(KILL tmp);
8732   format %{ "LDDF   [$constanttablebase + $constantoffset],$dst\t! load from constant table: Repl4S($con)" %}
8733   ins_encode %{
8734     // XXX This is a quick fix for 6833573.
8735     //__ ldf(FloatRegisterImpl::D, $constanttablebase, $constantoffset(replicate_immI($con$$constant, 4, 2)), $dst$$FloatRegister);
8736     RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset(replicate_immI($con$$constant, 4, 2)), $tmp$$Register);
8737     __ ldf(FloatRegisterImpl::D, $constanttablebase, con_offset, as_DoubleFloatRegister($dst$$reg));
8738   %}
8739   ins_pipe(loadConFD);
8740 %}
8741 
8742 // Replicate scalar to packed int values in Double register
8743 instruct Repl2I_reg_helper(iRegL dst, iRegI src) %{
8744   effect(DEF dst, USE src);
8745   format %{ "SLLX  $src,32,$dst\n\t"
8746             "SRLX  $dst,32,O7\n\t"
8747             "OR    $dst,O7,$dst\t! replicate2I" %}
8748   ins_encode( enc_repl2i(src, dst));
8749   ins_pipe(ialu_reg);
8750 %}
8751 
8752 // Replicate scalar to packed int values in Double register
8753 instruct Repl2I_reg(stackSlotD dst, iRegI src) %{
8754   match(Set dst (Replicate2I src));
8755   expand %{
8756     iRegL tmp;
8757     Repl2I_reg_helper(tmp, src);
8758     regL_to_stkD(dst, tmp);
8759   %}
8760 %}
8761 
8762 // Replicate scalar zero constant to packed int values in Double register
8763 instruct Repl2I_immI(regD dst, immI con, o7RegI tmp) %{
8764   match(Set dst (Replicate2I con));
8765   effect(KILL tmp);
8766   format %{ "LDDF   [$constanttablebase + $constantoffset],$dst\t! load from constant table: Repl2I($con)" %}
8767   ins_encode %{
8768     // XXX This is a quick fix for 6833573.
8769     //__ ldf(FloatRegisterImpl::D, $constanttablebase, $constantoffset(replicate_immI($con$$constant, 2, 4)), $dst$$FloatRegister);
8770     RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset(replicate_immI($con$$constant, 2, 4)), $tmp$$Register);
8771     __ ldf(FloatRegisterImpl::D, $constanttablebase, con_offset, as_DoubleFloatRegister($dst$$reg));
8772   %}
8773   ins_pipe(loadConFD);
8774 %}
8775 
8776 //----------Control Flow Instructions------------------------------------------
8777 // Compare Instructions
8778 // Compare Integers
8779 instruct compI_iReg(flagsReg icc, iRegI op1, iRegI op2) %{
8780   match(Set icc (CmpI op1 op2));
8781   effect( DEF icc, USE op1, USE op2 );
8782 
8783   size(4);
8784   format %{ "CMP    $op1,$op2" %}
8785   opcode(Assembler::subcc_op3, Assembler::arith_op);
8786   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
8787   ins_pipe(ialu_cconly_reg_reg);
8788 %}
8789 
8790 instruct compU_iReg(flagsRegU icc, iRegI op1, iRegI op2) %{
8791   match(Set icc (CmpU op1 op2));
8792 
8793   size(4);
8794   format %{ "CMP    $op1,$op2\t! unsigned" %}
8795   opcode(Assembler::subcc_op3, Assembler::arith_op);
8796   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
8797   ins_pipe(ialu_cconly_reg_reg);
8798 %}
8799 
8800 instruct compI_iReg_imm13(flagsReg icc, iRegI op1, immI13 op2) %{
8801   match(Set icc (CmpI op1 op2));
8802   effect( DEF icc, USE op1 );
8803 
8804   size(4);
8805   format %{ "CMP    $op1,$op2" %}
8806   opcode(Assembler::subcc_op3, Assembler::arith_op);
8807   ins_encode( form3_rs1_simm13_rd( op1, op2, R_G0 ) );
8808   ins_pipe(ialu_cconly_reg_imm);
8809 %}
8810 
8811 instruct testI_reg_reg( flagsReg icc, iRegI op1, iRegI op2, immI0 zero ) %{
8812   match(Set icc (CmpI (AndI op1 op2) zero));
8813 
8814   size(4);
8815   format %{ "BTST   $op2,$op1" %}
8816   opcode(Assembler::andcc_op3, Assembler::arith_op);
8817   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
8818   ins_pipe(ialu_cconly_reg_reg_zero);
8819 %}
8820 
8821 instruct testI_reg_imm( flagsReg icc, iRegI op1, immI13 op2, immI0 zero ) %{
8822   match(Set icc (CmpI (AndI op1 op2) zero));
8823 
8824   size(4);
8825   format %{ "BTST   $op2,$op1" %}
8826   opcode(Assembler::andcc_op3, Assembler::arith_op);
8827   ins_encode( form3_rs1_simm13_rd( op1, op2, R_G0 ) );
8828   ins_pipe(ialu_cconly_reg_imm_zero);
8829 %}
8830 
8831 instruct compL_reg_reg(flagsRegL xcc, iRegL op1, iRegL op2 ) %{
8832   match(Set xcc (CmpL op1 op2));
8833   effect( DEF xcc, USE op1, USE op2 );
8834 
8835   size(4);
8836   format %{ "CMP    $op1,$op2\t\t! long" %}
8837   opcode(Assembler::subcc_op3, Assembler::arith_op);
8838   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
8839   ins_pipe(ialu_cconly_reg_reg);
8840 %}
8841 
8842 instruct compL_reg_con(flagsRegL xcc, iRegL op1, immL13 con) %{
8843   match(Set xcc (CmpL op1 con));
8844   effect( DEF xcc, USE op1, USE con );
8845 
8846   size(4);
8847   format %{ "CMP    $op1,$con\t\t! long" %}
8848   opcode(Assembler::subcc_op3, Assembler::arith_op);
8849   ins_encode( form3_rs1_simm13_rd( op1, con, R_G0 ) );
8850   ins_pipe(ialu_cconly_reg_reg);
8851 %}
8852 
8853 instruct testL_reg_reg(flagsRegL xcc, iRegL op1, iRegL op2, immL0 zero) %{
8854   match(Set xcc (CmpL (AndL op1 op2) zero));
8855   effect( DEF xcc, USE op1, USE op2 );
8856 
8857   size(4);
8858   format %{ "BTST   $op1,$op2\t\t! long" %}
8859   opcode(Assembler::andcc_op3, Assembler::arith_op);
8860   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
8861   ins_pipe(ialu_cconly_reg_reg);
8862 %}
8863 
8864 // useful for checking the alignment of a pointer:
8865 instruct testL_reg_con(flagsRegL xcc, iRegL op1, immL13 con, immL0 zero) %{
8866   match(Set xcc (CmpL (AndL op1 con) zero));
8867   effect( DEF xcc, USE op1, USE con );
8868 
8869   size(4);
8870   format %{ "BTST   $op1,$con\t\t! long" %}
8871   opcode(Assembler::andcc_op3, Assembler::arith_op);
8872   ins_encode( form3_rs1_simm13_rd( op1, con, R_G0 ) );
8873   ins_pipe(ialu_cconly_reg_reg);
8874 %}
8875 
8876 instruct compU_iReg_imm13(flagsRegU icc, iRegI op1, immU13 op2 ) %{
8877   match(Set icc (CmpU op1 op2));
8878 
8879   size(4);
8880   format %{ "CMP    $op1,$op2\t! unsigned" %}
8881   opcode(Assembler::subcc_op3, Assembler::arith_op);
8882   ins_encode( form3_rs1_simm13_rd( op1, op2, R_G0 ) );
8883   ins_pipe(ialu_cconly_reg_imm);
8884 %}
8885 
8886 // Compare Pointers
8887 instruct compP_iRegP(flagsRegP pcc, iRegP op1, iRegP op2 ) %{
8888   match(Set pcc (CmpP op1 op2));
8889 
8890   size(4);
8891   format %{ "CMP    $op1,$op2\t! ptr" %}
8892   opcode(Assembler::subcc_op3, Assembler::arith_op);
8893   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
8894   ins_pipe(ialu_cconly_reg_reg);
8895 %}
8896 
8897 instruct compP_iRegP_imm13(flagsRegP pcc, iRegP op1, immP13 op2 ) %{
8898   match(Set pcc (CmpP op1 op2));
8899 
8900   size(4);
8901   format %{ "CMP    $op1,$op2\t! ptr" %}
8902   opcode(Assembler::subcc_op3, Assembler::arith_op);
8903   ins_encode( form3_rs1_simm13_rd( op1, op2, R_G0 ) );
8904   ins_pipe(ialu_cconly_reg_imm);
8905 %}
8906 
8907 // Compare Narrow oops
8908 instruct compN_iRegN(flagsReg icc, iRegN op1, iRegN op2 ) %{
8909   match(Set icc (CmpN op1 op2));
8910 
8911   size(4);
8912   format %{ "CMP    $op1,$op2\t! compressed ptr" %}
8913   opcode(Assembler::subcc_op3, Assembler::arith_op);
8914   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
8915   ins_pipe(ialu_cconly_reg_reg);
8916 %}
8917 
8918 instruct compN_iRegN_immN0(flagsReg icc, iRegN op1, immN0 op2 ) %{
8919   match(Set icc (CmpN op1 op2));
8920 
8921   size(4);
8922   format %{ "CMP    $op1,$op2\t! compressed ptr" %}
8923   opcode(Assembler::subcc_op3, Assembler::arith_op);
8924   ins_encode( form3_rs1_simm13_rd( op1, op2, R_G0 ) );
8925   ins_pipe(ialu_cconly_reg_imm);
8926 %}
8927 
8928 //----------Max and Min--------------------------------------------------------
8929 // Min Instructions
8930 // Conditional move for min
8931 instruct cmovI_reg_lt( iRegI op2, iRegI op1, flagsReg icc ) %{
8932   effect( USE_DEF op2, USE op1, USE icc );
8933 
8934   size(4);
8935   format %{ "MOVlt  icc,$op1,$op2\t! min" %}
8936   opcode(Assembler::less);
8937   ins_encode( enc_cmov_reg_minmax(op2,op1) );
8938   ins_pipe(ialu_reg_flags);
8939 %}
8940 
8941 // Min Register with Register.
8942 instruct minI_eReg(iRegI op1, iRegI op2) %{
8943   match(Set op2 (MinI op1 op2));
8944   ins_cost(DEFAULT_COST*2);
8945   expand %{
8946     flagsReg icc;
8947     compI_iReg(icc,op1,op2);
8948     cmovI_reg_lt(op2,op1,icc);
8949   %}
8950 %}
8951 
8952 // Max Instructions
8953 // Conditional move for max
8954 instruct cmovI_reg_gt( iRegI op2, iRegI op1, flagsReg icc ) %{
8955   effect( USE_DEF op2, USE op1, USE icc );
8956   format %{ "MOVgt  icc,$op1,$op2\t! max" %}
8957   opcode(Assembler::greater);
8958   ins_encode( enc_cmov_reg_minmax(op2,op1) );
8959   ins_pipe(ialu_reg_flags);
8960 %}
8961 
8962 // Max Register with Register
8963 instruct maxI_eReg(iRegI op1, iRegI op2) %{
8964   match(Set op2 (MaxI op1 op2));
8965   ins_cost(DEFAULT_COST*2);
8966   expand %{
8967     flagsReg icc;
8968     compI_iReg(icc,op1,op2);
8969     cmovI_reg_gt(op2,op1,icc);
8970   %}
8971 %}
8972 
8973 
8974 //----------Float Compares----------------------------------------------------
8975 // Compare floating, generate condition code
8976 instruct cmpF_cc(flagsRegF fcc, regF src1, regF src2) %{
8977   match(Set fcc (CmpF src1 src2));
8978 
8979   size(4);
8980   format %{ "FCMPs  $fcc,$src1,$src2" %}
8981   opcode(Assembler::fpop2_op3, Assembler::arith_op, Assembler::fcmps_opf);
8982   ins_encode( form3_opf_rs1F_rs2F_fcc( src1, src2, fcc ) );
8983   ins_pipe(faddF_fcc_reg_reg_zero);
8984 %}
8985 
8986 instruct cmpD_cc(flagsRegF fcc, regD src1, regD src2) %{
8987   match(Set fcc (CmpD src1 src2));
8988 
8989   size(4);
8990   format %{ "FCMPd  $fcc,$src1,$src2" %}
8991   opcode(Assembler::fpop2_op3, Assembler::arith_op, Assembler::fcmpd_opf);
8992   ins_encode( form3_opf_rs1D_rs2D_fcc( src1, src2, fcc ) );
8993   ins_pipe(faddD_fcc_reg_reg_zero);
8994 %}
8995 
8996 
8997 // Compare floating, generate -1,0,1
8998 instruct cmpF_reg(iRegI dst, regF src1, regF src2, flagsRegF0 fcc0) %{
8999   match(Set dst (CmpF3 src1 src2));
9000   effect(KILL fcc0);
9001   ins_cost(DEFAULT_COST*3+BRANCH_COST*3);
9002   format %{ "fcmpl  $dst,$src1,$src2" %}
9003   // Primary = float
9004   opcode( true );
9005   ins_encode( floating_cmp( dst, src1, src2 ) );
9006   ins_pipe( floating_cmp );
9007 %}
9008 
9009 instruct cmpD_reg(iRegI dst, regD src1, regD src2, flagsRegF0 fcc0) %{
9010   match(Set dst (CmpD3 src1 src2));
9011   effect(KILL fcc0);
9012   ins_cost(DEFAULT_COST*3+BRANCH_COST*3);
9013   format %{ "dcmpl  $dst,$src1,$src2" %}
9014   // Primary = double (not float)
9015   opcode( false );
9016   ins_encode( floating_cmp( dst, src1, src2 ) );
9017   ins_pipe( floating_cmp );
9018 %}
9019 
9020 //----------Branches---------------------------------------------------------
9021 // Jump
9022 // (compare 'operand indIndex' and 'instruct addP_reg_reg' above)
9023 instruct jumpXtnd(iRegX switch_val, o7RegI table) %{
9024   match(Jump switch_val);
9025 
9026   ins_cost(350);
9027 
9028   format %{  "ADD    $constanttablebase, $constantoffset, O7\n\t"
9029              "LD     [O7 + $switch_val], O7\n\t"
9030              "JUMP   O7"
9031          %}
9032   ins_encode %{
9033     // Calculate table address into a register.
9034     Register table_reg;
9035     Register label_reg = O7;
9036     if (constant_offset() == 0) {
9037       table_reg = $constanttablebase;
9038     } else {
9039       table_reg = O7;
9040       RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset, O7);
9041       __ add($constanttablebase, con_offset, table_reg);
9042     }
9043 
9044     // Jump to base address + switch value
9045     __ ld_ptr(table_reg, $switch_val$$Register, label_reg);
9046     __ jmp(label_reg, G0);
9047     __ delayed()->nop();
9048   %}
9049   ins_pc_relative(1);
9050   ins_pipe(ialu_reg_reg);
9051 %}
9052 
9053 // Direct Branch.  Use V8 version with longer range.
9054 instruct branch(label labl) %{
9055   match(Goto);
9056   effect(USE labl);
9057 
9058   size(8);
9059   ins_cost(BRANCH_COST);
9060   format %{ "BA     $labl" %}
9061   // Prim = bits 24-22, Secnd = bits 31-30, Tert = cond
9062   opcode(Assembler::br_op2, Assembler::branch_op, Assembler::always);
9063   ins_encode( enc_ba( labl ) );
9064   ins_pc_relative(1);
9065   ins_pipe(br);
9066 %}
9067 
9068 // Conditional Direct Branch
9069 instruct branchCon(cmpOp cmp, flagsReg icc, label labl) %{
9070   match(If cmp icc);
9071   effect(USE labl);
9072 
9073   size(8);
9074   ins_cost(BRANCH_COST);
9075   format %{ "BP$cmp   $icc,$labl" %}
9076   // Prim = bits 24-22, Secnd = bits 31-30
9077   ins_encode( enc_bp( labl, cmp, icc ) );
9078   ins_pc_relative(1);
9079   ins_pipe(br_cc);
9080 %}
9081 
9082 // Branch-on-register tests all 64 bits.  We assume that values
9083 // in 64-bit registers always remains zero or sign extended
9084 // unless our code munges the high bits.  Interrupts can chop
9085 // the high order bits to zero or sign at any time.
9086 instruct branchCon_regI(cmpOp_reg cmp, iRegI op1, immI0 zero, label labl) %{
9087   match(If cmp (CmpI op1 zero));
9088   predicate(can_branch_register(_kids[0]->_leaf, _kids[1]->_leaf));
9089   effect(USE labl);
9090 
9091   size(8);
9092   ins_cost(BRANCH_COST);
9093   format %{ "BR$cmp   $op1,$labl" %}
9094   ins_encode( enc_bpr( labl, cmp, op1 ) );
9095   ins_pc_relative(1);
9096   ins_pipe(br_reg);
9097 %}
9098 
9099 instruct branchCon_regP(cmpOp_reg cmp, iRegP op1, immP0 null, label labl) %{
9100   match(If cmp (CmpP op1 null));
9101   predicate(can_branch_register(_kids[0]->_leaf, _kids[1]->_leaf));
9102   effect(USE labl);
9103 
9104   size(8);
9105   ins_cost(BRANCH_COST);
9106   format %{ "BR$cmp   $op1,$labl" %}
9107   ins_encode( enc_bpr( labl, cmp, op1 ) );
9108   ins_pc_relative(1);
9109   ins_pipe(br_reg);
9110 %}
9111 
9112 instruct branchCon_regL(cmpOp_reg cmp, iRegL op1, immL0 zero, label labl) %{
9113   match(If cmp (CmpL op1 zero));
9114   predicate(can_branch_register(_kids[0]->_leaf, _kids[1]->_leaf));
9115   effect(USE labl);
9116 
9117   size(8);
9118   ins_cost(BRANCH_COST);
9119   format %{ "BR$cmp   $op1,$labl" %}
9120   ins_encode( enc_bpr( labl, cmp, op1 ) );
9121   ins_pc_relative(1);
9122   ins_pipe(br_reg);
9123 %}
9124 
9125 instruct branchConU(cmpOpU cmp, flagsRegU icc, label labl) %{
9126   match(If cmp icc);
9127   effect(USE labl);
9128 
9129   format %{ "BP$cmp  $icc,$labl" %}
9130   // Prim = bits 24-22, Secnd = bits 31-30
9131   ins_encode( enc_bp( labl, cmp, icc ) );
9132   ins_pc_relative(1);
9133   ins_pipe(br_cc);
9134 %}
9135 
9136 instruct branchConP(cmpOpP cmp, flagsRegP pcc, label labl) %{
9137   match(If cmp pcc);
9138   effect(USE labl);
9139 
9140   size(8);
9141   ins_cost(BRANCH_COST);
9142   format %{ "BP$cmp  $pcc,$labl" %}
9143   // Prim = bits 24-22, Secnd = bits 31-30
9144   ins_encode( enc_bpx( labl, cmp, pcc ) );
9145   ins_pc_relative(1);
9146   ins_pipe(br_cc);
9147 %}
9148 
9149 instruct branchConF(cmpOpF cmp, flagsRegF fcc, label labl) %{
9150   match(If cmp fcc);
9151   effect(USE labl);
9152 
9153   size(8);
9154   ins_cost(BRANCH_COST);
9155   format %{ "FBP$cmp $fcc,$labl" %}
9156   // Prim = bits 24-22, Secnd = bits 31-30
9157   ins_encode( enc_fbp( labl, cmp, fcc ) );
9158   ins_pc_relative(1);
9159   ins_pipe(br_fcc);
9160 %}
9161 
9162 instruct branchLoopEnd(cmpOp cmp, flagsReg icc, label labl) %{
9163   match(CountedLoopEnd cmp icc);
9164   effect(USE labl);
9165 
9166   size(8);
9167   ins_cost(BRANCH_COST);
9168   format %{ "BP$cmp   $icc,$labl\t! Loop end" %}
9169   // Prim = bits 24-22, Secnd = bits 31-30
9170   ins_encode( enc_bp( labl, cmp, icc ) );
9171   ins_pc_relative(1);
9172   ins_pipe(br_cc);
9173 %}
9174 
9175 instruct branchLoopEndU(cmpOpU cmp, flagsRegU icc, label labl) %{
9176   match(CountedLoopEnd cmp icc);
9177   effect(USE labl);
9178 
9179   size(8);
9180   ins_cost(BRANCH_COST);
9181   format %{ "BP$cmp  $icc,$labl\t! Loop end" %}
9182   // Prim = bits 24-22, Secnd = bits 31-30
9183   ins_encode( enc_bp( labl, cmp, icc ) );
9184   ins_pc_relative(1);
9185   ins_pipe(br_cc);
9186 %}
9187 
9188 // ============================================================================
9189 // Long Compare
9190 //
9191 // Currently we hold longs in 2 registers.  Comparing such values efficiently
9192 // is tricky.  The flavor of compare used depends on whether we are testing
9193 // for LT, LE, or EQ.  For a simple LT test we can check just the sign bit.
9194 // The GE test is the negated LT test.  The LE test can be had by commuting
9195 // the operands (yielding a GE test) and then negating; negate again for the
9196 // GT test.  The EQ test is done by ORcc'ing the high and low halves, and the
9197 // NE test is negated from that.
9198 
9199 // Due to a shortcoming in the ADLC, it mixes up expressions like:
9200 // (foo (CmpI (CmpL X Y) 0)) and (bar (CmpI (CmpL X 0L) 0)).  Note the
9201 // difference between 'Y' and '0L'.  The tree-matches for the CmpI sections
9202 // are collapsed internally in the ADLC's dfa-gen code.  The match for
9203 // (CmpI (CmpL X Y) 0) is silently replaced with (CmpI (CmpL X 0L) 0) and the
9204 // foo match ends up with the wrong leaf.  One fix is to not match both
9205 // reg-reg and reg-zero forms of long-compare.  This is unfortunate because
9206 // both forms beat the trinary form of long-compare and both are very useful
9207 // on Intel which has so few registers.
9208 
9209 instruct branchCon_long(cmpOp cmp, flagsRegL xcc, label labl) %{
9210   match(If cmp xcc);
9211   effect(USE labl);
9212 
9213   size(8);
9214   ins_cost(BRANCH_COST);
9215   format %{ "BP$cmp   $xcc,$labl" %}
9216   // Prim = bits 24-22, Secnd = bits 31-30
9217   ins_encode( enc_bpl( labl, cmp, xcc ) );
9218   ins_pc_relative(1);
9219   ins_pipe(br_cc);
9220 %}
9221 
9222 // Manifest a CmpL3 result in an integer register.  Very painful.
9223 // This is the test to avoid.
9224 instruct cmpL3_reg_reg(iRegI dst, iRegL src1, iRegL src2, flagsReg ccr ) %{
9225   match(Set dst (CmpL3 src1 src2) );
9226   effect( KILL ccr );
9227   ins_cost(6*DEFAULT_COST);
9228   size(24);
9229   format %{ "CMP    $src1,$src2\t\t! long\n"
9230           "\tBLT,a,pn done\n"
9231           "\tMOV    -1,$dst\t! delay slot\n"
9232           "\tBGT,a,pn done\n"
9233           "\tMOV    1,$dst\t! delay slot\n"
9234           "\tCLR    $dst\n"
9235     "done:"     %}
9236   ins_encode( cmpl_flag(src1,src2,dst) );
9237   ins_pipe(cmpL_reg);
9238 %}
9239 
9240 // Conditional move
9241 instruct cmovLL_reg(cmpOp cmp, flagsRegL xcc, iRegL dst, iRegL src) %{
9242   match(Set dst (CMoveL (Binary cmp xcc) (Binary dst src)));
9243   ins_cost(150);
9244   format %{ "MOV$cmp  $xcc,$src,$dst\t! long" %}
9245   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::xcc)) );
9246   ins_pipe(ialu_reg);
9247 %}
9248 
9249 instruct cmovLL_imm(cmpOp cmp, flagsRegL xcc, iRegL dst, immL0 src) %{
9250   match(Set dst (CMoveL (Binary cmp xcc) (Binary dst src)));
9251   ins_cost(140);
9252   format %{ "MOV$cmp  $xcc,$src,$dst\t! long" %}
9253   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::xcc)) );
9254   ins_pipe(ialu_imm);
9255 %}
9256 
9257 instruct cmovIL_reg(cmpOp cmp, flagsRegL xcc, iRegI dst, iRegI src) %{
9258   match(Set dst (CMoveI (Binary cmp xcc) (Binary dst src)));
9259   ins_cost(150);
9260   format %{ "MOV$cmp  $xcc,$src,$dst" %}
9261   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::xcc)) );
9262   ins_pipe(ialu_reg);
9263 %}
9264 
9265 instruct cmovIL_imm(cmpOp cmp, flagsRegL xcc, iRegI dst, immI11 src) %{
9266   match(Set dst (CMoveI (Binary cmp xcc) (Binary dst src)));
9267   ins_cost(140);
9268   format %{ "MOV$cmp  $xcc,$src,$dst" %}
9269   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::xcc)) );
9270   ins_pipe(ialu_imm);
9271 %}
9272 
9273 instruct cmovNL_reg(cmpOp cmp, flagsRegL xcc, iRegN dst, iRegN src) %{
9274   match(Set dst (CMoveN (Binary cmp xcc) (Binary dst src)));
9275   ins_cost(150);
9276   format %{ "MOV$cmp  $xcc,$src,$dst" %}
9277   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::xcc)) );
9278   ins_pipe(ialu_reg);
9279 %}
9280 
9281 instruct cmovPL_reg(cmpOp cmp, flagsRegL xcc, iRegP dst, iRegP src) %{
9282   match(Set dst (CMoveP (Binary cmp xcc) (Binary dst src)));
9283   ins_cost(150);
9284   format %{ "MOV$cmp  $xcc,$src,$dst" %}
9285   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::xcc)) );
9286   ins_pipe(ialu_reg);
9287 %}
9288 
9289 instruct cmovPL_imm(cmpOp cmp, flagsRegL xcc, iRegP dst, immP0 src) %{
9290   match(Set dst (CMoveP (Binary cmp xcc) (Binary dst src)));
9291   ins_cost(140);
9292   format %{ "MOV$cmp  $xcc,$src,$dst" %}
9293   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::xcc)) );
9294   ins_pipe(ialu_imm);
9295 %}
9296 
9297 instruct cmovFL_reg(cmpOp cmp, flagsRegL xcc, regF dst, regF src) %{
9298   match(Set dst (CMoveF (Binary cmp xcc) (Binary dst src)));
9299   ins_cost(150);
9300   opcode(0x101);
9301   format %{ "FMOVS$cmp $xcc,$src,$dst" %}
9302   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::xcc)) );
9303   ins_pipe(int_conditional_float_move);
9304 %}
9305 
9306 instruct cmovDL_reg(cmpOp cmp, flagsRegL xcc, regD dst, regD src) %{
9307   match(Set dst (CMoveD (Binary cmp xcc) (Binary dst src)));
9308   ins_cost(150);
9309   opcode(0x102);
9310   format %{ "FMOVD$cmp $xcc,$src,$dst" %}
9311   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::xcc)) );
9312   ins_pipe(int_conditional_float_move);
9313 %}
9314 
9315 // ============================================================================
9316 // Safepoint Instruction
9317 instruct safePoint_poll(iRegP poll) %{
9318   match(SafePoint poll);
9319   effect(USE poll);
9320 
9321   size(4);
9322 #ifdef _LP64
9323   format %{ "LDX    [$poll],R_G0\t! Safepoint: poll for GC" %}
9324 #else
9325   format %{ "LDUW   [$poll],R_G0\t! Safepoint: poll for GC" %}
9326 #endif
9327   ins_encode %{
9328     __ relocate(relocInfo::poll_type);
9329     __ ld_ptr($poll$$Register, 0, G0);
9330   %}
9331   ins_pipe(loadPollP);
9332 %}
9333 
9334 // ============================================================================
9335 // Call Instructions
9336 // Call Java Static Instruction
9337 instruct CallStaticJavaDirect( method meth ) %{
9338   match(CallStaticJava);
9339   predicate(! ((CallStaticJavaNode*)n)->is_method_handle_invoke());
9340   effect(USE meth);
9341 
9342   size(8);
9343   ins_cost(CALL_COST);
9344   format %{ "CALL,static  ; NOP ==> " %}
9345   ins_encode( Java_Static_Call( meth ), call_epilog );
9346   ins_pc_relative(1);
9347   ins_pipe(simple_call);
9348 %}
9349 
9350 // Call Java Static Instruction (method handle version)
9351 instruct CallStaticJavaHandle(method meth, l7RegP l7_mh_SP_save) %{
9352   match(CallStaticJava);
9353   predicate(((CallStaticJavaNode*)n)->is_method_handle_invoke());
9354   effect(USE meth, KILL l7_mh_SP_save);
9355 
9356   size(8);
9357   ins_cost(CALL_COST);
9358   format %{ "CALL,static/MethodHandle" %}
9359   ins_encode(preserve_SP, Java_Static_Call(meth), restore_SP, call_epilog);
9360   ins_pc_relative(1);
9361   ins_pipe(simple_call);
9362 %}
9363 
9364 // Call Java Dynamic Instruction
9365 instruct CallDynamicJavaDirect( method meth ) %{
9366   match(CallDynamicJava);
9367   effect(USE meth);
9368 
9369   ins_cost(CALL_COST);
9370   format %{ "SET    (empty),R_G5\n\t"
9371             "CALL,dynamic  ; NOP ==> " %}
9372   ins_encode( Java_Dynamic_Call( meth ), call_epilog );
9373   ins_pc_relative(1);
9374   ins_pipe(call);
9375 %}
9376 
9377 // Call Runtime Instruction
9378 instruct CallRuntimeDirect(method meth, l7RegP l7) %{
9379   match(CallRuntime);
9380   effect(USE meth, KILL l7);
9381   ins_cost(CALL_COST);
9382   format %{ "CALL,runtime" %}
9383   ins_encode( Java_To_Runtime( meth ),
9384               call_epilog, adjust_long_from_native_call );
9385   ins_pc_relative(1);
9386   ins_pipe(simple_call);
9387 %}
9388 
9389 // Call runtime without safepoint - same as CallRuntime
9390 instruct CallLeafDirect(method meth, l7RegP l7) %{
9391   match(CallLeaf);
9392   effect(USE meth, KILL l7);
9393   ins_cost(CALL_COST);
9394   format %{ "CALL,runtime leaf" %}
9395   ins_encode( Java_To_Runtime( meth ),
9396               call_epilog,
9397               adjust_long_from_native_call );
9398   ins_pc_relative(1);
9399   ins_pipe(simple_call);
9400 %}
9401 
9402 // Call runtime without safepoint - same as CallLeaf
9403 instruct CallLeafNoFPDirect(method meth, l7RegP l7) %{
9404   match(CallLeafNoFP);
9405   effect(USE meth, KILL l7);
9406   ins_cost(CALL_COST);
9407   format %{ "CALL,runtime leaf nofp" %}
9408   ins_encode( Java_To_Runtime( meth ),
9409               call_epilog,
9410               adjust_long_from_native_call );
9411   ins_pc_relative(1);
9412   ins_pipe(simple_call);
9413 %}
9414 
9415 // Tail Call; Jump from runtime stub to Java code.
9416 // Also known as an 'interprocedural jump'.
9417 // Target of jump will eventually return to caller.
9418 // TailJump below removes the return address.
9419 instruct TailCalljmpInd(g3RegP jump_target, inline_cache_regP method_oop) %{
9420   match(TailCall jump_target method_oop );
9421 
9422   ins_cost(CALL_COST);
9423   format %{ "Jmp     $jump_target  ; NOP \t! $method_oop holds method oop" %}
9424   ins_encode(form_jmpl(jump_target));
9425   ins_pipe(tail_call);
9426 %}
9427 
9428 
9429 // Return Instruction
9430 instruct Ret() %{
9431   match(Return);
9432 
9433   // The epilogue node did the ret already.
9434   size(0);
9435   format %{ "! return" %}
9436   ins_encode();
9437   ins_pipe(empty);
9438 %}
9439 
9440 
9441 // Tail Jump; remove the return address; jump to target.
9442 // TailCall above leaves the return address around.
9443 // TailJump is used in only one place, the rethrow_Java stub (fancy_jump=2).
9444 // ex_oop (Exception Oop) is needed in %o0 at the jump. As there would be a
9445 // "restore" before this instruction (in Epilogue), we need to materialize it
9446 // in %i0.
9447 instruct tailjmpInd(g1RegP jump_target, i0RegP ex_oop) %{
9448   match( TailJump jump_target ex_oop );
9449   ins_cost(CALL_COST);
9450   format %{ "! discard R_O7\n\t"
9451             "Jmp     $jump_target  ; ADD O7,8,O1 \t! $ex_oop holds exc. oop" %}
9452   ins_encode(form_jmpl_set_exception_pc(jump_target));
9453   // opcode(Assembler::jmpl_op3, Assembler::arith_op);
9454   // The hack duplicates the exception oop into G3, so that CreateEx can use it there.
9455   // ins_encode( form3_rs1_simm13_rd( jump_target, 0x00, R_G0 ), move_return_pc_to_o1() );
9456   ins_pipe(tail_call);
9457 %}
9458 
9459 // Create exception oop: created by stack-crawling runtime code.
9460 // Created exception is now available to this handler, and is setup
9461 // just prior to jumping to this handler.  No code emitted.
9462 instruct CreateException( o0RegP ex_oop )
9463 %{
9464   match(Set ex_oop (CreateEx));
9465   ins_cost(0);
9466 
9467   size(0);
9468   // use the following format syntax
9469   format %{ "! exception oop is in R_O0; no code emitted" %}
9470   ins_encode();
9471   ins_pipe(empty);
9472 %}
9473 
9474 
9475 // Rethrow exception:
9476 // The exception oop will come in the first argument position.
9477 // Then JUMP (not call) to the rethrow stub code.
9478 instruct RethrowException()
9479 %{
9480   match(Rethrow);
9481   ins_cost(CALL_COST);
9482 
9483   // use the following format syntax
9484   format %{ "Jmp    rethrow_stub" %}
9485   ins_encode(enc_rethrow);
9486   ins_pipe(tail_call);
9487 %}
9488 
9489 
9490 // Die now
9491 instruct ShouldNotReachHere( )
9492 %{
9493   match(Halt);
9494   ins_cost(CALL_COST);
9495 
9496   size(4);
9497   // Use the following format syntax
9498   format %{ "ILLTRAP   ; ShouldNotReachHere" %}
9499   ins_encode( form2_illtrap() );
9500   ins_pipe(tail_call);
9501 %}
9502 
9503 // ============================================================================
9504 // The 2nd slow-half of a subtype check.  Scan the subklass's 2ndary superklass
9505 // array for an instance of the superklass.  Set a hidden internal cache on a
9506 // hit (cache is checked with exposed code in gen_subtype_check()).  Return
9507 // not zero for a miss or zero for a hit.  The encoding ALSO sets flags.
9508 instruct partialSubtypeCheck( o0RegP index, o1RegP sub, o2RegP super, flagsRegP pcc, o7RegP o7 ) %{
9509   match(Set index (PartialSubtypeCheck sub super));
9510   effect( KILL pcc, KILL o7 );
9511   ins_cost(DEFAULT_COST*10);
9512   format %{ "CALL   PartialSubtypeCheck\n\tNOP" %}
9513   ins_encode( enc_PartialSubtypeCheck() );
9514   ins_pipe(partial_subtype_check_pipe);
9515 %}
9516 
9517 instruct partialSubtypeCheck_vs_zero( flagsRegP pcc, o1RegP sub, o2RegP super, immP0 zero, o0RegP idx, o7RegP o7 ) %{
9518   match(Set pcc (CmpP (PartialSubtypeCheck sub super) zero));
9519   effect( KILL idx, KILL o7 );
9520   ins_cost(DEFAULT_COST*10);
9521   format %{ "CALL   PartialSubtypeCheck\n\tNOP\t# (sets condition codes)" %}
9522   ins_encode( enc_PartialSubtypeCheck() );
9523   ins_pipe(partial_subtype_check_pipe);
9524 %}
9525 
9526 
9527 // ============================================================================
9528 // inlined locking and unlocking
9529 
9530 instruct cmpFastLock(flagsRegP pcc, iRegP object, iRegP box, iRegP scratch2, o7RegP scratch ) %{
9531   match(Set pcc (FastLock object box));
9532 
9533   effect(KILL scratch, TEMP scratch2);
9534   ins_cost(100);
9535 
9536   size(4*112);       // conservative overestimation ...
9537   format %{ "FASTLOCK  $object, $box; KILL $scratch, $scratch2, $box" %}
9538   ins_encode( Fast_Lock(object, box, scratch, scratch2) );
9539   ins_pipe(long_memory_op);
9540 %}
9541 
9542 
9543 instruct cmpFastUnlock(flagsRegP pcc, iRegP object, iRegP box, iRegP scratch2, o7RegP scratch ) %{
9544   match(Set pcc (FastUnlock object box));
9545   effect(KILL scratch, TEMP scratch2);
9546   ins_cost(100);
9547 
9548   size(4*120);       // conservative overestimation ...
9549   format %{ "FASTUNLOCK  $object, $box; KILL $scratch, $scratch2, $box" %}
9550   ins_encode( Fast_Unlock(object, box, scratch, scratch2) );
9551   ins_pipe(long_memory_op);
9552 %}
9553 
9554 // Count and Base registers are fixed because the allocator cannot
9555 // kill unknown registers.  The encodings are generic.
9556 instruct clear_array(iRegX cnt, iRegP base, iRegX temp, Universe dummy, flagsReg ccr) %{
9557   match(Set dummy (ClearArray cnt base));
9558   effect(TEMP temp, KILL ccr);
9559   ins_cost(300);
9560   format %{ "MOV    $cnt,$temp\n"
9561     "loop:   SUBcc  $temp,8,$temp\t! Count down a dword of bytes\n"
9562     "        BRge   loop\t\t! Clearing loop\n"
9563     "        STX    G0,[$base+$temp]\t! delay slot" %}
9564   ins_encode( enc_Clear_Array(cnt, base, temp) );
9565   ins_pipe(long_memory_op);
9566 %}
9567 
9568 instruct string_compare(o0RegP str1, o1RegP str2, g3RegI cnt1, g4RegI cnt2, notemp_iRegI result,
9569                         o7RegI tmp, flagsReg ccr) %{
9570   match(Set result (StrComp (Binary str1 cnt1) (Binary str2 cnt2)));
9571   effect(USE_KILL str1, USE_KILL str2, USE_KILL cnt1, USE_KILL cnt2, KILL ccr, KILL tmp);
9572   ins_cost(300);
9573   format %{ "String Compare $str1,$cnt1,$str2,$cnt2 -> $result   // KILL $tmp" %}
9574   ins_encode( enc_String_Compare(str1, str2, cnt1, cnt2, result) );
9575   ins_pipe(long_memory_op);
9576 %}
9577 
9578 instruct string_equals(o0RegP str1, o1RegP str2, g3RegI cnt, notemp_iRegI result,
9579                        o7RegI tmp, flagsReg ccr) %{
9580   match(Set result (StrEquals (Binary str1 str2) cnt));
9581   effect(USE_KILL str1, USE_KILL str2, USE_KILL cnt, KILL tmp, KILL ccr);
9582   ins_cost(300);
9583   format %{ "String Equals $str1,$str2,$cnt -> $result   // KILL $tmp" %}
9584   ins_encode( enc_String_Equals(str1, str2, cnt, result) );
9585   ins_pipe(long_memory_op);
9586 %}
9587 
9588 instruct array_equals(o0RegP ary1, o1RegP ary2, g3RegI tmp1, notemp_iRegI result,
9589                       o7RegI tmp2, flagsReg ccr) %{
9590   match(Set result (AryEq ary1 ary2));
9591   effect(USE_KILL ary1, USE_KILL ary2, KILL tmp1, KILL tmp2, KILL ccr);
9592   ins_cost(300);
9593   format %{ "Array Equals $ary1,$ary2 -> $result   // KILL $tmp1,$tmp2" %}
9594   ins_encode( enc_Array_Equals(ary1, ary2, tmp1, result));
9595   ins_pipe(long_memory_op);
9596 %}
9597 
9598 
9599 //---------- Zeros Count Instructions ------------------------------------------
9600 
9601 instruct countLeadingZerosI(iRegI dst, iRegI src, iRegI tmp, flagsReg cr) %{
9602   predicate(UsePopCountInstruction);  // See Matcher::match_rule_supported
9603   match(Set dst (CountLeadingZerosI src));
9604   effect(TEMP dst, TEMP tmp, KILL cr);
9605 
9606   // x |= (x >> 1);
9607   // x |= (x >> 2);
9608   // x |= (x >> 4);
9609   // x |= (x >> 8);
9610   // x |= (x >> 16);
9611   // return (WORDBITS - popc(x));
9612   format %{ "SRL     $src,1,$tmp\t! count leading zeros (int)\n\t"
9613             "SRL     $src,0,$dst\t! 32-bit zero extend\n\t"
9614             "OR      $dst,$tmp,$dst\n\t"
9615             "SRL     $dst,2,$tmp\n\t"
9616             "OR      $dst,$tmp,$dst\n\t"
9617             "SRL     $dst,4,$tmp\n\t"
9618             "OR      $dst,$tmp,$dst\n\t"
9619             "SRL     $dst,8,$tmp\n\t"
9620             "OR      $dst,$tmp,$dst\n\t"
9621             "SRL     $dst,16,$tmp\n\t"
9622             "OR      $dst,$tmp,$dst\n\t"
9623             "POPC    $dst,$dst\n\t"
9624             "MOV     32,$tmp\n\t"
9625             "SUB     $tmp,$dst,$dst" %}
9626   ins_encode %{
9627     Register Rdst = $dst$$Register;
9628     Register Rsrc = $src$$Register;
9629     Register Rtmp = $tmp$$Register;
9630     __ srl(Rsrc, 1,    Rtmp);
9631     __ srl(Rsrc, 0,    Rdst);
9632     __ or3(Rdst, Rtmp, Rdst);
9633     __ srl(Rdst, 2,    Rtmp);
9634     __ or3(Rdst, Rtmp, Rdst);
9635     __ srl(Rdst, 4,    Rtmp);
9636     __ or3(Rdst, Rtmp, Rdst);
9637     __ srl(Rdst, 8,    Rtmp);
9638     __ or3(Rdst, Rtmp, Rdst);
9639     __ srl(Rdst, 16,   Rtmp);
9640     __ or3(Rdst, Rtmp, Rdst);
9641     __ popc(Rdst, Rdst);
9642     __ mov(BitsPerInt, Rtmp);
9643     __ sub(Rtmp, Rdst, Rdst);
9644   %}
9645   ins_pipe(ialu_reg);
9646 %}
9647 
9648 instruct countLeadingZerosL(iRegIsafe dst, iRegL src, iRegL tmp, flagsReg cr) %{
9649   predicate(UsePopCountInstruction);  // See Matcher::match_rule_supported
9650   match(Set dst (CountLeadingZerosL src));
9651   effect(TEMP dst, TEMP tmp, KILL cr);
9652 
9653   // x |= (x >> 1);
9654   // x |= (x >> 2);
9655   // x |= (x >> 4);
9656   // x |= (x >> 8);
9657   // x |= (x >> 16);
9658   // x |= (x >> 32);
9659   // return (WORDBITS - popc(x));
9660   format %{ "SRLX    $src,1,$tmp\t! count leading zeros (long)\n\t"
9661             "OR      $src,$tmp,$dst\n\t"
9662             "SRLX    $dst,2,$tmp\n\t"
9663             "OR      $dst,$tmp,$dst\n\t"
9664             "SRLX    $dst,4,$tmp\n\t"
9665             "OR      $dst,$tmp,$dst\n\t"
9666             "SRLX    $dst,8,$tmp\n\t"
9667             "OR      $dst,$tmp,$dst\n\t"
9668             "SRLX    $dst,16,$tmp\n\t"
9669             "OR      $dst,$tmp,$dst\n\t"
9670             "SRLX    $dst,32,$tmp\n\t"
9671             "OR      $dst,$tmp,$dst\n\t"
9672             "POPC    $dst,$dst\n\t"
9673             "MOV     64,$tmp\n\t"
9674             "SUB     $tmp,$dst,$dst" %}
9675   ins_encode %{
9676     Register Rdst = $dst$$Register;
9677     Register Rsrc = $src$$Register;
9678     Register Rtmp = $tmp$$Register;
9679     __ srlx(Rsrc, 1,    Rtmp);
9680     __ or3( Rsrc, Rtmp, Rdst);
9681     __ srlx(Rdst, 2,    Rtmp);
9682     __ or3( Rdst, Rtmp, Rdst);
9683     __ srlx(Rdst, 4,    Rtmp);
9684     __ or3( Rdst, Rtmp, Rdst);
9685     __ srlx(Rdst, 8,    Rtmp);
9686     __ or3( Rdst, Rtmp, Rdst);
9687     __ srlx(Rdst, 16,   Rtmp);
9688     __ or3( Rdst, Rtmp, Rdst);
9689     __ srlx(Rdst, 32,   Rtmp);
9690     __ or3( Rdst, Rtmp, Rdst);
9691     __ popc(Rdst, Rdst);
9692     __ mov(BitsPerLong, Rtmp);
9693     __ sub(Rtmp, Rdst, Rdst);
9694   %}
9695   ins_pipe(ialu_reg);
9696 %}
9697 
9698 instruct countTrailingZerosI(iRegI dst, iRegI src, flagsReg cr) %{
9699   predicate(UsePopCountInstruction);  // See Matcher::match_rule_supported
9700   match(Set dst (CountTrailingZerosI src));
9701   effect(TEMP dst, KILL cr);
9702 
9703   // return popc(~x & (x - 1));
9704   format %{ "SUB     $src,1,$dst\t! count trailing zeros (int)\n\t"
9705             "ANDN    $dst,$src,$dst\n\t"
9706             "SRL     $dst,R_G0,$dst\n\t"
9707             "POPC    $dst,$dst" %}
9708   ins_encode %{
9709     Register Rdst = $dst$$Register;
9710     Register Rsrc = $src$$Register;
9711     __ sub(Rsrc, 1, Rdst);
9712     __ andn(Rdst, Rsrc, Rdst);
9713     __ srl(Rdst, G0, Rdst);
9714     __ popc(Rdst, Rdst);
9715   %}
9716   ins_pipe(ialu_reg);
9717 %}
9718 
9719 instruct countTrailingZerosL(iRegI dst, iRegL src, flagsReg cr) %{
9720   predicate(UsePopCountInstruction);  // See Matcher::match_rule_supported
9721   match(Set dst (CountTrailingZerosL src));
9722   effect(TEMP dst, KILL cr);
9723 
9724   // return popc(~x & (x - 1));
9725   format %{ "SUB     $src,1,$dst\t! count trailing zeros (long)\n\t"
9726             "ANDN    $dst,$src,$dst\n\t"
9727             "POPC    $dst,$dst" %}
9728   ins_encode %{
9729     Register Rdst = $dst$$Register;
9730     Register Rsrc = $src$$Register;
9731     __ sub(Rsrc, 1, Rdst);
9732     __ andn(Rdst, Rsrc, Rdst);
9733     __ popc(Rdst, Rdst);
9734   %}
9735   ins_pipe(ialu_reg);
9736 %}
9737 
9738 
9739 //---------- Population Count Instructions -------------------------------------
9740 
9741 instruct popCountI(iRegI dst, iRegI src) %{
9742   predicate(UsePopCountInstruction);
9743   match(Set dst (PopCountI src));
9744 
9745   format %{ "POPC   $src, $dst" %}
9746   ins_encode %{
9747     __ popc($src$$Register, $dst$$Register);
9748   %}
9749   ins_pipe(ialu_reg);
9750 %}
9751 
9752 // Note: Long.bitCount(long) returns an int.
9753 instruct popCountL(iRegI dst, iRegL src) %{
9754   predicate(UsePopCountInstruction);
9755   match(Set dst (PopCountL src));
9756 
9757   format %{ "POPC   $src, $dst" %}
9758   ins_encode %{
9759     __ popc($src$$Register, $dst$$Register);
9760   %}
9761   ins_pipe(ialu_reg);
9762 %}
9763 
9764 
9765 // ============================================================================
9766 //------------Bytes reverse--------------------------------------------------
9767 
9768 instruct bytes_reverse_int(iRegI dst, stackSlotI src) %{
9769   match(Set dst (ReverseBytesI src));
9770 
9771   // Op cost is artificially doubled to make sure that load or store
9772   // instructions are preferred over this one which requires a spill
9773   // onto a stack slot.
9774   ins_cost(2*DEFAULT_COST + MEMORY_REF_COST);
9775   format %{ "LDUWA  $src, $dst\t!asi=primary_little" %}
9776 
9777   ins_encode %{
9778     __ set($src$$disp + STACK_BIAS, O7);
9779     __ lduwa($src$$base$$Register, O7, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
9780   %}
9781   ins_pipe( iload_mem );
9782 %}
9783 
9784 instruct bytes_reverse_long(iRegL dst, stackSlotL src) %{
9785   match(Set dst (ReverseBytesL src));
9786 
9787   // Op cost is artificially doubled to make sure that load or store
9788   // instructions are preferred over this one which requires a spill
9789   // onto a stack slot.
9790   ins_cost(2*DEFAULT_COST + MEMORY_REF_COST);
9791   format %{ "LDXA   $src, $dst\t!asi=primary_little" %}
9792 
9793   ins_encode %{
9794     __ set($src$$disp + STACK_BIAS, O7);
9795     __ ldxa($src$$base$$Register, O7, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
9796   %}
9797   ins_pipe( iload_mem );
9798 %}
9799 
9800 instruct bytes_reverse_unsigned_short(iRegI dst, stackSlotI src) %{
9801   match(Set dst (ReverseBytesUS src));
9802 
9803   // Op cost is artificially doubled to make sure that load or store
9804   // instructions are preferred over this one which requires a spill
9805   // onto a stack slot.
9806   ins_cost(2*DEFAULT_COST + MEMORY_REF_COST);
9807   format %{ "LDUHA  $src, $dst\t!asi=primary_little\n\t" %}
9808 
9809   ins_encode %{
9810     // the value was spilled as an int so bias the load
9811     __ set($src$$disp + STACK_BIAS + 2, O7);
9812     __ lduha($src$$base$$Register, O7, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
9813   %}
9814   ins_pipe( iload_mem );
9815 %}
9816 
9817 instruct bytes_reverse_short(iRegI dst, stackSlotI src) %{
9818   match(Set dst (ReverseBytesS src));
9819 
9820   // Op cost is artificially doubled to make sure that load or store
9821   // instructions are preferred over this one which requires a spill
9822   // onto a stack slot.
9823   ins_cost(2*DEFAULT_COST + MEMORY_REF_COST);
9824   format %{ "LDSHA  $src, $dst\t!asi=primary_little\n\t" %}
9825 
9826   ins_encode %{
9827     // the value was spilled as an int so bias the load
9828     __ set($src$$disp + STACK_BIAS + 2, O7);
9829     __ ldsha($src$$base$$Register, O7, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
9830   %}
9831   ins_pipe( iload_mem );
9832 %}
9833 
9834 // Load Integer reversed byte order
9835 instruct loadI_reversed(iRegI dst, indIndexMemory src) %{
9836   match(Set dst (ReverseBytesI (LoadI src)));
9837 
9838   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
9839   size(4);
9840   format %{ "LDUWA  $src, $dst\t!asi=primary_little" %}
9841 
9842   ins_encode %{
9843     __ lduwa($src$$base$$Register, $src$$index$$Register, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
9844   %}
9845   ins_pipe(iload_mem);
9846 %}
9847 
9848 // Load Long - aligned and reversed
9849 instruct loadL_reversed(iRegL dst, indIndexMemory src) %{
9850   match(Set dst (ReverseBytesL (LoadL src)));
9851 
9852   ins_cost(MEMORY_REF_COST);
9853   size(4);
9854   format %{ "LDXA   $src, $dst\t!asi=primary_little" %}
9855 
9856   ins_encode %{
9857     __ ldxa($src$$base$$Register, $src$$index$$Register, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
9858   %}
9859   ins_pipe(iload_mem);
9860 %}
9861 
9862 // Load unsigned short / char reversed byte order
9863 instruct loadUS_reversed(iRegI dst, indIndexMemory src) %{
9864   match(Set dst (ReverseBytesUS (LoadUS src)));
9865 
9866   ins_cost(MEMORY_REF_COST);
9867   size(4);
9868   format %{ "LDUHA  $src, $dst\t!asi=primary_little" %}
9869 
9870   ins_encode %{
9871     __ lduha($src$$base$$Register, $src$$index$$Register, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
9872   %}
9873   ins_pipe(iload_mem);
9874 %}
9875 
9876 // Load short reversed byte order
9877 instruct loadS_reversed(iRegI dst, indIndexMemory src) %{
9878   match(Set dst (ReverseBytesS (LoadS src)));
9879 
9880   ins_cost(MEMORY_REF_COST);
9881   size(4);
9882   format %{ "LDSHA  $src, $dst\t!asi=primary_little" %}
9883 
9884   ins_encode %{
9885     __ ldsha($src$$base$$Register, $src$$index$$Register, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
9886   %}
9887   ins_pipe(iload_mem);
9888 %}
9889 
9890 // Store Integer reversed byte order
9891 instruct storeI_reversed(indIndexMemory dst, iRegI src) %{
9892   match(Set dst (StoreI dst (ReverseBytesI src)));
9893 
9894   ins_cost(MEMORY_REF_COST);
9895   size(4);
9896   format %{ "STWA   $src, $dst\t!asi=primary_little" %}
9897 
9898   ins_encode %{
9899     __ stwa($src$$Register, $dst$$base$$Register, $dst$$index$$Register, Assembler::ASI_PRIMARY_LITTLE);
9900   %}
9901   ins_pipe(istore_mem_reg);
9902 %}
9903 
9904 // Store Long reversed byte order
9905 instruct storeL_reversed(indIndexMemory dst, iRegL src) %{
9906   match(Set dst (StoreL dst (ReverseBytesL src)));
9907 
9908   ins_cost(MEMORY_REF_COST);
9909   size(4);
9910   format %{ "STXA   $src, $dst\t!asi=primary_little" %}
9911 
9912   ins_encode %{
9913     __ stxa($src$$Register, $dst$$base$$Register, $dst$$index$$Register, Assembler::ASI_PRIMARY_LITTLE);
9914   %}
9915   ins_pipe(istore_mem_reg);
9916 %}
9917 
9918 // Store unsighed short/char reversed byte order
9919 instruct storeUS_reversed(indIndexMemory dst, iRegI src) %{
9920   match(Set dst (StoreC dst (ReverseBytesUS src)));
9921 
9922   ins_cost(MEMORY_REF_COST);
9923   size(4);
9924   format %{ "STHA   $src, $dst\t!asi=primary_little" %}
9925 
9926   ins_encode %{
9927     __ stha($src$$Register, $dst$$base$$Register, $dst$$index$$Register, Assembler::ASI_PRIMARY_LITTLE);
9928   %}
9929   ins_pipe(istore_mem_reg);
9930 %}
9931 
9932 // Store short reversed byte order
9933 instruct storeS_reversed(indIndexMemory dst, iRegI src) %{
9934   match(Set dst (StoreC dst (ReverseBytesS src)));
9935 
9936   ins_cost(MEMORY_REF_COST);
9937   size(4);
9938   format %{ "STHA   $src, $dst\t!asi=primary_little" %}
9939 
9940   ins_encode %{
9941     __ stha($src$$Register, $dst$$base$$Register, $dst$$index$$Register, Assembler::ASI_PRIMARY_LITTLE);
9942   %}
9943   ins_pipe(istore_mem_reg);
9944 %}
9945 
9946 //----------PEEPHOLE RULES-----------------------------------------------------
9947 // These must follow all instruction definitions as they use the names
9948 // defined in the instructions definitions.
9949 //
9950 // peepmatch ( root_instr_name [preceding_instruction]* );
9951 //
9952 // peepconstraint %{
9953 // (instruction_number.operand_name relational_op instruction_number.operand_name
9954 //  [, ...] );
9955 // // instruction numbers are zero-based using left to right order in peepmatch
9956 //
9957 // peepreplace ( instr_name  ( [instruction_number.operand_name]* ) );
9958 // // provide an instruction_number.operand_name for each operand that appears
9959 // // in the replacement instruction's match rule
9960 //
9961 // ---------VM FLAGS---------------------------------------------------------
9962 //
9963 // All peephole optimizations can be turned off using -XX:-OptoPeephole
9964 //
9965 // Each peephole rule is given an identifying number starting with zero and
9966 // increasing by one in the order seen by the parser.  An individual peephole
9967 // can be enabled, and all others disabled, by using -XX:OptoPeepholeAt=#
9968 // on the command-line.
9969 //
9970 // ---------CURRENT LIMITATIONS----------------------------------------------
9971 //
9972 // Only match adjacent instructions in same basic block
9973 // Only equality constraints
9974 // Only constraints between operands, not (0.dest_reg == EAX_enc)
9975 // Only one replacement instruction
9976 //
9977 // ---------EXAMPLE----------------------------------------------------------
9978 //
9979 // // pertinent parts of existing instructions in architecture description
9980 // instruct movI(eRegI dst, eRegI src) %{
9981 //   match(Set dst (CopyI src));
9982 // %}
9983 //
9984 // instruct incI_eReg(eRegI dst, immI1 src, eFlagsReg cr) %{
9985 //   match(Set dst (AddI dst src));
9986 //   effect(KILL cr);
9987 // %}
9988 //
9989 // // Change (inc mov) to lea
9990 // peephole %{
9991 //   // increment preceeded by register-register move
9992 //   peepmatch ( incI_eReg movI );
9993 //   // require that the destination register of the increment
9994 //   // match the destination register of the move
9995 //   peepconstraint ( 0.dst == 1.dst );
9996 //   // construct a replacement instruction that sets
9997 //   // the destination to ( move's source register + one )
9998 //   peepreplace ( incI_eReg_immI1( 0.dst 1.src 0.src ) );
9999 // %}
10000 //
10001 
10002 // // Change load of spilled value to only a spill
10003 // instruct storeI(memory mem, eRegI src) %{
10004 //   match(Set mem (StoreI mem src));
10005 // %}
10006 //
10007 // instruct loadI(eRegI dst, memory mem) %{
10008 //   match(Set dst (LoadI mem));
10009 // %}
10010 //
10011 // peephole %{
10012 //   peepmatch ( loadI storeI );
10013 //   peepconstraint ( 1.src == 0.dst, 1.mem == 0.mem );
10014 //   peepreplace ( storeI( 1.mem 1.mem 1.src ) );
10015 // %}
10016 
10017 //----------SMARTSPILL RULES---------------------------------------------------
10018 // These must follow all instruction definitions as they use the names
10019 // defined in the instructions definitions.
10020 //
10021 // SPARC will probably not have any of these rules due to RISC instruction set.
10022 
10023 //----------PIPELINE-----------------------------------------------------------
10024 // Rules which define the behavior of the target architectures pipeline.