1 /*
   2  * Copyright (c) 1997, 2017, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "ci/ciField.hpp"
  27 #include "ci/ciMethodData.hpp"
  28 #include "ci/ciTypeFlow.hpp"
  29 #include "ci/ciValueKlass.hpp"
  30 #include "classfile/symbolTable.hpp"
  31 #include "classfile/systemDictionary.hpp"
  32 #include "compiler/compileLog.hpp"
  33 #include "gc/shared/gcLocker.hpp"
  34 #include "libadt/dict.hpp"
  35 #include "memory/oopFactory.hpp"
  36 #include "memory/resourceArea.hpp"
  37 #include "oops/instanceKlass.hpp"
  38 #include "oops/instanceMirrorKlass.hpp"
  39 #include "oops/objArrayKlass.hpp"
  40 #include "oops/typeArrayKlass.hpp"
  41 #include "opto/matcher.hpp"
  42 #include "opto/node.hpp"
  43 #include "opto/opcodes.hpp"
  44 #include "opto/type.hpp"
  45 
  46 // Portions of code courtesy of Clifford Click
  47 
  48 // Optimization - Graph Style
  49 
  50 // Dictionary of types shared among compilations.
  51 Dict* Type::_shared_type_dict = NULL;
  52 const Type::Offset Type::Offset::top(Type::OffsetTop);
  53 const Type::Offset Type::Offset::bottom(Type::OffsetBot);
  54 
  55 const Type::Offset Type::Offset::meet(const Type::Offset other) const {
  56   // Either is 'TOP' offset?  Return the other offset!
  57   int offset = other._offset;
  58   if (_offset == OffsetTop) return Offset(offset);
  59   if (offset == OffsetTop) return Offset(_offset);
  60   // If either is different, return 'BOTTOM' offset
  61   if (_offset != offset) return bottom;
  62   return Offset(_offset);
  63 }
  64 
  65 const Type::Offset Type::Offset::dual() const {
  66   if (_offset == OffsetTop) return bottom;// Map 'TOP' into 'BOTTOM'
  67   if (_offset == OffsetBot) return top;// Map 'BOTTOM' into 'TOP'
  68   return Offset(_offset);               // Map everything else into self
  69 }
  70 
  71 const Type::Offset Type::Offset::add(intptr_t offset) const {
  72   // Adding to 'TOP' offset?  Return 'TOP'!
  73   if (_offset == OffsetTop || offset == OffsetTop) return top;
  74   // Adding to 'BOTTOM' offset?  Return 'BOTTOM'!
  75   if (_offset == OffsetBot || offset == OffsetBot) return bottom;
  76   // Addition overflows or "accidentally" equals to OffsetTop? Return 'BOTTOM'!
  77   offset += (intptr_t)_offset;
  78   if (offset != (int)offset || offset == OffsetTop) return bottom;
  79 
  80   // assert( _offset >= 0 && _offset+offset >= 0, "" );
  81   // It is possible to construct a negative offset during PhaseCCP
  82 
  83   return Offset((int)offset);        // Sum valid offsets
  84 }
  85 
  86 void Type::Offset::dump2(outputStream *st) const {
  87   if (_offset == 0) {
  88     return;
  89   } else if (_offset == OffsetTop) {
  90     st->print("+top");
  91   }
  92   else if (_offset == OffsetBot) {
  93     st->print("+bot");
  94   } else if (_offset) {
  95     st->print("+%d", _offset);
  96   }
  97 }
  98 
  99 // Array which maps compiler types to Basic Types
 100 const Type::TypeInfo Type::_type_info[Type::lastype] = {
 101   { Bad,             T_ILLEGAL,    "bad",           false, Node::NotAMachineReg, relocInfo::none          },  // Bad
 102   { Control,         T_ILLEGAL,    "control",       false, 0,                    relocInfo::none          },  // Control
 103   { Bottom,          T_VOID,       "top",           false, 0,                    relocInfo::none          },  // Top
 104   { Bad,             T_INT,        "int:",          false, Op_RegI,              relocInfo::none          },  // Int
 105   { Bad,             T_LONG,       "long:",         false, Op_RegL,              relocInfo::none          },  // Long
 106   { Half,            T_VOID,       "half",          false, 0,                    relocInfo::none          },  // Half
 107   { Bad,             T_NARROWOOP,  "narrowoop:",    false, Op_RegN,              relocInfo::none          },  // NarrowOop
 108   { Bad,             T_NARROWKLASS,"narrowklass:",  false, Op_RegN,              relocInfo::none          },  // NarrowKlass
 109   { Bad,             T_ILLEGAL,    "tuple:",        false, Node::NotAMachineReg, relocInfo::none          },  // Tuple
 110   { Bad,             T_ARRAY,      "array:",        false, Node::NotAMachineReg, relocInfo::none          },  // Array
 111 
 112 #ifdef SPARC
 113   { Bad,             T_ILLEGAL,    "vectors:",      false, 0,                    relocInfo::none          },  // VectorS
 114   { Bad,             T_ILLEGAL,    "vectord:",      false, Op_RegD,              relocInfo::none          },  // VectorD
 115   { Bad,             T_ILLEGAL,    "vectorx:",      false, 0,                    relocInfo::none          },  // VectorX
 116   { Bad,             T_ILLEGAL,    "vectory:",      false, 0,                    relocInfo::none          },  // VectorY
 117   { Bad,             T_ILLEGAL,    "vectorz:",      false, 0,                    relocInfo::none          },  // VectorZ
 118 #elif defined(PPC64) || defined(S390)
 119   { Bad,             T_ILLEGAL,    "vectors:",      false, 0,                    relocInfo::none          },  // VectorS
 120   { Bad,             T_ILLEGAL,    "vectord:",      false, Op_RegL,              relocInfo::none          },  // VectorD
 121   { Bad,             T_ILLEGAL,    "vectorx:",      false, 0,                    relocInfo::none          },  // VectorX
 122   { Bad,             T_ILLEGAL,    "vectory:",      false, 0,                    relocInfo::none          },  // VectorY
 123   { Bad,             T_ILLEGAL,    "vectorz:",      false, 0,                    relocInfo::none          },  // VectorZ
 124 #else // all other
 125   { Bad,             T_ILLEGAL,    "vectors:",      false, Op_VecS,              relocInfo::none          },  // VectorS
 126   { Bad,             T_ILLEGAL,    "vectord:",      false, Op_VecD,              relocInfo::none          },  // VectorD
 127   { Bad,             T_ILLEGAL,    "vectorx:",      false, Op_VecX,              relocInfo::none          },  // VectorX
 128   { Bad,             T_ILLEGAL,    "vectory:",      false, Op_VecY,              relocInfo::none          },  // VectorY
 129   { Bad,             T_ILLEGAL,    "vectorz:",      false, Op_VecZ,              relocInfo::none          },  // VectorZ
 130 #endif
 131   { Bad,             T_VALUETYPE,  "value:",        false, Node::NotAMachineReg, relocInfo::none          },  // ValueType
 132   { Bad,             T_ADDRESS,    "anyptr:",       false, Op_RegP,              relocInfo::none          },  // AnyPtr
 133   { Bad,             T_ADDRESS,    "rawptr:",       false, Op_RegP,              relocInfo::none          },  // RawPtr
 134   { Bad,             T_OBJECT,     "oop:",          true,  Op_RegP,              relocInfo::oop_type      },  // OopPtr
 135   { Bad,             T_OBJECT,     "inst:",         true,  Op_RegP,              relocInfo::oop_type      },  // InstPtr
 136   { Bad,             T_OBJECT,     "valueptr:",     true,  Op_RegP,              relocInfo::oop_type      },  // ValueTypePtr
 137   { Bad,             T_OBJECT,     "ary:",          true,  Op_RegP,              relocInfo::oop_type      },  // AryPtr
 138   { Bad,             T_METADATA,   "metadata:",     false, Op_RegP,              relocInfo::metadata_type },  // MetadataPtr
 139   { Bad,             T_METADATA,   "klass:",        false, Op_RegP,              relocInfo::metadata_type },  // KlassPtr
 140   { Bad,             T_OBJECT,     "func",          false, 0,                    relocInfo::none          },  // Function
 141   { Abio,            T_ILLEGAL,    "abIO",          false, 0,                    relocInfo::none          },  // Abio
 142   { Return_Address,  T_ADDRESS,    "return_address",false, Op_RegP,              relocInfo::none          },  // Return_Address
 143   { Memory,          T_ILLEGAL,    "memory",        false, 0,                    relocInfo::none          },  // Memory
 144   { FloatBot,        T_FLOAT,      "float_top",     false, Op_RegF,              relocInfo::none          },  // FloatTop
 145   { FloatCon,        T_FLOAT,      "ftcon:",        false, Op_RegF,              relocInfo::none          },  // FloatCon
 146   { FloatTop,        T_FLOAT,      "float",         false, Op_RegF,              relocInfo::none          },  // FloatBot
 147   { DoubleBot,       T_DOUBLE,     "double_top",    false, Op_RegD,              relocInfo::none          },  // DoubleTop
 148   { DoubleCon,       T_DOUBLE,     "dblcon:",       false, Op_RegD,              relocInfo::none          },  // DoubleCon
 149   { DoubleTop,       T_DOUBLE,     "double",        false, Op_RegD,              relocInfo::none          },  // DoubleBot
 150   { Top,             T_ILLEGAL,    "bottom",        false, 0,                    relocInfo::none          }   // Bottom
 151 };
 152 
 153 // Map ideal registers (machine types) to ideal types
 154 const Type *Type::mreg2type[_last_machine_leaf];
 155 
 156 // Map basic types to canonical Type* pointers.
 157 const Type* Type::     _const_basic_type[T_CONFLICT+1];
 158 
 159 // Map basic types to constant-zero Types.
 160 const Type* Type::            _zero_type[T_CONFLICT+1];
 161 
 162 // Map basic types to array-body alias types.
 163 const TypeAryPtr* TypeAryPtr::_array_body_type[T_CONFLICT+1];
 164 
 165 //=============================================================================
 166 // Convenience common pre-built types.
 167 const Type *Type::ABIO;         // State-of-machine only
 168 const Type *Type::BOTTOM;       // All values
 169 const Type *Type::CONTROL;      // Control only
 170 const Type *Type::DOUBLE;       // All doubles
 171 const Type *Type::FLOAT;        // All floats
 172 const Type *Type::HALF;         // Placeholder half of doublewide type
 173 const Type *Type::MEMORY;       // Abstract store only
 174 const Type *Type::RETURN_ADDRESS;
 175 const Type *Type::TOP;          // No values in set
 176 
 177 //------------------------------get_const_type---------------------------
 178 const Type* Type::get_const_type(ciType* type) {
 179   if (type == NULL) {
 180     return NULL;
 181   } else if (type->is_primitive_type()) {
 182     return get_const_basic_type(type->basic_type());
 183   } else {
 184     return TypeOopPtr::make_from_klass(type->as_klass());
 185   }
 186 }
 187 
 188 //---------------------------array_element_basic_type---------------------------------
 189 // Mapping to the array element's basic type.
 190 BasicType Type::array_element_basic_type() const {
 191   BasicType bt = basic_type();
 192   if (bt == T_INT) {
 193     if (this == TypeInt::INT)   return T_INT;
 194     if (this == TypeInt::CHAR)  return T_CHAR;
 195     if (this == TypeInt::BYTE)  return T_BYTE;
 196     if (this == TypeInt::BOOL)  return T_BOOLEAN;
 197     if (this == TypeInt::SHORT) return T_SHORT;
 198     return T_VOID;
 199   }
 200   return bt;
 201 }
 202 
 203 // For two instance arrays of same dimension, return the base element types.
 204 // Otherwise or if the arrays have different dimensions, return NULL.
 205 void Type::get_arrays_base_elements(const Type *a1, const Type *a2,
 206                                     const TypeInstPtr **e1, const TypeInstPtr **e2) {
 207 
 208   if (e1) *e1 = NULL;
 209   if (e2) *e2 = NULL;
 210   const TypeAryPtr* a1tap = (a1 == NULL) ? NULL : a1->isa_aryptr();
 211   const TypeAryPtr* a2tap = (a2 == NULL) ? NULL : a2->isa_aryptr();
 212 
 213   if (a1tap != NULL && a2tap != NULL) {
 214     // Handle multidimensional arrays
 215     const TypePtr* a1tp = a1tap->elem()->make_ptr();
 216     const TypePtr* a2tp = a2tap->elem()->make_ptr();
 217     while (a1tp && a1tp->isa_aryptr() && a2tp && a2tp->isa_aryptr()) {
 218       a1tap = a1tp->is_aryptr();
 219       a2tap = a2tp->is_aryptr();
 220       a1tp = a1tap->elem()->make_ptr();
 221       a2tp = a2tap->elem()->make_ptr();
 222     }
 223     if (a1tp && a1tp->isa_instptr() && a2tp && a2tp->isa_instptr()) {
 224       if (e1) *e1 = a1tp->is_instptr();
 225       if (e2) *e2 = a2tp->is_instptr();
 226     }
 227   }
 228 }
 229 
 230 //---------------------------get_typeflow_type---------------------------------
 231 // Import a type produced by ciTypeFlow.
 232 const Type* Type::get_typeflow_type(ciType* type) {
 233   switch (type->basic_type()) {
 234 
 235   case ciTypeFlow::StateVector::T_BOTTOM:
 236     assert(type == ciTypeFlow::StateVector::bottom_type(), "");
 237     return Type::BOTTOM;
 238 
 239   case ciTypeFlow::StateVector::T_TOP:
 240     assert(type == ciTypeFlow::StateVector::top_type(), "");
 241     return Type::TOP;
 242 
 243   case ciTypeFlow::StateVector::T_NULL:
 244     assert(type == ciTypeFlow::StateVector::null_type(), "");
 245     return TypePtr::NULL_PTR;
 246 
 247   case ciTypeFlow::StateVector::T_LONG2:
 248     // The ciTypeFlow pass pushes a long, then the half.
 249     // We do the same.
 250     assert(type == ciTypeFlow::StateVector::long2_type(), "");
 251     return TypeInt::TOP;
 252 
 253   case ciTypeFlow::StateVector::T_DOUBLE2:
 254     // The ciTypeFlow pass pushes double, then the half.
 255     // Our convention is the same.
 256     assert(type == ciTypeFlow::StateVector::double2_type(), "");
 257     return Type::TOP;
 258 
 259   case T_ADDRESS:
 260     assert(type->is_return_address(), "");
 261     return TypeRawPtr::make((address)(intptr_t)type->as_return_address()->bci());
 262 
 263   case T_VALUETYPE:
 264     return TypeValueType::make(type->as_value_klass());
 265 
 266   default:
 267     // make sure we did not mix up the cases:
 268     assert(type != ciTypeFlow::StateVector::bottom_type(), "");
 269     assert(type != ciTypeFlow::StateVector::top_type(), "");
 270     assert(type != ciTypeFlow::StateVector::null_type(), "");
 271     assert(type != ciTypeFlow::StateVector::long2_type(), "");
 272     assert(type != ciTypeFlow::StateVector::double2_type(), "");
 273     assert(!type->is_return_address(), "");
 274 
 275     return Type::get_const_type(type);
 276   }
 277 }
 278 
 279 
 280 //-----------------------make_from_constant------------------------------------
 281 const Type* Type::make_from_constant(ciConstant constant, bool require_constant,
 282                                      int stable_dimension, bool is_narrow_oop,
 283                                      bool is_autobox_cache) {
 284   switch (constant.basic_type()) {
 285     case T_BOOLEAN:  return TypeInt::make(constant.as_boolean());
 286     case T_CHAR:     return TypeInt::make(constant.as_char());
 287     case T_BYTE:     return TypeInt::make(constant.as_byte());
 288     case T_SHORT:    return TypeInt::make(constant.as_short());
 289     case T_INT:      return TypeInt::make(constant.as_int());
 290     case T_LONG:     return TypeLong::make(constant.as_long());
 291     case T_FLOAT:    return TypeF::make(constant.as_float());
 292     case T_DOUBLE:   return TypeD::make(constant.as_double());
 293     case T_ARRAY:
 294     case T_VALUETYPE:
 295     case T_OBJECT: {
 296         // cases:
 297         //   can_be_constant    = (oop not scavengable || ScavengeRootsInCode != 0)
 298         //   should_be_constant = (oop not scavengable || ScavengeRootsInCode >= 2)
 299         // An oop is not scavengable if it is in the perm gen.
 300         const Type* con_type = NULL;
 301         ciObject* oop_constant = constant.as_object();
 302         if (oop_constant->is_null_object()) {
 303           con_type = Type::get_zero_type(T_OBJECT);
 304         } else if (require_constant || oop_constant->should_be_constant()) {
 305           con_type = TypeOopPtr::make_from_constant(oop_constant, require_constant);
 306           if (con_type != NULL) {
 307             if (Compile::current()->eliminate_boxing() && is_autobox_cache) {
 308               con_type = con_type->is_aryptr()->cast_to_autobox_cache(true);
 309             }
 310             if (stable_dimension > 0) {
 311               assert(FoldStableValues, "sanity");
 312               assert(!con_type->is_zero_type(), "default value for stable field");
 313               con_type = con_type->is_aryptr()->cast_to_stable(true, stable_dimension);
 314             }
 315           }
 316         }
 317         if (is_narrow_oop) {
 318           con_type = con_type->make_narrowoop();
 319         }
 320         return con_type;
 321       }
 322     case T_ILLEGAL:
 323       // Invalid ciConstant returned due to OutOfMemoryError in the CI
 324       assert(Compile::current()->env()->failing(), "otherwise should not see this");
 325       return NULL;
 326   }
 327   // Fall through to failure
 328   return NULL;
 329 }
 330 
 331 static ciConstant check_mismatched_access(ciConstant con, BasicType loadbt, bool is_unsigned) {
 332   BasicType conbt = con.basic_type();
 333   switch (conbt) {
 334     case T_BOOLEAN: conbt = T_BYTE;   break;
 335     case T_ARRAY:   conbt = T_OBJECT; break;
 336     case T_VALUETYPE: conbt = T_OBJECT; break;
 337   }
 338   switch (loadbt) {
 339     case T_BOOLEAN:   loadbt = T_BYTE;   break;
 340     case T_NARROWOOP: loadbt = T_OBJECT; break;
 341     case T_ARRAY:     loadbt = T_OBJECT; break;
 342     case T_VALUETYPE: loadbt = T_OBJECT; break;
 343     case T_ADDRESS:   loadbt = T_OBJECT; break;
 344   }
 345   if (conbt == loadbt) {
 346     if (is_unsigned && conbt == T_BYTE) {
 347       // LoadB (T_BYTE) with a small mask (<=8-bit) is converted to LoadUB (T_BYTE).
 348       return ciConstant(T_INT, con.as_int() & 0xFF);
 349     } else {
 350       return con;
 351     }
 352   }
 353   if (conbt == T_SHORT && loadbt == T_CHAR) {
 354     // LoadS (T_SHORT) with a small mask (<=16-bit) is converted to LoadUS (T_CHAR).
 355     return ciConstant(T_INT, con.as_int() & 0xFFFF);
 356   }
 357   return ciConstant(); // T_ILLEGAL
 358 }
 359 
 360 // Try to constant-fold a stable array element.
 361 const Type* Type::make_constant_from_array_element(ciArray* array, int off, int stable_dimension,
 362                                                    BasicType loadbt, bool is_unsigned_load) {
 363   // Decode the results of GraphKit::array_element_address.
 364   ciConstant element_value = array->element_value_by_offset(off);
 365   if (element_value.basic_type() == T_ILLEGAL) {
 366     return NULL; // wrong offset
 367   }
 368   ciConstant con = check_mismatched_access(element_value, loadbt, is_unsigned_load);
 369 
 370   assert(con.basic_type() != T_ILLEGAL, "elembt=%s; loadbt=%s; unsigned=%d",
 371          type2name(element_value.basic_type()), type2name(loadbt), is_unsigned_load);
 372 
 373   if (con.is_valid() &&          // not a mismatched access
 374       !con.is_null_or_zero()) {  // not a default value
 375     bool is_narrow_oop = (loadbt == T_NARROWOOP);
 376     return Type::make_from_constant(con, /*require_constant=*/true, stable_dimension, is_narrow_oop, /*is_autobox_cache=*/false);
 377   }
 378   return NULL;
 379 }
 380 
 381 const Type* Type::make_constant_from_field(ciInstance* holder, int off, bool is_unsigned_load, BasicType loadbt) {
 382   ciField* field;
 383   ciType* type = holder->java_mirror_type();
 384   if (type != NULL && type->is_instance_klass() && off >= InstanceMirrorKlass::offset_of_static_fields()) {
 385     // Static field
 386     field = type->as_instance_klass()->get_field_by_offset(off, /*is_static=*/true);
 387   } else {
 388     // Instance field
 389     field = holder->klass()->as_instance_klass()->get_field_by_offset(off, /*is_static=*/false);
 390   }
 391   if (field == NULL) {
 392     return NULL; // Wrong offset
 393   }
 394   return Type::make_constant_from_field(field, holder, loadbt, is_unsigned_load);
 395 }
 396 
 397 const Type* Type::make_constant_from_field(ciField* field, ciInstance* holder,
 398                                            BasicType loadbt, bool is_unsigned_load) {
 399   if (!field->is_constant()) {
 400     return NULL; // Non-constant field
 401   }
 402   ciConstant field_value;
 403   if (field->is_static()) {
 404     // final static field
 405     field_value = field->constant_value();
 406   } else if (holder != NULL) {
 407     // final or stable non-static field
 408     // Treat final non-static fields of trusted classes (classes in
 409     // java.lang.invoke and sun.invoke packages and subpackages) as
 410     // compile time constants.
 411     field_value = field->constant_value_of(holder);
 412   }
 413   if (!field_value.is_valid()) {
 414     return NULL; // Not a constant
 415   }
 416 
 417   ciConstant con = check_mismatched_access(field_value, loadbt, is_unsigned_load);
 418 
 419   assert(con.is_valid(), "elembt=%s; loadbt=%s; unsigned=%d",
 420          type2name(field_value.basic_type()), type2name(loadbt), is_unsigned_load);
 421 
 422   bool is_stable_array = FoldStableValues && field->is_stable() && field->type()->is_array_klass();
 423   int stable_dimension = (is_stable_array ? field->type()->as_array_klass()->dimension() : 0);
 424   bool is_narrow_oop = (loadbt == T_NARROWOOP);
 425 
 426   const Type* con_type = make_from_constant(con, /*require_constant=*/ true,
 427                                             stable_dimension, is_narrow_oop,
 428                                             field->is_autobox_cache());
 429   if (con_type != NULL && field->is_call_site_target()) {
 430     ciCallSite* call_site = holder->as_call_site();
 431     if (!call_site->is_constant_call_site()) {
 432       ciMethodHandle* target = con.as_object()->as_method_handle();
 433       Compile::current()->dependencies()->assert_call_site_target_value(call_site, target);
 434     }
 435   }
 436   return con_type;
 437 }
 438 
 439 //------------------------------make-------------------------------------------
 440 // Create a simple Type, with default empty symbol sets.  Then hashcons it
 441 // and look for an existing copy in the type dictionary.
 442 const Type *Type::make( enum TYPES t ) {
 443   return (new Type(t))->hashcons();
 444 }
 445 
 446 //------------------------------cmp--------------------------------------------
 447 int Type::cmp( const Type *const t1, const Type *const t2 ) {
 448   if( t1->_base != t2->_base )
 449     return 1;                   // Missed badly
 450   assert(t1 != t2 || t1->eq(t2), "eq must be reflexive");
 451   return !t1->eq(t2);           // Return ZERO if equal
 452 }
 453 
 454 const Type* Type::maybe_remove_speculative(bool include_speculative) const {
 455   if (!include_speculative) {
 456     return remove_speculative();
 457   }
 458   return this;
 459 }
 460 
 461 //------------------------------hash-------------------------------------------
 462 int Type::uhash( const Type *const t ) {
 463   return t->hash();
 464 }
 465 
 466 #define SMALLINT ((juint)3)  // a value too insignificant to consider widening
 467 
 468 //--------------------------Initialize_shared----------------------------------
 469 void Type::Initialize_shared(Compile* current) {
 470   // This method does not need to be locked because the first system
 471   // compilations (stub compilations) occur serially.  If they are
 472   // changed to proceed in parallel, then this section will need
 473   // locking.
 474 
 475   Arena* save = current->type_arena();
 476   Arena* shared_type_arena = new (mtCompiler)Arena(mtCompiler);
 477 
 478   current->set_type_arena(shared_type_arena);
 479   _shared_type_dict =
 480     new (shared_type_arena) Dict( (CmpKey)Type::cmp, (Hash)Type::uhash,
 481                                   shared_type_arena, 128 );
 482   current->set_type_dict(_shared_type_dict);
 483 
 484   // Make shared pre-built types.
 485   CONTROL = make(Control);      // Control only
 486   TOP     = make(Top);          // No values in set
 487   MEMORY  = make(Memory);       // Abstract store only
 488   ABIO    = make(Abio);         // State-of-machine only
 489   RETURN_ADDRESS=make(Return_Address);
 490   FLOAT   = make(FloatBot);     // All floats
 491   DOUBLE  = make(DoubleBot);    // All doubles
 492   BOTTOM  = make(Bottom);       // Everything
 493   HALF    = make(Half);         // Placeholder half of doublewide type
 494 
 495   TypeF::ZERO = TypeF::make(0.0); // Float 0 (positive zero)
 496   TypeF::ONE  = TypeF::make(1.0); // Float 1
 497 
 498   TypeD::ZERO = TypeD::make(0.0); // Double 0 (positive zero)
 499   TypeD::ONE  = TypeD::make(1.0); // Double 1
 500 
 501   TypeInt::MINUS_1 = TypeInt::make(-1);  // -1
 502   TypeInt::ZERO    = TypeInt::make( 0);  //  0
 503   TypeInt::ONE     = TypeInt::make( 1);  //  1
 504   TypeInt::BOOL    = TypeInt::make(0,1,   WidenMin);  // 0 or 1, FALSE or TRUE.
 505   TypeInt::CC      = TypeInt::make(-1, 1, WidenMin);  // -1, 0 or 1, condition codes
 506   TypeInt::CC_LT   = TypeInt::make(-1,-1, WidenMin);  // == TypeInt::MINUS_1
 507   TypeInt::CC_GT   = TypeInt::make( 1, 1, WidenMin);  // == TypeInt::ONE
 508   TypeInt::CC_EQ   = TypeInt::make( 0, 0, WidenMin);  // == TypeInt::ZERO
 509   TypeInt::CC_LE   = TypeInt::make(-1, 0, WidenMin);
 510   TypeInt::CC_GE   = TypeInt::make( 0, 1, WidenMin);  // == TypeInt::BOOL
 511   TypeInt::BYTE    = TypeInt::make(-128,127,     WidenMin); // Bytes
 512   TypeInt::UBYTE   = TypeInt::make(0, 255,       WidenMin); // Unsigned Bytes
 513   TypeInt::CHAR    = TypeInt::make(0,65535,      WidenMin); // Java chars
 514   TypeInt::SHORT   = TypeInt::make(-32768,32767, WidenMin); // Java shorts
 515   TypeInt::POS     = TypeInt::make(0,max_jint,   WidenMin); // Non-neg values
 516   TypeInt::POS1    = TypeInt::make(1,max_jint,   WidenMin); // Positive values
 517   TypeInt::INT     = TypeInt::make(min_jint,max_jint, WidenMax); // 32-bit integers
 518   TypeInt::SYMINT  = TypeInt::make(-max_jint,max_jint,WidenMin); // symmetric range
 519   TypeInt::TYPE_DOMAIN  = TypeInt::INT;
 520   // CmpL is overloaded both as the bytecode computation returning
 521   // a trinary (-1,0,+1) integer result AND as an efficient long
 522   // compare returning optimizer ideal-type flags.
 523   assert( TypeInt::CC_LT == TypeInt::MINUS_1, "types must match for CmpL to work" );
 524   assert( TypeInt::CC_GT == TypeInt::ONE,     "types must match for CmpL to work" );
 525   assert( TypeInt::CC_EQ == TypeInt::ZERO,    "types must match for CmpL to work" );
 526   assert( TypeInt::CC_GE == TypeInt::BOOL,    "types must match for CmpL to work" );
 527   assert( (juint)(TypeInt::CC->_hi - TypeInt::CC->_lo) <= SMALLINT, "CC is truly small");
 528 
 529   TypeLong::MINUS_1 = TypeLong::make(-1);        // -1
 530   TypeLong::ZERO    = TypeLong::make( 0);        //  0
 531   TypeLong::ONE     = TypeLong::make( 1);        //  1
 532   TypeLong::POS     = TypeLong::make(0,max_jlong, WidenMin); // Non-neg values
 533   TypeLong::LONG    = TypeLong::make(min_jlong,max_jlong,WidenMax); // 64-bit integers
 534   TypeLong::INT     = TypeLong::make((jlong)min_jint,(jlong)max_jint,WidenMin);
 535   TypeLong::UINT    = TypeLong::make(0,(jlong)max_juint,WidenMin);
 536   TypeLong::TYPE_DOMAIN  = TypeLong::LONG;
 537 
 538   const Type **fboth =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
 539   fboth[0] = Type::CONTROL;
 540   fboth[1] = Type::CONTROL;
 541   TypeTuple::IFBOTH = TypeTuple::make( 2, fboth );
 542 
 543   const Type **ffalse =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
 544   ffalse[0] = Type::CONTROL;
 545   ffalse[1] = Type::TOP;
 546   TypeTuple::IFFALSE = TypeTuple::make( 2, ffalse );
 547 
 548   const Type **fneither =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
 549   fneither[0] = Type::TOP;
 550   fneither[1] = Type::TOP;
 551   TypeTuple::IFNEITHER = TypeTuple::make( 2, fneither );
 552 
 553   const Type **ftrue =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
 554   ftrue[0] = Type::TOP;
 555   ftrue[1] = Type::CONTROL;
 556   TypeTuple::IFTRUE = TypeTuple::make( 2, ftrue );
 557 
 558   const Type **floop =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
 559   floop[0] = Type::CONTROL;
 560   floop[1] = TypeInt::INT;
 561   TypeTuple::LOOPBODY = TypeTuple::make( 2, floop );
 562 
 563   TypePtr::NULL_PTR= TypePtr::make(AnyPtr, TypePtr::Null, Offset(0));
 564   TypePtr::NOTNULL = TypePtr::make(AnyPtr, TypePtr::NotNull, Offset::bottom);
 565   TypePtr::BOTTOM  = TypePtr::make(AnyPtr, TypePtr::BotPTR, Offset::bottom);
 566 
 567   TypeRawPtr::BOTTOM = TypeRawPtr::make( TypePtr::BotPTR );
 568   TypeRawPtr::NOTNULL= TypeRawPtr::make( TypePtr::NotNull );
 569 
 570   const Type **fmembar = TypeTuple::fields(0);
 571   TypeTuple::MEMBAR = TypeTuple::make(TypeFunc::Parms+0, fmembar);
 572 
 573   const Type **fsc = (const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
 574   fsc[0] = TypeInt::CC;
 575   fsc[1] = Type::MEMORY;
 576   TypeTuple::STORECONDITIONAL = TypeTuple::make(2, fsc);
 577 
 578   TypeInstPtr::NOTNULL = TypeInstPtr::make(TypePtr::NotNull, current->env()->Object_klass());
 579   TypeInstPtr::BOTTOM  = TypeInstPtr::make(TypePtr::BotPTR,  current->env()->Object_klass());
 580   TypeInstPtr::MIRROR  = TypeInstPtr::make(TypePtr::NotNull, current->env()->Class_klass());
 581   TypeInstPtr::MARK    = TypeInstPtr::make(TypePtr::BotPTR,  current->env()->Object_klass(),
 582                                            false, 0, Offset(oopDesc::mark_offset_in_bytes()));
 583   TypeInstPtr::KLASS   = TypeInstPtr::make(TypePtr::BotPTR,  current->env()->Object_klass(),
 584                                            false, 0, Offset(oopDesc::klass_offset_in_bytes()));
 585   TypeOopPtr::BOTTOM  = TypeOopPtr::make(TypePtr::BotPTR, Offset::bottom, TypeOopPtr::InstanceBot);
 586 
 587   TypeMetadataPtr::BOTTOM = TypeMetadataPtr::make(TypePtr::BotPTR, NULL, Offset::bottom);
 588 
 589   TypeNarrowOop::NULL_PTR = TypeNarrowOop::make( TypePtr::NULL_PTR );
 590   TypeNarrowOop::BOTTOM   = TypeNarrowOop::make( TypeInstPtr::BOTTOM );
 591 
 592   TypeNarrowKlass::NULL_PTR = TypeNarrowKlass::make( TypePtr::NULL_PTR );
 593 
 594   TypeValueTypePtr::NOTNULL = (EnableValhalla || EnableMVT) ? TypeValueTypePtr::make(TypePtr::NotNull, current->env()->___Value_klass()->as_value_klass()) : NULL;
 595 
 596   mreg2type[Op_Node] = Type::BOTTOM;
 597   mreg2type[Op_Set ] = 0;
 598   mreg2type[Op_RegN] = TypeNarrowOop::BOTTOM;
 599   mreg2type[Op_RegI] = TypeInt::INT;
 600   mreg2type[Op_RegP] = TypePtr::BOTTOM;
 601   mreg2type[Op_RegF] = Type::FLOAT;
 602   mreg2type[Op_RegD] = Type::DOUBLE;
 603   mreg2type[Op_RegL] = TypeLong::LONG;
 604   mreg2type[Op_RegFlags] = TypeInt::CC;
 605 
 606   TypeAryPtr::RANGE   = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(Type::BOTTOM,TypeInt::POS), NULL /* current->env()->Object_klass() */, false, Offset(arrayOopDesc::length_offset_in_bytes()));
 607 
 608   TypeAryPtr::NARROWOOPS = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeNarrowOop::BOTTOM, TypeInt::POS), NULL /*ciArrayKlass::make(o)*/,  false,  Offset::bottom);
 609 
 610 #ifdef _LP64
 611   if (UseCompressedOops) {
 612     assert(TypeAryPtr::NARROWOOPS->is_ptr_to_narrowoop(), "array of narrow oops must be ptr to narrow oop");
 613     TypeAryPtr::OOPS  = TypeAryPtr::NARROWOOPS;
 614   } else
 615 #endif
 616   {
 617     // There is no shared klass for Object[].  See note in TypeAryPtr::klass().
 618     TypeAryPtr::OOPS  = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInstPtr::BOTTOM,TypeInt::POS), NULL /*ciArrayKlass::make(o)*/,  false,  Offset::bottom);
 619   }
 620   TypeAryPtr::BYTES   = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::BYTE      ,TypeInt::POS), ciTypeArrayKlass::make(T_BYTE),   true,  Offset::bottom);
 621   TypeAryPtr::SHORTS  = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::SHORT     ,TypeInt::POS), ciTypeArrayKlass::make(T_SHORT),  true,  Offset::bottom);
 622   TypeAryPtr::CHARS   = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::CHAR      ,TypeInt::POS), ciTypeArrayKlass::make(T_CHAR),   true,  Offset::bottom);
 623   TypeAryPtr::INTS    = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::INT       ,TypeInt::POS), ciTypeArrayKlass::make(T_INT),    true,  Offset::bottom);
 624   TypeAryPtr::LONGS   = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeLong::LONG     ,TypeInt::POS), ciTypeArrayKlass::make(T_LONG),   true,  Offset::bottom);
 625   TypeAryPtr::FLOATS  = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(Type::FLOAT        ,TypeInt::POS), ciTypeArrayKlass::make(T_FLOAT),  true,  Offset::bottom);
 626   TypeAryPtr::DOUBLES = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(Type::DOUBLE       ,TypeInt::POS), ciTypeArrayKlass::make(T_DOUBLE), true,  Offset::bottom);
 627 
 628   // Nobody should ask _array_body_type[T_NARROWOOP]. Use NULL as assert.
 629   TypeAryPtr::_array_body_type[T_NARROWOOP] = NULL;
 630   TypeAryPtr::_array_body_type[T_OBJECT]  = TypeAryPtr::OOPS;
 631   TypeAryPtr::_array_body_type[T_ARRAY]   = TypeAryPtr::OOPS; // arrays are stored in oop arrays
 632   TypeAryPtr::_array_body_type[T_VALUETYPE] = TypeAryPtr::OOPS;
 633   TypeAryPtr::_array_body_type[T_BYTE]    = TypeAryPtr::BYTES;
 634   TypeAryPtr::_array_body_type[T_BOOLEAN] = TypeAryPtr::BYTES;  // boolean[] is a byte array
 635   TypeAryPtr::_array_body_type[T_SHORT]   = TypeAryPtr::SHORTS;
 636   TypeAryPtr::_array_body_type[T_CHAR]    = TypeAryPtr::CHARS;
 637   TypeAryPtr::_array_body_type[T_INT]     = TypeAryPtr::INTS;
 638   TypeAryPtr::_array_body_type[T_LONG]    = TypeAryPtr::LONGS;
 639   TypeAryPtr::_array_body_type[T_FLOAT]   = TypeAryPtr::FLOATS;
 640   TypeAryPtr::_array_body_type[T_DOUBLE]  = TypeAryPtr::DOUBLES;
 641 
 642   TypeKlassPtr::OBJECT = TypeKlassPtr::make(TypePtr::NotNull, current->env()->Object_klass(), Offset(0) );
 643   TypeKlassPtr::OBJECT_OR_NULL = TypeKlassPtr::make(TypePtr::BotPTR, current->env()->Object_klass(), Offset(0) );
 644 
 645   const Type **fi2c = TypeTuple::fields(2);
 646   fi2c[TypeFunc::Parms+0] = TypeInstPtr::BOTTOM; // Method*
 647   fi2c[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM; // argument pointer
 648   TypeTuple::START_I2C = TypeTuple::make(TypeFunc::Parms+2, fi2c);
 649 
 650   const Type **intpair = TypeTuple::fields(2);
 651   intpair[0] = TypeInt::INT;
 652   intpair[1] = TypeInt::INT;
 653   TypeTuple::INT_PAIR = TypeTuple::make(2, intpair);
 654 
 655   const Type **longpair = TypeTuple::fields(2);
 656   longpair[0] = TypeLong::LONG;
 657   longpair[1] = TypeLong::LONG;
 658   TypeTuple::LONG_PAIR = TypeTuple::make(2, longpair);
 659 
 660   const Type **intccpair = TypeTuple::fields(2);
 661   intccpair[0] = TypeInt::INT;
 662   intccpair[1] = TypeInt::CC;
 663   TypeTuple::INT_CC_PAIR = TypeTuple::make(2, intccpair);
 664 
 665   const Type **longccpair = TypeTuple::fields(2);
 666   longccpair[0] = TypeLong::LONG;
 667   longccpair[1] = TypeInt::CC;
 668   TypeTuple::LONG_CC_PAIR = TypeTuple::make(2, longccpair);
 669 
 670   _const_basic_type[T_NARROWOOP]   = TypeNarrowOop::BOTTOM;
 671   _const_basic_type[T_NARROWKLASS] = Type::BOTTOM;
 672   _const_basic_type[T_BOOLEAN]     = TypeInt::BOOL;
 673   _const_basic_type[T_CHAR]        = TypeInt::CHAR;
 674   _const_basic_type[T_BYTE]        = TypeInt::BYTE;
 675   _const_basic_type[T_SHORT]       = TypeInt::SHORT;
 676   _const_basic_type[T_INT]         = TypeInt::INT;
 677   _const_basic_type[T_LONG]        = TypeLong::LONG;
 678   _const_basic_type[T_FLOAT]       = Type::FLOAT;
 679   _const_basic_type[T_DOUBLE]      = Type::DOUBLE;
 680   _const_basic_type[T_OBJECT]      = TypeInstPtr::BOTTOM;
 681   _const_basic_type[T_ARRAY]       = TypeInstPtr::BOTTOM; // there is no separate bottom for arrays
 682   _const_basic_type[T_VALUETYPE]   = TypeInstPtr::BOTTOM;
 683   _const_basic_type[T_VOID]        = TypePtr::NULL_PTR;   // reflection represents void this way
 684   _const_basic_type[T_ADDRESS]     = TypeRawPtr::BOTTOM;  // both interpreter return addresses & random raw ptrs
 685   _const_basic_type[T_CONFLICT]    = Type::BOTTOM;        // why not?
 686 
 687   _zero_type[T_NARROWOOP]   = TypeNarrowOop::NULL_PTR;
 688   _zero_type[T_NARROWKLASS] = TypeNarrowKlass::NULL_PTR;
 689   _zero_type[T_BOOLEAN]     = TypeInt::ZERO;     // false == 0
 690   _zero_type[T_CHAR]        = TypeInt::ZERO;     // '\0' == 0
 691   _zero_type[T_BYTE]        = TypeInt::ZERO;     // 0x00 == 0
 692   _zero_type[T_SHORT]       = TypeInt::ZERO;     // 0x0000 == 0
 693   _zero_type[T_INT]         = TypeInt::ZERO;
 694   _zero_type[T_LONG]        = TypeLong::ZERO;
 695   _zero_type[T_FLOAT]       = TypeF::ZERO;
 696   _zero_type[T_DOUBLE]      = TypeD::ZERO;
 697   _zero_type[T_OBJECT]      = TypePtr::NULL_PTR;
 698   _zero_type[T_ARRAY]       = TypePtr::NULL_PTR; // null array is null oop
 699   _zero_type[T_VALUETYPE]   = TypePtr::NULL_PTR;
 700   _zero_type[T_ADDRESS]     = TypePtr::NULL_PTR; // raw pointers use the same null
 701   _zero_type[T_VOID]        = Type::TOP;         // the only void value is no value at all
 702 
 703   // get_zero_type() should not happen for T_CONFLICT
 704   _zero_type[T_CONFLICT]= NULL;
 705 
 706   // Vector predefined types, it needs initialized _const_basic_type[].
 707   if (Matcher::vector_size_supported(T_BYTE,4)) {
 708     TypeVect::VECTS = TypeVect::make(T_BYTE,4);
 709   }
 710   if (Matcher::vector_size_supported(T_FLOAT,2)) {
 711     TypeVect::VECTD = TypeVect::make(T_FLOAT,2);
 712   }
 713   if (Matcher::vector_size_supported(T_FLOAT,4)) {
 714     TypeVect::VECTX = TypeVect::make(T_FLOAT,4);
 715   }
 716   if (Matcher::vector_size_supported(T_FLOAT,8)) {
 717     TypeVect::VECTY = TypeVect::make(T_FLOAT,8);
 718   }
 719   if (Matcher::vector_size_supported(T_FLOAT,16)) {
 720     TypeVect::VECTZ = TypeVect::make(T_FLOAT,16);
 721   }
 722   mreg2type[Op_VecS] = TypeVect::VECTS;
 723   mreg2type[Op_VecD] = TypeVect::VECTD;
 724   mreg2type[Op_VecX] = TypeVect::VECTX;
 725   mreg2type[Op_VecY] = TypeVect::VECTY;
 726   mreg2type[Op_VecZ] = TypeVect::VECTZ;
 727 
 728   // Restore working type arena.
 729   current->set_type_arena(save);
 730   current->set_type_dict(NULL);
 731 }
 732 
 733 //------------------------------Initialize-------------------------------------
 734 void Type::Initialize(Compile* current) {
 735   assert(current->type_arena() != NULL, "must have created type arena");
 736 
 737   if (_shared_type_dict == NULL) {
 738     Initialize_shared(current);
 739   }
 740 
 741   Arena* type_arena = current->type_arena();
 742 
 743   // Create the hash-cons'ing dictionary with top-level storage allocation
 744   Dict *tdic = new (type_arena) Dict( (CmpKey)Type::cmp,(Hash)Type::uhash, type_arena, 128 );
 745   current->set_type_dict(tdic);
 746 
 747   // Transfer the shared types.
 748   DictI i(_shared_type_dict);
 749   for( ; i.test(); ++i ) {
 750     Type* t = (Type*)i._value;
 751     tdic->Insert(t,t);  // New Type, insert into Type table
 752   }
 753 }
 754 
 755 //------------------------------hashcons---------------------------------------
 756 // Do the hash-cons trick.  If the Type already exists in the type table,
 757 // delete the current Type and return the existing Type.  Otherwise stick the
 758 // current Type in the Type table.
 759 const Type *Type::hashcons(void) {
 760   debug_only(base());           // Check the assertion in Type::base().
 761   // Look up the Type in the Type dictionary
 762   Dict *tdic = type_dict();
 763   Type* old = (Type*)(tdic->Insert(this, this, false));
 764   if( old ) {                   // Pre-existing Type?
 765     if( old != this )           // Yes, this guy is not the pre-existing?
 766       delete this;              // Yes, Nuke this guy
 767     assert( old->_dual, "" );
 768     return old;                 // Return pre-existing
 769   }
 770 
 771   // Every type has a dual (to make my lattice symmetric).
 772   // Since we just discovered a new Type, compute its dual right now.
 773   assert( !_dual, "" );         // No dual yet
 774   _dual = xdual();              // Compute the dual
 775   if( cmp(this,_dual)==0 ) {    // Handle self-symmetric
 776     _dual = this;
 777     return this;
 778   }
 779   assert( !_dual->_dual, "" );  // No reverse dual yet
 780   assert( !(*tdic)[_dual], "" ); // Dual not in type system either
 781   // New Type, insert into Type table
 782   tdic->Insert((void*)_dual,(void*)_dual);
 783   ((Type*)_dual)->_dual = this; // Finish up being symmetric
 784 #ifdef ASSERT
 785   Type *dual_dual = (Type*)_dual->xdual();
 786   assert( eq(dual_dual), "xdual(xdual()) should be identity" );
 787   delete dual_dual;
 788 #endif
 789   return this;                  // Return new Type
 790 }
 791 
 792 //------------------------------eq---------------------------------------------
 793 // Structural equality check for Type representations
 794 bool Type::eq( const Type * ) const {
 795   return true;                  // Nothing else can go wrong
 796 }
 797 
 798 //------------------------------hash-------------------------------------------
 799 // Type-specific hashing function.
 800 int Type::hash(void) const {
 801   return _base;
 802 }
 803 
 804 //------------------------------is_finite--------------------------------------
 805 // Has a finite value
 806 bool Type::is_finite() const {
 807   return false;
 808 }
 809 
 810 //------------------------------is_nan-----------------------------------------
 811 // Is not a number (NaN)
 812 bool Type::is_nan()    const {
 813   return false;
 814 }
 815 
 816 //----------------------interface_vs_oop---------------------------------------
 817 #ifdef ASSERT
 818 bool Type::interface_vs_oop_helper(const Type *t) const {
 819   bool result = false;
 820 
 821   const TypePtr* this_ptr = this->make_ptr(); // In case it is narrow_oop
 822   const TypePtr*    t_ptr =    t->make_ptr();
 823   if( this_ptr == NULL || t_ptr == NULL )
 824     return result;
 825 
 826   const TypeInstPtr* this_inst = this_ptr->isa_instptr();
 827   const TypeInstPtr*    t_inst =    t_ptr->isa_instptr();
 828   if( this_inst && this_inst->is_loaded() && t_inst && t_inst->is_loaded() ) {
 829     bool this_interface = this_inst->klass()->is_interface();
 830     bool    t_interface =    t_inst->klass()->is_interface();
 831     result = this_interface ^ t_interface;
 832   }
 833 
 834   return result;
 835 }
 836 
 837 bool Type::interface_vs_oop(const Type *t) const {
 838   if (interface_vs_oop_helper(t)) {
 839     return true;
 840   }
 841   // Now check the speculative parts as well
 842   const TypePtr* this_spec = isa_ptr() != NULL ? is_ptr()->speculative() : NULL;
 843   const TypePtr* t_spec = t->isa_ptr() != NULL ? t->is_ptr()->speculative() : NULL;
 844   if (this_spec != NULL && t_spec != NULL) {
 845     if (this_spec->interface_vs_oop_helper(t_spec)) {
 846       return true;
 847     }
 848     return false;
 849   }
 850   if (this_spec != NULL && this_spec->interface_vs_oop_helper(t)) {
 851     return true;
 852   }
 853   if (t_spec != NULL && interface_vs_oop_helper(t_spec)) {
 854     return true;
 855   }
 856   return false;
 857 }
 858 
 859 #endif
 860 
 861 //------------------------------meet-------------------------------------------
 862 // Compute the MEET of two types.  NOT virtual.  It enforces that meet is
 863 // commutative and the lattice is symmetric.
 864 const Type *Type::meet_helper(const Type *t, bool include_speculative) const {
 865   if (isa_narrowoop() && t->isa_narrowoop()) {
 866     const Type* result = make_ptr()->meet_helper(t->make_ptr(), include_speculative);
 867     return result->make_narrowoop();
 868   }
 869   if (isa_narrowklass() && t->isa_narrowklass()) {
 870     const Type* result = make_ptr()->meet_helper(t->make_ptr(), include_speculative);
 871     return result->make_narrowklass();
 872   }
 873 
 874   const Type *this_t = maybe_remove_speculative(include_speculative);
 875   t = t->maybe_remove_speculative(include_speculative);
 876 
 877   const Type *mt = this_t->xmeet(t);
 878   if (isa_narrowoop() || t->isa_narrowoop()) return mt;
 879   if (isa_narrowklass() || t->isa_narrowklass()) return mt;
 880 #ifdef ASSERT
 881   assert(mt == t->xmeet(this_t), "meet not commutative");
 882   const Type* dual_join = mt->_dual;
 883   const Type *t2t    = dual_join->xmeet(t->_dual);
 884   const Type *t2this = dual_join->xmeet(this_t->_dual);
 885 
 886   // Interface meet Oop is Not Symmetric:
 887   // Interface:AnyNull meet Oop:AnyNull == Interface:AnyNull
 888   // Interface:NotNull meet Oop:NotNull == java/lang/Object:NotNull
 889 
 890   if( !interface_vs_oop(t) && (t2t != t->_dual || t2this != this_t->_dual) ) {
 891     tty->print_cr("=== Meet Not Symmetric ===");
 892     tty->print("t   =                   ");              t->dump(); tty->cr();
 893     tty->print("this=                   ");         this_t->dump(); tty->cr();
 894     tty->print("mt=(t meet this)=       ");             mt->dump(); tty->cr();
 895 
 896     tty->print("t_dual=                 ");       t->_dual->dump(); tty->cr();
 897     tty->print("this_dual=              ");  this_t->_dual->dump(); tty->cr();
 898     tty->print("mt_dual=                ");      mt->_dual->dump(); tty->cr();
 899 
 900     tty->print("mt_dual meet t_dual=    "); t2t           ->dump(); tty->cr();
 901     tty->print("mt_dual meet this_dual= "); t2this        ->dump(); tty->cr();
 902 
 903     fatal("meet not symmetric" );
 904   }
 905 #endif
 906   return mt;
 907 }
 908 
 909 //------------------------------xmeet------------------------------------------
 910 // Compute the MEET of two types.  It returns a new Type object.
 911 const Type *Type::xmeet( const Type *t ) const {
 912   // Perform a fast test for common case; meeting the same types together.
 913   if( this == t ) return this;  // Meeting same type-rep?
 914 
 915   // Meeting TOP with anything?
 916   if( _base == Top ) return t;
 917 
 918   // Meeting BOTTOM with anything?
 919   if( _base == Bottom ) return BOTTOM;
 920 
 921   // Current "this->_base" is one of: Bad, Multi, Control, Top,
 922   // Abio, Abstore, Floatxxx, Doublexxx, Bottom, lastype.
 923   switch (t->base()) {  // Switch on original type
 924 
 925   // Cut in half the number of cases I must handle.  Only need cases for when
 926   // the given enum "t->type" is less than or equal to the local enum "type".
 927   case FloatCon:
 928   case DoubleCon:
 929   case Int:
 930   case Long:
 931     return t->xmeet(this);
 932 
 933   case OopPtr:
 934     return t->xmeet(this);
 935 
 936   case InstPtr:
 937   case ValueTypePtr:
 938     return t->xmeet(this);
 939 
 940   case MetadataPtr:
 941   case KlassPtr:
 942     return t->xmeet(this);
 943 
 944   case AryPtr:
 945     return t->xmeet(this);
 946 
 947   case NarrowOop:
 948     return t->xmeet(this);
 949 
 950   case NarrowKlass:
 951     return t->xmeet(this);
 952 
 953   case ValueType:
 954     return t->xmeet(this);
 955 
 956   case Bad:                     // Type check
 957   default:                      // Bogus type not in lattice
 958     typerr(t);
 959     return Type::BOTTOM;
 960 
 961   case Bottom:                  // Ye Olde Default
 962     return t;
 963 
 964   case FloatTop:
 965     if( _base == FloatTop ) return this;
 966   case FloatBot:                // Float
 967     if( _base == FloatBot || _base == FloatTop ) return FLOAT;
 968     if( _base == DoubleTop || _base == DoubleBot ) return Type::BOTTOM;
 969     typerr(t);
 970     return Type::BOTTOM;
 971 
 972   case DoubleTop:
 973     if( _base == DoubleTop ) return this;
 974   case DoubleBot:               // Double
 975     if( _base == DoubleBot || _base == DoubleTop ) return DOUBLE;
 976     if( _base == FloatTop || _base == FloatBot ) return Type::BOTTOM;
 977     typerr(t);
 978     return Type::BOTTOM;
 979 
 980   // These next few cases must match exactly or it is a compile-time error.
 981   case Control:                 // Control of code
 982   case Abio:                    // State of world outside of program
 983   case Memory:
 984     if( _base == t->_base )  return this;
 985     typerr(t);
 986     return Type::BOTTOM;
 987 
 988   case Top:                     // Top of the lattice
 989     return this;
 990   }
 991 
 992   // The type is unchanged
 993   return this;
 994 }
 995 
 996 //-----------------------------filter------------------------------------------
 997 const Type *Type::filter_helper(const Type *kills, bool include_speculative) const {
 998   const Type* ft = join_helper(kills, include_speculative);
 999   if (ft->empty())
1000     return Type::TOP;           // Canonical empty value
1001   return ft;
1002 }
1003 
1004 //------------------------------xdual------------------------------------------
1005 // Compute dual right now.
1006 const Type::TYPES Type::dual_type[Type::lastype] = {
1007   Bad,          // Bad
1008   Control,      // Control
1009   Bottom,       // Top
1010   Bad,          // Int - handled in v-call
1011   Bad,          // Long - handled in v-call
1012   Half,         // Half
1013   Bad,          // NarrowOop - handled in v-call
1014   Bad,          // NarrowKlass - handled in v-call
1015 
1016   Bad,          // Tuple - handled in v-call
1017   Bad,          // Array - handled in v-call
1018   Bad,          // VectorS - handled in v-call
1019   Bad,          // VectorD - handled in v-call
1020   Bad,          // VectorX - handled in v-call
1021   Bad,          // VectorY - handled in v-call
1022   Bad,          // VectorZ - handled in v-call
1023   Bad,          // ValueType - handled in v-call
1024 
1025   Bad,          // AnyPtr - handled in v-call
1026   Bad,          // RawPtr - handled in v-call
1027   Bad,          // OopPtr - handled in v-call
1028   Bad,          // InstPtr - handled in v-call
1029   Bad,          // ValueTypePtr - handled in v-call
1030   Bad,          // AryPtr - handled in v-call
1031 
1032   Bad,          //  MetadataPtr - handled in v-call
1033   Bad,          // KlassPtr - handled in v-call
1034 
1035   Bad,          // Function - handled in v-call
1036   Abio,         // Abio
1037   Return_Address,// Return_Address
1038   Memory,       // Memory
1039   FloatBot,     // FloatTop
1040   FloatCon,     // FloatCon
1041   FloatTop,     // FloatBot
1042   DoubleBot,    // DoubleTop
1043   DoubleCon,    // DoubleCon
1044   DoubleTop,    // DoubleBot
1045   Top           // Bottom
1046 };
1047 
1048 const Type *Type::xdual() const {
1049   // Note: the base() accessor asserts the sanity of _base.
1050   assert(_type_info[base()].dual_type != Bad, "implement with v-call");
1051   return new Type(_type_info[_base].dual_type);
1052 }
1053 
1054 //------------------------------has_memory-------------------------------------
1055 bool Type::has_memory() const {
1056   Type::TYPES tx = base();
1057   if (tx == Memory) return true;
1058   if (tx == Tuple) {
1059     const TypeTuple *t = is_tuple();
1060     for (uint i=0; i < t->cnt(); i++) {
1061       tx = t->field_at(i)->base();
1062       if (tx == Memory)  return true;
1063     }
1064   }
1065   return false;
1066 }
1067 
1068 #ifndef PRODUCT
1069 //------------------------------dump2------------------------------------------
1070 void Type::dump2( Dict &d, uint depth, outputStream *st ) const {
1071   st->print("%s", _type_info[_base].msg);
1072 }
1073 
1074 //------------------------------dump-------------------------------------------
1075 void Type::dump_on(outputStream *st) const {
1076   ResourceMark rm;
1077   Dict d(cmpkey,hashkey);       // Stop recursive type dumping
1078   dump2(d,1, st);
1079   if (is_ptr_to_narrowoop()) {
1080     st->print(" [narrow]");
1081   } else if (is_ptr_to_narrowklass()) {
1082     st->print(" [narrowklass]");
1083   }
1084 }
1085 
1086 //-----------------------------------------------------------------------------
1087 const char* Type::str(const Type* t) {
1088   stringStream ss;
1089   t->dump_on(&ss);
1090   return ss.as_string();
1091 }
1092 #endif
1093 
1094 //------------------------------singleton--------------------------------------
1095 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
1096 // constants (Ldi nodes).  Singletons are integer, float or double constants.
1097 bool Type::singleton(void) const {
1098   return _base == Top || _base == Half;
1099 }
1100 
1101 //------------------------------empty------------------------------------------
1102 // TRUE if Type is a type with no values, FALSE otherwise.
1103 bool Type::empty(void) const {
1104   switch (_base) {
1105   case DoubleTop:
1106   case FloatTop:
1107   case Top:
1108     return true;
1109 
1110   case Half:
1111   case Abio:
1112   case Return_Address:
1113   case Memory:
1114   case Bottom:
1115   case FloatBot:
1116   case DoubleBot:
1117     return false;  // never a singleton, therefore never empty
1118   }
1119 
1120   ShouldNotReachHere();
1121   return false;
1122 }
1123 
1124 //------------------------------dump_stats-------------------------------------
1125 // Dump collected statistics to stderr
1126 #ifndef PRODUCT
1127 void Type::dump_stats() {
1128   tty->print("Types made: %d\n", type_dict()->Size());
1129 }
1130 #endif
1131 
1132 //------------------------------typerr-----------------------------------------
1133 void Type::typerr( const Type *t ) const {
1134 #ifndef PRODUCT
1135   tty->print("\nError mixing types: ");
1136   dump();
1137   tty->print(" and ");
1138   t->dump();
1139   tty->print("\n");
1140 #endif
1141   ShouldNotReachHere();
1142 }
1143 
1144 
1145 //=============================================================================
1146 // Convenience common pre-built types.
1147 const TypeF *TypeF::ZERO;       // Floating point zero
1148 const TypeF *TypeF::ONE;        // Floating point one
1149 
1150 //------------------------------make-------------------------------------------
1151 // Create a float constant
1152 const TypeF *TypeF::make(float f) {
1153   return (TypeF*)(new TypeF(f))->hashcons();
1154 }
1155 
1156 //------------------------------meet-------------------------------------------
1157 // Compute the MEET of two types.  It returns a new Type object.
1158 const Type *TypeF::xmeet( const Type *t ) const {
1159   // Perform a fast test for common case; meeting the same types together.
1160   if( this == t ) return this;  // Meeting same type-rep?
1161 
1162   // Current "this->_base" is FloatCon
1163   switch (t->base()) {          // Switch on original type
1164   case AnyPtr:                  // Mixing with oops happens when javac
1165   case RawPtr:                  // reuses local variables
1166   case OopPtr:
1167   case InstPtr:
1168   case ValueTypePtr:
1169   case AryPtr:
1170   case MetadataPtr:
1171   case KlassPtr:
1172   case NarrowOop:
1173   case NarrowKlass:
1174   case Int:
1175   case Long:
1176   case DoubleTop:
1177   case DoubleCon:
1178   case DoubleBot:
1179   case Bottom:                  // Ye Olde Default
1180     return Type::BOTTOM;
1181 
1182   case FloatBot:
1183     return t;
1184 
1185   default:                      // All else is a mistake
1186     typerr(t);
1187 
1188   case FloatCon:                // Float-constant vs Float-constant?
1189     if( jint_cast(_f) != jint_cast(t->getf()) )         // unequal constants?
1190                                 // must compare bitwise as positive zero, negative zero and NaN have
1191                                 // all the same representation in C++
1192       return FLOAT;             // Return generic float
1193                                 // Equal constants
1194   case Top:
1195   case FloatTop:
1196     break;                      // Return the float constant
1197   }
1198   return this;                  // Return the float constant
1199 }
1200 
1201 //------------------------------xdual------------------------------------------
1202 // Dual: symmetric
1203 const Type *TypeF::xdual() const {
1204   return this;
1205 }
1206 
1207 //------------------------------eq---------------------------------------------
1208 // Structural equality check for Type representations
1209 bool TypeF::eq(const Type *t) const {
1210   // Bitwise comparison to distinguish between +/-0. These values must be treated
1211   // as different to be consistent with C1 and the interpreter.
1212   return (jint_cast(_f) == jint_cast(t->getf()));
1213 }
1214 
1215 //------------------------------hash-------------------------------------------
1216 // Type-specific hashing function.
1217 int TypeF::hash(void) const {
1218   return *(int*)(&_f);
1219 }
1220 
1221 //------------------------------is_finite--------------------------------------
1222 // Has a finite value
1223 bool TypeF::is_finite() const {
1224   return g_isfinite(getf()) != 0;
1225 }
1226 
1227 //------------------------------is_nan-----------------------------------------
1228 // Is not a number (NaN)
1229 bool TypeF::is_nan()    const {
1230   return g_isnan(getf()) != 0;
1231 }
1232 
1233 //------------------------------dump2------------------------------------------
1234 // Dump float constant Type
1235 #ifndef PRODUCT
1236 void TypeF::dump2( Dict &d, uint depth, outputStream *st ) const {
1237   Type::dump2(d,depth, st);
1238   st->print("%f", _f);
1239 }
1240 #endif
1241 
1242 //------------------------------singleton--------------------------------------
1243 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
1244 // constants (Ldi nodes).  Singletons are integer, float or double constants
1245 // or a single symbol.
1246 bool TypeF::singleton(void) const {
1247   return true;                  // Always a singleton
1248 }
1249 
1250 bool TypeF::empty(void) const {
1251   return false;                 // always exactly a singleton
1252 }
1253 
1254 //=============================================================================
1255 // Convenience common pre-built types.
1256 const TypeD *TypeD::ZERO;       // Floating point zero
1257 const TypeD *TypeD::ONE;        // Floating point one
1258 
1259 //------------------------------make-------------------------------------------
1260 const TypeD *TypeD::make(double d) {
1261   return (TypeD*)(new TypeD(d))->hashcons();
1262 }
1263 
1264 //------------------------------meet-------------------------------------------
1265 // Compute the MEET of two types.  It returns a new Type object.
1266 const Type *TypeD::xmeet( const Type *t ) const {
1267   // Perform a fast test for common case; meeting the same types together.
1268   if( this == t ) return this;  // Meeting same type-rep?
1269 
1270   // Current "this->_base" is DoubleCon
1271   switch (t->base()) {          // Switch on original type
1272   case AnyPtr:                  // Mixing with oops happens when javac
1273   case RawPtr:                  // reuses local variables
1274   case OopPtr:
1275   case InstPtr:
1276   case ValueTypePtr:
1277   case AryPtr:
1278   case MetadataPtr:
1279   case KlassPtr:
1280   case NarrowOop:
1281   case NarrowKlass:
1282   case Int:
1283   case Long:
1284   case FloatTop:
1285   case FloatCon:
1286   case FloatBot:
1287   case Bottom:                  // Ye Olde Default
1288     return Type::BOTTOM;
1289 
1290   case DoubleBot:
1291     return t;
1292 
1293   default:                      // All else is a mistake
1294     typerr(t);
1295 
1296   case DoubleCon:               // Double-constant vs Double-constant?
1297     if( jlong_cast(_d) != jlong_cast(t->getd()) )       // unequal constants? (see comment in TypeF::xmeet)
1298       return DOUBLE;            // Return generic double
1299   case Top:
1300   case DoubleTop:
1301     break;
1302   }
1303   return this;                  // Return the double constant
1304 }
1305 
1306 //------------------------------xdual------------------------------------------
1307 // Dual: symmetric
1308 const Type *TypeD::xdual() const {
1309   return this;
1310 }
1311 
1312 //------------------------------eq---------------------------------------------
1313 // Structural equality check for Type representations
1314 bool TypeD::eq(const Type *t) const {
1315   // Bitwise comparison to distinguish between +/-0. These values must be treated
1316   // as different to be consistent with C1 and the interpreter.
1317   return (jlong_cast(_d) == jlong_cast(t->getd()));
1318 }
1319 
1320 //------------------------------hash-------------------------------------------
1321 // Type-specific hashing function.
1322 int TypeD::hash(void) const {
1323   return *(int*)(&_d);
1324 }
1325 
1326 //------------------------------is_finite--------------------------------------
1327 // Has a finite value
1328 bool TypeD::is_finite() const {
1329   return g_isfinite(getd()) != 0;
1330 }
1331 
1332 //------------------------------is_nan-----------------------------------------
1333 // Is not a number (NaN)
1334 bool TypeD::is_nan()    const {
1335   return g_isnan(getd()) != 0;
1336 }
1337 
1338 //------------------------------dump2------------------------------------------
1339 // Dump double constant Type
1340 #ifndef PRODUCT
1341 void TypeD::dump2( Dict &d, uint depth, outputStream *st ) const {
1342   Type::dump2(d,depth,st);
1343   st->print("%f", _d);
1344 }
1345 #endif
1346 
1347 //------------------------------singleton--------------------------------------
1348 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
1349 // constants (Ldi nodes).  Singletons are integer, float or double constants
1350 // or a single symbol.
1351 bool TypeD::singleton(void) const {
1352   return true;                  // Always a singleton
1353 }
1354 
1355 bool TypeD::empty(void) const {
1356   return false;                 // always exactly a singleton
1357 }
1358 
1359 //=============================================================================
1360 // Convience common pre-built types.
1361 const TypeInt *TypeInt::MINUS_1;// -1
1362 const TypeInt *TypeInt::ZERO;   // 0
1363 const TypeInt *TypeInt::ONE;    // 1
1364 const TypeInt *TypeInt::BOOL;   // 0 or 1, FALSE or TRUE.
1365 const TypeInt *TypeInt::CC;     // -1,0 or 1, condition codes
1366 const TypeInt *TypeInt::CC_LT;  // [-1]  == MINUS_1
1367 const TypeInt *TypeInt::CC_GT;  // [1]   == ONE
1368 const TypeInt *TypeInt::CC_EQ;  // [0]   == ZERO
1369 const TypeInt *TypeInt::CC_LE;  // [-1,0]
1370 const TypeInt *TypeInt::CC_GE;  // [0,1] == BOOL (!)
1371 const TypeInt *TypeInt::BYTE;   // Bytes, -128 to 127
1372 const TypeInt *TypeInt::UBYTE;  // Unsigned Bytes, 0 to 255
1373 const TypeInt *TypeInt::CHAR;   // Java chars, 0-65535
1374 const TypeInt *TypeInt::SHORT;  // Java shorts, -32768-32767
1375 const TypeInt *TypeInt::POS;    // Positive 32-bit integers or zero
1376 const TypeInt *TypeInt::POS1;   // Positive 32-bit integers
1377 const TypeInt *TypeInt::INT;    // 32-bit integers
1378 const TypeInt *TypeInt::SYMINT; // symmetric range [-max_jint..max_jint]
1379 const TypeInt *TypeInt::TYPE_DOMAIN; // alias for TypeInt::INT
1380 
1381 //------------------------------TypeInt----------------------------------------
1382 TypeInt::TypeInt( jint lo, jint hi, int w ) : Type(Int), _lo(lo), _hi(hi), _widen(w) {
1383 }
1384 
1385 //------------------------------make-------------------------------------------
1386 const TypeInt *TypeInt::make( jint lo ) {
1387   return (TypeInt*)(new TypeInt(lo,lo,WidenMin))->hashcons();
1388 }
1389 
1390 static int normalize_int_widen( jint lo, jint hi, int w ) {
1391   // Certain normalizations keep us sane when comparing types.
1392   // The 'SMALLINT' covers constants and also CC and its relatives.
1393   if (lo <= hi) {
1394     if (((juint)hi - lo) <= SMALLINT)  w = Type::WidenMin;
1395     if (((juint)hi - lo) >= max_juint) w = Type::WidenMax; // TypeInt::INT
1396   } else {
1397     if (((juint)lo - hi) <= SMALLINT)  w = Type::WidenMin;
1398     if (((juint)lo - hi) >= max_juint) w = Type::WidenMin; // dual TypeInt::INT
1399   }
1400   return w;
1401 }
1402 
1403 const TypeInt *TypeInt::make( jint lo, jint hi, int w ) {
1404   w = normalize_int_widen(lo, hi, w);
1405   return (TypeInt*)(new TypeInt(lo,hi,w))->hashcons();
1406 }
1407 
1408 //------------------------------meet-------------------------------------------
1409 // Compute the MEET of two types.  It returns a new Type representation object
1410 // with reference count equal to the number of Types pointing at it.
1411 // Caller should wrap a Types around it.
1412 const Type *TypeInt::xmeet( const Type *t ) const {
1413   // Perform a fast test for common case; meeting the same types together.
1414   if( this == t ) return this;  // Meeting same type?
1415 
1416   // Currently "this->_base" is a TypeInt
1417   switch (t->base()) {          // Switch on original type
1418   case AnyPtr:                  // Mixing with oops happens when javac
1419   case RawPtr:                  // reuses local variables
1420   case OopPtr:
1421   case InstPtr:
1422   case ValueTypePtr:
1423   case AryPtr:
1424   case MetadataPtr:
1425   case KlassPtr:
1426   case NarrowOop:
1427   case NarrowKlass:
1428   case Long:
1429   case FloatTop:
1430   case FloatCon:
1431   case FloatBot:
1432   case DoubleTop:
1433   case DoubleCon:
1434   case DoubleBot:
1435   case Bottom:                  // Ye Olde Default
1436     return Type::BOTTOM;
1437   default:                      // All else is a mistake
1438     typerr(t);
1439   case Top:                     // No change
1440     return this;
1441   case Int:                     // Int vs Int?
1442     break;
1443   }
1444 
1445   // Expand covered set
1446   const TypeInt *r = t->is_int();
1447   return make( MIN2(_lo,r->_lo), MAX2(_hi,r->_hi), MAX2(_widen,r->_widen) );
1448 }
1449 
1450 //------------------------------xdual------------------------------------------
1451 // Dual: reverse hi & lo; flip widen
1452 const Type *TypeInt::xdual() const {
1453   int w = normalize_int_widen(_hi,_lo, WidenMax-_widen);
1454   return new TypeInt(_hi,_lo,w);
1455 }
1456 
1457 //------------------------------widen------------------------------------------
1458 // Only happens for optimistic top-down optimizations.
1459 const Type *TypeInt::widen( const Type *old, const Type* limit ) const {
1460   // Coming from TOP or such; no widening
1461   if( old->base() != Int ) return this;
1462   const TypeInt *ot = old->is_int();
1463 
1464   // If new guy is equal to old guy, no widening
1465   if( _lo == ot->_lo && _hi == ot->_hi )
1466     return old;
1467 
1468   // If new guy contains old, then we widened
1469   if( _lo <= ot->_lo && _hi >= ot->_hi ) {
1470     // New contains old
1471     // If new guy is already wider than old, no widening
1472     if( _widen > ot->_widen ) return this;
1473     // If old guy was a constant, do not bother
1474     if (ot->_lo == ot->_hi)  return this;
1475     // Now widen new guy.
1476     // Check for widening too far
1477     if (_widen == WidenMax) {
1478       int max = max_jint;
1479       int min = min_jint;
1480       if (limit->isa_int()) {
1481         max = limit->is_int()->_hi;
1482         min = limit->is_int()->_lo;
1483       }
1484       if (min < _lo && _hi < max) {
1485         // If neither endpoint is extremal yet, push out the endpoint
1486         // which is closer to its respective limit.
1487         if (_lo >= 0 ||                 // easy common case
1488             (juint)(_lo - min) >= (juint)(max - _hi)) {
1489           // Try to widen to an unsigned range type of 31 bits:
1490           return make(_lo, max, WidenMax);
1491         } else {
1492           return make(min, _hi, WidenMax);
1493         }
1494       }
1495       return TypeInt::INT;
1496     }
1497     // Returned widened new guy
1498     return make(_lo,_hi,_widen+1);
1499   }
1500 
1501   // If old guy contains new, then we probably widened too far & dropped to
1502   // bottom.  Return the wider fellow.
1503   if ( ot->_lo <= _lo && ot->_hi >= _hi )
1504     return old;
1505 
1506   //fatal("Integer value range is not subset");
1507   //return this;
1508   return TypeInt::INT;
1509 }
1510 
1511 //------------------------------narrow---------------------------------------
1512 // Only happens for pessimistic optimizations.
1513 const Type *TypeInt::narrow( const Type *old ) const {
1514   if (_lo >= _hi)  return this;   // already narrow enough
1515   if (old == NULL)  return this;
1516   const TypeInt* ot = old->isa_int();
1517   if (ot == NULL)  return this;
1518   jint olo = ot->_lo;
1519   jint ohi = ot->_hi;
1520 
1521   // If new guy is equal to old guy, no narrowing
1522   if (_lo == olo && _hi == ohi)  return old;
1523 
1524   // If old guy was maximum range, allow the narrowing
1525   if (olo == min_jint && ohi == max_jint)  return this;
1526 
1527   if (_lo < olo || _hi > ohi)
1528     return this;                // doesn't narrow; pretty wierd
1529 
1530   // The new type narrows the old type, so look for a "death march".
1531   // See comments on PhaseTransform::saturate.
1532   juint nrange = (juint)_hi - _lo;
1533   juint orange = (juint)ohi - olo;
1534   if (nrange < max_juint - 1 && nrange > (orange >> 1) + (SMALLINT*2)) {
1535     // Use the new type only if the range shrinks a lot.
1536     // We do not want the optimizer computing 2^31 point by point.
1537     return old;
1538   }
1539 
1540   return this;
1541 }
1542 
1543 //-----------------------------filter------------------------------------------
1544 const Type *TypeInt::filter_helper(const Type *kills, bool include_speculative) const {
1545   const TypeInt* ft = join_helper(kills, include_speculative)->isa_int();
1546   if (ft == NULL || ft->empty())
1547     return Type::TOP;           // Canonical empty value
1548   if (ft->_widen < this->_widen) {
1549     // Do not allow the value of kill->_widen to affect the outcome.
1550     // The widen bits must be allowed to run freely through the graph.
1551     ft = TypeInt::make(ft->_lo, ft->_hi, this->_widen);
1552   }
1553   return ft;
1554 }
1555 
1556 //------------------------------eq---------------------------------------------
1557 // Structural equality check for Type representations
1558 bool TypeInt::eq( const Type *t ) const {
1559   const TypeInt *r = t->is_int(); // Handy access
1560   return r->_lo == _lo && r->_hi == _hi && r->_widen == _widen;
1561 }
1562 
1563 //------------------------------hash-------------------------------------------
1564 // Type-specific hashing function.
1565 int TypeInt::hash(void) const {
1566   return java_add(java_add(_lo, _hi), java_add(_widen, (int)Type::Int));
1567 }
1568 
1569 //------------------------------is_finite--------------------------------------
1570 // Has a finite value
1571 bool TypeInt::is_finite() const {
1572   return true;
1573 }
1574 
1575 //------------------------------dump2------------------------------------------
1576 // Dump TypeInt
1577 #ifndef PRODUCT
1578 static const char* intname(char* buf, jint n) {
1579   if (n == min_jint)
1580     return "min";
1581   else if (n < min_jint + 10000)
1582     sprintf(buf, "min+" INT32_FORMAT, n - min_jint);
1583   else if (n == max_jint)
1584     return "max";
1585   else if (n > max_jint - 10000)
1586     sprintf(buf, "max-" INT32_FORMAT, max_jint - n);
1587   else
1588     sprintf(buf, INT32_FORMAT, n);
1589   return buf;
1590 }
1591 
1592 void TypeInt::dump2( Dict &d, uint depth, outputStream *st ) const {
1593   char buf[40], buf2[40];
1594   if (_lo == min_jint && _hi == max_jint)
1595     st->print("int");
1596   else if (is_con())
1597     st->print("int:%s", intname(buf, get_con()));
1598   else if (_lo == BOOL->_lo && _hi == BOOL->_hi)
1599     st->print("bool");
1600   else if (_lo == BYTE->_lo && _hi == BYTE->_hi)
1601     st->print("byte");
1602   else if (_lo == CHAR->_lo && _hi == CHAR->_hi)
1603     st->print("char");
1604   else if (_lo == SHORT->_lo && _hi == SHORT->_hi)
1605     st->print("short");
1606   else if (_hi == max_jint)
1607     st->print("int:>=%s", intname(buf, _lo));
1608   else if (_lo == min_jint)
1609     st->print("int:<=%s", intname(buf, _hi));
1610   else
1611     st->print("int:%s..%s", intname(buf, _lo), intname(buf2, _hi));
1612 
1613   if (_widen != 0 && this != TypeInt::INT)
1614     st->print(":%.*s", _widen, "wwww");
1615 }
1616 #endif
1617 
1618 //------------------------------singleton--------------------------------------
1619 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
1620 // constants.
1621 bool TypeInt::singleton(void) const {
1622   return _lo >= _hi;
1623 }
1624 
1625 bool TypeInt::empty(void) const {
1626   return _lo > _hi;
1627 }
1628 
1629 //=============================================================================
1630 // Convenience common pre-built types.
1631 const TypeLong *TypeLong::MINUS_1;// -1
1632 const TypeLong *TypeLong::ZERO; // 0
1633 const TypeLong *TypeLong::ONE;  // 1
1634 const TypeLong *TypeLong::POS;  // >=0
1635 const TypeLong *TypeLong::LONG; // 64-bit integers
1636 const TypeLong *TypeLong::INT;  // 32-bit subrange
1637 const TypeLong *TypeLong::UINT; // 32-bit unsigned subrange
1638 const TypeLong *TypeLong::TYPE_DOMAIN; // alias for TypeLong::LONG
1639 
1640 //------------------------------TypeLong---------------------------------------
1641 TypeLong::TypeLong( jlong lo, jlong hi, int w ) : Type(Long), _lo(lo), _hi(hi), _widen(w) {
1642 }
1643 
1644 //------------------------------make-------------------------------------------
1645 const TypeLong *TypeLong::make( jlong lo ) {
1646   return (TypeLong*)(new TypeLong(lo,lo,WidenMin))->hashcons();
1647 }
1648 
1649 static int normalize_long_widen( jlong lo, jlong hi, int w ) {
1650   // Certain normalizations keep us sane when comparing types.
1651   // The 'SMALLINT' covers constants.
1652   if (lo <= hi) {
1653     if (((julong)hi - lo) <= SMALLINT)   w = Type::WidenMin;
1654     if (((julong)hi - lo) >= max_julong) w = Type::WidenMax; // TypeLong::LONG
1655   } else {
1656     if (((julong)lo - hi) <= SMALLINT)   w = Type::WidenMin;
1657     if (((julong)lo - hi) >= max_julong) w = Type::WidenMin; // dual TypeLong::LONG
1658   }
1659   return w;
1660 }
1661 
1662 const TypeLong *TypeLong::make( jlong lo, jlong hi, int w ) {
1663   w = normalize_long_widen(lo, hi, w);
1664   return (TypeLong*)(new TypeLong(lo,hi,w))->hashcons();
1665 }
1666 
1667 
1668 //------------------------------meet-------------------------------------------
1669 // Compute the MEET of two types.  It returns a new Type representation object
1670 // with reference count equal to the number of Types pointing at it.
1671 // Caller should wrap a Types around it.
1672 const Type *TypeLong::xmeet( const Type *t ) const {
1673   // Perform a fast test for common case; meeting the same types together.
1674   if( this == t ) return this;  // Meeting same type?
1675 
1676   // Currently "this->_base" is a TypeLong
1677   switch (t->base()) {          // Switch on original type
1678   case AnyPtr:                  // Mixing with oops happens when javac
1679   case RawPtr:                  // reuses local variables
1680   case OopPtr:
1681   case InstPtr:
1682   case ValueTypePtr:
1683   case AryPtr:
1684   case MetadataPtr:
1685   case KlassPtr:
1686   case NarrowOop:
1687   case NarrowKlass:
1688   case Int:
1689   case FloatTop:
1690   case FloatCon:
1691   case FloatBot:
1692   case DoubleTop:
1693   case DoubleCon:
1694   case DoubleBot:
1695   case Bottom:                  // Ye Olde Default
1696     return Type::BOTTOM;
1697   default:                      // All else is a mistake
1698     typerr(t);
1699   case Top:                     // No change
1700     return this;
1701   case Long:                    // Long vs Long?
1702     break;
1703   }
1704 
1705   // Expand covered set
1706   const TypeLong *r = t->is_long(); // Turn into a TypeLong
1707   return make( MIN2(_lo,r->_lo), MAX2(_hi,r->_hi), MAX2(_widen,r->_widen) );
1708 }
1709 
1710 //------------------------------xdual------------------------------------------
1711 // Dual: reverse hi & lo; flip widen
1712 const Type *TypeLong::xdual() const {
1713   int w = normalize_long_widen(_hi,_lo, WidenMax-_widen);
1714   return new TypeLong(_hi,_lo,w);
1715 }
1716 
1717 //------------------------------widen------------------------------------------
1718 // Only happens for optimistic top-down optimizations.
1719 const Type *TypeLong::widen( const Type *old, const Type* limit ) const {
1720   // Coming from TOP or such; no widening
1721   if( old->base() != Long ) return this;
1722   const TypeLong *ot = old->is_long();
1723 
1724   // If new guy is equal to old guy, no widening
1725   if( _lo == ot->_lo && _hi == ot->_hi )
1726     return old;
1727 
1728   // If new guy contains old, then we widened
1729   if( _lo <= ot->_lo && _hi >= ot->_hi ) {
1730     // New contains old
1731     // If new guy is already wider than old, no widening
1732     if( _widen > ot->_widen ) return this;
1733     // If old guy was a constant, do not bother
1734     if (ot->_lo == ot->_hi)  return this;
1735     // Now widen new guy.
1736     // Check for widening too far
1737     if (_widen == WidenMax) {
1738       jlong max = max_jlong;
1739       jlong min = min_jlong;
1740       if (limit->isa_long()) {
1741         max = limit->is_long()->_hi;
1742         min = limit->is_long()->_lo;
1743       }
1744       if (min < _lo && _hi < max) {
1745         // If neither endpoint is extremal yet, push out the endpoint
1746         // which is closer to its respective limit.
1747         if (_lo >= 0 ||                 // easy common case
1748             ((julong)_lo - min) >= ((julong)max - _hi)) {
1749           // Try to widen to an unsigned range type of 32/63 bits:
1750           if (max >= max_juint && _hi < max_juint)
1751             return make(_lo, max_juint, WidenMax);
1752           else
1753             return make(_lo, max, WidenMax);
1754         } else {
1755           return make(min, _hi, WidenMax);
1756         }
1757       }
1758       return TypeLong::LONG;
1759     }
1760     // Returned widened new guy
1761     return make(_lo,_hi,_widen+1);
1762   }
1763 
1764   // If old guy contains new, then we probably widened too far & dropped to
1765   // bottom.  Return the wider fellow.
1766   if ( ot->_lo <= _lo && ot->_hi >= _hi )
1767     return old;
1768 
1769   //  fatal("Long value range is not subset");
1770   // return this;
1771   return TypeLong::LONG;
1772 }
1773 
1774 //------------------------------narrow----------------------------------------
1775 // Only happens for pessimistic optimizations.
1776 const Type *TypeLong::narrow( const Type *old ) const {
1777   if (_lo >= _hi)  return this;   // already narrow enough
1778   if (old == NULL)  return this;
1779   const TypeLong* ot = old->isa_long();
1780   if (ot == NULL)  return this;
1781   jlong olo = ot->_lo;
1782   jlong ohi = ot->_hi;
1783 
1784   // If new guy is equal to old guy, no narrowing
1785   if (_lo == olo && _hi == ohi)  return old;
1786 
1787   // If old guy was maximum range, allow the narrowing
1788   if (olo == min_jlong && ohi == max_jlong)  return this;
1789 
1790   if (_lo < olo || _hi > ohi)
1791     return this;                // doesn't narrow; pretty wierd
1792 
1793   // The new type narrows the old type, so look for a "death march".
1794   // See comments on PhaseTransform::saturate.
1795   julong nrange = _hi - _lo;
1796   julong orange = ohi - olo;
1797   if (nrange < max_julong - 1 && nrange > (orange >> 1) + (SMALLINT*2)) {
1798     // Use the new type only if the range shrinks a lot.
1799     // We do not want the optimizer computing 2^31 point by point.
1800     return old;
1801   }
1802 
1803   return this;
1804 }
1805 
1806 //-----------------------------filter------------------------------------------
1807 const Type *TypeLong::filter_helper(const Type *kills, bool include_speculative) const {
1808   const TypeLong* ft = join_helper(kills, include_speculative)->isa_long();
1809   if (ft == NULL || ft->empty())
1810     return Type::TOP;           // Canonical empty value
1811   if (ft->_widen < this->_widen) {
1812     // Do not allow the value of kill->_widen to affect the outcome.
1813     // The widen bits must be allowed to run freely through the graph.
1814     ft = TypeLong::make(ft->_lo, ft->_hi, this->_widen);
1815   }
1816   return ft;
1817 }
1818 
1819 //------------------------------eq---------------------------------------------
1820 // Structural equality check for Type representations
1821 bool TypeLong::eq( const Type *t ) const {
1822   const TypeLong *r = t->is_long(); // Handy access
1823   return r->_lo == _lo &&  r->_hi == _hi  && r->_widen == _widen;
1824 }
1825 
1826 //------------------------------hash-------------------------------------------
1827 // Type-specific hashing function.
1828 int TypeLong::hash(void) const {
1829   return (int)(_lo+_hi+_widen+(int)Type::Long);
1830 }
1831 
1832 //------------------------------is_finite--------------------------------------
1833 // Has a finite value
1834 bool TypeLong::is_finite() const {
1835   return true;
1836 }
1837 
1838 //------------------------------dump2------------------------------------------
1839 // Dump TypeLong
1840 #ifndef PRODUCT
1841 static const char* longnamenear(jlong x, const char* xname, char* buf, jlong n) {
1842   if (n > x) {
1843     if (n >= x + 10000)  return NULL;
1844     sprintf(buf, "%s+" JLONG_FORMAT, xname, n - x);
1845   } else if (n < x) {
1846     if (n <= x - 10000)  return NULL;
1847     sprintf(buf, "%s-" JLONG_FORMAT, xname, x - n);
1848   } else {
1849     return xname;
1850   }
1851   return buf;
1852 }
1853 
1854 static const char* longname(char* buf, jlong n) {
1855   const char* str;
1856   if (n == min_jlong)
1857     return "min";
1858   else if (n < min_jlong + 10000)
1859     sprintf(buf, "min+" JLONG_FORMAT, n - min_jlong);
1860   else if (n == max_jlong)
1861     return "max";
1862   else if (n > max_jlong - 10000)
1863     sprintf(buf, "max-" JLONG_FORMAT, max_jlong - n);
1864   else if ((str = longnamenear(max_juint, "maxuint", buf, n)) != NULL)
1865     return str;
1866   else if ((str = longnamenear(max_jint, "maxint", buf, n)) != NULL)
1867     return str;
1868   else if ((str = longnamenear(min_jint, "minint", buf, n)) != NULL)
1869     return str;
1870   else
1871     sprintf(buf, JLONG_FORMAT, n);
1872   return buf;
1873 }
1874 
1875 void TypeLong::dump2( Dict &d, uint depth, outputStream *st ) const {
1876   char buf[80], buf2[80];
1877   if (_lo == min_jlong && _hi == max_jlong)
1878     st->print("long");
1879   else if (is_con())
1880     st->print("long:%s", longname(buf, get_con()));
1881   else if (_hi == max_jlong)
1882     st->print("long:>=%s", longname(buf, _lo));
1883   else if (_lo == min_jlong)
1884     st->print("long:<=%s", longname(buf, _hi));
1885   else
1886     st->print("long:%s..%s", longname(buf, _lo), longname(buf2, _hi));
1887 
1888   if (_widen != 0 && this != TypeLong::LONG)
1889     st->print(":%.*s", _widen, "wwww");
1890 }
1891 #endif
1892 
1893 //------------------------------singleton--------------------------------------
1894 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
1895 // constants
1896 bool TypeLong::singleton(void) const {
1897   return _lo >= _hi;
1898 }
1899 
1900 bool TypeLong::empty(void) const {
1901   return _lo > _hi;
1902 }
1903 
1904 //=============================================================================
1905 // Convenience common pre-built types.
1906 const TypeTuple *TypeTuple::IFBOTH;     // Return both arms of IF as reachable
1907 const TypeTuple *TypeTuple::IFFALSE;
1908 const TypeTuple *TypeTuple::IFTRUE;
1909 const TypeTuple *TypeTuple::IFNEITHER;
1910 const TypeTuple *TypeTuple::LOOPBODY;
1911 const TypeTuple *TypeTuple::MEMBAR;
1912 const TypeTuple *TypeTuple::STORECONDITIONAL;
1913 const TypeTuple *TypeTuple::START_I2C;
1914 const TypeTuple *TypeTuple::INT_PAIR;
1915 const TypeTuple *TypeTuple::LONG_PAIR;
1916 const TypeTuple *TypeTuple::INT_CC_PAIR;
1917 const TypeTuple *TypeTuple::LONG_CC_PAIR;
1918 
1919 static void collect_value_fields(ciValueKlass* vk, const Type** field_array, uint& pos) {
1920   for (int j = 0; j < vk->nof_nonstatic_fields(); j++) {
1921     ciField* f = vk->nonstatic_field_at(j);
1922     BasicType bt = f->type()->basic_type();
1923     assert(bt < T_VALUETYPE && bt >= T_BOOLEAN, "not yet supported");
1924     field_array[pos++] = Type::get_const_type(f->type());
1925     if (bt == T_LONG || bt == T_DOUBLE) {
1926       field_array[pos++] = Type::HALF;
1927     }
1928   }
1929 }
1930 
1931 //------------------------------make-------------------------------------------
1932 // Make a TypeTuple from the range of a method signature
1933 const TypeTuple *TypeTuple::make_range(ciSignature* sig, bool ret_vt_fields) {
1934   ciType* return_type = sig->return_type();
1935   uint arg_cnt = 0;
1936   if (ret_vt_fields) {
1937     ret_vt_fields = return_type->is_valuetype() && ((ciValueKlass*)return_type)->can_be_returned_as_fields();
1938   }
1939   if (ret_vt_fields) {
1940     ciValueKlass* vk = (ciValueKlass*)return_type;
1941     arg_cnt = vk->value_arg_slots()+1;
1942   } else {
1943     arg_cnt = return_type->size();
1944   }
1945 
1946   const Type **field_array = fields(arg_cnt);
1947   switch (return_type->basic_type()) {
1948   case T_LONG:
1949     field_array[TypeFunc::Parms]   = TypeLong::LONG;
1950     field_array[TypeFunc::Parms+1] = Type::HALF;
1951     break;
1952   case T_DOUBLE:
1953     field_array[TypeFunc::Parms]   = Type::DOUBLE;
1954     field_array[TypeFunc::Parms+1] = Type::HALF;
1955     break;
1956   case T_OBJECT:
1957   case T_ARRAY:
1958   case T_BOOLEAN:
1959   case T_CHAR:
1960   case T_FLOAT:
1961   case T_BYTE:
1962   case T_SHORT:
1963   case T_INT:
1964     field_array[TypeFunc::Parms] = get_const_type(return_type);
1965     break;
1966   case T_VALUETYPE:
1967     if (ret_vt_fields) {
1968       ciValueKlass* vk = (ciValueKlass*)return_type;
1969       uint pos = TypeFunc::Parms;
1970       field_array[pos] = TypeKlassPtr::make(vk);
1971       pos++;
1972       collect_value_fields(vk, field_array, pos);
1973     } else {
1974       field_array[TypeFunc::Parms] = get_const_type(return_type);
1975     }
1976     break;
1977   case T_VOID:
1978     break;
1979   default:
1980     ShouldNotReachHere();
1981   }
1982   return (TypeTuple*)(new TypeTuple(TypeFunc::Parms + arg_cnt, field_array))->hashcons();
1983 }
1984 
1985 // Make a TypeTuple from the domain of a method signature
1986 const TypeTuple *TypeTuple::make_domain(ciInstanceKlass* recv, ciSignature* sig, bool vt_fields_as_args) {
1987   uint arg_cnt = sig->size();
1988 
1989   int vt_extra = 0;
1990   if (vt_fields_as_args) {
1991     for (int i = 0; i < sig->count(); i++) {
1992       ciType* type = sig->type_at(i);
1993       if (type->basic_type() == T_VALUETYPE && type != ciEnv::current()->___Value_klass()) {
1994         assert(type->is_valuetype(), "inconsistent type");
1995         ciValueKlass* vk = (ciValueKlass*)type;
1996         vt_extra += vk->value_arg_slots()-1;
1997       }
1998     }
1999     assert(((int)arg_cnt) + vt_extra >= 0, "negative number of actual arguments?");
2000   }
2001 
2002   uint pos = TypeFunc::Parms;
2003   const Type **field_array;
2004   if (recv != NULL) {
2005     arg_cnt++;
2006     bool vt_fields_for_recv = vt_fields_as_args && recv->is_valuetype() &&
2007       recv != ciEnv::current()->___Value_klass();
2008     if (vt_fields_for_recv) {
2009       ciValueKlass* vk = (ciValueKlass*)recv;
2010       vt_extra += vk->value_arg_slots()-1;
2011     }
2012     field_array = fields(arg_cnt + vt_extra);
2013     // Use get_const_type here because it respects UseUniqueSubclasses:
2014     if (vt_fields_for_recv) {
2015       ciValueKlass* vk = (ciValueKlass*)recv;
2016       collect_value_fields(vk, field_array, pos);
2017     } else {
2018       field_array[pos++] = get_const_type(recv)->join_speculative(TypePtr::NOTNULL);
2019     }
2020   } else {
2021     field_array = fields(arg_cnt + vt_extra);
2022   }
2023 
2024   int i = 0;
2025   while (pos < TypeFunc::Parms + arg_cnt + vt_extra) {
2026     ciType* type = sig->type_at(i);
2027 
2028     switch (type->basic_type()) {
2029     case T_LONG:
2030       field_array[pos++] = TypeLong::LONG;
2031       field_array[pos++] = Type::HALF;
2032       break;
2033     case T_DOUBLE:
2034       field_array[pos++] = Type::DOUBLE;
2035       field_array[pos++] = Type::HALF;
2036       break;
2037     case T_OBJECT:
2038     case T_ARRAY:
2039     case T_FLOAT:
2040     case T_INT:
2041       field_array[pos++] = get_const_type(type);
2042       break;
2043     case T_BOOLEAN:
2044     case T_CHAR:
2045     case T_BYTE:
2046     case T_SHORT:
2047       field_array[pos++] = TypeInt::INT;
2048       break;
2049     case T_VALUETYPE: {
2050       assert(type->is_valuetype(), "inconsistent type");
2051       if (vt_fields_as_args && type != ciEnv::current()->___Value_klass()) {
2052         ciValueKlass* vk = (ciValueKlass*)type;
2053         collect_value_fields(vk, field_array, pos);
2054       } else {
2055         field_array[pos++] = get_const_type(type);
2056       }
2057       break;
2058     }
2059     default:
2060       ShouldNotReachHere();
2061     }
2062     i++;
2063   }
2064   assert(pos == TypeFunc::Parms + arg_cnt + vt_extra, "wrong number of arguments");
2065 
2066   return (TypeTuple*)(new TypeTuple(TypeFunc::Parms + arg_cnt + vt_extra, field_array))->hashcons();
2067 }
2068 
2069 const TypeTuple *TypeTuple::make( uint cnt, const Type **fields ) {
2070   return (TypeTuple*)(new TypeTuple(cnt,fields))->hashcons();
2071 }
2072 
2073 //------------------------------fields-----------------------------------------
2074 // Subroutine call type with space allocated for argument types
2075 // Memory for Control, I_O, Memory, FramePtr, and ReturnAdr is allocated implicitly
2076 const Type **TypeTuple::fields( uint arg_cnt ) {
2077   const Type **flds = (const Type **)(Compile::current()->type_arena()->Amalloc_4((TypeFunc::Parms+arg_cnt)*sizeof(Type*) ));
2078   flds[TypeFunc::Control  ] = Type::CONTROL;
2079   flds[TypeFunc::I_O      ] = Type::ABIO;
2080   flds[TypeFunc::Memory   ] = Type::MEMORY;
2081   flds[TypeFunc::FramePtr ] = TypeRawPtr::BOTTOM;
2082   flds[TypeFunc::ReturnAdr] = Type::RETURN_ADDRESS;
2083 
2084   return flds;
2085 }
2086 
2087 //------------------------------meet-------------------------------------------
2088 // Compute the MEET of two types.  It returns a new Type object.
2089 const Type *TypeTuple::xmeet( const Type *t ) const {
2090   // Perform a fast test for common case; meeting the same types together.
2091   if( this == t ) return this;  // Meeting same type-rep?
2092 
2093   // Current "this->_base" is Tuple
2094   switch (t->base()) {          // switch on original type
2095 
2096   case Bottom:                  // Ye Olde Default
2097     return t;
2098 
2099   default:                      // All else is a mistake
2100     typerr(t);
2101 
2102   case Tuple: {                 // Meeting 2 signatures?
2103     const TypeTuple *x = t->is_tuple();
2104     assert( _cnt == x->_cnt, "" );
2105     const Type **fields = (const Type **)(Compile::current()->type_arena()->Amalloc_4( _cnt*sizeof(Type*) ));
2106     for( uint i=0; i<_cnt; i++ )
2107       fields[i] = field_at(i)->xmeet( x->field_at(i) );
2108     return TypeTuple::make(_cnt,fields);
2109   }
2110   case Top:
2111     break;
2112   }
2113   return this;                  // Return the double constant
2114 }
2115 
2116 //------------------------------xdual------------------------------------------
2117 // Dual: compute field-by-field dual
2118 const Type *TypeTuple::xdual() const {
2119   const Type **fields = (const Type **)(Compile::current()->type_arena()->Amalloc_4( _cnt*sizeof(Type*) ));
2120   for( uint i=0; i<_cnt; i++ )
2121     fields[i] = _fields[i]->dual();
2122   return new TypeTuple(_cnt,fields);
2123 }
2124 
2125 //------------------------------eq---------------------------------------------
2126 // Structural equality check for Type representations
2127 bool TypeTuple::eq( const Type *t ) const {
2128   const TypeTuple *s = (const TypeTuple *)t;
2129   if (_cnt != s->_cnt)  return false;  // Unequal field counts
2130   for (uint i = 0; i < _cnt; i++)
2131     if (field_at(i) != s->field_at(i)) // POINTER COMPARE!  NO RECURSION!
2132       return false;             // Missed
2133   return true;
2134 }
2135 
2136 //------------------------------hash-------------------------------------------
2137 // Type-specific hashing function.
2138 int TypeTuple::hash(void) const {
2139   intptr_t sum = _cnt;
2140   for( uint i=0; i<_cnt; i++ )
2141     sum += (intptr_t)_fields[i];     // Hash on pointers directly
2142   return sum;
2143 }
2144 
2145 //------------------------------dump2------------------------------------------
2146 // Dump signature Type
2147 #ifndef PRODUCT
2148 void TypeTuple::dump2( Dict &d, uint depth, outputStream *st ) const {
2149   st->print("{");
2150   if( !depth || d[this] ) {     // Check for recursive print
2151     st->print("...}");
2152     return;
2153   }
2154   d.Insert((void*)this, (void*)this);   // Stop recursion
2155   if( _cnt ) {
2156     uint i;
2157     for( i=0; i<_cnt-1; i++ ) {
2158       st->print("%d:", i);
2159       _fields[i]->dump2(d, depth-1, st);
2160       st->print(", ");
2161     }
2162     st->print("%d:", i);
2163     _fields[i]->dump2(d, depth-1, st);
2164   }
2165   st->print("}");
2166 }
2167 #endif
2168 
2169 //------------------------------singleton--------------------------------------
2170 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
2171 // constants (Ldi nodes).  Singletons are integer, float or double constants
2172 // or a single symbol.
2173 bool TypeTuple::singleton(void) const {
2174   return false;                 // Never a singleton
2175 }
2176 
2177 bool TypeTuple::empty(void) const {
2178   for( uint i=0; i<_cnt; i++ ) {
2179     if (_fields[i]->empty())  return true;
2180   }
2181   return false;
2182 }
2183 
2184 //=============================================================================
2185 // Convenience common pre-built types.
2186 
2187 inline const TypeInt* normalize_array_size(const TypeInt* size) {
2188   // Certain normalizations keep us sane when comparing types.
2189   // We do not want arrayOop variables to differ only by the wideness
2190   // of their index types.  Pick minimum wideness, since that is the
2191   // forced wideness of small ranges anyway.
2192   if (size->_widen != Type::WidenMin)
2193     return TypeInt::make(size->_lo, size->_hi, Type::WidenMin);
2194   else
2195     return size;
2196 }
2197 
2198 //------------------------------make-------------------------------------------
2199 const TypeAry* TypeAry::make(const Type* elem, const TypeInt* size, bool stable) {
2200   if (UseCompressedOops && elem->isa_oopptr()) {
2201     elem = elem->make_narrowoop();
2202   }
2203   size = normalize_array_size(size);
2204   return (TypeAry*)(new TypeAry(elem,size,stable))->hashcons();
2205 }
2206 
2207 //------------------------------meet-------------------------------------------
2208 // Compute the MEET of two types.  It returns a new Type object.
2209 const Type *TypeAry::xmeet( const Type *t ) const {
2210   // Perform a fast test for common case; meeting the same types together.
2211   if( this == t ) return this;  // Meeting same type-rep?
2212 
2213   // Current "this->_base" is Ary
2214   switch (t->base()) {          // switch on original type
2215 
2216   case Bottom:                  // Ye Olde Default
2217     return t;
2218 
2219   default:                      // All else is a mistake
2220     typerr(t);
2221 
2222   case Array: {                 // Meeting 2 arrays?
2223     const TypeAry *a = t->is_ary();
2224     return TypeAry::make(_elem->meet_speculative(a->_elem),
2225                          _size->xmeet(a->_size)->is_int(),
2226                          _stable & a->_stable);
2227   }
2228   case Top:
2229     break;
2230   }
2231   return this;                  // Return the double constant
2232 }
2233 
2234 //------------------------------xdual------------------------------------------
2235 // Dual: compute field-by-field dual
2236 const Type *TypeAry::xdual() const {
2237   const TypeInt* size_dual = _size->dual()->is_int();
2238   size_dual = normalize_array_size(size_dual);
2239   return new TypeAry(_elem->dual(), size_dual, !_stable);
2240 }
2241 
2242 //------------------------------eq---------------------------------------------
2243 // Structural equality check for Type representations
2244 bool TypeAry::eq( const Type *t ) const {
2245   const TypeAry *a = (const TypeAry*)t;
2246   return _elem == a->_elem &&
2247     _stable == a->_stable &&
2248     _size == a->_size;
2249 }
2250 
2251 //------------------------------hash-------------------------------------------
2252 // Type-specific hashing function.
2253 int TypeAry::hash(void) const {
2254   return (intptr_t)_elem + (intptr_t)_size + (_stable ? 43 : 0);
2255 }
2256 
2257 /**
2258  * Return same type without a speculative part in the element
2259  */
2260 const Type* TypeAry::remove_speculative() const {
2261   return make(_elem->remove_speculative(), _size, _stable);
2262 }
2263 
2264 /**
2265  * Return same type with cleaned up speculative part of element
2266  */
2267 const Type* TypeAry::cleanup_speculative() const {
2268   return make(_elem->cleanup_speculative(), _size, _stable);
2269 }
2270 
2271 /**
2272  * Return same type but with a different inline depth (used for speculation)
2273  *
2274  * @param depth  depth to meet with
2275  */
2276 const TypePtr* TypePtr::with_inline_depth(int depth) const {
2277   if (!UseInlineDepthForSpeculativeTypes) {
2278     return this;
2279   }
2280   return make(AnyPtr, _ptr, _offset, _speculative, depth);
2281 }
2282 
2283 //----------------------interface_vs_oop---------------------------------------
2284 #ifdef ASSERT
2285 bool TypeAry::interface_vs_oop(const Type *t) const {
2286   const TypeAry* t_ary = t->is_ary();
2287   if (t_ary) {
2288     const TypePtr* this_ptr = _elem->make_ptr(); // In case we have narrow_oops
2289     const TypePtr*    t_ptr = t_ary->_elem->make_ptr();
2290     if(this_ptr != NULL && t_ptr != NULL) {
2291       return this_ptr->interface_vs_oop(t_ptr);
2292     }
2293   }
2294   return false;
2295 }
2296 #endif
2297 
2298 //------------------------------dump2------------------------------------------
2299 #ifndef PRODUCT
2300 void TypeAry::dump2( Dict &d, uint depth, outputStream *st ) const {
2301   if (_stable)  st->print("stable:");
2302   _elem->dump2(d, depth, st);
2303   st->print("[");
2304   _size->dump2(d, depth, st);
2305   st->print("]");
2306 }
2307 #endif
2308 
2309 //------------------------------singleton--------------------------------------
2310 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
2311 // constants (Ldi nodes).  Singletons are integer, float or double constants
2312 // or a single symbol.
2313 bool TypeAry::singleton(void) const {
2314   return false;                 // Never a singleton
2315 }
2316 
2317 bool TypeAry::empty(void) const {
2318   return _elem->empty() || _size->empty();
2319 }
2320 
2321 //--------------------------ary_must_be_exact----------------------------------
2322 bool TypeAry::ary_must_be_exact() const {
2323   if (!UseExactTypes)       return false;
2324   // This logic looks at the element type of an array, and returns true
2325   // if the element type is either a primitive or a final instance class.
2326   // In such cases, an array built on this ary must have no subclasses.
2327   if (_elem == BOTTOM)      return false;  // general array not exact
2328   if (_elem == TOP   )      return false;  // inverted general array not exact
2329   const TypeOopPtr*  toop = NULL;
2330   if (UseCompressedOops && _elem->isa_narrowoop()) {
2331     toop = _elem->make_ptr()->isa_oopptr();
2332   } else {
2333     toop = _elem->isa_oopptr();
2334   }
2335   if (!toop)                return true;   // a primitive type, like int
2336   ciKlass* tklass = toop->klass();
2337   if (tklass == NULL)       return false;  // unloaded class
2338   if (!tklass->is_loaded()) return false;  // unloaded class
2339   const TypeInstPtr* tinst;
2340   if (_elem->isa_narrowoop())
2341     tinst = _elem->make_ptr()->isa_instptr();
2342   else
2343     tinst = _elem->isa_instptr();
2344   if (tinst)
2345     return tklass->as_instance_klass()->is_final();
2346   const TypeAryPtr*  tap;
2347   if (_elem->isa_narrowoop())
2348     tap = _elem->make_ptr()->isa_aryptr();
2349   else
2350     tap = _elem->isa_aryptr();
2351   if (tap)
2352     return tap->ary()->ary_must_be_exact();
2353   return false;
2354 }
2355 
2356 //==============================TypeValueType=======================================
2357 
2358 //------------------------------make-------------------------------------------
2359 const TypeValueType* TypeValueType::make(ciValueKlass* vk) {
2360   return (TypeValueType*)(new TypeValueType(vk))->hashcons();
2361 }
2362 
2363 //------------------------------meet-------------------------------------------
2364 // Compute the MEET of two types.  It returns a new Type object.
2365 const Type* TypeValueType::xmeet(const Type* t) const {
2366   // Perform a fast test for common case; meeting the same types together.
2367   if(this == t) return this;  // Meeting same type-rep?
2368 
2369   // Current "this->_base" is ValueType
2370   switch (t->base()) {          // switch on original type
2371 
2372   case Top:
2373     break;
2374 
2375   case Bottom:
2376     return t;
2377 
2378   default:                      // All else is a mistake
2379     typerr(t);
2380 
2381   }
2382   return this;
2383 }
2384 
2385 //------------------------------xdual------------------------------------------
2386 const Type* TypeValueType::xdual() const {
2387   // FIXME
2388   return new TypeValueType(_vk);
2389 }
2390 
2391 //------------------------------eq---------------------------------------------
2392 // Structural equality check for Type representations
2393 bool TypeValueType::eq(const Type* t) const {
2394   const TypeValueType* vt = t->is_valuetype();
2395   return (_vk == vt->value_klass());
2396 }
2397 
2398 //------------------------------hash-------------------------------------------
2399 // Type-specific hashing function.
2400 int TypeValueType::hash(void) const {
2401   return (intptr_t)_vk;
2402 }
2403 
2404 //------------------------------singleton--------------------------------------
2405 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple constants.
2406 bool TypeValueType::singleton(void) const {
2407   // FIXME
2408   return false;
2409 }
2410 
2411 //------------------------------empty------------------------------------------
2412 // TRUE if Type is a type with no values, FALSE otherwise.
2413 bool TypeValueType::empty(void) const {
2414   // FIXME
2415   return false;
2416 }
2417 
2418 //------------------------------dump2------------------------------------------
2419 #ifndef PRODUCT
2420 void TypeValueType::dump2(Dict &d, uint depth, outputStream* st) const {
2421   st->print("valuetype[%d]:{", _vk->field_count());
2422   st->print("%s", _vk->field_count() != 0 ? _vk->field_type_by_index(0)->name() : "empty");
2423   for (int i = 1; i < _vk->field_count(); ++i) {
2424     st->print(", %s", _vk->field_type_by_index(i)->name());
2425   }
2426   st->print("}");
2427 }
2428 #endif
2429 
2430 //==============================TypeVect=======================================
2431 // Convenience common pre-built types.
2432 const TypeVect *TypeVect::VECTS = NULL; //  32-bit vectors
2433 const TypeVect *TypeVect::VECTD = NULL; //  64-bit vectors
2434 const TypeVect *TypeVect::VECTX = NULL; // 128-bit vectors
2435 const TypeVect *TypeVect::VECTY = NULL; // 256-bit vectors
2436 const TypeVect *TypeVect::VECTZ = NULL; // 512-bit vectors
2437 
2438 //------------------------------make-------------------------------------------
2439 const TypeVect* TypeVect::make(const Type *elem, uint length) {
2440   BasicType elem_bt = elem->array_element_basic_type();
2441   assert(is_java_primitive(elem_bt), "only primitive types in vector");
2442   assert(length > 1 && is_power_of_2(length), "vector length is power of 2");
2443   assert(Matcher::vector_size_supported(elem_bt, length), "length in range");
2444   int size = length * type2aelembytes(elem_bt);
2445   switch (Matcher::vector_ideal_reg(size)) {
2446   case Op_VecS:
2447     return (TypeVect*)(new TypeVectS(elem, length))->hashcons();
2448   case Op_RegL:
2449   case Op_VecD:
2450   case Op_RegD:
2451     return (TypeVect*)(new TypeVectD(elem, length))->hashcons();
2452   case Op_VecX:
2453     return (TypeVect*)(new TypeVectX(elem, length))->hashcons();
2454   case Op_VecY:
2455     return (TypeVect*)(new TypeVectY(elem, length))->hashcons();
2456   case Op_VecZ:
2457     return (TypeVect*)(new TypeVectZ(elem, length))->hashcons();
2458   }
2459  ShouldNotReachHere();
2460   return NULL;
2461 }
2462 
2463 //------------------------------meet-------------------------------------------
2464 // Compute the MEET of two types.  It returns a new Type object.
2465 const Type *TypeVect::xmeet( const Type *t ) const {
2466   // Perform a fast test for common case; meeting the same types together.
2467   if( this == t ) return this;  // Meeting same type-rep?
2468 
2469   // Current "this->_base" is Vector
2470   switch (t->base()) {          // switch on original type
2471 
2472   case Bottom:                  // Ye Olde Default
2473     return t;
2474 
2475   default:                      // All else is a mistake
2476     typerr(t);
2477 
2478   case VectorS:
2479   case VectorD:
2480   case VectorX:
2481   case VectorY:
2482   case VectorZ: {                // Meeting 2 vectors?
2483     const TypeVect* v = t->is_vect();
2484     assert(  base() == v->base(), "");
2485     assert(length() == v->length(), "");
2486     assert(element_basic_type() == v->element_basic_type(), "");
2487     return TypeVect::make(_elem->xmeet(v->_elem), _length);
2488   }
2489   case Top:
2490     break;
2491   }
2492   return this;
2493 }
2494 
2495 //------------------------------xdual------------------------------------------
2496 // Dual: compute field-by-field dual
2497 const Type *TypeVect::xdual() const {
2498   return new TypeVect(base(), _elem->dual(), _length);
2499 }
2500 
2501 //------------------------------eq---------------------------------------------
2502 // Structural equality check for Type representations
2503 bool TypeVect::eq(const Type *t) const {
2504   const TypeVect *v = t->is_vect();
2505   return (_elem == v->_elem) && (_length == v->_length);
2506 }
2507 
2508 //------------------------------hash-------------------------------------------
2509 // Type-specific hashing function.
2510 int TypeVect::hash(void) const {
2511   return (intptr_t)_elem + (intptr_t)_length;
2512 }
2513 
2514 //------------------------------singleton--------------------------------------
2515 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
2516 // constants (Ldi nodes).  Vector is singleton if all elements are the same
2517 // constant value (when vector is created with Replicate code).
2518 bool TypeVect::singleton(void) const {
2519 // There is no Con node for vectors yet.
2520 //  return _elem->singleton();
2521   return false;
2522 }
2523 
2524 bool TypeVect::empty(void) const {
2525   return _elem->empty();
2526 }
2527 
2528 //------------------------------dump2------------------------------------------
2529 #ifndef PRODUCT
2530 void TypeVect::dump2(Dict &d, uint depth, outputStream *st) const {
2531   switch (base()) {
2532   case VectorS:
2533     st->print("vectors["); break;
2534   case VectorD:
2535     st->print("vectord["); break;
2536   case VectorX:
2537     st->print("vectorx["); break;
2538   case VectorY:
2539     st->print("vectory["); break;
2540   case VectorZ:
2541     st->print("vectorz["); break;
2542   default:
2543     ShouldNotReachHere();
2544   }
2545   st->print("%d]:{", _length);
2546   _elem->dump2(d, depth, st);
2547   st->print("}");
2548 }
2549 #endif
2550 
2551 
2552 //=============================================================================
2553 // Convenience common pre-built types.
2554 const TypePtr *TypePtr::NULL_PTR;
2555 const TypePtr *TypePtr::NOTNULL;
2556 const TypePtr *TypePtr::BOTTOM;
2557 
2558 //------------------------------meet-------------------------------------------
2559 // Meet over the PTR enum
2560 const TypePtr::PTR TypePtr::ptr_meet[TypePtr::lastPTR][TypePtr::lastPTR] = {
2561   //              TopPTR,    AnyNull,   Constant, Null,   NotNull, BotPTR,
2562   { /* Top     */ TopPTR,    AnyNull,   Constant, Null,   NotNull, BotPTR,},
2563   { /* AnyNull */ AnyNull,   AnyNull,   Constant, BotPTR, NotNull, BotPTR,},
2564   { /* Constant*/ Constant,  Constant,  Constant, BotPTR, NotNull, BotPTR,},
2565   { /* Null    */ Null,      BotPTR,    BotPTR,   Null,   BotPTR,  BotPTR,},
2566   { /* NotNull */ NotNull,   NotNull,   NotNull,  BotPTR, NotNull, BotPTR,},
2567   { /* BotPTR  */ BotPTR,    BotPTR,    BotPTR,   BotPTR, BotPTR,  BotPTR,}
2568 };
2569 
2570 //------------------------------make-------------------------------------------
2571 const TypePtr* TypePtr::make(TYPES t, enum PTR ptr, Offset offset, const TypePtr* speculative, int inline_depth) {
2572   return (TypePtr*)(new TypePtr(t,ptr,offset, speculative, inline_depth))->hashcons();
2573 }
2574 
2575 //------------------------------cast_to_ptr_type-------------------------------
2576 const Type *TypePtr::cast_to_ptr_type(PTR ptr) const {
2577   assert(_base == AnyPtr, "subclass must override cast_to_ptr_type");
2578   if( ptr == _ptr ) return this;
2579   return make(_base, ptr, _offset, _speculative, _inline_depth);
2580 }
2581 
2582 //------------------------------get_con----------------------------------------
2583 intptr_t TypePtr::get_con() const {
2584   assert( _ptr == Null, "" );
2585   return offset();
2586 }
2587 
2588 //------------------------------meet-------------------------------------------
2589 // Compute the MEET of two types.  It returns a new Type object.
2590 const Type *TypePtr::xmeet(const Type *t) const {
2591   const Type* res = xmeet_helper(t);
2592   if (res->isa_ptr() == NULL) {
2593     return res;
2594   }
2595 
2596   const TypePtr* res_ptr = res->is_ptr();
2597   if (res_ptr->speculative() != NULL) {
2598     // type->speculative() == NULL means that speculation is no better
2599     // than type, i.e. type->speculative() == type. So there are 2
2600     // ways to represent the fact that we have no useful speculative
2601     // data and we should use a single one to be able to test for
2602     // equality between types. Check whether type->speculative() ==
2603     // type and set speculative to NULL if it is the case.
2604     if (res_ptr->remove_speculative() == res_ptr->speculative()) {
2605       return res_ptr->remove_speculative();
2606     }
2607   }
2608 
2609   return res;
2610 }
2611 
2612 const Type *TypePtr::xmeet_helper(const Type *t) const {
2613   // Perform a fast test for common case; meeting the same types together.
2614   if( this == t ) return this;  // Meeting same type-rep?
2615 
2616   // Current "this->_base" is AnyPtr
2617   switch (t->base()) {          // switch on original type
2618   case Int:                     // Mixing ints & oops happens when javac
2619   case Long:                    // reuses local variables
2620   case FloatTop:
2621   case FloatCon:
2622   case FloatBot:
2623   case DoubleTop:
2624   case DoubleCon:
2625   case DoubleBot:
2626   case NarrowOop:
2627   case NarrowKlass:
2628   case Bottom:                  // Ye Olde Default
2629     return Type::BOTTOM;
2630   case Top:
2631     return this;
2632 
2633   case AnyPtr: {                // Meeting to AnyPtrs
2634     const TypePtr *tp = t->is_ptr();
2635     const TypePtr* speculative = xmeet_speculative(tp);
2636     int depth = meet_inline_depth(tp->inline_depth());
2637     return make(AnyPtr, meet_ptr(tp->ptr()), meet_offset(tp->offset()), speculative, depth);
2638   }
2639   case RawPtr:                  // For these, flip the call around to cut down
2640   case OopPtr:
2641   case InstPtr:                 // on the cases I have to handle.
2642   case ValueTypePtr:
2643   case AryPtr:
2644   case MetadataPtr:
2645   case KlassPtr:
2646     return t->xmeet(this);      // Call in reverse direction
2647   default:                      // All else is a mistake
2648     typerr(t);
2649 
2650   }
2651   return this;
2652 }
2653 
2654 //------------------------------meet_offset------------------------------------
2655 Type::Offset TypePtr::meet_offset(int offset) const {
2656   return _offset.meet(Offset(offset));
2657 }
2658 
2659 //------------------------------dual_offset------------------------------------
2660 Type::Offset TypePtr::dual_offset() const {
2661   return _offset.dual();
2662 }
2663 
2664 //------------------------------xdual------------------------------------------
2665 // Dual: compute field-by-field dual
2666 const TypePtr::PTR TypePtr::ptr_dual[TypePtr::lastPTR] = {
2667   BotPTR, NotNull, Constant, Null, AnyNull, TopPTR
2668 };
2669 const Type *TypePtr::xdual() const {
2670   return new TypePtr(AnyPtr, dual_ptr(), dual_offset(), dual_speculative(), dual_inline_depth());
2671 }
2672 
2673 //------------------------------xadd_offset------------------------------------
2674 Type::Offset TypePtr::xadd_offset(intptr_t offset) const {
2675   return _offset.add(offset);
2676 }
2677 
2678 //------------------------------add_offset-------------------------------------
2679 const TypePtr *TypePtr::add_offset( intptr_t offset ) const {
2680   return make(AnyPtr, _ptr, xadd_offset(offset), _speculative, _inline_depth);
2681 }
2682 
2683 //------------------------------eq---------------------------------------------
2684 // Structural equality check for Type representations
2685 bool TypePtr::eq( const Type *t ) const {
2686   const TypePtr *a = (const TypePtr*)t;
2687   return _ptr == a->ptr() && _offset == a->_offset && eq_speculative(a) && _inline_depth == a->_inline_depth;
2688 }
2689 
2690 //------------------------------hash-------------------------------------------
2691 // Type-specific hashing function.
2692 int TypePtr::hash(void) const {
2693   return java_add(java_add(_ptr, offset()), java_add( hash_speculative(), _inline_depth));
2694 ;
2695 }
2696 
2697 /**
2698  * Return same type without a speculative part
2699  */
2700 const Type* TypePtr::remove_speculative() const {
2701   if (_speculative == NULL) {
2702     return this;
2703   }
2704   assert(_inline_depth == InlineDepthTop || _inline_depth == InlineDepthBottom, "non speculative type shouldn't have inline depth");
2705   return make(AnyPtr, _ptr, _offset, NULL, _inline_depth);
2706 }
2707 
2708 /**
2709  * Return same type but drop speculative part if we know we won't use
2710  * it
2711  */
2712 const Type* TypePtr::cleanup_speculative() const {
2713   if (speculative() == NULL) {
2714     return this;
2715   }
2716   const Type* no_spec = remove_speculative();
2717   // If this is NULL_PTR then we don't need the speculative type
2718   // (with_inline_depth in case the current type inline depth is
2719   // InlineDepthTop)
2720   if (no_spec == NULL_PTR->with_inline_depth(inline_depth())) {
2721     return no_spec;
2722   }
2723   if (above_centerline(speculative()->ptr())) {
2724     return no_spec;
2725   }
2726   const TypeOopPtr* spec_oopptr = speculative()->isa_oopptr();
2727   // If the speculative may be null and is an inexact klass then it
2728   // doesn't help
2729   if (speculative()->maybe_null() && (spec_oopptr == NULL || !spec_oopptr->klass_is_exact())) {
2730     return no_spec;
2731   }
2732   return this;
2733 }
2734 
2735 /**
2736  * dual of the speculative part of the type
2737  */
2738 const TypePtr* TypePtr::dual_speculative() const {
2739   if (_speculative == NULL) {
2740     return NULL;
2741   }
2742   return _speculative->dual()->is_ptr();
2743 }
2744 
2745 /**
2746  * meet of the speculative parts of 2 types
2747  *
2748  * @param other  type to meet with
2749  */
2750 const TypePtr* TypePtr::xmeet_speculative(const TypePtr* other) const {
2751   bool this_has_spec = (_speculative != NULL);
2752   bool other_has_spec = (other->speculative() != NULL);
2753 
2754   if (!this_has_spec && !other_has_spec) {
2755     return NULL;
2756   }
2757 
2758   // If we are at a point where control flow meets and one branch has
2759   // a speculative type and the other has not, we meet the speculative
2760   // type of one branch with the actual type of the other. If the
2761   // actual type is exact and the speculative is as well, then the
2762   // result is a speculative type which is exact and we can continue
2763   // speculation further.
2764   const TypePtr* this_spec = _speculative;
2765   const TypePtr* other_spec = other->speculative();
2766 
2767   if (!this_has_spec) {
2768     this_spec = this;
2769   }
2770 
2771   if (!other_has_spec) {
2772     other_spec = other;
2773   }
2774 
2775   return this_spec->meet(other_spec)->is_ptr();
2776 }
2777 
2778 /**
2779  * dual of the inline depth for this type (used for speculation)
2780  */
2781 int TypePtr::dual_inline_depth() const {
2782   return -inline_depth();
2783 }
2784 
2785 /**
2786  * meet of 2 inline depths (used for speculation)
2787  *
2788  * @param depth  depth to meet with
2789  */
2790 int TypePtr::meet_inline_depth(int depth) const {
2791   return MAX2(inline_depth(), depth);
2792 }
2793 
2794 /**
2795  * Are the speculative parts of 2 types equal?
2796  *
2797  * @param other  type to compare this one to
2798  */
2799 bool TypePtr::eq_speculative(const TypePtr* other) const {
2800   if (_speculative == NULL || other->speculative() == NULL) {
2801     return _speculative == other->speculative();
2802   }
2803 
2804   if (_speculative->base() != other->speculative()->base()) {
2805     return false;
2806   }
2807 
2808   return _speculative->eq(other->speculative());
2809 }
2810 
2811 /**
2812  * Hash of the speculative part of the type
2813  */
2814 int TypePtr::hash_speculative() const {
2815   if (_speculative == NULL) {
2816     return 0;
2817   }
2818 
2819   return _speculative->hash();
2820 }
2821 
2822 /**
2823  * add offset to the speculative part of the type
2824  *
2825  * @param offset  offset to add
2826  */
2827 const TypePtr* TypePtr::add_offset_speculative(intptr_t offset) const {
2828   if (_speculative == NULL) {
2829     return NULL;
2830   }
2831   return _speculative->add_offset(offset)->is_ptr();
2832 }
2833 
2834 /**
2835  * return exact klass from the speculative type if there's one
2836  */
2837 ciKlass* TypePtr::speculative_type() const {
2838   if (_speculative != NULL && _speculative->isa_oopptr()) {
2839     const TypeOopPtr* speculative = _speculative->join(this)->is_oopptr();
2840     if (speculative->klass_is_exact()) {
2841       return speculative->klass();
2842     }
2843   }
2844   return NULL;
2845 }
2846 
2847 /**
2848  * return true if speculative type may be null
2849  */
2850 bool TypePtr::speculative_maybe_null() const {
2851   if (_speculative != NULL) {
2852     const TypePtr* speculative = _speculative->join(this)->is_ptr();
2853     return speculative->maybe_null();
2854   }
2855   return true;
2856 }
2857 
2858 /**
2859  * Same as TypePtr::speculative_type() but return the klass only if
2860  * the speculative tells us is not null
2861  */
2862 ciKlass* TypePtr::speculative_type_not_null() const {
2863   if (speculative_maybe_null()) {
2864     return NULL;
2865   }
2866   return speculative_type();
2867 }
2868 
2869 /**
2870  * Check whether new profiling would improve speculative type
2871  *
2872  * @param   exact_kls    class from profiling
2873  * @param   inline_depth inlining depth of profile point
2874  *
2875  * @return  true if type profile is valuable
2876  */
2877 bool TypePtr::would_improve_type(ciKlass* exact_kls, int inline_depth) const {
2878   // no profiling?
2879   if (exact_kls == NULL) {
2880     return false;
2881   }
2882   // no speculative type or non exact speculative type?
2883   if (speculative_type() == NULL) {
2884     return true;
2885   }
2886   // If the node already has an exact speculative type keep it,
2887   // unless it was provided by profiling that is at a deeper
2888   // inlining level. Profiling at a higher inlining depth is
2889   // expected to be less accurate.
2890   if (_speculative->inline_depth() == InlineDepthBottom) {
2891     return false;
2892   }
2893   assert(_speculative->inline_depth() != InlineDepthTop, "can't do the comparison");
2894   return inline_depth < _speculative->inline_depth();
2895 }
2896 
2897 /**
2898  * Check whether new profiling would improve ptr (= tells us it is non
2899  * null)
2900  *
2901  * @param   maybe_null true if profiling tells the ptr may be null
2902  *
2903  * @return  true if ptr profile is valuable
2904  */
2905 bool TypePtr::would_improve_ptr(bool maybe_null) const {
2906   // profiling doesn't tell us anything useful
2907   if (maybe_null) {
2908     return false;
2909   }
2910   // We already know this is not be null
2911   if (!this->maybe_null()) {
2912     return false;
2913   }
2914   // We already know the speculative type cannot be null
2915   if (!speculative_maybe_null()) {
2916     return false;
2917   }
2918   return true;
2919 }
2920 
2921 //------------------------------dump2------------------------------------------
2922 const char *const TypePtr::ptr_msg[TypePtr::lastPTR] = {
2923   "TopPTR","AnyNull","Constant","NULL","NotNull","BotPTR"
2924 };
2925 
2926 #ifndef PRODUCT
2927 void TypePtr::dump2( Dict &d, uint depth, outputStream *st ) const {
2928   if( _ptr == Null ) st->print("NULL");
2929   else st->print("%s *", ptr_msg[_ptr]);
2930   _offset.dump2(st);
2931   dump_inline_depth(st);
2932   dump_speculative(st);
2933 }
2934 
2935 /**
2936  *dump the speculative part of the type
2937  */
2938 void TypePtr::dump_speculative(outputStream *st) const {
2939   if (_speculative != NULL) {
2940     st->print(" (speculative=");
2941     _speculative->dump_on(st);
2942     st->print(")");
2943   }
2944 }
2945 
2946 /**
2947  *dump the inline depth of the type
2948  */
2949 void TypePtr::dump_inline_depth(outputStream *st) const {
2950   if (_inline_depth != InlineDepthBottom) {
2951     if (_inline_depth == InlineDepthTop) {
2952       st->print(" (inline_depth=InlineDepthTop)");
2953     } else {
2954       st->print(" (inline_depth=%d)", _inline_depth);
2955     }
2956   }
2957 }
2958 #endif
2959 
2960 //------------------------------singleton--------------------------------------
2961 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
2962 // constants
2963 bool TypePtr::singleton(void) const {
2964   // TopPTR, Null, AnyNull, Constant are all singletons
2965   return (_offset != Offset::bottom) && !below_centerline(_ptr);
2966 }
2967 
2968 bool TypePtr::empty(void) const {
2969   return (_offset == Offset::top) || above_centerline(_ptr);
2970 }
2971 
2972 //=============================================================================
2973 // Convenience common pre-built types.
2974 const TypeRawPtr *TypeRawPtr::BOTTOM;
2975 const TypeRawPtr *TypeRawPtr::NOTNULL;
2976 
2977 //------------------------------make-------------------------------------------
2978 const TypeRawPtr *TypeRawPtr::make( enum PTR ptr ) {
2979   assert( ptr != Constant, "what is the constant?" );
2980   assert( ptr != Null, "Use TypePtr for NULL" );
2981   return (TypeRawPtr*)(new TypeRawPtr(ptr,0))->hashcons();
2982 }
2983 
2984 const TypeRawPtr *TypeRawPtr::make( address bits ) {
2985   assert( bits, "Use TypePtr for NULL" );
2986   return (TypeRawPtr*)(new TypeRawPtr(Constant,bits))->hashcons();
2987 }
2988 
2989 //------------------------------cast_to_ptr_type-------------------------------
2990 const Type *TypeRawPtr::cast_to_ptr_type(PTR ptr) const {
2991   assert( ptr != Constant, "what is the constant?" );
2992   assert( ptr != Null, "Use TypePtr for NULL" );
2993   assert( _bits==0, "Why cast a constant address?");
2994   if( ptr == _ptr ) return this;
2995   return make(ptr);
2996 }
2997 
2998 //------------------------------get_con----------------------------------------
2999 intptr_t TypeRawPtr::get_con() const {
3000   assert( _ptr == Null || _ptr == Constant, "" );
3001   return (intptr_t)_bits;
3002 }
3003 
3004 //------------------------------meet-------------------------------------------
3005 // Compute the MEET of two types.  It returns a new Type object.
3006 const Type *TypeRawPtr::xmeet( const Type *t ) const {
3007   // Perform a fast test for common case; meeting the same types together.
3008   if( this == t ) return this;  // Meeting same type-rep?
3009 
3010   // Current "this->_base" is RawPtr
3011   switch( t->base() ) {         // switch on original type
3012   case Bottom:                  // Ye Olde Default
3013     return t;
3014   case Top:
3015     return this;
3016   case AnyPtr:                  // Meeting to AnyPtrs
3017     break;
3018   case RawPtr: {                // might be top, bot, any/not or constant
3019     enum PTR tptr = t->is_ptr()->ptr();
3020     enum PTR ptr = meet_ptr( tptr );
3021     if( ptr == Constant ) {     // Cannot be equal constants, so...
3022       if( tptr == Constant && _ptr != Constant)  return t;
3023       if( _ptr == Constant && tptr != Constant)  return this;
3024       ptr = NotNull;            // Fall down in lattice
3025     }
3026     return make( ptr );
3027   }
3028 
3029   case OopPtr:
3030   case InstPtr:
3031   case ValueTypePtr:
3032   case AryPtr:
3033   case MetadataPtr:
3034   case KlassPtr:
3035     return TypePtr::BOTTOM;     // Oop meet raw is not well defined
3036   default:                      // All else is a mistake
3037     typerr(t);
3038   }
3039 
3040   // Found an AnyPtr type vs self-RawPtr type
3041   const TypePtr *tp = t->is_ptr();
3042   switch (tp->ptr()) {
3043   case TypePtr::TopPTR:  return this;
3044   case TypePtr::BotPTR:  return t;
3045   case TypePtr::Null:
3046     if( _ptr == TypePtr::TopPTR ) return t;
3047     return TypeRawPtr::BOTTOM;
3048   case TypePtr::NotNull: return TypePtr::make(AnyPtr, meet_ptr(TypePtr::NotNull), tp->meet_offset(0), tp->speculative(), tp->inline_depth());
3049   case TypePtr::AnyNull:
3050     if( _ptr == TypePtr::Constant) return this;
3051     return make( meet_ptr(TypePtr::AnyNull) );
3052   default: ShouldNotReachHere();
3053   }
3054   return this;
3055 }
3056 
3057 //------------------------------xdual------------------------------------------
3058 // Dual: compute field-by-field dual
3059 const Type *TypeRawPtr::xdual() const {
3060   return new TypeRawPtr( dual_ptr(), _bits );
3061 }
3062 
3063 //------------------------------add_offset-------------------------------------
3064 const TypePtr *TypeRawPtr::add_offset( intptr_t offset ) const {
3065   if( offset == OffsetTop ) return BOTTOM; // Undefined offset-> undefined pointer
3066   if( offset == OffsetBot ) return BOTTOM; // Unknown offset-> unknown pointer
3067   if( offset == 0 ) return this; // No change
3068   switch (_ptr) {
3069   case TypePtr::TopPTR:
3070   case TypePtr::BotPTR:
3071   case TypePtr::NotNull:
3072     return this;
3073   case TypePtr::Null:
3074   case TypePtr::Constant: {
3075     address bits = _bits+offset;
3076     if ( bits == 0 ) return TypePtr::NULL_PTR;
3077     return make( bits );
3078   }
3079   default:  ShouldNotReachHere();
3080   }
3081   return NULL;                  // Lint noise
3082 }
3083 
3084 //------------------------------eq---------------------------------------------
3085 // Structural equality check for Type representations
3086 bool TypeRawPtr::eq( const Type *t ) const {
3087   const TypeRawPtr *a = (const TypeRawPtr*)t;
3088   return _bits == a->_bits && TypePtr::eq(t);
3089 }
3090 
3091 //------------------------------hash-------------------------------------------
3092 // Type-specific hashing function.
3093 int TypeRawPtr::hash(void) const {
3094   return (intptr_t)_bits + TypePtr::hash();
3095 }
3096 
3097 //------------------------------dump2------------------------------------------
3098 #ifndef PRODUCT
3099 void TypeRawPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
3100   if( _ptr == Constant )
3101     st->print(INTPTR_FORMAT, p2i(_bits));
3102   else
3103     st->print("rawptr:%s", ptr_msg[_ptr]);
3104 }
3105 #endif
3106 
3107 //=============================================================================
3108 // Convenience common pre-built type.
3109 const TypeOopPtr *TypeOopPtr::BOTTOM;
3110 
3111 //------------------------------TypeOopPtr-------------------------------------
3112 TypeOopPtr::TypeOopPtr(TYPES t, PTR ptr, ciKlass* k, bool xk, ciObject* o, Offset offset, Offset field_offset,
3113                        int instance_id, const TypePtr* speculative, int inline_depth)
3114   : TypePtr(t, ptr, offset, speculative, inline_depth),
3115     _const_oop(o), _klass(k),
3116     _klass_is_exact(xk),
3117     _is_ptr_to_narrowoop(false),
3118     _is_ptr_to_narrowklass(false),
3119     _is_ptr_to_boxed_value(false),
3120     _instance_id(instance_id) {
3121   if (Compile::current()->eliminate_boxing() && (t == InstPtr) &&
3122       (offset.get() > 0) && xk && (k != 0) && k->is_instance_klass()) {
3123     _is_ptr_to_boxed_value = k->as_instance_klass()->is_boxed_value_offset(offset.get());
3124   }
3125 #ifdef _LP64
3126   if (this->offset() != 0) {
3127     if (this->offset() == oopDesc::klass_offset_in_bytes()) {
3128       _is_ptr_to_narrowklass = UseCompressedClassPointers;
3129     } else if (klass() == NULL) {
3130       // Array with unknown body type
3131       assert(this->isa_aryptr(), "only arrays without klass");
3132       _is_ptr_to_narrowoop = UseCompressedOops;
3133     } else if (UseCompressedOops && this->isa_aryptr() && this->offset() != arrayOopDesc::length_offset_in_bytes()) {
3134       if (klass()->is_obj_array_klass()) {
3135         _is_ptr_to_narrowoop = true;
3136       } else if (klass()->is_value_array_klass() && field_offset != Offset::top && field_offset != Offset::bottom) {
3137         // Check if the field of the value type array element contains oops
3138         ciValueKlass* vk = klass()->as_value_array_klass()->element_klass()->as_value_klass();
3139         int foffset = field_offset.get() + vk->first_field_offset();
3140         ciField* field = vk->get_field_by_offset(foffset, false);
3141         assert(field != NULL, "missing field");
3142         BasicType bt = field->layout_type();
3143         assert(bt != T_VALUETYPE, "should be flattened");
3144         _is_ptr_to_narrowoop = (bt == T_OBJECT || bt == T_ARRAY);
3145       }
3146     } else if (klass()->is_instance_klass()) {
3147       ciInstanceKlass* ik = klass()->as_instance_klass();
3148       ciField* field = NULL;
3149       if (this->isa_klassptr()) {
3150         // Perm objects don't use compressed references
3151       } else if (_offset == Offset::bottom || _offset == Offset::top) {
3152         // unsafe access
3153         _is_ptr_to_narrowoop = UseCompressedOops;
3154       } else { // exclude unsafe ops
3155         assert(this->isa_instptr() || this->isa_valuetypeptr(), "must be an instance ptr.");
3156 
3157         if (klass() == ciEnv::current()->Class_klass() &&
3158             (this->offset() == java_lang_Class::klass_offset_in_bytes() ||
3159              this->offset() == java_lang_Class::array_klass_offset_in_bytes())) {
3160           // Special hidden fields from the Class.
3161           assert(this->isa_instptr(), "must be an instance ptr.");
3162           _is_ptr_to_narrowoop = false;
3163         } else if (klass() == ciEnv::current()->Class_klass() &&
3164                    this->offset() >= InstanceMirrorKlass::offset_of_static_fields()) {
3165           // Static fields
3166           assert(o != NULL, "must be constant");
3167           ciInstanceKlass* k = o->as_instance()->java_lang_Class_klass()->as_instance_klass();
3168           ciField* field = k->get_field_by_offset(this->offset(), true);
3169           assert(field != NULL, "missing field");
3170           BasicType basic_elem_type = field->layout_type();
3171           _is_ptr_to_narrowoop = UseCompressedOops && (basic_elem_type == T_OBJECT ||
3172                                                        basic_elem_type == T_ARRAY);
3173         } else {
3174           // Instance fields which contains a compressed oop references.
3175           field = ik->get_field_by_offset(this->offset(), false);
3176           if (field != NULL) {
3177             BasicType basic_elem_type = field->layout_type();
3178             _is_ptr_to_narrowoop = UseCompressedOops && (basic_elem_type == T_OBJECT ||
3179                                                          basic_elem_type == T_ARRAY);
3180           } else if (klass()->equals(ciEnv::current()->Object_klass())) {
3181             // Compile::find_alias_type() cast exactness on all types to verify
3182             // that it does not affect alias type.
3183             _is_ptr_to_narrowoop = UseCompressedOops;
3184           } else {
3185             // Type for the copy start in LibraryCallKit::inline_native_clone().
3186             _is_ptr_to_narrowoop = UseCompressedOops;
3187           }
3188         }
3189       }
3190     }
3191   }
3192 #endif
3193 }
3194 
3195 //------------------------------make-------------------------------------------
3196 const TypeOopPtr *TypeOopPtr::make(PTR ptr, Offset offset, int instance_id,
3197                                    const TypePtr* speculative, int inline_depth) {
3198   assert(ptr != Constant, "no constant generic pointers");
3199   ciKlass*  k = Compile::current()->env()->Object_klass();
3200   bool      xk = false;
3201   ciObject* o = NULL;
3202   return (TypeOopPtr*)(new TypeOopPtr(OopPtr, ptr, k, xk, o, offset, Offset::bottom, instance_id, speculative, inline_depth))->hashcons();
3203 }
3204 
3205 
3206 //------------------------------cast_to_ptr_type-------------------------------
3207 const Type *TypeOopPtr::cast_to_ptr_type(PTR ptr) const {
3208   assert(_base == OopPtr, "subclass must override cast_to_ptr_type");
3209   if( ptr == _ptr ) return this;
3210   return make(ptr, _offset, _instance_id, _speculative, _inline_depth);
3211 }
3212 
3213 //-----------------------------cast_to_instance_id----------------------------
3214 const TypeOopPtr *TypeOopPtr::cast_to_instance_id(int instance_id) const {
3215   // There are no instances of a general oop.
3216   // Return self unchanged.
3217   return this;
3218 }
3219 
3220 //-----------------------------cast_to_exactness-------------------------------
3221 const Type *TypeOopPtr::cast_to_exactness(bool klass_is_exact) const {
3222   // There is no such thing as an exact general oop.
3223   // Return self unchanged.
3224   return this;
3225 }
3226 
3227 
3228 //------------------------------as_klass_type----------------------------------
3229 // Return the klass type corresponding to this instance or array type.
3230 // It is the type that is loaded from an object of this type.
3231 const TypeKlassPtr* TypeOopPtr::as_klass_type() const {
3232   ciKlass* k = klass();
3233   bool    xk = klass_is_exact();
3234   if (k == NULL)
3235     return TypeKlassPtr::OBJECT;
3236   else
3237     return TypeKlassPtr::make(xk? Constant: NotNull, k, Offset(0));
3238 }
3239 
3240 //------------------------------meet-------------------------------------------
3241 // Compute the MEET of two types.  It returns a new Type object.
3242 const Type *TypeOopPtr::xmeet_helper(const Type *t) const {
3243   // Perform a fast test for common case; meeting the same types together.
3244   if( this == t ) return this;  // Meeting same type-rep?
3245 
3246   // Current "this->_base" is OopPtr
3247   switch (t->base()) {          // switch on original type
3248 
3249   case Int:                     // Mixing ints & oops happens when javac
3250   case Long:                    // reuses local variables
3251   case FloatTop:
3252   case FloatCon:
3253   case FloatBot:
3254   case DoubleTop:
3255   case DoubleCon:
3256   case DoubleBot:
3257   case NarrowOop:
3258   case NarrowKlass:
3259   case Bottom:                  // Ye Olde Default
3260     return Type::BOTTOM;
3261   case Top:
3262     return this;
3263 
3264   default:                      // All else is a mistake
3265     typerr(t);
3266 
3267   case RawPtr:
3268   case MetadataPtr:
3269   case KlassPtr:
3270     return TypePtr::BOTTOM;     // Oop meet raw is not well defined
3271 
3272   case AnyPtr: {
3273     // Found an AnyPtr type vs self-OopPtr type
3274     const TypePtr *tp = t->is_ptr();
3275     Offset offset = meet_offset(tp->offset());
3276     PTR ptr = meet_ptr(tp->ptr());
3277     const TypePtr* speculative = xmeet_speculative(tp);
3278     int depth = meet_inline_depth(tp->inline_depth());
3279     switch (tp->ptr()) {
3280     case Null:
3281       if (ptr == Null)  return TypePtr::make(AnyPtr, ptr, offset, speculative, depth);
3282       // else fall through:
3283     case TopPTR:
3284     case AnyNull: {
3285       int instance_id = meet_instance_id(InstanceTop);
3286       return make(ptr, offset, instance_id, speculative, depth);
3287     }
3288     case BotPTR:
3289     case NotNull:
3290       return TypePtr::make(AnyPtr, ptr, offset, speculative, depth);
3291     default: typerr(t);
3292     }
3293   }
3294 
3295   case OopPtr: {                 // Meeting to other OopPtrs
3296     const TypeOopPtr *tp = t->is_oopptr();
3297     int instance_id = meet_instance_id(tp->instance_id());
3298     const TypePtr* speculative = xmeet_speculative(tp);
3299     int depth = meet_inline_depth(tp->inline_depth());
3300     return make(meet_ptr(tp->ptr()), meet_offset(tp->offset()), instance_id, speculative, depth);
3301   }
3302 
3303   case InstPtr:                  // For these, flip the call around to cut down
3304   case ValueTypePtr:
3305   case AryPtr:
3306     return t->xmeet(this);      // Call in reverse direction
3307 
3308   } // End of switch
3309   return this;                  // Return the double constant
3310 }
3311 
3312 
3313 //------------------------------xdual------------------------------------------
3314 // Dual of a pure heap pointer.  No relevant klass or oop information.
3315 const Type *TypeOopPtr::xdual() const {
3316   assert(klass() == Compile::current()->env()->Object_klass(), "no klasses here");
3317   assert(const_oop() == NULL,             "no constants here");
3318   return new TypeOopPtr(_base, dual_ptr(), klass(), klass_is_exact(), const_oop(), dual_offset(), Offset::bottom, dual_instance_id(), dual_speculative(), dual_inline_depth());
3319 }
3320 
3321 //--------------------------make_from_klass_common-----------------------------
3322 // Computes the element-type given a klass.
3323 const TypeOopPtr* TypeOopPtr::make_from_klass_common(ciKlass *klass, bool klass_change, bool try_for_exact) {
3324   if (klass->is_valuetype()) {
3325     return TypeValueTypePtr::make(TypePtr::NotNull, klass->as_value_klass());
3326   } else if (klass->is_instance_klass()) {
3327     Compile* C = Compile::current();
3328     Dependencies* deps = C->dependencies();
3329     assert((deps != NULL) == (C->method() != NULL && C->method()->code_size() > 0), "sanity");
3330     // Element is an instance
3331     bool klass_is_exact = false;
3332     if (klass->is_loaded()) {
3333       // Try to set klass_is_exact.
3334       ciInstanceKlass* ik = klass->as_instance_klass();
3335       klass_is_exact = ik->is_final();
3336       if (!klass_is_exact && klass_change
3337           && deps != NULL && UseUniqueSubclasses) {
3338         ciInstanceKlass* sub = ik->unique_concrete_subklass();
3339         if (sub != NULL) {
3340           deps->assert_abstract_with_unique_concrete_subtype(ik, sub);
3341           klass = ik = sub;
3342           klass_is_exact = sub->is_final();
3343         }
3344       }
3345       if (!klass_is_exact && try_for_exact
3346           && deps != NULL && UseExactTypes) {
3347         if (!ik->is_interface() && !ik->has_subklass()) {
3348           // Add a dependence; if concrete subclass added we need to recompile
3349           deps->assert_leaf_type(ik);
3350           klass_is_exact = true;
3351         }
3352       }
3353     }
3354     return TypeInstPtr::make(TypePtr::BotPTR, klass, klass_is_exact, NULL, Offset(0));
3355   } else if (klass->is_obj_array_klass()) {
3356     // Element is an object or value array. Recursively call ourself.
3357     const TypeOopPtr* etype = TypeOopPtr::make_from_klass_common(klass->as_array_klass()->element_klass(), false, try_for_exact);
3358     bool xk = etype->klass_is_exact();
3359     const TypeAry* arr0 = TypeAry::make(etype, TypeInt::POS);
3360     // We used to pass NotNull in here, asserting that the sub-arrays
3361     // are all not-null.  This is not true in generally, as code can
3362     // slam NULLs down in the subarrays.
3363     const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::BotPTR, arr0, klass, xk, Offset(0));
3364     return arr;
3365   } else if (klass->is_type_array_klass()) {
3366     // Element is an typeArray
3367     const Type* etype = get_const_basic_type(klass->as_type_array_klass()->element_type());
3368     const TypeAry* arr0 = TypeAry::make(etype, TypeInt::POS);
3369     // We used to pass NotNull in here, asserting that the array pointer
3370     // is not-null. That was not true in general.
3371     const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::BotPTR, arr0, klass, true, Offset(0));
3372     return arr;
3373   } else if (klass->is_value_array_klass()) {
3374     ciValueKlass* vk = klass->as_array_klass()->element_klass()->as_value_klass();
3375     const Type* etype = NULL;
3376     bool xk = false;
3377     if (vk->flatten_array()) {
3378       etype = TypeValueType::make(vk);
3379       xk = true;
3380     } else {
3381       const TypeOopPtr* etype_oop = TypeOopPtr::make_from_klass_common(vk, false, try_for_exact);
3382       xk = etype_oop->klass_is_exact();
3383       etype = etype_oop;
3384     }
3385     const TypeAry* arr0 = TypeAry::make(etype, TypeInt::POS);
3386     const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::BotPTR, arr0, klass, xk, Offset(0));
3387     return arr;
3388   } else {
3389     ShouldNotReachHere();
3390     return NULL;
3391   }
3392 }
3393 
3394 //------------------------------make_from_constant-----------------------------
3395 // Make a java pointer from an oop constant
3396 const TypeOopPtr* TypeOopPtr::make_from_constant(ciObject* o, bool require_constant) {
3397   assert(!o->is_null_object(), "null object not yet handled here.");
3398   ciKlass* klass = o->klass();
3399   if (klass->is_valuetype()) {
3400     // Element is a value type
3401     if (require_constant) {
3402       if (!o->can_be_constant())  return NULL;
3403     } else if (!o->should_be_constant()) {
3404       return TypeValueTypePtr::make(TypePtr::NotNull, klass->as_value_klass());
3405     }
3406     return TypeValueTypePtr::make(o);
3407   } else if (klass->is_instance_klass()) {
3408     // Element is an instance
3409     if (require_constant) {
3410       if (!o->can_be_constant())  return NULL;
3411     } else if (!o->should_be_constant()) {
3412       return TypeInstPtr::make(TypePtr::NotNull, klass, true, NULL, Offset(0));
3413     }
3414     return TypeInstPtr::make(o);
3415   } else if (klass->is_obj_array_klass() || klass->is_value_array_klass()) {
3416     // Element is an object array. Recursively call ourself.
3417     const TypeOopPtr *etype =
3418       TypeOopPtr::make_from_klass_raw(klass->as_array_klass()->element_klass());
3419     const TypeAry* arr0 = TypeAry::make(etype, TypeInt::make(o->as_array()->length()));
3420     // We used to pass NotNull in here, asserting that the sub-arrays
3421     // are all not-null.  This is not true in generally, as code can
3422     // slam NULLs down in the subarrays.
3423     if (require_constant) {
3424       if (!o->can_be_constant())  return NULL;
3425     } else if (!o->should_be_constant()) {
3426       return TypeAryPtr::make(TypePtr::NotNull, arr0, klass, true, Offset(0));
3427     }
3428     const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::Constant, o, arr0, klass, true, Offset(0));
3429     return arr;
3430   } else if (klass->is_type_array_klass()) {
3431     // Element is an typeArray
3432     const Type* etype =
3433       (Type*)get_const_basic_type(klass->as_type_array_klass()->element_type());
3434     const TypeAry* arr0 = TypeAry::make(etype, TypeInt::make(o->as_array()->length()));
3435     // We used to pass NotNull in here, asserting that the array pointer
3436     // is not-null. That was not true in general.
3437     if (require_constant) {
3438       if (!o->can_be_constant())  return NULL;
3439     } else if (!o->should_be_constant()) {
3440       return TypeAryPtr::make(TypePtr::NotNull, arr0, klass, true, Offset(0));
3441     }
3442     const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::Constant, o, arr0, klass, true, Offset(0));
3443     return arr;
3444   }
3445 
3446   fatal("unhandled object type");
3447   return NULL;
3448 }
3449 
3450 //------------------------------get_con----------------------------------------
3451 intptr_t TypeOopPtr::get_con() const {
3452   assert( _ptr == Null || _ptr == Constant, "" );
3453   assert(offset() >= 0, "");
3454 
3455   if (offset() != 0) {
3456     // After being ported to the compiler interface, the compiler no longer
3457     // directly manipulates the addresses of oops.  Rather, it only has a pointer
3458     // to a handle at compile time.  This handle is embedded in the generated
3459     // code and dereferenced at the time the nmethod is made.  Until that time,
3460     // it is not reasonable to do arithmetic with the addresses of oops (we don't
3461     // have access to the addresses!).  This does not seem to currently happen,
3462     // but this assertion here is to help prevent its occurence.
3463     tty->print_cr("Found oop constant with non-zero offset");
3464     ShouldNotReachHere();
3465   }
3466 
3467   return (intptr_t)const_oop()->constant_encoding();
3468 }
3469 
3470 
3471 //-----------------------------filter------------------------------------------
3472 // Do not allow interface-vs.-noninterface joins to collapse to top.
3473 const Type *TypeOopPtr::filter_helper(const Type *kills, bool include_speculative) const {
3474 
3475   const Type* ft = join_helper(kills, include_speculative);
3476   const TypeInstPtr* ftip = ft->isa_instptr();
3477   const TypeInstPtr* ktip = kills->isa_instptr();
3478 
3479   if (ft->empty()) {
3480     // Check for evil case of 'this' being a class and 'kills' expecting an
3481     // interface.  This can happen because the bytecodes do not contain
3482     // enough type info to distinguish a Java-level interface variable
3483     // from a Java-level object variable.  If we meet 2 classes which
3484     // both implement interface I, but their meet is at 'j/l/O' which
3485     // doesn't implement I, we have no way to tell if the result should
3486     // be 'I' or 'j/l/O'.  Thus we'll pick 'j/l/O'.  If this then flows
3487     // into a Phi which "knows" it's an Interface type we'll have to
3488     // uplift the type.
3489     if (!empty()) {
3490       if (ktip != NULL && ktip->is_loaded() && ktip->klass()->is_interface()) {
3491         return kills;           // Uplift to interface
3492       }
3493       // Also check for evil cases of 'this' being a class array
3494       // and 'kills' expecting an array of interfaces.
3495       Type::get_arrays_base_elements(ft, kills, NULL, &ktip);
3496       if (ktip != NULL && ktip->is_loaded() && ktip->klass()->is_interface()) {
3497         return kills;           // Uplift to array of interface
3498       }
3499     }
3500 
3501     return Type::TOP;           // Canonical empty value
3502   }
3503 
3504   // If we have an interface-typed Phi or cast and we narrow to a class type,
3505   // the join should report back the class.  However, if we have a J/L/Object
3506   // class-typed Phi and an interface flows in, it's possible that the meet &
3507   // join report an interface back out.  This isn't possible but happens
3508   // because the type system doesn't interact well with interfaces.
3509   if (ftip != NULL && ktip != NULL &&
3510       ftip->is_loaded() &&  ftip->klass()->is_interface() &&
3511       ktip->is_loaded() && !ktip->klass()->is_interface()) {
3512     assert(!ftip->klass_is_exact(), "interface could not be exact");
3513     return ktip->cast_to_ptr_type(ftip->ptr());
3514   }
3515 
3516   return ft;
3517 }
3518 
3519 //------------------------------eq---------------------------------------------
3520 // Structural equality check for Type representations
3521 bool TypeOopPtr::eq( const Type *t ) const {
3522   const TypeOopPtr *a = (const TypeOopPtr*)t;
3523   if (_klass_is_exact != a->_klass_is_exact ||
3524       _instance_id != a->_instance_id)  return false;
3525   ciObject* one = const_oop();
3526   ciObject* two = a->const_oop();
3527   if (one == NULL || two == NULL) {
3528     return (one == two) && TypePtr::eq(t);
3529   } else {
3530     return one->equals(two) && TypePtr::eq(t);
3531   }
3532 }
3533 
3534 //------------------------------hash-------------------------------------------
3535 // Type-specific hashing function.
3536 int TypeOopPtr::hash(void) const {
3537   return
3538     java_add(java_add(const_oop() ? const_oop()->hash() : 0, _klass_is_exact),
3539              java_add(_instance_id, TypePtr::hash()));
3540 }
3541 
3542 //------------------------------dump2------------------------------------------
3543 #ifndef PRODUCT
3544 void TypeOopPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
3545   st->print("oopptr:%s", ptr_msg[_ptr]);
3546   if( _klass_is_exact ) st->print(":exact");
3547   if( const_oop() ) st->print(INTPTR_FORMAT, p2i(const_oop()));
3548   _offset.dump2(st);
3549   if (_instance_id == InstanceTop)
3550     st->print(",iid=top");
3551   else if (_instance_id != InstanceBot)
3552     st->print(",iid=%d",_instance_id);
3553 
3554   dump_inline_depth(st);
3555   dump_speculative(st);
3556 }
3557 #endif
3558 
3559 //------------------------------singleton--------------------------------------
3560 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
3561 // constants
3562 bool TypeOopPtr::singleton(void) const {
3563   // detune optimizer to not generate constant oop + constant offset as a constant!
3564   // TopPTR, Null, AnyNull, Constant are all singletons
3565   return (offset() == 0) && !below_centerline(_ptr);
3566 }
3567 
3568 //------------------------------add_offset-------------------------------------
3569 const TypePtr *TypeOopPtr::add_offset(intptr_t offset) const {
3570   return make(_ptr, xadd_offset(offset), _instance_id, add_offset_speculative(offset), _inline_depth);
3571 }
3572 
3573 /**
3574  * Return same type without a speculative part
3575  */
3576 const Type* TypeOopPtr::remove_speculative() const {
3577   if (_speculative == NULL) {
3578     return this;
3579   }
3580   assert(_inline_depth == InlineDepthTop || _inline_depth == InlineDepthBottom, "non speculative type shouldn't have inline depth");
3581   return make(_ptr, _offset, _instance_id, NULL, _inline_depth);
3582 }
3583 
3584 /**
3585  * Return same type but drop speculative part if we know we won't use
3586  * it
3587  */
3588 const Type* TypeOopPtr::cleanup_speculative() const {
3589   // If the klass is exact and the ptr is not null then there's
3590   // nothing that the speculative type can help us with
3591   if (klass_is_exact() && !maybe_null()) {
3592     return remove_speculative();
3593   }
3594   return TypePtr::cleanup_speculative();
3595 }
3596 
3597 /**
3598  * Return same type but with a different inline depth (used for speculation)
3599  *
3600  * @param depth  depth to meet with
3601  */
3602 const TypePtr* TypeOopPtr::with_inline_depth(int depth) const {
3603   if (!UseInlineDepthForSpeculativeTypes) {
3604     return this;
3605   }
3606   return make(_ptr, _offset, _instance_id, _speculative, depth);
3607 }
3608 
3609 //------------------------------meet_instance_id--------------------------------
3610 int TypeOopPtr::meet_instance_id( int instance_id ) const {
3611   // Either is 'TOP' instance?  Return the other instance!
3612   if( _instance_id == InstanceTop ) return  instance_id;
3613   if(  instance_id == InstanceTop ) return _instance_id;
3614   // If either is different, return 'BOTTOM' instance
3615   if( _instance_id != instance_id ) return InstanceBot;
3616   return _instance_id;
3617 }
3618 
3619 //------------------------------dual_instance_id--------------------------------
3620 int TypeOopPtr::dual_instance_id( ) const {
3621   if( _instance_id == InstanceTop ) return InstanceBot; // Map TOP into BOTTOM
3622   if( _instance_id == InstanceBot ) return InstanceTop; // Map BOTTOM into TOP
3623   return _instance_id;              // Map everything else into self
3624 }
3625 
3626 /**
3627  * Check whether new profiling would improve speculative type
3628  *
3629  * @param   exact_kls    class from profiling
3630  * @param   inline_depth inlining depth of profile point
3631  *
3632  * @return  true if type profile is valuable
3633  */
3634 bool TypeOopPtr::would_improve_type(ciKlass* exact_kls, int inline_depth) const {
3635   // no way to improve an already exact type
3636   if (klass_is_exact()) {
3637     return false;
3638   }
3639   return TypePtr::would_improve_type(exact_kls, inline_depth);
3640 }
3641 
3642 //=============================================================================
3643 // Convenience common pre-built types.
3644 const TypeInstPtr *TypeInstPtr::NOTNULL;
3645 const TypeInstPtr *TypeInstPtr::BOTTOM;
3646 const TypeInstPtr *TypeInstPtr::MIRROR;
3647 const TypeInstPtr *TypeInstPtr::MARK;
3648 const TypeInstPtr *TypeInstPtr::KLASS;
3649 
3650 //------------------------------TypeInstPtr-------------------------------------
3651 TypeInstPtr::TypeInstPtr(PTR ptr, ciKlass* k, bool xk, ciObject* o, Offset off,
3652                          int instance_id, const TypePtr* speculative, int inline_depth)
3653   : TypeOopPtr(InstPtr, ptr, k, xk, o, off, Offset::bottom, instance_id, speculative, inline_depth),
3654     _name(k->name()) {
3655    assert(k != NULL &&
3656           (k->is_loaded() || o == NULL),
3657           "cannot have constants with non-loaded klass");
3658 };
3659 
3660 //------------------------------make-------------------------------------------
3661 const TypeInstPtr *TypeInstPtr::make(PTR ptr,
3662                                      ciKlass* k,
3663                                      bool xk,
3664                                      ciObject* o,
3665                                      Offset offset,
3666                                      int instance_id,
3667                                      const TypePtr* speculative,
3668                                      int inline_depth) {
3669   assert( !k->is_loaded() || k->is_instance_klass(), "Must be for instance");
3670   // Either const_oop() is NULL or else ptr is Constant
3671   assert( (!o && ptr != Constant) || (o && ptr == Constant),
3672           "constant pointers must have a value supplied" );
3673   // Ptr is never Null
3674   assert( ptr != Null, "NULL pointers are not typed" );
3675 
3676   assert(instance_id <= 0 || xk || !UseExactTypes, "instances are always exactly typed");
3677   if (!UseExactTypes)  xk = false;
3678   if (ptr == Constant) {
3679     // Note:  This case includes meta-object constants, such as methods.
3680     xk = true;
3681   } else if (k->is_loaded()) {
3682     ciInstanceKlass* ik = k->as_instance_klass();
3683     if (!xk && ik->is_final())     xk = true;   // no inexact final klass
3684     if (xk && ik->is_interface())  xk = false;  // no exact interface
3685   }
3686 
3687   // Now hash this baby
3688   TypeInstPtr *result =
3689     (TypeInstPtr*)(new TypeInstPtr(ptr, k, xk, o ,offset, instance_id, speculative, inline_depth))->hashcons();
3690 
3691   return result;
3692 }
3693 
3694 /**
3695  *  Create constant type for a constant boxed value
3696  */
3697 const Type* TypeInstPtr::get_const_boxed_value() const {
3698   assert(is_ptr_to_boxed_value(), "should be called only for boxed value");
3699   assert((const_oop() != NULL), "should be called only for constant object");
3700   ciConstant constant = const_oop()->as_instance()->field_value_by_offset(offset());
3701   BasicType bt = constant.basic_type();
3702   switch (bt) {
3703     case T_BOOLEAN:  return TypeInt::make(constant.as_boolean());
3704     case T_INT:      return TypeInt::make(constant.as_int());
3705     case T_CHAR:     return TypeInt::make(constant.as_char());
3706     case T_BYTE:     return TypeInt::make(constant.as_byte());
3707     case T_SHORT:    return TypeInt::make(constant.as_short());
3708     case T_FLOAT:    return TypeF::make(constant.as_float());
3709     case T_DOUBLE:   return TypeD::make(constant.as_double());
3710     case T_LONG:     return TypeLong::make(constant.as_long());
3711     default:         break;
3712   }
3713   fatal("Invalid boxed value type '%s'", type2name(bt));
3714   return NULL;
3715 }
3716 
3717 //------------------------------cast_to_ptr_type-------------------------------
3718 const Type *TypeInstPtr::cast_to_ptr_type(PTR ptr) const {
3719   if( ptr == _ptr ) return this;
3720   // Reconstruct _sig info here since not a problem with later lazy
3721   // construction, _sig will show up on demand.
3722   return make(ptr, klass(), klass_is_exact(), const_oop(), _offset, _instance_id, _speculative, _inline_depth);
3723 }
3724 
3725 
3726 //-----------------------------cast_to_exactness-------------------------------
3727 const Type *TypeInstPtr::cast_to_exactness(bool klass_is_exact) const {
3728   if( klass_is_exact == _klass_is_exact ) return this;
3729   if (!UseExactTypes)  return this;
3730   if (!_klass->is_loaded())  return this;
3731   ciInstanceKlass* ik = _klass->as_instance_klass();
3732   if( (ik->is_final() || _const_oop) )  return this;  // cannot clear xk
3733   if( ik->is_interface() )              return this;  // cannot set xk
3734   return make(ptr(), klass(), klass_is_exact, const_oop(), _offset, _instance_id, _speculative, _inline_depth);
3735 }
3736 
3737 //-----------------------------cast_to_instance_id----------------------------
3738 const TypeOopPtr *TypeInstPtr::cast_to_instance_id(int instance_id) const {
3739   if( instance_id == _instance_id ) return this;
3740   return make(_ptr, klass(), _klass_is_exact, const_oop(), _offset, instance_id, _speculative, _inline_depth);
3741 }
3742 
3743 //------------------------------xmeet_unloaded---------------------------------
3744 // Compute the MEET of two InstPtrs when at least one is unloaded.
3745 // Assume classes are different since called after check for same name/class-loader
3746 const TypeInstPtr *TypeInstPtr::xmeet_unloaded(const TypeInstPtr *tinst) const {
3747     Offset off = meet_offset(tinst->offset());
3748     PTR ptr = meet_ptr(tinst->ptr());
3749     int instance_id = meet_instance_id(tinst->instance_id());
3750     const TypePtr* speculative = xmeet_speculative(tinst);
3751     int depth = meet_inline_depth(tinst->inline_depth());
3752 
3753     const TypeInstPtr *loaded    = is_loaded() ? this  : tinst;
3754     const TypeInstPtr *unloaded  = is_loaded() ? tinst : this;
3755     if( loaded->klass()->equals(ciEnv::current()->Object_klass()) ) {
3756       //
3757       // Meet unloaded class with java/lang/Object
3758       //
3759       // Meet
3760       //          |                     Unloaded Class
3761       //  Object  |   TOP    |   AnyNull | Constant |   NotNull |  BOTTOM   |
3762       //  ===================================================================
3763       //   TOP    | ..........................Unloaded......................|
3764       //  AnyNull |  U-AN    |................Unloaded......................|
3765       // Constant | ... O-NN .................................. |   O-BOT   |
3766       //  NotNull | ... O-NN .................................. |   O-BOT   |
3767       //  BOTTOM  | ........................Object-BOTTOM ..................|
3768       //
3769       assert(loaded->ptr() != TypePtr::Null, "insanity check");
3770       //
3771       if(      loaded->ptr() == TypePtr::TopPTR ) { return unloaded; }
3772       else if (loaded->ptr() == TypePtr::AnyNull) { return TypeInstPtr::make(ptr, unloaded->klass(), false, NULL, off, instance_id, speculative, depth); }
3773       else if (loaded->ptr() == TypePtr::BotPTR ) { return TypeInstPtr::BOTTOM; }
3774       else if (loaded->ptr() == TypePtr::Constant || loaded->ptr() == TypePtr::NotNull) {
3775         if (unloaded->ptr() == TypePtr::BotPTR  ) { return TypeInstPtr::BOTTOM;  }
3776         else                                      { return TypeInstPtr::NOTNULL; }
3777       }
3778       else if( unloaded->ptr() == TypePtr::TopPTR )  { return unloaded; }
3779 
3780       return unloaded->cast_to_ptr_type(TypePtr::AnyNull)->is_instptr();
3781     }
3782 
3783     // Both are unloaded, not the same class, not Object
3784     // Or meet unloaded with a different loaded class, not java/lang/Object
3785     if( ptr != TypePtr::BotPTR ) {
3786       return TypeInstPtr::NOTNULL;
3787     }
3788     return TypeInstPtr::BOTTOM;
3789 }
3790 
3791 
3792 //------------------------------meet-------------------------------------------
3793 // Compute the MEET of two types.  It returns a new Type object.
3794 const Type *TypeInstPtr::xmeet_helper(const Type *t) const {
3795   // Perform a fast test for common case; meeting the same types together.
3796   if( this == t ) return this;  // Meeting same type-rep?
3797 
3798   // Current "this->_base" is Pointer
3799   switch (t->base()) {          // switch on original type
3800 
3801   case Int:                     // Mixing ints & oops happens when javac
3802   case Long:                    // reuses local variables
3803   case FloatTop:
3804   case FloatCon:
3805   case FloatBot:
3806   case DoubleTop:
3807   case DoubleCon:
3808   case DoubleBot:
3809   case NarrowOop:
3810   case NarrowKlass:
3811   case Bottom:                  // Ye Olde Default
3812     return Type::BOTTOM;
3813   case Top:
3814     return this;
3815 
3816   default:                      // All else is a mistake
3817     typerr(t);
3818 
3819   case MetadataPtr:
3820   case KlassPtr:
3821   case RawPtr: return TypePtr::BOTTOM;
3822 
3823   case AryPtr: {                // All arrays inherit from Object class
3824     const TypeAryPtr *tp = t->is_aryptr();
3825     Offset offset = meet_offset(tp->offset());
3826     PTR ptr = meet_ptr(tp->ptr());
3827     int instance_id = meet_instance_id(tp->instance_id());
3828     const TypePtr* speculative = xmeet_speculative(tp);
3829     int depth = meet_inline_depth(tp->inline_depth());
3830     switch (ptr) {
3831     case TopPTR:
3832     case AnyNull:                // Fall 'down' to dual of object klass
3833       // For instances when a subclass meets a superclass we fall
3834       // below the centerline when the superclass is exact. We need to
3835       // do the same here.
3836       if (klass()->equals(ciEnv::current()->Object_klass()) && !klass_is_exact()) {
3837         return TypeAryPtr::make(ptr, tp->ary(), tp->klass(), tp->klass_is_exact(), offset, tp->field_offset(), instance_id, speculative, depth);
3838       } else {
3839         // cannot subclass, so the meet has to fall badly below the centerline
3840         ptr = NotNull;
3841         instance_id = InstanceBot;
3842         return TypeInstPtr::make( ptr, ciEnv::current()->Object_klass(), false, NULL, offset, instance_id, speculative, depth);
3843       }
3844     case Constant:
3845     case NotNull:
3846     case BotPTR:                // Fall down to object klass
3847       // LCA is object_klass, but if we subclass from the top we can do better
3848       if( above_centerline(_ptr) ) { // if( _ptr == TopPTR || _ptr == AnyNull )
3849         // If 'this' (InstPtr) is above the centerline and it is Object class
3850         // then we can subclass in the Java class hierarchy.
3851         // For instances when a subclass meets a superclass we fall
3852         // below the centerline when the superclass is exact. We need
3853         // to do the same here.
3854         if (klass()->equals(ciEnv::current()->Object_klass()) && !klass_is_exact()) {
3855           // that is, tp's array type is a subtype of my klass
3856           return TypeAryPtr::make(ptr, (ptr == Constant ? tp->const_oop() : NULL),
3857                                   tp->ary(), tp->klass(), tp->klass_is_exact(), offset, tp->field_offset(), instance_id, speculative, depth);
3858         }
3859       }
3860       // The other case cannot happen, since I cannot be a subtype of an array.
3861       // The meet falls down to Object class below centerline.
3862       if( ptr == Constant )
3863          ptr = NotNull;
3864       instance_id = InstanceBot;
3865       return make(ptr, ciEnv::current()->Object_klass(), false, NULL, offset, instance_id, speculative, depth);
3866     default: typerr(t);
3867     }
3868   }
3869 
3870   case OopPtr: {                // Meeting to OopPtrs
3871     // Found a OopPtr type vs self-InstPtr type
3872     const TypeOopPtr *tp = t->is_oopptr();
3873     Offset offset = meet_offset(tp->offset());
3874     PTR ptr = meet_ptr(tp->ptr());
3875     switch (tp->ptr()) {
3876     case TopPTR:
3877     case AnyNull: {
3878       int instance_id = meet_instance_id(InstanceTop);
3879       const TypePtr* speculative = xmeet_speculative(tp);
3880       int depth = meet_inline_depth(tp->inline_depth());
3881       return make(ptr, klass(), klass_is_exact(),
3882                   (ptr == Constant ? const_oop() : NULL), offset, instance_id, speculative, depth);
3883     }
3884     case NotNull:
3885     case BotPTR: {
3886       int instance_id = meet_instance_id(tp->instance_id());
3887       const TypePtr* speculative = xmeet_speculative(tp);
3888       int depth = meet_inline_depth(tp->inline_depth());
3889       return TypeOopPtr::make(ptr, offset, instance_id, speculative, depth);
3890     }
3891     default: typerr(t);
3892     }
3893   }
3894 
3895   case AnyPtr: {                // Meeting to AnyPtrs
3896     // Found an AnyPtr type vs self-InstPtr type
3897     const TypePtr *tp = t->is_ptr();
3898     Offset offset = meet_offset(tp->offset());
3899     PTR ptr = meet_ptr(tp->ptr());
3900     int instance_id = meet_instance_id(InstanceTop);
3901     const TypePtr* speculative = xmeet_speculative(tp);
3902     int depth = meet_inline_depth(tp->inline_depth());
3903     switch (tp->ptr()) {
3904     case Null:
3905       if( ptr == Null ) return TypePtr::make(AnyPtr, ptr, offset, speculative, depth);
3906       // else fall through to AnyNull
3907     case TopPTR:
3908     case AnyNull: {
3909       return make(ptr, klass(), klass_is_exact(),
3910                   (ptr == Constant ? const_oop() : NULL), offset, instance_id, speculative, depth);
3911     }
3912     case NotNull:
3913     case BotPTR:
3914       return TypePtr::make(AnyPtr, ptr, offset, speculative,depth);
3915     default: typerr(t);
3916     }
3917   }
3918 
3919   /*
3920                  A-top         }
3921                /   |   \       }  Tops
3922            B-top A-any C-top   }
3923               | /  |  \ |      }  Any-nulls
3924            B-any   |   C-any   }
3925               |    |    |
3926            B-con A-con C-con   } constants; not comparable across classes
3927               |    |    |
3928            B-not   |   C-not   }
3929               | \  |  / |      }  not-nulls
3930            B-bot A-not C-bot   }
3931                \   |   /       }  Bottoms
3932                  A-bot         }
3933   */
3934 
3935   case InstPtr: {                // Meeting 2 Oops?
3936     // Found an InstPtr sub-type vs self-InstPtr type
3937     const TypeInstPtr *tinst = t->is_instptr();
3938     Offset off = meet_offset( tinst->offset() );
3939     PTR ptr = meet_ptr( tinst->ptr() );
3940     int instance_id = meet_instance_id(tinst->instance_id());
3941     const TypePtr* speculative = xmeet_speculative(tinst);
3942     int depth = meet_inline_depth(tinst->inline_depth());
3943 
3944     // Check for easy case; klasses are equal (and perhaps not loaded!)
3945     // If we have constants, then we created oops so classes are loaded
3946     // and we can handle the constants further down.  This case handles
3947     // both-not-loaded or both-loaded classes
3948     if (ptr != Constant && klass()->equals(tinst->klass()) && klass_is_exact() == tinst->klass_is_exact()) {
3949       return make(ptr, klass(), klass_is_exact(), NULL, off, instance_id, speculative, depth);
3950     }
3951 
3952     // Classes require inspection in the Java klass hierarchy.  Must be loaded.
3953     ciKlass* tinst_klass = tinst->klass();
3954     ciKlass* this_klass  = this->klass();
3955     bool tinst_xk = tinst->klass_is_exact();
3956     bool this_xk  = this->klass_is_exact();
3957     if (!tinst_klass->is_loaded() || !this_klass->is_loaded() ) {
3958       // One of these classes has not been loaded
3959       const TypeInstPtr *unloaded_meet = xmeet_unloaded(tinst);
3960 #ifndef PRODUCT
3961       if( PrintOpto && Verbose ) {
3962         tty->print("meet of unloaded classes resulted in: "); unloaded_meet->dump(); tty->cr();
3963         tty->print("  this == "); this->dump(); tty->cr();
3964         tty->print(" tinst == "); tinst->dump(); tty->cr();
3965       }
3966 #endif
3967       return unloaded_meet;
3968     }
3969 
3970     // Handle mixing oops and interfaces first.
3971     if( this_klass->is_interface() && !(tinst_klass->is_interface() ||
3972                                         tinst_klass == ciEnv::current()->Object_klass())) {
3973       ciKlass *tmp = tinst_klass; // Swap interface around
3974       tinst_klass = this_klass;
3975       this_klass = tmp;
3976       bool tmp2 = tinst_xk;
3977       tinst_xk = this_xk;
3978       this_xk = tmp2;
3979     }
3980     if (tinst_klass->is_interface() &&
3981         !(this_klass->is_interface() ||
3982           // Treat java/lang/Object as an honorary interface,
3983           // because we need a bottom for the interface hierarchy.
3984           this_klass == ciEnv::current()->Object_klass())) {
3985       // Oop meets interface!
3986 
3987       // See if the oop subtypes (implements) interface.
3988       ciKlass *k;
3989       bool xk;
3990       if( this_klass->is_subtype_of( tinst_klass ) ) {
3991         // Oop indeed subtypes.  Now keep oop or interface depending
3992         // on whether we are both above the centerline or either is
3993         // below the centerline.  If we are on the centerline
3994         // (e.g., Constant vs. AnyNull interface), use the constant.
3995         k  = below_centerline(ptr) ? tinst_klass : this_klass;
3996         // If we are keeping this_klass, keep its exactness too.
3997         xk = below_centerline(ptr) ? tinst_xk    : this_xk;
3998       } else {                  // Does not implement, fall to Object
3999         // Oop does not implement interface, so mixing falls to Object
4000         // just like the verifier does (if both are above the
4001         // centerline fall to interface)
4002         k = above_centerline(ptr) ? tinst_klass : ciEnv::current()->Object_klass();
4003         xk = above_centerline(ptr) ? tinst_xk : false;
4004         // Watch out for Constant vs. AnyNull interface.
4005         if (ptr == Constant)  ptr = NotNull;   // forget it was a constant
4006         instance_id = InstanceBot;
4007       }
4008       ciObject* o = NULL;  // the Constant value, if any
4009       if (ptr == Constant) {
4010         // Find out which constant.
4011         o = (this_klass == klass()) ? const_oop() : tinst->const_oop();
4012       }
4013       return make(ptr, k, xk, o, off, instance_id, speculative, depth);
4014     }
4015 
4016     // Either oop vs oop or interface vs interface or interface vs Object
4017 
4018     // !!! Here's how the symmetry requirement breaks down into invariants:
4019     // If we split one up & one down AND they subtype, take the down man.
4020     // If we split one up & one down AND they do NOT subtype, "fall hard".
4021     // If both are up and they subtype, take the subtype class.
4022     // If both are up and they do NOT subtype, "fall hard".
4023     // If both are down and they subtype, take the supertype class.
4024     // If both are down and they do NOT subtype, "fall hard".
4025     // Constants treated as down.
4026 
4027     // Now, reorder the above list; observe that both-down+subtype is also
4028     // "fall hard"; "fall hard" becomes the default case:
4029     // If we split one up & one down AND they subtype, take the down man.
4030     // If both are up and they subtype, take the subtype class.
4031 
4032     // If both are down and they subtype, "fall hard".
4033     // If both are down and they do NOT subtype, "fall hard".
4034     // If both are up and they do NOT subtype, "fall hard".
4035     // If we split one up & one down AND they do NOT subtype, "fall hard".
4036 
4037     // If a proper subtype is exact, and we return it, we return it exactly.
4038     // If a proper supertype is exact, there can be no subtyping relationship!
4039     // If both types are equal to the subtype, exactness is and-ed below the
4040     // centerline and or-ed above it.  (N.B. Constants are always exact.)
4041 
4042     // Check for subtyping:
4043     ciKlass *subtype = NULL;
4044     bool subtype_exact = false;
4045     if( tinst_klass->equals(this_klass) ) {
4046       subtype = this_klass;
4047       subtype_exact = below_centerline(ptr) ? (this_xk & tinst_xk) : (this_xk | tinst_xk);
4048     } else if( !tinst_xk && this_klass->is_subtype_of( tinst_klass ) ) {
4049       subtype = this_klass;     // Pick subtyping class
4050       subtype_exact = this_xk;
4051     } else if( !this_xk && tinst_klass->is_subtype_of( this_klass ) ) {
4052       subtype = tinst_klass;    // Pick subtyping class
4053       subtype_exact = tinst_xk;
4054     }
4055 
4056     if( subtype ) {
4057       if( above_centerline(ptr) ) { // both are up?
4058         this_klass = tinst_klass = subtype;
4059         this_xk = tinst_xk = subtype_exact;
4060       } else if( above_centerline(this ->_ptr) && !above_centerline(tinst->_ptr) ) {
4061         this_klass = tinst_klass; // tinst is down; keep down man
4062         this_xk = tinst_xk;
4063       } else if( above_centerline(tinst->_ptr) && !above_centerline(this ->_ptr) ) {
4064         tinst_klass = this_klass; // this is down; keep down man
4065         tinst_xk = this_xk;
4066       } else {
4067         this_xk = subtype_exact;  // either they are equal, or we'll do an LCA
4068       }
4069     }
4070 
4071     // Check for classes now being equal
4072     if (tinst_klass->equals(this_klass)) {
4073       // If the klasses are equal, the constants may still differ.  Fall to
4074       // NotNull if they do (neither constant is NULL; that is a special case
4075       // handled elsewhere).
4076       ciObject* o = NULL;             // Assume not constant when done
4077       ciObject* this_oop  = const_oop();
4078       ciObject* tinst_oop = tinst->const_oop();
4079       if( ptr == Constant ) {
4080         if (this_oop != NULL && tinst_oop != NULL &&
4081             this_oop->equals(tinst_oop) )
4082           o = this_oop;
4083         else if (above_centerline(this ->_ptr))
4084           o = tinst_oop;
4085         else if (above_centerline(tinst ->_ptr))
4086           o = this_oop;
4087         else
4088           ptr = NotNull;
4089       }
4090       return make(ptr, this_klass, this_xk, o, off, instance_id, speculative, depth);
4091     } // Else classes are not equal
4092 
4093     // Since klasses are different, we require a LCA in the Java
4094     // class hierarchy - which means we have to fall to at least NotNull.
4095     if( ptr == TopPTR || ptr == AnyNull || ptr == Constant )
4096       ptr = NotNull;
4097 
4098     instance_id = InstanceBot;
4099 
4100     // Now we find the LCA of Java classes
4101     ciKlass* k = this_klass->least_common_ancestor(tinst_klass);
4102     return make(ptr, k, false, NULL, off, instance_id, speculative, depth);
4103   } // End of case InstPtr
4104 
4105   } // End of switch
4106   return this;                  // Return the double constant
4107 }
4108 
4109 
4110 //------------------------java_mirror_type--------------------------------------
4111 ciType* TypeInstPtr::java_mirror_type() const {
4112   // must be a singleton type
4113   if( const_oop() == NULL )  return NULL;
4114 
4115   // must be of type java.lang.Class
4116   if( klass() != ciEnv::current()->Class_klass() )  return NULL;
4117 
4118   return const_oop()->as_instance()->java_mirror_type();
4119 }
4120 
4121 
4122 //------------------------------xdual------------------------------------------
4123 // Dual: do NOT dual on klasses.  This means I do NOT understand the Java
4124 // inheritance mechanism.
4125 const Type *TypeInstPtr::xdual() const {
4126   return new TypeInstPtr(dual_ptr(), klass(), klass_is_exact(), const_oop(), dual_offset(), dual_instance_id(), dual_speculative(), dual_inline_depth());
4127 }
4128 
4129 //------------------------------eq---------------------------------------------
4130 // Structural equality check for Type representations
4131 bool TypeInstPtr::eq( const Type *t ) const {
4132   const TypeInstPtr *p = t->is_instptr();
4133   return
4134     klass()->equals(p->klass()) &&
4135     TypeOopPtr::eq(p);          // Check sub-type stuff
4136 }
4137 
4138 //------------------------------hash-------------------------------------------
4139 // Type-specific hashing function.
4140 int TypeInstPtr::hash(void) const {
4141   int hash = java_add(klass()->hash(), TypeOopPtr::hash());
4142   return hash;
4143 }
4144 
4145 //------------------------------dump2------------------------------------------
4146 // Dump oop Type
4147 #ifndef PRODUCT
4148 void TypeInstPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
4149   // Print the name of the klass.
4150   klass()->print_name_on(st);
4151 
4152   switch( _ptr ) {
4153   case Constant:
4154     // TO DO: Make CI print the hex address of the underlying oop.
4155     if (WizardMode || Verbose) {
4156       const_oop()->print_oop(st);
4157     }
4158   case BotPTR:
4159     if (!WizardMode && !Verbose) {
4160       if( _klass_is_exact ) st->print(":exact");
4161       break;
4162     }
4163   case TopPTR:
4164   case AnyNull:
4165   case NotNull:
4166     st->print(":%s", ptr_msg[_ptr]);
4167     if( _klass_is_exact ) st->print(":exact");
4168     break;
4169   }
4170 
4171   _offset.dump2(st);
4172 
4173   st->print(" *");
4174   if (_instance_id == InstanceTop)
4175     st->print(",iid=top");
4176   else if (_instance_id != InstanceBot)
4177     st->print(",iid=%d",_instance_id);
4178 
4179   dump_inline_depth(st);
4180   dump_speculative(st);
4181 }
4182 #endif
4183 
4184 //------------------------------add_offset-------------------------------------
4185 const TypePtr *TypeInstPtr::add_offset(intptr_t offset) const {
4186   return make(_ptr, klass(), klass_is_exact(), const_oop(), xadd_offset(offset),
4187               _instance_id, add_offset_speculative(offset), _inline_depth);
4188 }
4189 
4190 const Type *TypeInstPtr::remove_speculative() const {
4191   if (_speculative == NULL) {
4192     return this;
4193   }
4194   assert(_inline_depth == InlineDepthTop || _inline_depth == InlineDepthBottom, "non speculative type shouldn't have inline depth");
4195   return make(_ptr, klass(), klass_is_exact(), const_oop(), _offset,
4196               _instance_id, NULL, _inline_depth);
4197 }
4198 
4199 const TypePtr *TypeInstPtr::with_inline_depth(int depth) const {
4200   if (!UseInlineDepthForSpeculativeTypes) {
4201     return this;
4202   }
4203   return make(_ptr, klass(), klass_is_exact(), const_oop(), _offset, _instance_id, _speculative, depth);
4204 }
4205 
4206 //=============================================================================
4207 // Convenience common pre-built types.
4208 const TypeAryPtr *TypeAryPtr::RANGE;
4209 const TypeAryPtr *TypeAryPtr::OOPS;
4210 const TypeAryPtr *TypeAryPtr::NARROWOOPS;
4211 const TypeAryPtr *TypeAryPtr::BYTES;
4212 const TypeAryPtr *TypeAryPtr::SHORTS;
4213 const TypeAryPtr *TypeAryPtr::CHARS;
4214 const TypeAryPtr *TypeAryPtr::INTS;
4215 const TypeAryPtr *TypeAryPtr::LONGS;
4216 const TypeAryPtr *TypeAryPtr::FLOATS;
4217 const TypeAryPtr *TypeAryPtr::DOUBLES;
4218 
4219 //------------------------------make-------------------------------------------
4220 const TypeAryPtr* TypeAryPtr::make(PTR ptr, const TypeAry *ary, ciKlass* k, bool xk, Offset offset, Offset field_offset,
4221                                    int instance_id, const TypePtr* speculative, int inline_depth) {
4222   assert(!(k == NULL && ary->_elem->isa_int()),
4223          "integral arrays must be pre-equipped with a class");
4224   if (!xk)  xk = ary->ary_must_be_exact();
4225   assert(instance_id <= 0 || xk || !UseExactTypes, "instances are always exactly typed");
4226   if (!UseExactTypes)  xk = (ptr == Constant);
4227   return (TypeAryPtr*)(new TypeAryPtr(ptr, NULL, ary, k, xk, offset, field_offset, instance_id, false, speculative, inline_depth))->hashcons();
4228 }
4229 
4230 //------------------------------make-------------------------------------------
4231 const TypeAryPtr* TypeAryPtr::make(PTR ptr, ciObject* o, const TypeAry *ary, ciKlass* k, bool xk, Offset offset, Offset field_offset,
4232                                    int instance_id, const TypePtr* speculative, int inline_depth,
4233                                    bool is_autobox_cache) {
4234   assert(!(k == NULL && ary->_elem->isa_int()),
4235          "integral arrays must be pre-equipped with a class");
4236   assert( (ptr==Constant && o) || (ptr!=Constant && !o), "" );
4237   if (!xk)  xk = (o != NULL) || ary->ary_must_be_exact();
4238   assert(instance_id <= 0 || xk || !UseExactTypes, "instances are always exactly typed");
4239   if (!UseExactTypes)  xk = (ptr == Constant);
4240   return (TypeAryPtr*)(new TypeAryPtr(ptr, o, ary, k, xk, offset, field_offset, instance_id, is_autobox_cache, speculative, inline_depth))->hashcons();
4241 }
4242 
4243 //------------------------------cast_to_ptr_type-------------------------------
4244 const Type *TypeAryPtr::cast_to_ptr_type(PTR ptr) const {
4245   if( ptr == _ptr ) return this;
4246   return make(ptr, const_oop(), _ary, klass(), klass_is_exact(), _offset, _field_offset, _instance_id, _speculative, _inline_depth, _is_autobox_cache);
4247 }
4248 
4249 
4250 //-----------------------------cast_to_exactness-------------------------------
4251 const Type *TypeAryPtr::cast_to_exactness(bool klass_is_exact) const {
4252   if( klass_is_exact == _klass_is_exact ) return this;
4253   if (!UseExactTypes)  return this;
4254   if (_ary->ary_must_be_exact())  return this;  // cannot clear xk
4255   return make(ptr(), const_oop(), _ary, klass(), klass_is_exact, _offset, _field_offset, _instance_id, _speculative, _inline_depth, _is_autobox_cache);
4256 }
4257 
4258 //-----------------------------cast_to_instance_id----------------------------
4259 const TypeOopPtr *TypeAryPtr::cast_to_instance_id(int instance_id) const {
4260   if( instance_id == _instance_id ) return this;
4261   return make(_ptr, const_oop(), _ary, klass(), _klass_is_exact, _offset, _field_offset, instance_id, _speculative, _inline_depth, _is_autobox_cache);
4262 }
4263 
4264 //-----------------------------narrow_size_type-------------------------------
4265 // Local cache for arrayOopDesc::max_array_length(etype),
4266 // which is kind of slow (and cached elsewhere by other users).
4267 static jint max_array_length_cache[T_CONFLICT+1];
4268 static jint max_array_length(BasicType etype) {
4269   jint& cache = max_array_length_cache[etype];
4270   jint res = cache;
4271   if (res == 0) {
4272     switch (etype) {
4273     case T_NARROWOOP:
4274       etype = T_OBJECT;
4275       break;
4276     case T_NARROWKLASS:
4277     case T_CONFLICT:
4278     case T_ILLEGAL:
4279     case T_VOID:
4280       etype = T_BYTE;           // will produce conservatively high value
4281     }
4282     cache = res = arrayOopDesc::max_array_length(etype);
4283   }
4284   return res;
4285 }
4286 
4287 // Narrow the given size type to the index range for the given array base type.
4288 // Return NULL if the resulting int type becomes empty.
4289 const TypeInt* TypeAryPtr::narrow_size_type(const TypeInt* size) const {
4290   jint hi = size->_hi;
4291   jint lo = size->_lo;
4292   jint min_lo = 0;
4293   jint max_hi = max_array_length(elem()->basic_type());
4294   //if (index_not_size)  --max_hi;     // type of a valid array index, FTR
4295   bool chg = false;
4296   if (lo < min_lo) {
4297     lo = min_lo;
4298     if (size->is_con()) {
4299       hi = lo;
4300     }
4301     chg = true;
4302   }
4303   if (hi > max_hi) {
4304     hi = max_hi;
4305     if (size->is_con()) {
4306       lo = hi;
4307     }
4308     chg = true;
4309   }
4310   // Negative length arrays will produce weird intermediate dead fast-path code
4311   if (lo > hi)
4312     return TypeInt::ZERO;
4313   if (!chg)
4314     return size;
4315   return TypeInt::make(lo, hi, Type::WidenMin);
4316 }
4317 
4318 //-------------------------------cast_to_size----------------------------------
4319 const TypeAryPtr* TypeAryPtr::cast_to_size(const TypeInt* new_size) const {
4320   assert(new_size != NULL, "");
4321   new_size = narrow_size_type(new_size);
4322   if (new_size == size())  return this;
4323   const TypeAry* new_ary = TypeAry::make(elem(), new_size, is_stable());
4324   return make(ptr(), const_oop(), new_ary, klass(), klass_is_exact(), _offset, _field_offset, _instance_id, _speculative, _inline_depth, _is_autobox_cache);
4325 }
4326 
4327 //------------------------------cast_to_stable---------------------------------
4328 const TypeAryPtr* TypeAryPtr::cast_to_stable(bool stable, int stable_dimension) const {
4329   if (stable_dimension <= 0 || (stable_dimension == 1 && stable == this->is_stable()))
4330     return this;
4331 
4332   const Type* elem = this->elem();
4333   const TypePtr* elem_ptr = elem->make_ptr();
4334 
4335   if (stable_dimension > 1 && elem_ptr != NULL && elem_ptr->isa_aryptr()) {
4336     // If this is widened from a narrow oop, TypeAry::make will re-narrow it.
4337     elem = elem_ptr = elem_ptr->is_aryptr()->cast_to_stable(stable, stable_dimension - 1);
4338   }
4339 
4340   const TypeAry* new_ary = TypeAry::make(elem, size(), stable);
4341 
4342   return make(ptr(), const_oop(), new_ary, klass(), klass_is_exact(), _offset, _field_offset, _instance_id, _speculative, _inline_depth, _is_autobox_cache);
4343 }
4344 
4345 //-----------------------------stable_dimension--------------------------------
4346 int TypeAryPtr::stable_dimension() const {
4347   if (!is_stable())  return 0;
4348   int dim = 1;
4349   const TypePtr* elem_ptr = elem()->make_ptr();
4350   if (elem_ptr != NULL && elem_ptr->isa_aryptr())
4351     dim += elem_ptr->is_aryptr()->stable_dimension();
4352   return dim;
4353 }
4354 
4355 //----------------------cast_to_autobox_cache-----------------------------------
4356 const TypeAryPtr* TypeAryPtr::cast_to_autobox_cache(bool cache) const {
4357   if (is_autobox_cache() == cache)  return this;
4358   const TypeOopPtr* etype = elem()->make_oopptr();
4359   if (etype == NULL)  return this;
4360   // The pointers in the autobox arrays are always non-null.
4361   TypePtr::PTR ptr_type = cache ? TypePtr::NotNull : TypePtr::AnyNull;
4362   etype = etype->cast_to_ptr_type(TypePtr::NotNull)->is_oopptr();
4363   const TypeAry* new_ary = TypeAry::make(etype, size(), is_stable());
4364   return make(ptr(), const_oop(), new_ary, klass(), klass_is_exact(), _offset, _field_offset, _instance_id, _speculative, _inline_depth, cache);
4365 }
4366 
4367 //------------------------------eq---------------------------------------------
4368 // Structural equality check for Type representations
4369 bool TypeAryPtr::eq( const Type *t ) const {
4370   const TypeAryPtr *p = t->is_aryptr();
4371   return
4372     _ary == p->_ary &&  // Check array
4373     TypeOopPtr::eq(p) &&// Check sub-parts
4374     _field_offset == p->_field_offset;
4375 }
4376 
4377 //------------------------------hash-------------------------------------------
4378 // Type-specific hashing function.
4379 int TypeAryPtr::hash(void) const {
4380   return (intptr_t)_ary + TypeOopPtr::hash() + _field_offset.get();
4381 }
4382 
4383 //------------------------------meet-------------------------------------------
4384 // Compute the MEET of two types.  It returns a new Type object.
4385 const Type *TypeAryPtr::xmeet_helper(const Type *t) const {
4386   // Perform a fast test for common case; meeting the same types together.
4387   if( this == t ) return this;  // Meeting same type-rep?
4388   // Current "this->_base" is Pointer
4389   switch (t->base()) {          // switch on original type
4390 
4391   // Mixing ints & oops happens when javac reuses local variables
4392   case Int:
4393   case Long:
4394   case FloatTop:
4395   case FloatCon:
4396   case FloatBot:
4397   case DoubleTop:
4398   case DoubleCon:
4399   case DoubleBot:
4400   case NarrowOop:
4401   case NarrowKlass:
4402   case Bottom:                  // Ye Olde Default
4403     return Type::BOTTOM;
4404   case Top:
4405     return this;
4406 
4407   default:                      // All else is a mistake
4408     typerr(t);
4409 
4410   case OopPtr: {                // Meeting to OopPtrs
4411     // Found a OopPtr type vs self-AryPtr type
4412     const TypeOopPtr *tp = t->is_oopptr();
4413     Offset offset = meet_offset(tp->offset());
4414     PTR ptr = meet_ptr(tp->ptr());
4415     int depth = meet_inline_depth(tp->inline_depth());
4416     const TypePtr* speculative = xmeet_speculative(tp);
4417     switch (tp->ptr()) {
4418     case TopPTR:
4419     case AnyNull: {
4420       int instance_id = meet_instance_id(InstanceTop);
4421       return make(ptr, (ptr == Constant ? const_oop() : NULL),
4422                   _ary, _klass, _klass_is_exact, offset, _field_offset, instance_id, speculative, depth);
4423     }
4424     case BotPTR:
4425     case NotNull: {
4426       int instance_id = meet_instance_id(tp->instance_id());
4427       return TypeOopPtr::make(ptr, offset, instance_id, speculative, depth);
4428     }
4429     default: ShouldNotReachHere();
4430     }
4431   }
4432 
4433   case AnyPtr: {                // Meeting two AnyPtrs
4434     // Found an AnyPtr type vs self-AryPtr type
4435     const TypePtr *tp = t->is_ptr();
4436     Offset offset = meet_offset(tp->offset());
4437     PTR ptr = meet_ptr(tp->ptr());
4438     const TypePtr* speculative = xmeet_speculative(tp);
4439     int depth = meet_inline_depth(tp->inline_depth());
4440     switch (tp->ptr()) {
4441     case TopPTR:
4442       return this;
4443     case BotPTR:
4444     case NotNull:
4445       return TypePtr::make(AnyPtr, ptr, offset, speculative, depth);
4446     case Null:
4447       if( ptr == Null ) return TypePtr::make(AnyPtr, ptr, offset, speculative, depth);
4448       // else fall through to AnyNull
4449     case AnyNull: {
4450       int instance_id = meet_instance_id(InstanceTop);
4451       return make(ptr, (ptr == Constant ? const_oop() : NULL),
4452                   _ary, _klass, _klass_is_exact, offset, _field_offset, instance_id, speculative, depth);
4453     }
4454     default: ShouldNotReachHere();
4455     }
4456   }
4457 
4458   case MetadataPtr:
4459   case KlassPtr:
4460   case RawPtr: return TypePtr::BOTTOM;
4461 
4462   case AryPtr: {                // Meeting 2 references?
4463     const TypeAryPtr *tap = t->is_aryptr();
4464     Offset off = meet_offset(tap->offset());
4465     Offset field_off = meet_field_offset(tap->field_offset());
4466     const TypeAry *tary = _ary->meet_speculative(tap->_ary)->is_ary();
4467     PTR ptr = meet_ptr(tap->ptr());
4468     int instance_id = meet_instance_id(tap->instance_id());
4469     const TypePtr* speculative = xmeet_speculative(tap);
4470     int depth = meet_inline_depth(tap->inline_depth());
4471     ciKlass* lazy_klass = NULL;
4472     if (tary->_elem->isa_int()) {
4473       // Integral array element types have irrelevant lattice relations.
4474       // It is the klass that determines array layout, not the element type.
4475       if (_klass == NULL)
4476         lazy_klass = tap->_klass;
4477       else if (tap->_klass == NULL || tap->_klass == _klass) {
4478         lazy_klass = _klass;
4479       } else {
4480         // Something like byte[int+] meets char[int+].
4481         // This must fall to bottom, not (int[-128..65535])[int+].
4482         instance_id = InstanceBot;
4483         tary = TypeAry::make(Type::BOTTOM, tary->_size, tary->_stable);
4484       }
4485     } else // Non integral arrays.
4486       // Must fall to bottom if exact klasses in upper lattice
4487       // are not equal or super klass is exact.
4488       if ((above_centerline(ptr) || ptr == Constant) && klass() != tap->klass() &&
4489           // meet with top[] and bottom[] are processed further down:
4490           tap->_klass != NULL  && this->_klass != NULL   &&
4491           // both are exact and not equal:
4492           ((tap->_klass_is_exact && this->_klass_is_exact) ||
4493            // 'tap'  is exact and super or unrelated:
4494            (tap->_klass_is_exact && !tap->klass()->is_subtype_of(klass())) ||
4495            // 'this' is exact and super or unrelated:
4496            (this->_klass_is_exact && !klass()->is_subtype_of(tap->klass())))) {
4497       if (above_centerline(ptr)) {
4498         tary = TypeAry::make(Type::BOTTOM, tary->_size, tary->_stable);
4499       }
4500       return make(NotNull, NULL, tary, lazy_klass, false, off, field_off, InstanceBot, speculative, depth);
4501     }
4502 
4503     bool xk = false;
4504     switch (tap->ptr()) {
4505     case AnyNull:
4506     case TopPTR:
4507       // Compute new klass on demand, do not use tap->_klass
4508       if (below_centerline(this->_ptr)) {
4509         xk = this->_klass_is_exact;
4510       } else {
4511         xk = (tap->_klass_is_exact | this->_klass_is_exact);
4512       }
4513       return make(ptr, const_oop(), tary, lazy_klass, xk, off, field_off, instance_id, speculative, depth);
4514     case Constant: {
4515       ciObject* o = const_oop();
4516       if( _ptr == Constant ) {
4517         if( tap->const_oop() != NULL && !o->equals(tap->const_oop()) ) {
4518           xk = (klass() == tap->klass());
4519           ptr = NotNull;
4520           o = NULL;
4521           instance_id = InstanceBot;
4522         } else {
4523           xk = true;
4524         }
4525       } else if(above_centerline(_ptr)) {
4526         o = tap->const_oop();
4527         xk = true;
4528       } else {
4529         // Only precise for identical arrays
4530         xk = this->_klass_is_exact && (klass() == tap->klass());
4531       }
4532       return TypeAryPtr::make(ptr, o, tary, lazy_klass, xk, off, field_off, instance_id, speculative, depth);
4533     }
4534     case NotNull:
4535     case BotPTR:
4536       // Compute new klass on demand, do not use tap->_klass
4537       if (above_centerline(this->_ptr))
4538             xk = tap->_klass_is_exact;
4539       else  xk = (tap->_klass_is_exact & this->_klass_is_exact) &&
4540               (klass() == tap->klass()); // Only precise for identical arrays
4541       return TypeAryPtr::make(ptr, NULL, tary, lazy_klass, xk, off, field_off, instance_id, speculative, depth);
4542     default: ShouldNotReachHere();
4543     }
4544   }
4545 
4546   // All arrays inherit from Object class
4547   case InstPtr: {
4548     const TypeInstPtr *tp = t->is_instptr();
4549     Offset offset = meet_offset(tp->offset());
4550     PTR ptr = meet_ptr(tp->ptr());
4551     int instance_id = meet_instance_id(tp->instance_id());
4552     const TypePtr* speculative = xmeet_speculative(tp);
4553     int depth = meet_inline_depth(tp->inline_depth());
4554     switch (ptr) {
4555     case TopPTR:
4556     case AnyNull:                // Fall 'down' to dual of object klass
4557       // For instances when a subclass meets a superclass we fall
4558       // below the centerline when the superclass is exact. We need to
4559       // do the same here.
4560       if (tp->klass()->equals(ciEnv::current()->Object_klass()) && !tp->klass_is_exact()) {
4561         return TypeAryPtr::make(ptr, _ary, _klass, _klass_is_exact, offset, _field_offset, instance_id, speculative, depth);
4562       } else {
4563         // cannot subclass, so the meet has to fall badly below the centerline
4564         ptr = NotNull;
4565         instance_id = InstanceBot;
4566         return TypeInstPtr::make(ptr, ciEnv::current()->Object_klass(), false, NULL, offset, instance_id, speculative, depth);
4567       }
4568     case Constant:
4569     case NotNull:
4570     case BotPTR:                // Fall down to object klass
4571       // LCA is object_klass, but if we subclass from the top we can do better
4572       if (above_centerline(tp->ptr())) {
4573         // If 'tp'  is above the centerline and it is Object class
4574         // then we can subclass in the Java class hierarchy.
4575         // For instances when a subclass meets a superclass we fall
4576         // below the centerline when the superclass is exact. We need
4577         // to do the same here.
4578         if (tp->klass()->equals(ciEnv::current()->Object_klass()) && !tp->klass_is_exact()) {
4579           // that is, my array type is a subtype of 'tp' klass
4580           return make(ptr, (ptr == Constant ? const_oop() : NULL),
4581                       _ary, _klass, _klass_is_exact, offset, _field_offset, instance_id, speculative, depth);
4582         }
4583       }
4584       // The other case cannot happen, since t cannot be a subtype of an array.
4585       // The meet falls down to Object class below centerline.
4586       if( ptr == Constant )
4587          ptr = NotNull;
4588       instance_id = InstanceBot;
4589       return TypeInstPtr::make(ptr, ciEnv::current()->Object_klass(), false, NULL,offset, instance_id, speculative, depth);
4590     default: typerr(t);
4591     }
4592   }
4593   }
4594   return this;                  // Lint noise
4595 }
4596 
4597 //------------------------------xdual------------------------------------------
4598 // Dual: compute field-by-field dual
4599 const Type *TypeAryPtr::xdual() const {
4600   return new TypeAryPtr(dual_ptr(), _const_oop, _ary->dual()->is_ary(), _klass, _klass_is_exact, dual_offset(), dual_field_offset(), dual_instance_id(), is_autobox_cache(), dual_speculative(), dual_inline_depth());
4601 }
4602 
4603 Type::Offset TypeAryPtr::meet_field_offset(const Type::Offset offset) const {
4604   return _field_offset.meet(offset);
4605 }
4606 
4607 //------------------------------dual_offset------------------------------------
4608 Type::Offset TypeAryPtr::dual_field_offset() const {
4609   return _field_offset.dual();
4610 }
4611 
4612 //----------------------interface_vs_oop---------------------------------------
4613 #ifdef ASSERT
4614 bool TypeAryPtr::interface_vs_oop(const Type *t) const {
4615   const TypeAryPtr* t_aryptr = t->isa_aryptr();
4616   if (t_aryptr) {
4617     return _ary->interface_vs_oop(t_aryptr->_ary);
4618   }
4619   return false;
4620 }
4621 #endif
4622 
4623 //------------------------------dump2------------------------------------------
4624 #ifndef PRODUCT
4625 void TypeAryPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
4626   _ary->dump2(d,depth,st);
4627   switch( _ptr ) {
4628   case Constant:
4629     const_oop()->print(st);
4630     break;
4631   case BotPTR:
4632     if (!WizardMode && !Verbose) {
4633       if( _klass_is_exact ) st->print(":exact");
4634       break;
4635     }
4636   case TopPTR:
4637   case AnyNull:
4638   case NotNull:
4639     st->print(":%s", ptr_msg[_ptr]);
4640     if( _klass_is_exact ) st->print(":exact");
4641     break;
4642   }
4643 
4644   if (elem()->isa_valuetype()) {
4645     st->print("(");
4646     _field_offset.dump2(st);
4647     st->print(")");
4648   }
4649   if (offset() != 0) {
4650     int header_size = objArrayOopDesc::header_size() * wordSize;
4651     if( _offset == Offset::top )       st->print("+undefined");
4652     else if( _offset == Offset::bottom )  st->print("+any");
4653     else if( offset() < header_size ) st->print("+%d", offset());
4654     else {
4655       BasicType basic_elem_type = elem()->basic_type();
4656       int array_base = arrayOopDesc::base_offset_in_bytes(basic_elem_type);
4657       int elem_size = type2aelembytes(basic_elem_type);
4658       st->print("[%d]", (offset() - array_base)/elem_size);
4659     }
4660   }
4661   st->print(" *");
4662   if (_instance_id == InstanceTop)
4663     st->print(",iid=top");
4664   else if (_instance_id != InstanceBot)
4665     st->print(",iid=%d",_instance_id);
4666 
4667   dump_inline_depth(st);
4668   dump_speculative(st);
4669 }
4670 #endif
4671 
4672 bool TypeAryPtr::empty(void) const {
4673   if (_ary->empty())       return true;
4674   return TypeOopPtr::empty();
4675 }
4676 
4677 //------------------------------add_offset-------------------------------------
4678 const TypePtr *TypeAryPtr::add_offset(intptr_t offset) const {
4679   return make(_ptr, _const_oop, _ary, _klass, _klass_is_exact, xadd_offset(offset), _field_offset, _instance_id, add_offset_speculative(offset), _inline_depth, _is_autobox_cache);
4680 }
4681 
4682 const Type *TypeAryPtr::remove_speculative() const {
4683   if (_speculative == NULL) {
4684     return this;
4685   }
4686   assert(_inline_depth == InlineDepthTop || _inline_depth == InlineDepthBottom, "non speculative type shouldn't have inline depth");
4687   return make(_ptr, _const_oop, _ary->remove_speculative()->is_ary(), _klass, _klass_is_exact, _offset, _field_offset, _instance_id, NULL, _inline_depth, _is_autobox_cache);
4688 }
4689 
4690 const TypePtr *TypeAryPtr::with_inline_depth(int depth) const {
4691   if (!UseInlineDepthForSpeculativeTypes) {
4692     return this;
4693   }
4694   return make(_ptr, _const_oop, _ary->remove_speculative()->is_ary(), _klass, _klass_is_exact, _offset, _field_offset, _instance_id, _speculative, depth, _is_autobox_cache);
4695 }
4696 
4697 const TypeAryPtr* TypeAryPtr::with_field_offset(int offset) const {
4698   return make(_ptr, _const_oop, _ary->remove_speculative()->is_ary(), _klass, _klass_is_exact, _offset, Offset(offset), _instance_id, _speculative, _inline_depth, _is_autobox_cache);
4699 }
4700 
4701 const TypePtr* TypeAryPtr::with_field_offset_and_offset(intptr_t offset) const {
4702   if (offset != Type::OffsetBot) {
4703     const Type* elemtype = elem();
4704     if (elemtype->isa_valuetype()) {
4705       uint header = arrayOopDesc::base_offset_in_bytes(T_OBJECT);
4706       if (offset >= (intptr_t)header) {
4707         ciKlass* arytype_klass = klass();
4708         ciValueArrayKlass* vak = arytype_klass->as_value_array_klass();
4709         int shift = vak->log2_element_size();
4710         intptr_t field_offset = ((offset - header) & ((1 << shift) - 1));
4711 
4712         return with_field_offset(field_offset)->add_offset(offset - field_offset);
4713       }
4714     }
4715   }
4716   return add_offset(offset);
4717 }
4718 
4719 //=============================================================================
4720 
4721 
4722 //=============================================================================
4723 
4724 const TypeValueTypePtr* TypeValueTypePtr::NOTNULL;
4725 //------------------------------make-------------------------------------------
4726 const TypeValueTypePtr* TypeValueTypePtr::make(const TypeValueType* vt, PTR ptr, ciObject* o, Offset offset, int instance_id, const TypePtr* speculative, int inline_depth) {
4727   return (TypeValueTypePtr*)(new TypeValueTypePtr(vt, ptr, o, offset, instance_id, speculative, inline_depth))->hashcons();
4728 }
4729 
4730 const TypePtr* TypeValueTypePtr::add_offset(intptr_t offset) const {
4731   return make(_vt, _ptr, _const_oop, Offset(offset), _instance_id, _speculative, _inline_depth);
4732 }
4733 
4734 //------------------------------cast_to_ptr_type-------------------------------
4735 const Type* TypeValueTypePtr::cast_to_ptr_type(PTR ptr) const {
4736   if (ptr == _ptr) return this;
4737   return make(_vt, ptr, _const_oop, _offset, _instance_id, _speculative, _inline_depth);
4738 }
4739 
4740 //-----------------------------cast_to_instance_id----------------------------
4741 const TypeOopPtr* TypeValueTypePtr::cast_to_instance_id(int instance_id) const {
4742   if (instance_id == _instance_id) return this;
4743   return make(_vt, _ptr, _const_oop, _offset, instance_id, _speculative, _inline_depth);
4744 }
4745 
4746 //------------------------------meet-------------------------------------------
4747 // Compute the MEET of two types.  It returns a new Type object.
4748 const Type* TypeValueTypePtr::xmeet_helper(const Type* t) const {
4749   // Perform a fast test for common case; meeting the same types together.
4750   if (this == t) return this;  // Meeting same type-rep?
4751 
4752   switch (t->base()) {          // switch on original type
4753     case Int:                     // Mixing ints & oops happens when javac
4754     case Long:                    // reuses local variables
4755     case FloatTop:
4756     case FloatCon:
4757     case FloatBot:
4758     case DoubleTop:
4759     case DoubleCon:
4760     case DoubleBot:
4761     case NarrowOop:
4762     case NarrowKlass:
4763     case MetadataPtr:
4764     case KlassPtr:
4765     case RawPtr:
4766     case AryPtr:
4767     case InstPtr:
4768     case Bottom:                  // Ye Olde Default
4769       return Type::BOTTOM;
4770     case Top:
4771       return this;
4772 
4773     default:                      // All else is a mistake
4774       typerr(t);
4775 
4776     case OopPtr: {
4777       // Found a OopPtr type vs self-ValueTypePtr type
4778       const TypeOopPtr* tp = t->is_oopptr();
4779       Offset offset = meet_offset(tp->offset());
4780       PTR ptr = meet_ptr(tp->ptr());
4781       int instance_id = meet_instance_id(tp->instance_id());
4782       const TypePtr* speculative = xmeet_speculative(tp);
4783       int depth = meet_inline_depth(tp->inline_depth());
4784       switch (tp->ptr()) {
4785       case TopPTR:
4786       case AnyNull: {
4787         return make(_vt, ptr, NULL, offset, instance_id, speculative, depth);
4788       }
4789       case NotNull:
4790       case BotPTR: {
4791         return TypeOopPtr::make(ptr, offset, instance_id, speculative, depth);
4792       }
4793       default: typerr(t);
4794       }
4795     }
4796 
4797     case AnyPtr: {
4798       // Found an AnyPtr type vs self-ValueTypePtr type
4799       const TypePtr* tp = t->is_ptr();
4800       Offset offset = meet_offset(tp->offset());
4801       PTR ptr = meet_ptr(tp->ptr());
4802       int instance_id = meet_instance_id(InstanceTop);
4803       const TypePtr* speculative = xmeet_speculative(tp);
4804       int depth = meet_inline_depth(tp->inline_depth());
4805       switch (tp->ptr()) {
4806       case Null:
4807         if( ptr == Null ) return TypePtr::make(AnyPtr, ptr, offset, speculative, depth);
4808         // else fall through to AnyNull
4809       case TopPTR:
4810       case AnyNull: {
4811         return make(_vt, ptr, NULL, offset, instance_id, speculative, depth);
4812       }
4813       case NotNull:
4814       case BotPTR:
4815         return TypePtr::make(AnyPtr, ptr, offset, speculative, depth);
4816       default: typerr(t);
4817       }
4818     }
4819 
4820     case ValueTypePtr: {
4821       // Found an ValueTypePtr type vs self-ValueTypePtr type
4822       const TypeValueTypePtr* tp = t->is_valuetypeptr();
4823       Offset offset = meet_offset(tp->offset());
4824       PTR ptr = meet_ptr(tp->ptr());
4825       int instance_id = meet_instance_id(InstanceTop);
4826       const TypePtr* speculative = xmeet_speculative(tp);
4827       int depth = meet_inline_depth(tp->inline_depth());
4828       // Compute constant oop
4829       ciObject* o = NULL;
4830       ciObject* this_oop  = const_oop();
4831       ciObject* tp_oop = tp->const_oop();
4832       const TypeValueType* vt = NULL;
4833       if (_vt != tp->_vt) {
4834         ciKlass* __value_klass = ciEnv::current()->___Value_klass();
4835         assert(klass() == __value_klass || tp->klass() == __value_klass, "impossible meet");
4836         if (above_centerline(ptr)) {
4837           vt = klass() == __value_klass ? tp->_vt : _vt;
4838         } else if (above_centerline(this->_ptr) && !above_centerline(tp->_ptr)) {
4839           vt = tp->_vt;
4840         } else if (above_centerline(tp->_ptr) && !above_centerline(this->_ptr)) {
4841           vt = _vt;
4842         } else {
4843           vt = klass() == __value_klass ? _vt : tp->_vt;
4844         }
4845       } else {
4846         vt = _vt;
4847       }
4848       if (ptr == Constant) {
4849         if (this_oop != NULL && tp_oop != NULL &&
4850             this_oop->equals(tp_oop) ) {
4851           o = this_oop;
4852         } else if (above_centerline(this ->_ptr)) {
4853           o = tp_oop;
4854         } else if (above_centerline(tp ->_ptr)) {
4855           o = this_oop;
4856         } else {
4857           ptr = NotNull;
4858         }
4859       }
4860       return make(vt, ptr, o, offset, instance_id, speculative, depth);
4861     }
4862     }
4863 }
4864 
4865 // Dual: compute field-by-field dual
4866 const Type* TypeValueTypePtr::xdual() const {
4867   return new TypeValueTypePtr(_vt, dual_ptr(), const_oop(), dual_offset(), dual_instance_id(), dual_speculative(), dual_inline_depth());
4868 }
4869 
4870 //------------------------------eq---------------------------------------------
4871 // Structural equality check for Type representations
4872 bool TypeValueTypePtr::eq(const Type* t) const {
4873   const TypeValueTypePtr* p = t->is_valuetypeptr();
4874   return _vt->eq(p->value_type()) && TypeOopPtr::eq(p);
4875 }
4876 
4877 //------------------------------hash-------------------------------------------
4878 // Type-specific hashing function.
4879 int TypeValueTypePtr::hash(void) const {
4880   return java_add(_vt->hash(), TypeOopPtr::hash());
4881 }
4882 
4883 //------------------------------empty------------------------------------------
4884 // TRUE if Type is a type with no values, FALSE otherwise.
4885 bool TypeValueTypePtr::empty(void) const {
4886   // FIXME
4887   return false;
4888 }
4889 
4890 //------------------------------dump2------------------------------------------
4891 #ifndef PRODUCT
4892 void TypeValueTypePtr::dump2(Dict &d, uint depth, outputStream *st) const {
4893   st->print("valuetype* ");
4894   klass()->print_name_on(st);
4895   st->print(":%s", ptr_msg[_ptr]);
4896   _offset.dump2(st);
4897 }
4898 #endif
4899 
4900 //=============================================================================
4901 
4902 //------------------------------hash-------------------------------------------
4903 // Type-specific hashing function.
4904 int TypeNarrowPtr::hash(void) const {
4905   return _ptrtype->hash() + 7;
4906 }
4907 
4908 bool TypeNarrowPtr::singleton(void) const {    // TRUE if type is a singleton
4909   return _ptrtype->singleton();
4910 }
4911 
4912 bool TypeNarrowPtr::empty(void) const {
4913   return _ptrtype->empty();
4914 }
4915 
4916 intptr_t TypeNarrowPtr::get_con() const {
4917   return _ptrtype->get_con();
4918 }
4919 
4920 bool TypeNarrowPtr::eq( const Type *t ) const {
4921   const TypeNarrowPtr* tc = isa_same_narrowptr(t);
4922   if (tc != NULL) {
4923     if (_ptrtype->base() != tc->_ptrtype->base()) {
4924       return false;
4925     }
4926     return tc->_ptrtype->eq(_ptrtype);
4927   }
4928   return false;
4929 }
4930 
4931 const Type *TypeNarrowPtr::xdual() const {    // Compute dual right now.
4932   const TypePtr* odual = _ptrtype->dual()->is_ptr();
4933   return make_same_narrowptr(odual);
4934 }
4935 
4936 
4937 const Type *TypeNarrowPtr::filter_helper(const Type *kills, bool include_speculative) const {
4938   if (isa_same_narrowptr(kills)) {
4939     const Type* ft =_ptrtype->filter_helper(is_same_narrowptr(kills)->_ptrtype, include_speculative);
4940     if (ft->empty())
4941       return Type::TOP;           // Canonical empty value
4942     if (ft->isa_ptr()) {
4943       return make_hash_same_narrowptr(ft->isa_ptr());
4944     }
4945     return ft;
4946   } else if (kills->isa_ptr()) {
4947     const Type* ft = _ptrtype->join_helper(kills, include_speculative);
4948     if (ft->empty())
4949       return Type::TOP;           // Canonical empty value
4950     return ft;
4951   } else {
4952     return Type::TOP;
4953   }
4954 }
4955 
4956 //------------------------------xmeet------------------------------------------
4957 // Compute the MEET of two types.  It returns a new Type object.
4958 const Type *TypeNarrowPtr::xmeet( const Type *t ) const {
4959   // Perform a fast test for common case; meeting the same types together.
4960   if( this == t ) return this;  // Meeting same type-rep?
4961 
4962   if (t->base() == base()) {
4963     const Type* result = _ptrtype->xmeet(t->make_ptr());
4964     if (result->isa_ptr()) {
4965       return make_hash_same_narrowptr(result->is_ptr());
4966     }
4967     return result;
4968   }
4969 
4970   // Current "this->_base" is NarrowKlass or NarrowOop
4971   switch (t->base()) {          // switch on original type
4972 
4973   case Int:                     // Mixing ints & oops happens when javac
4974   case Long:                    // reuses local variables
4975   case FloatTop:
4976   case FloatCon:
4977   case FloatBot:
4978   case DoubleTop:
4979   case DoubleCon:
4980   case DoubleBot:
4981   case AnyPtr:
4982   case RawPtr:
4983   case OopPtr:
4984   case InstPtr:
4985   case ValueTypePtr:
4986   case AryPtr:
4987   case MetadataPtr:
4988   case KlassPtr:
4989   case NarrowOop:
4990   case NarrowKlass:
4991 
4992   case Bottom:                  // Ye Olde Default
4993     return Type::BOTTOM;
4994   case Top:
4995     return this;
4996 
4997   default:                      // All else is a mistake
4998     typerr(t);
4999 
5000   } // End of switch
5001 
5002   return this;
5003 }
5004 
5005 #ifndef PRODUCT
5006 void TypeNarrowPtr::dump2( Dict & d, uint depth, outputStream *st ) const {
5007   _ptrtype->dump2(d, depth, st);
5008 }
5009 #endif
5010 
5011 const TypeNarrowOop *TypeNarrowOop::BOTTOM;
5012 const TypeNarrowOop *TypeNarrowOop::NULL_PTR;
5013 
5014 
5015 const TypeNarrowOop* TypeNarrowOop::make(const TypePtr* type) {
5016   return (const TypeNarrowOop*)(new TypeNarrowOop(type))->hashcons();
5017 }
5018 
5019 const Type* TypeNarrowOop::remove_speculative() const {
5020   return make(_ptrtype->remove_speculative()->is_ptr());
5021 }
5022 
5023 const Type* TypeNarrowOop::cleanup_speculative() const {
5024   return make(_ptrtype->cleanup_speculative()->is_ptr());
5025 }
5026 
5027 #ifndef PRODUCT
5028 void TypeNarrowOop::dump2( Dict & d, uint depth, outputStream *st ) const {
5029   st->print("narrowoop: ");
5030   TypeNarrowPtr::dump2(d, depth, st);
5031 }
5032 #endif
5033 
5034 const TypeNarrowKlass *TypeNarrowKlass::NULL_PTR;
5035 
5036 const TypeNarrowKlass* TypeNarrowKlass::make(const TypePtr* type) {
5037   return (const TypeNarrowKlass*)(new TypeNarrowKlass(type))->hashcons();
5038 }
5039 
5040 #ifndef PRODUCT
5041 void TypeNarrowKlass::dump2( Dict & d, uint depth, outputStream *st ) const {
5042   st->print("narrowklass: ");
5043   TypeNarrowPtr::dump2(d, depth, st);
5044 }
5045 #endif
5046 
5047 
5048 //------------------------------eq---------------------------------------------
5049 // Structural equality check for Type representations
5050 bool TypeMetadataPtr::eq( const Type *t ) const {
5051   const TypeMetadataPtr *a = (const TypeMetadataPtr*)t;
5052   ciMetadata* one = metadata();
5053   ciMetadata* two = a->metadata();
5054   if (one == NULL || two == NULL) {
5055     return (one == two) && TypePtr::eq(t);
5056   } else {
5057     return one->equals(two) && TypePtr::eq(t);
5058   }
5059 }
5060 
5061 //------------------------------hash-------------------------------------------
5062 // Type-specific hashing function.
5063 int TypeMetadataPtr::hash(void) const {
5064   return
5065     (metadata() ? metadata()->hash() : 0) +
5066     TypePtr::hash();
5067 }
5068 
5069 //------------------------------singleton--------------------------------------
5070 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
5071 // constants
5072 bool TypeMetadataPtr::singleton(void) const {
5073   // detune optimizer to not generate constant metadata + constant offset as a constant!
5074   // TopPTR, Null, AnyNull, Constant are all singletons
5075   return (offset() == 0) && !below_centerline(_ptr);
5076 }
5077 
5078 //------------------------------add_offset-------------------------------------
5079 const TypePtr *TypeMetadataPtr::add_offset( intptr_t offset ) const {
5080   return make( _ptr, _metadata, xadd_offset(offset));
5081 }
5082 
5083 //-----------------------------filter------------------------------------------
5084 // Do not allow interface-vs.-noninterface joins to collapse to top.
5085 const Type *TypeMetadataPtr::filter_helper(const Type *kills, bool include_speculative) const {
5086   const TypeMetadataPtr* ft = join_helper(kills, include_speculative)->isa_metadataptr();
5087   if (ft == NULL || ft->empty())
5088     return Type::TOP;           // Canonical empty value
5089   return ft;
5090 }
5091 
5092  //------------------------------get_con----------------------------------------
5093 intptr_t TypeMetadataPtr::get_con() const {
5094   assert( _ptr == Null || _ptr == Constant, "" );
5095   assert(offset() >= 0, "");
5096 
5097   if (offset() != 0) {
5098     // After being ported to the compiler interface, the compiler no longer
5099     // directly manipulates the addresses of oops.  Rather, it only has a pointer
5100     // to a handle at compile time.  This handle is embedded in the generated
5101     // code and dereferenced at the time the nmethod is made.  Until that time,
5102     // it is not reasonable to do arithmetic with the addresses of oops (we don't
5103     // have access to the addresses!).  This does not seem to currently happen,
5104     // but this assertion here is to help prevent its occurence.
5105     tty->print_cr("Found oop constant with non-zero offset");
5106     ShouldNotReachHere();
5107   }
5108 
5109   return (intptr_t)metadata()->constant_encoding();
5110 }
5111 
5112 //------------------------------cast_to_ptr_type-------------------------------
5113 const Type *TypeMetadataPtr::cast_to_ptr_type(PTR ptr) const {
5114   if( ptr == _ptr ) return this;
5115   return make(ptr, metadata(), _offset);
5116 }
5117 
5118 //------------------------------meet-------------------------------------------
5119 // Compute the MEET of two types.  It returns a new Type object.
5120 const Type *TypeMetadataPtr::xmeet( const Type *t ) const {
5121   // Perform a fast test for common case; meeting the same types together.
5122   if( this == t ) return this;  // Meeting same type-rep?
5123 
5124   // Current "this->_base" is OopPtr
5125   switch (t->base()) {          // switch on original type
5126 
5127   case Int:                     // Mixing ints & oops happens when javac
5128   case Long:                    // reuses local variables
5129   case FloatTop:
5130   case FloatCon:
5131   case FloatBot:
5132   case DoubleTop:
5133   case DoubleCon:
5134   case DoubleBot:
5135   case NarrowOop:
5136   case NarrowKlass:
5137   case Bottom:                  // Ye Olde Default
5138     return Type::BOTTOM;
5139   case Top:
5140     return this;
5141 
5142   default:                      // All else is a mistake
5143     typerr(t);
5144 
5145   case AnyPtr: {
5146     // Found an AnyPtr type vs self-OopPtr type
5147     const TypePtr *tp = t->is_ptr();
5148     Offset offset = meet_offset(tp->offset());
5149     PTR ptr = meet_ptr(tp->ptr());
5150     switch (tp->ptr()) {
5151     case Null:
5152       if (ptr == Null)  return TypePtr::make(AnyPtr, ptr, offset, tp->speculative(), tp->inline_depth());
5153       // else fall through:
5154     case TopPTR:
5155     case AnyNull: {
5156       return make(ptr, _metadata, offset);
5157     }
5158     case BotPTR:
5159     case NotNull:
5160       return TypePtr::make(AnyPtr, ptr, offset, tp->speculative(), tp->inline_depth());
5161     default: typerr(t);
5162     }
5163   }
5164 
5165   case RawPtr:
5166   case KlassPtr:
5167   case OopPtr:
5168   case InstPtr:
5169   case ValueTypePtr:
5170   case AryPtr:
5171     return TypePtr::BOTTOM;     // Oop meet raw is not well defined
5172 
5173   case MetadataPtr: {
5174     const TypeMetadataPtr *tp = t->is_metadataptr();
5175     Offset offset = meet_offset(tp->offset());
5176     PTR tptr = tp->ptr();
5177     PTR ptr = meet_ptr(tptr);
5178     ciMetadata* md = (tptr == TopPTR) ? metadata() : tp->metadata();
5179     if (tptr == TopPTR || _ptr == TopPTR ||
5180         metadata()->equals(tp->metadata())) {
5181       return make(ptr, md, offset);
5182     }
5183     // metadata is different
5184     if( ptr == Constant ) {  // Cannot be equal constants, so...
5185       if( tptr == Constant && _ptr != Constant)  return t;
5186       if( _ptr == Constant && tptr != Constant)  return this;
5187       ptr = NotNull;            // Fall down in lattice
5188     }
5189     return make(ptr, NULL, offset);
5190     break;
5191   }
5192   } // End of switch
5193   return this;                  // Return the double constant
5194 }
5195 
5196 
5197 //------------------------------xdual------------------------------------------
5198 // Dual of a pure metadata pointer.
5199 const Type *TypeMetadataPtr::xdual() const {
5200   return new TypeMetadataPtr(dual_ptr(), metadata(), dual_offset());
5201 }
5202 
5203 //------------------------------dump2------------------------------------------
5204 #ifndef PRODUCT
5205 void TypeMetadataPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
5206   st->print("metadataptr:%s", ptr_msg[_ptr]);
5207   if( metadata() ) st->print(INTPTR_FORMAT, p2i(metadata()));
5208   switch (offset()) {
5209   case OffsetTop: st->print("+top"); break;
5210   case OffsetBot: st->print("+any"); break;
5211   case         0: break;
5212   default:        st->print("+%d",offset()); break;
5213   }
5214 }
5215 #endif
5216 
5217 
5218 //=============================================================================
5219 // Convenience common pre-built type.
5220 const TypeMetadataPtr *TypeMetadataPtr::BOTTOM;
5221 
5222 TypeMetadataPtr::TypeMetadataPtr(PTR ptr, ciMetadata* metadata, Offset offset):
5223   TypePtr(MetadataPtr, ptr, offset), _metadata(metadata) {
5224 }
5225 
5226 const TypeMetadataPtr* TypeMetadataPtr::make(ciMethod* m) {
5227   return make(Constant, m, Offset(0));
5228 }
5229 const TypeMetadataPtr* TypeMetadataPtr::make(ciMethodData* m) {
5230   return make(Constant, m, Offset(0));
5231 }
5232 
5233 //------------------------------make-------------------------------------------
5234 // Create a meta data constant
5235 const TypeMetadataPtr* TypeMetadataPtr::make(PTR ptr, ciMetadata* m, Offset offset) {
5236   assert(m == NULL || !m->is_klass(), "wrong type");
5237   return (TypeMetadataPtr*)(new TypeMetadataPtr(ptr, m, offset))->hashcons();
5238 }
5239 
5240 
5241 //=============================================================================
5242 // Convenience common pre-built types.
5243 
5244 // Not-null object klass or below
5245 const TypeKlassPtr *TypeKlassPtr::OBJECT;
5246 const TypeKlassPtr *TypeKlassPtr::OBJECT_OR_NULL;
5247 
5248 //------------------------------TypeKlassPtr-----------------------------------
5249 TypeKlassPtr::TypeKlassPtr( PTR ptr, ciKlass* klass, Offset offset )
5250   : TypePtr(KlassPtr, ptr, offset), _klass(klass), _klass_is_exact(ptr == Constant) {
5251 }
5252 
5253 //------------------------------make-------------------------------------------
5254 // ptr to klass 'k', if Constant, or possibly to a sub-klass if not a Constant
5255 const TypeKlassPtr* TypeKlassPtr::make(PTR ptr, ciKlass* k, Offset offset) {
5256   assert( k != NULL, "Expect a non-NULL klass");
5257   assert(k->is_instance_klass() || k->is_array_klass(), "Incorrect type of klass oop");
5258   TypeKlassPtr *r =
5259     (TypeKlassPtr*)(new TypeKlassPtr(ptr, k, offset))->hashcons();
5260 
5261   return r;
5262 }
5263 
5264 //------------------------------eq---------------------------------------------
5265 // Structural equality check for Type representations
5266 bool TypeKlassPtr::eq( const Type *t ) const {
5267   const TypeKlassPtr *p = t->is_klassptr();
5268   return
5269     klass()->equals(p->klass()) &&
5270     TypePtr::eq(p);
5271 }
5272 
5273 //------------------------------hash-------------------------------------------
5274 // Type-specific hashing function.
5275 int TypeKlassPtr::hash(void) const {
5276   return java_add(klass()->hash(), TypePtr::hash());
5277 }
5278 
5279 //------------------------------singleton--------------------------------------
5280 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
5281 // constants
5282 bool TypeKlassPtr::singleton(void) const {
5283   // detune optimizer to not generate constant klass + constant offset as a constant!
5284   // TopPTR, Null, AnyNull, Constant are all singletons
5285   return (offset() == 0) && !below_centerline(_ptr);
5286 }
5287 
5288 // Do not allow interface-vs.-noninterface joins to collapse to top.
5289 const Type *TypeKlassPtr::filter_helper(const Type *kills, bool include_speculative) const {
5290   // logic here mirrors the one from TypeOopPtr::filter. See comments
5291   // there.
5292   const Type* ft = join_helper(kills, include_speculative);
5293   const TypeKlassPtr* ftkp = ft->isa_klassptr();
5294   const TypeKlassPtr* ktkp = kills->isa_klassptr();
5295 
5296   if (ft->empty()) {
5297     if (!empty() && ktkp != NULL && ktkp->klass()->is_loaded() && ktkp->klass()->is_interface())
5298       return kills;             // Uplift to interface
5299 
5300     return Type::TOP;           // Canonical empty value
5301   }
5302 
5303   // Interface klass type could be exact in opposite to interface type,
5304   // return it here instead of incorrect Constant ptr J/L/Object (6894807).
5305   if (ftkp != NULL && ktkp != NULL &&
5306       ftkp->is_loaded() &&  ftkp->klass()->is_interface() &&
5307       !ftkp->klass_is_exact() && // Keep exact interface klass
5308       ktkp->is_loaded() && !ktkp->klass()->is_interface()) {
5309     return ktkp->cast_to_ptr_type(ftkp->ptr());
5310   }
5311 
5312   return ft;
5313 }
5314 
5315 //----------------------compute_klass------------------------------------------
5316 // Compute the defining klass for this class
5317 ciKlass* TypeAryPtr::compute_klass(DEBUG_ONLY(bool verify)) const {
5318   // Compute _klass based on element type.
5319   ciKlass* k_ary = NULL;
5320   const TypeAryPtr *tary;
5321   const Type* el = elem();
5322   if (el->isa_narrowoop()) {
5323     el = el->make_ptr();
5324   }
5325 
5326   // Get element klass
5327   if (el->isa_instptr() || el->isa_valuetypeptr()) {
5328     // Compute object array klass from element klass
5329     k_ary = ciArrayKlass::make(el->is_oopptr()->klass());
5330   } else if (el->isa_valuetype()) {
5331     k_ary = ciArrayKlass::make(el->is_valuetype()->value_klass());
5332   } else if ((tary = el->isa_aryptr()) != NULL) {
5333     // Compute array klass from element klass
5334     ciKlass* k_elem = tary->klass();
5335     // If element type is something like bottom[], k_elem will be null.
5336     if (k_elem != NULL)
5337       k_ary = ciObjArrayKlass::make(k_elem);
5338   } else if ((el->base() == Type::Top) ||
5339              (el->base() == Type::Bottom)) {
5340     // element type of Bottom occurs from meet of basic type
5341     // and object; Top occurs when doing join on Bottom.
5342     // Leave k_ary at NULL.
5343   } else {
5344     // Cannot compute array klass directly from basic type,
5345     // since subtypes of TypeInt all have basic type T_INT.
5346 #ifdef ASSERT
5347     if (verify && el->isa_int()) {
5348       // Check simple cases when verifying klass.
5349       BasicType bt = T_ILLEGAL;
5350       if (el == TypeInt::BYTE) {
5351         bt = T_BYTE;
5352       } else if (el == TypeInt::SHORT) {
5353         bt = T_SHORT;
5354       } else if (el == TypeInt::CHAR) {
5355         bt = T_CHAR;
5356       } else if (el == TypeInt::INT) {
5357         bt = T_INT;
5358       } else {
5359         return _klass; // just return specified klass
5360       }
5361       return ciTypeArrayKlass::make(bt);
5362     }
5363 #endif
5364     assert(!el->isa_int(),
5365            "integral arrays must be pre-equipped with a class");
5366     // Compute array klass directly from basic type
5367     k_ary = ciTypeArrayKlass::make(el->basic_type());
5368   }
5369   return k_ary;
5370 }
5371 
5372 //------------------------------klass------------------------------------------
5373 // Return the defining klass for this class
5374 ciKlass* TypeAryPtr::klass() const {
5375   if( _klass ) return _klass;   // Return cached value, if possible
5376 
5377   // Oops, need to compute _klass and cache it
5378   ciKlass* k_ary = compute_klass();
5379 
5380   if( this != TypeAryPtr::OOPS && this->dual() != TypeAryPtr::OOPS ) {
5381     // The _klass field acts as a cache of the underlying
5382     // ciKlass for this array type.  In order to set the field,
5383     // we need to cast away const-ness.
5384     //
5385     // IMPORTANT NOTE: we *never* set the _klass field for the
5386     // type TypeAryPtr::OOPS.  This Type is shared between all
5387     // active compilations.  However, the ciKlass which represents
5388     // this Type is *not* shared between compilations, so caching
5389     // this value would result in fetching a dangling pointer.
5390     //
5391     // Recomputing the underlying ciKlass for each request is
5392     // a bit less efficient than caching, but calls to
5393     // TypeAryPtr::OOPS->klass() are not common enough to matter.
5394     ((TypeAryPtr*)this)->_klass = k_ary;
5395     if (UseCompressedOops && k_ary != NULL && k_ary->is_obj_array_klass() &&
5396         offset() != 0 && offset() != arrayOopDesc::length_offset_in_bytes()) {
5397       ((TypeAryPtr*)this)->_is_ptr_to_narrowoop = true;
5398     }
5399   }
5400   return k_ary;
5401 }
5402 
5403 
5404 //------------------------------add_offset-------------------------------------
5405 // Access internals of klass object
5406 const TypePtr *TypeKlassPtr::add_offset( intptr_t offset ) const {
5407   return make( _ptr, klass(), xadd_offset(offset) );
5408 }
5409 
5410 //------------------------------cast_to_ptr_type-------------------------------
5411 const Type *TypeKlassPtr::cast_to_ptr_type(PTR ptr) const {
5412   assert(_base == KlassPtr, "subclass must override cast_to_ptr_type");
5413   if( ptr == _ptr ) return this;
5414   return make(ptr, _klass, _offset);
5415 }
5416 
5417 
5418 //-----------------------------cast_to_exactness-------------------------------
5419 const Type *TypeKlassPtr::cast_to_exactness(bool klass_is_exact) const {
5420   if( klass_is_exact == _klass_is_exact ) return this;
5421   if (!UseExactTypes)  return this;
5422   return make(klass_is_exact ? Constant : NotNull, _klass, _offset);
5423 }
5424 
5425 
5426 //-----------------------------as_instance_type--------------------------------
5427 // Corresponding type for an instance of the given class.
5428 // It will be NotNull, and exact if and only if the klass type is exact.
5429 const TypeOopPtr* TypeKlassPtr::as_instance_type() const {
5430   ciKlass* k = klass();
5431   bool    xk = klass_is_exact();
5432   //return TypeInstPtr::make(TypePtr::NotNull, k, xk, NULL, 0);
5433   const TypeOopPtr* toop = TypeOopPtr::make_from_klass_raw(k);
5434   guarantee(toop != NULL, "need type for given klass");
5435   toop = toop->cast_to_ptr_type(TypePtr::NotNull)->is_oopptr();
5436   return toop->cast_to_exactness(xk)->is_oopptr();
5437 }
5438 
5439 
5440 //------------------------------xmeet------------------------------------------
5441 // Compute the MEET of two types, return a new Type object.
5442 const Type    *TypeKlassPtr::xmeet( const Type *t ) const {
5443   // Perform a fast test for common case; meeting the same types together.
5444   if( this == t ) return this;  // Meeting same type-rep?
5445 
5446   // Current "this->_base" is Pointer
5447   switch (t->base()) {          // switch on original type
5448 
5449   case Int:                     // Mixing ints & oops happens when javac
5450   case Long:                    // reuses local variables
5451   case FloatTop:
5452   case FloatCon:
5453   case FloatBot:
5454   case DoubleTop:
5455   case DoubleCon:
5456   case DoubleBot:
5457   case NarrowOop:
5458   case NarrowKlass:
5459   case Bottom:                  // Ye Olde Default
5460     return Type::BOTTOM;
5461   case Top:
5462     return this;
5463 
5464   default:                      // All else is a mistake
5465     typerr(t);
5466 
5467   case AnyPtr: {                // Meeting to AnyPtrs
5468     // Found an AnyPtr type vs self-KlassPtr type
5469     const TypePtr *tp = t->is_ptr();
5470     Offset offset = meet_offset(tp->offset());
5471     PTR ptr = meet_ptr(tp->ptr());
5472     switch (tp->ptr()) {
5473     case TopPTR:
5474       return this;
5475     case Null:
5476       if( ptr == Null ) return TypePtr::make(AnyPtr, ptr, offset, tp->speculative(), tp->inline_depth());
5477     case AnyNull:
5478       return make( ptr, klass(), offset );
5479     case BotPTR:
5480     case NotNull:
5481       return TypePtr::make(AnyPtr, ptr, offset, tp->speculative(), tp->inline_depth());
5482     default: typerr(t);
5483     }
5484   }
5485 
5486   case RawPtr:
5487   case MetadataPtr:
5488   case OopPtr:
5489   case AryPtr:                  // Meet with AryPtr
5490   case InstPtr:                 // Meet with InstPtr
5491   case ValueTypePtr:
5492     return TypePtr::BOTTOM;
5493 
5494   //
5495   //             A-top         }
5496   //           /   |   \       }  Tops
5497   //       B-top A-any C-top   }
5498   //          | /  |  \ |      }  Any-nulls
5499   //       B-any   |   C-any   }
5500   //          |    |    |
5501   //       B-con A-con C-con   } constants; not comparable across classes
5502   //          |    |    |
5503   //       B-not   |   C-not   }
5504   //          | \  |  / |      }  not-nulls
5505   //       B-bot A-not C-bot   }
5506   //           \   |   /       }  Bottoms
5507   //             A-bot         }
5508   //
5509 
5510   case KlassPtr: {  // Meet two KlassPtr types
5511     const TypeKlassPtr *tkls = t->is_klassptr();
5512     Offset  off  = meet_offset(tkls->offset());
5513     PTR  ptr     = meet_ptr(tkls->ptr());
5514 
5515     // Check for easy case; klasses are equal (and perhaps not loaded!)
5516     // If we have constants, then we created oops so classes are loaded
5517     // and we can handle the constants further down.  This case handles
5518     // not-loaded classes
5519     if( ptr != Constant && tkls->klass()->equals(klass()) ) {
5520       return make( ptr, klass(), off );
5521     }
5522 
5523     // Classes require inspection in the Java klass hierarchy.  Must be loaded.
5524     ciKlass* tkls_klass = tkls->klass();
5525     ciKlass* this_klass = this->klass();
5526     assert( tkls_klass->is_loaded(), "This class should have been loaded.");
5527     assert( this_klass->is_loaded(), "This class should have been loaded.");
5528 
5529     // If 'this' type is above the centerline and is a superclass of the
5530     // other, we can treat 'this' as having the same type as the other.
5531     if ((above_centerline(this->ptr())) &&
5532         tkls_klass->is_subtype_of(this_klass)) {
5533       this_klass = tkls_klass;
5534     }
5535     // If 'tinst' type is above the centerline and is a superclass of the
5536     // other, we can treat 'tinst' as having the same type as the other.
5537     if ((above_centerline(tkls->ptr())) &&
5538         this_klass->is_subtype_of(tkls_klass)) {
5539       tkls_klass = this_klass;
5540     }
5541 
5542     // Check for classes now being equal
5543     if (tkls_klass->equals(this_klass)) {
5544       // If the klasses are equal, the constants may still differ.  Fall to
5545       // NotNull if they do (neither constant is NULL; that is a special case
5546       // handled elsewhere).
5547       if( ptr == Constant ) {
5548         if (this->_ptr == Constant && tkls->_ptr == Constant &&
5549             this->klass()->equals(tkls->klass()));
5550         else if (above_centerline(this->ptr()));
5551         else if (above_centerline(tkls->ptr()));
5552         else
5553           ptr = NotNull;
5554       }
5555       return make( ptr, this_klass, off );
5556     } // Else classes are not equal
5557 
5558     // Since klasses are different, we require the LCA in the Java
5559     // class hierarchy - which means we have to fall to at least NotNull.
5560     if( ptr == TopPTR || ptr == AnyNull || ptr == Constant )
5561       ptr = NotNull;
5562     // Now we find the LCA of Java classes
5563     ciKlass* k = this_klass->least_common_ancestor(tkls_klass);
5564     return   make( ptr, k, off );
5565   } // End of case KlassPtr
5566 
5567   } // End of switch
5568   return this;                  // Return the double constant
5569 }
5570 
5571 //------------------------------xdual------------------------------------------
5572 // Dual: compute field-by-field dual
5573 const Type    *TypeKlassPtr::xdual() const {
5574   return new TypeKlassPtr( dual_ptr(), klass(), dual_offset() );
5575 }
5576 
5577 //------------------------------get_con----------------------------------------
5578 intptr_t TypeKlassPtr::get_con() const {
5579   assert( _ptr == Null || _ptr == Constant, "" );
5580   assert(offset() >= 0, "");
5581 
5582   if (offset() != 0) {
5583     // After being ported to the compiler interface, the compiler no longer
5584     // directly manipulates the addresses of oops.  Rather, it only has a pointer
5585     // to a handle at compile time.  This handle is embedded in the generated
5586     // code and dereferenced at the time the nmethod is made.  Until that time,
5587     // it is not reasonable to do arithmetic with the addresses of oops (we don't
5588     // have access to the addresses!).  This does not seem to currently happen,
5589     // but this assertion here is to help prevent its occurence.
5590     tty->print_cr("Found oop constant with non-zero offset");
5591     ShouldNotReachHere();
5592   }
5593 
5594   return (intptr_t)klass()->constant_encoding();
5595 }
5596 //------------------------------dump2------------------------------------------
5597 // Dump Klass Type
5598 #ifndef PRODUCT
5599 void TypeKlassPtr::dump2( Dict & d, uint depth, outputStream *st ) const {
5600   switch( _ptr ) {
5601   case Constant:
5602     st->print("precise ");
5603   case NotNull:
5604     {
5605       const char *name = klass()->name()->as_utf8();
5606       if( name ) {
5607         st->print("klass %s: " INTPTR_FORMAT, name, p2i(klass()));
5608       } else {
5609         ShouldNotReachHere();
5610       }
5611     }
5612   case BotPTR:
5613     if( !WizardMode && !Verbose && !_klass_is_exact ) break;
5614   case TopPTR:
5615   case AnyNull:
5616     st->print(":%s", ptr_msg[_ptr]);
5617     if( _klass_is_exact ) st->print(":exact");
5618     break;
5619   }
5620 
5621   _offset.dump2(st);
5622 
5623   st->print(" *");
5624 }
5625 #endif
5626 
5627 
5628 
5629 //=============================================================================
5630 // Convenience common pre-built types.
5631 
5632 //------------------------------make-------------------------------------------
5633 const TypeFunc *TypeFunc::make(const TypeTuple *domain_sig, const TypeTuple* domain_cc,
5634                                const TypeTuple *range_sig, const TypeTuple *range_cc) {
5635   return (TypeFunc*)(new TypeFunc(domain_sig, domain_cc, range_sig, range_cc))->hashcons();
5636 }
5637 
5638 const TypeFunc *TypeFunc::make(const TypeTuple *domain, const TypeTuple *range) {
5639   return make(domain, domain, range, range);
5640 }
5641 
5642 //------------------------------make-------------------------------------------
5643 const TypeFunc *TypeFunc::make(ciMethod* method) {
5644   Compile* C = Compile::current();
5645   const TypeFunc* tf = C->last_tf(method); // check cache
5646   if (tf != NULL)  return tf;  // The hit rate here is almost 50%.
5647   const TypeTuple *domain_sig, *domain_cc;
5648   // Value type arguments are not passed by reference, instead each
5649   // field of the value type is passed as an argument. We maintain 2
5650   // views of the argument list here: one based on the signature (with
5651   // a value type argument as a single slot), one based on the actual
5652   // calling convention (with a value type argument as a list of its
5653   // fields).
5654   if (method->is_static()) {
5655     domain_sig = TypeTuple::make_domain(NULL, method->signature(), false);
5656     domain_cc = TypeTuple::make_domain(NULL, method->signature(), ValueTypePassFieldsAsArgs);
5657   } else {
5658     domain_sig = TypeTuple::make_domain(method->holder(), method->signature(), false);
5659     domain_cc = TypeTuple::make_domain(method->holder(), method->signature(), ValueTypePassFieldsAsArgs);
5660   }
5661   const TypeTuple *range_sig = TypeTuple::make_range(method->signature(), false);
5662   const TypeTuple *range_cc = TypeTuple::make_range(method->signature(), ValueTypeReturnedAsFields);
5663   tf = TypeFunc::make(domain_sig, domain_cc, range_sig, range_cc);
5664   C->set_last_tf(method, tf);  // fill cache
5665   return tf;
5666 }
5667 
5668 //------------------------------meet-------------------------------------------
5669 // Compute the MEET of two types.  It returns a new Type object.
5670 const Type *TypeFunc::xmeet( const Type *t ) const {
5671   // Perform a fast test for common case; meeting the same types together.
5672   if( this == t ) return this;  // Meeting same type-rep?
5673 
5674   // Current "this->_base" is Func
5675   switch (t->base()) {          // switch on original type
5676 
5677   case Bottom:                  // Ye Olde Default
5678     return t;
5679 
5680   default:                      // All else is a mistake
5681     typerr(t);
5682 
5683   case Top:
5684     break;
5685   }
5686   return this;                  // Return the double constant
5687 }
5688 
5689 //------------------------------xdual------------------------------------------
5690 // Dual: compute field-by-field dual
5691 const Type *TypeFunc::xdual() const {
5692   return this;
5693 }
5694 
5695 //------------------------------eq---------------------------------------------
5696 // Structural equality check for Type representations
5697 bool TypeFunc::eq( const Type *t ) const {
5698   const TypeFunc *a = (const TypeFunc*)t;
5699   return _domain_sig == a->_domain_sig &&
5700     _domain_cc == a->_domain_cc &&
5701     _range_sig == a->_range_sig &&
5702     _range_cc == a->_range_cc;
5703 }
5704 
5705 //------------------------------hash-------------------------------------------
5706 // Type-specific hashing function.
5707 int TypeFunc::hash(void) const {
5708   return (intptr_t)_domain_sig + (intptr_t)_domain_cc + (intptr_t)_range_sig + (intptr_t)_range_cc;
5709 }
5710 
5711 //------------------------------dump2------------------------------------------
5712 // Dump Function Type
5713 #ifndef PRODUCT
5714 void TypeFunc::dump2( Dict &d, uint depth, outputStream *st ) const {
5715   if( _range_sig->cnt() <= Parms )
5716     st->print("void");
5717   else {
5718     uint i;
5719     for (i = Parms; i < _range_sig->cnt()-1; i++) {
5720       _range_sig->field_at(i)->dump2(d,depth,st);
5721       st->print("/");
5722     }
5723     _range_sig->field_at(i)->dump2(d,depth,st);
5724   }
5725   st->print(" ");
5726   st->print("( ");
5727   if( !depth || d[this] ) {     // Check for recursive dump
5728     st->print("...)");
5729     return;
5730   }
5731   d.Insert((void*)this,(void*)this);    // Stop recursion
5732   if (Parms < _domain_sig->cnt())
5733     _domain_sig->field_at(Parms)->dump2(d,depth-1,st);
5734   for (uint i = Parms+1; i < _domain_sig->cnt(); i++) {
5735     st->print(", ");
5736     _domain_sig->field_at(i)->dump2(d,depth-1,st);
5737   }
5738   st->print(" )");
5739 }
5740 #endif
5741 
5742 //------------------------------singleton--------------------------------------
5743 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
5744 // constants (Ldi nodes).  Singletons are integer, float or double constants
5745 // or a single symbol.
5746 bool TypeFunc::singleton(void) const {
5747   return false;                 // Never a singleton
5748 }
5749 
5750 bool TypeFunc::empty(void) const {
5751   return false;                 // Never empty
5752 }
5753 
5754 
5755 BasicType TypeFunc::return_type() const{
5756   if (range_sig()->cnt() == TypeFunc::Parms) {
5757     return T_VOID;
5758   }
5759   return range_sig()->field_at(TypeFunc::Parms)->basic_type();
5760 }