1 /*
   2  * Copyright (c) 1997, 2017, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/systemDictionary.hpp"
  27 #include "code/codeCache.hpp"
  28 #include "code/debugInfoRec.hpp"
  29 #include "code/nmethod.hpp"
  30 #include "code/pcDesc.hpp"
  31 #include "code/scopeDesc.hpp"
  32 #include "interpreter/bytecode.hpp"
  33 #include "interpreter/interpreter.hpp"
  34 #include "interpreter/oopMapCache.hpp"
  35 #include "memory/allocation.inline.hpp"
  36 #include "memory/oopFactory.hpp"
  37 #include "memory/resourceArea.hpp"
  38 #include "oops/method.hpp"
  39 #include "oops/objArrayOop.inline.hpp"
  40 #include "oops/oop.inline.hpp"
  41 #include "oops/fieldStreams.hpp"
  42 #include "oops/valueArrayKlass.hpp"
  43 #include "oops/valueArrayOop.hpp"
  44 #include "oops/valueKlass.hpp"
  45 #include "oops/verifyOopClosure.hpp"
  46 #include "prims/jvmtiThreadState.hpp"
  47 #include "runtime/biasedLocking.hpp"
  48 #include "runtime/compilationPolicy.hpp"
  49 #include "runtime/deoptimization.hpp"
  50 #include "runtime/interfaceSupport.hpp"
  51 #include "runtime/sharedRuntime.hpp"
  52 #include "runtime/signature.hpp"
  53 #include "runtime/stubRoutines.hpp"
  54 #include "runtime/thread.hpp"
  55 #include "runtime/vframe.hpp"
  56 #include "runtime/vframeArray.hpp"
  57 #include "runtime/vframe_hp.hpp"
  58 #include "utilities/events.hpp"
  59 #include "utilities/xmlstream.hpp"
  60 
  61 #if INCLUDE_JVMCI
  62 #include "jvmci/jvmciRuntime.hpp"
  63 #include "jvmci/jvmciJavaClasses.hpp"
  64 #endif
  65 
  66 
  67 bool DeoptimizationMarker::_is_active = false;
  68 
  69 Deoptimization::UnrollBlock::UnrollBlock(int  size_of_deoptimized_frame,
  70                                          int  caller_adjustment,
  71                                          int  caller_actual_parameters,
  72                                          int  number_of_frames,
  73                                          intptr_t* frame_sizes,
  74                                          address* frame_pcs,
  75                                          BasicType return_type,
  76                                          int exec_mode) {
  77   _size_of_deoptimized_frame = size_of_deoptimized_frame;
  78   _caller_adjustment         = caller_adjustment;
  79   _caller_actual_parameters  = caller_actual_parameters;
  80   _number_of_frames          = number_of_frames;
  81   _frame_sizes               = frame_sizes;
  82   _frame_pcs                 = frame_pcs;
  83   _register_block            = NEW_C_HEAP_ARRAY(intptr_t, RegisterMap::reg_count * 2, mtCompiler);
  84   _return_type               = return_type;
  85   _initial_info              = 0;
  86   // PD (x86 only)
  87   _counter_temp              = 0;
  88   _unpack_kind               = exec_mode;
  89   _sender_sp_temp            = 0;
  90 
  91   _total_frame_sizes         = size_of_frames();
  92   assert(exec_mode >= 0 && exec_mode < Unpack_LIMIT, "Unexpected exec_mode");
  93 }
  94 
  95 
  96 Deoptimization::UnrollBlock::~UnrollBlock() {
  97   FREE_C_HEAP_ARRAY(intptr_t, _frame_sizes);
  98   FREE_C_HEAP_ARRAY(intptr_t, _frame_pcs);
  99   FREE_C_HEAP_ARRAY(intptr_t, _register_block);
 100 }
 101 
 102 
 103 intptr_t* Deoptimization::UnrollBlock::value_addr_at(int register_number) const {
 104   assert(register_number < RegisterMap::reg_count, "checking register number");
 105   return &_register_block[register_number * 2];
 106 }
 107 
 108 
 109 
 110 int Deoptimization::UnrollBlock::size_of_frames() const {
 111   // Acount first for the adjustment of the initial frame
 112   int result = _caller_adjustment;
 113   for (int index = 0; index < number_of_frames(); index++) {
 114     result += frame_sizes()[index];
 115   }
 116   return result;
 117 }
 118 
 119 
 120 void Deoptimization::UnrollBlock::print() {
 121   ttyLocker ttyl;
 122   tty->print_cr("UnrollBlock");
 123   tty->print_cr("  size_of_deoptimized_frame = %d", _size_of_deoptimized_frame);
 124   tty->print(   "  frame_sizes: ");
 125   for (int index = 0; index < number_of_frames(); index++) {
 126     tty->print(INTX_FORMAT " ", frame_sizes()[index]);
 127   }
 128   tty->cr();
 129 }
 130 
 131 
 132 // In order to make fetch_unroll_info work properly with escape
 133 // analysis, The method was changed from JRT_LEAF to JRT_BLOCK_ENTRY and
 134 // ResetNoHandleMark and HandleMark were removed from it. The actual reallocation
 135 // of previously eliminated objects occurs in realloc_objects, which is
 136 // called from the method fetch_unroll_info_helper below.
 137 JRT_BLOCK_ENTRY(Deoptimization::UnrollBlock*, Deoptimization::fetch_unroll_info(JavaThread* thread, int exec_mode))
 138   // It is actually ok to allocate handles in a leaf method. It causes no safepoints,
 139   // but makes the entry a little slower. There is however a little dance we have to
 140   // do in debug mode to get around the NoHandleMark code in the JRT_LEAF macro
 141 
 142   // fetch_unroll_info() is called at the beginning of the deoptimization
 143   // handler. Note this fact before we start generating temporary frames
 144   // that can confuse an asynchronous stack walker. This counter is
 145   // decremented at the end of unpack_frames().
 146   if (TraceDeoptimization) {
 147     tty->print_cr("Deoptimizing thread " INTPTR_FORMAT, p2i(thread));
 148   }
 149   thread->inc_in_deopt_handler();
 150 
 151   return fetch_unroll_info_helper(thread, exec_mode);
 152 JRT_END
 153 
 154 
 155 // This is factored, since it is both called from a JRT_LEAF (deoptimization) and a JRT_ENTRY (uncommon_trap)
 156 Deoptimization::UnrollBlock* Deoptimization::fetch_unroll_info_helper(JavaThread* thread, int exec_mode) {
 157 
 158   // Note: there is a safepoint safety issue here. No matter whether we enter
 159   // via vanilla deopt or uncommon trap we MUST NOT stop at a safepoint once
 160   // the vframeArray is created.
 161   //
 162 
 163   // Allocate our special deoptimization ResourceMark
 164   DeoptResourceMark* dmark = new DeoptResourceMark(thread);
 165   assert(thread->deopt_mark() == NULL, "Pending deopt!");
 166   thread->set_deopt_mark(dmark);
 167 
 168   frame stub_frame = thread->last_frame(); // Makes stack walkable as side effect
 169   RegisterMap map(thread, true);
 170   RegisterMap dummy_map(thread, false);
 171   // Now get the deoptee with a valid map
 172   frame deoptee = stub_frame.sender(&map);
 173   // Set the deoptee nmethod
 174   assert(thread->deopt_compiled_method() == NULL, "Pending deopt!");
 175   CompiledMethod* cm = deoptee.cb()->as_compiled_method_or_null();
 176   thread->set_deopt_compiled_method(cm);
 177 
 178   if (VerifyStack) {
 179     thread->validate_frame_layout();
 180   }
 181 
 182   // Create a growable array of VFrames where each VFrame represents an inlined
 183   // Java frame.  This storage is allocated with the usual system arena.
 184   assert(deoptee.is_compiled_frame(), "Wrong frame type");
 185   GrowableArray<compiledVFrame*>* chunk = new GrowableArray<compiledVFrame*>(10);
 186   vframe* vf = vframe::new_vframe(&deoptee, &map, thread);
 187   while (!vf->is_top()) {
 188     assert(vf->is_compiled_frame(), "Wrong frame type");
 189     chunk->push(compiledVFrame::cast(vf));
 190     vf = vf->sender();
 191   }
 192   assert(vf->is_compiled_frame(), "Wrong frame type");
 193   chunk->push(compiledVFrame::cast(vf));
 194 
 195   bool realloc_failures = false;
 196 
 197 #if defined(COMPILER2) || INCLUDE_JVMCI
 198   // Reallocate the non-escaping objects and restore their fields. Then
 199   // relock objects if synchronization on them was eliminated.
 200 #ifndef INCLUDE_JVMCI
 201   if (DoEscapeAnalysis || EliminateNestedLocks) {
 202     if (EliminateAllocations) {
 203 #endif // INCLUDE_JVMCI
 204       assert (chunk->at(0)->scope() != NULL,"expect only compiled java frames");
 205       GrowableArray<ScopeValue*>* objects = chunk->at(0)->scope()->objects();
 206 
 207       // The flag return_oop() indicates call sites which return oop
 208       // in compiled code. Such sites include java method calls,
 209       // runtime calls (for example, used to allocate new objects/arrays
 210       // on slow code path) and any other calls generated in compiled code.
 211       // It is not guaranteed that we can get such information here only
 212       // by analyzing bytecode in deoptimized frames. This is why this flag
 213       // is set during method compilation (see Compile::Process_OopMap_Node()).
 214       // If the previous frame was popped or if we are dispatching an exception,
 215       // we don't have an oop result.
 216       ScopeDesc* scope = chunk->at(0)->scope();
 217       bool save_oop_result = scope->return_oop() && !thread->popframe_forcing_deopt_reexecution() && (exec_mode == Unpack_deopt);
 218       // In case of the return of multiple values, we must take care
 219       // of all oop return values.
 220       GrowableArray<Handle> return_oops;
 221       ValueKlass* vk = NULL;
 222       if (save_oop_result) {
 223         if (scope->return_vt()) {
 224           vk = ValueKlass::returned_value_type(map);
 225           if (vk != NULL) {
 226             bool success = vk->save_oop_results(map, return_oops);
 227             assert(success, "found klass ptr being returned: saving oops can't fail");
 228             save_oop_result = false;
 229           } else {
 230             vk = NULL;
 231           }
 232         }
 233       }      
 234       if (save_oop_result) {
 235         // Reallocation may trigger GC. If deoptimization happened on return from
 236         // call which returns oop we need to save it since it is not in oopmap.
 237         oop result = deoptee.saved_oop_result(&map);
 238         assert(result == NULL || result->is_oop(), "must be oop");
 239         return_oops.push(Handle(thread, result));
 240         assert(Universe::heap()->is_in_or_null(result), "must be heap pointer");
 241         if (TraceDeoptimization) {
 242           ttyLocker ttyl;
 243           tty->print_cr("SAVED OOP RESULT " INTPTR_FORMAT " in thread " INTPTR_FORMAT, p2i(result), p2i(thread));
 244         }
 245       }
 246       if (objects != NULL || vk != NULL) {
 247         bool skip_internal = (cm != NULL) && !cm->is_compiled_by_jvmci();
 248         JRT_BLOCK
 249           if (vk != NULL) {
 250             realloc_failures = realloc_value_type_result(vk, map, return_oops, THREAD);
 251           }
 252           if (objects != NULL) {
 253             realloc_failures = realloc_failures || realloc_objects(thread, &deoptee, objects, THREAD);
 254             reassign_fields(&deoptee, &map, objects, realloc_failures, skip_internal, THREAD);
 255           }
 256         JRT_END
 257 #ifndef PRODUCT
 258         if (TraceDeoptimization) {
 259           ttyLocker ttyl;
 260           tty->print_cr("REALLOC OBJECTS in thread " INTPTR_FORMAT, p2i(thread));
 261           print_objects(objects, realloc_failures);
 262         }
 263 #endif
 264       }
 265       if (save_oop_result || vk != NULL) {
 266         // Restore result.
 267         assert(return_oops.length() == 1, "no value type");
 268         deoptee.set_saved_oop_result(&map, return_oops.pop()());
 269       }
 270 #ifndef INCLUDE_JVMCI
 271     }
 272     if (EliminateLocks) {
 273 #endif // INCLUDE_JVMCI
 274 #ifndef PRODUCT
 275       bool first = true;
 276 #endif
 277       for (int i = 0; i < chunk->length(); i++) {
 278         compiledVFrame* cvf = chunk->at(i);
 279         assert (cvf->scope() != NULL,"expect only compiled java frames");
 280         GrowableArray<MonitorInfo*>* monitors = cvf->monitors();
 281         if (monitors->is_nonempty()) {
 282           relock_objects(monitors, thread, realloc_failures);
 283 #ifndef PRODUCT
 284           if (PrintDeoptimizationDetails) {
 285             ttyLocker ttyl;
 286             for (int j = 0; j < monitors->length(); j++) {
 287               MonitorInfo* mi = monitors->at(j);
 288               if (mi->eliminated()) {
 289                 if (first) {
 290                   first = false;
 291                   tty->print_cr("RELOCK OBJECTS in thread " INTPTR_FORMAT, p2i(thread));
 292                 }
 293                 if (mi->owner_is_scalar_replaced()) {
 294                   Klass* k = java_lang_Class::as_Klass(mi->owner_klass());
 295                   tty->print_cr("     failed reallocation for klass %s", k->external_name());
 296                 } else {
 297                   tty->print_cr("     object <" INTPTR_FORMAT "> locked", p2i(mi->owner()));
 298                 }
 299               }
 300             }
 301           }
 302 #endif // !PRODUCT
 303         }
 304       }
 305 #ifndef INCLUDE_JVMCI
 306     }
 307   }
 308 #endif // INCLUDE_JVMCI
 309 #endif // COMPILER2 || INCLUDE_JVMCI
 310 
 311   ScopeDesc* trap_scope = chunk->at(0)->scope();
 312   Handle exceptionObject;
 313   if (trap_scope->rethrow_exception()) {
 314     if (PrintDeoptimizationDetails) {
 315       tty->print_cr("Exception to be rethrown in the interpreter for method %s::%s at bci %d", trap_scope->method()->method_holder()->name()->as_C_string(), trap_scope->method()->name()->as_C_string(), trap_scope->bci());
 316     }
 317     GrowableArray<ScopeValue*>* expressions = trap_scope->expressions();
 318     guarantee(expressions != NULL && expressions->length() > 0, "must have exception to throw");
 319     ScopeValue* topOfStack = expressions->top();
 320     exceptionObject = StackValue::create_stack_value(&deoptee, &map, topOfStack)->get_obj();
 321     guarantee(exceptionObject() != NULL, "exception oop can not be null");
 322   }
 323 
 324   // Ensure that no safepoint is taken after pointers have been stored
 325   // in fields of rematerialized objects.  If a safepoint occurs from here on
 326   // out the java state residing in the vframeArray will be missed.
 327   NoSafepointVerifier no_safepoint;
 328 
 329   vframeArray* array = create_vframeArray(thread, deoptee, &map, chunk, realloc_failures);
 330 #if defined(COMPILER2) || INCLUDE_JVMCI
 331   if (realloc_failures) {
 332     pop_frames_failed_reallocs(thread, array);
 333   }
 334 #endif
 335 
 336   assert(thread->vframe_array_head() == NULL, "Pending deopt!");
 337   thread->set_vframe_array_head(array);
 338 
 339   // Now that the vframeArray has been created if we have any deferred local writes
 340   // added by jvmti then we can free up that structure as the data is now in the
 341   // vframeArray
 342 
 343   if (thread->deferred_locals() != NULL) {
 344     GrowableArray<jvmtiDeferredLocalVariableSet*>* list = thread->deferred_locals();
 345     int i = 0;
 346     do {
 347       // Because of inlining we could have multiple vframes for a single frame
 348       // and several of the vframes could have deferred writes. Find them all.
 349       if (list->at(i)->id() == array->original().id()) {
 350         jvmtiDeferredLocalVariableSet* dlv = list->at(i);
 351         list->remove_at(i);
 352         // individual jvmtiDeferredLocalVariableSet are CHeapObj's
 353         delete dlv;
 354       } else {
 355         i++;
 356       }
 357     } while ( i < list->length() );
 358     if (list->length() == 0) {
 359       thread->set_deferred_locals(NULL);
 360       // free the list and elements back to C heap.
 361       delete list;
 362     }
 363 
 364   }
 365 
 366 #ifndef SHARK
 367   // Compute the caller frame based on the sender sp of stub_frame and stored frame sizes info.
 368   CodeBlob* cb = stub_frame.cb();
 369   // Verify we have the right vframeArray
 370   assert(cb->frame_size() >= 0, "Unexpected frame size");
 371   intptr_t* unpack_sp = stub_frame.sp() + cb->frame_size();
 372 
 373   // If the deopt call site is a MethodHandle invoke call site we have
 374   // to adjust the unpack_sp.
 375   nmethod* deoptee_nm = deoptee.cb()->as_nmethod_or_null();
 376   if (deoptee_nm != NULL && deoptee_nm->is_method_handle_return(deoptee.pc()))
 377     unpack_sp = deoptee.unextended_sp();
 378 
 379 #ifdef ASSERT
 380   assert(cb->is_deoptimization_stub() ||
 381          cb->is_uncommon_trap_stub() ||
 382          strcmp("Stub<DeoptimizationStub.deoptimizationHandler>", cb->name()) == 0 ||
 383          strcmp("Stub<UncommonTrapStub.uncommonTrapHandler>", cb->name()) == 0,
 384          "unexpected code blob: %s", cb->name());
 385 #endif
 386 #else
 387   intptr_t* unpack_sp = stub_frame.sender(&dummy_map).unextended_sp();
 388 #endif // !SHARK
 389 
 390   // This is a guarantee instead of an assert because if vframe doesn't match
 391   // we will unpack the wrong deoptimized frame and wind up in strange places
 392   // where it will be very difficult to figure out what went wrong. Better
 393   // to die an early death here than some very obscure death later when the
 394   // trail is cold.
 395   // Note: on ia64 this guarantee can be fooled by frames with no memory stack
 396   // in that it will fail to detect a problem when there is one. This needs
 397   // more work in tiger timeframe.
 398   guarantee(array->unextended_sp() == unpack_sp, "vframe_array_head must contain the vframeArray to unpack");
 399 
 400   int number_of_frames = array->frames();
 401 
 402   // Compute the vframes' sizes.  Note that frame_sizes[] entries are ordered from outermost to innermost
 403   // virtual activation, which is the reverse of the elements in the vframes array.
 404   intptr_t* frame_sizes = NEW_C_HEAP_ARRAY(intptr_t, number_of_frames, mtCompiler);
 405   // +1 because we always have an interpreter return address for the final slot.
 406   address* frame_pcs = NEW_C_HEAP_ARRAY(address, number_of_frames + 1, mtCompiler);
 407   int popframe_extra_args = 0;
 408   // Create an interpreter return address for the stub to use as its return
 409   // address so the skeletal frames are perfectly walkable
 410   frame_pcs[number_of_frames] = Interpreter::deopt_entry(vtos, 0);
 411 
 412   // PopFrame requires that the preserved incoming arguments from the recently-popped topmost
 413   // activation be put back on the expression stack of the caller for reexecution
 414   if (JvmtiExport::can_pop_frame() && thread->popframe_forcing_deopt_reexecution()) {
 415     popframe_extra_args = in_words(thread->popframe_preserved_args_size_in_words());
 416   }
 417 
 418   // Find the current pc for sender of the deoptee. Since the sender may have been deoptimized
 419   // itself since the deoptee vframeArray was created we must get a fresh value of the pc rather
 420   // than simply use array->sender.pc(). This requires us to walk the current set of frames
 421   //
 422   frame deopt_sender = stub_frame.sender(&dummy_map); // First is the deoptee frame
 423   deopt_sender = deopt_sender.sender(&dummy_map);     // Now deoptee caller
 424 
 425   // It's possible that the number of parameters at the call site is
 426   // different than number of arguments in the callee when method
 427   // handles are used.  If the caller is interpreted get the real
 428   // value so that the proper amount of space can be added to it's
 429   // frame.
 430   bool caller_was_method_handle = false;
 431   if (deopt_sender.is_interpreted_frame()) {
 432     methodHandle method = deopt_sender.interpreter_frame_method();
 433     Bytecode_invoke cur = Bytecode_invoke_check(method, deopt_sender.interpreter_frame_bci());
 434     if (cur.is_invokedynamic() || cur.is_invokehandle()) {
 435       // Method handle invokes may involve fairly arbitrary chains of
 436       // calls so it's impossible to know how much actual space the
 437       // caller has for locals.
 438       caller_was_method_handle = true;
 439     }
 440   }
 441 
 442   //
 443   // frame_sizes/frame_pcs[0] oldest frame (int or c2i)
 444   // frame_sizes/frame_pcs[1] next oldest frame (int)
 445   // frame_sizes/frame_pcs[n] youngest frame (int)
 446   //
 447   // Now a pc in frame_pcs is actually the return address to the frame's caller (a frame
 448   // owns the space for the return address to it's caller).  Confusing ain't it.
 449   //
 450   // The vframe array can address vframes with indices running from
 451   // 0.._frames-1. Index  0 is the youngest frame and _frame - 1 is the oldest (root) frame.
 452   // When we create the skeletal frames we need the oldest frame to be in the zero slot
 453   // in the frame_sizes/frame_pcs so the assembly code can do a trivial walk.
 454   // so things look a little strange in this loop.
 455   //
 456   int callee_parameters = 0;
 457   int callee_locals = 0;
 458   for (int index = 0; index < array->frames(); index++ ) {
 459     // frame[number_of_frames - 1 ] = on_stack_size(youngest)
 460     // frame[number_of_frames - 2 ] = on_stack_size(sender(youngest))
 461     // frame[number_of_frames - 3 ] = on_stack_size(sender(sender(youngest)))
 462     frame_sizes[number_of_frames - 1 - index] = BytesPerWord * array->element(index)->on_stack_size(callee_parameters,
 463                                                                                                     callee_locals,
 464                                                                                                     index == 0,
 465                                                                                                     popframe_extra_args);
 466     // This pc doesn't have to be perfect just good enough to identify the frame
 467     // as interpreted so the skeleton frame will be walkable
 468     // The correct pc will be set when the skeleton frame is completely filled out
 469     // The final pc we store in the loop is wrong and will be overwritten below
 470     frame_pcs[number_of_frames - 1 - index ] = Interpreter::deopt_entry(vtos, 0) - frame::pc_return_offset;
 471 
 472     callee_parameters = array->element(index)->method()->size_of_parameters();
 473     callee_locals = array->element(index)->method()->max_locals();
 474     popframe_extra_args = 0;
 475   }
 476 
 477   // Compute whether the root vframe returns a float or double value.
 478   BasicType return_type;
 479   {
 480     methodHandle method(thread, array->element(0)->method());
 481     Bytecode_invoke invoke = Bytecode_invoke_check(method, array->element(0)->bci());
 482     return_type = invoke.is_valid() ? invoke.result_type() : T_ILLEGAL;
 483   }
 484 
 485   // Compute information for handling adapters and adjusting the frame size of the caller.
 486   int caller_adjustment = 0;
 487 
 488   // Compute the amount the oldest interpreter frame will have to adjust
 489   // its caller's stack by. If the caller is a compiled frame then
 490   // we pretend that the callee has no parameters so that the
 491   // extension counts for the full amount of locals and not just
 492   // locals-parms. This is because without a c2i adapter the parm
 493   // area as created by the compiled frame will not be usable by
 494   // the interpreter. (Depending on the calling convention there
 495   // may not even be enough space).
 496 
 497   // QQQ I'd rather see this pushed down into last_frame_adjust
 498   // and have it take the sender (aka caller).
 499 
 500   if (deopt_sender.is_compiled_frame() || caller_was_method_handle) {
 501     caller_adjustment = last_frame_adjust(0, callee_locals);
 502   } else if (callee_locals > callee_parameters) {
 503     // The caller frame may need extending to accommodate
 504     // non-parameter locals of the first unpacked interpreted frame.
 505     // Compute that adjustment.
 506     caller_adjustment = last_frame_adjust(callee_parameters, callee_locals);
 507   }
 508 
 509   // If the sender is deoptimized the we must retrieve the address of the handler
 510   // since the frame will "magically" show the original pc before the deopt
 511   // and we'd undo the deopt.
 512 
 513   frame_pcs[0] = deopt_sender.raw_pc();
 514 
 515 #ifndef SHARK
 516   assert(CodeCache::find_blob_unsafe(frame_pcs[0]) != NULL, "bad pc");
 517 #endif // SHARK
 518 
 519 #ifdef INCLUDE_JVMCI
 520   if (exceptionObject() != NULL) {
 521     thread->set_exception_oop(exceptionObject());
 522     exec_mode = Unpack_exception;
 523   }
 524 #endif
 525 
 526   if (thread->frames_to_pop_failed_realloc() > 0 && exec_mode != Unpack_uncommon_trap) {
 527     assert(thread->has_pending_exception(), "should have thrown OOME");
 528     thread->set_exception_oop(thread->pending_exception());
 529     thread->clear_pending_exception();
 530     exec_mode = Unpack_exception;
 531   }
 532 
 533 #if INCLUDE_JVMCI
 534   if (thread->frames_to_pop_failed_realloc() > 0) {
 535     thread->set_pending_monitorenter(false);
 536   }
 537 #endif
 538 
 539   UnrollBlock* info = new UnrollBlock(array->frame_size() * BytesPerWord,
 540                                       caller_adjustment * BytesPerWord,
 541                                       caller_was_method_handle ? 0 : callee_parameters,
 542                                       number_of_frames,
 543                                       frame_sizes,
 544                                       frame_pcs,
 545                                       return_type,
 546                                       exec_mode);
 547   // On some platforms, we need a way to pass some platform dependent
 548   // information to the unpacking code so the skeletal frames come out
 549   // correct (initial fp value, unextended sp, ...)
 550   info->set_initial_info((intptr_t) array->sender().initial_deoptimization_info());
 551 
 552   if (array->frames() > 1) {
 553     if (VerifyStack && TraceDeoptimization) {
 554       ttyLocker ttyl;
 555       tty->print_cr("Deoptimizing method containing inlining");
 556     }
 557   }
 558 
 559   array->set_unroll_block(info);
 560   return info;
 561 }
 562 
 563 // Called to cleanup deoptimization data structures in normal case
 564 // after unpacking to stack and when stack overflow error occurs
 565 void Deoptimization::cleanup_deopt_info(JavaThread *thread,
 566                                         vframeArray *array) {
 567 
 568   // Get array if coming from exception
 569   if (array == NULL) {
 570     array = thread->vframe_array_head();
 571   }
 572   thread->set_vframe_array_head(NULL);
 573 
 574   // Free the previous UnrollBlock
 575   vframeArray* old_array = thread->vframe_array_last();
 576   thread->set_vframe_array_last(array);
 577 
 578   if (old_array != NULL) {
 579     UnrollBlock* old_info = old_array->unroll_block();
 580     old_array->set_unroll_block(NULL);
 581     delete old_info;
 582     delete old_array;
 583   }
 584 
 585   // Deallocate any resource creating in this routine and any ResourceObjs allocated
 586   // inside the vframeArray (StackValueCollections)
 587 
 588   delete thread->deopt_mark();
 589   thread->set_deopt_mark(NULL);
 590   thread->set_deopt_compiled_method(NULL);
 591 
 592 
 593   if (JvmtiExport::can_pop_frame()) {
 594 #ifndef CC_INTERP
 595     // Regardless of whether we entered this routine with the pending
 596     // popframe condition bit set, we should always clear it now
 597     thread->clear_popframe_condition();
 598 #else
 599     // C++ interpreter will clear has_pending_popframe when it enters
 600     // with method_resume. For deopt_resume2 we clear it now.
 601     if (thread->popframe_forcing_deopt_reexecution())
 602         thread->clear_popframe_condition();
 603 #endif /* CC_INTERP */
 604   }
 605 
 606   // unpack_frames() is called at the end of the deoptimization handler
 607   // and (in C2) at the end of the uncommon trap handler. Note this fact
 608   // so that an asynchronous stack walker can work again. This counter is
 609   // incremented at the beginning of fetch_unroll_info() and (in C2) at
 610   // the beginning of uncommon_trap().
 611   thread->dec_in_deopt_handler();
 612 }
 613 
 614 // Moved from cpu directories because none of the cpus has callee save values.
 615 // If a cpu implements callee save values, move this to deoptimization_<cpu>.cpp.
 616 void Deoptimization::unwind_callee_save_values(frame* f, vframeArray* vframe_array) {
 617 
 618   // This code is sort of the equivalent of C2IAdapter::setup_stack_frame back in
 619   // the days we had adapter frames. When we deoptimize a situation where a
 620   // compiled caller calls a compiled caller will have registers it expects
 621   // to survive the call to the callee. If we deoptimize the callee the only
 622   // way we can restore these registers is to have the oldest interpreter
 623   // frame that we create restore these values. That is what this routine
 624   // will accomplish.
 625 
 626   // At the moment we have modified c2 to not have any callee save registers
 627   // so this problem does not exist and this routine is just a place holder.
 628 
 629   assert(f->is_interpreted_frame(), "must be interpreted");
 630 }
 631 
 632 // Return BasicType of value being returned
 633 JRT_LEAF(BasicType, Deoptimization::unpack_frames(JavaThread* thread, int exec_mode))
 634 
 635   // We are already active int he special DeoptResourceMark any ResourceObj's we
 636   // allocate will be freed at the end of the routine.
 637 
 638   // It is actually ok to allocate handles in a leaf method. It causes no safepoints,
 639   // but makes the entry a little slower. There is however a little dance we have to
 640   // do in debug mode to get around the NoHandleMark code in the JRT_LEAF macro
 641   ResetNoHandleMark rnhm; // No-op in release/product versions
 642   HandleMark hm;
 643 
 644   frame stub_frame = thread->last_frame();
 645 
 646   // Since the frame to unpack is the top frame of this thread, the vframe_array_head
 647   // must point to the vframeArray for the unpack frame.
 648   vframeArray* array = thread->vframe_array_head();
 649 
 650 #ifndef PRODUCT
 651   if (TraceDeoptimization) {
 652     ttyLocker ttyl;
 653     tty->print_cr("DEOPT UNPACKING thread " INTPTR_FORMAT " vframeArray " INTPTR_FORMAT " mode %d",
 654                   p2i(thread), p2i(array), exec_mode);
 655   }
 656 #endif
 657   Events::log(thread, "DEOPT UNPACKING pc=" INTPTR_FORMAT " sp=" INTPTR_FORMAT " mode %d",
 658               p2i(stub_frame.pc()), p2i(stub_frame.sp()), exec_mode);
 659 
 660   UnrollBlock* info = array->unroll_block();
 661 
 662   // Unpack the interpreter frames and any adapter frame (c2 only) we might create.
 663   array->unpack_to_stack(stub_frame, exec_mode, info->caller_actual_parameters());
 664 
 665   BasicType bt = info->return_type();
 666 
 667   // If we have an exception pending, claim that the return type is an oop
 668   // so the deopt_blob does not overwrite the exception_oop.
 669 
 670   if (exec_mode == Unpack_exception)
 671     bt = T_OBJECT;
 672 
 673   // Cleanup thread deopt data
 674   cleanup_deopt_info(thread, array);
 675 
 676 #ifndef PRODUCT
 677   if (VerifyStack) {
 678     ResourceMark res_mark;
 679 
 680     thread->validate_frame_layout();
 681 
 682     // Verify that the just-unpacked frames match the interpreter's
 683     // notions of expression stack and locals
 684     vframeArray* cur_array = thread->vframe_array_last();
 685     RegisterMap rm(thread, false);
 686     rm.set_include_argument_oops(false);
 687     bool is_top_frame = true;
 688     int callee_size_of_parameters = 0;
 689     int callee_max_locals = 0;
 690     for (int i = 0; i < cur_array->frames(); i++) {
 691       vframeArrayElement* el = cur_array->element(i);
 692       frame* iframe = el->iframe();
 693       guarantee(iframe->is_interpreted_frame(), "Wrong frame type");
 694 
 695       // Get the oop map for this bci
 696       InterpreterOopMap mask;
 697       int cur_invoke_parameter_size = 0;
 698       bool try_next_mask = false;
 699       int next_mask_expression_stack_size = -1;
 700       int top_frame_expression_stack_adjustment = 0;
 701       methodHandle mh(thread, iframe->interpreter_frame_method());
 702       OopMapCache::compute_one_oop_map(mh, iframe->interpreter_frame_bci(), &mask);
 703       BytecodeStream str(mh);
 704       str.set_start(iframe->interpreter_frame_bci());
 705       int max_bci = mh->code_size();
 706       // Get to the next bytecode if possible
 707       assert(str.bci() < max_bci, "bci in interpreter frame out of bounds");
 708       // Check to see if we can grab the number of outgoing arguments
 709       // at an uncommon trap for an invoke (where the compiler
 710       // generates debug info before the invoke has executed)
 711       Bytecodes::Code cur_code = str.next();
 712       if (cur_code == Bytecodes::_invokevirtual   ||
 713           cur_code == Bytecodes::_invokespecial   ||
 714           cur_code == Bytecodes::_invokestatic    ||
 715           cur_code == Bytecodes::_invokeinterface ||
 716           cur_code == Bytecodes::_invokedynamic) {
 717         Bytecode_invoke invoke(mh, iframe->interpreter_frame_bci());
 718         Symbol* signature = invoke.signature();
 719         ArgumentSizeComputer asc(signature);
 720         cur_invoke_parameter_size = asc.size();
 721         if (invoke.has_receiver()) {
 722           // Add in receiver
 723           ++cur_invoke_parameter_size;
 724         }
 725         if (i != 0 && !invoke.is_invokedynamic() && MethodHandles::has_member_arg(invoke.klass(), invoke.name())) {
 726           callee_size_of_parameters++;
 727         }
 728       }
 729       if (str.bci() < max_bci) {
 730         Bytecodes::Code bc = str.next();
 731         if (bc >= 0) {
 732           // The interpreter oop map generator reports results before
 733           // the current bytecode has executed except in the case of
 734           // calls. It seems to be hard to tell whether the compiler
 735           // has emitted debug information matching the "state before"
 736           // a given bytecode or the state after, so we try both
 737           switch (cur_code) {
 738             case Bytecodes::_invokevirtual:
 739             case Bytecodes::_invokespecial:
 740             case Bytecodes::_invokestatic:
 741             case Bytecodes::_invokeinterface:
 742             case Bytecodes::_invokedynamic:
 743             case Bytecodes::_athrow:
 744               break;
 745             default: {
 746               InterpreterOopMap next_mask;
 747               OopMapCache::compute_one_oop_map(mh, str.bci(), &next_mask);
 748               next_mask_expression_stack_size = next_mask.expression_stack_size();
 749               // Need to subtract off the size of the result type of
 750               // the bytecode because this is not described in the
 751               // debug info but returned to the interpreter in the TOS
 752               // caching register
 753               BasicType bytecode_result_type = Bytecodes::result_type(cur_code);
 754               if (bytecode_result_type != T_ILLEGAL) {
 755                 top_frame_expression_stack_adjustment = type2size[bytecode_result_type];
 756               }
 757               assert(top_frame_expression_stack_adjustment >= 0, "");
 758               try_next_mask = true;
 759               break;
 760             }
 761           }
 762         }
 763       }
 764 
 765       // Verify stack depth and oops in frame
 766       // This assertion may be dependent on the platform we're running on and may need modification (tested on x86 and sparc)
 767       if (!(
 768             /* SPARC */
 769             (iframe->interpreter_frame_expression_stack_size() == mask.expression_stack_size() + callee_size_of_parameters) ||
 770             /* x86 */
 771             (iframe->interpreter_frame_expression_stack_size() == mask.expression_stack_size() + callee_max_locals) ||
 772             (try_next_mask &&
 773              (iframe->interpreter_frame_expression_stack_size() == (next_mask_expression_stack_size -
 774                                                                     top_frame_expression_stack_adjustment))) ||
 775             (is_top_frame && (exec_mode == Unpack_exception) && iframe->interpreter_frame_expression_stack_size() == 0) ||
 776             (is_top_frame && (exec_mode == Unpack_uncommon_trap || exec_mode == Unpack_reexecute || el->should_reexecute()) &&
 777              (iframe->interpreter_frame_expression_stack_size() == mask.expression_stack_size() + cur_invoke_parameter_size))
 778             )) {
 779         ttyLocker ttyl;
 780 
 781         // Print out some information that will help us debug the problem
 782         tty->print_cr("Wrong number of expression stack elements during deoptimization");
 783         tty->print_cr("  Error occurred while verifying frame %d (0..%d, 0 is topmost)", i, cur_array->frames() - 1);
 784         tty->print_cr("  Fabricated interpreter frame had %d expression stack elements",
 785                       iframe->interpreter_frame_expression_stack_size());
 786         tty->print_cr("  Interpreter oop map had %d expression stack elements", mask.expression_stack_size());
 787         tty->print_cr("  try_next_mask = %d", try_next_mask);
 788         tty->print_cr("  next_mask_expression_stack_size = %d", next_mask_expression_stack_size);
 789         tty->print_cr("  callee_size_of_parameters = %d", callee_size_of_parameters);
 790         tty->print_cr("  callee_max_locals = %d", callee_max_locals);
 791         tty->print_cr("  top_frame_expression_stack_adjustment = %d", top_frame_expression_stack_adjustment);
 792         tty->print_cr("  exec_mode = %d", exec_mode);
 793         tty->print_cr("  cur_invoke_parameter_size = %d", cur_invoke_parameter_size);
 794         tty->print_cr("  Thread = " INTPTR_FORMAT ", thread ID = %d", p2i(thread), thread->osthread()->thread_id());
 795         tty->print_cr("  Interpreted frames:");
 796         for (int k = 0; k < cur_array->frames(); k++) {
 797           vframeArrayElement* el = cur_array->element(k);
 798           tty->print_cr("    %s (bci %d)", el->method()->name_and_sig_as_C_string(), el->bci());
 799         }
 800         cur_array->print_on_2(tty);
 801         guarantee(false, "wrong number of expression stack elements during deopt");
 802       }
 803       VerifyOopClosure verify;
 804       iframe->oops_interpreted_do(&verify, &rm, false);
 805       callee_size_of_parameters = mh->size_of_parameters();
 806       callee_max_locals = mh->max_locals();
 807       is_top_frame = false;
 808     }
 809   }
 810 #endif /* !PRODUCT */
 811 
 812 
 813   return bt;
 814 JRT_END
 815 
 816 
 817 int Deoptimization::deoptimize_dependents() {
 818   Threads::deoptimized_wrt_marked_nmethods();
 819   return 0;
 820 }
 821 
 822 Deoptimization::DeoptAction Deoptimization::_unloaded_action
 823   = Deoptimization::Action_reinterpret;
 824 
 825 #if defined(COMPILER2) || INCLUDE_JVMCI
 826 bool Deoptimization::realloc_objects(JavaThread* thread, frame* fr, GrowableArray<ScopeValue*>* objects, TRAPS) {
 827   Handle pending_exception(THREAD, thread->pending_exception());
 828   const char* exception_file = thread->exception_file();
 829   int exception_line = thread->exception_line();
 830   thread->clear_pending_exception();
 831 
 832   bool failures = false;
 833 
 834   for (int i = 0; i < objects->length(); i++) {
 835     assert(objects->at(i)->is_object(), "invalid debug information");
 836     ObjectValue* sv = (ObjectValue*) objects->at(i);
 837 
 838     Klass* k = java_lang_Class::as_Klass(sv->klass()->as_ConstantOopReadValue()->value()());
 839     oop obj = NULL;
 840 
 841     if (k->is_instance_klass()) {
 842       InstanceKlass* ik = InstanceKlass::cast(k);
 843       obj = ik->allocate_instance(THREAD);
 844     } else if (k->is_valueArray_klass()) {
 845       ValueArrayKlass* ak = ValueArrayKlass::cast(k);
 846       // Value type array must be zeroed because not all memory is reassigned
 847       obj = ak->allocate(sv->field_size(), true, THREAD);
 848     } else if (k->is_typeArray_klass()) {
 849       TypeArrayKlass* ak = TypeArrayKlass::cast(k);
 850       assert(sv->field_size() % type2size[ak->element_type()] == 0, "non-integral array length");
 851       int len = sv->field_size() / type2size[ak->element_type()];
 852       obj = ak->allocate(len, THREAD);
 853     } else if (k->is_objArray_klass()) {
 854       ObjArrayKlass* ak = ObjArrayKlass::cast(k);
 855       obj = ak->allocate(sv->field_size(), THREAD);
 856     }
 857 
 858     if (obj == NULL) {
 859       failures = true;
 860     }
 861 
 862     assert(sv->value().is_null(), "redundant reallocation");
 863     assert(obj != NULL || HAS_PENDING_EXCEPTION, "allocation should succeed or we should get an exception");
 864     CLEAR_PENDING_EXCEPTION;
 865     sv->set_value(obj);
 866   }
 867 
 868   if (failures) {
 869     THROW_OOP_(Universe::out_of_memory_error_realloc_objects(), failures);
 870   } else if (pending_exception.not_null()) {
 871     thread->set_pending_exception(pending_exception(), exception_file, exception_line);
 872   }
 873 
 874   return failures;
 875 }
 876 
 877 // We're deoptimizing at the return of a call, value type fields are
 878 // in registers. When we go back to the interpreter, it will expect a
 879 // reference to a value type instance. Allocate and initialize it from
 880 // the register values here.
 881 bool Deoptimization::realloc_value_type_result(ValueKlass* vk, const RegisterMap& map, GrowableArray<Handle>& return_oops, TRAPS) {
 882   oop new_vt = vk->realloc_result(map, return_oops, THREAD);
 883   if (new_vt == NULL) {
 884     CLEAR_PENDING_EXCEPTION;
 885     THROW_OOP_(Universe::out_of_memory_error_realloc_objects(), true);
 886   }
 887   return_oops.clear();
 888   return_oops.push(Handle(THREAD, new_vt));
 889   return false;
 890 }
 891 
 892 // restore elements of an eliminated type array
 893 void Deoptimization::reassign_type_array_elements(frame* fr, RegisterMap* reg_map, ObjectValue* sv, typeArrayOop obj, BasicType type) {
 894   int index = 0;
 895   intptr_t val;
 896 
 897   for (int i = 0; i < sv->field_size(); i++) {
 898     StackValue* value = StackValue::create_stack_value(fr, reg_map, sv->field_at(i));
 899     switch(type) {
 900     case T_LONG: case T_DOUBLE: {
 901       assert(value->type() == T_INT, "Agreement.");
 902       StackValue* low =
 903         StackValue::create_stack_value(fr, reg_map, sv->field_at(++i));
 904 #ifdef _LP64
 905       jlong res = (jlong)low->get_int();
 906 #else
 907 #ifdef SPARC
 908       // For SPARC we have to swap high and low words.
 909       jlong res = jlong_from((jint)low->get_int(), (jint)value->get_int());
 910 #else
 911       jlong res = jlong_from((jint)value->get_int(), (jint)low->get_int());
 912 #endif //SPARC
 913 #endif
 914       obj->long_at_put(index, res);
 915       break;
 916     }
 917 
 918     // Have to cast to INT (32 bits) pointer to avoid little/big-endian problem.
 919     case T_INT: case T_FLOAT: { // 4 bytes.
 920       assert(value->type() == T_INT, "Agreement.");
 921       bool big_value = false;
 922       if (i + 1 < sv->field_size() && type == T_INT) {
 923         if (sv->field_at(i)->is_location()) {
 924           Location::Type type = ((LocationValue*) sv->field_at(i))->location().type();
 925           if (type == Location::dbl || type == Location::lng) {
 926             big_value = true;
 927           }
 928         } else if (sv->field_at(i)->is_constant_int()) {
 929           ScopeValue* next_scope_field = sv->field_at(i + 1);
 930           if (next_scope_field->is_constant_long() || next_scope_field->is_constant_double()) {
 931             big_value = true;
 932           }
 933         }
 934       }
 935 
 936       if (big_value) {
 937         StackValue* low = StackValue::create_stack_value(fr, reg_map, sv->field_at(++i));
 938   #ifdef _LP64
 939         jlong res = (jlong)low->get_int();
 940   #else
 941   #ifdef SPARC
 942         // For SPARC we have to swap high and low words.
 943         jlong res = jlong_from((jint)low->get_int(), (jint)value->get_int());
 944   #else
 945         jlong res = jlong_from((jint)value->get_int(), (jint)low->get_int());
 946   #endif //SPARC
 947   #endif
 948         obj->int_at_put(index, (jint)*((jint*)&res));
 949         obj->int_at_put(++index, (jint)*(((jint*)&res) + 1));
 950       } else {
 951         val = value->get_int();
 952         obj->int_at_put(index, (jint)*((jint*)&val));
 953       }
 954       break;
 955     }
 956 
 957     case T_SHORT:
 958       assert(value->type() == T_INT, "Agreement.");
 959       val = value->get_int();
 960       obj->short_at_put(index, (jshort)*((jint*)&val));
 961       break;
 962 
 963     case T_CHAR:
 964       assert(value->type() == T_INT, "Agreement.");
 965       val = value->get_int();
 966       obj->char_at_put(index, (jchar)*((jint*)&val));
 967       break;
 968 
 969     case T_BYTE:
 970       assert(value->type() == T_INT, "Agreement.");
 971       val = value->get_int();
 972       obj->byte_at_put(index, (jbyte)*((jint*)&val));
 973       break;
 974 
 975     case T_BOOLEAN:
 976       assert(value->type() == T_INT, "Agreement.");
 977       val = value->get_int();
 978       obj->bool_at_put(index, (jboolean)*((jint*)&val));
 979       break;
 980 
 981       default:
 982         ShouldNotReachHere();
 983     }
 984     index++;
 985   }
 986 }
 987 
 988 
 989 // restore fields of an eliminated object array
 990 void Deoptimization::reassign_object_array_elements(frame* fr, RegisterMap* reg_map, ObjectValue* sv, objArrayOop obj) {
 991   for (int i = 0; i < sv->field_size(); i++) {
 992     StackValue* value = StackValue::create_stack_value(fr, reg_map, sv->field_at(i));
 993     assert(value->type() == T_OBJECT, "object element expected");
 994     obj->obj_at_put(i, value->get_obj()());
 995   }
 996 }
 997 
 998 class ReassignedField {
 999 public:
1000   int _offset;
1001   BasicType _type;
1002   InstanceKlass* _klass;
1003 public:
1004   ReassignedField() {
1005     _offset = 0;
1006     _type = T_ILLEGAL;
1007     _klass = NULL;
1008   }
1009 };
1010 
1011 int compare(ReassignedField* left, ReassignedField* right) {
1012   return left->_offset - right->_offset;
1013 }
1014 
1015 // Restore fields of an eliminated instance object using the same field order
1016 // returned by HotSpotResolvedObjectTypeImpl.getInstanceFields(true)
1017 static int reassign_fields_by_klass(InstanceKlass* klass, frame* fr, RegisterMap* reg_map, ObjectValue* sv, int svIndex, oop obj, bool skip_internal, int base_offset, TRAPS) {
1018   if (klass->superklass() != NULL) {
1019     svIndex = reassign_fields_by_klass(klass->superklass(), fr, reg_map, sv, svIndex, obj, skip_internal, 0, CHECK_0);
1020   }
1021 
1022   GrowableArray<ReassignedField>* fields = new GrowableArray<ReassignedField>();
1023   for (AllFieldStream fs(klass); !fs.done(); fs.next()) {
1024     if (!fs.access_flags().is_static() && (!skip_internal || !fs.access_flags().is_internal())) {
1025       ReassignedField field;
1026       field._offset = fs.offset();
1027       field._type = FieldType::basic_type(fs.signature());
1028       if (field._type == T_VALUETYPE) {
1029         // Resolve klass of flattened value type field
1030         SignatureStream ss(fs.signature(), false);
1031         Klass* vk = ss.as_klass(Handle(THREAD, klass->class_loader()), Handle(THREAD, klass->protection_domain()), SignatureStream::NCDFError, THREAD);
1032         guarantee(!HAS_PENDING_EXCEPTION, "Should not have any exceptions pending");
1033         assert(vk->is_value(), "must be a ValueKlass");
1034         field._klass = InstanceKlass::cast(vk);
1035       }
1036       fields->append(field);
1037     }
1038   }
1039   fields->sort(compare);
1040   for (int i = 0; i < fields->length(); i++) {
1041     intptr_t val;
1042     ScopeValue* scope_field = sv->field_at(svIndex);
1043     StackValue* value = StackValue::create_stack_value(fr, reg_map, scope_field);
1044     int offset = base_offset + fields->at(i)._offset;
1045     BasicType type = fields->at(i)._type;
1046     switch (type) {
1047       case T_OBJECT: case T_ARRAY:
1048         assert(value->type() == T_OBJECT, "Agreement.");
1049         obj->obj_field_put(offset, value->get_obj()());
1050         break;
1051 
1052       case T_VALUETYPE: {
1053         // Recursively re-assign flattened value type fields
1054         InstanceKlass* vk = fields->at(i)._klass;
1055         assert(vk != NULL, "must be resolved");
1056         offset -= ValueKlass::cast(vk)->first_field_offset(); // Adjust offset to omit oop header
1057         svIndex = reassign_fields_by_klass(vk, fr, reg_map, sv, svIndex, obj, skip_internal, offset, CHECK_0);
1058         continue; // Continue because we don't need to increment svIndex
1059       }
1060 
1061       // Have to cast to INT (32 bits) pointer to avoid little/big-endian problem.
1062       case T_INT: case T_FLOAT: { // 4 bytes.
1063         assert(value->type() == T_INT, "Agreement.");
1064         bool big_value = false;
1065         if (i+1 < fields->length() && fields->at(i+1)._type == T_INT) {
1066           if (scope_field->is_location()) {
1067             Location::Type type = ((LocationValue*) scope_field)->location().type();
1068             if (type == Location::dbl || type == Location::lng) {
1069               big_value = true;
1070             }
1071           }
1072           if (scope_field->is_constant_int()) {
1073             ScopeValue* next_scope_field = sv->field_at(svIndex + 1);
1074             if (next_scope_field->is_constant_long() || next_scope_field->is_constant_double()) {
1075               big_value = true;
1076             }
1077           }
1078         }
1079 
1080         if (big_value) {
1081           i++;
1082           assert(i < fields->length(), "second T_INT field needed");
1083           assert(fields->at(i)._type == T_INT, "T_INT field needed");
1084         } else {
1085           val = value->get_int();
1086           obj->int_field_put(offset, (jint)*((jint*)&val));
1087           break;
1088         }
1089       }
1090         /* no break */
1091 
1092       case T_LONG: case T_DOUBLE: {
1093         assert(value->type() == T_INT, "Agreement.");
1094         StackValue* low = StackValue::create_stack_value(fr, reg_map, sv->field_at(++svIndex));
1095 #ifdef _LP64
1096         jlong res = (jlong)low->get_int();
1097 #else
1098 #ifdef SPARC
1099         // For SPARC we have to swap high and low words.
1100         jlong res = jlong_from((jint)low->get_int(), (jint)value->get_int());
1101 #else
1102         jlong res = jlong_from((jint)value->get_int(), (jint)low->get_int());
1103 #endif //SPARC
1104 #endif
1105         obj->long_field_put(offset, res);
1106         break;
1107       }
1108 
1109       case T_SHORT:
1110         assert(value->type() == T_INT, "Agreement.");
1111         val = value->get_int();
1112         obj->short_field_put(offset, (jshort)*((jint*)&val));
1113         break;
1114 
1115       case T_CHAR:
1116         assert(value->type() == T_INT, "Agreement.");
1117         val = value->get_int();
1118         obj->char_field_put(offset, (jchar)*((jint*)&val));
1119         break;
1120 
1121       case T_BYTE:
1122         assert(value->type() == T_INT, "Agreement.");
1123         val = value->get_int();
1124         obj->byte_field_put(offset, (jbyte)*((jint*)&val));
1125         break;
1126 
1127       case T_BOOLEAN:
1128         assert(value->type() == T_INT, "Agreement.");
1129         val = value->get_int();
1130         obj->bool_field_put(offset, (jboolean)*((jint*)&val));
1131         break;
1132 
1133       default:
1134         ShouldNotReachHere();
1135     }
1136     svIndex++;
1137   }
1138   return svIndex;
1139 }
1140 
1141 // restore fields of an eliminated value type array
1142 void Deoptimization::reassign_value_array_elements(frame* fr, RegisterMap* reg_map, ObjectValue* sv, valueArrayOop obj, ValueArrayKlass* vak, TRAPS) {
1143   ValueKlass* vk = vak->element_klass();
1144   assert(vk->flatten_array(), "should only be used for flattened value type arrays");
1145   // Adjust offset to omit oop header
1146   int base_offset = arrayOopDesc::base_offset_in_bytes(T_VALUETYPE) - ValueKlass::cast(vk)->first_field_offset();
1147   // Initialize all elements of the flattened value type array
1148   for (int i = 0; i < sv->field_size(); i++) {
1149     ScopeValue* val = sv->field_at(i);
1150     int offset = base_offset + (i << Klass::layout_helper_log2_element_size(vak->layout_helper()));
1151     reassign_fields_by_klass(vk, fr, reg_map, val->as_ObjectValue(), 0, (oop)obj, false /* skip_internal */, offset, CHECK);
1152   }
1153 }
1154 
1155 // restore fields of all eliminated objects and arrays
1156 void Deoptimization::reassign_fields(frame* fr, RegisterMap* reg_map, GrowableArray<ScopeValue*>* objects, bool realloc_failures, bool skip_internal, TRAPS) {
1157   for (int i = 0; i < objects->length(); i++) {
1158     ObjectValue* sv = (ObjectValue*) objects->at(i);
1159     Klass* k = java_lang_Class::as_Klass(sv->klass()->as_ConstantOopReadValue()->value()());
1160     Handle obj = sv->value();
1161     assert(obj.not_null() || realloc_failures, "reallocation was missed");
1162     if (PrintDeoptimizationDetails) {
1163       tty->print_cr("reassign fields for object of type %s!", k->name()->as_C_string());
1164     }
1165     if (obj.is_null()) {
1166       continue;
1167     }
1168 
1169     if (k->is_instance_klass()) {
1170       InstanceKlass* ik = InstanceKlass::cast(k);
1171       reassign_fields_by_klass(ik, fr, reg_map, sv, 0, obj(), skip_internal, 0, CHECK);
1172     } else if (k->is_valueArray_klass()) {
1173       ValueArrayKlass* vak = ValueArrayKlass::cast(k);
1174       reassign_value_array_elements(fr, reg_map, sv, (valueArrayOop) obj(), vak, CHECK);
1175     } else if (k->is_typeArray_klass()) {
1176       TypeArrayKlass* ak = TypeArrayKlass::cast(k);
1177       reassign_type_array_elements(fr, reg_map, sv, (typeArrayOop) obj(), ak->element_type());
1178     } else if (k->is_objArray_klass()) {
1179       reassign_object_array_elements(fr, reg_map, sv, (objArrayOop) obj());
1180     }
1181   }
1182 }
1183 
1184 
1185 // relock objects for which synchronization was eliminated
1186 void Deoptimization::relock_objects(GrowableArray<MonitorInfo*>* monitors, JavaThread* thread, bool realloc_failures) {
1187   for (int i = 0; i < monitors->length(); i++) {
1188     MonitorInfo* mon_info = monitors->at(i);
1189     if (mon_info->eliminated()) {
1190       assert(!mon_info->owner_is_scalar_replaced() || realloc_failures, "reallocation was missed");
1191       if (!mon_info->owner_is_scalar_replaced()) {
1192         Handle obj(thread, mon_info->owner());
1193         markOop mark = obj->mark();
1194         if (UseBiasedLocking && mark->has_bias_pattern()) {
1195           // New allocated objects may have the mark set to anonymously biased.
1196           // Also the deoptimized method may called methods with synchronization
1197           // where the thread-local object is bias locked to the current thread.
1198           assert(mark->is_biased_anonymously() ||
1199                  mark->biased_locker() == thread, "should be locked to current thread");
1200           // Reset mark word to unbiased prototype.
1201           markOop unbiased_prototype = markOopDesc::prototype()->set_age(mark->age());
1202           obj->set_mark(unbiased_prototype);
1203         }
1204         BasicLock* lock = mon_info->lock();
1205         ObjectSynchronizer::slow_enter(obj, lock, thread);
1206         assert(mon_info->owner()->is_locked(), "object must be locked now");
1207       }
1208     }
1209   }
1210 }
1211 
1212 
1213 #ifndef PRODUCT
1214 // print information about reallocated objects
1215 void Deoptimization::print_objects(GrowableArray<ScopeValue*>* objects, bool realloc_failures) {
1216   fieldDescriptor fd;
1217 
1218   for (int i = 0; i < objects->length(); i++) {
1219     ObjectValue* sv = (ObjectValue*) objects->at(i);
1220     Klass* k = java_lang_Class::as_Klass(sv->klass()->as_ConstantOopReadValue()->value()());
1221     Handle obj = sv->value();
1222 
1223     tty->print("     object <" INTPTR_FORMAT "> of type ", p2i(sv->value()()));
1224     k->print_value();
1225     assert(obj.not_null() || realloc_failures, "reallocation was missed");
1226     if (obj.is_null()) {
1227       tty->print(" allocation failed");
1228     } else {
1229       tty->print(" allocated (%d bytes)", obj->size() * HeapWordSize);
1230     }
1231     tty->cr();
1232 
1233     if (Verbose && !obj.is_null()) {
1234       k->oop_print_on(obj(), tty);
1235     }
1236   }
1237 }
1238 #endif
1239 #endif // COMPILER2 || INCLUDE_JVMCI
1240 
1241 vframeArray* Deoptimization::create_vframeArray(JavaThread* thread, frame fr, RegisterMap *reg_map, GrowableArray<compiledVFrame*>* chunk, bool realloc_failures) {
1242   Events::log(thread, "DEOPT PACKING pc=" INTPTR_FORMAT " sp=" INTPTR_FORMAT, p2i(fr.pc()), p2i(fr.sp()));
1243 
1244 #ifndef PRODUCT
1245   if (PrintDeoptimizationDetails) {
1246     ttyLocker ttyl;
1247     tty->print("DEOPT PACKING thread " INTPTR_FORMAT " ", p2i(thread));
1248     fr.print_on(tty);
1249     tty->print_cr("     Virtual frames (innermost first):");
1250     for (int index = 0; index < chunk->length(); index++) {
1251       compiledVFrame* vf = chunk->at(index);
1252       tty->print("       %2d - ", index);
1253       vf->print_value();
1254       int bci = chunk->at(index)->raw_bci();
1255       const char* code_name;
1256       if (bci == SynchronizationEntryBCI) {
1257         code_name = "sync entry";
1258       } else {
1259         Bytecodes::Code code = vf->method()->code_at(bci);
1260         code_name = Bytecodes::name(code);
1261       }
1262       tty->print(" - %s", code_name);
1263       tty->print_cr(" @ bci %d ", bci);
1264       if (Verbose) {
1265         vf->print();
1266         tty->cr();
1267       }
1268     }
1269   }
1270 #endif
1271 
1272   // Register map for next frame (used for stack crawl).  We capture
1273   // the state of the deopt'ing frame's caller.  Thus if we need to
1274   // stuff a C2I adapter we can properly fill in the callee-save
1275   // register locations.
1276   frame caller = fr.sender(reg_map);
1277   int frame_size = caller.sp() - fr.sp();
1278 
1279   frame sender = caller;
1280 
1281   // Since the Java thread being deoptimized will eventually adjust it's own stack,
1282   // the vframeArray containing the unpacking information is allocated in the C heap.
1283   // For Compiler1, the caller of the deoptimized frame is saved for use by unpack_frames().
1284   vframeArray* array = vframeArray::allocate(thread, frame_size, chunk, reg_map, sender, caller, fr, realloc_failures);
1285 
1286   // Compare the vframeArray to the collected vframes
1287   assert(array->structural_compare(thread, chunk), "just checking");
1288 
1289 #ifndef PRODUCT
1290   if (PrintDeoptimizationDetails) {
1291     ttyLocker ttyl;
1292     tty->print_cr("     Created vframeArray " INTPTR_FORMAT, p2i(array));
1293   }
1294 #endif // PRODUCT
1295 
1296   return array;
1297 }
1298 
1299 #if defined(COMPILER2) || INCLUDE_JVMCI
1300 void Deoptimization::pop_frames_failed_reallocs(JavaThread* thread, vframeArray* array) {
1301   // Reallocation of some scalar replaced objects failed. Record
1302   // that we need to pop all the interpreter frames for the
1303   // deoptimized compiled frame.
1304   assert(thread->frames_to_pop_failed_realloc() == 0, "missed frames to pop?");
1305   thread->set_frames_to_pop_failed_realloc(array->frames());
1306   // Unlock all monitors here otherwise the interpreter will see a
1307   // mix of locked and unlocked monitors (because of failed
1308   // reallocations of synchronized objects) and be confused.
1309   for (int i = 0; i < array->frames(); i++) {
1310     MonitorChunk* monitors = array->element(i)->monitors();
1311     if (monitors != NULL) {
1312       for (int j = 0; j < monitors->number_of_monitors(); j++) {
1313         BasicObjectLock* src = monitors->at(j);
1314         if (src->obj() != NULL) {
1315           ObjectSynchronizer::fast_exit(src->obj(), src->lock(), thread);
1316         }
1317       }
1318       array->element(i)->free_monitors(thread);
1319 #ifdef ASSERT
1320       array->element(i)->set_removed_monitors();
1321 #endif
1322     }
1323   }
1324 }
1325 #endif
1326 
1327 static void collect_monitors(compiledVFrame* cvf, GrowableArray<Handle>* objects_to_revoke) {
1328   GrowableArray<MonitorInfo*>* monitors = cvf->monitors();
1329   Thread* thread = Thread::current();
1330   for (int i = 0; i < monitors->length(); i++) {
1331     MonitorInfo* mon_info = monitors->at(i);
1332     if (!mon_info->eliminated() && mon_info->owner() != NULL) {
1333       objects_to_revoke->append(Handle(thread, mon_info->owner()));
1334     }
1335   }
1336 }
1337 
1338 
1339 void Deoptimization::revoke_biases_of_monitors(JavaThread* thread, frame fr, RegisterMap* map) {
1340   if (!UseBiasedLocking) {
1341     return;
1342   }
1343 
1344   GrowableArray<Handle>* objects_to_revoke = new GrowableArray<Handle>();
1345 
1346   // Unfortunately we don't have a RegisterMap available in most of
1347   // the places we want to call this routine so we need to walk the
1348   // stack again to update the register map.
1349   if (map == NULL || !map->update_map()) {
1350     StackFrameStream sfs(thread, true);
1351     bool found = false;
1352     while (!found && !sfs.is_done()) {
1353       frame* cur = sfs.current();
1354       sfs.next();
1355       found = cur->id() == fr.id();
1356     }
1357     assert(found, "frame to be deoptimized not found on target thread's stack");
1358     map = sfs.register_map();
1359   }
1360 
1361   vframe* vf = vframe::new_vframe(&fr, map, thread);
1362   compiledVFrame* cvf = compiledVFrame::cast(vf);
1363   // Revoke monitors' biases in all scopes
1364   while (!cvf->is_top()) {
1365     collect_monitors(cvf, objects_to_revoke);
1366     cvf = compiledVFrame::cast(cvf->sender());
1367   }
1368   collect_monitors(cvf, objects_to_revoke);
1369 
1370   if (SafepointSynchronize::is_at_safepoint()) {
1371     BiasedLocking::revoke_at_safepoint(objects_to_revoke);
1372   } else {
1373     BiasedLocking::revoke(objects_to_revoke);
1374   }
1375 }
1376 
1377 
1378 void Deoptimization::revoke_biases_of_monitors(CodeBlob* cb) {
1379   if (!UseBiasedLocking) {
1380     return;
1381   }
1382 
1383   assert(SafepointSynchronize::is_at_safepoint(), "must only be called from safepoint");
1384   GrowableArray<Handle>* objects_to_revoke = new GrowableArray<Handle>();
1385   for (JavaThread* jt = Threads::first(); jt != NULL ; jt = jt->next()) {
1386     if (jt->has_last_Java_frame()) {
1387       StackFrameStream sfs(jt, true);
1388       while (!sfs.is_done()) {
1389         frame* cur = sfs.current();
1390         if (cb->contains(cur->pc())) {
1391           vframe* vf = vframe::new_vframe(cur, sfs.register_map(), jt);
1392           compiledVFrame* cvf = compiledVFrame::cast(vf);
1393           // Revoke monitors' biases in all scopes
1394           while (!cvf->is_top()) {
1395             collect_monitors(cvf, objects_to_revoke);
1396             cvf = compiledVFrame::cast(cvf->sender());
1397           }
1398           collect_monitors(cvf, objects_to_revoke);
1399         }
1400         sfs.next();
1401       }
1402     }
1403   }
1404   BiasedLocking::revoke_at_safepoint(objects_to_revoke);
1405 }
1406 
1407 
1408 void Deoptimization::deoptimize_single_frame(JavaThread* thread, frame fr, Deoptimization::DeoptReason reason) {
1409   assert(fr.can_be_deoptimized(), "checking frame type");
1410 
1411   gather_statistics(reason, Action_none, Bytecodes::_illegal);
1412 
1413   if (LogCompilation && xtty != NULL) {
1414     CompiledMethod* cm = fr.cb()->as_compiled_method_or_null();
1415     assert(cm != NULL, "only compiled methods can deopt");
1416 
1417     ttyLocker ttyl;
1418     xtty->begin_head("deoptimized thread='" UINTX_FORMAT "' reason='%s' pc='" INTPTR_FORMAT "'",(uintx)thread->osthread()->thread_id(), trap_reason_name(reason), p2i(fr.pc()));
1419     cm->log_identity(xtty);
1420     xtty->end_head();
1421     for (ScopeDesc* sd = cm->scope_desc_at(fr.pc()); ; sd = sd->sender()) {
1422       xtty->begin_elem("jvms bci='%d'", sd->bci());
1423       xtty->method(sd->method());
1424       xtty->end_elem();
1425       if (sd->is_top())  break;
1426     }
1427     xtty->tail("deoptimized");
1428   }
1429 
1430   // Patch the compiled method so that when execution returns to it we will
1431   // deopt the execution state and return to the interpreter.
1432   fr.deoptimize(thread);
1433 }
1434 
1435 void Deoptimization::deoptimize(JavaThread* thread, frame fr, RegisterMap *map) {
1436   deoptimize(thread, fr, map, Reason_constraint);
1437 }
1438 
1439 void Deoptimization::deoptimize(JavaThread* thread, frame fr, RegisterMap *map, DeoptReason reason) {
1440   // Deoptimize only if the frame comes from compile code.
1441   // Do not deoptimize the frame which is already patched
1442   // during the execution of the loops below.
1443   if (!fr.is_compiled_frame() || fr.is_deoptimized_frame()) {
1444     return;
1445   }
1446   ResourceMark rm;
1447   DeoptimizationMarker dm;
1448   if (UseBiasedLocking) {
1449     revoke_biases_of_monitors(thread, fr, map);
1450   }
1451   deoptimize_single_frame(thread, fr, reason);
1452 
1453 }
1454 
1455 
1456 void Deoptimization::deoptimize_frame_internal(JavaThread* thread, intptr_t* id, DeoptReason reason) {
1457   assert(thread == Thread::current() || SafepointSynchronize::is_at_safepoint(),
1458          "can only deoptimize other thread at a safepoint");
1459   // Compute frame and register map based on thread and sp.
1460   RegisterMap reg_map(thread, UseBiasedLocking);
1461   frame fr = thread->last_frame();
1462   while (fr.id() != id) {
1463     fr = fr.sender(&reg_map);
1464   }
1465   deoptimize(thread, fr, &reg_map, reason);
1466 }
1467 
1468 
1469 void Deoptimization::deoptimize_frame(JavaThread* thread, intptr_t* id, DeoptReason reason) {
1470   if (thread == Thread::current()) {
1471     Deoptimization::deoptimize_frame_internal(thread, id, reason);
1472   } else {
1473     VM_DeoptimizeFrame deopt(thread, id, reason);
1474     VMThread::execute(&deopt);
1475   }
1476 }
1477 
1478 void Deoptimization::deoptimize_frame(JavaThread* thread, intptr_t* id) {
1479   deoptimize_frame(thread, id, Reason_constraint);
1480 }
1481 
1482 // JVMTI PopFrame support
1483 JRT_LEAF(void, Deoptimization::popframe_preserve_args(JavaThread* thread, int bytes_to_save, void* start_address))
1484 {
1485   thread->popframe_preserve_args(in_ByteSize(bytes_to_save), start_address);
1486 }
1487 JRT_END
1488 
1489 MethodData*
1490 Deoptimization::get_method_data(JavaThread* thread, methodHandle m,
1491                                 bool create_if_missing) {
1492   Thread* THREAD = thread;
1493   MethodData* mdo = m()->method_data();
1494   if (mdo == NULL && create_if_missing && !HAS_PENDING_EXCEPTION) {
1495     // Build an MDO.  Ignore errors like OutOfMemory;
1496     // that simply means we won't have an MDO to update.
1497     Method::build_interpreter_method_data(m, THREAD);
1498     if (HAS_PENDING_EXCEPTION) {
1499       assert((PENDING_EXCEPTION->is_a(SystemDictionary::OutOfMemoryError_klass())), "we expect only an OOM error here");
1500       CLEAR_PENDING_EXCEPTION;
1501     }
1502     mdo = m()->method_data();
1503   }
1504   return mdo;
1505 }
1506 
1507 #if defined(COMPILER2) || defined(SHARK) || INCLUDE_JVMCI
1508 void Deoptimization::load_class_by_index(const constantPoolHandle& constant_pool, int index, TRAPS) {
1509   // in case of an unresolved klass entry, load the class.
1510   if (constant_pool->tag_at(index).is_unresolved_klass()) {
1511     Klass* tk = constant_pool->klass_at_ignore_error(index, CHECK);
1512     return;
1513   }
1514 
1515   if (!constant_pool->tag_at(index).is_symbol()) return;
1516 
1517   Handle class_loader (THREAD, constant_pool->pool_holder()->class_loader());
1518   Symbol*  symbol  = constant_pool->symbol_at(index);
1519 
1520   // class name?
1521   if (symbol->byte_at(0) != '(') {
1522     Handle protection_domain (THREAD, constant_pool->pool_holder()->protection_domain());
1523     SystemDictionary::resolve_or_null(symbol, class_loader, protection_domain, CHECK);
1524     return;
1525   }
1526 
1527   // then it must be a signature!
1528   ResourceMark rm(THREAD);
1529   for (SignatureStream ss(symbol); !ss.is_done(); ss.next()) {
1530     if (ss.is_object()) {
1531       Symbol* class_name = ss.as_symbol(CHECK);
1532       Handle protection_domain (THREAD, constant_pool->pool_holder()->protection_domain());
1533       SystemDictionary::resolve_or_null(class_name, class_loader, protection_domain, CHECK);
1534     }
1535   }
1536 }
1537 
1538 
1539 void Deoptimization::load_class_by_index(const constantPoolHandle& constant_pool, int index) {
1540   EXCEPTION_MARK;
1541   load_class_by_index(constant_pool, index, THREAD);
1542   if (HAS_PENDING_EXCEPTION) {
1543     // Exception happened during classloading. We ignore the exception here, since it
1544     // is going to be rethrown since the current activation is going to be deoptimized and
1545     // the interpreter will re-execute the bytecode.
1546     CLEAR_PENDING_EXCEPTION;
1547     // Class loading called java code which may have caused a stack
1548     // overflow. If the exception was thrown right before the return
1549     // to the runtime the stack is no longer guarded. Reguard the
1550     // stack otherwise if we return to the uncommon trap blob and the
1551     // stack bang causes a stack overflow we crash.
1552     assert(THREAD->is_Java_thread(), "only a java thread can be here");
1553     JavaThread* thread = (JavaThread*)THREAD;
1554     bool guard_pages_enabled = thread->stack_guards_enabled();
1555     if (!guard_pages_enabled) guard_pages_enabled = thread->reguard_stack();
1556     assert(guard_pages_enabled, "stack banging in uncommon trap blob may cause crash");
1557   }
1558 }
1559 
1560 JRT_ENTRY(void, Deoptimization::uncommon_trap_inner(JavaThread* thread, jint trap_request)) {
1561   HandleMark hm;
1562 
1563   // uncommon_trap() is called at the beginning of the uncommon trap
1564   // handler. Note this fact before we start generating temporary frames
1565   // that can confuse an asynchronous stack walker. This counter is
1566   // decremented at the end of unpack_frames().
1567   thread->inc_in_deopt_handler();
1568 
1569   // We need to update the map if we have biased locking.
1570 #if INCLUDE_JVMCI
1571   // JVMCI might need to get an exception from the stack, which in turn requires the register map to be valid
1572   RegisterMap reg_map(thread, true);
1573 #else
1574   RegisterMap reg_map(thread, UseBiasedLocking);
1575 #endif
1576   frame stub_frame = thread->last_frame();
1577   frame fr = stub_frame.sender(&reg_map);
1578   // Make sure the calling nmethod is not getting deoptimized and removed
1579   // before we are done with it.
1580   nmethodLocker nl(fr.pc());
1581 
1582   // Log a message
1583   Events::log(thread, "Uncommon trap: trap_request=" PTR32_FORMAT " fr.pc=" INTPTR_FORMAT " relative=" INTPTR_FORMAT,
1584               trap_request, p2i(fr.pc()), fr.pc() - fr.cb()->code_begin());
1585 
1586   {
1587     ResourceMark rm;
1588 
1589     // Revoke biases of any monitors in the frame to ensure we can migrate them
1590     revoke_biases_of_monitors(thread, fr, &reg_map);
1591 
1592     DeoptReason reason = trap_request_reason(trap_request);
1593     DeoptAction action = trap_request_action(trap_request);
1594 #if INCLUDE_JVMCI
1595     int debug_id = trap_request_debug_id(trap_request);
1596 #endif
1597     jint unloaded_class_index = trap_request_index(trap_request); // CP idx or -1
1598 
1599     vframe*  vf  = vframe::new_vframe(&fr, &reg_map, thread);
1600     compiledVFrame* cvf = compiledVFrame::cast(vf);
1601 
1602     CompiledMethod* nm = cvf->code();
1603 
1604     ScopeDesc*      trap_scope  = cvf->scope();
1605 
1606     if (TraceDeoptimization) {
1607       ttyLocker ttyl;
1608       tty->print_cr("  bci=%d pc=" INTPTR_FORMAT ", relative_pc=" INTPTR_FORMAT ", method=%s" JVMCI_ONLY(", debug_id=%d"), trap_scope->bci(), p2i(fr.pc()), fr.pc() - nm->code_begin(), trap_scope->method()->name_and_sig_as_C_string()
1609 #if INCLUDE_JVMCI
1610           , debug_id
1611 #endif
1612           );
1613     }
1614 
1615     methodHandle    trap_method = trap_scope->method();
1616     int             trap_bci    = trap_scope->bci();
1617 #if INCLUDE_JVMCI
1618     oop speculation = thread->pending_failed_speculation();
1619     if (nm->is_compiled_by_jvmci()) {
1620       if (speculation != NULL) {
1621         oop speculation_log = nm->as_nmethod()->speculation_log();
1622         if (speculation_log != NULL) {
1623           if (TraceDeoptimization || TraceUncollectedSpeculations) {
1624             if (HotSpotSpeculationLog::lastFailed(speculation_log) != NULL) {
1625               tty->print_cr("A speculation that was not collected by the compiler is being overwritten");
1626             }
1627           }
1628           if (TraceDeoptimization) {
1629             tty->print_cr("Saving speculation to speculation log");
1630           }
1631           HotSpotSpeculationLog::set_lastFailed(speculation_log, speculation);
1632         } else {
1633           if (TraceDeoptimization) {
1634             tty->print_cr("Speculation present but no speculation log");
1635           }
1636         }
1637         thread->set_pending_failed_speculation(NULL);
1638       } else {
1639         if (TraceDeoptimization) {
1640           tty->print_cr("No speculation");
1641         }
1642       }
1643     } else {
1644       assert(speculation == NULL, "There should not be a speculation for method compiled by non-JVMCI compilers");
1645     }
1646 
1647     if (trap_bci == SynchronizationEntryBCI) {
1648       trap_bci = 0;
1649       thread->set_pending_monitorenter(true);
1650     }
1651 
1652     if (reason == Deoptimization::Reason_transfer_to_interpreter) {
1653       thread->set_pending_transfer_to_interpreter(true);
1654     }
1655 #endif
1656 
1657     Bytecodes::Code trap_bc     = trap_method->java_code_at(trap_bci);
1658     // Record this event in the histogram.
1659     gather_statistics(reason, action, trap_bc);
1660 
1661     // Ensure that we can record deopt. history:
1662     // Need MDO to record RTM code generation state.
1663     bool create_if_missing = ProfileTraps || UseCodeAging RTM_OPT_ONLY( || UseRTMLocking );
1664 
1665     methodHandle profiled_method;
1666 #if INCLUDE_JVMCI
1667     if (nm->is_compiled_by_jvmci()) {
1668       profiled_method = nm->method();
1669     } else {
1670       profiled_method = trap_method;
1671     }
1672 #else
1673     profiled_method = trap_method;
1674 #endif
1675 
1676     MethodData* trap_mdo =
1677       get_method_data(thread, profiled_method, create_if_missing);
1678 
1679     // Log a message
1680     Events::log_deopt_message(thread, "Uncommon trap: reason=%s action=%s pc=" INTPTR_FORMAT " method=%s @ %d %s",
1681                               trap_reason_name(reason), trap_action_name(action), p2i(fr.pc()),
1682                               trap_method->name_and_sig_as_C_string(), trap_bci, nm->compiler_name());
1683 
1684     // Print a bunch of diagnostics, if requested.
1685     if (TraceDeoptimization || LogCompilation) {
1686       ResourceMark rm;
1687       ttyLocker ttyl;
1688       char buf[100];
1689       if (xtty != NULL) {
1690         xtty->begin_head("uncommon_trap thread='" UINTX_FORMAT "' %s",
1691                          os::current_thread_id(),
1692                          format_trap_request(buf, sizeof(buf), trap_request));
1693         nm->log_identity(xtty);
1694       }
1695       Symbol* class_name = NULL;
1696       bool unresolved = false;
1697       if (unloaded_class_index >= 0) {
1698         constantPoolHandle constants (THREAD, trap_method->constants());
1699         if (constants->tag_at(unloaded_class_index).is_unresolved_klass()) {
1700           class_name = constants->klass_name_at(unloaded_class_index);
1701           unresolved = true;
1702           if (xtty != NULL)
1703             xtty->print(" unresolved='1'");
1704         } else if (constants->tag_at(unloaded_class_index).is_symbol()) {
1705           class_name = constants->symbol_at(unloaded_class_index);
1706         }
1707         if (xtty != NULL)
1708           xtty->name(class_name);
1709       }
1710       if (xtty != NULL && trap_mdo != NULL && (int)reason < (int)MethodData::_trap_hist_limit) {
1711         // Dump the relevant MDO state.
1712         // This is the deopt count for the current reason, any previous
1713         // reasons or recompiles seen at this point.
1714         int dcnt = trap_mdo->trap_count(reason);
1715         if (dcnt != 0)
1716           xtty->print(" count='%d'", dcnt);
1717         ProfileData* pdata = trap_mdo->bci_to_data(trap_bci);
1718         int dos = (pdata == NULL)? 0: pdata->trap_state();
1719         if (dos != 0) {
1720           xtty->print(" state='%s'", format_trap_state(buf, sizeof(buf), dos));
1721           if (trap_state_is_recompiled(dos)) {
1722             int recnt2 = trap_mdo->overflow_recompile_count();
1723             if (recnt2 != 0)
1724               xtty->print(" recompiles2='%d'", recnt2);
1725           }
1726         }
1727       }
1728       if (xtty != NULL) {
1729         xtty->stamp();
1730         xtty->end_head();
1731       }
1732       if (TraceDeoptimization) {  // make noise on the tty
1733         tty->print("Uncommon trap occurred in");
1734         nm->method()->print_short_name(tty);
1735         tty->print(" compiler=%s compile_id=%d", nm->compiler_name(), nm->compile_id());
1736 #if INCLUDE_JVMCI
1737         if (nm->is_nmethod()) {
1738           oop installedCode = nm->as_nmethod()->jvmci_installed_code();
1739           if (installedCode != NULL) {
1740             oop installedCodeName = NULL;
1741             if (installedCode->is_a(InstalledCode::klass())) {
1742               installedCodeName = InstalledCode::name(installedCode);
1743             }
1744             if (installedCodeName != NULL) {
1745               tty->print(" (JVMCI: installedCodeName=%s) ", java_lang_String::as_utf8_string(installedCodeName));
1746             } else {
1747               tty->print(" (JVMCI: installed code has no name) ");
1748             }
1749           } else if (nm->is_compiled_by_jvmci()) {
1750             tty->print(" (JVMCI: no installed code) ");
1751           }
1752         }
1753 #endif
1754         tty->print(" (@" INTPTR_FORMAT ") thread=" UINTX_FORMAT " reason=%s action=%s unloaded_class_index=%d" JVMCI_ONLY(" debug_id=%d"),
1755                    p2i(fr.pc()),
1756                    os::current_thread_id(),
1757                    trap_reason_name(reason),
1758                    trap_action_name(action),
1759                    unloaded_class_index
1760 #if INCLUDE_JVMCI
1761                    , debug_id
1762 #endif
1763                    );
1764         if (class_name != NULL) {
1765           tty->print(unresolved ? " unresolved class: " : " symbol: ");
1766           class_name->print_symbol_on(tty);
1767         }
1768         tty->cr();
1769       }
1770       if (xtty != NULL) {
1771         // Log the precise location of the trap.
1772         for (ScopeDesc* sd = trap_scope; ; sd = sd->sender()) {
1773           xtty->begin_elem("jvms bci='%d'", sd->bci());
1774           xtty->method(sd->method());
1775           xtty->end_elem();
1776           if (sd->is_top())  break;
1777         }
1778         xtty->tail("uncommon_trap");
1779       }
1780     }
1781     // (End diagnostic printout.)
1782 
1783     // Load class if necessary
1784     if (unloaded_class_index >= 0) {
1785       constantPoolHandle constants(THREAD, trap_method->constants());
1786       load_class_by_index(constants, unloaded_class_index);
1787     }
1788 
1789     // Flush the nmethod if necessary and desirable.
1790     //
1791     // We need to avoid situations where we are re-flushing the nmethod
1792     // because of a hot deoptimization site.  Repeated flushes at the same
1793     // point need to be detected by the compiler and avoided.  If the compiler
1794     // cannot avoid them (or has a bug and "refuses" to avoid them), this
1795     // module must take measures to avoid an infinite cycle of recompilation
1796     // and deoptimization.  There are several such measures:
1797     //
1798     //   1. If a recompilation is ordered a second time at some site X
1799     //   and for the same reason R, the action is adjusted to 'reinterpret',
1800     //   to give the interpreter time to exercise the method more thoroughly.
1801     //   If this happens, the method's overflow_recompile_count is incremented.
1802     //
1803     //   2. If the compiler fails to reduce the deoptimization rate, then
1804     //   the method's overflow_recompile_count will begin to exceed the set
1805     //   limit PerBytecodeRecompilationCutoff.  If this happens, the action
1806     //   is adjusted to 'make_not_compilable', and the method is abandoned
1807     //   to the interpreter.  This is a performance hit for hot methods,
1808     //   but is better than a disastrous infinite cycle of recompilations.
1809     //   (Actually, only the method containing the site X is abandoned.)
1810     //
1811     //   3. In parallel with the previous measures, if the total number of
1812     //   recompilations of a method exceeds the much larger set limit
1813     //   PerMethodRecompilationCutoff, the method is abandoned.
1814     //   This should only happen if the method is very large and has
1815     //   many "lukewarm" deoptimizations.  The code which enforces this
1816     //   limit is elsewhere (class nmethod, class Method).
1817     //
1818     // Note that the per-BCI 'is_recompiled' bit gives the compiler one chance
1819     // to recompile at each bytecode independently of the per-BCI cutoff.
1820     //
1821     // The decision to update code is up to the compiler, and is encoded
1822     // in the Action_xxx code.  If the compiler requests Action_none
1823     // no trap state is changed, no compiled code is changed, and the
1824     // computation suffers along in the interpreter.
1825     //
1826     // The other action codes specify various tactics for decompilation
1827     // and recompilation.  Action_maybe_recompile is the loosest, and
1828     // allows the compiled code to stay around until enough traps are seen,
1829     // and until the compiler gets around to recompiling the trapping method.
1830     //
1831     // The other actions cause immediate removal of the present code.
1832 
1833     // Traps caused by injected profile shouldn't pollute trap counts.
1834     bool injected_profile_trap = trap_method->has_injected_profile() &&
1835                                  (reason == Reason_intrinsic || reason == Reason_unreached);
1836 
1837     bool update_trap_state = (reason != Reason_tenured) && !injected_profile_trap;
1838     bool make_not_entrant = false;
1839     bool make_not_compilable = false;
1840     bool reprofile = false;
1841     switch (action) {
1842     case Action_none:
1843       // Keep the old code.
1844       update_trap_state = false;
1845       break;
1846     case Action_maybe_recompile:
1847       // Do not need to invalidate the present code, but we can
1848       // initiate another
1849       // Start compiler without (necessarily) invalidating the nmethod.
1850       // The system will tolerate the old code, but new code should be
1851       // generated when possible.
1852       break;
1853     case Action_reinterpret:
1854       // Go back into the interpreter for a while, and then consider
1855       // recompiling form scratch.
1856       make_not_entrant = true;
1857       // Reset invocation counter for outer most method.
1858       // This will allow the interpreter to exercise the bytecodes
1859       // for a while before recompiling.
1860       // By contrast, Action_make_not_entrant is immediate.
1861       //
1862       // Note that the compiler will track null_check, null_assert,
1863       // range_check, and class_check events and log them as if they
1864       // had been traps taken from compiled code.  This will update
1865       // the MDO trap history so that the next compilation will
1866       // properly detect hot trap sites.
1867       reprofile = true;
1868       break;
1869     case Action_make_not_entrant:
1870       // Request immediate recompilation, and get rid of the old code.
1871       // Make them not entrant, so next time they are called they get
1872       // recompiled.  Unloaded classes are loaded now so recompile before next
1873       // time they are called.  Same for uninitialized.  The interpreter will
1874       // link the missing class, if any.
1875       make_not_entrant = true;
1876       break;
1877     case Action_make_not_compilable:
1878       // Give up on compiling this method at all.
1879       make_not_entrant = true;
1880       make_not_compilable = true;
1881       break;
1882     default:
1883       ShouldNotReachHere();
1884     }
1885 
1886     // Setting +ProfileTraps fixes the following, on all platforms:
1887     // 4852688: ProfileInterpreter is off by default for ia64.  The result is
1888     // infinite heroic-opt-uncommon-trap/deopt/recompile cycles, since the
1889     // recompile relies on a MethodData* to record heroic opt failures.
1890 
1891     // Whether the interpreter is producing MDO data or not, we also need
1892     // to use the MDO to detect hot deoptimization points and control
1893     // aggressive optimization.
1894     bool inc_recompile_count = false;
1895     ProfileData* pdata = NULL;
1896     if (ProfileTraps && !is_client_compilation_mode_vm() && update_trap_state && trap_mdo != NULL) {
1897       assert(trap_mdo == get_method_data(thread, profiled_method, false), "sanity");
1898       uint this_trap_count = 0;
1899       bool maybe_prior_trap = false;
1900       bool maybe_prior_recompile = false;
1901       pdata = query_update_method_data(trap_mdo, trap_bci, reason, true,
1902 #if INCLUDE_JVMCI
1903                                    nm->is_compiled_by_jvmci() && nm->is_osr_method(),
1904 #endif
1905                                    nm->method(),
1906                                    //outputs:
1907                                    this_trap_count,
1908                                    maybe_prior_trap,
1909                                    maybe_prior_recompile);
1910       // Because the interpreter also counts null, div0, range, and class
1911       // checks, these traps from compiled code are double-counted.
1912       // This is harmless; it just means that the PerXTrapLimit values
1913       // are in effect a little smaller than they look.
1914 
1915       DeoptReason per_bc_reason = reason_recorded_per_bytecode_if_any(reason);
1916       if (per_bc_reason != Reason_none) {
1917         // Now take action based on the partially known per-BCI history.
1918         if (maybe_prior_trap
1919             && this_trap_count >= (uint)PerBytecodeTrapLimit) {
1920           // If there are too many traps at this BCI, force a recompile.
1921           // This will allow the compiler to see the limit overflow, and
1922           // take corrective action, if possible.  The compiler generally
1923           // does not use the exact PerBytecodeTrapLimit value, but instead
1924           // changes its tactics if it sees any traps at all.  This provides
1925           // a little hysteresis, delaying a recompile until a trap happens
1926           // several times.
1927           //
1928           // Actually, since there is only one bit of counter per BCI,
1929           // the possible per-BCI counts are {0,1,(per-method count)}.
1930           // This produces accurate results if in fact there is only
1931           // one hot trap site, but begins to get fuzzy if there are
1932           // many sites.  For example, if there are ten sites each
1933           // trapping two or more times, they each get the blame for
1934           // all of their traps.
1935           make_not_entrant = true;
1936         }
1937 
1938         // Detect repeated recompilation at the same BCI, and enforce a limit.
1939         if (make_not_entrant && maybe_prior_recompile) {
1940           // More than one recompile at this point.
1941           inc_recompile_count = maybe_prior_trap;
1942         }
1943       } else {
1944         // For reasons which are not recorded per-bytecode, we simply
1945         // force recompiles unconditionally.
1946         // (Note that PerMethodRecompilationCutoff is enforced elsewhere.)
1947         make_not_entrant = true;
1948       }
1949 
1950       // Go back to the compiler if there are too many traps in this method.
1951       if (this_trap_count >= per_method_trap_limit(reason)) {
1952         // If there are too many traps in this method, force a recompile.
1953         // This will allow the compiler to see the limit overflow, and
1954         // take corrective action, if possible.
1955         // (This condition is an unlikely backstop only, because the
1956         // PerBytecodeTrapLimit is more likely to take effect first,
1957         // if it is applicable.)
1958         make_not_entrant = true;
1959       }
1960 
1961       // Here's more hysteresis:  If there has been a recompile at
1962       // this trap point already, run the method in the interpreter
1963       // for a while to exercise it more thoroughly.
1964       if (make_not_entrant && maybe_prior_recompile && maybe_prior_trap) {
1965         reprofile = true;
1966       }
1967     }
1968 
1969     // Take requested actions on the method:
1970 
1971     // Recompile
1972     if (make_not_entrant) {
1973       if (!nm->make_not_entrant()) {
1974         return; // the call did not change nmethod's state
1975       }
1976 
1977       if (pdata != NULL) {
1978         // Record the recompilation event, if any.
1979         int tstate0 = pdata->trap_state();
1980         int tstate1 = trap_state_set_recompiled(tstate0, true);
1981         if (tstate1 != tstate0)
1982           pdata->set_trap_state(tstate1);
1983       }
1984 
1985 #if INCLUDE_RTM_OPT
1986       // Restart collecting RTM locking abort statistic if the method
1987       // is recompiled for a reason other than RTM state change.
1988       // Assume that in new recompiled code the statistic could be different,
1989       // for example, due to different inlining.
1990       if ((reason != Reason_rtm_state_change) && (trap_mdo != NULL) &&
1991           UseRTMDeopt && (nm->as_nmethod()->rtm_state() != ProfileRTM)) {
1992         trap_mdo->atomic_set_rtm_state(ProfileRTM);
1993       }
1994 #endif
1995       // For code aging we count traps separately here, using make_not_entrant()
1996       // as a guard against simultaneous deopts in multiple threads.
1997       if (reason == Reason_tenured && trap_mdo != NULL) {
1998         trap_mdo->inc_tenure_traps();
1999       }
2000     }
2001 
2002     if (inc_recompile_count) {
2003       trap_mdo->inc_overflow_recompile_count();
2004       if ((uint)trap_mdo->overflow_recompile_count() >
2005           (uint)PerBytecodeRecompilationCutoff) {
2006         // Give up on the method containing the bad BCI.
2007         if (trap_method() == nm->method()) {
2008           make_not_compilable = true;
2009         } else {
2010           trap_method->set_not_compilable(CompLevel_full_optimization, true, "overflow_recompile_count > PerBytecodeRecompilationCutoff");
2011           // But give grace to the enclosing nm->method().
2012         }
2013       }
2014     }
2015 
2016     // Reprofile
2017     if (reprofile) {
2018       CompilationPolicy::policy()->reprofile(trap_scope, nm->is_osr_method());
2019     }
2020 
2021     // Give up compiling
2022     if (make_not_compilable && !nm->method()->is_not_compilable(CompLevel_full_optimization)) {
2023       assert(make_not_entrant, "consistent");
2024       nm->method()->set_not_compilable(CompLevel_full_optimization);
2025     }
2026 
2027   } // Free marked resources
2028 
2029 }
2030 JRT_END
2031 
2032 ProfileData*
2033 Deoptimization::query_update_method_data(MethodData* trap_mdo,
2034                                          int trap_bci,
2035                                          Deoptimization::DeoptReason reason,
2036                                          bool update_total_trap_count,
2037 #if INCLUDE_JVMCI
2038                                          bool is_osr,
2039 #endif
2040                                          Method* compiled_method,
2041                                          //outputs:
2042                                          uint& ret_this_trap_count,
2043                                          bool& ret_maybe_prior_trap,
2044                                          bool& ret_maybe_prior_recompile) {
2045   bool maybe_prior_trap = false;
2046   bool maybe_prior_recompile = false;
2047   uint this_trap_count = 0;
2048   if (update_total_trap_count) {
2049     uint idx = reason;
2050 #if INCLUDE_JVMCI
2051     if (is_osr) {
2052       idx += Reason_LIMIT;
2053     }
2054 #endif
2055     uint prior_trap_count = trap_mdo->trap_count(idx);
2056     this_trap_count  = trap_mdo->inc_trap_count(idx);
2057 
2058     // If the runtime cannot find a place to store trap history,
2059     // it is estimated based on the general condition of the method.
2060     // If the method has ever been recompiled, or has ever incurred
2061     // a trap with the present reason , then this BCI is assumed
2062     // (pessimistically) to be the culprit.
2063     maybe_prior_trap      = (prior_trap_count != 0);
2064     maybe_prior_recompile = (trap_mdo->decompile_count() != 0);
2065   }
2066   ProfileData* pdata = NULL;
2067 
2068 
2069   // For reasons which are recorded per bytecode, we check per-BCI data.
2070   DeoptReason per_bc_reason = reason_recorded_per_bytecode_if_any(reason);
2071   assert(per_bc_reason != Reason_none || update_total_trap_count, "must be");
2072   if (per_bc_reason != Reason_none) {
2073     // Find the profile data for this BCI.  If there isn't one,
2074     // try to allocate one from the MDO's set of spares.
2075     // This will let us detect a repeated trap at this point.
2076     pdata = trap_mdo->allocate_bci_to_data(trap_bci, reason_is_speculate(reason) ? compiled_method : NULL);
2077 
2078     if (pdata != NULL) {
2079       if (reason_is_speculate(reason) && !pdata->is_SpeculativeTrapData()) {
2080         if (LogCompilation && xtty != NULL) {
2081           ttyLocker ttyl;
2082           // no more room for speculative traps in this MDO
2083           xtty->elem("speculative_traps_oom");
2084         }
2085       }
2086       // Query the trap state of this profile datum.
2087       int tstate0 = pdata->trap_state();
2088       if (!trap_state_has_reason(tstate0, per_bc_reason))
2089         maybe_prior_trap = false;
2090       if (!trap_state_is_recompiled(tstate0))
2091         maybe_prior_recompile = false;
2092 
2093       // Update the trap state of this profile datum.
2094       int tstate1 = tstate0;
2095       // Record the reason.
2096       tstate1 = trap_state_add_reason(tstate1, per_bc_reason);
2097       // Store the updated state on the MDO, for next time.
2098       if (tstate1 != tstate0)
2099         pdata->set_trap_state(tstate1);
2100     } else {
2101       if (LogCompilation && xtty != NULL) {
2102         ttyLocker ttyl;
2103         // Missing MDP?  Leave a small complaint in the log.
2104         xtty->elem("missing_mdp bci='%d'", trap_bci);
2105       }
2106     }
2107   }
2108 
2109   // Return results:
2110   ret_this_trap_count = this_trap_count;
2111   ret_maybe_prior_trap = maybe_prior_trap;
2112   ret_maybe_prior_recompile = maybe_prior_recompile;
2113   return pdata;
2114 }
2115 
2116 void
2117 Deoptimization::update_method_data_from_interpreter(MethodData* trap_mdo, int trap_bci, int reason) {
2118   ResourceMark rm;
2119   // Ignored outputs:
2120   uint ignore_this_trap_count;
2121   bool ignore_maybe_prior_trap;
2122   bool ignore_maybe_prior_recompile;
2123   assert(!reason_is_speculate(reason), "reason speculate only used by compiler");
2124   // JVMCI uses the total counts to determine if deoptimizations are happening too frequently -> do not adjust total counts
2125   bool update_total_counts = JVMCI_ONLY(false) NOT_JVMCI(true);
2126   query_update_method_data(trap_mdo, trap_bci,
2127                            (DeoptReason)reason,
2128                            update_total_counts,
2129 #if INCLUDE_JVMCI
2130                            false,
2131 #endif
2132                            NULL,
2133                            ignore_this_trap_count,
2134                            ignore_maybe_prior_trap,
2135                            ignore_maybe_prior_recompile);
2136 }
2137 
2138 Deoptimization::UnrollBlock* Deoptimization::uncommon_trap(JavaThread* thread, jint trap_request, jint exec_mode) {
2139   if (TraceDeoptimization) {
2140     tty->print("Uncommon trap ");
2141   }
2142   // Still in Java no safepoints
2143   {
2144     // This enters VM and may safepoint
2145     uncommon_trap_inner(thread, trap_request);
2146   }
2147   return fetch_unroll_info_helper(thread, exec_mode);
2148 }
2149 
2150 // Local derived constants.
2151 // Further breakdown of DataLayout::trap_state, as promised by DataLayout.
2152 const int DS_REASON_MASK   = DataLayout::trap_mask >> 1;
2153 const int DS_RECOMPILE_BIT = DataLayout::trap_mask - DS_REASON_MASK;
2154 
2155 //---------------------------trap_state_reason---------------------------------
2156 Deoptimization::DeoptReason
2157 Deoptimization::trap_state_reason(int trap_state) {
2158   // This assert provides the link between the width of DataLayout::trap_bits
2159   // and the encoding of "recorded" reasons.  It ensures there are enough
2160   // bits to store all needed reasons in the per-BCI MDO profile.
2161   assert(DS_REASON_MASK >= Reason_RECORDED_LIMIT, "enough bits");
2162   int recompile_bit = (trap_state & DS_RECOMPILE_BIT);
2163   trap_state -= recompile_bit;
2164   if (trap_state == DS_REASON_MASK) {
2165     return Reason_many;
2166   } else {
2167     assert((int)Reason_none == 0, "state=0 => Reason_none");
2168     return (DeoptReason)trap_state;
2169   }
2170 }
2171 //-------------------------trap_state_has_reason-------------------------------
2172 int Deoptimization::trap_state_has_reason(int trap_state, int reason) {
2173   assert(reason_is_recorded_per_bytecode((DeoptReason)reason), "valid reason");
2174   assert(DS_REASON_MASK >= Reason_RECORDED_LIMIT, "enough bits");
2175   int recompile_bit = (trap_state & DS_RECOMPILE_BIT);
2176   trap_state -= recompile_bit;
2177   if (trap_state == DS_REASON_MASK) {
2178     return -1;  // true, unspecifically (bottom of state lattice)
2179   } else if (trap_state == reason) {
2180     return 1;   // true, definitely
2181   } else if (trap_state == 0) {
2182     return 0;   // false, definitely (top of state lattice)
2183   } else {
2184     return 0;   // false, definitely
2185   }
2186 }
2187 //-------------------------trap_state_add_reason-------------------------------
2188 int Deoptimization::trap_state_add_reason(int trap_state, int reason) {
2189   assert(reason_is_recorded_per_bytecode((DeoptReason)reason) || reason == Reason_many, "valid reason");
2190   int recompile_bit = (trap_state & DS_RECOMPILE_BIT);
2191   trap_state -= recompile_bit;
2192   if (trap_state == DS_REASON_MASK) {
2193     return trap_state + recompile_bit;     // already at state lattice bottom
2194   } else if (trap_state == reason) {
2195     return trap_state + recompile_bit;     // the condition is already true
2196   } else if (trap_state == 0) {
2197     return reason + recompile_bit;          // no condition has yet been true
2198   } else {
2199     return DS_REASON_MASK + recompile_bit;  // fall to state lattice bottom
2200   }
2201 }
2202 //-----------------------trap_state_is_recompiled------------------------------
2203 bool Deoptimization::trap_state_is_recompiled(int trap_state) {
2204   return (trap_state & DS_RECOMPILE_BIT) != 0;
2205 }
2206 //-----------------------trap_state_set_recompiled-----------------------------
2207 int Deoptimization::trap_state_set_recompiled(int trap_state, bool z) {
2208   if (z)  return trap_state |  DS_RECOMPILE_BIT;
2209   else    return trap_state & ~DS_RECOMPILE_BIT;
2210 }
2211 //---------------------------format_trap_state---------------------------------
2212 // This is used for debugging and diagnostics, including LogFile output.
2213 const char* Deoptimization::format_trap_state(char* buf, size_t buflen,
2214                                               int trap_state) {
2215   assert(buflen > 0, "sanity");
2216   DeoptReason reason      = trap_state_reason(trap_state);
2217   bool        recomp_flag = trap_state_is_recompiled(trap_state);
2218   // Re-encode the state from its decoded components.
2219   int decoded_state = 0;
2220   if (reason_is_recorded_per_bytecode(reason) || reason == Reason_many)
2221     decoded_state = trap_state_add_reason(decoded_state, reason);
2222   if (recomp_flag)
2223     decoded_state = trap_state_set_recompiled(decoded_state, recomp_flag);
2224   // If the state re-encodes properly, format it symbolically.
2225   // Because this routine is used for debugging and diagnostics,
2226   // be robust even if the state is a strange value.
2227   size_t len;
2228   if (decoded_state != trap_state) {
2229     // Random buggy state that doesn't decode??
2230     len = jio_snprintf(buf, buflen, "#%d", trap_state);
2231   } else {
2232     len = jio_snprintf(buf, buflen, "%s%s",
2233                        trap_reason_name(reason),
2234                        recomp_flag ? " recompiled" : "");
2235   }
2236   return buf;
2237 }
2238 
2239 
2240 //--------------------------------statics--------------------------------------
2241 const char* Deoptimization::_trap_reason_name[] = {
2242   // Note:  Keep this in sync. with enum DeoptReason.
2243   "none",
2244   "null_check",
2245   "null_assert" JVMCI_ONLY("_or_unreached0"),
2246   "range_check",
2247   "class_check",
2248   "array_check",
2249   "intrinsic" JVMCI_ONLY("_or_type_checked_inlining"),
2250   "bimorphic" JVMCI_ONLY("_or_optimized_type_check"),
2251   "unloaded",
2252   "uninitialized",
2253   "unreached",
2254   "unhandled",
2255   "constraint",
2256   "div0_check",
2257   "age",
2258   "predicate",
2259   "loop_limit_check",
2260   "speculate_class_check",
2261   "speculate_null_check",
2262   "rtm_state_change",
2263   "unstable_if",
2264   "unstable_fused_if",
2265 #if INCLUDE_JVMCI
2266   "aliasing",
2267   "transfer_to_interpreter",
2268   "not_compiled_exception_handler",
2269   "unresolved",
2270   "jsr_mismatch",
2271 #endif
2272   "tenured"
2273 };
2274 const char* Deoptimization::_trap_action_name[] = {
2275   // Note:  Keep this in sync. with enum DeoptAction.
2276   "none",
2277   "maybe_recompile",
2278   "reinterpret",
2279   "make_not_entrant",
2280   "make_not_compilable"
2281 };
2282 
2283 const char* Deoptimization::trap_reason_name(int reason) {
2284   // Check that every reason has a name
2285   STATIC_ASSERT(sizeof(_trap_reason_name)/sizeof(const char*) == Reason_LIMIT);
2286 
2287   if (reason == Reason_many)  return "many";
2288   if ((uint)reason < Reason_LIMIT)
2289     return _trap_reason_name[reason];
2290   static char buf[20];
2291   sprintf(buf, "reason%d", reason);
2292   return buf;
2293 }
2294 const char* Deoptimization::trap_action_name(int action) {
2295   // Check that every action has a name
2296   STATIC_ASSERT(sizeof(_trap_action_name)/sizeof(const char*) == Action_LIMIT);
2297 
2298   if ((uint)action < Action_LIMIT)
2299     return _trap_action_name[action];
2300   static char buf[20];
2301   sprintf(buf, "action%d", action);
2302   return buf;
2303 }
2304 
2305 // This is used for debugging and diagnostics, including LogFile output.
2306 const char* Deoptimization::format_trap_request(char* buf, size_t buflen,
2307                                                 int trap_request) {
2308   jint unloaded_class_index = trap_request_index(trap_request);
2309   const char* reason = trap_reason_name(trap_request_reason(trap_request));
2310   const char* action = trap_action_name(trap_request_action(trap_request));
2311 #if INCLUDE_JVMCI
2312   int debug_id = trap_request_debug_id(trap_request);
2313 #endif
2314   size_t len;
2315   if (unloaded_class_index < 0) {
2316     len = jio_snprintf(buf, buflen, "reason='%s' action='%s'" JVMCI_ONLY(" debug_id='%d'"),
2317                        reason, action
2318 #if INCLUDE_JVMCI
2319                        ,debug_id
2320 #endif
2321                        );
2322   } else {
2323     len = jio_snprintf(buf, buflen, "reason='%s' action='%s' index='%d'" JVMCI_ONLY(" debug_id='%d'"),
2324                        reason, action, unloaded_class_index
2325 #if INCLUDE_JVMCI
2326                        ,debug_id
2327 #endif
2328                        );
2329   }
2330   return buf;
2331 }
2332 
2333 juint Deoptimization::_deoptimization_hist
2334         [Deoptimization::Reason_LIMIT]
2335     [1 + Deoptimization::Action_LIMIT]
2336         [Deoptimization::BC_CASE_LIMIT]
2337   = {0};
2338 
2339 enum {
2340   LSB_BITS = 8,
2341   LSB_MASK = right_n_bits(LSB_BITS)
2342 };
2343 
2344 void Deoptimization::gather_statistics(DeoptReason reason, DeoptAction action,
2345                                        Bytecodes::Code bc) {
2346   assert(reason >= 0 && reason < Reason_LIMIT, "oob");
2347   assert(action >= 0 && action < Action_LIMIT, "oob");
2348   _deoptimization_hist[Reason_none][0][0] += 1;  // total
2349   _deoptimization_hist[reason][0][0]      += 1;  // per-reason total
2350   juint* cases = _deoptimization_hist[reason][1+action];
2351   juint* bc_counter_addr = NULL;
2352   juint  bc_counter      = 0;
2353   // Look for an unused counter, or an exact match to this BC.
2354   if (bc != Bytecodes::_illegal) {
2355     for (int bc_case = 0; bc_case < BC_CASE_LIMIT; bc_case++) {
2356       juint* counter_addr = &cases[bc_case];
2357       juint  counter = *counter_addr;
2358       if ((counter == 0 && bc_counter_addr == NULL)
2359           || (Bytecodes::Code)(counter & LSB_MASK) == bc) {
2360         // this counter is either free or is already devoted to this BC
2361         bc_counter_addr = counter_addr;
2362         bc_counter = counter | bc;
2363       }
2364     }
2365   }
2366   if (bc_counter_addr == NULL) {
2367     // Overflow, or no given bytecode.
2368     bc_counter_addr = &cases[BC_CASE_LIMIT-1];
2369     bc_counter = (*bc_counter_addr & ~LSB_MASK);  // clear LSB
2370   }
2371   *bc_counter_addr = bc_counter + (1 << LSB_BITS);
2372 }
2373 
2374 jint Deoptimization::total_deoptimization_count() {
2375   return _deoptimization_hist[Reason_none][0][0];
2376 }
2377 
2378 jint Deoptimization::deoptimization_count(DeoptReason reason) {
2379   assert(reason >= 0 && reason < Reason_LIMIT, "oob");
2380   return _deoptimization_hist[reason][0][0];
2381 }
2382 
2383 void Deoptimization::print_statistics() {
2384   juint total = total_deoptimization_count();
2385   juint account = total;
2386   if (total != 0) {
2387     ttyLocker ttyl;
2388     if (xtty != NULL)  xtty->head("statistics type='deoptimization'");
2389     tty->print_cr("Deoptimization traps recorded:");
2390     #define PRINT_STAT_LINE(name, r) \
2391       tty->print_cr("  %4d (%4.1f%%) %s", (int)(r), ((r) * 100.0) / total, name);
2392     PRINT_STAT_LINE("total", total);
2393     // For each non-zero entry in the histogram, print the reason,
2394     // the action, and (if specifically known) the type of bytecode.
2395     for (int reason = 0; reason < Reason_LIMIT; reason++) {
2396       for (int action = 0; action < Action_LIMIT; action++) {
2397         juint* cases = _deoptimization_hist[reason][1+action];
2398         for (int bc_case = 0; bc_case < BC_CASE_LIMIT; bc_case++) {
2399           juint counter = cases[bc_case];
2400           if (counter != 0) {
2401             char name[1*K];
2402             Bytecodes::Code bc = (Bytecodes::Code)(counter & LSB_MASK);
2403             if (bc_case == BC_CASE_LIMIT && (int)bc == 0)
2404               bc = Bytecodes::_illegal;
2405             sprintf(name, "%s/%s/%s",
2406                     trap_reason_name(reason),
2407                     trap_action_name(action),
2408                     Bytecodes::is_defined(bc)? Bytecodes::name(bc): "other");
2409             juint r = counter >> LSB_BITS;
2410             tty->print_cr("  %40s: " UINT32_FORMAT " (%.1f%%)", name, r, (r * 100.0) / total);
2411             account -= r;
2412           }
2413         }
2414       }
2415     }
2416     if (account != 0) {
2417       PRINT_STAT_LINE("unaccounted", account);
2418     }
2419     #undef PRINT_STAT_LINE
2420     if (xtty != NULL)  xtty->tail("statistics");
2421   }
2422 }
2423 #else // COMPILER2 || SHARK || INCLUDE_JVMCI
2424 
2425 
2426 // Stubs for C1 only system.
2427 bool Deoptimization::trap_state_is_recompiled(int trap_state) {
2428   return false;
2429 }
2430 
2431 const char* Deoptimization::trap_reason_name(int reason) {
2432   return "unknown";
2433 }
2434 
2435 void Deoptimization::print_statistics() {
2436   // no output
2437 }
2438 
2439 void
2440 Deoptimization::update_method_data_from_interpreter(MethodData* trap_mdo, int trap_bci, int reason) {
2441   // no udpate
2442 }
2443 
2444 int Deoptimization::trap_state_has_reason(int trap_state, int reason) {
2445   return 0;
2446 }
2447 
2448 void Deoptimization::gather_statistics(DeoptReason reason, DeoptAction action,
2449                                        Bytecodes::Code bc) {
2450   // no update
2451 }
2452 
2453 const char* Deoptimization::format_trap_state(char* buf, size_t buflen,
2454                                               int trap_state) {
2455   jio_snprintf(buf, buflen, "#%d", trap_state);
2456   return buf;
2457 }
2458 
2459 #endif // COMPILER2 || SHARK || INCLUDE_JVMCI