1 /*
   2  * Copyright (c) 1997, 2016, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/javaClasses.inline.hpp"
  27 #include "classfile/systemDictionary.hpp"
  28 #include "classfile/vmSymbols.hpp"
  29 #include "code/codeCache.hpp"
  30 #include "code/codeCacheExtensions.hpp"
  31 #include "compiler/compileBroker.hpp"
  32 #include "compiler/disassembler.hpp"
  33 #include "gc/shared/collectedHeap.hpp"
  34 #include "interpreter/interpreter.hpp"
  35 #include "interpreter/interpreterRuntime.hpp"
  36 #include "interpreter/linkResolver.hpp"
  37 #include "interpreter/templateTable.hpp"
  38 #include "logging/log.hpp"
  39 #include "memory/oopFactory.hpp"
  40 #include "memory/universe.inline.hpp"
  41 #include "oops/constantPool.hpp"
  42 #include "oops/instanceKlass.hpp"
  43 #include "oops/methodData.hpp"
  44 #include "oops/objArrayKlass.hpp"
  45 #include "oops/objArrayOop.inline.hpp"
  46 #include "oops/oop.inline.hpp"
  47 #include "oops/symbol.hpp"
  48 #include "prims/jvmtiExport.hpp"
  49 #include "prims/nativeLookup.hpp"
  50 #include "runtime/atomic.inline.hpp"
  51 #include "runtime/biasedLocking.hpp"
  52 #include "runtime/compilationPolicy.hpp"
  53 #include "runtime/deoptimization.hpp"
  54 #include "runtime/fieldDescriptor.hpp"
  55 #include "runtime/handles.inline.hpp"
  56 #include "runtime/icache.hpp"
  57 #include "runtime/interfaceSupport.hpp"
  58 #include "runtime/java.hpp"
  59 #include "runtime/jfieldIDWorkaround.hpp"
  60 #include "runtime/osThread.hpp"
  61 #include "runtime/sharedRuntime.hpp"
  62 #include "runtime/stubRoutines.hpp"
  63 #include "runtime/synchronizer.hpp"
  64 #include "runtime/threadCritical.hpp"
  65 #include "utilities/events.hpp"
  66 #ifdef COMPILER2
  67 #include "opto/runtime.hpp"
  68 #endif
  69 
  70 class UnlockFlagSaver {
  71   private:
  72     JavaThread* _thread;
  73     bool _do_not_unlock;
  74   public:
  75     UnlockFlagSaver(JavaThread* t) {
  76       _thread = t;
  77       _do_not_unlock = t->do_not_unlock_if_synchronized();
  78       t->set_do_not_unlock_if_synchronized(false);
  79     }
  80     ~UnlockFlagSaver() {
  81       _thread->set_do_not_unlock_if_synchronized(_do_not_unlock);
  82     }
  83 };
  84 
  85 //------------------------------------------------------------------------------------------------------------------------
  86 // State accessors
  87 
  88 void InterpreterRuntime::set_bcp_and_mdp(address bcp, JavaThread *thread) {
  89   last_frame(thread).interpreter_frame_set_bcp(bcp);
  90   if (ProfileInterpreter) {
  91     // ProfileTraps uses MDOs independently of ProfileInterpreter.
  92     // That is why we must check both ProfileInterpreter and mdo != NULL.
  93     MethodData* mdo = last_frame(thread).interpreter_frame_method()->method_data();
  94     if (mdo != NULL) {
  95       NEEDS_CLEANUP;
  96       last_frame(thread).interpreter_frame_set_mdp(mdo->bci_to_dp(last_frame(thread).interpreter_frame_bci()));
  97     }
  98   }
  99 }
 100 
 101 //------------------------------------------------------------------------------------------------------------------------
 102 // Constants
 103 
 104 
 105 IRT_ENTRY(void, InterpreterRuntime::ldc(JavaThread* thread, bool wide))
 106   // access constant pool
 107   ConstantPool* pool = method(thread)->constants();
 108   int index = wide ? get_index_u2(thread, Bytecodes::_ldc_w) : get_index_u1(thread, Bytecodes::_ldc);
 109   constantTag tag = pool->tag_at(index);
 110 
 111   assert (tag.is_unresolved_klass() || tag.is_klass(), "wrong ldc call");
 112   Klass* klass = pool->klass_at(index, CHECK);
 113     oop java_class = klass->java_mirror();
 114     thread->set_vm_result(java_class);
 115 IRT_END
 116 
 117 IRT_ENTRY(void, InterpreterRuntime::resolve_ldc(JavaThread* thread, Bytecodes::Code bytecode)) {
 118   assert(bytecode == Bytecodes::_fast_aldc ||
 119          bytecode == Bytecodes::_fast_aldc_w, "wrong bc");
 120   ResourceMark rm(thread);
 121   methodHandle m (thread, method(thread));
 122   Bytecode_loadconstant ldc(m, bci(thread));
 123   oop result = ldc.resolve_constant(CHECK);
 124 #ifdef ASSERT
 125   {
 126     // The bytecode wrappers aren't GC-safe so construct a new one
 127     Bytecode_loadconstant ldc2(m, bci(thread));
 128     oop coop = m->constants()->resolved_references()->obj_at(ldc2.cache_index());
 129     assert(result == coop, "expected result for assembly code");
 130   }
 131 #endif
 132   thread->set_vm_result(result);
 133 }
 134 IRT_END
 135 
 136 
 137 //------------------------------------------------------------------------------------------------------------------------
 138 // Allocation
 139 
 140 IRT_ENTRY(void, InterpreterRuntime::_new(JavaThread* thread, ConstantPool* pool, int index))
 141   Klass* k_oop = pool->klass_at(index, CHECK);
 142   instanceKlassHandle klass (THREAD, k_oop);
 143 
 144   // Make sure we are not instantiating an abstract klass
 145   klass->check_valid_for_instantiation(true, CHECK);
 146 
 147   // Make sure klass is initialized
 148   klass->initialize(CHECK);
 149 
 150   // At this point the class may not be fully initialized
 151   // because of recursive initialization. If it is fully
 152   // initialized & has_finalized is not set, we rewrite
 153   // it into its fast version (Note: no locking is needed
 154   // here since this is an atomic byte write and can be
 155   // done more than once).
 156   //
 157   // Note: In case of classes with has_finalized we don't
 158   //       rewrite since that saves us an extra check in
 159   //       the fast version which then would call the
 160   //       slow version anyway (and do a call back into
 161   //       Java).
 162   //       If we have a breakpoint, then we don't rewrite
 163   //       because the _breakpoint bytecode would be lost.
 164   oop obj = klass->allocate_instance(CHECK);
 165   thread->set_vm_result(obj);
 166 IRT_END
 167 
 168 
 169 IRT_ENTRY(void, InterpreterRuntime::newarray(JavaThread* thread, BasicType type, jint size))
 170   oop obj = oopFactory::new_typeArray(type, size, CHECK);
 171   thread->set_vm_result(obj);
 172 IRT_END
 173 
 174 
 175 IRT_ENTRY(void, InterpreterRuntime::anewarray(JavaThread* thread, ConstantPool* pool, int index, jint size))
 176   // Note: no oopHandle for pool & klass needed since they are not used
 177   //       anymore after new_objArray() and no GC can happen before.
 178   //       (This may have to change if this code changes!)
 179   Klass*    klass = pool->klass_at(index, CHECK);
 180   objArrayOop obj = oopFactory::new_objArray(klass, size, CHECK);
 181   thread->set_vm_result(obj);
 182 IRT_END
 183 
 184 
 185 IRT_ENTRY(void, InterpreterRuntime::multianewarray(JavaThread* thread, jint* first_size_address))
 186   // We may want to pass in more arguments - could make this slightly faster
 187   ConstantPool* constants = method(thread)->constants();
 188   int          i = get_index_u2(thread, Bytecodes::_multianewarray);
 189   Klass* klass = constants->klass_at(i, CHECK);
 190   int   nof_dims = number_of_dimensions(thread);
 191   assert(klass->is_klass(), "not a class");
 192   assert(nof_dims >= 1, "multianewarray rank must be nonzero");
 193 
 194   // We must create an array of jints to pass to multi_allocate.
 195   ResourceMark rm(thread);
 196   const int small_dims = 10;
 197   jint dim_array[small_dims];
 198   jint *dims = &dim_array[0];
 199   if (nof_dims > small_dims) {
 200     dims = (jint*) NEW_RESOURCE_ARRAY(jint, nof_dims);
 201   }
 202   for (int index = 0; index < nof_dims; index++) {
 203     // offset from first_size_address is addressed as local[index]
 204     int n = Interpreter::local_offset_in_bytes(index)/jintSize;
 205     dims[index] = first_size_address[n];
 206   }
 207   oop obj = ArrayKlass::cast(klass)->multi_allocate(nof_dims, dims, CHECK);
 208   thread->set_vm_result(obj);
 209 IRT_END
 210 
 211 
 212 IRT_ENTRY(void, InterpreterRuntime::register_finalizer(JavaThread* thread, oopDesc* obj))
 213   assert(obj->is_oop(), "must be a valid oop");
 214   assert(obj->klass()->has_finalizer(), "shouldn't be here otherwise");
 215   InstanceKlass::register_finalizer(instanceOop(obj), CHECK);
 216 IRT_END
 217 
 218 
 219 // Quicken instance-of and check-cast bytecodes
 220 IRT_ENTRY(void, InterpreterRuntime::quicken_io_cc(JavaThread* thread))
 221   // Force resolving; quicken the bytecode
 222   int which = get_index_u2(thread, Bytecodes::_checkcast);
 223   ConstantPool* cpool = method(thread)->constants();
 224   // We'd expect to assert that we're only here to quicken bytecodes, but in a multithreaded
 225   // program we might have seen an unquick'd bytecode in the interpreter but have another
 226   // thread quicken the bytecode before we get here.
 227   // assert( cpool->tag_at(which).is_unresolved_klass(), "should only come here to quicken bytecodes" );
 228   Klass* klass = cpool->klass_at(which, CHECK);
 229   thread->set_vm_result_2(klass);
 230 IRT_END
 231 
 232 
 233 //------------------------------------------------------------------------------------------------------------------------
 234 // Exceptions
 235 
 236 void InterpreterRuntime::note_trap_inner(JavaThread* thread, int reason,
 237                                          methodHandle trap_method, int trap_bci, TRAPS) {
 238   if (trap_method.not_null()) {
 239     MethodData* trap_mdo = trap_method->method_data();
 240     if (trap_mdo == NULL) {
 241       Method::build_interpreter_method_data(trap_method, THREAD);
 242       if (HAS_PENDING_EXCEPTION) {
 243         assert((PENDING_EXCEPTION->is_a(SystemDictionary::OutOfMemoryError_klass())),
 244                "we expect only an OOM error here");
 245         CLEAR_PENDING_EXCEPTION;
 246       }
 247       trap_mdo = trap_method->method_data();
 248       // and fall through...
 249     }
 250     if (trap_mdo != NULL) {
 251       // Update per-method count of trap events.  The interpreter
 252       // is updating the MDO to simulate the effect of compiler traps.
 253       Deoptimization::update_method_data_from_interpreter(trap_mdo, trap_bci, reason);
 254     }
 255   }
 256 }
 257 
 258 // Assume the compiler is (or will be) interested in this event.
 259 // If necessary, create an MDO to hold the information, and record it.
 260 void InterpreterRuntime::note_trap(JavaThread* thread, int reason, TRAPS) {
 261   assert(ProfileTraps, "call me only if profiling");
 262   methodHandle trap_method(thread, method(thread));
 263   int trap_bci = trap_method->bci_from(bcp(thread));
 264   note_trap_inner(thread, reason, trap_method, trap_bci, THREAD);
 265 }
 266 
 267 #ifdef CC_INTERP
 268 // As legacy note_trap, but we have more arguments.
 269 IRT_ENTRY(void, InterpreterRuntime::note_trap(JavaThread* thread, int reason, Method *method, int trap_bci))
 270   methodHandle trap_method(method);
 271   note_trap_inner(thread, reason, trap_method, trap_bci, THREAD);
 272 IRT_END
 273 
 274 // Class Deoptimization is not visible in BytecodeInterpreter, so we need a wrapper
 275 // for each exception.
 276 void InterpreterRuntime::note_nullCheck_trap(JavaThread* thread, Method *method, int trap_bci)
 277   { if (ProfileTraps) note_trap(thread, Deoptimization::Reason_null_check, method, trap_bci); }
 278 void InterpreterRuntime::note_div0Check_trap(JavaThread* thread, Method *method, int trap_bci)
 279   { if (ProfileTraps) note_trap(thread, Deoptimization::Reason_div0_check, method, trap_bci); }
 280 void InterpreterRuntime::note_rangeCheck_trap(JavaThread* thread, Method *method, int trap_bci)
 281   { if (ProfileTraps) note_trap(thread, Deoptimization::Reason_range_check, method, trap_bci); }
 282 void InterpreterRuntime::note_classCheck_trap(JavaThread* thread, Method *method, int trap_bci)
 283   { if (ProfileTraps) note_trap(thread, Deoptimization::Reason_class_check, method, trap_bci); }
 284 void InterpreterRuntime::note_arrayCheck_trap(JavaThread* thread, Method *method, int trap_bci)
 285   { if (ProfileTraps) note_trap(thread, Deoptimization::Reason_array_check, method, trap_bci); }
 286 #endif // CC_INTERP
 287 
 288 
 289 static Handle get_preinitialized_exception(Klass* k, TRAPS) {
 290   // get klass
 291   InstanceKlass* klass = InstanceKlass::cast(k);
 292   assert(klass->is_initialized(),
 293          "this klass should have been initialized during VM initialization");
 294   // create instance - do not call constructor since we may have no
 295   // (java) stack space left (should assert constructor is empty)
 296   Handle exception;
 297   oop exception_oop = klass->allocate_instance(CHECK_(exception));
 298   exception = Handle(THREAD, exception_oop);
 299   if (StackTraceInThrowable) {
 300     java_lang_Throwable::fill_in_stack_trace(exception);
 301   }
 302   return exception;
 303 }
 304 
 305 // Special handling for stack overflow: since we don't have any (java) stack
 306 // space left we use the pre-allocated & pre-initialized StackOverflowError
 307 // klass to create an stack overflow error instance.  We do not call its
 308 // constructor for the same reason (it is empty, anyway).
 309 IRT_ENTRY(void, InterpreterRuntime::throw_StackOverflowError(JavaThread* thread))
 310   Handle exception = get_preinitialized_exception(
 311                                  SystemDictionary::StackOverflowError_klass(),
 312                                  CHECK);
 313   // Increment counter for hs_err file reporting
 314   Atomic::inc(&Exceptions::_stack_overflow_errors);
 315   THROW_HANDLE(exception);
 316 IRT_END
 317 
 318 IRT_ENTRY(address, InterpreterRuntime::check_ReservedStackAccess_annotated_methods(JavaThread* thread))
 319   frame fr = thread->last_frame();
 320   assert(fr.is_java_frame(), "Must be a Java frame");
 321   frame activation = SharedRuntime::look_for_reserved_stack_annotated_method(thread, fr);
 322   if (activation.sp() != NULL) {
 323     thread->disable_stack_reserved_zone();
 324     thread->set_reserved_stack_activation((address)activation.unextended_sp());
 325   }
 326   return (address)activation.sp();
 327 IRT_END
 328 
 329  IRT_ENTRY(void, InterpreterRuntime::throw_delayed_StackOverflowError(JavaThread* thread))
 330   Handle exception = get_preinitialized_exception(
 331                                  SystemDictionary::StackOverflowError_klass(),
 332                                  CHECK);
 333   java_lang_Throwable::set_message(exception(),
 334           Universe::delayed_stack_overflow_error_message());
 335   // Increment counter for hs_err file reporting
 336   Atomic::inc(&Exceptions::_stack_overflow_errors);
 337   THROW_HANDLE(exception);
 338 IRT_END
 339 
 340 IRT_ENTRY(void, InterpreterRuntime::create_exception(JavaThread* thread, char* name, char* message))
 341   // lookup exception klass
 342   TempNewSymbol s = SymbolTable::new_symbol(name, CHECK);
 343   if (ProfileTraps) {
 344     if (s == vmSymbols::java_lang_ArithmeticException()) {
 345       note_trap(thread, Deoptimization::Reason_div0_check, CHECK);
 346     } else if (s == vmSymbols::java_lang_NullPointerException()) {
 347       note_trap(thread, Deoptimization::Reason_null_check, CHECK);
 348     }
 349   }
 350   // create exception
 351   Handle exception = Exceptions::new_exception(thread, s, message);
 352   thread->set_vm_result(exception());
 353 IRT_END
 354 
 355 
 356 IRT_ENTRY(void, InterpreterRuntime::create_klass_exception(JavaThread* thread, char* name, oopDesc* obj))
 357   ResourceMark rm(thread);
 358   const char* klass_name = obj->klass()->external_name();
 359   // lookup exception klass
 360   TempNewSymbol s = SymbolTable::new_symbol(name, CHECK);
 361   if (ProfileTraps) {
 362     note_trap(thread, Deoptimization::Reason_class_check, CHECK);
 363   }
 364   // create exception, with klass name as detail message
 365   Handle exception = Exceptions::new_exception(thread, s, klass_name);
 366   thread->set_vm_result(exception());
 367 IRT_END
 368 
 369 
 370 IRT_ENTRY(void, InterpreterRuntime::throw_ArrayIndexOutOfBoundsException(JavaThread* thread, char* name, jint index))
 371   char message[jintAsStringSize];
 372   // lookup exception klass
 373   TempNewSymbol s = SymbolTable::new_symbol(name, CHECK);
 374   if (ProfileTraps) {
 375     note_trap(thread, Deoptimization::Reason_range_check, CHECK);
 376   }
 377   // create exception
 378   sprintf(message, "%d", index);
 379   THROW_MSG(s, message);
 380 IRT_END
 381 
 382 IRT_ENTRY(void, InterpreterRuntime::throw_ClassCastException(
 383   JavaThread* thread, oopDesc* obj))
 384 
 385   ResourceMark rm(thread);
 386   char* message = SharedRuntime::generate_class_cast_message(
 387     thread, obj->klass()->external_name());
 388 
 389   if (ProfileTraps) {
 390     note_trap(thread, Deoptimization::Reason_class_check, CHECK);
 391   }
 392 
 393   // create exception
 394   THROW_MSG(vmSymbols::java_lang_ClassCastException(), message);
 395 IRT_END
 396 
 397 // exception_handler_for_exception(...) returns the continuation address,
 398 // the exception oop (via TLS) and sets the bci/bcp for the continuation.
 399 // The exception oop is returned to make sure it is preserved over GC (it
 400 // is only on the stack if the exception was thrown explicitly via athrow).
 401 // During this operation, the expression stack contains the values for the
 402 // bci where the exception happened. If the exception was propagated back
 403 // from a call, the expression stack contains the values for the bci at the
 404 // invoke w/o arguments (i.e., as if one were inside the call).
 405 IRT_ENTRY(address, InterpreterRuntime::exception_handler_for_exception(JavaThread* thread, oopDesc* exception))
 406 
 407   Handle             h_exception(thread, exception);
 408   methodHandle       h_method   (thread, method(thread));
 409   constantPoolHandle h_constants(thread, h_method->constants());
 410   bool               should_repeat;
 411   int                handler_bci;
 412   int                current_bci = bci(thread);
 413 
 414   if (thread->frames_to_pop_failed_realloc() > 0) {
 415     // Allocation of scalar replaced object used in this frame
 416     // failed. Unconditionally pop the frame.
 417     thread->dec_frames_to_pop_failed_realloc();
 418     thread->set_vm_result(h_exception());
 419     // If the method is synchronized we already unlocked the monitor
 420     // during deoptimization so the interpreter needs to skip it when
 421     // the frame is popped.
 422     thread->set_do_not_unlock_if_synchronized(true);
 423 #ifdef CC_INTERP
 424     return (address) -1;
 425 #else
 426     return Interpreter::remove_activation_entry();
 427 #endif
 428   }
 429 
 430   // Need to do this check first since when _do_not_unlock_if_synchronized
 431   // is set, we don't want to trigger any classloading which may make calls
 432   // into java, or surprisingly find a matching exception handler for bci 0
 433   // since at this moment the method hasn't been "officially" entered yet.
 434   if (thread->do_not_unlock_if_synchronized()) {
 435     ResourceMark rm;
 436     assert(current_bci == 0,  "bci isn't zero for do_not_unlock_if_synchronized");
 437     thread->set_vm_result(exception);
 438 #ifdef CC_INTERP
 439     return (address) -1;
 440 #else
 441     return Interpreter::remove_activation_entry();
 442 #endif
 443   }
 444 
 445   do {
 446     should_repeat = false;
 447 
 448     // assertions
 449 #ifdef ASSERT
 450     assert(h_exception.not_null(), "NULL exceptions should be handled by athrow");
 451     assert(h_exception->is_oop(), "just checking");
 452     // Check that exception is a subclass of Throwable, otherwise we have a VerifyError
 453     if (!(h_exception->is_a(SystemDictionary::Throwable_klass()))) {
 454       if (ExitVMOnVerifyError) vm_exit(-1);
 455       ShouldNotReachHere();
 456     }
 457 #endif
 458 
 459     // tracing
 460     if (log_is_enabled(Info, exceptions)) {
 461       ResourceMark rm(thread);
 462       stringStream tempst;
 463       tempst.print("interpreter method <%s>\n"
 464                    " at bci %d for thread " INTPTR_FORMAT,
 465                    h_method->print_value_string(), current_bci, p2i(thread));
 466       Exceptions::log_exception(h_exception, tempst);
 467     }
 468 // Don't go paging in something which won't be used.
 469 //     else if (extable->length() == 0) {
 470 //       // disabled for now - interpreter is not using shortcut yet
 471 //       // (shortcut is not to call runtime if we have no exception handlers)
 472 //       // warning("performance bug: should not call runtime if method has no exception handlers");
 473 //     }
 474     // for AbortVMOnException flag
 475     Exceptions::debug_check_abort(h_exception);
 476 
 477     // exception handler lookup
 478     KlassHandle h_klass(THREAD, h_exception->klass());
 479     handler_bci = Method::fast_exception_handler_bci_for(h_method, h_klass, current_bci, THREAD);
 480     if (HAS_PENDING_EXCEPTION) {
 481       // We threw an exception while trying to find the exception handler.
 482       // Transfer the new exception to the exception handle which will
 483       // be set into thread local storage, and do another lookup for an
 484       // exception handler for this exception, this time starting at the
 485       // BCI of the exception handler which caused the exception to be
 486       // thrown (bug 4307310).
 487       h_exception = Handle(THREAD, PENDING_EXCEPTION);
 488       CLEAR_PENDING_EXCEPTION;
 489       if (handler_bci >= 0) {
 490         current_bci = handler_bci;
 491         should_repeat = true;
 492       }
 493     }
 494   } while (should_repeat == true);
 495 
 496 #if INCLUDE_JVMCI
 497   if (EnableJVMCI && h_method->method_data() != NULL) {
 498     ResourceMark rm(thread);
 499     ProfileData* pdata = h_method->method_data()->allocate_bci_to_data(current_bci, NULL);
 500     if (pdata != NULL && pdata->is_BitData()) {
 501       BitData* bit_data = (BitData*) pdata;
 502       bit_data->set_exception_seen();
 503     }
 504   }
 505 #endif
 506 
 507   // notify JVMTI of an exception throw; JVMTI will detect if this is a first
 508   // time throw or a stack unwinding throw and accordingly notify the debugger
 509   if (JvmtiExport::can_post_on_exceptions()) {
 510     JvmtiExport::post_exception_throw(thread, h_method(), bcp(thread), h_exception());
 511   }
 512 
 513 #ifdef CC_INTERP
 514   address continuation = (address)(intptr_t) handler_bci;
 515 #else
 516   address continuation = NULL;
 517 #endif
 518   address handler_pc = NULL;
 519   if (handler_bci < 0 || !thread->reguard_stack((address) &continuation)) {
 520     // Forward exception to callee (leaving bci/bcp untouched) because (a) no
 521     // handler in this method, or (b) after a stack overflow there is not yet
 522     // enough stack space available to reprotect the stack.
 523 #ifndef CC_INTERP
 524     continuation = Interpreter::remove_activation_entry();
 525 #endif
 526     // Count this for compilation purposes
 527     h_method->interpreter_throwout_increment(THREAD);
 528   } else {
 529     // handler in this method => change bci/bcp to handler bci/bcp and continue there
 530     handler_pc = h_method->code_base() + handler_bci;
 531 #ifndef CC_INTERP
 532     set_bcp_and_mdp(handler_pc, thread);
 533     continuation = Interpreter::dispatch_table(vtos)[*handler_pc];
 534 #endif
 535   }
 536   // notify debugger of an exception catch
 537   // (this is good for exceptions caught in native methods as well)
 538   if (JvmtiExport::can_post_on_exceptions()) {
 539     JvmtiExport::notice_unwind_due_to_exception(thread, h_method(), handler_pc, h_exception(), (handler_pc != NULL));
 540   }
 541 
 542   thread->set_vm_result(h_exception());
 543   return continuation;
 544 IRT_END
 545 
 546 
 547 IRT_ENTRY(void, InterpreterRuntime::throw_pending_exception(JavaThread* thread))
 548   assert(thread->has_pending_exception(), "must only ne called if there's an exception pending");
 549   // nothing to do - eventually we should remove this code entirely (see comments @ call sites)
 550 IRT_END
 551 
 552 
 553 IRT_ENTRY(void, InterpreterRuntime::throw_AbstractMethodError(JavaThread* thread))
 554   THROW(vmSymbols::java_lang_AbstractMethodError());
 555 IRT_END
 556 
 557 
 558 IRT_ENTRY(void, InterpreterRuntime::throw_IncompatibleClassChangeError(JavaThread* thread))
 559   THROW(vmSymbols::java_lang_IncompatibleClassChangeError());
 560 IRT_END
 561 
 562 
 563 //------------------------------------------------------------------------------------------------------------------------
 564 // Fields
 565 //
 566 
 567 void InterpreterRuntime::resolve_get_put(JavaThread* thread, Bytecodes::Code bytecode) {
 568   Thread* THREAD = thread;
 569   // resolve field
 570   fieldDescriptor info;
 571   constantPoolHandle pool(thread, method(thread)->constants());
 572   bool is_put    = (bytecode == Bytecodes::_putfield  || bytecode == Bytecodes::_nofast_putfield ||
 573                     bytecode == Bytecodes::_putstatic);
 574   bool is_static = (bytecode == Bytecodes::_getstatic || bytecode == Bytecodes::_putstatic);
 575 
 576   {
 577     JvmtiHideSingleStepping jhss(thread);
 578     LinkResolver::resolve_field_access(info, pool, get_index_u2_cpcache(thread, bytecode),
 579                                        bytecode, CHECK);
 580   } // end JvmtiHideSingleStepping
 581 
 582   // check if link resolution caused cpCache to be updated
 583   ConstantPoolCacheEntry* cp_cache_entry = cache_entry(thread);
 584   if (cp_cache_entry->is_resolved(bytecode)) return;
 585 
 586   // compute auxiliary field attributes
 587   TosState state  = as_TosState(info.field_type());
 588 
 589   // We need to delay resolving put instructions on final fields
 590   // until we actually invoke one. This is required so we throw
 591   // exceptions at the correct place. If we do not resolve completely
 592   // in the current pass, leaving the put_code set to zero will
 593   // cause the next put instruction to reresolve.
 594   Bytecodes::Code put_code = (Bytecodes::Code)0;
 595 
 596   // We also need to delay resolving getstatic instructions until the
 597   // class is intitialized.  This is required so that access to the static
 598   // field will call the initialization function every time until the class
 599   // is completely initialized ala. in 2.17.5 in JVM Specification.
 600   InstanceKlass* klass = InstanceKlass::cast(info.field_holder());
 601   bool uninitialized_static = ((bytecode == Bytecodes::_getstatic || bytecode == Bytecodes::_putstatic) &&
 602                                !klass->is_initialized());
 603   Bytecodes::Code get_code = (Bytecodes::Code)0;
 604 
 605   if (!uninitialized_static) {
 606     get_code = ((is_static) ? Bytecodes::_getstatic : Bytecodes::_getfield);
 607     if (is_put || !info.access_flags().is_final()) {
 608       put_code = ((is_static) ? Bytecodes::_putstatic : Bytecodes::_putfield);
 609     }
 610   }
 611 
 612   cp_cache_entry->set_field(
 613     get_code,
 614     put_code,
 615     info.field_holder(),
 616     info.index(),
 617     info.offset(),
 618     state,
 619     info.access_flags().is_final(),
 620     info.access_flags().is_volatile(),
 621     pool->pool_holder()
 622   );
 623 }
 624 
 625 
 626 //------------------------------------------------------------------------------------------------------------------------
 627 // Synchronization
 628 //
 629 // The interpreter's synchronization code is factored out so that it can
 630 // be shared by method invocation and synchronized blocks.
 631 //%note synchronization_3
 632 
 633 //%note monitor_1
 634 IRT_ENTRY_NO_ASYNC(void, InterpreterRuntime::monitorenter(JavaThread* thread, BasicObjectLock* elem))
 635 #ifdef ASSERT
 636   thread->last_frame().interpreter_frame_verify_monitor(elem);
 637 #endif
 638   if (PrintBiasedLockingStatistics) {
 639     Atomic::inc(BiasedLocking::slow_path_entry_count_addr());
 640   }
 641   Handle h_obj(thread, elem->obj());
 642   assert(Universe::heap()->is_in_reserved_or_null(h_obj()),
 643          "must be NULL or an object");
 644   if (UseBiasedLocking) {
 645     // Retry fast entry if bias is revoked to avoid unnecessary inflation
 646     ObjectSynchronizer::fast_enter(h_obj, elem->lock(), true, CHECK);
 647   } else {
 648     ObjectSynchronizer::slow_enter(h_obj, elem->lock(), CHECK);
 649   }
 650   assert(Universe::heap()->is_in_reserved_or_null(elem->obj()),
 651          "must be NULL or an object");
 652 #ifdef ASSERT
 653   thread->last_frame().interpreter_frame_verify_monitor(elem);
 654 #endif
 655 IRT_END
 656 
 657 
 658 //%note monitor_1
 659 IRT_ENTRY_NO_ASYNC(void, InterpreterRuntime::monitorexit(JavaThread* thread, BasicObjectLock* elem))
 660 #ifdef ASSERT
 661   thread->last_frame().interpreter_frame_verify_monitor(elem);
 662 #endif
 663   Handle h_obj(thread, elem->obj());
 664   assert(Universe::heap()->is_in_reserved_or_null(h_obj()),
 665          "must be NULL or an object");
 666   if (elem == NULL || h_obj()->is_unlocked()) {
 667     THROW(vmSymbols::java_lang_IllegalMonitorStateException());
 668   }
 669   ObjectSynchronizer::slow_exit(h_obj(), elem->lock(), thread);
 670   // Free entry. This must be done here, since a pending exception might be installed on
 671   // exit. If it is not cleared, the exception handling code will try to unlock the monitor again.
 672   elem->set_obj(NULL);
 673 #ifdef ASSERT
 674   thread->last_frame().interpreter_frame_verify_monitor(elem);
 675 #endif
 676 IRT_END
 677 
 678 
 679 IRT_ENTRY(void, InterpreterRuntime::throw_illegal_monitor_state_exception(JavaThread* thread))
 680   THROW(vmSymbols::java_lang_IllegalMonitorStateException());
 681 IRT_END
 682 
 683 
 684 IRT_ENTRY(void, InterpreterRuntime::new_illegal_monitor_state_exception(JavaThread* thread))
 685   // Returns an illegal exception to install into the current thread. The
 686   // pending_exception flag is cleared so normal exception handling does not
 687   // trigger. Any current installed exception will be overwritten. This
 688   // method will be called during an exception unwind.
 689 
 690   assert(!HAS_PENDING_EXCEPTION, "no pending exception");
 691   Handle exception(thread, thread->vm_result());
 692   assert(exception() != NULL, "vm result should be set");
 693   thread->set_vm_result(NULL); // clear vm result before continuing (may cause memory leaks and assert failures)
 694   if (!exception->is_a(SystemDictionary::ThreadDeath_klass())) {
 695     exception = get_preinitialized_exception(
 696                        SystemDictionary::IllegalMonitorStateException_klass(),
 697                        CATCH);
 698   }
 699   thread->set_vm_result(exception());
 700 IRT_END
 701 
 702 
 703 //------------------------------------------------------------------------------------------------------------------------
 704 // Invokes
 705 
 706 IRT_ENTRY(Bytecodes::Code, InterpreterRuntime::get_original_bytecode_at(JavaThread* thread, Method* method, address bcp))
 707   return method->orig_bytecode_at(method->bci_from(bcp));
 708 IRT_END
 709 
 710 IRT_ENTRY(void, InterpreterRuntime::set_original_bytecode_at(JavaThread* thread, Method* method, address bcp, Bytecodes::Code new_code))
 711   method->set_orig_bytecode_at(method->bci_from(bcp), new_code);
 712 IRT_END
 713 
 714 IRT_ENTRY(void, InterpreterRuntime::_breakpoint(JavaThread* thread, Method* method, address bcp))
 715   JvmtiExport::post_raw_breakpoint(thread, method, bcp);
 716 IRT_END
 717 
 718 void InterpreterRuntime::resolve_invoke(JavaThread* thread, Bytecodes::Code bytecode) {
 719   Thread* THREAD = thread;
 720   // extract receiver from the outgoing argument list if necessary
 721   Handle receiver(thread, NULL);
 722   if (bytecode == Bytecodes::_invokevirtual || bytecode == Bytecodes::_invokeinterface) {
 723     ResourceMark rm(thread);
 724     methodHandle m (thread, method(thread));
 725     Bytecode_invoke call(m, bci(thread));
 726     Symbol* signature = call.signature();
 727     receiver = Handle(thread,
 728                   thread->last_frame().interpreter_callee_receiver(signature));
 729     assert(Universe::heap()->is_in_reserved_or_null(receiver()),
 730            "sanity check");
 731     assert(receiver.is_null() ||
 732            !Universe::heap()->is_in_reserved(receiver->klass()),
 733            "sanity check");
 734   }
 735 
 736   // resolve method
 737   CallInfo info;
 738   constantPoolHandle pool(thread, method(thread)->constants());
 739 
 740   {
 741     JvmtiHideSingleStepping jhss(thread);
 742     LinkResolver::resolve_invoke(info, receiver, pool,
 743                                  get_index_u2_cpcache(thread, bytecode), bytecode,
 744                                  CHECK);
 745     if (JvmtiExport::can_hotswap_or_post_breakpoint()) {
 746       int retry_count = 0;
 747       while (info.resolved_method()->is_old()) {
 748         // It is very unlikely that method is redefined more than 100 times
 749         // in the middle of resolve. If it is looping here more than 100 times
 750         // means then there could be a bug here.
 751         guarantee((retry_count++ < 100),
 752                   "Could not resolve to latest version of redefined method");
 753         // method is redefined in the middle of resolve so re-try.
 754         LinkResolver::resolve_invoke(info, receiver, pool,
 755                                      get_index_u2_cpcache(thread, bytecode), bytecode,
 756                                      CHECK);
 757       }
 758     }
 759   } // end JvmtiHideSingleStepping
 760 
 761   // check if link resolution caused cpCache to be updated
 762   ConstantPoolCacheEntry* cp_cache_entry = cache_entry(thread);
 763   if (cp_cache_entry->is_resolved(bytecode)) return;
 764 








 765 #ifdef ASSERT
 766   if (bytecode == Bytecodes::_invokeinterface) {
 767     if (info.resolved_method()->method_holder() ==
 768                                             SystemDictionary::Object_klass()) {
 769       // NOTE: THIS IS A FIX FOR A CORNER CASE in the JVM spec
 770       // (see also CallInfo::set_interface for details)
 771       assert(info.call_kind() == CallInfo::vtable_call ||
 772              info.call_kind() == CallInfo::direct_call, "");
 773       methodHandle rm = info.resolved_method();
 774       assert(rm->is_final() || info.has_vtable_index(),
 775              "should have been set already");
 776     } else if (!info.resolved_method()->has_itable_index()) {
 777       // Resolved something like CharSequence.toString.  Use vtable not itable.
 778       assert(info.call_kind() != CallInfo::itable_call, "");
 779     } else {
 780       // Setup itable entry
 781       assert(info.call_kind() == CallInfo::itable_call, "");
 782       int index = info.resolved_method()->itable_index();
 783       assert(info.itable_index() == index, "");
 784     }
 785   } else {
 786     assert(info.call_kind() == CallInfo::direct_call ||
 787            info.call_kind() == CallInfo::vtable_call, "");
 788   }
 789 #endif
 790   switch (info.call_kind()) {
 791   case CallInfo::direct_call:
 792     cp_cache_entry->set_direct_call(
 793       bytecode,
 794       info.resolved_method());
 795     break;
 796   case CallInfo::vtable_call:
 797     cp_cache_entry->set_vtable_call(
 798       bytecode,
 799       info.resolved_method(),
 800       info.vtable_index());
 801     break;
 802   case CallInfo::itable_call:
 803     cp_cache_entry->set_itable_call(
 804       bytecode,
 805       info.resolved_method(),
 806       info.itable_index());
 807     break;
 808   default:  ShouldNotReachHere();
 809   }
 810 }
 811 
 812 
 813 // First time execution:  Resolve symbols, create a permanent MethodType object.
 814 void InterpreterRuntime::resolve_invokehandle(JavaThread* thread) {
 815   Thread* THREAD = thread;
 816   const Bytecodes::Code bytecode = Bytecodes::_invokehandle;
 817 
 818   // resolve method
 819   CallInfo info;
 820   constantPoolHandle pool(thread, method(thread)->constants());
 821   {
 822     JvmtiHideSingleStepping jhss(thread);
 823     LinkResolver::resolve_invoke(info, Handle(), pool,
 824                                  get_index_u2_cpcache(thread, bytecode), bytecode,
 825                                  CHECK);
 826   } // end JvmtiHideSingleStepping
 827 
 828   ConstantPoolCacheEntry* cp_cache_entry = cache_entry(thread);
 829   cp_cache_entry->set_method_handle(pool, info);
 830 }
 831 
 832 // First time execution:  Resolve symbols, create a permanent CallSite object.
 833 void InterpreterRuntime::resolve_invokedynamic(JavaThread* thread) {
 834   Thread* THREAD = thread;
 835   const Bytecodes::Code bytecode = Bytecodes::_invokedynamic;
 836 
 837   //TO DO: consider passing BCI to Java.
 838   //  int caller_bci = method(thread)->bci_from(bcp(thread));
 839 
 840   // resolve method
 841   CallInfo info;
 842   constantPoolHandle pool(thread, method(thread)->constants());
 843   int index = get_index_u4(thread, bytecode);
 844   {
 845     JvmtiHideSingleStepping jhss(thread);
 846     LinkResolver::resolve_invoke(info, Handle(), pool,
 847                                  index, bytecode, CHECK);
 848   } // end JvmtiHideSingleStepping
 849 
 850   ConstantPoolCacheEntry* cp_cache_entry = pool->invokedynamic_cp_cache_entry_at(index);
 851   cp_cache_entry->set_dynamic_call(pool, info);
 852 }
 853 
 854 // This function is the interface to the assembly code. It returns the resolved
 855 // cpCache entry.  This doesn't safepoint, but the helper routines safepoint.
 856 // This function will check for redefinition!
 857 IRT_ENTRY(void, InterpreterRuntime::resolve_from_cache(JavaThread* thread, Bytecodes::Code bytecode)) {
 858   switch (bytecode) {
 859   case Bytecodes::_getstatic:
 860   case Bytecodes::_putstatic:
 861   case Bytecodes::_getfield:
 862   case Bytecodes::_putfield:
 863     resolve_get_put(thread, bytecode);
 864     break;
 865   case Bytecodes::_invokevirtual:
 866   case Bytecodes::_invokespecial:
 867   case Bytecodes::_invokestatic:
 868   case Bytecodes::_invokeinterface:
 869     resolve_invoke(thread, bytecode);
 870     break;
 871   case Bytecodes::_invokehandle:
 872     resolve_invokehandle(thread);
 873     break;
 874   case Bytecodes::_invokedynamic:
 875     resolve_invokedynamic(thread);
 876     break;
 877   default:
 878     fatal("unexpected bytecode: %s", Bytecodes::name(bytecode));
 879     break;
 880   }
 881 }
 882 IRT_END
 883 
 884 //------------------------------------------------------------------------------------------------------------------------
 885 // Miscellaneous
 886 
 887 
 888 nmethod* InterpreterRuntime::frequency_counter_overflow(JavaThread* thread, address branch_bcp) {
 889   nmethod* nm = frequency_counter_overflow_inner(thread, branch_bcp);
 890   assert(branch_bcp != NULL || nm == NULL, "always returns null for non OSR requests");
 891   if (branch_bcp != NULL && nm != NULL) {
 892     // This was a successful request for an OSR nmethod.  Because
 893     // frequency_counter_overflow_inner ends with a safepoint check,
 894     // nm could have been unloaded so look it up again.  It's unsafe
 895     // to examine nm directly since it might have been freed and used
 896     // for something else.
 897     frame fr = thread->last_frame();
 898     Method* method =  fr.interpreter_frame_method();
 899     int bci = method->bci_from(fr.interpreter_frame_bcp());
 900     nm = method->lookup_osr_nmethod_for(bci, CompLevel_none, false);
 901   }
 902 #ifndef PRODUCT
 903   if (TraceOnStackReplacement) {
 904     if (nm != NULL) {
 905       tty->print("OSR entry @ pc: " INTPTR_FORMAT ": ", p2i(nm->osr_entry()));
 906       nm->print();
 907     }
 908   }
 909 #endif
 910   return nm;
 911 }
 912 
 913 IRT_ENTRY(nmethod*,
 914           InterpreterRuntime::frequency_counter_overflow_inner(JavaThread* thread, address branch_bcp))
 915   // use UnlockFlagSaver to clear and restore the _do_not_unlock_if_synchronized
 916   // flag, in case this method triggers classloading which will call into Java.
 917   UnlockFlagSaver fs(thread);
 918 
 919   frame fr = thread->last_frame();
 920   assert(fr.is_interpreted_frame(), "must come from interpreter");
 921   methodHandle method(thread, fr.interpreter_frame_method());
 922   const int branch_bci = branch_bcp != NULL ? method->bci_from(branch_bcp) : InvocationEntryBci;
 923   const int bci = branch_bcp != NULL ? method->bci_from(fr.interpreter_frame_bcp()) : InvocationEntryBci;
 924 
 925   assert(!HAS_PENDING_EXCEPTION, "Should not have any exceptions pending");
 926   nmethod* osr_nm = CompilationPolicy::policy()->event(method, method, branch_bci, bci, CompLevel_none, NULL, thread);
 927   assert(!HAS_PENDING_EXCEPTION, "Event handler should not throw any exceptions");
 928 
 929   if (osr_nm != NULL) {
 930     // We may need to do on-stack replacement which requires that no
 931     // monitors in the activation are biased because their
 932     // BasicObjectLocks will need to migrate during OSR. Force
 933     // unbiasing of all monitors in the activation now (even though
 934     // the OSR nmethod might be invalidated) because we don't have a
 935     // safepoint opportunity later once the migration begins.
 936     if (UseBiasedLocking) {
 937       ResourceMark rm;
 938       GrowableArray<Handle>* objects_to_revoke = new GrowableArray<Handle>();
 939       for( BasicObjectLock *kptr = fr.interpreter_frame_monitor_end();
 940            kptr < fr.interpreter_frame_monitor_begin();
 941            kptr = fr.next_monitor_in_interpreter_frame(kptr) ) {
 942         if( kptr->obj() != NULL ) {
 943           objects_to_revoke->append(Handle(THREAD, kptr->obj()));
 944         }
 945       }
 946       BiasedLocking::revoke(objects_to_revoke);
 947     }
 948   }
 949   return osr_nm;
 950 IRT_END
 951 
 952 IRT_LEAF(jint, InterpreterRuntime::bcp_to_di(Method* method, address cur_bcp))
 953   assert(ProfileInterpreter, "must be profiling interpreter");
 954   int bci = method->bci_from(cur_bcp);
 955   MethodData* mdo = method->method_data();
 956   if (mdo == NULL)  return 0;
 957   return mdo->bci_to_di(bci);
 958 IRT_END
 959 
 960 IRT_ENTRY(void, InterpreterRuntime::profile_method(JavaThread* thread))
 961   // use UnlockFlagSaver to clear and restore the _do_not_unlock_if_synchronized
 962   // flag, in case this method triggers classloading which will call into Java.
 963   UnlockFlagSaver fs(thread);
 964 
 965   assert(ProfileInterpreter, "must be profiling interpreter");
 966   frame fr = thread->last_frame();
 967   assert(fr.is_interpreted_frame(), "must come from interpreter");
 968   methodHandle method(thread, fr.interpreter_frame_method());
 969   Method::build_interpreter_method_data(method, THREAD);
 970   if (HAS_PENDING_EXCEPTION) {
 971     assert((PENDING_EXCEPTION->is_a(SystemDictionary::OutOfMemoryError_klass())), "we expect only an OOM error here");
 972     CLEAR_PENDING_EXCEPTION;
 973     // and fall through...
 974   }
 975 IRT_END
 976 
 977 
 978 #ifdef ASSERT
 979 IRT_LEAF(void, InterpreterRuntime::verify_mdp(Method* method, address bcp, address mdp))
 980   assert(ProfileInterpreter, "must be profiling interpreter");
 981 
 982   MethodData* mdo = method->method_data();
 983   assert(mdo != NULL, "must not be null");
 984 
 985   int bci = method->bci_from(bcp);
 986 
 987   address mdp2 = mdo->bci_to_dp(bci);
 988   if (mdp != mdp2) {
 989     ResourceMark rm;
 990     ResetNoHandleMark rnm; // In a LEAF entry.
 991     HandleMark hm;
 992     tty->print_cr("FAILED verify : actual mdp %p   expected mdp %p @ bci %d", mdp, mdp2, bci);
 993     int current_di = mdo->dp_to_di(mdp);
 994     int expected_di  = mdo->dp_to_di(mdp2);
 995     tty->print_cr("  actual di %d   expected di %d", current_di, expected_di);
 996     int expected_approx_bci = mdo->data_at(expected_di)->bci();
 997     int approx_bci = -1;
 998     if (current_di >= 0) {
 999       approx_bci = mdo->data_at(current_di)->bci();
1000     }
1001     tty->print_cr("  actual bci is %d  expected bci %d", approx_bci, expected_approx_bci);
1002     mdo->print_on(tty);
1003     method->print_codes();
1004   }
1005   assert(mdp == mdp2, "wrong mdp");
1006 IRT_END
1007 #endif // ASSERT
1008 
1009 IRT_ENTRY(void, InterpreterRuntime::update_mdp_for_ret(JavaThread* thread, int return_bci))
1010   assert(ProfileInterpreter, "must be profiling interpreter");
1011   ResourceMark rm(thread);
1012   HandleMark hm(thread);
1013   frame fr = thread->last_frame();
1014   assert(fr.is_interpreted_frame(), "must come from interpreter");
1015   MethodData* h_mdo = fr.interpreter_frame_method()->method_data();
1016 
1017   // Grab a lock to ensure atomic access to setting the return bci and
1018   // the displacement.  This can block and GC, invalidating all naked oops.
1019   MutexLocker ml(RetData_lock);
1020 
1021   // ProfileData is essentially a wrapper around a derived oop, so we
1022   // need to take the lock before making any ProfileData structures.
1023   ProfileData* data = h_mdo->data_at(h_mdo->dp_to_di(fr.interpreter_frame_mdp()));
1024   RetData* rdata = data->as_RetData();
1025   address new_mdp = rdata->fixup_ret(return_bci, h_mdo);
1026   fr.interpreter_frame_set_mdp(new_mdp);
1027 IRT_END
1028 
1029 IRT_ENTRY(MethodCounters*, InterpreterRuntime::build_method_counters(JavaThread* thread, Method* m))
1030   MethodCounters* mcs = Method::build_method_counters(m, thread);
1031   if (HAS_PENDING_EXCEPTION) {
1032     assert((PENDING_EXCEPTION->is_a(SystemDictionary::OutOfMemoryError_klass())), "we expect only an OOM error here");
1033     CLEAR_PENDING_EXCEPTION;
1034   }
1035   return mcs;
1036 IRT_END
1037 
1038 
1039 IRT_ENTRY(void, InterpreterRuntime::at_safepoint(JavaThread* thread))
1040   // We used to need an explict preserve_arguments here for invoke bytecodes. However,
1041   // stack traversal automatically takes care of preserving arguments for invoke, so
1042   // this is no longer needed.
1043 
1044   // IRT_END does an implicit safepoint check, hence we are guaranteed to block
1045   // if this is called during a safepoint
1046 
1047   if (JvmtiExport::should_post_single_step()) {
1048     // We are called during regular safepoints and when the VM is
1049     // single stepping. If any thread is marked for single stepping,
1050     // then we may have JVMTI work to do.
1051     JvmtiExport::at_single_stepping_point(thread, method(thread), bcp(thread));
1052   }
1053 IRT_END
1054 
1055 IRT_ENTRY(void, InterpreterRuntime::post_field_access(JavaThread *thread, oopDesc* obj,
1056 ConstantPoolCacheEntry *cp_entry))
1057 
1058   // check the access_flags for the field in the klass
1059 
1060   InstanceKlass* ik = InstanceKlass::cast(cp_entry->f1_as_klass());
1061   int index = cp_entry->field_index();
1062   if ((ik->field_access_flags(index) & JVM_ACC_FIELD_ACCESS_WATCHED) == 0) return;
1063 
1064   bool is_static = (obj == NULL);
1065   HandleMark hm(thread);
1066 
1067   Handle h_obj;
1068   if (!is_static) {
1069     // non-static field accessors have an object, but we need a handle
1070     h_obj = Handle(thread, obj);
1071   }
1072   instanceKlassHandle h_cp_entry_f1(thread, (Klass*)cp_entry->f1_as_klass());
1073   jfieldID fid = jfieldIDWorkaround::to_jfieldID(h_cp_entry_f1, cp_entry->f2_as_index(), is_static);
1074   JvmtiExport::post_field_access(thread, method(thread), bcp(thread), h_cp_entry_f1, h_obj, fid);
1075 IRT_END
1076 
1077 IRT_ENTRY(void, InterpreterRuntime::post_field_modification(JavaThread *thread,
1078   oopDesc* obj, ConstantPoolCacheEntry *cp_entry, jvalue *value))
1079 
1080   Klass* k = (Klass*)cp_entry->f1_as_klass();
1081 
1082   // check the access_flags for the field in the klass
1083   InstanceKlass* ik = InstanceKlass::cast(k);
1084   int index = cp_entry->field_index();
1085   // bail out if field modifications are not watched
1086   if ((ik->field_access_flags(index) & JVM_ACC_FIELD_MODIFICATION_WATCHED) == 0) return;
1087 
1088   char sig_type = '\0';
1089 
1090   switch(cp_entry->flag_state()) {
1091     case btos: sig_type = 'Z'; break;
1092     case ctos: sig_type = 'C'; break;
1093     case stos: sig_type = 'S'; break;
1094     case itos: sig_type = 'I'; break;
1095     case ftos: sig_type = 'F'; break;
1096     case atos: sig_type = 'L'; break;
1097     case ltos: sig_type = 'J'; break;
1098     case dtos: sig_type = 'D'; break;
1099     default:  ShouldNotReachHere(); return;
1100   }
1101   bool is_static = (obj == NULL);
1102 
1103   HandleMark hm(thread);
1104   instanceKlassHandle h_klass(thread, k);
1105   jfieldID fid = jfieldIDWorkaround::to_jfieldID(h_klass, cp_entry->f2_as_index(), is_static);
1106   jvalue fvalue;
1107 #ifdef _LP64
1108   fvalue = *value;
1109 #else
1110   // Long/double values are stored unaligned and also noncontiguously with
1111   // tagged stacks.  We can't just do a simple assignment even in the non-
1112   // J/D cases because a C++ compiler is allowed to assume that a jvalue is
1113   // 8-byte aligned, and interpreter stack slots are only 4-byte aligned.
1114   // We assume that the two halves of longs/doubles are stored in interpreter
1115   // stack slots in platform-endian order.
1116   jlong_accessor u;
1117   jint* newval = (jint*)value;
1118   u.words[0] = newval[0];
1119   u.words[1] = newval[Interpreter::stackElementWords]; // skip if tag
1120   fvalue.j = u.long_value;
1121 #endif // _LP64
1122 
1123   Handle h_obj;
1124   if (!is_static) {
1125     // non-static field accessors have an object, but we need a handle
1126     h_obj = Handle(thread, obj);
1127   }
1128 
1129   JvmtiExport::post_raw_field_modification(thread, method(thread), bcp(thread), h_klass, h_obj,
1130                                            fid, sig_type, &fvalue);
1131 IRT_END
1132 
1133 IRT_ENTRY(void, InterpreterRuntime::post_method_entry(JavaThread *thread))
1134   JvmtiExport::post_method_entry(thread, InterpreterRuntime::method(thread), InterpreterRuntime::last_frame(thread));
1135 IRT_END
1136 
1137 
1138 IRT_ENTRY(void, InterpreterRuntime::post_method_exit(JavaThread *thread))
1139   JvmtiExport::post_method_exit(thread, InterpreterRuntime::method(thread), InterpreterRuntime::last_frame(thread));
1140 IRT_END
1141 
1142 IRT_LEAF(int, InterpreterRuntime::interpreter_contains(address pc))
1143 {
1144   return (Interpreter::contains(pc) ? 1 : 0);
1145 }
1146 IRT_END
1147 
1148 
1149 // Implementation of SignatureHandlerLibrary
1150 
1151 #ifndef SHARING_FAST_NATIVE_FINGERPRINTS
1152 // Dummy definition (else normalization method is defined in CPU
1153 // dependant code)
1154 uint64_t InterpreterRuntime::normalize_fast_native_fingerprint(uint64_t fingerprint) {
1155   return fingerprint;
1156 }
1157 #endif
1158 
1159 address SignatureHandlerLibrary::set_handler_blob() {
1160   BufferBlob* handler_blob = BufferBlob::create("native signature handlers", blob_size);
1161   if (handler_blob == NULL) {
1162     return NULL;
1163   }
1164   address handler = handler_blob->code_begin();
1165   _handler_blob = handler_blob;
1166   _handler = handler;
1167   return handler;
1168 }
1169 
1170 void SignatureHandlerLibrary::initialize() {
1171   if (_fingerprints != NULL) {
1172     return;
1173   }
1174   if (set_handler_blob() == NULL) {
1175     vm_exit_out_of_memory(blob_size, OOM_MALLOC_ERROR, "native signature handlers");
1176   }
1177 
1178   BufferBlob* bb = BufferBlob::create("Signature Handler Temp Buffer",
1179                                       SignatureHandlerLibrary::buffer_size);
1180   _buffer = bb->code_begin();
1181 
1182   _fingerprints = new(ResourceObj::C_HEAP, mtCode)GrowableArray<uint64_t>(32, true);
1183   _handlers     = new(ResourceObj::C_HEAP, mtCode)GrowableArray<address>(32, true);
1184 }
1185 
1186 address SignatureHandlerLibrary::set_handler(CodeBuffer* buffer) {
1187   address handler   = _handler;
1188   int     insts_size = buffer->pure_insts_size();
1189   if (handler + insts_size > _handler_blob->code_end()) {
1190     // get a new handler blob
1191     handler = set_handler_blob();
1192   }
1193   if (handler != NULL) {
1194     memcpy(handler, buffer->insts_begin(), insts_size);
1195     pd_set_handler(handler);
1196     ICache::invalidate_range(handler, insts_size);
1197     _handler = handler + insts_size;
1198   }
1199   CodeCacheExtensions::handle_generated_handler(handler, buffer->name(), _handler);
1200   return handler;
1201 }
1202 
1203 void SignatureHandlerLibrary::add(const methodHandle& method) {
1204   if (method->signature_handler() == NULL) {
1205     // use slow signature handler if we can't do better
1206     int handler_index = -1;
1207     // check if we can use customized (fast) signature handler
1208     if (UseFastSignatureHandlers && CodeCacheExtensions::support_fast_signature_handlers() && method->size_of_parameters() <= Fingerprinter::max_size_of_parameters) {
1209       // use customized signature handler
1210       MutexLocker mu(SignatureHandlerLibrary_lock);
1211       // make sure data structure is initialized
1212       initialize();
1213       // lookup method signature's fingerprint
1214       uint64_t fingerprint = Fingerprinter(method).fingerprint();
1215       // allow CPU dependant code to optimize the fingerprints for the fast handler
1216       fingerprint = InterpreterRuntime::normalize_fast_native_fingerprint(fingerprint);
1217       handler_index = _fingerprints->find(fingerprint);
1218       // create handler if necessary
1219       if (handler_index < 0) {
1220         ResourceMark rm;
1221         ptrdiff_t align_offset = (address)
1222           round_to((intptr_t)_buffer, CodeEntryAlignment) - (address)_buffer;
1223         CodeBuffer buffer((address)(_buffer + align_offset),
1224                           SignatureHandlerLibrary::buffer_size - align_offset);
1225         if (!CodeCacheExtensions::support_dynamic_code()) {
1226           // we need a name for the signature (for lookups or saving)
1227           const int SYMBOL_SIZE = 50;
1228           char *symbolName = NEW_RESOURCE_ARRAY(char, SYMBOL_SIZE);
1229           // support for named signatures
1230           jio_snprintf(symbolName, SYMBOL_SIZE,
1231                        "native_" UINT64_FORMAT, fingerprint);
1232           buffer.set_name(symbolName);
1233         }
1234         InterpreterRuntime::SignatureHandlerGenerator(method, &buffer).generate(fingerprint);
1235         // copy into code heap
1236         address handler = set_handler(&buffer);
1237         if (handler == NULL) {
1238           // use slow signature handler (without memorizing it in the fingerprints)
1239         } else {
1240           // debugging suppport
1241           if (PrintSignatureHandlers && (handler != Interpreter::slow_signature_handler())) {
1242             ttyLocker ttyl;
1243             tty->cr();
1244             tty->print_cr("argument handler #%d for: %s %s (fingerprint = " UINT64_FORMAT ", %d bytes generated)",
1245                           _handlers->length(),
1246                           (method->is_static() ? "static" : "receiver"),
1247                           method->name_and_sig_as_C_string(),
1248                           fingerprint,
1249                           buffer.insts_size());
1250             if (buffer.insts_size() > 0) {
1251               // buffer may be empty for pregenerated handlers
1252               Disassembler::decode(handler, handler + buffer.insts_size());
1253             }
1254 #ifndef PRODUCT
1255             address rh_begin = Interpreter::result_handler(method()->result_type());
1256             if (CodeCache::contains(rh_begin)) {
1257               // else it might be special platform dependent values
1258               tty->print_cr(" --- associated result handler ---");
1259               address rh_end = rh_begin;
1260               while (*(int*)rh_end != 0) {
1261                 rh_end += sizeof(int);
1262               }
1263               Disassembler::decode(rh_begin, rh_end);
1264             } else {
1265               tty->print_cr(" associated result handler: " PTR_FORMAT, p2i(rh_begin));
1266             }
1267 #endif
1268           }
1269           // add handler to library
1270           _fingerprints->append(fingerprint);
1271           _handlers->append(handler);
1272           // set handler index
1273           assert(_fingerprints->length() == _handlers->length(), "sanity check");
1274           handler_index = _fingerprints->length() - 1;
1275         }
1276       }
1277       // Set handler under SignatureHandlerLibrary_lock
1278       if (handler_index < 0) {
1279         // use generic signature handler
1280         method->set_signature_handler(Interpreter::slow_signature_handler());
1281       } else {
1282         // set handler
1283         method->set_signature_handler(_handlers->at(handler_index));
1284       }
1285     } else {
1286       CHECK_UNHANDLED_OOPS_ONLY(Thread::current()->clear_unhandled_oops());
1287       // use generic signature handler
1288       method->set_signature_handler(Interpreter::slow_signature_handler());
1289     }
1290   }
1291 #ifdef ASSERT
1292   int handler_index = -1;
1293   int fingerprint_index = -2;
1294   {
1295     // '_handlers' and '_fingerprints' are 'GrowableArray's and are NOT synchronized
1296     // in any way if accessed from multiple threads. To avoid races with another
1297     // thread which may change the arrays in the above, mutex protected block, we
1298     // have to protect this read access here with the same mutex as well!
1299     MutexLocker mu(SignatureHandlerLibrary_lock);
1300     if (_handlers != NULL) {
1301       handler_index = _handlers->find(method->signature_handler());
1302       uint64_t fingerprint = Fingerprinter(method).fingerprint();
1303       fingerprint = InterpreterRuntime::normalize_fast_native_fingerprint(fingerprint);
1304       fingerprint_index = _fingerprints->find(fingerprint);
1305     }
1306   }
1307   assert(method->signature_handler() == Interpreter::slow_signature_handler() ||
1308          handler_index == fingerprint_index, "sanity check");
1309 #endif // ASSERT
1310 }
1311 
1312 void SignatureHandlerLibrary::add(uint64_t fingerprint, address handler) {
1313   int handler_index = -1;
1314   // use customized signature handler
1315   MutexLocker mu(SignatureHandlerLibrary_lock);
1316   // make sure data structure is initialized
1317   initialize();
1318   fingerprint = InterpreterRuntime::normalize_fast_native_fingerprint(fingerprint);
1319   handler_index = _fingerprints->find(fingerprint);
1320   // create handler if necessary
1321   if (handler_index < 0) {
1322     if (PrintSignatureHandlers && (handler != Interpreter::slow_signature_handler())) {
1323       tty->cr();
1324       tty->print_cr("argument handler #%d at " PTR_FORMAT " for fingerprint " UINT64_FORMAT,
1325                     _handlers->length(),
1326                     p2i(handler),
1327                     fingerprint);
1328     }
1329     _fingerprints->append(fingerprint);
1330     _handlers->append(handler);
1331   } else {
1332     if (PrintSignatureHandlers) {
1333       tty->cr();
1334       tty->print_cr("duplicate argument handler #%d for fingerprint " UINT64_FORMAT "(old: " PTR_FORMAT ", new : " PTR_FORMAT ")",
1335                     _handlers->length(),
1336                     fingerprint,
1337                     p2i(_handlers->at(handler_index)),
1338                     p2i(handler));
1339     }
1340   }
1341 }
1342 
1343 
1344 BufferBlob*              SignatureHandlerLibrary::_handler_blob = NULL;
1345 address                  SignatureHandlerLibrary::_handler      = NULL;
1346 GrowableArray<uint64_t>* SignatureHandlerLibrary::_fingerprints = NULL;
1347 GrowableArray<address>*  SignatureHandlerLibrary::_handlers     = NULL;
1348 address                  SignatureHandlerLibrary::_buffer       = NULL;
1349 
1350 
1351 IRT_ENTRY(void, InterpreterRuntime::prepare_native_call(JavaThread* thread, Method* method))
1352   methodHandle m(thread, method);
1353   assert(m->is_native(), "sanity check");
1354   // lookup native function entry point if it doesn't exist
1355   bool in_base_library;
1356   if (!m->has_native_function()) {
1357     NativeLookup::lookup(m, in_base_library, CHECK);
1358   }
1359   // make sure signature handler is installed
1360   SignatureHandlerLibrary::add(m);
1361   // The interpreter entry point checks the signature handler first,
1362   // before trying to fetch the native entry point and klass mirror.
1363   // We must set the signature handler last, so that multiple processors
1364   // preparing the same method will be sure to see non-null entry & mirror.
1365 IRT_END
1366 
1367 #if defined(IA32) || defined(AMD64) || defined(ARM)
1368 IRT_LEAF(void, InterpreterRuntime::popframe_move_outgoing_args(JavaThread* thread, void* src_address, void* dest_address))
1369   if (src_address == dest_address) {
1370     return;
1371   }
1372   ResetNoHandleMark rnm; // In a LEAF entry.
1373   HandleMark hm;
1374   ResourceMark rm;
1375   frame fr = thread->last_frame();
1376   assert(fr.is_interpreted_frame(), "");
1377   jint bci = fr.interpreter_frame_bci();
1378   methodHandle mh(thread, fr.interpreter_frame_method());
1379   Bytecode_invoke invoke(mh, bci);
1380   ArgumentSizeComputer asc(invoke.signature());
1381   int size_of_arguments = (asc.size() + (invoke.has_receiver() ? 1 : 0)); // receiver
1382   Copy::conjoint_jbytes(src_address, dest_address,
1383                        size_of_arguments * Interpreter::stackElementSize);
1384 IRT_END
1385 #endif
1386 
1387 #if INCLUDE_JVMTI
1388 // This is a support of the JVMTI PopFrame interface.
1389 // Make sure it is an invokestatic of a polymorphic intrinsic that has a member_name argument
1390 // and return it as a vm_result so that it can be reloaded in the list of invokestatic parameters.
1391 // The member_name argument is a saved reference (in local#0) to the member_name.
1392 // For backward compatibility with some JDK versions (7, 8) it can also be a direct method handle.
1393 // FIXME: remove DMH case after j.l.i.InvokerBytecodeGenerator code shape is updated.
1394 IRT_ENTRY(void, InterpreterRuntime::member_name_arg_or_null(JavaThread* thread, address member_name,
1395                                                             Method* method, address bcp))
1396   Bytecodes::Code code = Bytecodes::code_at(method, bcp);
1397   if (code != Bytecodes::_invokestatic) {
1398     return;
1399   }
1400   ConstantPool* cpool = method->constants();
1401   int cp_index = Bytes::get_native_u2(bcp + 1) + ConstantPool::CPCACHE_INDEX_TAG;
1402   Symbol* cname = cpool->klass_name_at(cpool->klass_ref_index_at(cp_index));
1403   Symbol* mname = cpool->name_ref_at(cp_index);
1404 
1405   if (MethodHandles::has_member_arg(cname, mname)) {
1406     oop member_name_oop = (oop) member_name;
1407     if (java_lang_invoke_DirectMethodHandle::is_instance(member_name_oop)) {
1408       // FIXME: remove after j.l.i.InvokerBytecodeGenerator code shape is updated.
1409       member_name_oop = java_lang_invoke_DirectMethodHandle::member(member_name_oop);
1410     }
1411     thread->set_vm_result(member_name_oop);
1412   } else {
1413     thread->set_vm_result(NULL);
1414   }
1415 IRT_END
1416 #endif // INCLUDE_JVMTI
--- EOF ---