/* * Copyright (c) 2003, 2017, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. * */ #include "precompiled.hpp" #include "classfile/classLoader.hpp" #include "classfile/compactHashtable.inline.hpp" #include "classfile/sharedClassUtil.hpp" #include "classfile/symbolTable.hpp" #include "classfile/systemDictionaryShared.hpp" #include "classfile/altHashing.hpp" #if INCLUDE_ALL_GCS #include "gc/g1/g1CollectedHeap.hpp" #endif #include "logging/log.hpp" #include "logging/logMessage.hpp" #include "memory/filemap.hpp" #include "memory/metadataFactory.hpp" #include "memory/oopFactory.hpp" #include "oops/objArrayOop.hpp" #include "prims/jvmtiExport.hpp" #include "runtime/arguments.hpp" #include "runtime/java.hpp" #include "runtime/os.hpp" #include "runtime/vm_version.hpp" #include "services/memTracker.hpp" #include "utilities/defaultStream.hpp" # include # include #ifndef O_BINARY // if defined (Win32) use binary files. #define O_BINARY 0 // otherwise do nothing. #endif extern address JVM_FunctionAtStart(); extern address JVM_FunctionAtEnd(); // Complain and stop. All error conditions occurring during the writing of // an archive file should stop the process. Unrecoverable errors during // the reading of the archive file should stop the process. static void fail(const char *msg, va_list ap) { // This occurs very early during initialization: tty is not initialized. jio_fprintf(defaultStream::error_stream(), "An error has occurred while processing the" " shared archive file.\n"); jio_vfprintf(defaultStream::error_stream(), msg, ap); jio_fprintf(defaultStream::error_stream(), "\n"); // Do not change the text of the below message because some tests check for it. vm_exit_during_initialization("Unable to use shared archive.", NULL); } void FileMapInfo::fail_stop(const char *msg, ...) { va_list ap; va_start(ap, msg); fail(msg, ap); // Never returns. va_end(ap); // for completeness. } // Complain and continue. Recoverable errors during the reading of the // archive file may continue (with sharing disabled). // // If we continue, then disable shared spaces and close the file. void FileMapInfo::fail_continue(const char *msg, ...) { va_list ap; va_start(ap, msg); MetaspaceShared::set_archive_loading_failed(); if (PrintSharedArchiveAndExit && _validating_classpath_entry_table) { // If we are doing PrintSharedArchiveAndExit and some of the classpath entries // do not validate, we can still continue "limping" to validate the remaining // entries. No need to quit. tty->print("["); tty->vprint(msg, ap); tty->print_cr("]"); } else { if (RequireSharedSpaces) { fail(msg, ap); } else { if (log_is_enabled(Info, cds)) { ResourceMark rm; outputStream* logstream = Log(cds)::info_stream(); logstream->print("UseSharedSpaces: "); logstream->vprint_cr(msg, ap); } } UseSharedSpaces = false; assert(current_info() != NULL, "singleton must be registered"); current_info()->close(); } va_end(ap); } // Fill in the fileMapInfo structure with data about this VM instance. // This method copies the vm version info into header_version. If the version is too // long then a truncated version, which has a hash code appended to it, is copied. // // Using a template enables this method to verify that header_version is an array of // length JVM_IDENT_MAX. This ensures that the code that writes to the CDS file and // the code that reads the CDS file will both use the same size buffer. Hence, will // use identical truncation. This is necessary for matching of truncated versions. template static void get_header_version(char (&header_version) [N]) { assert(N == JVM_IDENT_MAX, "Bad header_version size"); const char *vm_version = VM_Version::internal_vm_info_string(); const int version_len = (int)strlen(vm_version); if (version_len < (JVM_IDENT_MAX-1)) { strcpy(header_version, vm_version); } else { // Get the hash value. Use a static seed because the hash needs to return the same // value over multiple jvm invocations. unsigned int hash = AltHashing::murmur3_32(8191, (const jbyte*)vm_version, version_len); // Truncate the ident, saving room for the 8 hex character hash value. strncpy(header_version, vm_version, JVM_IDENT_MAX-9); // Append the hash code as eight hex digits. sprintf(&header_version[JVM_IDENT_MAX-9], "%08x", hash); header_version[JVM_IDENT_MAX-1] = 0; // Null terminate. } } FileMapInfo::FileMapInfo() { assert(_current_info == NULL, "must be singleton"); // not thread safe _current_info = this; memset(this, 0, sizeof(FileMapInfo)); _file_offset = 0; _file_open = false; _header = SharedClassUtil::allocate_file_map_header(); _header->_version = _invalid_version; } FileMapInfo::~FileMapInfo() { assert(_current_info == this, "must be singleton"); // not thread safe _current_info = NULL; } void FileMapInfo::populate_header(size_t alignment) { _header->populate(this, alignment); } size_t FileMapInfo::FileMapHeader::data_size() { return SharedClassUtil::file_map_header_size() - sizeof(FileMapInfo::FileMapHeaderBase); } void FileMapInfo::FileMapHeader::populate(FileMapInfo* mapinfo, size_t alignment) { _magic = 0xf00baba2; _version = _current_version; _alignment = alignment; _obj_alignment = ObjectAlignmentInBytes; _compact_strings = CompactStrings; _narrow_oop_mode = Universe::narrow_oop_mode(); _narrow_oop_shift = Universe::narrow_oop_shift(); _max_heap_size = MaxHeapSize; _narrow_klass_base = Universe::narrow_klass_base(); _narrow_klass_shift = Universe::narrow_klass_shift(); _classpath_entry_table_size = mapinfo->_classpath_entry_table_size; _classpath_entry_table = mapinfo->_classpath_entry_table; _classpath_entry_size = mapinfo->_classpath_entry_size; // The following fields are for sanity checks for whether this archive // will function correctly with this JVM and the bootclasspath it's // invoked with. // JVM version string ... changes on each build. get_header_version(_jvm_ident); } void FileMapInfo::allocate_classpath_entry_table() { int bytes = 0; int count = 0; char* strptr = NULL; char* strptr_max = NULL; Thread* THREAD = Thread::current(); ClassLoaderData* loader_data = ClassLoaderData::the_null_class_loader_data(); size_t entry_size = SharedClassUtil::shared_class_path_entry_size(); for (int pass=0; pass<2; pass++) { // Process the modular java runtime image first ClassPathEntry* jrt_entry = ClassLoader::get_jrt_entry(); assert(jrt_entry != NULL, "No modular java runtime image present when allocating the CDS classpath entry table"); const char *name = jrt_entry->name(); int name_bytes = (int)(strlen(name) + 1); if (pass == 0) { count++; bytes += (int)entry_size; bytes += name_bytes; log_info(class, path)("add main shared path for modular java runtime image %s", name); } else { // The java runtime image is always in slot 0 on the shared class path. SharedClassPathEntry* ent = shared_classpath(0); struct stat st; if (os::stat(name, &st) == 0) { ent->_timestamp = st.st_mtime; ent->_filesize = st.st_size; } if (ent->_filesize == 0) { // unknown ent->_filesize = -2; } ent->_name = strptr; assert(strptr + name_bytes <= strptr_max, "miscalculated buffer size"); strncpy(strptr, name, (size_t)name_bytes); // name_bytes includes trailing 0. strptr += name_bytes; } // Walk the appended entries, which includes the entries added for the classpath. ClassPathEntry *cpe = ClassLoader::classpath_entry(1); // Since the java runtime image is always in slot 0 on the shared class path, the // appended entries are started at slot 1 immediately after. for (int cur_entry = 1 ; cpe != NULL; cpe = cpe->next(), cur_entry++) { const char *name = cpe->name(); int name_bytes = (int)(strlen(name) + 1); assert(!cpe->is_jrt(), "A modular java runtime image is present on the list of appended entries"); if (pass == 0) { count ++; bytes += (int)entry_size; bytes += name_bytes; log_info(class, path)("add main shared path (%s) %s", (cpe->is_jar_file() ? "jar" : "dir"), name); } else { SharedClassPathEntry* ent = shared_classpath(cur_entry); if (cpe->is_jar_file()) { struct stat st; if (os::stat(name, &st) != 0) { // The file/dir must exist, or it would not have been added // into ClassLoader::classpath_entry(). // // If we can't access a jar file in the boot path, then we can't // make assumptions about where classes get loaded from. FileMapInfo::fail_stop("Unable to open jar file %s.", name); } EXCEPTION_MARK; // The following call should never throw, but would exit VM on error. SharedClassUtil::update_shared_classpath(cpe, ent, st.st_mtime, st.st_size, THREAD); } else { struct stat st; if (os::stat(name, &st) == 0) { if ((st.st_mode & S_IFMT) == S_IFDIR) { if (!os::dir_is_empty(name)) { ClassLoader::exit_with_path_failure( "Cannot have non-empty directory in archived classpaths", name); } ent->_filesize = -1; } } if (ent->_filesize == 0) { // unknown ent->_filesize = -2; } } ent->_name = strptr; if (strptr + name_bytes <= strptr_max) { strncpy(strptr, name, (size_t)name_bytes); // name_bytes includes trailing 0. strptr += name_bytes; } else { assert(0, "miscalculated buffer size"); } } } if (pass == 0) { EXCEPTION_MARK; // The following call should never throw, but would exit VM on error. Array* arr = MetadataFactory::new_array(loader_data, (bytes + 7)/8, THREAD); strptr = (char*)(arr->data()); strptr_max = strptr + bytes; SharedClassPathEntry* table = (SharedClassPathEntry*)strptr; strptr += entry_size * count; _classpath_entry_table_size = count; _classpath_entry_table = table; _classpath_entry_size = entry_size; } } } bool FileMapInfo::validate_classpath_entry_table() { _validating_classpath_entry_table = true; int count = _header->_classpath_entry_table_size; _classpath_entry_table = _header->_classpath_entry_table; _classpath_entry_size = _header->_classpath_entry_size; for (int i=0; i_name; bool ok = true; log_info(class, path)("checking shared classpath entry: %s", name); if (os::stat(name, &st) != 0) { fail_continue("Required classpath entry does not exist: %s", name); ok = false; } else if (ent->is_dir()) { if (!os::dir_is_empty(name)) { fail_continue("directory is not empty: %s", name); ok = false; } } else if (ent->is_jar_or_bootimage()) { if (ent->_timestamp != st.st_mtime || ent->_filesize != st.st_size) { ok = false; if (PrintSharedArchiveAndExit) { fail_continue(ent->_timestamp != st.st_mtime ? "Timestamp mismatch" : "File size mismatch"); } else { fail_continue("A jar/jimage file is not the one used while building" " the shared archive file: %s", name); } } } if (ok) { log_info(class, path)("ok"); } else if (!PrintSharedArchiveAndExit) { _validating_classpath_entry_table = false; return false; } } _classpath_entry_table_size = _header->_classpath_entry_table_size; _validating_classpath_entry_table = false; return true; } // Read the FileMapInfo information from the file. bool FileMapInfo::init_from_file(int fd) { size_t sz = _header->data_size(); char* addr = _header->data(); size_t n = os::read(fd, addr, (unsigned int)sz); if (n != sz) { fail_continue("Unable to read the file header."); return false; } if (_header->_version != current_version()) { fail_continue("The shared archive file has the wrong version."); return false; } _file_offset = (long)n; size_t info_size = _header->_paths_misc_info_size; _paths_misc_info = NEW_C_HEAP_ARRAY_RETURN_NULL(char, info_size, mtClass); if (_paths_misc_info == NULL) { fail_continue("Unable to read the file header."); return false; } n = os::read(fd, _paths_misc_info, (unsigned int)info_size); if (n != info_size) { fail_continue("Unable to read the shared path info header."); FREE_C_HEAP_ARRAY(char, _paths_misc_info); _paths_misc_info = NULL; return false; } size_t len = lseek(fd, 0, SEEK_END); struct FileMapInfo::FileMapHeader::space_info* si = &_header->_space[MetaspaceShared::mc]; if (si->_file_offset >= len || len - si->_file_offset < si->_used) { fail_continue("The shared archive file has been truncated."); return false; } _file_offset += (long)n; return true; } // Read the FileMapInfo information from the file. bool FileMapInfo::open_for_read() { _full_path = Arguments::GetSharedArchivePath(); int fd = open(_full_path, O_RDONLY | O_BINARY, 0); if (fd < 0) { if (errno == ENOENT) { // Not locating the shared archive is ok. fail_continue("Specified shared archive not found."); } else { fail_continue("Failed to open shared archive file (%s).", os::strerror(errno)); } return false; } _fd = fd; _file_open = true; return true; } // Write the FileMapInfo information to the file. void FileMapInfo::open_for_write() { _full_path = Arguments::GetSharedArchivePath(); if (log_is_enabled(Info, cds)) { ResourceMark rm; LogMessage(cds) msg; stringStream info_stream; info_stream.print_cr("Dumping shared data to file: "); info_stream.print_cr(" %s", _full_path); msg.info("%s", info_stream.as_string()); } #ifdef _WINDOWS // On Windows, need WRITE permission to remove the file. chmod(_full_path, _S_IREAD | _S_IWRITE); #endif // Use remove() to delete the existing file because, on Unix, this will // allow processes that have it open continued access to the file. remove(_full_path); int fd = open(_full_path, O_RDWR | O_CREAT | O_TRUNC | O_BINARY, 0444); if (fd < 0) { fail_stop("Unable to create shared archive file %s: (%s).", _full_path, os::strerror(errno)); } _fd = fd; _file_offset = 0; _file_open = true; } // Write the header to the file, seek to the next allocation boundary. void FileMapInfo::write_header() { int info_size = ClassLoader::get_shared_paths_misc_info_size(); _header->_paths_misc_info_size = info_size; align_file_position(); size_t sz = _header->data_size(); char* addr = _header->data(); write_bytes(addr, (int)sz); // skip the C++ vtable write_bytes(ClassLoader::get_shared_paths_misc_info(), info_size); align_file_position(); } // Dump shared spaces to file. void FileMapInfo::write_space(int i, Metaspace* space, bool read_only) { align_file_position(); size_t used = space->used_bytes_slow(Metaspace::NonClassType); size_t capacity = space->capacity_bytes_slow(Metaspace::NonClassType); struct FileMapInfo::FileMapHeader::space_info* si = &_header->_space[i]; write_region(i, (char*)space->bottom(), used, capacity, read_only, false); } // Dump region to file. void FileMapInfo::write_region(int region, char* base, size_t size, size_t capacity, bool read_only, bool allow_exec) { struct FileMapInfo::FileMapHeader::space_info* si = &_header->_space[region]; if (_file_open) { guarantee(si->_file_offset == _file_offset, "file offset mismatch."); log_info(cds)("Shared file region %d: " SIZE_FORMAT_HEX_W(6) " bytes, addr " INTPTR_FORMAT " file offset " SIZE_FORMAT_HEX_W(6), region, size, p2i(base), _file_offset); } else { si->_file_offset = _file_offset; } if (MetaspaceShared::is_string_region(region)) { assert((base - (char*)Universe::narrow_oop_base()) % HeapWordSize == 0, "Sanity"); if (base != NULL) { si->_addr._offset = (intx)oopDesc::encode_heap_oop_not_null((oop)base); } else { si->_addr._offset = 0; } } else { si->_addr._base = base; } si->_used = size; si->_capacity = capacity; si->_read_only = read_only; si->_allow_exec = allow_exec; si->_crc = ClassLoader::crc32(0, base, (jint)size); write_bytes_aligned(base, (int)size); } // Write the string space. The string space contains one or multiple GC(G1) regions. // When the total string space size is smaller than one GC region of the dump time, // only one string region is used for shared strings. // // If the total string space size is bigger than one GC region, there would be more // than one GC regions allocated for shared strings. The first/bottom GC region might // be a partial GC region with the empty portion at the higher address within that region. // The non-empty portion of the first region is written into the archive as one string // region. The rest are consecutive full GC regions if they exist, which can be written // out in one chunk as another string region. void FileMapInfo::write_string_regions(GrowableArray *regions) { for (int i = MetaspaceShared::first_string; i < MetaspaceShared::first_string + MetaspaceShared::max_strings; i++) { char* start = NULL; size_t size = 0; if (regions->is_nonempty()) { if (i == MetaspaceShared::first_string) { MemRegion first = regions->first(); start = (char*)first.start(); size = first.byte_size(); } else { int len = regions->length(); if (len > 1) { start = (char*)regions->at(1).start(); size = (char*)regions->at(len - 1).end() - start; } } } write_region(i, start, size, size, false, false); } } // Dump bytes to file -- at the current file position. void FileMapInfo::write_bytes(const void* buffer, int nbytes) { if (_file_open) { int n = ::write(_fd, buffer, nbytes); if (n != nbytes) { // It is dangerous to leave the corrupted shared archive file around, // close and remove the file. See bug 6372906. close(); remove(_full_path); fail_stop("Unable to write to shared archive file."); } } _file_offset += nbytes; } // Align file position to an allocation unit boundary. void FileMapInfo::align_file_position() { size_t new_file_offset = align_size_up(_file_offset, os::vm_allocation_granularity()); if (new_file_offset != _file_offset) { _file_offset = new_file_offset; if (_file_open) { // Seek one byte back from the target and write a byte to insure // that the written file is the correct length. _file_offset -= 1; if (lseek(_fd, (long)_file_offset, SEEK_SET) < 0) { fail_stop("Unable to seek."); } char zero = 0; write_bytes(&zero, 1); } } } // Dump bytes to file -- at the current file position. void FileMapInfo::write_bytes_aligned(const void* buffer, int nbytes) { align_file_position(); write_bytes(buffer, nbytes); align_file_position(); } // Close the shared archive file. This does NOT unmap mapped regions. void FileMapInfo::close() { if (_file_open) { if (::close(_fd) < 0) { fail_stop("Unable to close the shared archive file."); } _file_open = false; _fd = -1; } } // JVM/TI RedefineClasses() support: // Remap the shared readonly space to shared readwrite, private. bool FileMapInfo::remap_shared_readonly_as_readwrite() { int idx = 0; struct FileMapInfo::FileMapHeader::space_info* si = &_header->_space[idx]; if (!si->_read_only) { // the space is already readwrite so we are done return true; } size_t used = si->_used; size_t size = align_size_up(used, os::vm_allocation_granularity()); if (!open_for_read()) { return false; } char *addr = _header->region_addr(idx); char *base = os::remap_memory(_fd, _full_path, si->_file_offset, addr, size, false /* !read_only */, si->_allow_exec); close(); if (base == NULL) { fail_continue("Unable to remap shared readonly space (errno=%d).", errno); return false; } if (base != addr) { fail_continue("Unable to remap shared readonly space at required address."); return false; } si->_read_only = false; return true; } // Map the whole region at once, assumed to be allocated contiguously. ReservedSpace FileMapInfo::reserve_shared_memory() { struct FileMapInfo::FileMapHeader::space_info* si = &_header->_space[0]; char* requested_addr = _header->region_addr(0); size_t size = FileMapInfo::shared_spaces_size(); // Reserve the space first, then map otherwise map will go right over some // other reserved memory (like the code cache). ReservedSpace rs(size, os::vm_allocation_granularity(), false, requested_addr); if (!rs.is_reserved()) { fail_continue("Unable to reserve shared space at required address " INTPTR_FORMAT, p2i(requested_addr)); return rs; } // the reserved virtual memory is for mapping class data sharing archive MemTracker::record_virtual_memory_type((address)rs.base(), mtClassShared); return rs; } // Memory map a region in the address space. static const char* shared_region_name[] = { "ReadOnly", "ReadWrite", "MiscData", "MiscCode", "String1", "String2", "OptionalData" }; char* FileMapInfo::map_region(int i) { assert(!MetaspaceShared::is_string_region(i), "sanity"); struct FileMapInfo::FileMapHeader::space_info* si = &_header->_space[i]; size_t used = si->_used; size_t alignment = os::vm_allocation_granularity(); size_t size = align_size_up(used, alignment); char *requested_addr = _header->region_addr(i); // If a tool agent is in use (debugging enabled), we must map the address space RW if (JvmtiExport::can_modify_any_class() || JvmtiExport::can_walk_any_space()) { si->_read_only = false; } // map the contents of the CDS archive in this memory char *base = os::map_memory(_fd, _full_path, si->_file_offset, requested_addr, size, si->_read_only, si->_allow_exec); if (base == NULL || base != requested_addr) { fail_continue("Unable to map %s shared space at required address.", shared_region_name[i]); return NULL; } #ifdef _WINDOWS // This call is Windows-only because the memory_type gets recorded for the other platforms // in method FileMapInfo::reserve_shared_memory(), which is not called on Windows. MemTracker::record_virtual_memory_type((address)base, mtClassShared); #endif return base; } static MemRegion *string_ranges = NULL; static int num_ranges = 0; bool FileMapInfo::map_string_regions() { #if INCLUDE_ALL_GCS if (UseG1GC && UseCompressedOops && UseCompressedClassPointers) { // Check that all the narrow oop and klass encodings match the archive if (narrow_oop_mode() != Universe::narrow_oop_mode() || narrow_oop_shift() != Universe::narrow_oop_shift() || narrow_klass_base() != Universe::narrow_klass_base() || narrow_klass_shift() != Universe::narrow_klass_shift()) { if (log_is_enabled(Info, cds) && _header->_space[MetaspaceShared::first_string]._used > 0) { log_info(cds)("Shared string data from the CDS archive is being ignored. " "The current CompressedOops/CompressedClassPointers encoding differs from " "that archived due to heap size change. The archive was dumped using max heap " "size " UINTX_FORMAT "M.", max_heap_size()/M); } } else { string_ranges = new MemRegion[MetaspaceShared::max_strings]; struct FileMapInfo::FileMapHeader::space_info* si; for (int i = MetaspaceShared::first_string; i < MetaspaceShared::first_string + MetaspaceShared::max_strings; i++) { si = &_header->_space[i]; size_t used = si->_used; if (used > 0) { size_t size = used; char* requested_addr = (char*)((void*)oopDesc::decode_heap_oop_not_null( (narrowOop)si->_addr._offset)); string_ranges[num_ranges] = MemRegion((HeapWord*)requested_addr, size / HeapWordSize); num_ranges ++; } } if (num_ranges == 0) { StringTable::ignore_shared_strings(true); return true; // no shared string data } // Check that ranges are within the java heap if (!G1CollectedHeap::heap()->check_archive_addresses(string_ranges, num_ranges)) { fail_continue("Unable to allocate shared string space: range is not " "within java heap."); return false; } // allocate from java heap if (!G1CollectedHeap::heap()->alloc_archive_regions(string_ranges, num_ranges)) { fail_continue("Unable to allocate shared string space: range is " "already in use."); return false; } // Map the string data. No need to call MemTracker::record_virtual_memory_type() // for mapped string regions as they are part of the reserved java heap, which // is already recorded. for (int i = 0; i < num_ranges; i++) { si = &_header->_space[MetaspaceShared::first_string + i]; char* addr = (char*)string_ranges[i].start(); char* base = os::map_memory(_fd, _full_path, si->_file_offset, addr, string_ranges[i].byte_size(), si->_read_only, si->_allow_exec); if (base == NULL || base != addr) { // dealloc the string regions from java heap dealloc_string_regions(); fail_continue("Unable to map shared string space at required address."); return false; } } if (!verify_string_regions()) { // dealloc the string regions from java heap dealloc_string_regions(); fail_continue("Shared string regions are corrupt"); return false; } // the shared string data is mapped successfully return true; } } else { if (log_is_enabled(Info, cds) && _header->_space[MetaspaceShared::first_string]._used > 0) { log_info(cds)("Shared string data from the CDS archive is being ignored. UseG1GC, " "UseCompressedOops and UseCompressedClassPointers are required."); } } // if we get here, the shared string data is not mapped assert(string_ranges == NULL && num_ranges == 0, "sanity"); StringTable::ignore_shared_strings(true); #endif return true; } bool FileMapInfo::verify_string_regions() { for (int i = MetaspaceShared::first_string; i < MetaspaceShared::first_string + MetaspaceShared::max_strings; i++) { if (!verify_region_checksum(i)) { return false; } } return true; } void FileMapInfo::fixup_string_regions() { #if INCLUDE_ALL_GCS // If any string regions were found, call the fill routine to make them parseable. // Note that string_ranges may be non-NULL even if no ranges were found. if (num_ranges != 0) { assert(string_ranges != NULL, "Null string_ranges array with non-zero count"); G1CollectedHeap::heap()->fill_archive_regions(string_ranges, num_ranges); } #endif } bool FileMapInfo::verify_region_checksum(int i) { if (!VerifySharedSpaces) { return true; } size_t sz = _header->_space[i]._used; if (sz == 0) { return true; // no data } if (MetaspaceShared::is_string_region(i) && StringTable::shared_string_ignored()) { return true; // shared string data are not mapped } const char* buf = _header->region_addr(i); int crc = ClassLoader::crc32(0, buf, (jint)sz); if (crc != _header->_space[i]._crc) { fail_continue("Checksum verification failed."); return false; } return true; } // Unmap a memory region in the address space. void FileMapInfo::unmap_region(int i) { assert(!MetaspaceShared::is_string_region(i), "sanity"); struct FileMapInfo::FileMapHeader::space_info* si = &_header->_space[i]; size_t used = si->_used; size_t size = align_size_up(used, os::vm_allocation_granularity()); if (used == 0) { return; } char* addr = _header->region_addr(i); if (!os::unmap_memory(addr, size)) { fail_stop("Unable to unmap shared space."); } } // dealloc the archived string region from java heap void FileMapInfo::dealloc_string_regions() { #if INCLUDE_ALL_GCS if (num_ranges > 0) { assert(string_ranges != NULL, "Null string_ranges array with non-zero count"); G1CollectedHeap::heap()->dealloc_archive_regions(string_ranges, num_ranges); } #endif } void FileMapInfo::assert_mark(bool check) { if (!check) { fail_stop("Mark mismatch while restoring from shared file."); } } FileMapInfo* FileMapInfo::_current_info = NULL; SharedClassPathEntry* FileMapInfo::_classpath_entry_table = NULL; int FileMapInfo::_classpath_entry_table_size = 0; size_t FileMapInfo::_classpath_entry_size = 0x1234baad; bool FileMapInfo::_validating_classpath_entry_table = false; // Open the shared archive file, read and validate the header // information (version, boot classpath, etc.). If initialization // fails, shared spaces are disabled and the file is closed. [See // fail_continue.] // // Validation of the archive is done in two steps: // // [1] validate_header() - done here. This checks the header, including _paths_misc_info. // [2] validate_classpath_entry_table - this is done later, because the table is in the RW // region of the archive, which is not mapped yet. bool FileMapInfo::initialize() { assert(UseSharedSpaces, "UseSharedSpaces expected."); if (!open_for_read()) { return false; } init_from_file(_fd); if (!validate_header()) { return false; } SharedReadOnlySize = _header->_space[0]._capacity; SharedReadWriteSize = _header->_space[1]._capacity; SharedMiscDataSize = _header->_space[2]._capacity; SharedMiscCodeSize = _header->_space[3]._capacity; return true; } char* FileMapInfo::FileMapHeader::region_addr(int idx) { if (MetaspaceShared::is_string_region(idx)) { return (char*)((void*)oopDesc::decode_heap_oop_not_null( (narrowOop)_space[idx]._addr._offset)); } else { return _space[idx]._addr._base; } } int FileMapInfo::FileMapHeader::compute_crc() { char* header = data(); // start computing from the field after _crc char* buf = (char*)&_crc + sizeof(int); size_t sz = data_size() - (buf - header); int crc = ClassLoader::crc32(0, buf, (jint)sz); return crc; } bool FileMapInfo::FileMapHeader::validate() { if (VerifySharedSpaces && compute_crc() != _crc) { fail_continue("Header checksum verification failed."); return false; } if (!Arguments::has_jimage()) { FileMapInfo::fail_continue("The shared archive file cannot be used with an exploded module build."); return false; } if (_version != current_version()) { FileMapInfo::fail_continue("The shared archive file is the wrong version."); return false; } if (_magic != (int)0xf00baba2) { FileMapInfo::fail_continue("The shared archive file has a bad magic number."); return false; } char header_version[JVM_IDENT_MAX]; get_header_version(header_version); if (strncmp(_jvm_ident, header_version, JVM_IDENT_MAX-1) != 0) { log_info(class, path)("expected: %s", header_version); log_info(class, path)("actual: %s", _jvm_ident); FileMapInfo::fail_continue("The shared archive file was created by a different" " version or build of HotSpot"); return false; } if (_obj_alignment != ObjectAlignmentInBytes) { FileMapInfo::fail_continue("The shared archive file's ObjectAlignmentInBytes of %d" " does not equal the current ObjectAlignmentInBytes of " INTX_FORMAT ".", _obj_alignment, ObjectAlignmentInBytes); return false; } if (_compact_strings != CompactStrings) { FileMapInfo::fail_continue("The shared archive file's CompactStrings setting (%s)" " does not equal the current CompactStrings setting (%s).", _compact_strings ? "enabled" : "disabled", CompactStrings ? "enabled" : "disabled"); return false; } return true; } bool FileMapInfo::validate_header() { bool status = _header->validate(); if (status) { if (!ClassLoader::check_shared_paths_misc_info(_paths_misc_info, _header->_paths_misc_info_size)) { if (!PrintSharedArchiveAndExit) { fail_continue("shared class paths mismatch (hint: enable -Xlog:class+path=info to diagnose the failure)"); status = false; } } } if (_paths_misc_info != NULL) { FREE_C_HEAP_ARRAY(char, _paths_misc_info); _paths_misc_info = NULL; } return status; } // The following method is provided to see whether a given pointer // falls in the mapped shared space. // Param: // p, The given pointer // Return: // True if the p is within the mapped shared space, otherwise, false. bool FileMapInfo::is_in_shared_space(const void* p) { for (int i = 0; i < MetaspaceShared::n_regions; i++) { char *base; if (MetaspaceShared::is_string_region(i) && _header->_space[i]._used == 0) { continue; } base = _header->region_addr(i); if (p >= base && p < base + _header->_space[i]._used) { return true; } } return false; } // Check if a given address is within one of the shared regions (ro, rw, md, mc) bool FileMapInfo::is_in_shared_region(const void* p, int idx) { assert((idx >= MetaspaceShared::ro) && (idx <= MetaspaceShared::mc), "invalid region index"); char* base = _header->region_addr(idx); if (p >= base && p < base + _header->_space[idx]._used) { return true; } return false; } void FileMapInfo::print_shared_spaces() { tty->print_cr("Shared Spaces:"); for (int i = 0; i < MetaspaceShared::n_regions; i++) { struct FileMapInfo::FileMapHeader::space_info* si = &_header->_space[i]; char *base = _header->region_addr(i); tty->print(" %s " INTPTR_FORMAT "-" INTPTR_FORMAT, shared_region_name[i], p2i(base), p2i(base + si->_used)); } } // Unmap mapped regions of shared space. void FileMapInfo::stop_sharing_and_unmap(const char* msg) { FileMapInfo *map_info = FileMapInfo::current_info(); if (map_info) { map_info->fail_continue("%s", msg); for (int i = 0; i < MetaspaceShared::num_non_strings; i++) { char *addr = map_info->_header->region_addr(i); if (addr != NULL && !MetaspaceShared::is_string_region(i)) { map_info->unmap_region(i); map_info->_header->_space[i]._addr._base = NULL; } } // Dealloc the string regions only without unmapping. The string regions are part // of the java heap. Unmapping of the heap regions are managed by GC. map_info->dealloc_string_regions(); } else if (DumpSharedSpaces) { fail_stop("%s", msg); } }